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Abstract 

The aim of this thesis was to study the reaction 2H=H2 using the reactive interaction potential 

ReaxFF. This was done by performing a thermodynamic study, using the ReaxFF and the 

Small System Method (SSM). The results were compared with several of the thermodynamic 

parameters from the article The reaction enthalpy of hydrogen dissociation calculated with 

the Small System Method from simulation of molecular fluctuations written by Skorpa et al. 

(2014) who used the reactive three-body potential (TBP). The ReaxFF was chosen because it 

is a popular interaction potential that is applicable with several chemical reactions and has 

low computational cost. An additional aim was conclude whether or not it was feasible to use 

the ReaxFF instead of the TBP and still get reasonable results. 

In short, the ReaxFF produced fast calculations, which were consistent with expected trends. 

Here, the self-diffusion coefficient for H was larger than for H2, whereas the heat capacity for 

H2 was larger than for H. Furthermore, the activation energy was equal to the average bond 

enthalpy for hydrogen. By comparing the dissociation, partial molar enthalpy and the 

thermodynamic correction factor with the values in the Skorpa et al. paper, it was concluded 

that the ReaxFF compares to the TBP. Here, the ReaxFF and the TBP values were equal, or 

close to equal. In general, the ReaxFF values had higher uncertainties and deviated more from 

the TBP when the particle number was low. This was expected since the ReaxFF is a less 

accurate potential, however, it was argued that it could also be an effect of the post-modelling 

processing. 

During testing an error in the SSM code in LAMMPS was discovered; the code could not 

recognize molecules. Consequently, it could not be used in this study. This resulted in more 

post modelling calculations than expected, leading to a second SSM code in MATLAB being 

used in order to obtain the thermodynamic correction factor. 

To conclude, the ReaxFF simulates hydrogen dissociation as expected. Furthermore, it is 

feasible to use the ReaxFF instead of the TBP. Despite the TBP being a more accurate 

potential, the ReaxFF produces close to the same values, is more applicable and faster. 
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Sammendrag 

Hensikten med denne oppgaven var å studere reaksjonen 2H=H2 ved å bruke det reaktive 

interaksjonspotensialt ReaxFF. Dette ble gjort ved å utføre en termodynamisk undersøkelse 

med ReaxFF og en nyutviklet Small System Method (SSM) kode i LAMMPS. Resultatene ble 

sammenlignet med samtlige termodynamiske parametere fra artikkelen The reaction enthalpy 

of hydrogen dissociation calculated with the Small System Method from simulation of 

molecular fluctuations skrevet av Skorpa et al. (2014) hvor interaksjonspotensialt three-body 

potential (TBP) ble brukt. ReaxFF ble valgt fordi det er et populært interaksjonspotensialt 

med lav beregningskostnad, som òg kan brukes til å simulere andre reaksjoner. En ytterligere 

hensikt var å konkludere hvorvidt det er mulig å bruke ReaxFF istedenfor TBP og fortsatt få 

rimelige resultater. 

Kort oppsummert, ReaxFF produserte raske beregninger som var i samsvar med forventede 

trender og verdier. Her var selv-diffusjons koeffisienten for H større enn for H2 og 

varmekapasiteten for H2 var større enn for H. Videre var aktiveringsenergien lik den 

gjennomsnittlige bindingsentalpien til hydrogen. Sammenlignet med TBP produserte ReaxFF 

tilnærmet like verdier, men produserte generelt verdier med høyere unøyaktighet, samt 

avviket mer fra TBP når antallet partikler var lavt. Dette var ventet siden ReaxFF er et mindre 

nøyaktig potensial. Det ble hevdet at denne unøyaktigheten også kunne være en effekt av 

etter-modellerings behandlingen. 

Under testing ble en feil i SSM koden oppdaget; molekylene ble ikke gjenkjent. Dermed ble 

den ikke brukt i oppgaven. Dette resulterte i flere etter-modelleringsberegninger enn 

forventet, hvor en ny SSM kode i MATLAB ble benyttet for å oppnå den termodynamiske 

korreksjonsfaktoren. 

Det ble konkludert at ReaxFF simulerte hydrogen-dissosiasjon som forventet. Det er altså 

mulig å bruke ReaxFF istedenfor TBP. Til tross for at TBP er et mer nøyaktig potensial, 

produserte ReaxFF nær de samme verdiene, er mer anvendelig og raskere 

.  
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1. Introduction 

Computer simulations are an expanding tool and are often preferred over experimental 

methods when it is too difficult, expensive or dangerous to perform an experiment. Moreover, 

using computer simulations provide unique atomistic insight into the behavior of the 

substance of interest. Potential-based methods (e.g. molecular dynamics) are computational 

tools that use interaction potentials. An interaction potential is a mathematical description of 

molecules and atoms behavior, alone and with others. They are parametrized to fit either 

experimental or quantum mechanical results[1]. Choosing the right interaction potential can 

be crucial when it comes to accuracy and computational costs. One of these interaction 

potentials is the ReaxFF developed by van Duin et al. (2001)[2]. This is a bond-order-

dependent potential with van der Waals and Coulomb forces which is used to simulate the 

breaking and forming of bonds. Several applications using ReaxFF have been reported; 

dissociation of H2 on platinum surfaces[3], thermal decomposition of polymers[4] and organic 

reactions[2] to name a few. [5] 

A central problem in the chemical industry is to understand and operate chemical reactors. 

Here, chemical reactions take place under gradients such as concentration and temperature. It 

is important to get information about the transport properties of reactants and products and the 

enthalpy of reaction as a function of composition and temperature. In her dr. thesis Skorpa 

studied both enthalpy- and transport properties of a simple hydrogen dissociation in gas 

phase, using molecular dynamics simulations. This study was performed to facilitate the 

modelling of the coupled transport phenomena that occurs in a water gas shift reactions where 

a palladium membrane is used. Here, she used a three-body interaction potential. [6, 7]. This 

potential is more accurate but comes with a higher computational cost compared with 

ReaxFF. Furthermore, Skorpa studied only one reaction. This thesis aims to expand on her 

results by studying other more realistic chemical and surface reactions. 

The first step to study more realistic reactions is to study the ReaxFF, which is applicable 

with many chemical reactions. A central part in performing this study is using a newly 

developed code for the Small System Method (SSM) in LAMMPS. The SSM uses fluctuation 

data from small systems and appropriate scaling to find thermodynamic limit values, making 

it possible to compare nano-scale systems with macro systems.[8] The combination of SSM 

and the ReaxFF will be a new way to obtain data for chemical reactors, and will be of high 
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interest for both the chemical and chemical engineering community. The SSM has until today 

been used to successfully find activity coefficients and enthalpies for mixtures and 

electrolytes[9], CO2 adsorption on surface [10] and the reaction enthalpy of 2H=H2[7]. 

1.1. Scope 

The aim of this thesis is to study, as an example, the reaction 2H=H2 using the ReaxFF. This 

is done by performing a thermodynamic study, using the ReaxFF and the SSM. The results 

are compared with several of the thermodynamic parameters from the article The reaction 

enthalpy of hydrogen dissociation calculated with the Small System Method from simulation 

of molecular fluctuations written by Skorpa et al. (2014)[7]. Here, the simulation package 

LAMMPS[11] is used to perform the molecular dynamic simulations. By the end of this study 

it should be possible to conclude if it is feasible to use the ReaxFF instead of the three-body 

potential and still get reasonable results. 

Even though the main purpose is to study the ReaxFF and compare the values with the three-

body interaction potential, an additional non-reactive interaction potential, the classical force 

field, is also implemented.  Its purpose is to test the system before implementing the ReaxFF. 

The results are compared with experimental and theoretical values to see if the values are 

reasonable. Additional testing is also performed on the system with the ReaxFF to see if it is 

implemented correctly.  

1.2. The structure of the thesis 

This thesis is divided into six main parts. First, a brief introduction into the thermodynamics 

and mathematical concepts used in this paper is presented in Chapter 2, and the methods used 

in the simulations follow in Chapter 3. Among these are the different interaction potentials of 

interest. In Chapter 4, the simulation details are presented, followed by the results and 

discussion in Chapter 5. Lastly, the conclusion and outlook is presented in Chapter 7. 

For the purpose of this thesis, “the method” refers to the interaction potential in combination 

with a simulation package. In this thesis, the interaction potentials ReaxFF and classical force 

field are used separately in combination with the simulation package LAMMPS. “The 

system” refers to a square box or sphere with hydrogen atoms and/or molecules.  
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2. Theory 

The purpose of this section is to give a short theoretical background of the thermodynamics 

used in this thesis. The thermodynamics will include mathematical concepts which are 

presented chronologically as follows; mean square displacement, activation energy, enthalpy, 

the thermodynamic correction factor and the different ensembles used.  

2.1. Diffusion 

The random molecular motion that leads to the molecules spreading in a given medium is 

called diffusion. Fick’s law (Equation(1)) describes this mass flux of one of the components 

in one dimension. 

 i
i i

c
J aj aD

z


  


  (1) 

Here, Ji is the total flux, ji is the flux per unit area, ci is the concentration, z is the distance, a is 

the cross sectional area and D is the diffusion coefficient, which Fick called “the constant 

depending of the nature of the substances”[12, 13].   

In the absence of a concentration gradient, the flux of one component is described by the self-

diffusion coefficient. Einstein related the self-diffusion coefficient to the mean square 

displacement (MSD) of a particle as a function of time, t. As shown in Equation(2) is the self-

diffusion coefficient, Dself, the proportionality constant that relates the MSD to the time, as the 

time goes to infinity[14] 

 
 

2

0 0

self

r(t t) r(t )lim1
D

t2d t

 



  (2) 

Here, d is the dimensionality of the system and r is the molecule position. The numerator of 

Equation(2) is the MSD. The self-diffusion coefficient of a species can be obtained through 

linear least squares regression, as shown in Equation(3).[14].  

  
2

0 0 0 selfr(t t) r(t ) b (2dD )t      (3) 

Here, b0 is the intercept and 2dDself is the slope. Even though it has been proven difficult to 

develop theories for a-priori calculations of the diffusion coefficient and perform 

experimental measurements, the gaseous diffusion coefficient can be estimated theoretically. 
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These values are often estimated to lie between 0.1 and 1 cm
2
/sec at 1atm and near room 

temperature.[12]  

The Chapman-Enskog theory (aka. kinetic gas theory) for gaseous diffusion coefficients is 

based on the detailed analysis of molecular motion in dilute gases. The equation for two 

components is shown in Equation(4). This theory is accurate to an average of 8% and is based 

on the assumption of nonpolar gases[12]. 

 
3 3/2 1/2

1 2

2

12

1.86 10 T (1/ M 1/ M )
D

p

 


 
  (4) 

Here, T is the temperature, p is the pressure, 
iM  are the molecular weights, 12σ  is the 

collision diameter (the closest distance between two colliding atoms) which is the average of 

the two species present, as shown in Equation(5), and Ω  is a dimensionless quantity which is 

dependent on the integration of the interaction (e.g. Lennard-Jones 12-6 potential) between 

the two components. The latter resulting in an integral that varies with the interaction energy 

and temperature.  This energy, 12ε , is a geometric average of contribution from the two 

species, as shown in Equation(6).  

 
12 1 2

1
( )

2
      (5) 

 12 1 2      (6) 

Ω  and 12σ are molecular properties characteristic for the detailed theory and can be found in 

literature[12]. When calculating Dself using kinetic gas theory is a simplified version of 

Equation (4) used (see Attachment A). 

2.2. Activation energy 

The activation energy, Ea, is in some ways a barrier to energy transfer over which the reacting 

particles must exceed to go from kinetic- to potential energy. [15] Since the activation energy 

of hydrogen dissociation is the energy equivalent to breaking a hydrogen bond, it can be 

compared with the average bond enthalpy for H2, ∆Hf. The activation energy can be found 

using Arrhenius plot, as shown in Equation(7). 

 r

E
ln k ln A

RT

a    (7) 
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Here, kr is the rate constant, A is called the pre-exponential factor or the ‘frequency factor’ 

and R is the universal gas constant. A plot of ln kr against 1/T gives a straight line, where (-

Ea/R) is the slope. The graph’s shape is a result of the particles kinetic energy, which 

increases with temperature, thus increasing the reaction rate. Consequently, in this instance, 

the bonds are more susceptible to be broken. kr is a rate expressed as a change in 

concentration, [A], divided by t. For a first order reaction kr can be found as shown in 

Equation(8), which produces a plot that also gives a straight line. If the plot do not have a 

straight line, it indicates that the reaction has another order.[16] 

 
 ln A

k
t


 


  (8) 

2.3. Enthalpy 

Enthalpy, H, is a state function that gives information about the amount of heat exchanged 

between the system and its surroundings and is defined in as shown in Equation(9).  

 H U pV    (9) 

Here, U is the internal energy and the pV is the pressure-volume work that is done by the 

system on the surroundings. In a process, heat capacity, C, is used to calculate the change in 

H. It is defined as the amount of heat required, q, to increase the temperature of a given matter 

by 1 K. The heat capacity at constant p is defined as shown in Equation(10).[17] 

 p

p p

dq dH
C

dT dT

   
    
   

  (10) 

In other words, the heat capacity is a matter’s ability to absorb heat, which is dependent on the 

molecule’s kinetic energy, i.e. the shape and movement of molecules. There are three ways 

which a molecule can move; vibration, translation and rotation. The molecular movement is 

shape dependent. In Figure 2.1 are the movements possible for a hydrogen molecule and atom 

illustrated. As shown, the molecule has three ways to move, whereas the atom only has one, 

resulting in a greater heat capacity for hydrogen molecules compared with hydrogen 

atoms.[17] 
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Figure 2.1: The movements for hydrogen molecule and atom. As shown, the molecule has 

three different movements whereas the atoms only as one.  

The partial molar enthalpy is an intensive variable that describes the change in enthalpy as the 

number of moles for a given species changes while all other variables are kept constant. 

Equation(11) show the partial molar enthalpy for species i, hi. [17] 

 

k

i

i T,P,n

H
h

n

 
  

 
  (11) 

Here, H is the total enthalpy of the system and ni is the number of moles of species i. The 

variables T, p and number of moles in the system that is not of species i, nk, are kept constant. 

The molar heat capacity (heat capacity per mole) for species i, Cp,i, at constant p shown in 

Equation(12).[17] 

 i
p,i

p

h
C

T

 
  

 
  (12) 

For ideal gas is Cp,i equal to 5/2R and 9/2R for monoatomic and diatomic gas, respectively. 

The standard reaction enthalpy, ∆rH°, is the change in enthalpy when one mole of a species is 

transformed during a chemical reaction under standard conditions. This parameter can be 

calculated with van’t Hoff equation at constant pressure, as shown in Equation(13).[17] 

 th rd lnK H

d(1/ T) R

   
  

 
  (13) 

The the dissociation constant, Kx, is a function of the mole fractions, Xi, for the components in 

a given system. The thermodynamic equilibrium constant, Kth, is a function of Kx and the 

activity coefficients, γi. For a system with hydrogen atoms and molecules can Kth be found as 

shown in Equation(14).  
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2 2 2

H H H
th x

H H H

X
K K

X

 
 

 
  (14) 

For an ideal mixture 
2

2

H 12

Hγ /γ   which result in Kx = Kth.[6] 

2.4. The thermodynamic correction factor 

The thermodynamic correction factor (TCF), Γ, is a measurement of non-ideality and is equal 

to one when the mixtures are ideal (the pressure is low to moderate)[18]  It is defined as 

shown in Equation(15).[13] 

 

i

i
i i

i V,T,µ

µ
N

N

 
   

 
  (15) 

Here, µi is the chemical potential and Ni is number of particles of species i. The TCF relates 

the Fick diffusivity, D, and the Maxwell-Stefan diffusivity, Ð, as seen in Equation(16). [18] 

 D Ð    (16) 

2.5. Ensembles 

Two ensembles are of interest in this thesis. The first is the canonical ensemble where Ni,V 

and T are constant. This ensemble is used when performing molecular dynamics simulations. 

This ensemble represents a closed system immersed in a very large heat bath. [19] 

The second is the grand canonical ensemble is where µj,V and T are constant. This ensemble 

is used when using the Small System Method.  This ensemble represents an open system 

immersed in a very large heat bath. Both heat and matter can enter and exit the system’s 

walls.[19] 

In their paper, Skorpa et al.[7] compared the partial molar enthalpy at the thermodynamic 

limit calculated with different densities and ensembles (µj,V,T), (Nj,V,T) and (Nj,P,T) for H 

and H2. They found out that at the lowest density, ρ=5.22 kg/m
3
, the difference was small, and 

at the lowest temperatures, T≤7799K, the values for (µj,V,T) and (Nj,V,T) were equal for both 

particles. They concluded that the mixture is ideal under these conditions.[7] 
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3. Method  

This chapter focuses on the different computational methods used in this thesis. First, the 

molecular dynamic simulation is described. Here, the focus is on the mathematical concepts 

behind this method, errors that can occur and effects its approximations have on the diffusion. 

Secondly, the different interaction potentials used in combination with the molecular 

dynamics are presented. Here, the basic principles behind the interaction potentials are 

explained. Lastly, the Small System Method, used to find the TCF and partial molar enthalpy, 

is presented. 

3.1. Molecular dynamics simulation 

Molecular dynamic (MD) simulation is a molecular modelling method that calculates the 

‘real’ dynamics of a system to gain atomistic insight. This is done by constructing a 

macroscopic system and predicting its properties[20]. MD simulation follows the evolution of 

time where it can calculate any state from its current one, making it a deterministic method.[1, 

20]. Here, MD simulation treat the N particles, that the system is comprised of, as point 

masses and integrates Newton’s equations to gain their motions.[21] In LAMMPS is the 

Verlet method  applied for the integrations[22]. Newton’s law of motion is found in 

Equation(17). 

 i i im r f   (17) 

Here, mi is the mass of the particle i, ir  is the second derivative of the position of the particle, 

in Cartesian coordinates, moving along with the force if [23]. The force is shown in Equation 

(18) 

 2 i j 3 i j k

j j k

F ( , ) F ( , , ) ...   if r  r r  r r   (18) 

Here, F2 and F3 are force functions for the pair-wise and a three-body interaction. Additional 

many-body interactions can be added.[21] The first derivative of the position, ir , is a function 

the momentum, ip , as shown in Equation(19), which again is a function of the potential, V, 

(see Section 3.2) as shown in Equation(20). 

 i
i

i i

Ĥ

m


 


p
r

p
  (19) 
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i i

i i

Ĥ V 
    

 
p f

r r
  (20) 

Both equations are derived using the classical Hamiltonian, Ĥ . Ĥ is a function of 6N-3 

dimensional phase space and can be written as a sum of kinetic and potential energy terms, as 

shown in Equation(21). [23] 

 
N

2

i i i i

i 1 i

1
Ĥ( , ) V( )

2m

 p r p r   (21) 

By gaining information about the motion of the particles in a system, it is possible to calculate 

useful micro- and macroscopic information.[21] Equation(22) shows how the momenta and 

positions can be used to calculate thermodynamic properties, B, such as pressure and heat 

capacity. Numerical integrating is used to calculate thermodynamic averages as time 

averages. Here M is the number of time steps.[20] 

 
M

N N

i 1

1
B B( , )

M 

  p r   (22) 

3.1.1. Errors related to molecular dynamic simulation 

The errors related to the MD calculations are often similar to errors that can occur when 

preforming real experiments [24]. According to Frenkel and Smit the following errors are; 

“(…) the sample is not prepared correctly, the measurement is too short, the system 

undergoes an irreversible change during the experiment, or we do not measure what we 

think.” [Frenkel and Smit, 2001, p.64,[24]]Even though molecular dynamics simulation tend 

to deliver accurate descriptions of systems, there are many effects that have been omitted, 

which can be crucial in certain cases[23]. According to Field in regards to the effects that 

have been omitted and examples of what these effects might lead to:  

(…) they may fail in the treatment of the dynamics of light particles (especially 

hydrogen), for which quantum mechanical tunneling effects can be important and they 

do not include zero-point motion, which is the vibrational motion that all quantum 

mechanical system undergo even at the absolute zero of temperature.  

[Field 2007, p.171,[23]] 

Furthermore, the duration of the measurements is a consequence of the size and number of 

time steps. When choosing the time steps there are no hard rules to follow on how to get the 

optimum number, but choosing wrong can also lead to errors. Too small can give an 
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unrepresentative trajectory of the phase space and too large can lead to high energy overlaps 

between atoms which may result in instabilities in the integration algorithm.[20]  

3.1.2. Effects on the diffusion coefficient 

In MD simulations, at constant NVT, is the Nosé-Hoover Thermostat used to reproduce a 

behavior for a system. This paper is not going to go into details about this thermostat, only 

mention that the Nosé-Hoover coupling constant Q affect the diffusion coefficient, resulting 

in a slight slope near origin in a MSD as a function of the observed time plot [24]. 

3.2. Interaction potential 

Force field is a type of interaction potential used by molecular mechanics to study molecular 

conformations and largely determines the systems properties and behavior[23].  The equation 

for the interaction potential, r
NV( ) , consist usually of four components, which illustrates the 

intra- and intermolecular forces in the system, as shown in Equation(23).[20] 

 
NV( ) bonds angles torsion nonbonding   r   (23) 

The terms represent the energetic penalties that are given when deviation from equilibrium or 

reference state occur. The last term describe the non-bonding interactions. Additional terms 

can be added[20]. In this thesis, hydrogen is the only component used, thus only bond- and 

nonbonding contributions are taken into account when creating the different force fields. 

There are three interaction potential used in this thesis; the non-reactive classical force field, 

the reactive ReaxFF and the reactive classical three-body potential. 

3.2.1. Classical force field 

The non-reactive classical force field (denoted in this thesis as FF) is a combination of three 

potentials that has been tested previously by Simon et al. (2010) [25]. The first is the Morse 

potential that models the intramolecular interaction.  

  0a(r r )

M eV(r) D 1 e
 

    (24) 

Here, ea µ / 2D  and k / µ , where the stretching bond constant, k, is divided by the 

reduced mass, µ, De is the depth of the potential energy minimum and r is the displacement 

from the reference bond length, r0. The last to contributions make up the he non-bonding 

term.  
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12 6

ij ij

ij ij ij

ij ij

V (r ) 4ε
r r

     
     
        

  (26) 

 
ij ij ij c ij cLJ

ij ij

ij c

V (r ) V (r ) if r < r
V (r )

    0                   if r  > r


 


  (27) 

The first contribution is a shifted and truncated Lennard- Jones (LJ) 12-6 potential that is used 

to model the van der Waals interactions. This function consists of the collision diameter, σ, 

the minimal potential between the particles,
ijε , and the distance rij = |ri-rj|. The r

-6
 represents 

the repulsive part and r
-12

 the attractive[20]. The cut-off distance rc, is the distance where the 

interaction between the molecules are zero, as shown in Equation(27).[26] The second 

contribution is the Coulomb potential that is used to model the electrostatic interactions 

between two particles i and j, 

 
i jcoulombic

ij ij

0 ij

q q
V (r )

4 r



  (28) 

The Coulomb potential consists of pairs of electric charge, qi and qj, with distance rij and the 

electrical permittivity of space, ε0. The FF for H consist of a non-bonding term, only.[20]  

The drawback related to the Morse potential is that it increases the simulation time by needing 

to specify three parameters for each bond.[20]  

3.2.2. ReaxFF 

The reactive force field ReaxFF was developed by van Duin et al. (2001) [2]. It is defined as a 

classical interaction potential that is bond-order-dependent. When modelling the breaking and 

forming of bonds, the bond-order, BOij , is updated at every MD step. This is done by 

calculating the interatomic distance, r(ij) at each step.  

 

bo,2p

bo,1

0

r
BO (r ) exp p

r

  
    

   

ij

ij ij   (29) 

Here, is 0r  the interatomic distance at equilibrium and can be calculated between atoms i and j 

as shown in Equation(30). 
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0 0 0

1
r (ij) (r (i) r ( j))

2
    (30) 

The bonding interaction is used to determine the connectivity. The sigma bond (
bo,1p and

bo,2p ) 

between to atoms is generally below ~1.5 Å and is negligible above ~2.5Å. Equation(29) has 

been simplified for this system since the maximum bond-order is 1 for a 2H=H2 system. The 

BOij  is corrected by multiplying it with the correction factors f4 and f5 as seen in Equation(31)

, creating a corrected bond order BOij
.[2, 5] 

 
4 5BO BO ( ,BO ) ( ,BO )      ij ij i ij i ijf f   (31) 

Here, i is defined as “the degree of deviation of the sum of the uncorrected bond orders 

around an atomic center form its valency”[van Duin et al., 2001, p.9398 [2]]. For H, the 

valency is 1. The bond interaction is obtained from the corrected bond order as shown in 

Equation(32). Here, be,1p and be,2p are bond parameters and De is the depth of the potential 

energy minimum.[2] 

 BondV (r ) BO exp (1 BO )   
 

be,1p

ij e ij be,1 ijD p   (32) 

The non-bonded interaction is calculated between every atom pair and consists of the van der 

Waals forces and electrostatic interactions, which are independent of the connectivity. The 

van der Waals is modeled using a distance-corrected Morse potential (Equation(33)) which 

includes a shielding term, 13f , to avoid excessive close-range interactions, [5] thus making the 

non-bonded interactions become constant as ijr 0  [2]. 

 

13 13
ij ij

vdW vdW

( ) ( )1
1 1

2vdWaalsV D e 2e

   
         

   

 
  
 
 

ij ijf r f r

r r

ij   (33) 

Here, ,ijD ijα and vdWr  are van der Waals parameters. The Coulomb interaction is used to 

model the electrostatic interactions as shown in Equation(34). A shielded version with 

constant  is used to adjust for orbital overlap at close distances.[2] 

 

 

jCoulomb

1/3
3

3

V C

r 1/


  
  

i

ij ij

q q
  (34) 
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Here, the potential is equal to the one used in the FF (C=1/ 04 ), except for an additional 

shielded term γij. [2] 

A small time step is needed when using ReaxFF since charges and bond order change at every 

time step. On the contrary of what have been mentioned earlier have Chenoweth et al. 

(2008)[5] found out that to get the  smooth reactions, collisions and an efficient coverage of 

the phase space at high temperatures (2500K),is 0.1 fs the optimal time step. A full 

description of the ReaxFF is found in van Duin et al.(2001)[2]. 

3.2.3. Three body potential 

Skorpa et al. (2014)[7] used the interaction potential developed by Stillinger and 

Weber(1988)[27]. Here the interaction potential, V, consist of two - and three- particle 

interaction contributions (
(2)v and

(3)v ). In this thesis the potential is called the three-body 

potential (TBP). 

 1 N (2) ij (3) i j k

i j i j k

V( ,..., ) v (r ) v ( , , )
  

  r r r r r   (35) 

The two- and three- particle interaction for hydrogen was derived by Kohen et al.(1998)[28], 

by using the quantum mechanical results of Diedrich and Anderson(1992,1994)[29, 30]. The 

two-particle interaction is shown in Equation(36), with the cut-off distance, rc, 

 

p 2
2 ij c

c(2)

ij c

( -1)exp  if r < r
v ( )

0                                   if r  > r


  
   

   



r
r rr   (36) 

Here, , 2 , 2 and p are constants. The constant   is added to get the minimum potential to 

result in the binding energy of hydrogen at the bond distance re = 0.74 Å. A bond is formed if 

the distance between to atoms is smaller than the cut-off distance, creating a molecule. Since a 

hydrogen atom can only have one bond, the three-particle interactions are added to prevent 

the formation of more.  Thus, the potential is a sum of each particle contribution as shown in 

Equation(37).  

 (3)v ( ) (r , r , ) (r , r , ) (r , r , )i,j,k ij jk i,j,k j,i,k ji ik j,i,k i,k,j ik kj i,k,jh h h     r   (37) 

Where the h-functions are given by 
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3 3

ij ik

c c

if r and r
(r , r , ) (r r ) (r r )

0 otherwise

   
   

      



c c

j,i,k ji ik j,i,k ji ik

a exp   < r   < r
h

                                                         

  (38) 

And the a is 

 21 cos( ) cos ( )j,i,k j,i,ka ν         (39) 

Here, , , ν  and 3 are constants. The middle letter in the triad subscript denotes the atom at 

the subtended angle vertex. Here, the distance is calculated in respect to this atom[7]. Weak 

van der Waals forces are established between two neighboring diatomic molecules when 

combining the two- and three particle potential[27]. A full description of the interaction 

potential for a hydrogen dissociation is found in Skorpa et al.(2014)[6]. 

3.3. Small System Method 

The Small System Method (SSM) was developed by Schnell et al. [8], using Hill’s 

thermodynamics for small systems[31]. The method was created to give a comparative basis 

between thermodynamic properties in macroscopic systems and in small systems. 

Thermodynamic properties from these two systems cannot be directly compared due the fact 

that enthalpy and Gibbs energy are not extensive (not proportional to the system size) in small 

systems. In addition, not much research has been provided in the field of nano-scale systems 

because of the difficulty level of preforming experiments. Here, the small systems are 

strongly influenced by surface effects. These effects are in principle, however, possible to 

simulate.[8]  

The comparative basis is made possible by calculating thermodynamic properties form 

fluctuations in small non-periodic systems embedded in a periodic reservoir and scaling them. 

The scaling is performed by extrapolation of the thermodynamic properties as a function of 

the inverse system length in one dimension, 1/L. By using the inverse length, the properties 

are found at the thermodynamic limit. In Figure 3.1, several sphere shaped small systems with 

varying radiuses are embedded in a cubic shaped reservoir.[8] 
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Figure 3.1: Illustration of the small systems embedded in a reservoir. Here, the reservoir with 

sides Lt is embedded with n small systems with varying radiuses (r1,r2…rn).  Macroscopic 

properties are obtained by calculating the thermodynamic properties in number of small 

systems randomly placed in the reservoir and scaling them through extrapolation of the 

inverse small system length. (Copyright Schnell et al. [32]) 

As shown, the reservoir has sides with length Lt and the n small systems have radiuses in 

varying sizes denoted as r1,r2…rn. These small systems can exchange mass and energy with 

the reservoir. If the reservoir is simulated in the grand-canonical ensemble (see section 3.2), 

the small systems are too. If the reservoir has a different ensemble, the small systems are in 

the grand-canonical ensemble if rn << 0.5 Lt. The choice of reservoir ensemble in the 

thermodynamic limit is irrelevant.[8] To calculate the small system length, Ln, for each 

sphere, Equation(40) is used. 

 

1

3

n n

4
L r

3

 
  
 

  (40) 

3.3.1. Calculation of parameters with the Small System Method  

As mentioned, when using the SSM the thermodynamic properties are calculated from 

fluctuations in small non-periodic systems. Furthermore, the small system can exchange mass 

and energy with the reservoir. Consequently, the TCF and the partial molar enthalpy can be 

calculated from fluctuations of N and U. The TCF for a binary mixture with a grand-canonical 

ensemble is shown in Equation(41). 

 

k i

i j i ji1

ij

j jT,V,µ

N N N Nln N1

N



 

   
   

  (41) 
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Here, Bβ=k T , where Bk  is the Boltzmann constant. The TCF for only one component is 

shown in Equation(42).[8]  

 

22

i i1

ii

i

N N

N




    (42) 

The partial molar enthalpy in a binary mixture with in a grand-canonical ensemble can be 

calculated with the SSM as shown in Equation(43).[33] 

 

j i

i i i B

i 22
i T,V,µ i i

UN U N N k TH
h

N N N


  
   

  
  (43) 

The TDC and partial molar enthalpy are linear functions of 1/L, as shown in Equation(44) and 

(45), respectively. Here, the thermodynamic properties can be found at the thermodynamic 

limit through extrapolation.[32]  

 
ij1 1
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       (44) 
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4. Simulation details 

In this chapter are details given on how different values of thermodynamic properties are 

obtained for systems with the reactive force field, ReaxFF, and the non-reactive force field, 

FF. First, the system in general is presented, followed by the procedure, which includes the 

simulation details and how the thermodynamic properties are calculated post modelling. 

Lastly, the interaction parameters for the interaction potentials are presented. 

The volumes in this thesis are given as the side length cubed. This is because the system is a 

cubic box where all the sides are at equal length. It is more representative to state the side 

length then the volume since it is a smaller number, making the different sizes easier to 

compare quantitatively. 

4.1. The system 

The system was a cubic box with periodic boundary conditions (PBC) in x, y and z direction. 

The box size was varied in size from 28.47
3
 to 100

3
 Å

3
, the number of particles in the system 

varied from 37 to 1500 and temperature varied from 100 to 20796 K. The reaction 2H=H2 

was simulated using the MD simulator LAMMPS[11]. The simulations had 1,000,000 to 

10,000,000 time steps that varied from 0.1 to 1 fs, printing the temperature, pressure, potential 

energy and MSD at every 500th time step and storing them for further analysis by LAMMPS 

using the “thermo_style” command. An additional output file containing the trajectories for 

each particle at each 500 time step was created using the “dump” command. The total amount 

of simulations performed in this thesis is 55, 49 using the FF and 6 using the ReaxFF. The 

number of simulations per system varied from 5 to 15.   

All calculations were performed in a (Nj,V,T) ensemble, except when using the SSM, which 

uses a (µj,V,T) ensemble. The calculations were compared with ideal gas, experimental values 

and/or parameters calculated for the same system using the reactive TBP as interaction 

potential[7] 
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Figure 4.1: A snap shot of the system at density, ρ=1.67kg/m
3
. 

4.2. Procedure 

The procedure is divided into two sections, depending on the interaction potential used. The 

first interaction potential is the non-reactive, FF. This force field is implemented in LAMMPS 

to test the hydrogen system by calculating different thermodynamic properties. These 

properties include; the pressure with varying state variables, the MSD, the partial molar 

enthalpy and the TCF. The two latter parameters are calculated to test the newly developed 

SSM code in LAMMPS. 

The second interaction potential is the reactive ReaxFF. This force field is implemented on 

the same system as the FF. The only difference is that a reaction can now take place. With this 

new reactive force field, additional testing is performed. This is done by calculating the MSD 

and activation energy for ReaxFF. After the testing the thermodynamic parameters will be 

calculated under the same conditions as in Skorpa et al. [7]. The results will be compared to 

the results the TBP produced. These parameters include; the partial molar enthalpy, the TCF 

and the reaction enthalpy.  

4.2.1. Non-reactive classical force field 

First, the system was tested by calculating the pressure at different conditions, e.g. different 

temperatures (100-300K), number of molecules (250-1500) and mole fractions of H2 (0-1). 

The box size was kept constant at 100
3
 Å

3
. When the variables were not varied they were 

fixed at 1000 molecules and either at 100, 300 or 500K. The results were compared with 

experimental values[34] and/or ideal gas behavior.  
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Since the topology is known when using non-reactive force fields (which atoms make a 

molecule), the MSD was calculated using a built-in function in LAMMPS. Here, the system 

was tested by calculating the MSD at different mole fractions of H2 at 300K with constant 

number of particles Ntot=1000 (Ntot=NH2
+NH). The self-diffusion coefficient was obtained and 

compared with kinetic gas theory (Chapman-Enskog theory) 

In the last test the newly developed SSM code in LAMMPS was used. Here, 30 sub volumes 

(spheres) with a radius ranging from 0.05Lt to 0.5Lt were randomly sampled 30 times in the 

system at every 500 time steps. First, SSM code was tested with different box sizes (28.47
3
-

98.47
3
Å

3
). The density, mole fraction of H2 and temperature was kept constant at ρ = 5.22 

kg/m
3
, 

2HX = 0.98 and 3639K. Here, the system size was tested by finding the smallest box 

size where the enthalpy still showed intensive properties (properties that are independent of 

the system size). At that box size the partial molar enthalpy and the TCF were calculated at 

different temperatures (139-3639K). An extrapolation was performed twice. The first time 

was on the partial molar enthalpy and the TCF values to obtain the values at the 

thermodynamic limit. The second time was on the thermodynamic limit values so that the 

values could be scaled to higher temperatures. 

The average over the entire time frame was used to calculate the thermodynamic properties 

for each system. 

4.2.2. Reactive ReaxFF 

The ReaxFF was simulated at different temperatures (3639-20796K) with density ρ=5.22 

kg/m
3
 (the same conditions as Skorpa et al.[7]). From these simulations all the 

thermodynamic parameters were obtained. For a system with a reactive force field, however, 

the topology is not known since the system continuously forms and breaks bonds. 

Consequently, additional codes were implemented post modelling using the trajectory file.  

The first code created was used to calculate the MSD in 24 time steps. Here only atoms and 

molecules that did not react in that time frame were used. From the results the diffusion 

coefficient was obtained and compared with kinetic gas theory. 

The second code was used to distinguish between atoms and molecules using the Euclidean 

distance. If the distance between two atoms was equal or less than 1.8 Å they were considered 

a molecule, resulting in two new trajectory files; one for the atoms and one for the molecules. 

With this code were the thermodynamic properties (except for the TCF and MSD) calculated 
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as shown in the Chapter 2. When calculating the partial molar enthalpy and activation energy 

the output file, where the properties had been measured and stored at each 500 time step, was 

also used. Which time interval used depended on the property since the parameters are either 

calculated before or after equilibrium. The results were compared with results from the TBP 

simulations and the average bond enthalpy ∆Hf,298K[35]. 

A third code was created to use the new trajectories from the second code. This was a new 

SSM code written in MATLAB to calculate the TCF. Here, 30 sub volumes (spheres) with a 

radius ranging from 0.05 Lt to 0.5 Lt were sampled 200 times. 

To simplify the calculations, the hydrogen molecule was treated as an atom, creating a new 

atom B using the molecule’s atom positons and the center of mass. Additional simplifications 

were performed on Equation(41) and (42) as shown below.  

 1 B H
H B

H

cov(N , N )

mean(N )



    (46) 

 1 H
H H

H

var(N )

mean(N )



    (47) 

Here, 
22

H HN N  represent the variance, var, H B H BN N N N  represent the 

covariance, cov, and mean is the arithmetic average. The values at the thermodynamic limit 

were found through extrapolation and compared with the results obtained using the FF and the 

TBP. The second and third code are found in Attachment D. 

4.3. Interaction parameters 

In Table 4.1 are the values for the parameters used when performing simulating with the FF. 

Here are the Morse potential values form the MM2 force field [36] and the Lennard-Jones 

from Delft Molecular Mechanics (DMM) force field [37]. The cut-off distance was set to 12.0 

Å. 

Table 4.1: Classical force field parameters  [36, 37] 

Morse potential Lennard-jones potential 

De = 4.747 eV ij  = 27.655 K 

a=1.946 Å
-1

  = 2.63984 Å 

r
0
= 0.7414 Å r

c
 = 12.0 Å 
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The parameters used when performing simulations with ReaxFF, were taken from the file 

ffield.reax.cho created by Chenoweth, van Duin and Goddard (2008) [5]. This file is provided 

by LAMMPS in the potential directory for the ReaxFF function. 

The results from the TBP were obtained in Skorpa et al. (2014) [7] and the values she used 

are shown in Table 4.2. The cut-off distance was set to 2.8 Å. 

Table 4.2: Three-body potential parameters used by Skorpa et al.[7]  

Two particle-potential parameters Three particle-potential parameters 

= 5.59 x 10
-21

kJ  =2.80 x 10
-21

kJ 

2 = 0.044067 Å
p
 = 0.132587 

2 = 3.902767 Å ν  = -0.2997 

p = 4 3 = 1.5 Å 
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5. Results and discussion 

This chapter is divided into two sections depending on the interaction potential. First, the 

system is tested by the non-reactive FF. Then, the same system is used to calculate values 

with the reactive ReaxFF. The former is to conclude whether or not the system (the 

representation of hydrogen in a simulation box) is created accurately. The latter is to calculate 

thermodynamic parameters and compare it to the results in the Skorpa et al. paper[7]. Here, 

trends in the ReaxFF results are also commented on. To prevent repetition, both trends and 

comparisons will be commented on and discussed in this chapter. At the end of this chapter 

are the data processing and simulation parameters revised. The conclusion follows in Chapter 

6. 

It is worth mentioning that for the partial molar enthalpy and the TCF obtained with the SSM 

are inversely plotted. The purpose of this is to find the value at the thermodynamic limit, as 

explained in the Section 3.3.1. Moreover, temperature is a fixed parameter during the 

simulations. Since the temperature is dependent on the kinetic energy of the particles in the 

system it is, however, impossible to keep it constant over time. Thus, when the temperature is 

plotted in a graph, the mean value is used with the standard deviation (STD) represented as 

symmetrical error bars. Here, the STD is dependent on the interval used to calculate different 

parameters and therefore different STDs are used for the temperatures. Furthermore, since the 

temperature is fixed, the value stated in the input file is stated in this thesis, even though it is 

not correct to state such a specific number because of the uncertainties. Lastly, the data and 

equations used to calculate the theoretical self-diffusion coefficient using kinetic gas theory 

are found in Attachment A. The uncertainty propagation is calculated as shown in Attachment 

B. All the uncertainties are given with a single STD. An overview of the state variables and 

number of simulations is found in Attachment C. An example of a ReaxFF input is found in 

Attachment E. 

5.1. Non-reactive classical force field 

The system is tested an (Nj,V,T) ensemble with the non-reactive FF to see if the system is 

created properly in LAMMPS. Here, different thermodynamic parameters are calculated and 

compared with experimental values[34] and ideal gas. This is to see if the trends and values 

correspond. The ideal gas theory is in general accurate at low densities, ρ, pressures, p, and 

high temperatures, T [17]. In addition, the newly developed SSM code in LAMMPS is also 

going to be tested to see if heat capacity and the TCF yield close to ideal values.  
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5.1.1. Pressure 

Figure 5.1, 5.2 and 5.3 show p, as a function of T, number of H2, NH2
, and mole fraction of H2, 

XH2
, respectively. The values are compared with ideal gas and/or experimental values[34]. In 

the first two figures the FF values are compared with experimental values and ideal gas. In 

both graphs, the experimental and ideal gas values are almost equal to the FF values. In 

Figure 5.1 the slope is equal for each plot. In Figure 5.2 the FF has a slope equal to 0.039, 

whereas the ideal gas and experimental values have 0.041 and 0.043, respectively. Thus, the 

deviation in the slopes is small. In Figure 5.3 is p calculated three different T; 100K, 300K 

and 500K. The slopes are -2.1,-3.3 and -4.6 respectively. The dotted lines are the ideal gas at 

each T. In this figure the values are close to ideal gas at low T and ρ.  

To summarize the trends in Figure 5.1, 5.2 and 5.3, the values follow the same trend where 

the FF values are similar to ideal gas and experimental values at low ρ as expected. With an 

increase in T the fluctuations and the uncertainties increases, but the trend is constant. As the 

ρ increases, the gap between ideal and FF values increases. Arguably, the system created is a 

good representation of hydrogen atoms and molecules. The constant gap in Figure 5.1 can be 

explained by a higher ρ (3.35 kg/m
3
). It is worth mentioning that ρ =3.35 kg/m

3
 is a low ρ 

which explains why the deviations are small. 

 

Figure 5.1: p(T) with the FF. Pressure (p) at different temperatures (T). The result is compared 

with experimental values [34] and ideal gas in a system at density, ρ=3.35 kg/m
3
. Error bars 

are given in both x- and y-direction. Here are the slopes equal for each plot. 
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Figure 5.2: p(NH2
)with the FF. Pressure (p) at different number of H2 (NH2

).The results are 

compared with experimental values and ideal gas at 300K in a 100
3
Å

3
 sized box. Error bars 

are given in y-direction. As shown, the graphs have a positive slope. 

 

 

Figure 5.3: p(XH2
)with the FF. Pressure (p) at different mole fractions of H2 (XH2

). The result 

is compared with ideal gas at 100K, 300K and 500K in a 100
3
Å

3
 sized box with constant 

number of a 1000 particles.  Error bars are given in y-direction. Here, the values for the ideal 

gas are constant and the FF values have a slight decrease as XH2
 increases. 
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On a side note: The increasing gap between the ideal values and experimental values, seen in 

both Figure 5.1 and 5.2 can be explained by the fact that performing experiments at high p 

and T is difficult. In Figure 5.1 all the experimental values are measurements of a supercritical 

fluid of hydrogen. The same fluid occurs at p>20 bars in Figure 5.2. 

5.1.2. Diffusion 

Figure 5.4 shows the MSD as a function of time, t, at different XH2
 and XH. Here, the data has 

a linear trend where H has a greater MSD than H2. Linear least squares regression was 

performed over the entire time interval for the pure components (Xi=1) to calculate the self-

diffusion coefficient, Dself,i, using Equation(3). The results are shown in Table 5.1, where they 

are compared with the kinetic gas theory values, calculated with Equation (1.A) (see 

Attachment B). As mentioned in Attachment B, the tabulated values from H2 and He are used 

to calculate the theoretical Dself,i for H2 and H, respectively. Compared with the theoretical 

values, Dself,H2 has a negative deviation of 3.3 % from the kinetic gas theory whereas Dself,H 

has a negative deviation of 14.3%. Generally, Dself,i  for H is larger compared with H2. 

 

Figure 5.4: MSD(t) with the FF. Mean square displacement (MSD) as a function of time (t). 

Here the MSD is calculated at different mole fractions, for H2 and H, (Xi) at 300K in a 100
3
Å

3
 

sized box with constant number of a 1000 particles. As shown, the data have a linear trend 

and the values for H are larger than H2. 
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Table 5.1: Self-diffusion coefficients (Dself,i) for H and H2 with the FF calculated at 300K and 

compared with kinetic gas theory(the Chapman-Enskog theory) (Dself,i KGT) [12].Here, Dself,i is 

calculated at different densities (ρ).  

 Dself,i FF [10
-6

m
2
/s] Dself,i KGT [10

-6
m

2
/s] ρ [kg/m

3
] 

H 1.7407±0.0003 2.03±0.16 1.67 

H2 0.8312±0.0001 0.86±0.07 3.35 

 

When calculating Dself,i, the result showed a larger value for H than for H2. This is as expected 

since H is a “lighter” particle. There is a slight decrease in the MSD values as XH decreases. 

This can be explained by the fact that the ρ increases. A greater ρ can affect the mean free 

path of the particles by making the system crowded and thus increasing the collision 

frequency, resulting in a smaller MSD. Furthermore, the values from the FF simulations have 

underestimated the Dself,i compared with the kinetic gas theory. For Dself,H2
 is the negative 

deviation in agreement with the trends found in Figure 5.1 where the values also had a small 

negative deviation for ideal gas and experimental values at ρ=3.35 kg/m
3
. The larger 

underestimation of Dself,H can, however be the result of using the tabulated values of He to 

calculate the theoretical self-diffusion coefficient. With this in mind one could conclude that 

the FF produces expected Dself,i values. 

5.1.3. Heat capacity 

The newly developed SSM code in LAMMPS was tested by calculating the partial molar 

enthalpy, hi, and the TCF, Γij, in an (µj,V,T) ensemble. First, hi was calculated for H and H2 at 

different box sizes as shown in Figure 5.5. Here, hi
-1

 is plotted against the inverse radius in 

reduced units, r*
-1

, which is a fraction of the reservoir length, Lt, in the interval 0<r*<0.5Lt. 

The r* is the same for all the systems whereas Lt is varied. As shown in both graphs, the hi
-1

 

has a steep positive slope at low r*
-1

 and then it stabilizes into a plateau as r*
-1

 increases. In 

the graph for hH
-1

do the calculations for each box size have the same trend. In the graph for 

hH2

-1
, however, the values from calculations with box sizes lower than 48.5

3
Å

3
 have a much 

higher peak then the rest right before the plateau is reached. Consequently, the box size 

48.47
3
Å

3
 was used to calculate hi

-1
 at different T. The result is shown in Figure 5.6 where hi

-1
 

is plotted against the small system length, L. The relationship between r and the small system 

length, L, is shown in Equation(40).  
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Figure 5.5: hi
-1

(r*
-1

) at different box sizes with the FF. The inverse partial molar enthalpy (hi
-

1
) was calculated using the SSM at different box sizes in a system with constant density, 

ρ=5.22kg/m
3
, and mole fraction, XH2

=0.98 at 3639K.  The r*
-1

 is the radius to the sub systems 

in reduced units. As shown, the enthalpy is similar for each size, except for the box sizes at 

38.47
3
Å

3
 and smaller for H2. 

 

 

Figure 5.6: hi
-1

(L) at different temperature with the FF.  The inverse partial molar enthalpy (hi
-

1
) was calculated as a function of the inverse small system length (L

-1
), using the SSM at 

different temperatures in a system with constant density, ρ=5.22kg/m
3
, and mole fraction, 

XH2
=0.98. The graphs show that as the temperature increases, so does the partial molar 

enthalpy.  
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Each individual graph has the same trend as shown in Figure 5.5, but as T increases, hH
-1

 

decreases. This is expected since hi is positively proportional to T. Extrapolation was 

performed on the interval 0.0825≤L
-1

≤0.2550 for every data set in both graphs in the figure. 

This was to obtain the value at the thermodynamic limit, hi,∞, as shown in Equation (45). The 

result is shown in Figure 5.7. 

 

Figure 5.7: hi,∞(T) with the FF. The partial molar enthalpy at the thermodynamic limit (hi,∞) 

calculated in a system with constant density, ρ=5.22kg/m
3
, and mole fraction, XH2

=0.98. The 

values were found through extrapolation of the partial molar enthalpy values for at different 

temperatures found using the SSM. Error bars are given in both x- and y-direction.  

As shown in Figure 5.7, the values have a linear trend with a small error in T that grows as T 

increase. This is the same trend that occurs in previous graphs. In addition, the error for hi,∞
 
is 

so small it cannot be seen on the graph. The molar heat capacity (Cp,i) was found for the 

values in Figure 5.7 using linear least squares regression on the interval 139≤T≤3139 and 

1139≤T≤3139 for H and H2, respectively. The result is shown in Table 5.2.  

Table 5.2: The molar heat capacity (Cp,i) of H and H2 calculated with FF. The system is 

calculated at density, ρ=5.22kg/m
3
 and is compared with the values from ideal gas[17]. 

 Cp,H2
 [J/mol K] Cp,H[J/mol K] 

FF 4.83±0.008 8.337±0.018 

Ideal 37.41 20.75 
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Here, Cp,H is greater than Cp,H2
. This is not as expected. In addition to this unexpected trend 

the values are significantly lower than the ideal values. Based on these results the SSM code 

was revised and an error was found; the code could not recognize the molecules. 

When testing the SSM code, the goal was to first find the smallest box size where hi still 

showed intensive properties. This was done to gain insight into the SSM, and to shorten the 

simulation time by avoiding calculations on larger systems. The size of the system is 

irrelevant when it comes to comparing values with macroscopic properties, since the 

thermodynamic properties could be scaled from any nano-scaled system, using the 

thermodynamic limit. Since the only change between the different plots in Figure 5.5 is the 

system size, one can conclude from the plots of hi for H2 that below 48.5
3
Å

3
 the system size is 

no longer intensive. The error in the SSM makes, however, this result unreliable. For hH in 

Figure 5.5 one could argue that the values show intensive properties in box sizes greater than 

28.5
3
Å

3
.  

As seen in Table 5.2 the Cp,i values from the FF were simulations significantly smaller than 

the ideal values. The small value for H2 was because of an error in the SSM, however this is 

not the case for H since the code did not affect its calculations. Here, Cp,H deviated -60% from 

the ideal value. Previous result shows that the FF calculations are smaller than ideal values at 

greater ρ. Consequently, a smaller Cp,i for FF compared with ideal values was expected. The 

deviations had, however, not been that large. Thus, an additional hH calculation was 

performed in LAMMPS without using the SSM to check if the small Cp,H was a result of an 

error in the code as well. Here, the internal energy was used, same as in the SSM. The 

LAMMPS simulations yielded the same Cp,H, which indicates that the FF is not an accurate 

interaction potential. When using the enthalpy to calculate Cp,H it yielded ideal values. 

5.1.4. Thermodynamic correction factor 

Since the hH2
 values were incorrect, the TCF was only calculated for H, ΓHH. The result is 

found in Figure 5.8. Here, the system is the same as used in Figure 5.6. Notice that the values 

have the same trend as hH, only here, the values goes towards unity. Through extrapolation at 

the interval 0.15≤L
-1

≤6.79 Å
-1

 the value at the thermodynamic limit was obtained as shown in 

Equation(44). The result is found in Table 5.3.  
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Figure 5.8: ΓHH
-1

 (L
-1

) at different temperatures with the FF. The inverse correction factor 

(ΓHH
-1

) calculated, as a function of the inverse small system length (L
-1

), using the SSM in a 

system with density is, ρ=5.22kg/m
3
.  Here, the values go toward 1 as the L

-1
 increases for 

every temperature 

Table 5.3: The thermodynamic correction factor at the thermodynamic limit. Calculated at 

different temperatures calculated for the FF system an (µj,V,T) ensemble at density, 

ρ=5.22kg/m
3
. 

T [K] ΓHH,∞
-1

 

139±7 0.976±0.004 

639±30 0.977±0.005 

1139±55 0.984±0.007 

1639±79 0.975±0.005 

2139±100 0.976±0.005 

2639±130 0.980±0.004 

 

As shown, the TCF yielded values close to 1, which means that the system is close to ideal. 

This is in agreement with the results from the MSD and p calculations. 

5.2. Reactive ReaxFF 

The reactive ReaxFF was implemented in the system tested in Section 5.2; replacing the non-

reactive FF. Six simulations were then performed with the same ρ and T as Skorpa et al.[7] 

The degree of dissociation of H2 and the calculated p is seen in Table 5.4. Using these values, 

in addition to the trajectory and output files from the simulations, all the desired 

thermodynamic properties were obtained. 
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Table 5.4: Data collected from ReaxFF simulations at different temperatures. Here the 

number of particles (Ni) and total pressure (p) at density, ρ=5.22kg/m
3
 is given. 

T 3639±30 7799±70 10398±100 12998±100 15597±140 20796±130 

NH 21±6 220±6 452±9 598±15 674±14 780±14 

NH2
 490±3 390±3 274±5 201±8 163±7 108±7 

p[bar] 800±104 1990±140 3290±120 4500±130 5700±120 8000±100 

 

Additional testing was performed to verify that the new force field was correctly 

implemented. Here, the MSD and the activation energy, Ea, were calculated and compared 

with kinetic gas theory and the average bond energy, ∆Hf,298K, respectively. After the testing 

produced desirable results, e.g. the MSD behaved as expected and Ea was close to the 

∆Hf,298K, the ReaxFF was used to calculate several thermodynamic parameters. As mentioned, 

the purpose of this thesis is to reproduce results from the Skorpa et al. paper[7] and conclude 

if the same results can be obtained with the ReaxFF. In other words, test if the ReaxFF and 

the TBP produces close to equal results.  

5.2.1. Diffusion 

Figure 5.9 shows MSD calculated for H2 and H at different temperatures. By zooming in on 

the origin in Figure 5.4, the same slope would be found. This slope is caused by the coupling 

constant Q as mentioned in Section 3.1.2. The reason why it is not visible in the former figure 

is that the graph consists of 2,000,000 time steps, whereas the graph in the latter consists of 

12,000. Thus, the two figures are consistent. Additional information gained from Figure 5.9 is 

that, as expected, the MSD increases with T. An unexpected trend is, however, that the MSD 

for H2 at 7799K and 10398K looks like they are overlapping. Despite what is shown in the 

graph the values are close but not equal, where the MSD values at 7799K are smaller. Thus, 

the trend that the MSD increases with T is consistent in both graphs. The MSD for H at 

3639K is neglected since there were not enough atoms present in the system. 

Linear regression was performed on the interval 600 ≤ t ≤ 1200 to achieve Dself,i. The result is 

shown in Figure 5.10 where it is compared with the kinetic gas theory (KGT) calculated with 

Equation (1.A) (see Attachment B).. Here, Dself,H is larger than Dself,H2 as expected. Moreover, 

the kinetic gas theory is smaller. No tabulated values for H were available at such high 

temperatures; hence, the theoretical values for H2 could not be calculated. The error bars in x-

direction are so small they do not show on the graph. 
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Figure 5.9: MSD(t) with the ReaxFF. The mean square displacement (MSD) for H and H2 as a 

function of time (t) were calculated different temperatures at density, ρ=5.22kg/m
3
. As shown 

is data linear, expect for the small slope around zero. The MSD for H2 at 7799K and 10398K 

overlap.  

 

 

Figure 5.10 Dself,i(T) with the ReaxFF. The self-diffusion coefficient (Dself,i) is calculated for H 

and H2 and compared with kinetic gas theory (KGT) at different temperatures (T) at density, 

ρ=5.22kg/m
3
.  Error bars are given in y- and x- direction.  
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In Figure 5.10 the theoretical Dself,H  from the kinetic gas theory is smaller than Dself,H  

calculated with ReaxFF. This can be a result of using the tabulated values for He as 

mentioned earlier or that the theory is not valid at such high T. In addition, the kinetic gas 

theory has tabulated data from diluted gases. The system with ReaxFF has a ρ=5.22 kg/m
3
 

and, thus, is not as a diluted system. The Dself,i values calculated for a system with FF at 300 K 

were closer to the kinetic gas theory values had a ρ = 3.35 kg/m
3
. Thus, it is possible to 

conclude that the MSD is as expected since the MSD increased as a function of T and t. And 

Dself,i was larger for H compared with H2. 

5.2.2. Heat capacity 

At constant (Nj,V,T) was hi calculated using LAMMPS at T = 3639K-20796K. Here, the 

values were averaged over the interval 101,600fs≤t≤102,650fs. At this interval the systems for 

each T were at equilibrium. An example of hi at 15597K is given in Figure 5.11. Here there 

are still some fluctuations, even though the system is stable. The plot at other T shows the 

same trend. Figure 5.12 shows averaged hi as a function of T compared with hi,∞ calculated at 

constant (µj,V,T) from the TBP and the non-reactive FF simulations. The latter was found 

through extrapolation of the graph in Figure 5.7. The general trend in Figure 5.12 is that that 

at low T hH is higher compared with hH2
. But as T increases hH2 

exceed hH because it has a 

larger slope. Furthermore, the values for hH from the ReaxFF and the TBP simulations are 

close to parallel at high T (T≥10398), whereas for the values for hH2
 are close to similar at low 

T (T≤12998K). Based on these intervals Cp,i was calculated using linear least squares 

regression. The results were compared with the TBP and the FF simulation values in addition 

to ideal values. The results are shown in Table 5.5. Here, the ReaxFF and the TBP express the 

same trends. For both force fields Cp,H2
 is larger than for Cp,H. By comparison the Cp,i are 

values close and both are larger than ideal values, as expected. The values calculated with the 

ReaxFF have, however, higher uncertainty.  

As mentioned above, the SSM was not used to calculate hi. This resulted in values in another 

ensemble than the TBP, as seen in Figure 5.12. Here, the hi calculated at constant (Nj,V,T) was 

compared with values at the thermodynamic limit at constant (µj,V,T). It was possible, 

however, to compare the values from different ensembles since ρ was low . As mentioned in 

Section 2.5 previous studies by Skorpa et al. [7] has confirmed that the values at different 

ensembles at ρ=5.22 kg/m
3
do not deviate significantly. 
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Figure 5.11: hi(t) with ReaxFF.  Partial molar enthalpy (hi) as a function of time (t) was 

calculated at 15597K at density, ρ=5.22kg/m
3
. LAMMPS was used to calculate hi for H and 

H2, hH and hH2
, at the interval 600fs to 102,650fs. Error bars are given in both x- and y-

direction. Even though the system is stable, fluctuations in the values do occur. 

 

 

Figure 5.12: hi(T) with ReaxFF. The partial molar enthalpy (hi) for H and H2 calculated at 

different temperatures at constant (Nj,V,T) and is compared with hi,∞ calculated at the 

thermodynamic limit with SSM in at constant (µj,V,T)  with the TBP and the FF. The values 

are at density, ρ=5.22kg/m
3
. 
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Table 5.5:  The heat capacity of H and H2 with the ReaxFF.  Compared with the values from 

ideal gas[17], FF and the TBP.  

 Cp,H2
 [J/mol K] Cp,H[J/mol K] 

Non-reactive FF - 8.337±0.018 

ReaxFF 63±13 28±3 

TBP 62.8±0.7 31.7±0.7 

Ideal 37.41 20.785 

 

Furthermore, what is interesting about the plots in Figure 5.12 is that the hH is close to parallel 

to the values from the TBP simulations only at high T, whereas the hH2
 are close to similar 

only at low T. This is further confirmed by the calculation of Cp,i at these T intervals, which 

resulted in equal Cp,i compared with the TBP values. Since they are in different ensembles 

some deviation is expected, however this particular trend can arguably be explained by the 

degree of dissociation. At high T the dissociation is high, thus the NH is high. At low T, 

similarly, the dissociation is low, thus the NH2
 is high. These trends indicate that the ReaxFF 

is dependent on the number of particles to create accurate calculations. In other words, when 

there are many particles of a species, the partial calculations are more accurate. This 

conclusion is drawn based on the assumption that the TBP calculations are accurate. Here, the 

FF values were not used in the comparison because they were low and, as previously 

concluded, the interaction potential might not be accurate since it deviates significantly from 

the ideal values. 

It is worth mentioning that the Cp,i calculations have significantly higher uncertainty 

compared with the TBP values. This can be an effect of the post modelling calculations where 

the NH2
 was determined with an additional code (code no. 2) and that hi was only averaged 

over 50 time steps after equilibrium. It can, however, be an indication that the ReaxFF is a 

less accurate interaction potential than the TBP, as expected. More likely, it is a combination 

of the two.  

5.2.3. The thermodynamic correction factor 

The TCF was calculated using the SSM at constant (µj,V,T) at T= 3639K-20796K. An 

example of such a calculation is shown as a graph in Figure 5.13, where ΓHH
-1

, ΓHH2

-1
 and 

ΓH2H2

-1
 are plotted against L

-1
 at 15597K. Here, the Γii for both particles have the same trends 

as the hi calculated with the SSM, except the plateau is reached when the values for Γii
-1

 is 

close to unity. The values go toward zero for ΓHH2

-1
. This is as expected. The plot at the other 
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T shows the same trend. Through extrapolation at the interval 0.0633 Å
-1

≤L
-1

≤0.1812Å
-1

 was 

the thermodynamic limit obtained for each T. In addition, extrapolation was performed on 

ΓHH
-1

 form the FF simulations, to make it valid at higher temperatures. The results are found 

in Table 5.6 and are plotted in Figure 5.14.  

 

Figure 5.13: Γij
-1

(L
-1

) with the ReaxFF.  The inverse correction factor (Γij
-1

) as a function of 

the inverse system length (L
-1

) at 15597K and at density, ρ=5.22kg/m
3
 is calculated. Here, the 

Γii
-1

 goes toward one as the small system length increases, whereas Γij
-1

goes toward zero. 

Table 5.6: The thermodynamic correction factor at the thermodynamic limit (Γij,∞
-1

) . 

Calculated using different force fields at constant (µj,V,T), at density, ρ=5.22kg/m
3
. 

 ReaxFF TBP FF 

T ΓHH,∞
-1

 ΓHH2, ∞
-1

 ΓH2H2,∞
-1

 ΓHH,∞
-1

 ΓHH2, ∞
-1

 ΓH2H2,∞
-1

 ΓHH,∞
-1

 

3639 2.12±0.03 -0.07±0.03 0.945±0.004 1.00 -0.00 0.87 0.976±0.004 

7799 1.14±0.01 0.018±0.005 0.907±0.007 1.00 -0.04 0.91 0.977±0.005 

10398 1.002±0.004 0.025±0.004 1.022±0.006 0.98 -0.08 0.94 0.984±0.007 

12998 0.966±0.003 0.007±0.002 1.023±0.003 0.96 -0.09 0.97 0.975±0.005 

15597 0.965±0.008 -0.007±0.002 1.115±0.007 0.96 -0.12 0.97 0.976±0.005 

20796 0.960±0.005 0.008±0.002 1.14±0.01 0.94 -0.11 0.99 0.980±0.004 
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Figure 5.14: The correction factor at the thermodynamic limit with RreaxFF.  The inverse of 

the thermodynamic correction factor for H and H2, (Γij,∞
-1

)calculated with FF, ReaxFF and 

TBP at different temperatures(T) at density, ρ=5.22kg/m
3
. Error bars are given in both x- and 

y-direction. Here, the Γii,∞
-1

is around 1, whereas Γij,∞
-1

is around 0. 

As shown, the values for FF are close to ideal and linear. This is consistent with the results in 

Section 5.1. The TBP and the ReaxFF values have, compared with each other, the similar 

trends, except for the ReaxFF values at T≤7799 and at T≥15597 where ΓHH,∞
-1

 and ΓH2H2,∞
-1

, 

respectively, deviate positively. This is within the intervals that hi deviated from the TBP 

values, as seen in Figure 5.12. This is in agreement with the hypothesis that the ReaxFF is 

dependent on the number of particles to create accurate calculations. An additional factor that 

can have affected the TCF values is the difference in sampling when using the SSM. In the 

TBP simulations, Skorpa et al.[7] sampled 50 spheres per radius at every 100 time step and 

time averages were calculated at every 10,000 time step. In this thesis, using LAMMPS in 

combination with the SSM code developed in MATLAB, were 200 spheres per radius 

sampled at every 500 time step and time averages were calculated over 50 time steps. The 

code was tested at longer runs, but the TCF graphs seem unaffected. The sampling amount, on 

the other hand, improved the smoothness of the graph significantly. In other words, it is 

possible to improve the SSM results by increase the number of radiuses used and number of 

sampling. As mentioned, it is, however, expected that the ReaxFF is less accurate than the 

TBP. 

From the trends in Table 5.6, the ΓHH,∞
-1

 decrease with T as NH increase and ΓH2H2,∞
-1

 increase 

with T as NH2
 decrease. Both values are around one. The interaction between a component and 
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itself is one in an ideal system. The results are consistent with Skorpa et al. The ΓHH2

-1
 values 

for the ReaxFF and the TBP differ in signs, however, both have small values that are around 

zero. That the ΓHH2

-1
goes toward zero indicates the coupling between H and H2 is very small.  

5.2.4. Heat of reaction, equilibrium constant 

Assuming that the dissociation of H2 is a
 
first order reaction, Ea was calculated in accordance 

with Equation(7). Here, the reaction constant, kr at a given T was found through linear least 

square regression performed on the plot of the natural logarithm of the change in 

concentration (NH2
 divided by the initial amount, NH2

0) as a function of t, as shown in 

Equation(8). The kr was calculated for five out of the six ReaxFF simulations. The simulation 

at 3639K was neglected since the dissociation was low (2.1%). Figure 5.15 shows an example 

of such a plot at 12998K. The plot is similar at for the other T. 

 

Figure 5.15: Finding the reaction constant for ReaxFF. The natural logarithm of the number of 

H2 (NH2
) divided by the initial amount (NH2

0
) as a function of time (t) at 12998K at density, 

ρ=5.22kg/m
3
. The graph shows that the dissociation of H2 is a 1

st
 order reaction.  

A detailed overview of the intervals used in the regression and results of the calculated kr at 

each T is shown in Table 5.7. Different time intervals were used since kr has to be calculated 

before the system reaches equilibrium. As seen, the system reaches equilibrium faster at 

higher T, as expected.  
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Table 5.7: The reaction constant (kr) for the ReaxFF. Calculated through linear least square 

regression at different temperatures (T), at density, ρ=5.22kg/m
3
and at varying time intervals 

T [K] Time interval [10
3
fs] kr [10

-5
/fs] 

7799±500 0-20 0.77±0.013 

10368±1000 0-10 3.88±0.03 

12998±1700 0-5 12.17±0.010 

15597±3000 0-2.45 22.0±0.4 

20796±4000 0-2 51.4±0.6 

 

The result from Table 5.7 was plotted in Figure 5.12. Here, ln kr is plotted as a function of 

1/T, which was used to obtain Ea. The result is found in Table 5.8, where the value is 

compared with the ∆Hf,298K[35].  

 

Figure 5.16: Finding the activation energy for ReaxFF. The natural logarithm of the reaction 

constant (ln kr) as a function of inverse temperature (T
-1

) . Error bars are given in both x- and 

y-direction. Linear least squares regression was preformed to obtain the activation energy. 
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Table 5.8: The activation energy (Ea) for ReaxFF. The result is compared with the average 

bond enthalpy for H2 (∆Hf,298K)[35]. 

Parameter [kJ/mol] 

Ea 438±9 

∆Hf,298K 436 

 

To conclude, the downward linear trend in Figure 5.15 confirms our assumption that the 

dissociation of H2 was
 
first order reaction. Here, the Ea deviates less than 0.5% compared with 

the average bond enthalpy ∆Hf,298K[35] where the latter is in the uncertainty interval of the 

former. In other words, they are, arguably, equal. 

The XH2 
was calculated using the values in Table 5.4 for T=3639-20796K. The result is shown 

in Figure 5.17 where the values are compared with the values from the TBP simulations. 

Here, the XH2
 for both force fields are close to equal. Moreover, the error bars are so small 

that they are barely visible in the plot. From the XH2
 and XH were the dissociation constant, Kx, 

calculated as shown in Equation (14).  

 

Figure 5.17  Dissociation of H2. The mole fraction of H2,(XH2
) at different temperatures(T) 

calculated with ReaxFF and compared with results from TBP simulation at density, 

ρ=5.22kg/m
3
. Error bars are given in both x- and y-direction. As shown, the values for the two 

force fields close to equal. 

To gain the reaction enthalpy, ∆rHReaxFF, ln(Kx) was plotted against 1/T as shown in Figure 

5.18. A linear least squares regression was performed to obtain ∆rHReaxFF as shown in 
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Equation(13). The result is shown in Table 5.9 where it is compared with ∆rHTBP. Here, 

∆rHReaxFF deviates -4% from ∆rHTBP 

 

Figure 5.18: Finding the reaction enthalpy for ReaxFF. The natural logarithm of the 

dissociation constant (ln Kx) plotted as a function of the inverse temperature (T
-1

). Error bars 

are given in both x- and y-direction. Since the plot was linear it was possible to preform linear 

regression to obtain reaction enthalpy.   

Table 5.9: The reaction enthalpy (∆rH) for ReaxFF. Compared with the reaction enthalpy 

calculated with the TBP at density, ρ=5.22kg/m
3
. 

Parameter [kJ/mol] 

∆rHReaxFF 302.0±1.2 

∆rHTBP 316±3 

 

As seen in Figure 5.17, the dissociation is close to equal for the two force fields. Here, the 

second code, mentioned in Section 4.2.2, used the distance 1.8 Å to determine if the atoms 

made a molecule. This distance was determined by studying at the radial distribution for the 

system at each T. As mentioned in Section 3.2.2 is the sigma bond between two atoms 

generally below ~1.5 Å and is negligible above ~2.5Å. The aim was not to alter the result 

gained with the ReaxFF in the post modelling phase by choosing an accurate distance. The 

fact that the reaction enthalpies were so close for both force fields indicates that the chosen 

distance was a reasonable choice.  
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5.3. A review of the data processing and simulation parameters 

In this section are some general comments about the data processing and simulation 

parameters. 

First, in Figure 5.12 and 5.14 the values from the FF simulations were extrapolated to T = 

3639K-20796K. This was done because the non-reactive FF cannot be used at such high T 

since the simulation crashed. This is a result of the increase in distance between the atoms in a 

molecule as T increases due to dissociate.  

Second, both hi and the TCF were calculated using an additional code in MATLAB (code no. 

2). This code was very time consuming and therefore only 50 time steps, after equilibrium, 

were used to calculate the parameters. Longer runs were tested on the TCF. Here, the values 

seemed unaffected by the simulation length. It was assumed that the time range was 

sufficient. In further work, hi values might also have to be tested. 

Third, in regards to simulations time, the TBP used about 24 hours on 7-10 million time steps 

(1 time step = 0.22 fs), whereas the ReaxFF used about 40 minutes on 1 million time steps (1 

time step = 0.1 fs). Skorpa et al.[7] did, however, not use LAMMPS to perform the MD 

simulations so comparing the time used per simulation might not be accurate. By assuming 

that the different in time consumption between LAMMPS and their own developed program 

is small, it is possible to could conclude that the ReaxFF is faster.  

Fourth, the simulation time, the number of simulations and time step are factors that can affect 

the accuracy of the calculations (as explained in Section 3.1.1). This thesis, however, tried to 

avoid these effects by matching the number of simulations to Skorpa et al.[7], using the time 

step 1fs which has been proven optimal for ReaxFF simulations and making sure that the 

simulations had run long enough by checking if the equilibrium had been reached.  

Lastly, some critique to the data processing methods used in this thesis. By performing many 

of the calculations post modelling some unnecessary uncertainties occurs. These include the 

counting of the molecules, not being able to calculate the partial molar enthalpy using the 

SSM, thus comparing values in different ensembles, and not calculating the thermodynamic 

parameters over longer time intervals due to time consuming calculations in MATLAB. A lot 

of these problems would have been avoided by implementing the SSM code directly in 

LAMMPS.  
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6. Conclusion and outlook 

The aim of this thesis was to study the ReaxFF, combine it with the SSM and conclude 

whether or not it was feasible to use the ReaxFF instead of the TBP and still get reasonable 

results. This was done by performing in total 55 simulations in LAMMPS; 49 using the FF 

and 6 using the ReaxFF. The latter was processed with three additional codes, post-modeling. 

To check if the system and the SSM code were implemented correctly they were first tested 

with the non-reactive FF. Based on the results from calculating p with different variables and 

the diffusion, it was concluded that the system was correctly assembled. Here, the results were 

equal to ideal gas and experimental values at low ρ, the MSD behaved as expected and Dself,i 

yielded values close to kinetic gas theory. The SSM code was tested by calculating hi and the 

TCF. Here, the code yielded ΓHH,∞
-1 

values close to ideal, low Cp,i values and an unexpected 

trend (Cp,H>Cp,H2
). Consequently, it was revised and an error was found that affected the 

values for H2; the SSM code could not recognize the molecules. Thus, this code was not used 

in further calculations.  

In short, the ReaxFF produced fast calculations, which were consistent with expected trends. 

Here, the Dself,H was larger than Dself,H2
, whereas Cp,H2

 was larger than Cp,H. Furthermore, the 

Ea was equal to ∆Hf,298K for hydrogen. Consequently, it was concluded that the ReaxFF was 

assembled correctly. By comparing the dissociation, hi and the TCF with the values in Skorpa 

et al.[7] it was concluded that the ReaxFF compares to the TBP. Here, the ReaxFF and TBP 

values were equal, or close to equal. In general, the ReaxFF values had high uncertainty and 

deviated more from the TBP when the particle number was low. This was expected since the 

ReaxFF is a less accurate potential, however, it was argued that it could also be an effect of 

the post-modelling processing. 

To conclude, the ReaxFF simulates hydrogen dissociation as expected. Furthermore, it is 

feasible to use the ReaxFF instead of the TBP. Despite the TBP being a more accurate 

potential, the ReaxFF produces close to the same values, is more applicable and faster.  

The next step is to perform ReaxFF simulations with other chemical reactions to see if the 

same trends occur. In addition, it would be interesting to expand the ReaxFF simulations by 

performing a surface reaction with dissociation of H2 on a palladium surface. Since the SSM 

code included an error, further work implies improving this code to minimize the 
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uncertainties that comes with extensive post-modelling processing. In additions, the values in 

this thesis might be improved by calculating hi, with the ReaxFF, at longer runs. 

  



49 

 

References 

1. Allan, N.L., S. Stølen, and T. Grande, Thermodynamics and materials modelling. 

Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects: p. 

337-376. 

2. Van Duin, A.C., S. Dasgupta, F. Lorant, and W.A. Goddard, ReaxFF: a reactive force 

field for hydrocarbons. The Journal of Physical Chemistry A, 2001. 105(41): p. 9396-

9409. 

3. Ludwig, J., D.G. Vlachos, A.C. Van Duin, and W.A. Goddard, Dynamics of the 

dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive 

force field. The Journal of Physical Chemistry B, 2006. 110(9): p. 4274-4282. 

4. Chenoweth, K., S. Cheung, A.C. Van Duin, W.A. Goddard, and E.M. Kober, 

Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using 

the ReaxFF reactive force field. Journal Of The American Chemical Society, 2005. 

127(19): p. 7192-7202. 

5. Chenoweth, K., A.C. van Duin, and W.A. Goddard, ReaxFF reactive force field for 

molecular dynamics simulations of hydrocarbon oxidation. The Journal of Physical 

Chemistry A, 2008. 112(5): p. 1040-1053. 

6. Skorpa, R., J.-M. Simon, D. Bedeaux, and S. Kjelstrup, Equilibrium properties of the 

reaction H 2 [right left harpoons] 2H by classical molecular dynamics simulations. 

Physical Chemistry Chemical Physics, 2014. 16(3): p. 1227-1237. 

7. Skorpa, R., J.M. Simon, D. Bedeaux, and S. Kjelstrup, The reaction enthalpy of 

hydrogen dissociation calculated with the Small System Method from simulation of 

molecular fluctuations. Physical Chemistry Chemical Physics, 2014. 16(36): p. 19681-

93. 

8. Schnell, S.K., X. Liu, J.-M. Simon, A. Bardow, D. Bedeaux, T.J.H. Vlugt, and S. 

Kjelstrup, Calculating Thermodynamic Properties from Fluctuations at Small Scales. 

The Journal of Physical Chemistry B, 2011. 115(37): p. 10911-10918. 
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Appendix A: Calculations of the theoretical self-

diffusion coefficients  

To calculate the self-diffusion of H2, Equation(4) was simplified as shown in Equation (1.A). 

Here, it was assumed that since there was only one species present; 
1M =

2M and 
1 2   .  

 
3 3/2 1/2

1
Self 2

1

1.86 10 T (2 / M )
D

p



 
  (1.A) 

 , is as a function of kbT/ε12 and are tabulated in Cussler[12]. Here, 12  is a geometric 

average of contributions form the two species and kB is Boltzmann’s constant. ε12/kb of H2 was 

found in Cussler[12] as well. The values and units of the different quantities are shown in 

Table A.1. There were no experimental values for H so the values for He was used instead. 

Table A.1. Kinetic gas theory. Values used to calculate the self-diffusion coefficient for H and 

H2 using kinetic gas theory 

Constant  Value Value 

D Diffusion coefficient - cm
2
/sec 

P Pressure - atm 

Mi 
Molecular weight of H2 2.02 g/mole 

Molecular weight of H 1.01 g/mole 

σ 

Diameter of atom spheres 

of H2 
2.827 Å 

Diameter of atom spheres 

of He 
2.551 Å 

ε12/kb 
For H2 2.827 K 

For He 10.2 K 

T Temperature - K 

ΩH2 
The collision integral for 

H2 
- - 

ΩHe 
The collision integral for 

He 
- - 

 

  



 

  



 

Appendix B: Uncertainty propagation 

To calculate the error propagation, Gauss uncertainty propagation equation is used. The 

uncertainty of a in a function 𝑦 = 𝑓(𝑥1, … , 𝑥𝑝), can generally be written as shown in Equation 

(1.B). Here the sy and sx is the standard deviation to the parameters y and x, respectively. The 

formulas for calculating the uncertainty that is appropriate for this thesis is given below. 

 

2

2 2

1

 
  

 
 i

p

y x

i i

f
s s

x
  (1.B) 

The uncertainty for the equilibrium parameter, Kx, is shown in Equation (2.B).  

 
x 2 H H2

2 2 2

2 2 22
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2 2 2 2 2x x H H
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H H H H

K K 2X X
s S S s s

X X X X

       
                      

  (2.B)  

The uncertainty for ln(y) (where y = Kx or k), is shown in Equation (3.B) and for z
-1

 , (where 

z = T or hi)in Equation (4.B). 
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Appendix C: Overview of the state variables used 

in the simulations 

An overview of the state variables used in the simulations and which thermodynamic 

parameters were directly calculated in LAMMPS is given in Table C.1. As shown, the 

majority of the thermodynamic parameters for ReaxFF were calculated post modelling. 

Table C.1: Overview of the simulation variables 

Calculated 
Force 

field 
Components Fixed Varied 

Number of 

simulations 

p 
 

FF 

H2 ρ=3.35 kg/m
3
 T= 100-300K. 9 

H2 
Box size = 100

3
 Å

3 

T =3 00K 

NH2 = 250-

1500 
6 

H2 and H 

Box size = 100
3
 Å

3 

T= 100, K 300K, 

500K 

Ntot = 1000 

XH2 = 0-1 15 

MSD FF H2 and H 

Box size: 100
3
 Å

3 

T = 300K 

Ntot = 1000 

XH = 0-1 

5 
XH2 = 0-1 

hH2
 and hH FF H2 and H 

ρ =5.22 kg/m
3
 

T = 3639.37 

XH2 = 0.984 

Box size = 

28.47
3
-

98.47
3
m

3 
8 

hH2
, hH 

and Γ 
FF H2 and H 

ρ =5.22 kg/m
3
 

XH2 = 0.98 

Box size = 

48.47
3
Å

3 

T = 139-3639 8 

H, p ReaxFF H2 and H 

ρ =5.22 kg/m
3
 

Box size = 

68.47
3
Å

3
 

T = 3639-

20796 
6 

 

  



 

  



 

Appendix D: MATLAB codes 

%------------------------------------------------------------------- 

%COUNTING MOLECULES USING THE TRAJECOTRY FILES FROM THE REAXFF 

%SIMULATIONS 

%------------------------------------------------------------------- 

%------------------------------------------------------------------- 

% This code counts the number of molecules in a system with 

% periodic boundary conditions using trajectory files. Additional 

% trajectory %files are created; one for the atoms and one for 

% the molecules. 

% 

%generated by Nora Meling Eriksen and Thuat Trinh on 2015/05/12 

%11:51:42 

%------------------------------------------------------------------- 

clear all; close all; clc 

  

%start after equilibrium is reached, which is after a 1000 frames 

%frame = the positions of a thousand atoms at a given time step 

teller1 = 3+1002*1000;. Start at frame 1000 

teller2 = 1002+1002*1000; % End of frame 1000 

 

t = -500;  

boxsize = 68.469; 

filnavn ='T12998.xyz'; % the data file 

run = 50; %number of frames 

 

  

d_max = 1.8;% Å Max length between two atoms in a molecules 

  

  

for k = 1:run %Defines the number of frames we want 

[data(:,1), data(:,2), data(:,3)] = 

importfile(filnavn,teller1,teller2);%Imports inn one frame at a 

given time step. Importfile was created by a built-in function in 

MATLAB  

  

molekyl = 0; 

atom = 0; 

h2atom = []; 

H2atom = []; 

H = []; 

H2molecule = []; 

  

%One position in the trajectory file is compared with all the 

%following positions 

for i = 1:size(data,1)  

    a = data(i,:); %current position 

    z = i+1; 

    for p = z:size(data,1)  

            b = data(p,:);%the current following position 

    if b == a %if the positions are equal, break  

        break 

    end 

        d=sqrt(sum((a-b).^2));%calculates the distance 



 

        if d > boxsize/2   %check PBC for shortest distance 

            d2=boxsize; 

            for kx=-1:1 

                for ky=-1:1 

                    for kz=-1:1 

                        b=b+[kx,ky,kz]*boxsize; 

                        d2=sqrt(sum((a-b).^2)); 

                        d=min(d2,d);   

                    end 

                end 

            end 

        end 

         

      if d <= d_max %if the distance between the two points are 

lower or equal to one 

        H2atom = [H2atom; data(i,:); data(p,:)]; %collect the 

positions to all the atoms that makes molecules 

        H2molecule = [H2molecule; data(i,:)]; %collects the 

positions to only one of the two atoms in a molecule 

        molekyl = molekyl + 1;               %counts a molecule 

       break 

           

%if the distance is too large, we have to check if the atom is found 

at the boundary of the box since we have periodic boundary 

conditions 

           

      end  

    end 

  

end 

  

COM =[d_max/2 d_max/2 d_max/2]; %center of mass 

Batom = bsxfun(@minus,H2molecule,COM); %Creates a new atom B from 

the H2 molecules 

  

%Must create a vector for Hatoms. Compare data with H2atoms 

H = data; 

 for i = 1:size(H2atom,1) 

     a = bsxfun(@eq,data,H2atom(i,:));%finds where the coordinates 

are equal 

     z = sum(a,2); %sums up the matrix, if the coordinates are equal 

the sum is 3 

     b = find(z==3); 

        if b > 0 

        H(b,:)=[0 0 0]; %removes the positons where a molecules atom 

is placed 

        end 

 end 

  

Hatom = []; 

c = find(H(:,1)>0); 

for j = 1:size(c) %removes the zeros 

    Hatom = [Hatom; H(c(j),:)]; 

end 

t = t + 500; %increases the time step 

  



 

 h2atom=unique(h2atom); 

 molekyl=size(h2atom)/2; 

  

Mol(k) = molekyl(1,1); %stores the number of molecules for each 

frame in a vector which is the length of the number of frames.  

Atm(k) = 1000-2*molekyl(1,1); %stores the number of atoms for each 

frame in a vector which is the length of the number of frames.  

teller1 = teller1 + 1002; teller2 = teller2 + 1002; %moves on to 

next frame 

Time(k) = t; %creates a vector for the time steps 

k 

end 

 

%------------------------------------------------------------------- 

%SCRIPT AND FUNCTIONS TO CALCULATE THE THERMODYNAMIC CORRECTION 

%FACTOR USING THE REAXFF TRAJEECTORIES 

%------------------------------------------------------------------- 

 

%------------------------------------------------------------------- 

%THE SCRIPT  

% This script calculates the thermodynamic correction factor for 

% a mixture of H and H2 using the Small System Method and plots  

% them. In this script is all the initial values defined which is  

% used in the function TDF_Nora. The output of the function is  

% plotted. 

%  

%generated by Nora Meling Eriksen on 2015/05/12 11:51:42 

%------------------------------------------------------------------- 

clear all; close all; clc 

   

%The file we are calculating from 

filnavn ='T3639.xyz'; %Imports the data file 

  

%Initial values for the counting code 

boxsize = 68.48; 

d_max = 1.8;  % Maximum distance between two atoms in a molecule 

rmin = 0.05;  % Smallest radius in the small system spheres 

rmax = 0.4790;  % Largest radius in the small system spheres 

numVolumes = 200;% Number of small system spheres 

numRadii= 30;  % Number of radii 

run = 50;   % Number of time steps 

covHB = []; 

  

%Perform SSM in each atom vector 

data= 

TDF_Nora(rmin,rmax,numVolumes,numRadii,run,filnavn,boxsize,d_max); 

R =(data.radius); 

L =((((4/3)*pi).*R.^3).^(1/3).*boxsize); %scaling L to the correct 

boxsize 

L_1 =fliplr((L.').^-1); %makes sure the largest box size is first 

sphH =(data.spheresH); 

gammaH = var(sphH,1)./mean(sphH); % 1/Gamma 

sphB =(data.spheresB); 

gammaB = var(sphB,1)./mean(sphB); % 1/Gamma 

for g = 1:30 

C = cov(sphB(:,g),sphH(:,g)); 



 

covHB = [covHB; C(1,2)]; 

end 

gammaHB = (covHB.')./mean(sphH); %1/Gamma 

  

 figure 

plot(L_1,gammaH,'-*',L_1,gammaB,'-o',L_1,gammaHB,'-^') 

xlabel('1/L [Å^-^1]'); 

ylabel('\Gamma^{-1}'); 

legend('H-H','H_2-H_2','H-H_2','location','best') 

box off 

legend('boxoff')  

save('gammaT3936.mat','gammaH','gammaB','gammaHB') 

 

 

%------------------------------------------------------------------- 

%THE SMALL SYSTEM METHOD FUNCTION 

% This code creates two new trajectories for H and H2 in a 

% mixture of H2 and H. The Small System Method is used to 

% calculate the thermodynamic correction on each trajectory. 

% This code imports the initial variables set in the script 

% 

%generaded by Bjørn Strøm, Nora Meling Eriksen and Thuat Trinh 

%on 2015/05/12 11:51:42 

%------------------------------------------------------------------- 

function [varargout] = 

TDF_Nora(rmin,rmax,numVolumes,numRadii,run,filnavn,boxsize,d_max) 

 

RangeY = 1; 

  

%% Initialize variables  

radius =[rmin:0.0042:0.114 0.115:0.028:rmax]; 

spheresH = zeros(numVolumes*10000,numRadii); 

sphere_countsH = zeros(numVolumes,numRadii); 

spheresB = zeros(numVolumes*10000,numRadii); 

sphere_countsB = zeros(numVolumes,numRadii); 

%% Counting code  

teller1 = 3+1002*1000; 

teller2 = 1002+1002*1000; 

  

for k = 1:run  

[data(:,1), data(:,2), data(:,3)] = 

importfile(filnavn,teller1,teller2);  

atom = 0; 

h2atom = []; 

H2atom = []; 

H = []; 

H2molecule = []; 

  

for i = 1:size(data,1)  

    a = data(i,:);  

    z = i+1; 

    for p = z:size(data,1)  

            b = data(p,:); 

    if b == a  

        break 

    end 



 

        d=sqrt(sum((a-b).^2)); 

         

        if d > boxsize/2    

            d2=boxsize; 

            for kx=-1:1 

                for ky=-1:1 

                    for kz=-1:1 

                        b=b+[kx,ky,kz]*boxsize; 

                        d2=sqrt(sum((a-b).^2)); 

                        d=min(d2,d);   

                    end 

                end 

            end 

        end 

         

      if d <= d_max                            

        H2atom = [H2atom; data(i,:); data(p,:)];  

        H2molecule = [H2molecule; data(i,:)];  

       break 

      end  

    end 

  

end 

  

COM =[d_max/2 d_max/2 d_max/2]; 

Batom = bsxfun(@minus,H2molecule,COM); 

H = data; 

 for i = 1:size(H2atom,1) 

     a = bsxfun(@eq,data,H2atom(i,:)); 

     z = sum(a,2);  

     b = find(z==3); 

        if b > 0 

        H(b,:)=[0 0 0];  

        end 

 end 

  

Hatom = []; 

c = find(H(:,1)>0); 

for j = 1:size(c)  

    Hatom = [Hatom; H(c(j),:)]; 

end 

  

atomCoordinatesH = Hatom./boxsize; 

atomCoordinatesB = Batom./boxsize; 

 

    for l = 1:numVolumes 

            [sphere_countsH(l,:)] = 

PBC_Nora(radius,atomCoordinatesH); 

            [sphere_countsB(l,:)] = 

PBC_Nora(radius,atomCoordinatesB); 

    end 

  

    spheresH(1+(k-1)*numVolumes:k*numVolumes,:) = sphere_countsH;  

    spheresB(1+(k-1)*numVolumes:k*numVolumes,:) = sphere_countsB; 

  

teller1 = teller1 + 1002;  



 

teller2 = teller2 + 1002;  

k 

end                     

  

spheresH(k*numVolumes+1:end,:) = []; 

spheresB(k*numVolumes+1:end,:) = []; 

  

%OUTPUTS IN SAME VARIABLE STRUCTURE 

varargout{1}.spheresH = fliplr(spheresH); 

varargout{1}.spheresB = fliplr(spheresB); 

varargout{1}.radius = radius; 

varargout{1}.RangeY = RangeY; 

  

end 

 

%------------------------------------------------------------------- 

%PBC_NORA takes in a (1 x a) vector of radii, and an (m x n) matrix 

%   of atom coordinates. The output is a (1 x a) vector where each 

%   element is the number of atoms located within a spherical  

%   selection with the corresponding radius given by the provided 

%   input vector. The selections are random, for each time the  

%   function is called, but have the same center for each radius  

%   within the same call. This is done for computational efficiency 

%   because it allows us to shrink the selection from largest to  

%   smallest radius. 

%    

%   m = no. of atoms  

%   n = 3 (x, y, z) The coordinates are scaled between 0 and 1 to  

%   represent a fraction of the simulation box size. 

%  

% generated by Bjørn Strøm on 2015/05/12 11:51:42 

%------------------------------------------------------------------- 

 

function [sphere_count] = PBC_Nora(radius,atom_coordinates) 

 

num_radii = length(radius);  

radius = fliplr(radius); % the radius vector is reversed to allow..  

sphere_c = rand(1,3); % ..the selections to shrink in size 

box_c = [0.5,0.5,0.5]; % simulation box center position 

trans_vec = box_c - sphere_c; % translation vector for PBC 

sphere_list = bsxfun(@plus,atomCoordinates,trans_vec); % Translates…  

sphere_count = zeros(numRadii,1); % … atom Coordinates with 

trans_vec. 

  

%% Wrap the spherical selection for periodic boundary conditions 

if trans_vec(1) > 0  

    x_check = bsxfun(@gt,sphere_list(:,1),1);  

    sphere_list(:,1) = sphere_list(:,1) - x_check;  

else  

    x_check = bsxfun(@lt,sphere_list(:,1),0);  

    sphere_list(:,1) = sphere_list(:,1) + x_check;  

end 

  

if trans_vec(2) > 0  

    y_check = bsxfun(@gt,sphere_list(:,2),1); 

    sphere_list(:,2) = sphere_list(:,2) - y_check; 



 

else 

    y_check = bsxfun(@lt,sphere_list(:,2),0); 

    sphere_list(:,2) = sphere_list(:,2) + y_check; 

end 

  

if trans_vec(3) > 0  

    z_check = bsxfun(@gt,sphere_list(:,3),1); 

    sphere_list(:,3) = sphere_list(:,3) - z_check; 

else 

    z_check = bsxfun(@lt,sphere_list(:,3),0); 

    sphere_list(:,3) = sphere_list(:,3) + z_check; 

end 

 

% Make a spherical selection for each radius 

for i = 1:numRadii  

    sphere_select = ((sphere_list(:,1) - box_c(1)).^2 + 

(sphere_list(:,2) - box_c(2)).^2 + (sphere_list(:,3) - box_c(3)).^2 

) <= radius(i)^2;  

    sphere_count(i) = sum(sphere_select);  

    sphere_list = reshape(sphere_list(repmat(sphere_select,[1,3])), 

[sphere_count(i),3]);  

end 

end 

 

 

  



 

  



 

Appendix E: ReaxFF input in LAMMPS 

#hydrogen with ReaxFF potential at 3639K  

boundary p p p 

restart 1000000 restart 

#Simulation Units 

units real 

atom_style charge 

#Reads configuration from file 

#read_restart restart.last 

read_data init.data 

#Mass relative mass of atoms 

mass 1 1.08000 

 

pair_style     reax/c lmp_control  

pair_coeff      * * ffield.reax.cho H  

thermo_style   multi 

neigh_modify delay 0 every 1 check yes 

 

#Applies or "fixes" NVT MD 

velocity        all create 100.0 234324324 dist gaussian mom yes rot yes 

###set NVT 

variable T equal 3639 

 

fix  1 all nve 

fix             2 all qeq/reax 1 0.0 10.0 1e-6 param.qeq 

fix             3 all temp/berendsen $T $T 100 

 

##compute temp over x axe 

 



 

dump            1 all xyz 500 h2_trj.xyz 

dump_modify 1 element H 

#Dumps output files and thermodynamic properties 

thermo_style custom step temp press pe enthalpy 

thermo         500 

#Timestep is 1 fs (0.001 ps) 

timestep 0.1 

#dump 2 all atom 30 dump.reax.test 

#Number of time steps 

run     1000000 

  



 

Symbol List 

Table 1:  Latin symbols 

Symbol Dimension Explanation 

Ji /s Total flux 

ji m
2
/s Flux per area 

c mol/L Concentration 

a m
2 

Cross sectional area 

D m
2
/s Ficks diffusivity 

z m Distance 

t s Time 

Dself m
2
/s Self-diffusion 

d - Dimensionality 

r(t) Å Molecular position 

bo - Intercept 

T K Temperature 

p bar Pressure 

iM  g/mol Molecular weight of species i 

Ea kJ/mol Activation energy 

ΔHf kJ/mol Average bond enthalpy 

kr 1/fs Rate constant 

A /s Frequency factor 

R J/mol K Universal gas constant 

[A] - Change in concentration 

H J Enthalpy 

V Å
3 

Volume 

U J Internal energy 

hi kJ/mol Partial molar enthalpy of species i 

q kJ Heat 

ni mol Number of moles of species i 

C J/K Heat capacity 

Cp.i  Molar heat capacity of species i 

ΔrH J/mol Reaction enthalpy 



 

  

Table 1:  Latin symbols continued 

Symbol Dimension Explanation 

Ð m
2
/s Maxwell-Stefan diffusivity 

mi kg Mass of species i 

f N force 

pi kg Momentum 

V(ri)i J Potential 

Ĥ   - Hamiltonian 

Kth - Thermodynamic equilibrium constant 

Kx - Dissociation constant 

Xi - Mole fraction of species i 

Ni - Number of particles of species i 

B - Thermodynamic property 

M - Number of time steps 

Lt Å Total system length 

L Å Small system length 

rn Å Small system radius 

r* - Small system radius in reduced units   

rij Å Separation distance 

kB m
2
kg/s

2
K Boltzmann constant 

F2 J force functions for the pair-wise interaction 

F3 J force functions for a three-body interaction 

 

  



 

Table 2:  Greek symbols 

Symbol Dimension Explanation 

σ Å Collision diameter 

Ω - Collision integral 

12ε  - A geometric average of contribution from two species 

γi - Activity constant 

Γi - Thermodynamic correction factor 

µi J/mol Chemical potential 

ρ kg/m
3 

Density 

π - Pi 

  



 

Table 3:  Mathematical symbols, superscripts, subscripts 

Symbol Explanation 

0 Subscript meaning initial value 

Cov() Covariance 

Var() Variance 

Mean() Arithmetic average  

  Time average 

≡ Defined by 

d Differential 

∂ Partial deviated 

a   Second deviation 

N Superscript meaning a vector of N dimensions 

s Standard deviation 

a Vector 

Δ Change in a quantity of variable 

 

  



 

Table 4:  Abbreviations 

Symbol Explanation 

SSM Small System Method 

MSD Mean square displacement 

TCF Thermodynamic correction factor 

MD Molecular dynamics 

FF Classical force field 

TBP Three-body potential 

DMM Delft Molecular mechanics 

STD Standard deviation 

KGT Kinetic gas theory 
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