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Abstract

In this thesis, estimation of signals over fading channels for analog uncoded transmission is con-

sidered. In communication settings with tight delay requirements, e.g. in real-time control over

wireless fading channels and vehicle-to-vehicle communication, the use of efficient and therefore

long channel codes for reliability is not possible. Without channel codes, one needs to seek out

alternative techniques. One such technique is to send uncompressed discrete-time source samples

directly over the channel and then estimate the source signals from the channel outputs at the re-

ceiver. It is then required that the estimation quality is assessed with respect to source and system

parameters, such that suitable system parameters can be selected for a given setting.

This work begins by considering scalar Gauss-Markov sources and communication over scalar

Rayleigh fading channels. For estimation, the optimal minimum mean square filter, i.e. the

Kalman filter, is used in order to estimate the signal at the receiver. In order to evaluate the per-

formance of the Kalman filter, the estimation error outage probability is selected as a measure of

quality. For random fading channels, the instantaneous estimation error variance for the Kalman

filter is also random. Principally, the outage probability criterion measures the probability that

the instantaneous estimation error variance of the Kalman filter exceeds a certain threshold. This

measure is most meaningful in settings where delay is of concern. The presented results in this

thesis include characterization of the estimation outage probability, derivation of the upper and

lower bounds for a certain range of outage thresholds, and characterization of the behavior of the

outage probability in the high signal-to-noise ratio regime.

Next, the channel model is extended to include multiple receivers in order to obtain a diversity

gain and improve the estimation quality. Due to lack of coding, diversity is a very a suitable

way to obtain extra reliability when needed. For this setting too, upper and lower bounds are

obtained for the outage probability. It is then shown that in the high signal-to-noise ratio regime,

the estimation error outage probability decreases inversely polynomially with the signal-to-noise-

ratio to the power of the number of receivers.

Afterwards, the source is extended to be a vector of arbitrary dimension and the channel to be a

general MIMO Rayleigh fading channel. A joint Kalman filter and space-time coding scheme is

proposed to allow for transmission of sources with any dimensions over the channel. The space-

time codes are incorporated in order to parallelize the channels and obtain full diversity for the

estimation outage probability.

Finally, two special scenarios are considered. The first is when the source dimension grows large.

In this case, the source may be considered as a collection of users in a sensor network who trans-

mit their measurements over a general MIMO fading channel without compression or other extra

processing. The performance is analyzed in terms of the high signal-to-noise-ratio behavior of

the average mean squared error. The second scenario, considers a case when source samples are

not correlated in time, and are sent over parallel MIMO channels. The estimation quality is then

improved by transmission over a larger number of channels than the source dimension.
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Chapter 1

Introduction

Low or zero delay transmission of measurements of a dynamic system to a remote con-

troller/observer is required in applications such as network control systems (NCS), wire-

less sensor networks (WSN), intelligent transport systems such as vehicle-to-vehicle (V2V)

communication, and generally for remote real-time signal processing. Due to tight delay

conditions in these cases, high-performance block-wise channel codes, which incur unac-

ceptable delays, are not permitted.

It is possible to send the measurements directly over the channel without quantization,

compression or coding, using analog uncoded transmission. One then performs estima-

tion on the channel outputs at the receiver in order to recover the transmitted signals.

Transmission of discrete-time continuous-valued signals over channels is then an attrac-

tive alternative to the state-of-the-art digital communication schemes due to its simplicity

and zero-delay property. This scheme is also attractive for application in WSN, where

the sensors have very limited processing ability, and thus simple but reliable transmission

schemes are needed. Due to that, sophisticated signal processing operations are rather

performed at a fusion center. In addition, such sensors are often battery-powered and

therefore power-efficient communication schemes need to be considered as well.

As the transmitted signals are continuous-valued and are not quantized, estimation rather

than detection is performed at the receiver side. A relevant measure for estimation quality

assessment should also be sought out. Then, it is important that the performance of the

suggested transmission scheme is carefully analyzed with respect to that measure. The

analysis of the signal estimation quality is necessary to ensure satisfactory performance

for the possible practical implementations.

One prevalent measure of quality of estimation is the mean squared error (MSE), i.e. the

mean of the squared error between the original signal and the estimated one. While the

error is a random process due to the presence of noise, the MSE is a deterministic value.

However, when there are other sources of randomness in the system, e.g. when the chan-

nel is random, the MSE (average with respect to noises only) becomes random itself. The

random MSE may converge in distribution, given that certain convergence criteria is sat-

1



isfied by the system parameters and the channel. Based on that, deterministic measures of

quality can be obtained from the distribution of the MSE. The simplest of such measures

is the average MSE, where the average is now computed over all the randomness in the

system, including the random channel. The average MSE measure is applicable when an

overall assessment of the estimation quality is required. A more elaborate and complete

measure is the estimation error outage probability. Estimation error outage probability

expresses the probability that the MSE exceeds a threshold. While the outage is obtained

from the complementary cumulative distribution function (complementary cdf) of the ran-

dom MSE, the average MSE measure is the mean of its probability density function (pdf).

For ergodic processes, this probability can also be interpreted as how often the random

MSE exceeds that threshold. This measure is most insightful when delay is of concern,

e.g. an outage value is needed for each channel realization, and when there is a need and

a meaning for comparing the estimation performance against a threshold value, e.g. in

order to ensure a certain level of statistical reliability in mission critical applications. The

outage probability measure is also more informative than the average MSE, as the average

MSE can be obtained from the outage probability function if needed, while the other way

around is not possible. Yet, it might be easier and less complicated to get a closed-form

expression for the MSE. Thus, the outage probability measure is utilized mainly, but the

average MSE measure is also considered when outage probability calculation becomes

tedious. Also, as the notion of random MSE is already clarified, the term estimation error
outage probability is used for the outage probability of the random MSE, because MSE

traditionally has a deterministic value and this might lead to confusion or misunderstand-

ing. Alternatively, the term distortion outage probability is used when vector sources and

normalized instantaneous MSE are considered.

In the aforementioned applications, the transmitted signals are quite often correlated. If

the signals follow an auto-regressive (AR) model, which many natural signals do at least

approximately, the use of Kalman (-like) estimation algorithms is optimal at the receiver.

The optimality is for the minimum mean square error (MMSE) criterion and under certain

conditions for the channel and the source. If e.g. the signals follow a linear Gauss-Markov

(GM) model, the optimal estimator at the receiver is the Kalman filter. Even if the Kalman

filter is not optimal, it is still the best linear estimator under certain conditions.

If a state-space model is not at hand, one could consider a Wiener filter as the estimator in

order to recover the signal from the noisy observations. Being a forerunner to the Kalman

filter, one could consider it a special case of the Kalman filter as well. The Wiener filter

can also be used instead of the Kalman filter when there is an uncertainty in the state-

space model. In some cases, the model uncertainty is so significant that the extra gain

obtained by using the state-space model is overshadowed by such inaccuracy. It might

then be more beneficial to just use the Wiener filter instead.

The major difference between our work and most classical Kalman and Wiener filter-

ing/estimation settings is the existence of a random and time-varying channel. With a

random channel, the instantaneous MSE of the filter and the filter itself are then random.

Nevertheless, it can be shown that these random variables converge in distribution. This

2



type of statistical convergence allows for the calculation of the outage probabilities and

the average MSE’s. Obtaining the estimation or prediction errors’ statistical properties

then paves the way for analyzing the performance of the filters.

In this work, the behavior of the estimation error outage probability and the mean esti-

mation error are studied in two different signal to noise ratio (SNR) regimes, namely the

finite SNR regime and the asymptotic infinite SNR regime, also known in the literature

as the high SNR regime. Ideally, one would like to find the exact value for the outage

probabilities in the finite SNR regime. However, as we will see in the following chapters,

this task seems to be quite daunting even for the simplest cases. We then resort to finding

upper and lower bounds for the outage probabilities whenever possible, and can even in

some cases show tightness of bounds in certain regimes. Although it is mostly analysis

which is performed in this work, rather than design, these bounds may be applied in sys-

tem design, where certain outage probabilities are required to guarantee a certain level of

estimation quality.

The other main approach for characterizing the estimation quality in this thesis is a diver-

sity analysis in the high SNR regime. The results are often a simple characterization of

the high SNR behavior of the estimation error outage probability for the different schemes

which are considered here. In some settings, it is the case that the estimation error out-

age probability decreases inversely polynomially with a certain power of SNR in the high

SNR regime. This polynomial behavior in the high SNR regime can then be characterized

using two parameters, namely the order of the polynomial and the leading multiplier. To

be consistent with the related concepts in the digital communication domain, the names

diversity order and coding gain are used for the aforementioned order and leading mul-

tiplier (the coding gain is calculated relative to a benchmark value), respectively. The

diversity order and the coding gain can together fully characterize the asymptotic perfor-

mance of the estimation error outage probability.

In the next section, we review the related previous works in order to better understand the

relevance and implications of the current thesis.

1.1 Previous Related Works

This section begins by reviewing the challenges in some of the main application areas of

analog source transmission, and the problems this transmission scheme might potentially

help solve or mitigate. Later on, the signal model, the channel model, and the estimation

algorithm and estimation quality assessment methods are introduced, and a review of the

previous work related to these categories is provided.

3



1.1.1 Application Areas for Analog Source Transmission

The literature for network communication and control is diverse and rich. One of the

main challenges concerning NCS with communication links in between, is stability. One

of the pioneering works which has provided an overview of major limitations of the com-

munication networks which affect the stability of NCS is [122]. In that regard, one can

consider networked induced delay, multiple packet transmission and packet drops. The

delay occurs due to exchange of information between sensors, actuators and controller

within the network and can be a serious issue. In extreme cases, such delays may lead to

instability. With multiple packet transmission (vs. single packet transmission), the sensor

and actuator data may be sent via separate network packets and may arrive at different

times, which may degrade the performance. Packet drops also occur occasionally due to

link failures, congestion, and message collisions in networks and can be another cause for

performance degradation and instability. For that matter, it can be argued that by using

the proposed analog uncoded transmission scheme, the link failure issue may be avoided

or mitigated. Instead of complete link failure, one can achieve a rather smooth and grace-

ful performance degradation compared to abrupt failures occurring in NCS which utilize

digital schemes.

In a collection of works [4], several problems regarding stability, performance and reli-

ability in NCS are discussed and the current state of the art for those problems are pre-

sented. Most importantly, the issues with integration of the wireless transmission media

into NCS, such as delay and network communication challenges, are mentioned and real

time NCS are discussed. Several of the articles presented in [4] are based on practical

problems and projects, which makes it an interesting starting point on the NCS research

problems.

Considering a point to point (P2P) link in a network, it is necessary to reduce the link fail-

ure probability in order to prevent instability. As [61] duly states, Shannon-type capacity

achieving codes may not be used in NCS, because those codes are sufficiently long and

incur an intolerable delay. Causality, the main characteristic of control applications, is not

considered in the Shannon-sense error performance either. For causal systems, especially

in the control context, issues such as stability have the utmost importance. This has lead

to the development of the notion of anytime capacity in [84], initially for scalar systems.

In the anytime sense, successful communication is not only defined by its diminishing

decoding error probability, but rather by a stability criterion. The anytime capacity is then

given by the log of the largest unstable system gain or equivalently the spectral radius.

Anytime capacity has been extended to the case of vector systems in [83], which provides

the theoretical benchmark for practical development, e.g. by anytime coding.

Recent developments on the topic of anytime codes include the existence of universal (not

requiring the channel transition probabilities) anytime codes presented in [21]. Reliable

transmission of real-valued information over binary erasure channels (see [15, Chapter 7]

for the definition) is studied in [14], where two anytime coding strategies are presented,

one with high complexity and exponential convergence rate and the other one with lower
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complexity, but sub-exponential convergence rate. Although interesting, they have the

limitation of being only applicable in erasure channels. While very interesting in nature

and promising for the future works, anytime codes are still under development and thus

are not considered further in this work.

Wireless sensor networks are also an interesting application area for the schemes consid-

ered in this thesis. The literature on WSN is also abundant as it engages several com-

munication and networking challenges. One could list the main functionalities of the

sensor networks as sensing and detecting relevant phenomena and first (simple) stages

of processing [60]. The main application areas are in machine, ship, animal, vehicle,

environmental and medical monitoring. Although the communications and networking

constraints for WSN are somewhat different from those of NCS, there are issues such

as delay which are relevant for both cases. While some WSN applications may tolerate

delay, applications which involve real-time monitoring could benefit from our proposed

scheme. Another issue in WSN is power management, because in many applications, the

sensors are battery-powered and their computational operations are required to be energy-

efficient [80]. As a result, a simple communication scheme, which does not involve com-

pression and coding, but can still reliably transmit the information content of the signal is

very useful. The need for power efficiency and low data rates is also mentioned in [77],

one of the pioneering works on WSN. There is also an extensive amount of informa-

tion related about WSN challenges and the involved design techniques in the recent work

of [1]. The joint-source channel coding approach is also mentioned in [1, Ch. 4.3.2] and

estimation subject to power allocation is discussed. For another review work on WSN,

the interested reader is also referred to [95]. In short, from the P2P communication-link

point of view for WSN, a power-saving, cheap, and (almost) real-time/delay-free commu-

nication scheme is required.

Another concrete example for a potential application area is intelligent transport systems

(ITS). The requirements for the communication links among the vehicles on the road or

between the vehicle and the roadside traffic station for traffic control purposes, are also

in many ways similar to the requirements for NCS and WSN, especially the delay issues.

At high speeds and on the highways, real-time communication is a must for ITS, espe-

cially if autonomous cars are to be introduced to the traffic system. While swarms of cars

collaborating and communicating in a network incurs network issues similar to those of

WSN, the real-time requirements may be similar to those of NCS. According to [101],

one important type of message for V2V communication is the transmission of position

information from one vehicle to the other. Given the correlated nature of position infor-

mation, vehicles’ high speed and their relative short distances (in contrast to e.g. cellular

communications), it seems that analog communication is well suited for such purposes.

Channel models for V2V communication using the dedicated short range communication

band is considered in [97] and it is recommended that a Nakagami [33, Sec. 3.2.2] fading

channel model be used, whose parameters need to be determined using empirical data.

Network structure and certain cooperative techniques were also considered in [9,53,117].

As the technology and structure for V2V communication is still under development, there

is a prospect that the proposed schemes in this thesis may be used as part of the future
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protocols and standards.

1.1.2 The Signal and Estimator Model

One common characteristic of the signals observed and transmitted in the three aforemen-

tioned real-time communication settings is that they are correlated in time. For vector

signals, the signals in each dimension will be correlated as well. The correlation is a re-

sult of the signals being recorded from natural phenomena. The state of a system at each

sample time is related to its past. As an example, a sensor network monitoring temper-

ature and humidity in a forest bed usually records correlated signals as temperature and

humidity signals do not usually change abruptly and are often correlated, given that the

sampling times are short enough. The position of a car on a highway at the current time is

a function of its position at the previous time instant and its current speed. Furthermore,

different position dimensions (in a 3D space) are also correlated and a function of the

traffic situation. One then needs a signal model which is general enough such that it takes

into account the correlation in time and across dimensions, but not so complicated that it

makes the analysis too tedious or unrealistic. One such model is the first order ARGM

signal model.

The use of GM models for natural signal modeling is widespread and has a long history.

A first order ARGM model states that the current system state/signal sample is only a

function of the previous system state/signal sample and some randomness. To name a

few of the application of ARGM signals in the analysis of the dynamic system, we can

mention the pioneer work [113], which is a survey of design methods for failure detection

in dynamic systems, [81] which discusses maximum likelihood estimators for dynamic

systems, and [62] which discusses optimal adaptive estimators for stochastic processes.

For the application of ARGM models in wireless sensor networks, we could mention

[124], which considers a GM mobility model for localization in sensor networks. In [3],

the placement of nodes in a sensor network is modeled as GM random fields. In the

context of target tracking for sensor networks, [54] uses Gauss-Markov mobility model

for the mobile node movements in the surveillant field and presents a new distributed

localization scheme based on that assumption.

For the several applications mentioned so far and various others, an ARGM model is quite

suitable for modeling the dynamic systems and their observed signals. If the signals are

transmitted over a communication channel, they are prone to the destructive effects of

the communication channel, such as noise, fading, interference, packet losses, network

problems, etc. In order to recover the transmitted signal from the channel outputs, an es-

timation algorithm needs to be used. One such algorithm which incorporates the dynamic

model of the system is the Kalman filter. Given certain conditions (so-called condition-

ally Gaussian systems), the Kalman filter is optimal in the sense that it minimizes the

MSE. For some other less stringent conditions, the Kalman filter is still optimal, if only

linear filters are to be used, i.e. the Kalman filter is the optimal linear filter. Linear fil-

ters/estimators have simple designs and low computational complexity, and are therefore
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interesting in many applications, though they might not be optimal in the general sense,

which may imply non-linear filtering.

After its introduction in [50], the Kalman filter and similar Kalman-like algorithms have

been applied in many engineering applications for purposes, including but not limited to

estimation, filtering, smoothing, and prediction. The Kalman filter is optimal for linear

systems with known parameters. If these two conditions are violated, the optimality might

also be violated. In addition, some of the filtering operations are very costly for large

dimensions. In the following, a review of some of the major contributions to the theory

and practice of the Kalman filter regarding the aforementioned issues is presented.

For nonlinear dynamical systems, the development of the optimal (sequential) filter re-

quires a complete characterization of the conditional pdf of the source symbols, given

the observations, at each step [56]. This might necessitate acquiring knowledge of an

(potentially) infinite number of parameters. This challenge has been addressed in sev-

eral ways. To deal with the pdf calculation problem, some suboptimal approximations

have been proposed [34], [47], [55], [63], [94]. However, a more popular approach is

the linearization of the system model using Taylor series expansion, and then using a

Kalman filter for the linearized model. The corresponding filter has been named the ex-

tended Kalman filter (EKF), and has been the de facto estimation and tracking algorithm

for many years after its introduction. A good description of the fundamental theory of

the extended Kalman filter can be found in [47, ch. 8]. Several other extensions to the

original Kalman filter including colored and correlated noises are also treated in [47].

Although a significant improvement, EKF suffers from some drawbacks such as com-

plications with implementation, tuning and reliability. Another approach first proposed

in [24] is called the ensemble Kalman filter (EnKF). The EnKF uses Monte-Carlo sim-

ulation methods in order to track the propagation of mean and covariance of a Gaussian

random variable through a nonlinear system, in order to approximate the posterior proba-

bilities needed in the Kalman filter. The EnKF then uses an ensemble (or even more than

one ensemble [44]) of points for tracking the mean and the covariance at each step. For

large data sizes, the EnKF can help reduce the computational complexity significantly.

Another method introduced in [48] is called the unscented Kalman filter (UKF), which

uses carefully selected and fewer data points, made possible by a special transformation

called the unscented transformation. The points are also chosen using a deterministic al-

gorithm, rather than being selected at random. While the EKF is based on linearization of

the underlying nonlinear system, the EnKF and UKF are based on numerically estimating

the underlying (posterior) conditional probability distribution functions. The UKF was

further extended to parameter estimation (compared to state estimation) and for machine

learning problems in [108]. Some numerical improvements in terms of computational

complexity and stability for parameter estimation were also achieved in [106].

Another constraint on the optimality of the Kalman filter, as briefly mentioned previously,

is that it is only valid for known system parameters. In reality, the system parameters are

not always known and must be estimated. This has lead to the analysis of the effects of

erroneous parameter estimation in Kalman filtering design and implementation. In fact,
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the treatment of modeling errors in Kalman filtering started shortly after the introduction

of the original Kalman filter. A good review of the early results around the effects of

modeling error can be found in [Ch. 8] [47], which is mentioned here again, due to

its close connection to part of the work in Chapter 3. In [7], the modeling error for

the measurement error covariance matrix is considered. In [25], the modeling error in

the state transition matrix and the process noise covariance matrix are considered, and

in [67], the effect of error in the initial state is studied. A more complete analysis is

presented in [39], where the effect of modeling errors in the covariance of the initial state

vector, the covariance of the stochastic inputs to the system, and the covariance of the

uncorrelated measurement noise is studied. There, a recursive equation for the actual

covariance matrix of the estimation error with modeling errors was also derived. The

modeling error in process and observation noise covariance matrices, as well as biases,

were also studied in [78]. One of the most complete modeling error analyses can be found

in [35], where all the possible modeling error types, except the errors in the bias term,

were considered. However, as it was discovered in [Ch. 8] [47], some of the derivations

of [35] appear to be incorrect. The corrected equations for the actual estimation and

prediction error covariance matrices, when all the system parameters may be prone to

modeling error (including the biases), can thus be found in [Ch. 8] [47].

One of the ways to mitigate the modeling error and uncertainty in the system model prob-

lems in Kalman filtering is robust designs. There exist several methods for robust state

estimator design, but the details are beyond the scope of this work. However, a good

review on different robust state estimation techniques can be found in [85]. According

to [85], robust Kalman filtering may be performed via three different types of algorithms,

namely the H∞ filtering method, the set-valued method, and the guaranteed cost method.

Briefly, the H∞ methods (see [87]) are based on bounding the induced L2-norm (equiv-

alently the largest singular value) of the total mapping operator of the filter (from inputs

to the error). The set-valued approach (see [8]) models the uncertainties as belonging to

a particular set, e.g. satisfying a certain energy constraint, to achieve robustness. In the

guaranteed cost design approach (see [116]), the target is to devise a class of estimators

which can guarantee an upper bound for the steady-state variance of the state estimation

error for the whole range of uncertainties in the model. In addition, a new robust approach

is also developed in [85]. There, the objective is to minimize the maximum residual norm

(estimation cost function) over the whole range of uncertainties, whereas in the standard

Kalman filter, the objective is only to minimize the residual norm. The resulting algorithm

has the benefit of not requiring to verify any existence conditions, which is problem for

robust H∞ and set-valued methods. In addition, this approach yields stable filters, while

having the benefit of being applicable to a general class of parametric uncertainties.

The Kalman filter and its successors are able to minimize/reduce MSE, when there is an

available state-space model for correlation between consecutive source samples. This

however, might not always be the case. The Wiener-Kolmogorov theory, which was

developed years prior to the Kalman filter and in separate works by Wiener and Kol-

mogorov [93], considers in turn only wide sense stationary signals. In order to perform

filtering through the Wiener-Kolmogorov theory, or simply Wiener filtering, one needs to
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have the autocorrelation and cross-correlation functions of the original and noisy versions

of the signal. The major difference between the Wiener and Kalman filters is the exis-

tence of the state-space model for the signals in the Kalman formulation, which allows

for very efficient recursive updates of the estimates for the current signal sample based

on previous signal estimates, rather than the whole signal history. Kalman filtering also

allows for non-stationary signal models. Although replaced by the Kalman-like filters

in applications where a state-space model is available, the Wiener filter still has its ap-

plication in various fields, including but not limited to channel estimation [41], wavelet

de-noising [32], filtering of cyclo-stationary signals [28], speech enhancement [64], and

image de-noising [92]. While Wiener filter has quite significant importance in signal es-

timation, the focus of this work is on estimation of the ARGM signals, and therefore the

suitable estimation technique is the Kalman filter. The Wiener filter is however consid-

ered in Ch. 6 for estimation of band-limited signals where no such state-space model is

available.

1.1.3 Analog Source Transmission Over Fading Channels

With the signal structure and the corresponding estimation techniques reviewed, we turn

to the issue of source transmission. The main objective is to find schemes, suitable for

real-time communication, which incur zero delay and have low complexity. One such

scheme as previously mentioned, is analog uncoded transmission. To be more specific, we

refer to schemes which transmit continuous-valued but discrete-time signals, and which

do not utilize conventional source and channel coding techniques. Conventional digital

schemes usually require buffering, which incurs delay, and therefore are not suitable for

real-time applications. It is, however, allowed to utilize transforms, power allocation,

and similar operations which do not incur delay and have low computational complexity.

In the following, some of the recent works which have considered the analog uncoded

transmission schemes for various applications are reviewed. Note that the use of the term

analog is to distinguish between the transmission of uncoded continuous-valued samples,

which is considered in this thesis, and general uncoded transmission of bits in digital

communication.

A significant result for analog uncoded transmission is optimality for transmission of

Gaussian signals over Gaussian channels and single source broadcast channels [30] and

for some simple Gaussian sensor networks [29]. The optimality of analog uncoded trans-

mission was also proven for large Gaussian relay networks in [31]. Furthermore, it is

shown that for transmission of independent and identically distributed (i.i.d.) bivariate

Gaussian signals over multiple access channels, the uncoded transmission is optimal if

the channel SNR is below a certain threshold [58]. This was also shown to be true even

if the competitive block coding schemes enjoy a feedback channel as well [59]. In ad-

dition, transmission of a memoryless bivariate Gaussian source over an average-power-

constrained one-to-two Gaussian broadcast channel is studied in [11]. There, it is shown

that below a certain SNR threshold, transmission of a linear combination of the source
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components (still considered uncoded) achieves the optimal power-distortion trade-off.

While the number of cases where analog uncoded transmission is optimal, is limited, it

is still an interesting scheme due to its simplicity and zero-delay property. It is there-

fore considered in several other applications, either on its own or in combination with

digital transmission. In [5], analog transmission of sensor data in a Gaussian network

is considered, when the transmissions are subject to noise and fading. There, the op-

timal power allocation scheme for minimizing the total transmission power subject to

some distortion constraint for the estimates is obtained. Analog source transmission for

sensor networks have also been considered in other works, such as [107] and [91], for

estimation over fading channels. A hybrid digital-analog scheme is considered in [26]

for joint source-channel coding of a bivariate Gaussian source sent over Gaussian mul-

tiple access channel. Analog transmission is also considered in [88] in the context of

systematic lossy source channel coding, as means of providing the decoder with side in-

formation. In [12], transmission of analog i.i.d. sources over multi-input multi-output

(MIMO) block fading channels is considered and a new hybrid digital-analog commu-

nication scheme using space-time codes is presented. In [65] too, hybrid digital-analog

source-channel codes are introduced for broadcasting and robust communication. Hy-

brid digital-analog schemes are also considered in [37] for join source-channel coding

over MIMO block-fading channels. A Hybrid digital-analog scheme for transmission of

analog sources over additive white Gaussian noise channels is also considered in [16],

where the main objective is quantizer optimization. Another hybrid digital-analog cod-

ing scheme is introduced in [27] for transmission of a Gaussian source over a Gaussian

channel, and which generalizes the work of [11].

Although analog transmission avoids bit and packet errors, packet drops and outage in

digital communication, it is still prone to noise, fading and interference. In this work,

the focus is only on the effects of fading. In line with similar other works within the

context of analog uncoded transmission over fading channels, e.g. [37], [75], [12], [105],

and [19], Rayleigh fading channels are mainly considered. Rayleigh fading is a good

model for propagation and scattering effects in urban environments and in general for non-

line-of-sight communication. It is also a simple model which allows for easier analysis

and therefor more insightful results. For that reason, much of the early and fundamental

analysis for fading channels in digital communication consider the Rayleigh fading model

as well [102].

Besides the fading channel type in terms of distribution, the fading channel’s behavior

in time and frequency also plays an important role for system development and analy-

sis. While the fading channel is in principle a random multiplicative distortion, it can

be considered (approximately) non-changing for a certain period of time, known as the

coherence time (for mathematical definitions of different fading models, concepts, and

parameters, please see [102]). In that regard, the fading can be fast or slow. Fast fading

is the case when the coherence time of the channel is smaller than one symbol duration.

Otherwise, we deal with slow fading. If the channel is the same for a block of source

transmissions, then it is conveniently called a block fading model. Many of the works
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studying Rayleigh fading, especially in digital communication, consider the block fading

model, as it best suits high rate cellular transmission (and naturally very short symbol du-

rations). The block fading model is also considered for analog source transmission over

fading channels [37], [75], [12], [105], and [19]. However, the block size in this model

is reduced for lower symbol rates, which might in fact be the case in settings such as

wireless sensor networks.

From a spectral point of view, the channel can be frequency selective or non-frequency

selective (flat). If the source bandwidth is smaller than coherence bandwidth of the chan-

nel (inversely proportional to the root mean square of the delay spread), then the fading

is flat [102]. The input-output relationship for the signals sent over flat fading channels

is simpler, compared to the frequency selective case, as inter-symbol interference (ISI)

might be avoided. However, this assumption limits the source bandwidth to the coher-

ence bandwidth of the channel. The flat fading model is also used considerably for analog

source transmission over fading channels [37], [75], [12], [105], and [19].

1.1.4 Kalman Filtering with Random Parameters

Due to the randomness of the fading channel, the estimator e.g. the Kalman or Wiener

filter is random and does not necessarily converge to a constant value. The instantaneous

estimation error covariance matrix used to qualify the quality of estimation is random as

well. Kalman filtering with random systems parameters has been studied from different

aspects and for different settings due to its wide application spectrum. In the following,

some of those works are reviewed.

In [90], Kalman filtering over packet delaying networks with random delays is considered

and the filter performance is characterized using a probabilistic approach. In [89], a binary

sensor power scheduling algorithm for Kalman filtering over packet dropping networks is

presented. The algorithm minimizes the expected terminal estimation error covariance at

the remote estimator. In [82], the performance of the Kalman filter is studied when the

measurements are only intermittently available and a method is presented to determine the

boundedness of the expected value of the estimation error covariance matrix. In [118],

stability of Kalman filtering over a network subject to random packet losses is studied.

There, the packet losses are modeled as a time-homogeneous ergodic Markov process.

Then for second-order systems, necessary and sufficient conditions for stability of the

mean estimation error covariance matrices are derived. In [79], stochastic stability of

centralized Kalman filtering for linear time-varying systems with wireless sensors and

for transmission over fading channels is considered. There, a power control strategy is

proposed to mitigate the effects of the packet drops. Also, the stabilizing power control

policies are formulated such that they minimize the total sensor power budget. In [96],

joint rate and power control algorithms for wireless sensor networks are presented, which

consider state-space models and also account for congestion in the network. In [125],

power efficient algorithms for state estimation in sensor networks with non-ideal channels

are addressed. There, a dimensionality reduction approach is presented which minimizes
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the MSE of Kalman filtered state estimates formed at the fusion center. Kalman filtering

for nonlinear systems can also lead to estimation and prediction error covariance matrices

which are random as in [38] and [22], even though system parameters are deterministic.

In the Kalman filter, the estimation error covariance matrix is a function of the channel

randomness and the filter memory and is related to another matrix, the prediction error co-

variance, through a simple matrix transformation. The prediction error covariance matrix

also propagates through a Riccati equation, studied extensively in the literature. With ran-

dom channel matrices, the prediction error covariance matrices then constitute the well-

known stochastic process referred to as the random Riccati equation (RRE) [114]. While

the target here is the analysis of the estimation error quality, other works, especially in

the control literature, have focused on the prediction error covariance matrix, because it is

used directly in the controller design and that the Riccati formulation makes the analysis

more feasible, in general. The results on the prediction error covariance matrix analysis

may, if required, be extended to the estimation error covariance matrix usually by means

of simple algebraic and probabilistic manipulations. In the following, some of the works

which have considered the RRE are reviewed.

In [110], stability of the RRE is studied and it is shown that under mild assumptions on the

random observability Gramian matrix, it is both Lr and exponentially stable1. In [115],

the peak covariance stability of the RRE resulting from Kalman filtering with random

observation losses is studied. Boundedness of the covariance matrix in the usual sense

is also considered in the same work. In [66], an adaptive filtering scheme based on the

Riccati equation is proposed for state estimation in network control systems subject to

delays, packet drops and missing measurements. In [51], it was shown that a sequence

of random covariance matrices converges in probability when observations are sent over

a packet erasure channel where the erasure event is a Bernoulli i.i.d. process. The sta-

tionary distributions for infinitely large random matrices were studied in [104] and [105]

for two classes of random Riccati and Lyapunov equations. There, a Stieltjes transform

approach was used to obtain the moments of the stationary eigenvalue distribution of the

prediction error covariance matrix for Lyapunov and Riccati equations. However, in or-

der to obtain the intended results, the state transition matrix is either considered equal to

unity or random, which are not of very practical use. While [105] succeeded in obtain-

ing closed-form values for moments of the Lyapunov equation, it only presents a set of

interconnected Stieltjes transform equations for two of the Riccati equations it considers.

It also mentions that a stable numerical algorithm was yet to be developed. However, the

eigenvalue distribution of the prediction error covariance matrix for the single-input multi-

output case is obtained, given that the system dimensions grow asymptotically large.

1The supremum of the expected value of the r-th norm is finite, where the norm is defined as the

maximum of the singular values.
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1.1.5 Quality Assessment Criteria and Related Issues

In order to measure the quality of estimation at the receiver for analog communication

as well as source-channel coding, two main criteria have been considered before, namely

end-to-end average distortion and distortion outage probability. The behavior of these two

criteria in different regimes of SNR, number of sensors, channels, etc have also been under

the spotlight. The end-to-end average distortion measure and the corresponding distortion

exponent figure of merit were first studied in [57] in the context of source transmission

over a pair of slow fading channels. The distortion exponent shows how fast the average

distortion decays with SNR and is similar to our notion of diversity gain for outage prob-

ability, which will be reviewed shortly after. The main result of [57] is that for the case of

two non-ergodic (slow fading) channels, multiple-description encoding with joint source-

channel decoding outperforms other schemes. Note that [57] considers blocks of i.i.d.

source samples. The behavior of the distortion exponent was further considered in [12]

for a hybrid digital-analog scheme and its relation with channel-to-source bandwidth ratio

further outlined. The results imply that in general, a higher source-to-channel bandwidth

ratio leads to lower distortion exponent and thus higher average distortion. In [36], a joint

source–channel coding for cooperative relay systems is considered and the optimal dis-

tortion exponent behavior in the high SNR regime is presented for full-duplex system and

for all bandwidth ratios. Also, a tight upper bound for small and large bandwidth ratios

is provided for half-duplex relay channels. In [42] and using an automatic repeat request

scheme, a new framework is developed for optimizing the trade-off between diversity,

multiplexing, and delay in MIMO systems, and which minimizes the end-to-end distor-

tion. For AR Gauss-Markov models, the end-to-end average distortion, corresponding to

the mean of the covariance matrix for the Kalman filter, was considered in [19], and two

converging sequences were introduced which act as upper and lower bounds for the mean

of the error covariance.

In the spirit of outage analysis for fading channels in digital communication, we utilize

estimation error outage as a criterion for estimation performance assessment. Estimation

outage event is defined as the event when the estimation error exceeds a certain threshold.

The outage measures are most insightful when delay is of concern and when the MSE is

random. From a practical viewpoint, this measure could be used as a design parameter for

a control or monitoring system which observes the process. A similar property, namely

distortion outage was proposed in [75] for MIMO block fading channels from an informa-

tion theoretical point of view. There, a transmitter-informed lower bound and a separate

source-channel coding scheme are studied. It is shown that the bounds achieve the same

diversity order and the same outage probability for Gaussian sources and also for sources

with discrete alphabets. In addition, the trade-off between the distortion outage diversity

order and the source-to-channel-bandwidth-ratio is derived. In this thesis however, the in-

terest is rather in analyzing the performance of practical estimators, especially the Kalman

and Wiener filters with respect to their outage behavior. Our approach is thus construc-

tive, rather than information theoretic. Also note that due to the Gauss-Markov nature of

the source, the source blocks in this work are mainly correlated and not independent.
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One way to obtain the outage values is by first obtaining the asymptotic pdf of the eigen-

values of the estimation error covariance matrix. In that regard, efforts have been made

to characterize the pdf of the instantaneous random covariance matrices resulting from

Kalman filtering over packet drop networks, as well as with analog transmission over

fading channels. It was shown in [51] that the sequence of random covariance matrices

converges in probability when observations are sent over a packet erasure channel where

the erasure event is a Bernoulli i.i.d. process. Again in [104] and [105], the system model

is such that it can simply be adapted to continuous-valued source transmission over fading

channels. There, the equations regarding the moments of the stationary eigenvalue dis-

tributions for infinitely large random matrices were found. However, analyzing smaller

dimensions is still an open research topic and also the distributions themselves rather than

their moments remain unsolved for more general cases.

Considering the distortion outage probability as a measure of quality in this work, the

focus is especially on its high SNR behavior. The aim is to show that similar diversity

results hold for estimation error outage probability in Kalman filtering over fading chan-

nels compared to diversity results for error and outage probability in digital transmission.

The outage measure for estimation has also been considered before in [17, 75, 109]. The

diversity results provide simple and effective means of quantifying the estimation relia-

bility. In [17], estimation outage and estimation diversity are considered in the context

of distributed sensing, where several sensors observe an i.i.d. process and transmit their

measurements over parallel fading channels. There, it is shown that using a certain power

allocation scheme, a diversity order equal to the number of sensors can be achieved. A

similar system model is considered in [109], where the focus is on distortion outage min-

imization. One noteworthy result in [109] is that full channel state information at the

transmitter can increase the diversity order by a factor of the logarithm of the number of

sensor nodes, compared to [17]. The work of [75] should be mentioned again regarding

the bounds and diversity analysis which are presented for MIMO-block fading channels.

In order to provide the means for spatial diversity for general MIMO channels, we have

turned to space-time codes and have employed methods similar to those of digital com-

munication for analog source transmission. The idea of orthogonal space-time coding

for digital communication was first introduced in [2], allowing transmit diversity gain in

addition to receive diversity gain by use of multiple transmit antennae. General com-

plex block orthogonal space-time codes were introduced in [98], where it was shown that

they are able to achieve the full diversity of general MIMO channels. There exist, how-

ever, many space-time coding schemes other than the (complex) orthogonal space-time

codes, of which a few will be reviewed in the following. For digital communication, there

exist a well-known diversity-rate trade-off, as a fundamental limit of the MIMO chan-

nels [123]. While block orthogonal space-time codes are able to achieve full diversity,

quasi-orthogonal space-time block codes, which were introduced in [45], allow for full-

rate transmission and partial diversity. Space-time trellis codes were introduced in [99],

which provide a coding gain in addition to the diversity gain. The coding gain perfor-

mance was also later improved in [6] and [46]. There is also the family of non-orthogonal

space-time codes originally introduced in [100], which provide high rates and good cod-
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ing performances. As for analog communication, there are fewer works available. How-

ever, one can still refer to [13], which uses complex block orthogonal space-time codes

for channel estimation, but mainly mentions half-rate codes introduced in [98]. In this

work however, that concept is extended to any general complex block orthogonal code.

Another interesting issue in Kalman filtering over fading channels is the issue of dimen-

sionality, especially for uncoded transmission. There are processes for which the dimen-

sion is high and space-time coding might be too costly, e.g. in simple sensor networks.

Also, a set of nodes in a sensor network may sometimes be modeled as a high dimensional

source. It is very interesting to be able to have a performance metric on the estimation

quality of the whole process/system for analog uncoded transmission. In such cases, tools

from large system analysis and random matrix theory have gotten much attention in recent

years [103]. While the application areas for digital communication are abundant and can

be reviewed in [103, Ch. 3], there is not much available work on analog communication.

It is however possible to mention [104] and [105] again, which have models that resemble

uncoded transmission over fading channels. One of the targets of this thesis is to show the

application and importance of tools from large system analysis for estimation of outputs

from fading channels.

In the next section, a generic system model is provided, which is utilized in the rest of

this thesis. The system model will be somewhat adapted for the different subproblems in

each chapter, but the main blocks and their tasks will remain the same.

1.2 The Generic System Model

In this section and first, the operations of different parts of the system model (as depicted

in Figure 1.1) are described. Then, the mathematical framework which we will deal with

in the rest of this thesis is presented. It should however be noted that the mathematical

formulas for this generic system model will be pruned and adapted to the different sub-

problems which are considered in each of the following chapters. Finally, the practical

implications of these choices are discussed, and their benefits as well as possible short-

comings and limitations are considered.

The source x(n) is a vector signal whose elements may be correlated with each other and

also in time. It is assumed that x(n) is a random vector of dimension K, which is con-

sidered to be drawn from a circular-symmetric (proper) complex Gaussian distribution.

In addition, it is assumed that the source follows a first order ARGM model. The only

exception is Ch. 6, in which Gaussian band-limited sources are considered.

The pre-filtering module T (·) represents the transformation on the source signal before

transmission, and the result is called xf (n). In this thesis, the notion of pre-filtering

is applied in a more general sense, as the pre-filter represents power allocation, spec-

trum shaping and channel parallelization, but not lossy compression such as quantization.

While power allocation and spectrum shaping are performed by linear operations, the pre-
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Figure 1.1: Generic system model for the suggested analog source transmission scheme

filter which is used to parallelize the MIMO channel in Chapter 4 is non-linear. It should

be noted that using T (·) for spectrum shaping, which is discussed further in Chapter 6,

might incur some delay. The filtered source xf (n) is then made available to the transmitter

in order to be sent over the channel.

The transmitter module performs the necessary operations in order to send the discrete-

time continuous-valued transformed signal over the channel as the continuous-time wave-

form xT (t). The operations include, but might not be limited to, pulse shaping and up-

conversion for transmission over bandpass channels. In this work, no particular modu-

lation type is chosen, as there exist several options, each with different design consider-

ations. The possible choices are however discussed later on in this section. Regardless

of the modulation scheme, the receiver, knowing the modulation type and the particular

channel tap (the channel is assumed known), performs sampling, matched filtering with

the overall transfer function of transmitted pulses and the channel, and finally extracts the

now distorted information content.

The input to the channel is xT (t), and the output at the receiver is yR(t). The transfor-

mation from xT (t) to yR(t) is potentially prone to distorting phenomena such as noise,

large scale and small scale fading, ISI and interference from other users. In this work, the

focus is on the effects of small scale fading only. In that regard, it is assumed throughout

this work to have non-frequency selective (flat), Rayleigh block fading channels, a com-

mon assumption in the analysis of many wireless communication systems. In addition,

it is assumed throughout this thesis that the channel is known at the receiver, but not the

transmitter.

The next module is the post-filter Tp(·), which is responsible to revert the pre-filtering op-

eration. The result after this stage may be called y(n). The operation of this module may

be considered as part of the estimator for certain operations, such as spectrum shaping,

which only involves a linear transform. For space-time decoding however, the decoding

operation is performed before the actual estimation procedure.

The last module in the system model is the estimator. The task of the estimator is to

recover the transmitted signal x(n) from y(n). The output of this module is an estimated

version of x(n), namely x̂(n). The estimation is performed such that the MSE for the

given random channel instance is minimized. With the Gaussian assumption, it is possible

to show that the filter which minimizes the instantaneous MSE is linear, i.e. a linear
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MMSE estimator will be used. For AR signals, the optimal linear MMSE filter is the

Kalman filter. If there is no state-space model or if there is no correlation, a Wiener filter

may be used. Both cases are addressed in this thesis. The Kalman filter is the filter of

choice though Chapters 2 – 5, whereas the Wiener filter is considered in Chapter 6.

With the channel being random, the MSE is also a random variable for each channel

use. The main focus of this thesis is then analyzing the instantaneous random MSE in

accordance with the fading channel and design and analysis of diversity schemes in order

to maximize the estimation quality.

In the following, the mathematical relations between the different variables in the system

model are presented.

The most generic model which is considered for the source x(n) is

x(n) = Ax(n− 1) + u(n). (1.1)

In (1.1), A ∈ RK×K is the state-transition matrix, where R represents the space of real

numbers. In accordance with x(n), the vector u(n) is a complex Gaussian random vector

of dimension K, with zero mean and covariance matrix Cu.

The pre-filtering operation is denoted by

xf (n) = T (x(n)), (1.2)

and the fading channel effects by

yR(n) = H(n)xf (n) + v(n)

= H(n)T (x(n)) + v(n). (1.3)

In (1.3), H(n) is an N × K matrix representing the effect of a MIMO flat fading chan-

nel and drawn from a known pdf. Note that the conversion of xf (n) to continuous-time

signals at the transmitter and sampling of continuous-time received signals at the receiver

also take place as an intermediate stage. Note that for (1.3) to be correct, Nyquist channels

are required. In most of the following chapters, Rayleigh fading channels are considered.

In that case, the elements of H(n) are i.i.d. complex Gaussian random variables. In addi-

tion, the channel values over different blocks are assumed i.i.d. as well. To simplify the

analysis, it is assumed as well that the channel is known at the receiver. This assumption

is rather strong and can be costly to achieve in practice, e.g. it might require considerable

overhead for channel estimation. However, this is a simplifying assumption which allows

for development of new theory and thus provides a good starting point for understanding

the performance of estimation over fading channels.

The receiver noise is also modeled by v(n), which is an N × 1 vector of zero mean

complex Gaussian random variables with the covariance matrix equal to Cv.

The instantaneous random MSE between the signal and its estimated version is defined as

M(n) = E
(‖x(n)− x̂(n)‖2|H(n)

)
, (1.4)
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where the operator E(·) represents the statistical expected value (for each channel real-

ization H(n)), and is taken with respect to the process and channel noises. The estimated

version is then found such that the MSE is minimized, i.e.

x̂(n) = argmin
w∈CK

E(‖x(n)−w‖2), (1.5)

which for the the linear MMSE filter simplifies to

x̂(n) = gk(n)y(n), (1.6)

where gk(n) represents a linear filtering operation. The details of the linear estima-

tion/filtering operation, namely the Kalman and Wiener filtering, and the filter forms are

presented in their corresponding chapters.

In order to measure the estimation quality, we consider mainly the notion of estimation

error outage probability defined as

Pout(Mth) = Pr(M(n) � Mth) (1.7)

for scalar sources, i.e. K = 1, and distortion outage probability defined as

Pout(dth) = Pr(d(n) � dth) (1.8)

for K > 1, with d(n) =
1

K
tr(M(n)), and tr(·) denoting the matrix trace operation. Note

that for K = 1, both definitions are equal. The notation d(n) is used for the normalized

instantaneous MSE, namely the distortion, and the parameters Mth and dth in (1.7) and

(1.8) are arbitrary threshold values, corresponding to the quality of estimation. An outage

probability of 10−2 e.g. when Mth = 1, shows that random MSE M(n) is smaller than

1 with the probability of 0.99, as well as 99% of the time, when M(n) is ergodic (in our

settings, M(n) is always ergodic). Also note that the outage probability Pout(·) is always

a function of the threshold parameters Mth and dth. However, it is mostly referred to as

Pout for simplicity.

The SNR at the receiver can be obtained as

SNR =
E(‖H(n)‖2‖T (x(n))‖2)

E(‖v(n)‖2) . (1.9)

As already mentioned in Section 1.1, the asymptotic high SNR behavior of Pout is of

interest, as well as its finite SNR performance. When the outage probability has a diversity

order of dord in the high SNR regime, it has the following form

Pout ≈ (G · SNR)−dord + o
(

SNR−dord

)
. (1.10)

The parameters dord and G are referred to as the diversity order and the coding gain of

the outage probability, respectively. This is parallel to the names used in digital commu-

nication for outage probabilities of error functions [111]. While the diversity order is the
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slope of the outage probability function vs. SNR in the log-log scale, G, when given in

dB, expresses the shift of the outage probability curve in SNR relative to the benchmark

curve of SNR−dord . Although the diversity order is a good rule of thumb for evaluating the

reliability of estimation at high SNR, the coding gain provides a more complete charac-

terization of performance, which allows for comparison of systems which have the same

diversity order, but different coding gains.

Another reliability measure is the average MSE (or average distortion), defined as

MSE = E

(
1

K
tr
(
M(n)

))
. (1.11)

The average MSE measure is an overall reliability measure which does not involve any

threshold. The average MSE measure contains thus less information about the quality of

estimation than the outage probability. However, this measure is considered in Chapter 5,

where obtaining the outage probabilities becomes too complicated.

After presenting the details for the different parts of the system model and their math-

ematical representations, we now discuss the benefits as well as the shortcomings and

challenges of the system model.

Considering the whole system model, the most significant benefit of analog uncoded

transmission is its simplicity and low computational complexity, especially at the trans-

mitter side, which makes it suitable for applications such as WSN. In addition, it is pos-

sible to have reliable delay-free communication under the settings discussed in this work,

which makes it a promising scheme for emerging applications such as V2V. However, it

should be noted that there are also some shortcomings associated with analog transmission

compared to state-of-the-art digital schemes. It is e.g. much easier to arrange multiple

access to the shared spectrum with digital schemes. In addition, analog communication

is more prone to eavesdropping than digital communication, as there exist sophisticated

cryptography techniques, which are only applicable for digital data. Consequently, while

the analog communication scheme might be well-suited for certain application areas, it

might be a poor choice for other applications and therefore should be selected carefully.

Regarding the source, the Gaussian assumption allows us to claim some optimality and

convergence results in the next chapters. It is also commonly used in the literature for

several reasons. To begin with, many natural phenomena can be modeled as Gaussian

processes. Furthermore, the Gaussian pdf has only two independent parameters, mean

and covariance, which in practice may be estimated very effectively. In addition, the

Gaussian pdf has the maximum entropy for zero mean and given variance, thus providing

an upper bound for the performance, e.g. when the underlying distributions are unknown.

The complex signal model is used in order to make the system model as general as pos-

sible, yet all the results can easily be interpreted and adapted for real signals due to the

circular symmetric assumption. Although the system model can in practice be extended

to incorporate higher order AR processes, only the first-order AR processes are studied

in order to simplify the analysis. The choice of real space (and not complex) for the ele-

ments of A (in (1.1)) is to avoid further complications regarding the optimal filters, as we
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may then incorporate the linear Kalman filter. For a complex A and when optimality is

of concern, a widely linear Kalman filter as introduced in [20], should be used. In case a

complex-valued A is used, many of the algorithms and filters can still be applied without

considerable modification, and the performance results are at worst an upper bound to the

case if widely linear filters had been used.

Regarding the transmitter structure, it should be noted that the information bearing signal

xf (n) can be sent over the channel in different ways, e.g. as the amplitude, phase, fre-

quency or width of the modulation pulses. Each method then leads to different practical

design considerations and consequently different challenges. If the signal values are to

be embedded as amplitude information, the result is a simple modified pulse amplitude

modulation scheme. There, xf (n) is the amplitude of the pulses which are to be sent over

the channel. Note that as a Gaussian distribution (with theoretically unlimited support) is

assumed for the source, this could lead to peak to average power problems in the transmit-

ter if very high values are to be transmitted. Yet, the probability of very high amplitudes

decreases exponentially with the square of the amplitude for Gaussian signals and appli-

cation specific cut-off regions for the source amplitude can be selected. This may then

lead to overload errors. However, if high enough cut-off threshold is used, the effect on

the performance is negligible. The receiver’s operation would then be limited to recover-

ing the amplitude from the channel output wave-form yR(t) in order to obtain the discrete

time received vector yR(n). The information content can also be transmitted in the signal

phase, which does not have the peak to average power ratio problem at the transmitter.

Nevertheless, it has the limitation that the mapping from Gaussian signal values to a phase

limited to the interval [0, 2π) is theoretically lossy. This problem might be overcome if

the information is mapped to the frequency of the pulses instead. This is however limited

by the available bandwidth. The information content may also be mapped to the width

of the pulses, constituting a pulse width modulation (PPM) scheme. Another option is to

map the information to the position of some known pulses, constituting a modified pulse

position modulation (PPM) for analog communication. In general, PPM is more power

efficient compared to PAM, but requires more bandwidth in order to deliver the same

performance.

In this work, the main focus is a point-to-point communication scheme. As a result, the

effects of interference from other possible users are not studied. It should however be

noted that for non-cellular communication, bandwidth requirements, e.g. in sensor net-

works, are usually not as stringent as in cellular communications. As a result, interference

might be mitigated by allocating different frequency bands to different users. If a feedback

channel is allowed, the carrier frequencies can be decided during some training phase. If

not, the carrier frequencies need to be pre-defined for the transmitters. Disregarding the

inter-user interference, one can focus on the effects of fading only. For simplicity, only

small scale fading is considered. If the channel is flat as assumed in this thesis, then there

is no inter-symbol interference, and the analysis can be simplified even more. In practice,

this assumption limits the allowed source bandwidth up to the fading channel’s coherence

bandwidth. This should be considered while selecting the modulation type. In addition,

it may limit the application to sources which have low bandwidth. In this work, the i.i.d.
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block fading model is considered, i.e. the channel is constant over a block of source sym-

bols and that different blocks are independent and identically distributed (i.i.d.). For most

of the work, only a block size of one is considered in order to allow for the development

of new theory, as this assumption is a sufficient (but not necessary) condition for some

of the theoretical analysis. It is true that this assumption might be somewhat limiting

in practice. However, such limitation may be overcome, if needed, at the cost of more

hardware complexity2. At worst, the i.i.d. assumption for source block lengths of one,

may limit the transmission’s (symbol) rate. Finally, assuming known channel at the re-

ceiver requires that the channel taps should be estimated with estimation algorithms that

can provide very high accuracy. As we have mentioned the possibility of the transmitters

using multiple frequency bands or adapting their carrier frequencies to avoid inter-user

interference, we have inherently assumed that a feedback channel from the receiver (may

be a control center) to the transmitting node might exist. If so, this allows for full or par-

tial channel knowledge at the transmitter. However, the channel at the transmitter side is

not assumed known, because that would require ongoing channel estimation at the nodes,

which is costly and prohibitive, given the assumed simple structure for the transmitter.

It is true nevertheless, that full or partial channel information at the transmitter may in

general improve the performance.

Given the generic system model, there are several subproblems which are studied in this

thesis and for which new or improved theory and solutions are presented. The next section

provides an overview of the structure of this thesis and the major contributions of this

work.

1.3 Thesis Structure and Contributions

In Chapter 2, we study the case when measurements of a scalar Gauss-Markov process

are sent over a scalar fading channel (the SISO model) with i.i.d. channel realizations.

This model best suits e.g. low-cost sensor networks with processing at the fusion center.

The major contributions of this chapter are as follows.

• It is shown that for general i.i.d. fading channels, the first order pdf for the instan-

taneous MSE may be obtained through a recursive integral equation.

• For the case of Rayleigh fading channel, upper and lower bounds for the outage

probability are provided. It is then shown that the bounds are tight in the high SNR

regime.

• It is shown that the outage probability decreases linearly with inverse of the channel

SNR in the high SNR regime.

The material in Chapter 2 is based on the following publication ( [70])

2This can e.g. be done by switching the carrier frequencies or using multiple antennas in order to obtain

independent channels.
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(I) Reza Parseh and Kimmo Kansanen. On estimation error outage for scalar Gauss–

Markov signals sent over fading channels. IEEE Transactions on Signal Processing,

62(23):6225–6234, Dec. 2014.

In Chapter 3, the focus is on the case where first-order scalar Gauss-Markov signals are

sent over d parallel i.i.d. Rayleigh fading channels (the SIMO model). The major contri-

butions of this chapter are as follows.

• A closed-form integral equation for the pdf and outage of the instantaneous estima-

tion error variance is obtained for a certain range of thresholds.

• It is shown that in the high SNR regime, the estimation error outage probability has

a diversity order of d.

• Upper and lower bounds for the outage probability are developed, which provide a

more complete characterization of the performance, especially in the medium SNR

regime.

• The analysis of the diversity order is improved by considering the effect of imper-

fect system parameter knowledge. It is shown that under certain conditions, the

diversity order is not changed by using a wrong or mismatched parameter in the

Kalman filter.

The material in Chapter 3 is based on the following publication ( [71])

(II) Reza Parseh and Kimmo Kansanen. Diversity effects in Kalman filtering over Rayleigh

fading channels. IEEE Transactions on Signal Processing, 63(23):6329 – 6342, Dec.

2015.

In Chapter 4, the general case of transmission of a vector signal over a general fading

channel (the MIMO model) is considered. The major contributions of this chapter are as

follows.

• Complex block orthogonal space-time codes are employed and adapted to be used

in the Kalman filtering setting by performing the decoding operation in separate

real and imaginary parts of the signal.

• The joint space-time and Kalman filtering scheme is analyzed in terms of the high

SNR behavior of the distortion outage probability, and it is shown that this scheme

can achieve the maximum diversity order for transmission over a N × K MIMO

fading channel, i.e. KN .

• Upper and lower bounds for the outage probability are provided, which can be used

for a wide range of system parameters.

• Upper and lower bounds are derived for the coding gain of the outage probability,

which provide a more complete high SNR analysis.

The material in Chapter 4 is based on the following publication ( [72])
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(III) Reza Parseh, Kimmo Kansanen, and Dirk Slock. Distortion outage analysis for

joint space-time coding and Kalman filtering. Submitted to IEEE Transactions on Signal
Processing, 2016.

In Chapter 5, we consider the case when an infinite number of Gauss-Markov signals

send their measurements over a fading channel using analog transmission (large system

regime). The Kalman filter is used at the receiver. The criterion for estimation quality

assessment in this chapter is the average MSE. The major contributions of this chapter are

as follows.

• Via making a high SNR assumption, the RRE is approximated with a new equation

which leads to the development of an approximation for the eigenvalue distribution

of the estimation error covariance matrix.

• The approximated pdf is used to further approximate the first moment of the eigen-

value distribution, corresponding to the mean estimation MSE.

• The high SNR performance of the mean estimation MSE is derived as a function of

SNR and the number of transmit and receive signal dimensions.

The material in Chapter 5 is based on the following publication ( [73])

(IV) Reza Parseh, Dirk Slock, and Kimmo Kansanen. Mean estimation MSE for Kalman

filtering of large dimensional sources sent over fading channels. In IEEE 15th Interna-
tional Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
pages 499–503, June 2014.

Finally in Chapter 6, transmission of a band-limited signal over a MIMO fading channel

is considered and the estimation error outage is incorporated as a measure for quality

assessment. Diversity order analysis is then performed in the high SNR regime. It is

assumed that each K source samples can be transmitted over N separate channels. There,

it is shown that for parallel channels, if a linear MMSE filter, i.e. Wiener filter, is used

at the receiver, the estimation error outage probability vanishes with the (N −K + 1)’st

power of SNR for the high SNR regime, and thus achieves a diversity order of N−K+1.

The material in Chapter 6 is based on the following publication ( [74])

(V) Reza Parseh, Dirk Slock, and Kimmo Kansanen. Oversampling diversity for uncoded

transmission of bandlimited sources over parallel fading channels. In IEEE International
Conference on Communications (ICC), pages 4653 – 4658, 2015.

In addition and as part of the research, the following papers were published within the

topic of estimation and coding over channels and specifically for smart grid applications,

and which are mentioned here for future reference ( [69], [119], [120]).

(I) Reza Parseh, Santiago Sanchez Acevedo, Kimmo Kansanen, Marta Molinas, and Tor

A Ramstad. Real-time compression of measurements in distribution grids. In IEEE Third
International Conference on Smart Grid Communications (SmartGridComm), pages 223–

228, 2012.
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(II) Mehdi K. Zadeh, Reza Parseh, Marta Molinas, and Kimmo Kansanen. Bifurcation in

PWM converter-based systems with wireless communication-based current controller. In

4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), pages 1–5,

2013.

(III) Mehdi K. Zadeh, Reza Parseh, Marta Molinas, and Kimmo Kansanen. Modeling and

simulation of wireless communication based robust controller for multiconverter systems.

In IEEE International Conference on Smart Grid Communications (SmartGridComm),
pages 738–743, 2013.
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Chapter 2

Scalar Signals and a Single Receiver

In this chapter, transmission of a scalar ARGM signal over a scalar fading channel (N =
K = 1) is considered. The main reason to select a scalar model for the source and channel

as a starting point for the whole work, is that it significantly simplifies the problem. This

allows us to provide insightful results for the outage probability. Vector sources and

multiple antennas will be considered in the following chapters. The fading channel is

modeled as i.i.d. distributed random variables with known realization at the receiver.

As we will see later in the chapter, the i.i.d. assumption is a sufficient condition for

convergence of the steady-state pdf of the outage event. In the absence of a necessary

condition, the i.i.d. assumption is kept for convenience. The optimal estimator at the

receiver is the Kalman filter. The first part of this chapter deals with characterizing the

stationary probability density function of the random MSE of the Kalman filter. There,

it is shown that the first order pdf may be obtained through a recursive integral equation.

Furthermore and for the particular case of the i.i.d. Rayleigh fading channels, upper and

lower bounds for the outage probability are derived. It is also shown that the bounds

are tight in the high SNR regime, and that the outage probability decreases linearly with

the inverse of the average SNR. This suggests a diversity order of one for the outage

probability. In addition, the coding gain is obtained for the outage probability and shown

to be a function of the source parameters and the threshold.

2.1 Updated System Model and Problem Definition

We update the system mode for the N = K = 1 case as follows

x(n) = ρx(n− 1) + u(n), n ≥ 1, x(0) ∼ CN (0,M(0))

y(n) = h(n)x(n) + v(n). (2.1)

In (2.1), u(n) and v(n) are scalar white circularly symmetric complex Gaussian random

variables with variances σ2
u > 0 and σ2

v > 0, respectively. Consider h(n) to be i.i.d.
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samples of a random variable (starting from Sec. 2.2.2, the channel will be considered

as Rayleigh fading). It is also assumed that h(n) cannot be equal to zero for all n (non-

existent channel is not included). It is assumed that perfect knowledge of the random

channel h(n) is available at the receiver and h(n) are also independent of u(n) and v(n).
Note that ρ is a system parameter which imposes correlation on x(n) and replaces the

matrix A in the system model of Chapter 1. In addition, the transform T (·) only accounts

for power allocation (constant for given SNR), and is combined within the definition of

h(n) for simplicity. For further development in Sec. 2.2.1, it is required that h(1) �= 0
and ρ �= 0. The objective at the receiver is optimal estimation of the signal x(n), given

the channel outputs.

Given the previous assumptions, and with h(n) independent of u(n) and v(n), the optimal

MMSE estimator of x(n) based on the observations y(n) is the scalar Kalman filter with

the following formulation adapted from [52]

x̂(n|n− 1) = ρx̂(n− 1|n− 1) (2.2)

P (n) = ρ2M(n− 1) + σ2
u (2.3)

gk(n) = P (n)h∗(n)
(
σ2
v + |h(n)|2P (n)

)−1
(2.4)

x̂(n|n) = x̂(n|n− 1) + gk(n)(y(n)− h(n)x̂(n|n− 1)) (2.5)

M(n) =
(
1− gk(n)h(n)

)
P (n). (2.6)

Concisely stated, eq. (2.2) is the prediction of the current state based on the previous esti-

mated state (a priori estimate) using the system model and eq. (2.3) is the instantaneous

prediction error variance (with respect to noise) P (n). Equation (2.4) is the correspond-

ing Kalman gain equation and eq. (2.5) is the correction equation based on the Kalman

gain update (a posteriori estimate). Finally eq. (2.6) provides us with the instantaneous

estimation error variance (IEV) denoted by M(n).

It is straightforward to show that both P (n) and M(n) may be written recursively in terms

of their previous values and current value of h(n), where one is a deterministic function

of the other for deterministic system parameters. The statistical properties of the one may

then be acquired using the statistical properties of the other. The recursion for P (n) is a

well-defined and studied RRE. However, the focus of this work is on the instantaneous

MSE, and the interest is mainly in obtaining M(n).

The recursion for M(n) is obtained as follows

M(n) =
(
1− gk(n)h(n)

)
P (n)

=

(
1− P (n)|h(n)|2

σ2
v + |h(n)|2P (n)

)
P (n)

= P (n)− P 2(n)|h(n)|2
σ2
v + |h(n)|2P (n)

=
P (n)

1 + |h(n)|2P (n)/σ2
v

, (2.7)
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which can be simplified to

M(n) =
ρ2M(n− 1) + σ2

u

1 + γ(n)
(
ρ2M(n− 1) + σ2

u

) , (2.8)

by setting P (n) = ρ2M(n− 1) + σ2
u and taking γ(n) = |h(n)|2/σ2

v .

In this setting, the estimation error outage probability (EOP) for time n is equal to

P n
out(Mth) = Pr(M(n) ≥ Mth). (2.9)

The asymptotic EOP is then equal to

Pout(Mth) = lim
n→∞

P n
out(Mth) = lim

n→∞
Pr(M(n) ≥ Mth). (2.10)

Clearly P n
out(Mth) = 1 − FM(n)(Mth) and Pout(Mth) = 1 − FM(Mth), where FM(n)(M)(

FM(M)
)

is the (steady state) cdf of M(n). It is easy to verify that the source power for

|ρ| < 1 is equal to σ2
x = Px =

σ2
u

1− ρ2
and the SNR at the receiver is consequently equal

to SNR =
PxE(|h(n)|2)

σ2
v

. In addition to the outage values, we are also interested in the

high SNR (asymptotic) behavior of the outage probability.

2.2 Statistical Properties of the IEV

In this section, the steady-state probability density function of the IEV is studied. Because

FM(M) and fM(M) are related with a linear operation (derivative), one can begin to study

fM(M). After that, the EOP will readily be obtained with one integration operation.

2.2.1 Steady-state Pdf of The IEV

Given (2.8), it is easy to verify that for any arbitrary positive real number M , M(n) � M
leads to

γ(n) � 1

M
− 1

ρ2M(n− 1) + σ2
u

.

Also, we have that γ(n) � 0 and 0 < M(n) < Mmax, where Mmax, the upper limit for

M(n) is obtained from

Mmax =

{
∞, |ρ| � 1
Px, |ρ| < 1.

(2.11)
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Mmax is effectively the estimation error variance for the worst channel, i.e. γ(n) = 0 with

probability 1. In that case, the best estimator is the average mean, i.e. x̂(n) = E(x(n)) =
0 and therefore the estimation error variance is equal to σ2

x = Px. Also note that the

case |ρ| � 1 is of little practical importance in our case, because for a divergent signal,

continuous-amplitude uncoded transmission would not be practical, as the transmission

would require infinite SNR. It is however included in the definition of Mmax to show that

the analysis does not depend on the value of ρ.

Given the above limits and conditions for γ(n) and M(n) and according to [68], it is

possible to get the cdf of M(n), i.e. FM(n)(M) as follows.

FM(n)(M) =

∫ Mmax

0

∞∫
1
M

− 1

ρ2M(n−1)+σ2
u

fγ(n),M(n−1)

(
γ(n),M(n− 1)

)
dγ(n) dM(n− 1), (2.12)

where fγ(n),M(n−1)

(
γ(n),M(n− 1)

)
is the joint pdf of γ(n) and M(n− 1). The pdf for

M(n) is then obtained by simply applying fM(n)(M) = ∂
∂M

FM(n)(M). That leads to

fM(n)(M)

=

∫ Mmax

0

∂

∂M

∞∫
1
M

− 1

ρ2M(n−1)+σ2
u

fγ(n),M(n−1)

(
γ(n),M(n− 1)

)
dγ(n) dM(n− 1)

=

∫ Mmax

0

1

M2
fγ(n),M(n−1)

(
1

M
− 1

ρ2M(n− 1) + σ2
u

,M(n− 1)

)
dM(n− 1), (2.13)

or with some change of notation,

fM(n)(M) =

∫ Mmax

0

1

M2
fγ(n),M(n−1)

(
1

M
− 1

ρ2m+ σ2
u

,m

)
dm. (2.14)

Now if we assume that γ(n) is independent of M(n − 1)
(
γ(n) ⊥⊥ M(n − 1)

)
, we may

rewrite (2.14) as

fM(n)(M) =
1

M2

∫ Mmax

0

fγ(n)

(
1

M
− 1

ρ2m+ σ2
u

)
fM(n−1)(m) dm. (2.15)

Note that as we have assumed i.i.d. channels, then we have that γ(n) ⊥⊥ γ(i) for i < n. It

can simply be assumed that γ(i) ⊥⊥ M(0) (M(0) is a constant). As a result, we obtain that

γ(n) ⊥⊥ M(n−1) because M(n−1) is a function of M(0) and γ(1), γ(2), · · · , γ(n−1)
only. Thus i.i.d. channel assumption is a sufficient condition to get the main result in

(2.15). As i.i.d. channels are assumed, all γ(n) have the same pdf, i.e. fγ(n)(γ(n)) =
fγ(γ(n)). Therefore, it is possible to rewrite (2.15) to obtain

fM(n)(M) =
1

M2

∫ Mmax

0

fγ

(
1

M
− 1

ρ2m+ σ2
u

)
fM(n−1)(m) dm. (2.16)
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Equation (2.16) may be used to find fM(n)(M) for any n by starting from fM(0)(M) =
δ(M − M(0)) and iterating over n. However, the main objective is outage analysis and

for that purpose, the steady-state distribution is needed. In the following, Theorem 1 is

presented, which proves the existence of a steady-state distribution for M(n), namely

fM(M) and outlines how it can be obtained.

Theorem 1. The random process M(n) converges in law and has a steady-state distribu-
tion, namely fM(M) which satisfies the following equality

fM(M) =
1

M2

∫ Mmax

0

fγ

(
1

M
− 1

ρ2m+ σ2
u

)
fM(m) dm. (2.17)

Proof. In order to prove Theorem 1, we refer to [10] which considers Kalman filtering

with random coefficients. In [10], a general vector state-space Kalman filter comprises the

system model, which can be shown to include our system model as well. There and based

on a contraction property of the Kalman filter, it is proven that the sequence of estimation

error covariance matrices converges in law to a stationary process [10, Theorem 2.4],

given that some ergodicity conditions are met. In the following, it is shown in Lemma 1

that those conditions are also met in our system model. As a result, the equivalent random

variable in our case, i.e. M(n) also converges in distribution and therefore fM(M) in fact

exists. Then, it is shown in Lemma 2 that fM(M) can in fact be obtained from (2.17).

Lemma 1. The instantaneous estimation error variance M(n) converges in distribution.

Proof. According to [10, Theorem 2.4], three conditions are required for convergence of

the estimation error covariance matrix of the Kalman filter with stochastic system parame-

ters. Firstly, a hypothesis H (introduced in [10, Section 2]) should be satisfied. Secondly,

it is required that the system is weakly observable and weakly controllable as defined

in [10, Definition 2.1] (also see Remark 1). Thirdly, certain (random) system parameters,

specified later, should be integrable.

For the first condition, it is mentioned in [10, Section 2] that a conditionally Gaussian

system satisfies hypothesis H. In our system, u(n) and v(n) are i.i.d. Gaussian ran-

dom variables and also independent of h(n). Therefore, our system is also conditionally

Gaussian and satisfies the condition.

For the second condition, it must be shown that the system is weakly controllable and

weakly observable. Using the definition for weak controllability, it must then be shown

that

Pr
(
σ2
u + ρ2σ2

u + ρ4σ2
u + . . .+ ρ2nσ2

u �= 0
)
> 0, (2.18)

which obviously holds as long as σ2
u > 0. For weak controllability, we must show that

Pr
(
ρ2γ(1) + ρ4γ(2) + . . .+ ρ2nγ(n) �= 0

)
> 0. (2.19)

It is possible to show that (2.19) holds for all channel distributions apart from the non-

existent channel (h(n) = 0 for all n). Therefore, the second condition for convergence is

also met.
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For the third condition to hold, it should be such that the (random) variables log log+(ρ),
log log+(ρ−1), log log+(σ2

u) and log log+(h(1)) are integrable, where

log+(x) = max
(
log(x), 0

)
, (2.20)

i.e. they have a well-defined expectation value (see e.g. [112] Chapter 13 for a definition

of integrable random variables). Obviously, ρ �= 0 and σ2
u > 0 are deterministic vari-

ables. Therefore, they are integrable. log log+(h(1)), is also integrable, given that h(n)
is defined as in Sec. 2.1. As a result, our system model satisfies all the prerequisites

of Theorem 2.4 in [10]. The consequence of the aforementioned theorem is that M(n)
converges in distribution (law) and therefore fM(M) exists.

Remark 1. The exact definitions for weak controllability and weak observability are pro-

vided in [10, Definition 2.1] and for a vector system model, similar to the generic system

model in Chapter 1 of this thesis. In order to define weak controllability and weak ob-

servability, the following probabilities are defined first.

εo = Pr

(
Det
(
AT‖H(1)‖2A+ (AT )2‖H(2)‖2A2 + . . .+ (AT )n‖H(n)‖2An

)
> 0

)

εc = Pr

(
Det
(
Cu + ACuA

T + A2Cu(A
T )2 + . . .+ AnCu(A

T )n
)
> 0

)
,

where Det(.) represents the determinant of a matrix. For the scalar system model, the

above probabilities simplify to the ones given in 2.18 and 2.19.

For weak observability, it must hold that εo is non-zero. For weak controllability, it must

hold that εc is non-zero. Weak controllability and weak observability are concepts which

are similar to the widespread concepts of observability and controllability for determin-

istic systems. However, weak controllability and weak observability are probabilistic

definitions and thus are "weaker" conditions than those for deterministic systems, i.e. it

is in general easier to satisfy them.

Lemma 2. The steady-state distribution of M(n) can be obtained from

fM(M) =
1

M2

∫ Mmax

0

fγ

(
1

M
− 1

ρ2m+ σ2
u

)
fM(m) dm. (2.21)

Proof. We use the fact that M(n) is a Markov process. This is due to the fact that M(n)
is determined by only M(n − 1) and γ(n). It was also shown in Lemma 1 that M(n)
converges in distribution. From the theory of Markov processes in [40] and utilizing the

relationship between fM(n−1)(M) and fM(n)(M) in (2.16), it can be verified that M(n)

has a transition probability measure (function) equal to 1
M2fγ

(
1
M

− 1
ρ2m+σ2

u

)
. One can

then refer to Theorem 2.3.5 (ii) in [40] and conclude that

fM(M) =
1

M2

∫ Mmax

0

fγ

(
1

M
− 1

ρ2m+ σ2
u

)
fM(m) dm, (2.22)

as stated in (2.17).
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After stating Theorem 1, (2.17) will be utilized for the rest of the analysis in this chapter

in order to characterize fM(M). To be more specific with (2.17), we use the fact that

γ(n) � 0. That necessitates that the argument of the function fγ(·) should always be

positive. Clearly, if M � σ2
u, the term 1

M
− 1

ρ2m+σ2
u

is always positive. However for

M > σ2
u, the integral should be taken over the range of γ where 1

M
− 1

ρ2m+σ2
u
� 0, i.e.

for m � M−σ2
u

ρ2
. With this background, we can finally provide the following lemma that

describes the asymptotic pdf of M(n), i.e. fM(M) in terms of itself integrated with a

kernel which is a function of γ(n). Solving this equation leads to fM(M) and with one

integration to Pout, which is the target.

Lemma 3. Asymptotic pdf of M(n), i.e. fM(M) can be obtained from the following
equation

fM(M) =

⎧⎪⎨
⎪⎩

1
M2

∫Mmax

0
fγ

(
1
M

− 1
ρ2m+σ2

u

)
fM(m) dm, M � σ2

u

1
M2

∫Mmax

M−σ2
u

ρ2

fγ

(
1
M

− 1
ρ2m+σ2

u

)
fM(m) dm, M > σ2

u.
(2.23)

The solution is general and is explicitly given in terms of the pdf of γ(n) and other system

parameters. Though (2.23) can be solved numerically if needed, the general closed-form

solution does not seem to be readily attainable. In the following, the focus is on the

important case of Rayleigh fading channels where fγ(γ) = λe−λγU(γ) (U(·) is the unit

step function
)
. Note that with this definition, λ = 1/E(γ(n)) = σ2

v/E(|h(n)|2), i.e.

stronger channels yield smaller values for λ and vice versa. Also that the average SNR at

the receiver is equal to SNR =
Px

λ
.

2.2.2 Outage Probability for Rayleigh Fading Channels

We can rewrite (2.23) given that channel is i.i.d. Rayleigh fading. Using the Rayleigh

fading assumption leads to

fM(M) =
λ

M2
exp(

−λ

M
)

⎧⎪⎨
⎪⎩
∫Mmax

0
exp
(

λ
ρ2m+σ2

u

)
fM(m) dm, M � σ2

u∫Mmax

M−σ2
u

ρ2

exp
(

λ
ρ2m+σ2

u

)
fM(m) dm, M > σ2

u,
(2.24)

which in order to get more insight and with some algebraic manipulation, can also be

written as

fM(M) =
λ

M2
exp(

−λ

M
)

⎧⎨
⎩

κ, M � σ2
u

κ− ∫ M−σ2
u

ρ2

0 exp
(

λ
ρ2m+σ2

u

)
fM(m) dm, M > σ2

u,
(2.25)

where

κ =

∫ Mmax

0

exp

(
λ

ρ2m+ σ2
u

)
fM(m) dm. (2.26)
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Figure 2.1: Asymptotic pdf of M(n) for σ2
u = σ2

v = 1, ρ = 0.95, λ = 1, 0.5, 0.25.

Though in general κ depends on the pdf itself, (2.25) is insightful in the sense that it

shows the exact shape of the pdf for the first part where M � σ2
u. Typical shapes of

such pdf’s which are obtained through Monte-Carlo simulations are depicted in Fig. 2.1

to further highlight the points mentioned. For Fig. 2.1, it is assumed that σ2
u = σ2

v = 1,

λ = 1, 0.5, 0.25 and ρ = 0.95. This leads to Px = 10.11 dB and average SNR values equal

to 10.11, 13.11, and 16.11 dB, respectively. Note that the pdf support is theoretically

bounded in this case at point Mmax = σ2
u/(1−ρ2) ≈ 10.26 (not shown in the figure due to

its insignificance). Also note that the break point, M = σ2
u where the pdf changes shape

is quite visible in Fig. 2.1.

The break point M = σ2
u corresponds to the steady-state variance of the signal when there

is no correlation (ρ = 0), whereas the point Mmax = σ2
u/(1 − ρ2) corresponds to the up-

per limit for the support of fM(M) (maximum value for the IEV) for the worst channel

(γ(n) = 0) when no information gets passed the channel and the estimator is equal to

x̂(n) = E(x(n)) = 0. It is quite visible and theoretically verifiable that the pdf tail van-

ishes rapidly after the break point if the SNR increases. Also that the higher the threshold,

the lower the outage probability would be. As a result, getting bounds on the first part

helps with understanding the pdf’s behavior better and at the same time get approximate

values and bounds for Pout(Mth). Using (2.25) and (2.26), it is possible to find upper and

lower bounds for κ, approximations for the pdf and upper and lower bounds for the outage

for the first part (M � σ2
u). Another insight from (2.26) is that the pdf shape is indepen-

dent of whether the system is stable (ρ < 1) or unstable (ρ � 1), though the value of κ
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Figure 2.2: Asymptotic pdf of M(n) and its approximates using upper and lower bounds

for κ given that σ2
u = σ2

v = 1, ρ = 0.95, λ = 0.25 (SNR = 16.11 dB).

depends on ρ. Though the pdf is given by the equation fM(M) = κλ
M2 exp(−λ

M
) (M � σ2

u),
the exact value of κ depends on the whole pdf and cannot be known without solving

(2.25). However, it is possible to obtain the following bounds for κ, namely κl < κ < κu,

which later on are used to characterize two functions P l
out(Mth) and P u

out(Mth) for which

P l
out(Mth) < Pout(Mth) < P u

out(Mth) for all M � σ2
u.

Lemma 4. For all M � σ2
u, we have κl < κ < κu, where

κu =
1(

aκexp
(

−λ
σ2
u(1+ρ2)

)
+ exp(− λ

σ2
u
)

) (2.27)

κl =
1(

aκexp( −λ
ρ2Mmax+σ2

u
) + exp(− λ

σ2
u
)
) , (2.28)

where it was defined that

aκ = 1−
∫ σ2

u

0

exp(
λ

ρ2m+ σ2
u

)(
λ

m2
)exp(

−λ

m
) dm. (2.29)

Proof. See Appendix A.
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Note that for stable systems, Mmax = Px = σ2
u

1−ρ2
and not surprisingly ρ2Mmax + σ2

u =

Mmax, which is the steady-state equation for σ2
x = Px = Mmax. Following that, we obtain

κb
l =

1(
aκexp( −λ

Mmax
) + exp(− λ

σ2
u
)
) (2.30)

For unstable systems we have Mmax → ∞, and as a result

κ∞
l =

1(
aκ + exp(− λ

σ2
u
)
) . (2.31)

To show how useful the bounds for κ are, the simulated pdf along with two approximates

using the bounds for κ are plotted in Fig. 2.2, given that σ2
u = σ2

v = 1, λ = 0.25 (SNR =

16.11 dB), and ρ = 0.95.

With Lemma 4 at hand, we are now ready to present the bounds for Pout(Mth). It is then

shown that the bounds are tight for the high SNR regime, i.e. λ → 0. This is discussed in

the next section.

2.3 Upper and Lower Bounds for Outage Probability

In this section, we first get upper and lower bounds for Pout(Mth). It is then shown that the

bounds are tight in the high SNR regime. In addition, it is shown that for a given non-zero

Mth, EOP decreases with inverse of the average SNR, i.e. the outage probability has a

diversity order of one. The coding gain can also be calculated as a result.

As defined before, Pout(Mth) is given by

Pout(Mth) =

∫ Mmax

Mth

fM(M) dM. (2.32)

For M � σ2
u, we get

Pout(Mth) =

∫ Mmax

Mth

κλ

M2
exp(

−λ

M
) dM = 1− κexp(

−λ

Mth

). (2.33)

As shown in the previous section, κl < κ < κu. As a result, we get

1− κuexp(
−λ

Mth

) < Pout(Mth) < 1− κlexp(
−λ

Mth

), (2.34)

which gives us an upper bound and a lower bound for Pout(Mth). Figure 2.3 depicts the

outage probability and the bounds for the case when σ2
u = σ2

v = 1, ρ = 0.95, and SNR =

8, 10, 15, 20 dB (λ ≈ 1.626, 1.026, 0.324, 0.103), and for M � σ2
u. As seen in Fig. 2.3, a

smaller λ yields a smaller outage probability. From Fig. 2.3, one can observe that while
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Figure 2.3: Pout(Mth) and its upper and lower bounds for σ2
u = σ2

v = 1, ρ = 0.95, SNR =

8, 10, 15, 20 dB (λ ≈ 1.626, 1.026, 0.324, 0.103).

the lower bound has a very good visible accuracy for a wide range of SNR values, the

upper bound is not as good for lower SNR values. However, the accuracy of the bounds

improve while increasing the SNR. This suggests that the bounds might be tight in the

asymptotic high SNR regime i.e. when λ → 0. In the following lemma, it is shown that

in fact, this is the case.

Lemma 5. The upper and lower bounds for Pout(Mth) are tight for λ → 0.

Proof. we first show that when λ → 0, we have that

lim
λ→0

κ = lim
λ→0

κu = lim
λ→0

κl = 1. (2.35)

We have for the upper bound that

κu =
1(

aκexp
(

−λ
σ2
u(1+ρ2)

)
+ exp(− λ

σ2
u
)

) . (2.36)

For finite σ2
u, the condition λ → 0 can be extended to λ/σ2

u → 0. This assumption is

made to simplify the calculations. Assume λ = ασ2
u, then

κu =
1(

aκ(α)exp
(

−α
(1+ρ2)

)
+ exp(−α)

) . (2.37)
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For finite σ2
u, the condition λ → 0 will be equal to α → 0. We can then see that

lim
α→0

κu(α) =
1

1 + limα→0 aκ(α)
. (2.38)

Next, it is shown that limα→0 aκ(α) = 0. We have

aκ(α) = 1−
∫ σ2

u

0

exp(
λ

ρ2m+ σ2
u

)

(
λ

m2

)
exp(

−λ

m
) dm

= 1−
∫ 1

0

exp(
α

1 + ρ2v
)

(
α

v2

)
exp(

−α

v
) dv, (2.39)

where the change of variable v = m
σ2
u

was made. Now take aκ(α) = 1− I(α), where

I(α) =

∫ 1

0

exp(
α

1 + ρ2v
)

(
α

v2

)
exp(

−α

v
) dv

= exp(
α

1 + ρ2v
)exp(

−α

v
)

∣∣∣∣∣
1

0

−
∫ 1

0

exp(
−α

v
)exp(

α

1 + ρ2v
)

(
−αρ2

(1 + ρ2v)2

)
dv

= exp(
α

1 + ρ2
)exp(−α) + ρ2α

∫ 1

0

exp(
−α

v
)exp(

α

1 + ρ2v
)

1

(1 + ρ2v)2
dv. (2.40)

Now, because all of the functions exp(−α
v
), exp( α

1+ρ2v
), 1

(1+ρ2v)2
are finite for v ∈ [0, 1],

then the integral term in (2.40) is also finite. As a result, limα→0 I(α) = 1 and

limα→0 κu(α) = 1. Similar results also hold for κ∞
l , κb

l .

For the limiting behavior for κ, the result of Appendix C is used for the Taylor series

expansion of κ at λ = 0. Although Appendix C discusses the more general case of

multiple receivers rather than a single one, the case of κ for a single receiver can be

considered as a special case there and is therefore omitted from here in order to avoid

repetition.

From there, we have that the Taylor series expansion for κ at λ = 0 can be obtained from

κ =
∞∑
l=0

λl

l!

1

(σ2
u)

l

= 1 +
λ

σ2
u

+O(λ2) (2.41)

As a consequence, we can verify from (2.41) that limλ→0 κ = 1, as claimed before.

This proves the lemma, because then the outage probability and the bounds will have the

same values as κ, κu, κl converge to the same value.

It is also interesting to see how fast κ converges to 1 for small values of λ and for which

values of λ, the upper and lower bound are approximately equal. This is depicted in Fig.
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u = σ2
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2.4. Quite visibly, for values of λ close to 0.01 (SNR close to 30dB) the upper and lower

bounds for κ are very close. Due to the fact that the bounds for κ are tight, the bounds

for Pout(Mth) are also tight. Even for the range of medium SNR depicted in Fig. 2.3,

it is quite visible that the upper and lower bounds for the outage probability are quite

close to the one obtained from the simulation and that increasing the SNR improves their

accuracy. However, the bounds, especially the upper bound lose their accuracy in the

low SNR regime. This necessitates taking extra precautions if the bounds are to be used

in applications prone to low SNR’s. It is also quite visible from Fig. 2.4 that the linear

approximation obtained from the Taylor series expansion of κ as a function of λ is quite

accurate.

At this point, the asymptotic behavior of the outage probability in the high SNR regime

can be presented. This is expressed in lemma 6.
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Lemma 6. For the high SNR regime, Pout(Mth) decreases inversely with the SNR.

Proof. We can use the Taylor series expansion of κ around λ = 0 from (2.41) to approx-

imate the outage probability for the high SNR regime. Using the Taylor series expansion

for κ and exp( −λ
Mth

), we obtain

Pout(Mth) = 1− κexp(
−λ

Mth

)

= 1−
(
1 +

λ

σ2
u

+O(λ2)

)(
1− λ

Mth

+ o(λ)

)

= 1−
(
1 +

λ

σ2
u

+ o(λ)

)(
1− λ

Mth

+ o(λ)

)

=

(
1

Mth

− 1

σ2
u

)
λ+ o(λ)

=

(
1

Mth

− 1

σ2
u

)
Px

SNR
+ o

(
1

SNR

)
. (2.42)

For small λ, O(λ2) and o(λ) vanish faster than λ and as a result it can be claimed that

Pout(Mth) is approximately a linear function of λ. Due to that, the outage probability
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decreases linearly with the inverse of the SNR in the high SNR regime, i.e. resulting to a

diversity order of one. This behavior is depicted in Fig. 2.5 for SNR ∈ [0 dB, 30 dB].

This behavior is similar to that of bit-error and outage probabilities for digital commu-

nication over Rayleigh fading channels. While increasing the SNR helps with outage

probability, it does not help significantly and it is necessary to find other techniques for

performance improvement, such as diversity techniques.

In addition, (2.42) also implies that the coding for EOP in the high SNR regime is equal

to

G =

(
Px

Mth

− Px

σ2
u

)−1

=

(
Px

Mth

− 1

1− ρ2

)−1

(2.43)

based on (1.10). The notions of diversity order and coding gain are discussed in more

details in chapters 3 and 4.

2.4 Summary and Discussion

In this chapter, a recursive integral equation approach was presented for finding the pdf

of the instantaneous estimation error variance for linear MMSE estimation, i.e. Kalman

filtering, of scalar Gauss-Markov signals sent over scalar fading channels. The pdf is an

important tool for calculating other relevant measures of estimation quality, such as the

average MSE and the estimation error (distortion) outage probability. It was shown that

the steady-state pdf can be written as a two-part function over the domain of instantaneous

estimation error variance values. This result holds for any channel distribution, as long as

the channels are i.i.d. While the interest was mostly characterizing the steady-state pdf, we

have also presented an equation for evolution of the pdf over time. Although, as it appears,

such evolution needs to be tracked numerically, as the equations for time-dependent pdf’s

become quickly intractable. The analysis in this part may be improved and completed in

two ways. First, the non-i.i.d. distributions can be explored. In addition, it is interesting

to see how quickly the pdf converges to the steady-state distribution. Even if a complete

convergence analysis might be cumbersome, a numerical evaluation is possible and still

very insightful.

After establishing the recursion for the pdf, we focused on the important case of Rayleigh

fading channels. In that case, the first part of the pdf, i.e. the range up to the Gauss-

Markov process variance, corresponding to higher outage probabilities, follows a closed-

form non-recursive equation. The reason for this simplification lies within a simple prop-

erty of the exponential function, namely exp(a + b) = exp(a) · exp(b), for any arbitrary

a and b. While Rayleigh fading is a widespread fading model, it is still interesting to see

how the pdf would develop for other fading models. This will broaden the application
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areas of the current work. Also, we have not managed to characterize the pdf in a non-

recursive manner beyond the process noise variance position, which is somewhat limiting.

However, obtaining the outage probabilities was the main target of this work. As the out-

age probability decreases with the increasing threshold, given that all other parameters are

fixed, it is possible to use the outage values at this point, i.e. the process noise variance,

as an upper bound or a rough estimate for the outage probabilities beyond this point.

For the first part of the pdf, upper and lower bounds on the estimation error outage prob-

ability were obtained, as obtaining the actual outage probability values became tedious.

The bounds were shown to be visibly accurate, especially for higher SNR values and

smaller thresholds. The lower bound also shows to be more accurate than the upper

bound. Furthermore, the bounds were shown to be tight when the SNR goes to infinity.

Furthermore, it was shown that the outage probability decreases with the inverse of the

SNR in the high SNR regime. This is similar to the asymptotic behavior seen in detec-

tion over Rayleigh fading channels. This suggests that similar methods, e.g. diversity

techniques, might be applicable in order to improve the performance. Note that while

this result is only valid for thresholds up to the process noise variance, the outage values

at that point can be used as an upper bound for all the thresholds beyond, given that the

rest of the system parameters are kept fixed. This implies that for thresholds beyond the

process noise variance, the diversity order is at least equal to one. Another result was that

the diversity order does not depend on the source correlation, and is only dependent on

the channel, which was not unexpected.

Finally and as a result of the asymptotic high SNR analysis, the coding gain was obtained

as a function of the system parameters. It is interesting to observe how the source cor-

relation affects the coding gain. From (2.43), it is clear that for fixed source power and

threshold values, higher correlation, i.e. bigger values for |ρ|, results in a higher coding

gain value. This means that while correlation does not affect the diversity order, it does

in fact affect the coding gain, and thus the performance, in a positive way. The effect

is however much more visible for higher correlation coefficients, i.e. |ρ| → 1, than the

lower ones.
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Chapter 3

Scalar Signals and Multiple Receivers:
Diversity

In this chapter, we consider transmission of a scalar first-order Gauss-Markov signal over

d parallel i.i.d. Rayleigh fading channels (K = 1 and N = d) using analog uncoded

transmission. As observed in the final part of Chapter 2, the outage probability decreases

inversely with only the first power of SNR in the high SNR regime, when a single scalar

channel is used. For low latency reliability, when channel state is not available at the

transmitter, one needs to avoid fading, and thus design a system where samples experi-

ence independent fades. We then analyze the performance and seek additional reliability

in parallel channels. We keep the assumption that the whole channel is completely known

at the receiver. Thus, the optimal MMSE estimator is still the Kalman filter with random

IEV. The main objective of this chapter compared to the previous one is thus studying

the effect of multiple receivers on the estimation quality and especially the diversity gain

for the outage probability. We use the fundamental results of Chapter 2 on the steady-

state distribution, and then extend those results to the case of multiple receivers. We then

present diversity results analogous to those existing for digital communication over fad-

ing channels. This diversity result confirms the considerable improvement that multiple

receivers can provide for analog real-time communication. In addition and for the finite

SNR regime, upper and lower bounds are presented for the outage probability. Further-

more, the effect of parameter mismatch on the diversity order is considered. It is shown

that for certain parameters, the parameter mismatch will only affect the coding gain, but

not the diversity order of the EOP in the high SNR regime.
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3.1 Updated System Model and Problem Definition

In this section, the following updated system model is assumed

x(n) = ρx(n− 1) + u(n)
(
n ≥ 1, x(0) ∼ CN (0,M0)

)
y(n) = h(n)x(n) + v(n). (3.1)

The parameters n, ρ, T (·), x(n) and u(n) are the same as the ones in Chapter 2. Due to the

introduction of multiple receivers, the channel is now a random vector, rather than a scalar.

The channel vector h(n) = [h1(n), h2(n), · · · , hd(n)]
T (The superscript T denotes the

transpose operation) is assumed to be a circularly symmetric complex Gaussian vector of

dimension d, with independent entries (i.i.d. Rayleigh fading) and with the extra condition

that the two degenerate cases h(n) = 0, ∀n and h(0) = 0 are excluded. This assumption

is made to fulfill the convergence requirement for the steady-state distribution of the IEV

in Sec. 3.2.1, and is similar to the one used in Chapter 2. These conditions are easy to sat-

isfy, because these two events happen with zero probability for Rayleigh fading channels.

For the receiver noise, it is assumed that v(n) is a white circularly symmetric complex

Gaussian random vector with the covariance matrix Cv = diag(σ2
v,1, σ

2
v,2, · · · , σ2

v,d) with

σ2
v,i > 0 ∀i.

Given the previous assumptions and with h(n) being independent of u(n) and v(n), the

optimal MMSE estimator of x(n) based on the channel outputs y(n) is still the Kalman

filter [52]. It is easy to show that the instantaneous estimation error variance M(n) can be

written in a recursive formula in terms of its previous value and h(n), similar to Chapter

2. Studying the statistical properties of M(n) under such condition is the target of this

chapter.

It can be shown that the recursion involving M(n) for a scalar process, but a vector chan-

nel, is again obtained through

M(n) =
ρ2M(n− 1) + σ2

u

1 + γ(n)
(
ρ2M(n− 1) + σ2

u

) , (3.2)

where in this case, we have that γ(n) =
∑d

i=1 |hi(n)|2/σ2
v,i.

In order to characterize the random estimation outage event, we follow the same defini-

tions for outage, outage probability and diversity order as in Chapter 1.

3.2 Statistical Properties of the IEV

In this section, the steady-state pdf of the IEV is studied first, and an equation for the

outage probability is obtained afterwards.
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3.2.1 Derivation of the Steady-State Pdf

In order to find the steady-state outage probability for M(n), one needs to first find the

steady-state pdf of M(n). The scalar case (d = 1) was already studied in Chapter 2.

There, it was shown that M(n) converges in distribution and has the following pdf (2.23)

fM(M) =

⎧⎪⎨
⎪⎩

1
M2

∫Mmax

0
fγ

(
1
M

− 1
ρ2m+σ2

u

)
fM(m) dm, M � σ2

u

1
M2

∫Mmax

M−σ2
u

ρ2

fγ

(
1
M

− 1
ρ2m+σ2

u

)
fM(m) dm, M > σ2

u,
(3.3)

where Mmax = Px = σ2
u/(1 − ρ2). The convergence argument presented in Chapter 2,

which is based on [10] and [112], does not depend on the dimension of the channel, and

holds for general conditionally Gaussian systems, including the system model in chapters

2 and 3, and thus left out for brevity. As a result, (3.3) may be used to obtain the steady-

state pdf of M(n) for d > 1.

In general, solving (3.3) would yield fM(M), given in terms of the pdf of γ(n) and the

parameters of the source, i.e. σ2
u and ρ. Note that the d parallel independent channels

may be obtained in frequency, time or space, but it is possible to assume without loss of

generality that the receiver is equipped with multiple receive antennas. It is assumed that

all the channels have the same average SNR, i.e. if we take γi(n) =
|hi(n)|2
σ2
v,i

, we then have

fγi(γi) = λe−λγiU(γi), where E(γi(n)) = 1
λ

and therefore E(γ(n)) = d
λ

. In that case,

the pdf of γ(n) is χ2-distributed and follows fγ(γ) =
λd

(d−1)!
γd−1e−λγU(γ). Note that with

this definition, channels which are stronger on the average yield smaller values for λ and

vice versa. Also, the (total) average SNR at the receiver is equal to SNR =
dPx

σ2
vλ

. Similar

to the case of d = 1 and given the above assumptions, (3.3) can be rewritten as

fM(M) =
1

M2

λd

(d− 1)!
exp(

−λ

M
)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫Mmax

0
( 1
M

− 1
ρ2m+σ2

u
)d−1×

exp
(

λ
ρ2m+σ2

u

)
fM(m) dm, M � σ2

u∫Mmax

M−σ2
u

ρ2

( 1
M

− 1
ρ2m+σ2

u
)d−1×

exp
(

λ
ρ2m+σ2

u

)
fM(m) dm, M > σ2

u.

(3.4)

The exact solution to (3.4) does not yield easily due to the nature of the equation. How-

ever, as it will be shown later, it is possible to get a parametrized equation for the first

part of the pdf (M � σ2
u). The pdf in that region then depends on a set of parameters κi,

through which a formula for Pout(Mth) is obtained afterwards.

Using the binomial expansion, i.e. (a + b)n =
(
n
i

)
an−ibi, it is possible to simplify (3.4)

by first using the equality

(
1

M
− 1

ρ2m+ σ2
u

)d−1

=
d−1∑
i=0

(
d− 1

i

)( −1
ρ2m+σ2

u

)i
Md−1−i

, (3.5)
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Figure 3.1: Effect of multiple receivers on the pdf of the IEV

where
(
d−1
i

)
= (d−1)!

i!(d−1−i)!
. Then, the following equality may be obtained

fM(M) =
λd

(d− 1)!

1

M2
exp(

−λ

M
)×

∫ Mmax

0

d−1∑
i=1

(
d− 1

i

)
1

Md−1−i

( −1

ρ2m+ σ2
u

)i

exp

(
λ

ρ2m+ σ2
u

)
fM(m) dm, (M � σ2

u),

(3.6)

which by integrating over m can be rewritten as

fM(M) =
λd

(d− 1)!

1

M2
exp(

−λ

M
)
d−1∑
i=1

(−1)iκi

(
d− 1

i

)
1

Md−1−i
(3.7)

with

κi =

∫ Mmax

0

(
1

ρ2m+ σ2
u

)i

exp

(
λ

ρ2m+ σ2
u

)
fM(m) dm. (3.8)

Note that in general the κi constants depend on the pdf itself, and that although they

are constants, they depend on the value of d as well, e.g. κ1 is different for d = 2 and

d = 3. As one increases the SNR, the tail of the pdf shrinks and thus the values of the

second part of (3.4) (M > σ2
u), especially for outage calculation purpose in the high SNR
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Figure 3.2: Effect of multiple receivers on the outage probability

regime, become quickly insignificant. Figure 3.1 shows some typical pdf’s resulting from

simulation on 107 samples with σ2
u = 1, σ2

v,i = 1, ρ = 0.95, SNR = 15 dB (λ/d ≈ 0.324),
and for d = 1, 2, 3. It is quite visible and also analytically verifiable that values above the

break point M = σ2
u are much smaller than those around M = 0. Due to this fact, one

could in practice neglect the second part of the pdf for high SNR analysis and focus on

the first part. Also, λ is normalized over the number of channels to keep the total average

SNR the same in all cases and thus only study the effect of diversity and not the extra

antenna power gain. Clearly, by increasing d, the tail of the pdf loses its significance, i.e.

larger error values can then be decreased by increasing the number of paths. This is the

same phenomenon which happens in digital communication over fading channels and one

would speculate that similar results on diversity order should hold in this case as well. In

the following, it will be proven that this is in fact the case. To begin with the analysis, the

reader is provided with Lemma 7, which quantifies the EOP.

Lemma 7. The expected estimation error outage for any Mth � σ2
u is obtained from

Pout(λ,Mth) = 1− exp(
−λ

Mth
)
d−1∑
i=0

κi
(−1)iλi

i!

d−1−i∑
k=0

( λ
Mth

)k

k!
. (3.9)

Proof. It is possible to show that∫ M

0

exp(
−λ

v
)v−ndv = λ1−nΓ(n− 1,

λ

M
), (n > 0) (3.10)
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where Γ(n,M) is the incomplete Γ function with the definition

Γ(n,M) = (n− 1)!exp(−M)
n−1∑
k=0

Mk

k!
. (3.11)

Therefore, we have that

∫ Mth

0

exp(
−λ

M
)M−n dM = λ1−n(n− 2)!exp(− λ

Mth

)
n−1∑
k=0

( λ
Mth

)k

k!
. (3.12)

Using the above conclusions, we get the outage probability as follows

Pout(Mth) = 1−
∫ Mth

0

λd

(d− 1)!

d−1∑
i=0

(
d− 1

i

)
(−1)iκi

e(−
λ
M

)

Md+1−i
dM

= 1−
d−1∑
i=0

λd

(d− 1)!

(
d− 1

i

)
(−1)iκi

∫ Mth

0

e(−
λ
M

)

Md+1−i
dM

= 1−
d−1∑
i=0

λd

(d− 1)!

(
d− 1

i

)
(−1)iκiλ

i−dΓ(d− i,
λ

Mth

)

= 1−
d−1∑
i=0

λi

(d− 1)!

(
d− 1

i

)
(−1)iκi(d− i− 1)!exp(

−λ

Mth

)
d−i−1∑
k=0

( λ
Mth

)k

k!

= 1− exp(
−λ

Mth

)
d−1∑
i=0

κi(−1)iλi

i!

d−i−1∑
k=0

( λ
Mth

)k

k!
(3.13)

Now the estimation error outage probability for M � σ2
u is described in terms of λ =

d Px

σ2
vSNR

and a set of constants κi. The use of λ instead of SNR is for convenience. If

the EOP is plotted for the same set of parameters as in Fig. 3.1, the results in Fig 3.2 are

obtained. Now with EOP at hand (which is a well-defined error function), it is be easier

to confront problems such as diversity order. One could see that for a fixed threshold

value, increasing the receive diversity substantially impacts and reduces the EOP. Thus,

the values of Mth closest to σ2
u have the minimum outage values.

The analysis is continued in the next section by first using the obtained formula for EOP to

provide upper and lower bounds for the outage probability, which are useful for the finite

SNR regime. Next, we turn to high SNR analysis and the calculation of the diversity

order.
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3.2.2 Bounds on the Outage Probability

The analysis which is later provided for asymptotic behavior of the distortion probability

does not rely on exact values of κi, but rather their asymptotic behavior as SNR goes to

infinity. However for finite values of SNR, one might be interested in approximate values

for outage probability as a figure of merit for design purposes, given a particular SNR. In

this section and for that purpose, upper and lower bounds for the outage probability are

provided.

Given the definitions for κi, Lemma 8 is presented for calculating upper and lower bounds

for κi. Through this, upper and lower bounds for Pout(Mth) are obtained for M � σ2
u. The

bounds are presented in Lemma 9.

Lemma 8. The coefficients κi can be lower and upper bounded as κl
i � κi � κu

i , where
κl
i and κu

i are obtained from the following linear system of inequalities (order d+1). The
solution to the inequality

W uκ � �d+1 (κ � 0), (3.14)

namely κu = [κu
0 , κ

u
1 , · · · , κu

d−1, Z
u] results in a set of upper bound values for κi and the

solution to

W lκ � �d+1 (κ � 0), (3.15)

namely κl = [κl
0, κ

l
1, · · · , κl

d−1, Z
l] results in a set of lower bound values for κi.

The elements of the matrices W u and W l are functions of system parameters λ, ρ, σ2
u, d,Mmax,

and are only explicitly defined in Appendix B in order to avoid repetition. The vector �d+1

is a column vector with size d + 1, consisting of all zeros except at position d + 1. Also,
κ = [κ0, κ1, · · · , κd−1, Z] with Z as an auxiliary variable is defined in Appendix B (see
(B.13)).

Proof. See Appendix B.

Lemma 9. The outage probability Pout(Mth) can be lower and upper bounded for the
range of thresholds (M � σ2

u) as follows

Pout(Mth) > P l
out = 1− exp(

−λ

Mth
)
d−1∑
i=0

max{(−1)iκu
i , (−1)iκl

i}
λi

i!

d−1−i∑
k=0

( λ
Mth

)k

k!
, (3.16)

Pout(Mth) < P u
out = 1− exp(

−λ

Mth
)
d−1∑
i=0

min{(−1)iκu
i , (−1)iκl

i}
λi

i!

d−1−i∑
k=0

( λ
Mth

)k

k!
, (3.17)

Proof. It is easy to see that to get a lower bound for Pout(Mth), it is sufficient to get an

upper bound for the sum
∑d−1

i=0 κi
(−1)iλi

i!

∑d−1−i
k=0

( λ
Mth

)k

k!
. This may be achieved by using

an upper bound for κi when i is even and a lower bound for κi when i is odd, due to

the effect of the term (−1)i in the sum. This is exploited by using the max{} operator

in (3.16). The upper bound can be established with similar arguments using the min{}
operator instead.
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Figure 3.3: Lower and upper bounds on the outage probability for d = 2

The bounds from (3.16) and (3.17) obtained by numerical evaluations (including κl
i and

κu
i ) and the outage functions obtained via simulating the Kalman filter are depicted in

figures 3.3 and 3.4 for Mth � σ2
u. The simulation parameters are σ2

u = 1, σ2
v,i = 1, ρ =

0.95, d = 2, 3 for SNR = 10, 15, 20 dB, equivalent to λ/d ≈ 1.026, 0.324, 0.103, re-

spectively. As it can be seen from the figures, the bounds have visibly a good accuracy

further away from Mth = σ2
u. Increasing the SNR also improves the bounds, even for

Mth close to σ2
u. While we see in figures 3.3 and 3.4 that the bounds start diverging from

the actual values if Mth approaches σ2
u, the outage probabilities are relatively lower in

that regime. As a result, the bounds may still be satisfactory, depending on the required

accuracy. Also note that the discontinuity in lower bound for the case SNR = 10 dB in

Figure 3.4 is because the bound delivers essentially a zero value, which cannot be shown

in the figure. This suggests that increasing d might reduce the accuracy of the bounds,

which is a shortcoming. However, the gaps seem to close for higher SNR values, even

for Mth close to σ2
u. In the next section, the high SNR behavior of the outage probability

is studied. There, it is shown that when the received signal from d parallel channels is

available at the receiver, a diversity order of d can be obtained for the outage probability

at high SNR.
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Figure 3.4: Lower and upper bounds on the outage probability for d = 3

3.3 Diversity Order Analysis

In this section, it will be shown that in the high SNR regime, there is a diversity order

of dord = d for the outage probability. That means the EOP will decrease inversely pro-

portionally with the d-th power of SNR, when SNR grows unbounded (λ → 0). The

definition for the diversity order was presented in Chapter 1. First, another (equivalent)

formulation is provided for the diversity order, and then the value of dord is obtained af-

terwards.

Consider the error probability function Pout(SNR,Mth) which is a function of SNR and

the threshold parameter Mth. The following diversity order definition is then used [123]

dord = − lim
SNR→∞

logPout(SNR,Mth)

log(SNR)
. (3.18)

That means in logarithmic scale for SNR, the probability of error will decrease linearly

with the slope of d, i.e. it decreases with the d-th power of SNR in the non-logarithmic

scale. Using the above definition, one can write

dord = − lim
λ→0

logPout(d Px/(σ
2
vλ),Mth)

log(d Px/(σ2
vλ))

(3.19)

= lim
λ→0

logPout(λ,Mth)

log(λ)
, (3.20)
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where we make a notational reuse of Pout(λ,Mth) instead of Pout(d Px/(σ
2
vλ),Mth) for

readability and ease of notational use.

Any error function that approaches zero when the SNR goes to infinity makes the limit

indefinite. (The error functions that do not behave in that manner, e.g. have an error floor

for high SNR, result in a zero order diversity.) Therefore, the limit should be solved to

resolve the ambiguity.

If for any function Pout(λ,Mth), we have that Pout(λ,Mth) = o(λd−1) = λd(c+ o(1)), we

can use the l’Hospital’s rule and obtain

dord = lim
λ→0

log λd(c+ o(1))

log(λ)
(3.21)

= d+ lim
λ→0

log (c+ o(1))

log(λ)
(3.22)

= d, (3.23)

given that c �= 0. If c = 0, then the second limit is still indeterminate and one could expect

a higher diversity order than d.

In the rest of this section, it is shown that the outage probability function in this section

has this property and therefore satisfies the original condition for dord = d. To make the

way for the proof, Theorem 2 and Theorem 3 are stated as follows.

Theorem 2. Any error function Pout(λ,Mth) which follows the following mathematical
form results in a diversity order dord = d

Pout(λ,Mth) = 1− exp(− λ

Mth
)
(d−1∑
i=0

aiλ
i + o(λd−1)

)
(3.24)

given that

ai =
1

i!M i
th

(3.25)

and that o(λd−1) is not exactly equal to zero.

Proof. Take ai = 1/(i!M i
th), while having that

Pout(λ,Mth) = 1− exp(− λ

Mth

)
(d−1∑
i=0

aiλ
i + o(λd−1)

)
. (3.26)
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We use the Taylor series expansion of Pout(λ,Mth) around λ = 0 and get

Pout(λ,Mth) = 1− (1 +
d−1∑
j=1

(−1)j(
λ

Mth

)j/j! + o(λd−1))
(d−1∑
i=0

aiλ
i + o(λd−1)

)

= 1− [a0(1 + d−1∑
j=1

(−1)j(
λ

Mth

)j/j! + o(λd−1))

+ a1λ(1 +
d−1∑
j=1

(−1)j(
λ

Mth

)j/j! + o(λd−1))

+ · · ·

+ ad−1λ
d−1(1 +

d−1∑
j=1

(−1)j(
λ

Mth

)j/j! + o(λd−1))

+ o(λd−1)(1 +
d−1∑
j=1

(−1)j(
λ

Mth

)j/j! + o(λd−1))
]
. (3.27)

Then, we have that

Pout(λ,Mth) = 1− [a0 + λ(a1 − a0/Mth) + λ2(a2 − a1/Mth + a0/(2!M
2
th))

+ λ3(a3 − a2/Mth + a1/(2!M
2
th)− a0/(3!M

3
th)) + · · ·

+ λd−1(ad−1 − ad−2/Mth + ad−3/(2!M
2
th)− · · ·

+ (−1)d−1a0/((d− 1)!Md−1
th )) + o(λd−1)]. (3.28)

Now we may rewrite (3.28) as

Pout(λ,Mth) = (1− a0) + λ(
a0
Mth

− a1)− λ2(
a0

2!M2
th

− a1
Mth

+ a2)

+ λ3(
a0

3!M3
th

− a1
2!M2

th

+
a2
Mth

− a3) + · · ·

− (−1)d−1λd−1
( a0

(d− 1)!Md−1
th

− ad−2

(d− 2)!Md−2
th

+ · · ·

+ (−1)d−1ad−1

)
+ o(λd−1). (3.29)

Given that a0 = 1, it is then easy to verify that

Pout(λ,Mth) =
d−1∑
i=1

(−1)i−1Di + o(λd−1) (3.30)

with

Di =
i∑

k=0

(−1)kak

(i− k)!M i−k
th

. (3.31)
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Now we show that Di = 0 for any i � 1 and therefore prove Theorem 2.

If we replace the assumed values for ak into (3.28), we get

Di =
i∑

k=0

(−1)k

(i− k)!k!M i−k
th Mk

th

=
1

i!M i
th

i∑
k=0

(−1)k(1)i−ki!

(i− k)!k!

=
1

i!M i
th

(1− 1)i = 0, (3.32)

where the binomial expansion theorem is used in the last step.

Note that Theorem 2 is a general statement and holds regardless of the presented system

model in this chapter. One should only replace λ with c/SNR for any system dependent

constant c and get the diversity order for any other setting where such form may appear.

To show that the EOP introduced in this work in fact fits in this category of functions, we

need Theorem 3 as stated in the following.

Theorem 3. For the high SNR regime (λ → 0), the Taylor series expansion of κi in (3.8)

is given by

κi =
∞∑
l=0

λl

(σ2
u)

i+ll!
(3.33)

Proof. See Appendix C.

Equipped with Theorem 2 and Theorem 3, when then show that our outage function,

considered as a function of λ satisfies the required condition in Theorem 2 in the limit of

λ → 0, and therefore achieves dord = d. This is presented in Theorem 4.

Theorem 4. For the high SNR regime (λ → 0), the expected error outage probability
achieves diversity order dord = d, i.e.

lim
λ→0

logPout(λ,Mth)

log(λ)
= d (0 < Mth � σ2

u) (3.34)

Proof. See Appendix D.

Theorem 4 shows the connection between the definition of diversity in the conventional

wireless fading channel analysis and in the sense of estimation of Gauss-Markov sources

sent over fading channels. In other words, Theorem 4 implies that while the probability of

detection for independent signal samples achieves a diversity order of d if d independent

fading channels are used, the outage probability for optimal MMSE estimator (Kalman

filter) for correlated Gauss-Markov exhibits the same behavior, at least for the range of
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Figure 3.5: Depiction of diversity order for the estimation error outage probability

0 < Mth � σ2
u. Figure 3.5 demonstrates this asymptotic behavior, where outage probabil-

ity is depicted vs. the SNR in the moderate and high SNR regime. For Fig. 3.5, we keep

all the parameters from before, and set Mth = 0.1 and d = 1, 2. From Fig. 3.5, it is easy

to verify a diversity gain of 2, when 2 receive antennas are used.

3.4 Process and Channel Noise Covariance Mismatch

The analysis which has been provided so far in this chapter is based on the assumption

that the system parameters are perfectly known at the receiver. If the system parameters

are known imperfectly, then there is a mismatch between the assumed values and the

actual values of the system parameters. Consequently, the Kalman filter with the current

formulation is not optimal. The value of M(n) will not represent the actual instantaneous

estimation error variance either. Strictly speaking, one should then apply robust designs,

e.g. as in [85] in order to have a better performance. The analysis of such designs in

terms of outage probabilities and diversity order is however beyond the scope of this

work. Nevertheless, as the system parameters are assumed fixed, it is possible to obtain

reasonably good approximates for system parameters during a training phase. With good

approximations, it is reasonable to use the proposed design due to its lower design and

computational complexity, and one would expect the estimation error and its outage to be

close to the case with perfect system knowledge. It is then interesting to see the effect of
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imperfect knowledge of system parameters or parameter mismatch on the performance,

specifically on the diversity order.

In the following, Kalman filter with mismatched parameters is considered, i.e. when

wrong values are used for the system parameters. It is assumed that σ̂2
u �= σ2

u and σ̂2
v,i �=

σ2
v,i are used in the filter. The choice of σ2

u and σ2
v,i is for the simplicity of analysis and

that the final results are of quite simple forms, which provide relatively good insight to

the problem. It should be noted that mismatch analysis for other system parameters,

especially the channel values h(n), is also important. Mismatched system parameters can

in certain situations degrade the performance significantly or even result in instability.

3.4.1 Mismatched Process Noise Variance

In this subsection, we consider the case when σ̂2
u = σ2

u+β for some β drawn from a prior

pdf fβ(β), but fixed for the period of interest. For better legibility, accented symbols are

used for all the variables in the algorithm which change due to mismatch, e.g. M̂(n) rep-

resents the IEV with mismatched parameters, while the true value for IEV is represented

by M(n). For simplicity, but without loss of generality (channel branches are already

assumed to have equal SNR), it is assumed that σ2
v,i = σ2

v .

Borrowing the Kalman filter equations from Chapter 2, we have for the mismatched σ2
u

case that

x̂(n|n− 1) = ρx̂(n− 1) (3.35)

P̂ (n) = ρ2M̂(n− 1) + σ̂2
u

= ρ2M̂(n− 1) + σ2
u + β (3.36)

ĝk(n) = P̂ (n)h∗(n)
(
σ2
v + h(n)P̂ (n)h∗(n)

)−1

= P̂ (n)h∗(n)
(
σ2
v + ‖h(n)‖2P̂ (n)

)−1

(3.37)

x̂(n) = x̂(n|n− 1) + ĝk(n)(y(n)− h(n)x̂(n|n− 1)) (3.38)

M̂(n) =
(
1− ĝk(n)h(n)

)
P̂ (n). (3.39)

Using (3.36), (3.37) and (3.39) will result in the following recursion for M̂(n)

M̂(n) =
σ2
vP̂ (n)(

σ2
v + ‖h(n)‖2P̂ (n)

) (3.40)

=
ρ2M̂(n− 1) + σ̂2

u

1 + ‖h(n)‖2
σ2
v

(
ρ2M̂(n− 1) + σ̂2

u

) . (3.41)

The two forms for ĝk(n) can be shown to be equal using the matrix inversion lemma. In
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order to get M(n) = E
(|x(n)− x̂(n)|2), it can be seen from (3.38) that

x̂(n) = x̂(n|n− 1) + ĝk(n)
(
y(n)− h(n)x̂(n|n− 1)

)
= x̂(n|n− 1)

+ ĝk(n)
(
h(n)x(n) + v(n)− h(n)x̂(n|n− 1)

)
, (3.42)

which results in

M(n) = E
(|x(n)− x̂(n)|2)

= |1− ĝk(n)h(n)|2E
(|x(n)− x̂(n|n− 1)|2)+ σ2

v‖ĝk(n)‖2

=
σ4
vP (n)(

σ2
v + ‖h(n)‖2P̂ (n)

)2 +
σ2
vP̂

2(n)‖h(n)‖2(
σ2
v + ‖h(n)‖2P̂ (n)

)2 . (3.43)

Combining (3.40) and (3.43), it is easy to show that

M(n)− M̂(n) =
σ4
v

(
P (n)− P̂ (n)

)
(
σ2
v + ‖h(n)‖2P̂ (n)

)2

=

σ4
v

(
ρ2
(
M(n− 1)− M̂(n− 1)

)
+ σ2

u − σ̂2
u

)
(
σ2
v + ‖h(n)‖2P̂ (n)

)2

=

σ4
v

(
ρ2
(
M(n− 1)− M̂(n− 1)

)
− β

)
(
σ2
v + ‖h(n)‖2P̂ (n)

)2 (3.44)

For positive β, it is easy to show by induction over n that M(n) � M̂(n), ∀n, i.e. M̂(n)
is a pessimistic performance measure (see also [47, Ch. 7.8]). One only needs to select a

big enough value for M̂(0) to make sure that M(n) − M̂(n) � 0 holds, e.g. one can set

M̂(0) = σ̂2
u

1−ρ2
. The opposite holds for negative β, i.e. M̂(n) will be an optimistic measure

of actual estimation error variance. In this case, one can e.g. set M̂(0) = 0 to guarantee

that M(n) � M̂(n), ∀n. However, as it will be seen afterwards, M(n) can still be upper

bounded by M̂(n) times a constant.

It is known from the analysis in this chapter that M̂(n) converges in distribution for n →
∞ and also achieves a diversity order of d. This is simply due to the fact that the equation

for M̂(n) here has the same recursion form as the one with perfect system knowledge.

Converting the diversity result from the log-log scale back to linear scale, we should for

high SNR have that

Pr(M̂ � Mth) = cλd, (3.45)
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where c is a constant not depending on λ, but a function of other system parameters (c is

a function of the coding gain). From (3.45), we should also have for n → ∞ that

Pr(M̂(n) � Mth) = cλd, (3.46)

simply because if (3.46) does not hold, then (3.45) cannot hold either as M̂(n) converges

in distribution. From the form of the outage function in Theorem 2, it can be deduced that

Pr(M̂(n) � Mth) = c
′ 1

Md
th

λd, (3.47)

because all relevant powers of λ only appear in the form λ/Mth.

Before we proceed, consider the following lemma which will be used afterwards.

Lemma 10. For two arbitrary random variables Z1 and Z2 and an arbitrary threshold
T , if we assume that Z1 � Z2 each time an outcome is produced, then we will have that
Pr(Z1 � T ) � Pr(Z2 � T ).

Proof.

Pr(Z2 � T ) = Pr(Z2 � T |Z1 � T )Pr(Z1 � T )

+ Pr(Z2 � T |Z1 < T )Pr(Z1 < T )

(a)
= 1 · Pr(Z1 � T ) + Pr(Z2 � T |Z1 < T )Pr(Z1 < T )

(b)

� Pr(Z1 � T ) (3.48)

where (a) is due to the fact that if Z1 � Z2, and Z1 � T , then certainly we have that

Z2 � T , and (b) holds because any probability are greater than or equal to zero.

Now we consider the case β � 0 and β < 0 separately for their effects on diversity.

For β � 0, it has already been argued that M(n) � M̂(n). According to Lemma 10, it

should hold that Pr(M(n) � Mth) � Pr(M̂(n) � Mth). As the outage probability for

M̂(n) has a diversity order of d, then the outage probability for M(n) must at least have a

diversity order of d as well. Due to the fact that mismatched M(n) is supposed to have a

worse performance than the original M(n) and it has been shown that the original M(n)
has a diversity order of d for its outage probability, then M(n) with mismatched parameter

must have a diversity order equal to d. Equal diversity order for M(n) and M̂(n) outage

probabilities indicates that in the logarithmic scale for SNR, any gap between the two

outage probabilities which is due to mismatch, is equal to a constant at asymptotic SNR.

For β < 0, we see from (3.40) and (3.44) that

M(n)− M̂(n)

M̂(n)
=

ρ2
(
M(n− 1)− M̂(n− 1)

)
+ |β|

P̂ (n)(1 + γ(n)P̂ (n))

� ρ2C + |β|
σ̂2
u

, (3.49)
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where C is a constant such that M(n) − M̂(n) � C. To show that the inequality in

(3.49) holds, we first see that 0 � σ̂2
u � P̂ (n) and 0 � γ(n) < ∞, which results in

0 �
(
P̂ (n)(1 + γ(n)P̂ (n))

)−1

� 1/σ̂2
u. In order to verify that C exists, one may be-

gin by using [47, Theorem 7.7 and corollary] to show that M(n) is bounded. According

to [47, Theorem 7.7 and corollary], certain conditions must be satisfied for bounded-

ness of M(n), namely (i) observability and controllability of the mismatched system,

(ii) boundedness of the eventual difference between the biases of the actual and the mis-

matched system, and (iii) boundedness of M(0). For (i), note that with perfectly known

Rayleigh fading channel, the systems (actual and mismatched) are uniformly completely

observable and controllable. For (ii), note that no bias is assumed in this chapter, so this

condition holds as well. Furthermore, (iii) can also be guaranteed by setting x̂(0) to some

finite value, such that M(0) = E(‖x(0) − x̂(0)‖) is always bounded. As a consequence

and based on [47, Theorem 7.7 and corollary], M(n) is bounded. In addition, we have

for the mismatched filter that M̂(n) � σ̂2
u

1−ρ2
, with the equality happening given the worst

case (all zero) channel. As a result, M(n)− M̂(n) is also bounded. We can then say that

there exists a finite positive constant C, such that M(n)− M̂(n) � C, ∀n.

This yields

Pr
(
M(n) � Mth

)
� Pr(M̂(n)(1 +

ρ2C + |β|
σ̂2
u

) � Mth)

= Pr(M̂(n) � Mth/(1 +
ρ2C + |β|

σ̂2
u

))

= c
′ 1

(Mth/(1 +
ρ2C + |β|

σ̂2
u

))d
λd, (3.50)

and proves a diversity order equal to d for the outage probability of M(n) as well.

At this point, we try to illustrate the diversity result more clearly by means of simu-

lation. As no exact expression is available for M(n) for the mismatched case, M(n)
can be obtained by simulating the Kalman filter with mismatched parameters imax num-

ber of times. If we then measure the squared error at time n of the i-th simulation by

ei(n) = |xi(n) − x̂i(n)|2, then by the law of large numbers, we have that M(n) =

limimax→∞
1

imax

∑
i ei(n). For consistency, the random channel sequence h(n) is kept

constant for all i, but new random values are used for u(n) and v(n). The following

simulation parameters are selected σ2
u = σ2

v = 1, ρ = 0.95, d = 1,Mth = 0.1 and

β = 0, 5,−0.75. In addition, it was chosen that imax = 100 in order to balance the com-

putational complexity and accuracy of the simulation. The result is depicted in Fig. 3.6.

As the figure suggests, the diversity order for the outage probability with mismatched

σ2
u is still held and there is a constant loss in SNR in the high SNR regime. The figure

also suggests that underestimating σ2
u, i.e. β < 0 has a more deteriorating effect than

overestimating it.
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Figure 3.6: Effect of mismatched σ2
u on diversity order

Remark 2. A sufficient condition for the derivations of this section to be correct for a

random β is that the support of fβ(β) is bounded for any SNR. This way, one makes sure

that |β| does not increase with SNR such that (3.50) always holds.

It should be mentioned that similar analysis for the development of M(n)−M̂(n) already

exists in [47, Ch. 7.8]. Yet, it was decided to include the necessary derivations for better

readability, as [47] uses different notations.

3.4.2 Mismatched Channel Noise Variance

In this subsection, we consider the case when σ̂2
v = σ2

v+α, with α being a random variable

drawn from a prior distribution fα(α), but constant for the period of interest.

Similarly for mismatched σ2
v , one should again modify the Kalman equations for M(n)

and M̂(n), considering the mismatch. Following the same logic as for mismatched σ2
u,

we obtain that

M(n) =
σ̂4
vP (n) + σ2

vP̂
2(n)‖h(n)‖2(

σ̂2
v + ‖h(n)‖2P̂ (n)

)2 (3.51)
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and

M̂(n) =
σ̂2
vP̂ (n)(

σ̂2
v + ‖h(n)‖2P̂ (n)

)
and therefore have that

M(n)− M̂(n) =
σ̂4
v

(
P (n)− P̂ (n)

)
+ (σ2

v − σ̂2
v)P̂

2(n)‖h(n)‖2(
σ̂2
v + ‖h(n)‖2P̂ (n)

)2

=
σ̂4
vρ

2
(
M(n− 1)− M̂(n− 1)

)
− αP̂ 2(n)‖h(n)‖2(

σ̂2
v + ‖h(n)‖2P̂ (n)

)2 (3.52)

with α = σ̂2
v − σ2

v .

For α � 0, it is easy to show by induction that M(n) � M̂(n), ∀n, i.e. the actual

estimation error variance is upper bounded by the estimation error variance obtained by

the Kalman filter. Similar to the case of β � 0, we see that the diversity order for the

outage probability of M(n) is exactly equal to d.

For α < 0, it may also be shown by induction that M(n) � M̂(n), ∀n, i.e. the estimation

error variance from the Kalman filter (M̂(n)) is an optimistic value for M(n). However,

using (3.51) and (3.52), we obtain that

M(n)− M̂(n)

M̂(n)
=

σ̂4
vρ

2
(
M(n− 1)− M̂(n− 1)

)
− αP̂ 2(n)‖h(n)‖2

σ̂2
vP̂ (n)

(
σ̂2
v + ‖h(n)‖2P̂ (n)

) . (3.53)

Now, we have that

0 � P̂ (n)‖h(n)‖2
σ̂2
v + P̂ (n)‖h(n)‖2 � 1. (3.54)

In addition, we can argue that there exists a constant C
′
, such that M(n) − M̂(n) �

C
′
, ∀n, similar to the arguments for mismatched σ2

u. That, combined with (3.53) yields
M(n)−M̂(n)

M̂(n)
� ρ2C

′

σ2
u
+ |α|

σ̂2
v

, which results in M(n) � (1+ ρ2C
′

σ2
u
+ |α|

σ̂2
v
)M̂(n), and consequently

Pr(M(n) � Mth) � Pr

(
(1 +

ρ2C
′

σ2
u

+
|α|
σ̂2
v

)M̂(n) � Mth

)

= Pr(M̂(n) � Mth/(1 +
ρ2C

′

σ2
u

+
|α|
σ̂2
v

))

= c
′ 1

(Mth/(1 +
ρ2C′

σ2
u

+ |α|
σ̂2
v
))d

λd, (3.55)
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Figure 3.7: Effect of mismatched σ2
v on diversity order

which proves a diversity order of d for M(n).

In order to illustrate the mismatched diversity result more clearly for σ2
v as well, a nu-

merical simulation was performed using the following parameters σ2
u = σ2

v = 1, ρ =
0.95, d = 1,Mth = 0.1 and α = 0, 5,−0.9. The result is depicted in Fig. 3.7. As the

figure suggests, the diversity order for the outage probability with mismatched σ2
v is still

held and there is a constant loss in SNR in the high SNR regime. The figure also suggests

that overestimating σ2
v , i.e. α > 0 has a more deteriorating effect than underestimating it.

Remark 3. It is easy to see from (3.55) that similar to the arguments in Remark 2, a

sufficient condition for the derivations of this section to be correct for a random α is that

the support of fα(α) is bounded for any SNR.

3.5 Summary and Discussion

In this chapter, we studied the pdf of the instantaneous estimation error variance resulting

from sending a scalar Gauss-Markov process over d parallel independent Rayleigh fad-

ing channels. In particular, the focus was on the performance of the Kalman filter with

respect to the outage probability of the instantaneous estimation error variance and pro-

vided the outage probability using a closed-form formula for the range of thresholds up

to the process noise variance. Upper and lower bounds were then proposed for the out-
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age probability. Furthermore, it was shown that in the limit of the high SNR, the outage

probability achieves a diversity order the same as the number of available independent

channels. Finally, the effect of imperfect system knowledge on the diversity order was

studied and it was shown that a bounded uncertainty in the process and noise variance

will not affect the diversity order.

Regarding the bounds, it should be noted that although not reported here, selecting d = 1
for the bounds in this chapter will result in bounds which have very close values to the

ones in Chapter 2. However, the bounds of Chapter 2 were needed for diversity analysis.

Therefore, they were presented separately.

Regarding the diversity analysis, it should be noted that the diversity order for the outage

probability as analyzed in Chapter 2 may be covered as the special case of d = 1 in

this chapter. However, although the diversity analysis in this chapter is more general and

results in new theorems (which might have application in other contexts as well), they fall

short of being able to describe the coding gain for d > 1. Due to that, it was decided

to treat the case of d = 1 (with regard to diversity analysis) not as a special case of the

material in this chapter. Therefore, it was presented separately.

In this chapter, it was assumed that all the channel branches have the same SNR. It is

however not necessary for all the channels to have equal SNR’s in order to get a diversity

order of d. If the channel branches are unequal, one can always consider another channel

with equal SNR’s on all branches, but for which the SNR is equal to the minimum of the

SNR’s of the original channel. This new channel which obviously incurs an inferior out-

age performance, still has a diversity order of d according to our analysis. Therefore, the

original (superior) channel with unequal SNR’s should have a minimum diversity order

of d. The same line of reasoning can be made using another channel with equal SNR’s on

all branches, whose values are equal to the maximum SNR of the original channel, which

leads to a maximum diversity order of d for the original channel. Therefore, we have a

diversity order of d for the channel with unequal SNR’s as well. Regarding the bounds

for the case when the channels have unequal SNR’s, it should be noted that obtaining the

bounds is not very straightforward in that case, because γ(n) will not have a χ2 distribu-

tion anymore. However, it is possible to obtain the new distribution individually for each

case and then extend and adapt the results on the bounds, albeit involving more tedious

derivations.

In this chapter and the previous one, transmission of a scalar source over one or several

i.i.d. branches is considered. This corresponds to a SISO or SIMO channel model. If the

source is a vector, then we deal with MIMO channels and thus matrix-valued P (n) and

M(n) rather than scalar ones. Due to the nature of the Kalman equations, specifically the

matrix inversions which are involved for the vector case, new tools and techniques may

need to be applied for a possible extension of the results of Chapters 2 and 3. From the

development of the diversity order analysis, we know that the availability of independent

channel branches is a necessity. One may then use channel parallelization techniques

in order to create independent (parallel) branches from the MIMO channel. The current

bounds however may not directly be extended, because they make a significant use of the
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fact that the process and process noise are scalars. The analysis of the estimation error

outage probability and its behavior in different SNR regime for vector signals is the topic

of the next chapter.

62



Chapter 4

Vector Signals over MIMO Channels:
Full Diversity

In this chapter, the system model is updated for the transmission of first-order vector (ar-

bitrary N and K) ARGM signals over a non-frequency selective MIMO Rayleigh fading

channel. The signal is reconstructed at the receiver side with the help of a Kalman filter

in order to minimize the instantaneous mean squared error. Complex orthogonal space

time codes are utilized in order to increase the quality of estimation and mitigate the de-

structing effects of the fading channel via achieving the maximum diversity order for the

distortion outage probability. In other words, space-time codes and Kalman filtering are

jointly incorporated in a common framework, which allows for extra reliability for esti-

mation of ARGM sources over fading channels. The diversity order analysis is performed

in the high SNR regime, in line with the previous chapters. Furthermore, upper and lower

bounds are obtained for the outage probability as a function of system parameters in the

finite SNR regime. That is followed by the high SNR analysis of the bounds, through

which achievability of the maximum diversity order for a N × K MIMO fading chan-

nel, equal to KN , is proven. In addition, upper and lower bounds are obtained for the

coding gain of the distortion outage probability in the high SNR regime, and outline the

correspondence between system parameters and the coding gain.

4.1 Updated System Model and Problem Definition

Consider the following updated system model

x(n) = Ax(n− 1) + u(n)

Y (n) =
√

Pt/(KN)H(n)T
(
x(n)

)
+ V (n), (4.1)

where x(n) and u(n) are column vectors of dimension K and represent the to-be-transmitted

signal and the process noise, respectively. In this model, x(n) is a first order Gauss-

Markov process. With respect to that, A is the state-transition matrix and assumed to be

63



non-singular. This is a sufficient condition for existence of the steady-state outage proba-

bility function, and is similar to the ρ �= 0 assumption in Chapters 2 and 3. More details

can be found in [10, Theorem 2.4].

The space-time block encoding1 operation (the pre-filter block of Chapter 1) is rep-

resented by the operator T (·). The output of the space-time encoding operation, i.e.

T
(
x(n)

)
, is a matrix of dimension K × Nc, which corresponds to Nc channel uses by

each of the transmit antennas for each new source symbol x(n). (The details of the space-

time coding operation and the structure of T
(
x(n)

)
are presented in Sec. 4.2.1). In this

work, it is assumed that the number of transmit antennas is equal to K, i.e. the source

dimension.

The MIMO channel matrix of dimension N ×K is denoted by H(n), which consists of

i.i.d. complex Gaussian elements with zero mean and unit variance (real and imaginary

parts have a variance equal to one half), i.e. non-frequency selective Rayleigh fading. For

some of the derivations in the upcoming sections, it is required that H(n) are also i.i.d. in

time.

At the receiver, the received signals from the channel, and the channel noises for the Nc

channel uses are denoted by Y (n) and V (n), which are matrices of dimension N × Nc.

The value of Pt is also selected such that required SNR at the receiver is achieved. The

elements of V (n) are also considered to be i.i.d. complex Gaussian random variables. The

covariance matrices for u(n) is denoted by Cu and the elements of V (n) have a variance

equal to σ2
v . It is also assumed that the H(n) are perfectly known to the receiver.

The vector source x(n) is space-time encoded at the transmitter side and sent over the

channel. There are then two major operations which should be performed at the receiver.

The first operation is the space-time decoding, i.e. the inverse operation for T
(
x(n)

)
,

which in turn leads to an equivalent channel and received signal model. The next oper-

ation is the estimation of x(n) from the received signal. The optimal causal minimum

mean square error (MMSE) estimator for this setting is the Kalman filter. The Kalman fil-

ter provides us with an optimal estimate of the source at the receiver, namely x̂(n) which

minimizes the (normalized) random instantaneous distortion at time n as defined in Chap-

ter 1. The distortion outage probability is also the same as defined in Chapter 1. In this

case, the value of SNR may be obtained from

SNR =
Pt

KN

E
(‖H(n)‖2)E (‖T (x(n)‖2)

E
(‖V (n)‖2) ,

In line with the material in Chapters 2 and 3, we are interested in the characterization of

the distortion outage probability, albeit via upper and lower bounds, and the high SNR

behavior in terms of the diversity order and the coding gain, with the same definitions

as in Chapter 1. As it will be seen later, the maximum diversity order is only dependent

on the number of available independent individual channel branches, and its achievability

1In this chapter, the terms encoding and decoding are used for space-time codes. However, the signals

are still uncompressed and the space-time decoding for estimation is different from decoding for detection.
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only depends on the space-time code. The coding gain however is a function of the source

structure and the selected threshold.

4.2 Joint Space-time Coding and Kalman Filtering

In this section and first, the space-time coding scheme used in this chapter and the Kalman

filter which is used in order to estimate the transmitted signal, are introduced. It is then

described how these two parts should interact with one another.

4.2.1 Analog Space-time Coding

A space-time block code based on orthogonal designs as defined in [98], is used for trans-

mission of x = [x1, x2, . . . , xK ]
T over the channel HN×K (the time index n is dropped in

this section). The encoding is adopted (and slightly modified) from [98] as follows. We

form a matrix X = T (x) of dimension K×Nc, as instructed in [98] and which consists of

elements ±x1,±x2, . . . ,±xK , their conjugates ±x∗
1,±x∗

2, . . . ,±x∗
K or multiples of these

elements by ±i (with i =
√−1) or, if necessary, other scaling factors. The first column

of X can without loss of generality be assumed to be [x1, x2, . . . , xK ]
T . The space-time

code rate can be defined as

r = K/Nc (4.2)

source dimensions per channel use. The code rate needs to be maximized in order to

minimize the extra incurred channel uses. This is however not the focus of this work and

the reader is mainly referred to the current literature on space-time codes for that matter.

The code design is such that XXH (XH is the conjugate transpose of X) is a diagonal

matrix. It is also shown in [98] that if at least one orthogonal design exists, one can always

find another design such that

XXH = c‖x‖2IK ,

where c is some constant depending on the code 2. It is also possible to normalize the

codewords such that c = 1, as it is assumed in the rest of this chapter.

Referring to the system model in (4.1), each row of Y and V corresponds to a particular

receive antenna, comprising a total number of N receive antennas, and each column of Y
and V corresponds to one channel use, comprising a total number of Nc channel uses for

each source symbol transmission, indexed by n. Note that H , although random, is fixed

for the transmission of each source symbol.

2In this chapter, the transpose of the codes presented in [98] are used, because it is better suited to the

generic system model of this thesis.
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At the receiver side, the space-time coded signal Y should be decoded first before it is

directed to the Kalman filter in order to estimate x. The objective of the space-time de-

coder, appearing before the Kalman filter, is to provide an equivalent orthogonal channel

and allow for a spatial diversity gain. The number of such orthogonal branches for the

equivalent channel is at most NK. It is worthwhile mentioning that N has no effect on

the code selection as long as the code is orthogonal.

The decoding suggested here is different from what is proposed in [98] due to the different

nature of estimation and detection. The approach used in this chapter is similar to the

one used in [13], where orthogonal space-time block codes are used for analog channel

state information feedback. The basic idea is to convert the channel into an equivalent

orthogonal channel and then perform decoding by simply multiplying the received vector

by the transpose of the equivalent channel. The method in [13] is applicable for the

transmission of real signals only, and uses the 1/2 rate codes based on real orthogonal

designs proposed in [98]. While the same design can be used for the purpose of this work

as well (by alternating the transmission of real and imaginary parts of the signal x(n) and

therefore having a code of rate 1/4), we propose a different approach which allows for the

incorporation of the available complex orthogonal space-time codes, and thus operating

at a potentially better rate (e.g. full rate for K = 2). This is made possible by converting

all the complex vectors into equivalent real vectors with twice the size and finding the

equivalent real channel. The proposed space-time decoding can be performed as follows.

Consider the l-th row of H corresponding to the l-th receiver (l = 1, 2, . . . , N ), and call

that row hl. Take then the corresponding rows in Y and V to be yl and vl. The received

signal for that receiver is yl =
√

Pt/(KN)hlX+vl. Note that it is only enough to analyze

the space-time code for one receive antenna. Through that, it is possible to show that each

receiver is able to provide K orthogonal channels, involving the corresponding row in

H . With N independent rows, a number of NK orthogonal channels can be created by

simply summing all the results of the space-time decoding for each receiver.

The next step is to convert all the complex operations to real ones. First extend the source

vector x into a real vector of dimension 2K by replacing each complex element by a 2×1
real vector of the real and imaginary part of that element and call this new vector xr, i.e.

xr = [xr
1, x

i
1, x

r
2, x

i
2, . . . , x

r
K , x

i
K ]

T ,

where the superscripts r and i for each element xk, k = 1, 2, . . . , K indicate the real and

imaginary part of that element. Then perform the same procedure for X to provide the

matrix Xr of dimension 2K ×Nc. Vectorize (column-wise reshape) the matrix Xr into a

real vector of size 2KNc × 1, in the same manner as done for xr, and call it x̃. It is now

possible to create a linear mapping, i.e. the matrix T with size 2KNc × 2K, which maps

xr to x̃ and only consists of real numbers. In other words, we must find a T such that it

satisfies x̃ = Txr. This can be done by considering that each element in x̃ can be found

in xr possibly with a different sign and scaling factor, or as a linear combination of the

elements of xr.

We convert vk to the equivalent real vector ṽ in the same manner.
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Next, consider converting the channel into the real and imaginary parts. For this reason,

each channel tap in hl, i.e. hl,k, k = 1, 2, . . . , K is converted to the following 2×2 matrix

H̃l,k =

[
hr
l,k −hi

l,k

hi
l,k hr

l,k

]
. (4.3)

The complex-valued 1×K vector hl is then expanded to the real-valued 2× 2K channel

H̃ = [H̃l,1|H̃l,2, . . . , |H̃l,K ]. With these definitions, it can be easily shown that the oper-

ation yl =
√
Pt/(KN)hlX + vl in the domain of complex numbers can be represented

by the following operation over the domain of real numbers

ỹ =
√

Pt/(KN)(INc ⊗ H̃)x̃+ ṽ

=
√
Pt/(KN)(INc ⊗ H̃)Txr + ṽ

=
√

Pt/(KN)Heqx
r + ṽ, (4.4)

where Heq = (INc ⊗ H̃)T is the equivalent real channel which acts on the equivalent real

source vector xr (note the conversion from complex row vectors to equivalent real column

vectors). It will be shown in Appendix E that

HT
eqHeq = ‖hl‖2I2K ,

i.e. the equivalent real channel can be orthogonalized by a simple operation constructed

as follows

HT
eqỹ = HT

eq

(√
Pt/(KN)Heqx

r + ṽ
)

=
√
Pt/(KN)HT

eqHeqx
r +HT

eqṽ

=
√

Pt/(KN)‖hl‖2xr +HT
eqṽ. (4.5)

Due to the independence of channel noises for each dimension, it can be shown that the

variance of each element of HT
eqṽ is equal to ‖hl‖2σ2

v .

For decoding the whole received signals, one should perform the same procedure for all

the receiver antennas, i.e. all the rows of H , and sum the results. If we call the resulting

sum yeq and convert the real vectors back to the complex domain again, we may finally

write

yeq =
√

Pt/(KN)
N∑
l=1

‖hl‖2x+ veq

=
√

Pt/(KN)‖H‖2Fx+ veq, (4.6)

where each element in veq has the variance ‖H‖2Fσ2
v . The SNR is then equal to SNR =

PtPx/σ
2
v , where Px = E(‖x(n)‖2). After space-time decoding for each time step n,

yeq(n) is delivered to the Kalman filter in order to estimate x(n). This is reviewed in the

next section.
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4.2.2 Kalman Filtering of Space-time Coded Analog Sources

Given that the correct initialization and equivalent channel and received signal model are

used, the general equations for the vector Kalman filter (the estimator) adapted from [52]

are

x̂(n|n− 1) = Ax̂(n− 1|n− 1)

P (n) = AM(n− 1)AT + Cu

Gk(n) =
√

Pt/(KN)P (n)‖H(n)‖2
(
‖H(n)‖2σ2

v + Pt/(KN)P (n)‖H(n)‖4
)−1

x̂(n|n) = x̂(n|n− 1) +Gk(n)
(
yeq(n)−

√
Pt/(KN)‖H(n)‖2x̂(n|n− 1)

)
M(n) =

(
I −K(n)

√
Pt/(KN)‖H(n)‖2

)
P (n). (4.7)

The second step in (4.7), i.e. P (n) = AM(n − 1)AT + Cu is the prediction, and it is

known that the prediction error covariance matrix P (n) propagates through the random

Riccati equation given in (4.8).

It is also possible to simplify (4.8) and obtain

P (n+ 1) = A
(
P−1(n) + Pt/(KN)‖H(n)‖2/σ2

vI
)−1

AT + Cu

= AM(n)AT + Cu (4.9)

by invoking the Woodbury matrix identity on (4.9). Comparing (4.9) with the second line

in (4.7) necessitates that

M(n) =
(
P−1(n) + Pt/(KN)‖H(n)‖2/σ2

vI
)−1

. (4.10)

We may then rewrite (4.10) as

M(n) =
(
P−1(n) + Pt/(KN)‖H(n)‖2/σ2

vI
)−1

=
KN

Pt‖H(n)‖2/σ2
v

((
Pt/(KN)‖H(n)‖2/σ2

vP (n)
)−1

+ I
)−1

=
1

γn

(
1

γn
P−1(n) + I

)−1

, (4.11)

P (n+ 1) = AP (n)AT

− Pt/(KN)AP (n)‖H(n)‖2 (‖H(n)‖2σ2
v + Pt/(KN)‖H(n)‖4P (n)

)−1 ‖H(n)‖2P (n)AT

+ Cu. (4.8)
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with

γn =
Pt‖H(n)‖2
σ2
vKN

. (4.12)

One can also rewrite (4.9) (while setting n− 1 instead of n) as

P (n) = AM(n− 1)AT + Cu

=
A

γn

(
1

γn
P−1(n− 1) + I

)−1

AT + Cu. (4.13)

If we denote the k-th diagonal element of M(n) by Mkk(n) and define the distortion as

d(n) =
1

K
tr
(
M(n)

)
, the distortion outage probability at time n is equal to

Pout(dth) = Pr
(
d(n) � dth

)
= Pr

⎛
⎝ 1

K

K∑
k=1

Mkk(n) � dth

⎞
⎠ , (4.14)

where dth is an arbitrary threshold value. The analysis of this outage probability as a

function of SNR and other system parameters is the topic of the next section.

4.3 Outage Probability Analysis

In this section, we study the achievable diversity order and coding gain for distortion

outage probability when the complex orthogonal space-time codes are used in conjunction

with the Kalman filter. Upper and lower bounds on the distortion outage probability are

also developed. The bounds are used for both obtaining numerical values with application

in practical systems and are also a prerequisite tool in obtaining the asymptotic results.

4.3.1 Bounds for the Outage Probability

As the distortion at each time step n is obtained from M(n), we should first try to develop

an equation for M(n) which makes distortion calculation possible. One easy way to find

the diversity order is finding a closed-form equation for M(n) which is independent of

P−1(n) such that it allows for diversity order calculation. This however, proves to be

rather complicated, as it was already seen for SISO and SIMO cases in Chapters 2 and

3, respectively. While some initial results were obtained there, even for those simpler

cases, we had to resort to finding bounds and approximates for characterization of the

outage probability and then its high SNR behavior. The same approach is followed in this

chapter as well. In that regard, we first establish upper and lower bounds for the outage
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probability and then in the following section obtain the diversity order and coding gain

via the high SNR analysis of the bounds.

In order to get upper and lower bounds for Pout(dth), the following fact is used (Lemma

10). If for two random variables X and Y , we have that X � Y , then as a result we

obtain that Pr(X � T ) � Pr(Y � T ). As d(n) =
1

K
tr(M(n)), if we can find dl(n) and

du(n) such that we would have dl(n) < d(n) < du(n), then we may bound the outage

probability as Pr(dl(n) � dth) < Pr(d(n) � dth) < Pr(du(n) � dth), i.e. upper and lower

bounds on the outage probability may be established. We would prefer random variables

whose cdf have a Taylor series with the first non-zero term equal to that of the original

distortion variable. This is for the diversity analysis to be successful and will be explained

later in the section.

In the following lemmas (Lemma 11 and 12), we present dl(n) and du(n), used to estab-

lish upper and lower bounds on the outage probability.

Lemma 11. The instantaneous distortion d(n) may be lower bounded by dl(n) � d(n)
as

dl(n) =
1

γn +
1

K

∑K
l=1

1

ζl(Cu)

,

where the ζl(.) function denotes the l-th eigenvalue of its matrix argument.

Proof. Please see Appendix F.

Lemma 12. The instantaneous distortion d(n) may be upper bounded by du(n) � d(n)
as follows

du(n) =
1

γn +
1

1

K

∑K
l=1 θl

with

θl = ζl(Cu) +
|ζmax(A)|2
1

αmax
+ γn−1

, (4.15)

where ζmax(.) denotes the maximum value of the eigenvalues of its matrix argument, and
αmax = |ζmax(A)|2ζmax(Cx) + ζmax(Cu), with Cx being the stationary covariance matrix of
the source.

Proof. Please see Appendix F.

From Lemmas 11 and 12, and the previous discussion, it is now possible to obtain the

bounds for the outage probability as follows. For the lower bound, we have that
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P l
out(dth) = Pr(dl(n) � dth)

= Pr

⎛
⎜⎜⎝ 1

γn +
1

K

∑K
l=1

1

ζl(Cu)

� dth

⎞
⎟⎟⎠

= Pr

⎛
⎜⎝γn �

⎛
⎝ 1

dth

− 1

K

K∑
l=1

1

ζl(Cu)

⎞
⎠
⎞
⎟⎠

= Pr

⎛
⎜⎝Pt‖H(n)‖2

σ2
vKN

�

⎛
⎝ 1

dth

− 1

K

K∑
l=1

1

ζl(Cu)

⎞
⎠
⎞
⎟⎠

= Pr

⎛
⎜⎝‖H(n)‖2 � σ2

vKN

Pt

⎛
⎝ 1

dth

− 1

K

K∑
l=1

1

ζl(Cu)

⎞
⎠
⎞
⎟⎠

= F‖H(n)‖2

⎛
⎜⎝σ2

vKN

Pt

⎛
⎝ 1

dth

− 1

K

K∑
l=1

1

ζl(Cu)

⎞
⎠
⎞
⎟⎠ , (4.16)

where F‖H(n)‖2(.) is the cdf of the random variable ‖H(n)‖2 and can be obtained from

F‖H(n)‖2(z) =
1

(NK − 1)!

∫ z

0

e−ttNK−1 dt. (4.17)

Note that the only difference between (4.17) and the standard cdf of a χ2 random variable

is a scaling factor of 2 in the integral upper limit z, which is added due to the normalized

variance assumption on the individual complex channel paths.

For the upper bound, we similarly have that

P u
out(dth) = Pr(du(n) � dth)

= Pr

⎛
⎜⎜⎜⎝ 1

γn +
1

1/K ·∑K
l=1 θl

� dth

⎞
⎟⎟⎟⎠

= Pr

(
γn � 1

dth

− 1

1/K ·∑K
l=1 θl

)
. (4.18)

Since θl are functions of γn−1, one can fix the value of γn−1 in order to perform the same

procedure as for P l
out(dth) and then integrate over the pdf of γn−1, in order to obtain the
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total outage probability. Note that in order for this procedure to be correct, it is required

that γn and γn−1 are statistically independent. Assuming that results in

P u
out(dth) =

∞∫
0

Pr

⎛
⎜⎜⎜⎝γn �

⎛
⎜⎜⎝ 1

dth

− 1
1

K

∑K
l=1 θl

⎞
⎟⎟⎠
∣∣∣∣∣γn−1 = z

⎞
⎟⎟⎟⎠ fγn−1(z) dz

=

∞∫
0

Pr

⎛
⎜⎜⎜⎝Pt‖H(n)‖2

σ2
vKN

�

⎛
⎜⎜⎝ 1

dth

− 1
1

K

∑K
l=1 θl

⎞
⎟⎟⎠
∣∣∣∣∣γn−1 = z

⎞
⎟⎟⎟⎠ fγn−1(z) dz

=

∞∫
0

F‖H(n)‖2

⎛
⎜⎜⎜⎝σ2

vKN

Pt

⎛
⎜⎜⎝ 1

dth

− 1
1

K

∑K
l=1 θl

⎞
⎟⎟⎠
∣∣∣∣∣γn−1 = z

⎞
⎟⎟⎟⎠ fγn−1(z) dz.

(4.19)

Note that it is only θl which is a function of γn−1.

For the numerical evaluation of the bounds, please see Sec. 4.4.

4.3.2 Analysis of Diversity Order and Coding Gain

In order to obtain the diversity order with the help of the bounds as previously mentioned,

we present the following lemma.

Lemma 13. Assume that the outage probability Pout(dth) can be lower and upper bounded
by P l

out(dth) and P u
out(dth), respectively, i.e. P l

out(dth) < Pout(dth) < P u
out(dth) for all system

parameters and all n. If P l
out(dth) and P u

out(dth) have a diversity order of d0ord, then the
outage probability Pout(dth) has a diversity order of d0ord as well.

Proof. Since P l
out(dth) < Pout(dth) < P u

out(dth) and log(.) is a monotonic increasing func-

tion for all valid (positive) arguments and log(SNR) is a positive number, then we have

that

log(P l
out(dth))

log(SNR)
<

log(Pout(dth))

log(SNR)
<

log(P u
out(dth))

log(SNR)
. (4.20)

As we have that limSNR→∞
log(P l

out(dth))

log(SNR)
= −d0ord and that limSNR→∞

log(P u
out(dth))

log(SNR)
=

−d0ord, then according to the well-known squeeze theorem (Kathy’s theorem) for limits,

we obtain that

lim
SNR→∞

log(Pout(dth))

log(SNR)
= −d0ord, (4.21)
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and the proof is complete.

At this stage, it suffices to find the diversity order for P l
out(dth) and P u

out(dth). By a Tay-

lor series expansion of F‖H(n)‖2(z) from (4.17), it is easy to show that the cumulative

distribution function (cdf) of this distribution near zero (small z) is of the form

F‖H(n)‖2(z) =
1

(NK)!
zNK + o(zNK). (4.22)

Then, we obtain that

Pl
out (dth) = F‖H(n)‖2

⎛
⎝σ2

vKN

Pt

(
1

dth

− 1

K

K∑
l=1

1

ζl(Cu)
)

⎞
⎠

=
1

(NK)!

⎛
⎝σ2

vKN

Pt

(
1

dth

− 1

K

K∑
l=1

1

ζl(Cu)
)

⎞
⎠

NK

+ o(P−NK
t )

=
(σ2

vKN)KN

(NK)!

⎛
⎝ 1

dth

− 1

K

K∑
l=1

1

ζl(Cu)

⎞
⎠

NK

P−NK
t + o(P−NK

t )

=

(
σ2
vKNPx

)NK

(NK)!

⎛
⎝ 1

dth

− 1

K

K∑
l=1

1

ζl(Cu)

⎞
⎠

NK

SNR−NK + o(SNR−NK), (4.23)

with ζl(.) defined in Lemma 11.

Similarly for P u
out(dth) and taking P̃ =

Pt

σ2
vKN

and ζ̄ =
1

K

∑K
l=1 ζl(Cu), we have that

Pu
out(dth) =

∞∫
0

F‖H(n)‖2

⎛
⎜⎜⎜⎝ 1

P̃

⎛
⎜⎜⎝ 1

dth

− 1
1

K

∑K
l=1 θl

⎞
⎟⎟⎠
∣∣∣∣∣γn−1 = z

⎞
⎟⎟⎟⎠ fγn−1(z) dz

=

∞∫
0

F‖H(n)‖2

⎛
⎜⎜⎜⎜⎝

1

P̃

⎛
⎜⎜⎜⎝ 1

dth

− 1

ζ̄ +
|ζmax(A)|2αmax

1 + zαmax

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ fγn−1(z) dz,
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which by substituting the Taylor series expansion results in

Pu
out(dth) =

1

(NK)!
P̃−NK

∞∫
0

⎛
⎜⎜⎜⎝ 1

dth

− 1

ζ̄ +
|ζmax(A)|2αmax

1 + zαmax

⎞
⎟⎟⎟⎠

NK

fγn−1(z) dz

+

∞∫
0

o(P̃−NK)fγn−1(z) dz.

=
(σ2

vNKPx)
NK

(NK)!
SNR−NK

∞∫
0

⎛
⎜⎜⎜⎝ 1

dth

− 1

ζ̄ +
|ζmax(A)|2αmax

1 + zαmax

⎞
⎟⎟⎟⎠

NK

fγn−1(z) dz

+

∞∫
0

o(SNR−NK)fγn−1(z) dz. (4.24)

It is now possible to calculate the diversity order for the bounds in order to show their

equality and thus prove the diversity result for the outage probability function. For the

lower bound, we have that

dl
ord = − lim

SNR→∞
log(P l

out(dth))

log(SNR)

= KN. (4.25)

This is due to the fact that when SNR → ∞, o(SNR−NK) � SNR−NK and thus the

o(SNR−NK) term in (4.23) vanishes before the first term containing SNR−NK , resulting

in a diversity order of NK.

The analysis for the upper bound is also similar. When SNR → ∞, the term o(SNR−NK)
can be upper-bounded by κSNR−NK , with κ being an arbitrary constant, but going to zero

as SNR goes to infinity. Therefore, it is possible to deduce that

∞∫
0

o(SNR−NK)fγn−1(z) dz <

∞∫
0

κSNR−NKfγn−1(z) dz

= κSNR−NK

∞∫
0

fγn−1(z) dz

= κSNR−NK .

As a result, we can say that

du
ord = − lim

SNR→∞
log(P u

out(dth))

log(SNR)

= KN. (4.26)

74



As du
ord = dl

ord = NK, it can be deduced from Lemma 13 that the diversity order for

the outage probability is also equal to NK and the analysis is complete. It is worthwhile

mentioning that the maximum diversity order is dependent on the MIMO channel and its

achievability only on the space-time code. The source structure does not play any role on

the diversity order. However, as it will be discussed next, the source structure plays an

important role on the coding gain.

Coding gain for the outage probability is considered next. We know that both P l
out(dth)

and P u
out(dth) have the same diversity order, but possibly different coding gains. We may

then write

P l
out(dth) < Pout(dth) < P u

out(dth) ⇒
(G1 · SNR)−KN + o(SNR−KN) < (G · SNR)−KN + o(SNR−KN)

< (G2 · SNR)−KN + o(SNR−KN) (4.27)

This results in

G−NK
1 + o(1) < G−NK + o(1)

< G−NK
2 + o(1). (4.28)

In the high SNR regime, the term o(1) vanishes quickly compared to the constants G1, G,G2.

As a result, the relationship in (4.28) simplifies to

G2 < G < G1, SNR → ∞, (4.29)

which provides upper and lower bounds for the coding gain by setting Gl = G2 and Gu =
G1. Note that a higher coding gain means a better SNR performance, i.e. a lower outage

probability for a given SNR. That is why the upper bound for coding gain is obtained

from the lower bound on the outage probability and vice versa. The constants Gu and Gl

may in turn be extracted from (4.23) and (4.24) as

Gu =
(NK)!1/(NK)

(σ2
vKNPx)

⎛
⎝ 1

dth

− 1

K

K∑
l=1

1

ζl(Cu)

⎞
⎠

−1

(4.30)

and

Gl
1 =

(NK)!1/(NK)

(σ2
vNKPx)

⎛
⎜⎜⎜⎜⎝

∞∫
0

⎛
⎜⎜⎜⎝ 1

dth

− 1

ζ̄ +
|ζmax(A)|2αmax

1 + zαmax

⎞
⎟⎟⎟⎠

NK

fγn−1(z) dz

⎞
⎟⎟⎟⎟⎠

−1/(NK)

. (4.31)

Remark 4. The value of Gl introduced in (4.31) (subscripted by 1) is computationally

more demanding to calculate than the value for Gu, especially because one should also
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consider the limit behavior of fγn−1(z) when P → ∞. It is relatively easy to show that Gl
1

itself may be lower bounded by the following value

Gl
2 =

(NK)!1/(NK)

(σ2
vNKPx)

(
1

dth

− 1

ζ̄ + |ζmax(A)|2αmax

)−1

, (4.32)

which is less accurate, but is of a much simpler form than Gl
1.

As we can see from (4.30), (4.31), and (4.32), the coding gain depends on the source

structure and the threshold. It is the eigenvalues of A and Cu which play a significant

role. We observe e.g. that smaller dth leads to smaller coding gain. This is due to the fact

that lower thresholds lead to higher outage probabilities and for fixed diversity order, this

leads to smaller coding gains. Also, if the eigenvalues of Cu are large, the coding gain

decreases, i.e. the outage probabilities increase in the asymptotic limit. Heuristically,

such values imply more randomness in the process, resulting in higher distortion for the

Kalman filter and consequently higher outage value.

Remark 5. There are limits for dth for which (4.30), (4.31) and (4.32) are valid. In (4.30),

it is required that

1

dth

− 1

K

K∑
l=1

1

ζl(Cu)
� 0 (4.33)

so that the lower bound is meaningful. This leads to

dth �
K∑K

l=1

1

ζl(Cu)

, (4.34)

which equals the harmonic mean of the eigenvalues of Cu. Similarly, it is also possible to

show that a sufficient condition for (4.31) and (4.32) to be valid is that

dth �
1

K

K∑
l=1

ζl(Cu). (4.35)

Therefore, a sufficient condition on dth in order to get valid bounds can be obtain from

dth � min

⎧⎪⎪⎨
⎪⎪⎩

K∑K
l=1

1

ζl(Cu)

,
1

K

K∑
l=1

ζl(Cu)

⎫⎪⎪⎬
⎪⎪⎭ , (4.36)

which requires that dth is smaller than the minimum of mean and harmonic mean of the

eigenvalues of the process noise covariance matrix. The limiting regime in both cases is

when the eigenvalues of Cu are small. This happens when the randomness in the process

from u(n) is too slow compared to the process memory from A. In realistic applications,
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this can be solved by adjusting the sampling rate of the original continuous-time pro-

cess, if necessary. One might argue that lowering the sampling rate in very slow varying

processes in order to get better bounds would eventually increase the outage probability.

However, if the application is critically sensitive in that regard, the interesting regime is

already small dth, because it is the regime which results in higher outage probabilities.

For small dth however, the bounds would be functioning. This shows that the limiting

behavior in (4.36) is not a serious issue for the bounds in most practical cases.

Remark 6. For well-conditioned Cu, the bounds perform better than the case when Cu

is ill-conditioned. In fact, for the case when Cu = σ2
uI , the bounds are tight. This is

elaborated more in Appendix G.

Remark 7. Although the upper and lower bounds for the outage probability and coding

gain have been presented for joint Kalman filtering and space-time coding, they can be

used to obtain bounds for the scalar case as well. It is then enough to select the correct

parameters for the scalar case in order to use the presented bounds. While no general

conclusion can be made about the relative accuracy of these two cases, a numerical com-

parison is performed in Sec. 4.4.

For the numerical evaluation of the accuracy of the coding gain expressions and related

discussions, please see Sec. 4.4.

4.4 Numerical Evaluation of the Bounds and Diversity
Results

In this section, simulation results are provided to accompany the presented theory in the

previous sections.

We begin the numerical evaluations with the following system parameters. We take K =
2 and N = 1 to keep the simulated outage values practically calculable. This necessitates

a maximum diversity order of KN = 2. We select

A =

[
0.6 −0.8
0.7 0.6

]

has the eigenvalues {0.6± j
√
0.56}. This corresponds to the case where x1(n) and x2(n)

are relatively highly cross-correlated in time. We select σ2
v = 1 and dth = 0.1. As for

the orthogonal space-time code we use the Alamouti code from [2], while for simplicity

we calculate Px from simulations. We consider two cases for Cu, namely C1
u and C2

u as

follows

C1
u =

[
0.25 0
0 1.44

]
, C2

u =

[
0.53 0.28
0.28 0.53

]
.

The choice is mainly to show how the accuracy of the bounds will change as different

values are used for Cu, and also that different values for Cu will result in different coding
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Figure 4.1: Outage probability and the corresponding bounds for K = 2, N = 1, dth =
0.1, σ2

v = 1, and for ζ1,2(Cu,1) = 0.25, 1.44.

gains. Also, the eigenvalues of C1
u are equal {1.44, 0.25} and the eigenvalues of C2

u are

equal to {0.81, 0.25}. The Pout vs. SNR graph is depicted in Figures 4.1 and 4.2. We

simulate the Kalman filter for n � 107 and numerically calculate the outage probabilities

after discarding the first 400 samples. The upper and lower bounds are visibly good for

both cases and seem to be quite accurate for a large range of SNR values, compared

to the simulated result from the Kalman filter. The numerical evaluation for the coding

gain bounds is also depicted in Figures 4.3 and 4.4. The simulated outage probabilities

are plotted along with a linear function with a slope of 2 and with calculated values for

Gl, Gu
1 , G

u
2 . The upper and lower bounds for the coding gain become visibly accurate

from SNR’s close to 30 dB. This shows that for the high SNR analysis to be correct, one

needs at least an SNR of the same value or higher. A slope of 2 corresponding to the

diversity order dord = 2 is quite visible in both cases as well. One can also notice in

Figures 4.3 and 4.4 that the lower bound for coding gain is more accurate than the upper

bound and that Gl
1 is a much better lower bound that Gl

2, as expected.

In order to observe the performance of the system for higher dimensions, we now take

K = 3, N = 1 and use the space-time code construction from [98, Eq. 39]. This

leads to Nc = 4 and r = 3/4 as well. We also modify other system parameters to

Cu = diag{0.5, 0.75, 0.65} and A = D diag{0.95, 0.9, 0.98}D−1, with D represent-

ing the normalized discrete cosine transform matrix, and then simulate the system for

n � 108. The results for outage probability bounds and the coding gain bounds and the
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Figure 4.2: Outage probability and the corresponding bounds for K = 2, N = 1, dth =
0.1, σ2

v = 1, and for ζ1,2(Cu,2) = 0.25, 0.81.

diversity order are presented in Figures 4.5 and 4.6. A diversity order of 3 is visible in

both figure and the bounds are visibly very accurate.

In order to compare the relative performance of the presented bounds in this chapter with

the bounds in Chapter 2, we select the system parameters from Chapter 2 as ρ = 0.95,

σ2
u = σ2

v = 1, and dth = 0.1, 0.8. The results are depicted in Figures 4.7 and 4.8. The

figures suggest that the performance for the bounds are very close for small dth, while

the bounds from Chapter 2, perform better (significantly better for lower SNR values) for

the higher threshold values. It is then recommended to continue to use the bounds from

Chapter 2 for the scalar case.
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Figure 4.3: Comparison of accuracy of the coding gain bounds for K = 2, N = 1,

dth = 0.1, σ2
v = 1, and for ζ1,2(Cu,1) = 0.25, 1.44.
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Figure 4.4: Comparison of accuracy of the coding gain bounds for K = 2, N = 1,

dth = 0.1, σ2
v = 1, and for ζ1,2(Cu,2) = 0.25, 0.81.
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Figure 4.5: Comparison of accuracy of the coding gain bounds for K = 3, N = 1,

dth = 0.1, σ2
v = 1.
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Figure 4.6: Outage probability and the corresponding bounds for K = 3, N = 1, dth =
0.1, σ2

v = 1.
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Figure 4.7: Comparison of accuracy of the outage probability bounds for scalar sources

for dth = 0.1.
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Figure 4.8: Comparison of accuracy of the outage probability bounds for scalar sources

for dth = 0.8.
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4.5 Summary and Discussion

In this chapter, a new method for analog transmission of Gauss-Markov sources over

MIMO fading channels was proposed. The proposed method incorporates complex or-

thogonal space-time codes. By decoding the real and imaginary parts of the code sepa-

rately, we allow any complex orthogonal space-time code with arbitrary rate to be used

for analog transmission. We then showed that for Rayleigh fading channels, the distor-

tion outage probability can achieve the maximum diversity order allowed by the MIMO

channel. By considering process memory only limited to two previous steps, we are able

to provide bounds for the distortion outage probability which are applicable for any SNR,

and also present bounds for the coding gain in the high SNR regime. We also outline how

the coding gain depends on the eigenvalues of the state transition and the process noise

covariance matrices, and the outage threshold.

There is no independence requirement for the consecutive channel instances for obtaining

the lower bound for outage. Therefore, the lower bound is always valid, even if the i.i.d.

assumption (in time) does not hold. In addition, we have shown that the diversity order

for the lower bound is also the same for outage probability. This means that KN is an

upper bound for the diversity order of any Rayleigh flat fading channel, regardless of

the correlation between different channel instances. The i.i.d. assumption must however

hold for the derivation of the upper bound. Due to that, it is not possible to draw any

conclusion about the actual value of the diversity order for non i.i.d. channels based on

the derivations in this chapter.

The coding gain results of this chapter can actually be compared with those of Chapter

2. Reducing the system dimensions to one, results in a lower bound for the coding gain,

which is equal to the coding gain obtained in that chapter. Comparing the bounds of this

chapter with the ones in the previous chapters, one could claim that, while the bounds in

Chapter 2 are asymptotically tight and the bounds in Chapter 3 show improvement with

increasing SNR, the bounds in this chapter show a different behavior. The tightness of the

bounds in this chapter does not only depend on the SNR, but also on the structure of the

process noise covariance matrix. The bounds in this chapter are tight if the process noise

covariance matrix is a scaled version of the identity matrix. This means that the bounds

in this chapter are tight in the high SNR regime for the scalar case as well. We could not

however establish any general theoretical conclusion about their finite SNR performance.
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Chapter 5

Large Dimensional Signals

In this chapter, Kalman filtering of a large dimensional Gauss-Markov vector process over

a fading channel is considered. The large dimension assumption can both model a source

with many co-located elements (centralized) or a collection of physically separated, but

still correlated sources with smaller dimensions (distributed). This problem may appear

in sensor networks, where a large number of signals need to be transmitted and then es-

timated in real time. For the centralized model, it is easily possible to use the diversity

scheme introduced in the previous chapter. For the distributed source, using the space-

time diversity schemes requires separate communication channels among the sensors.

This might be hard to achieve in practice and the overhead is also significant. The sim-

plest option is to transmit the signals over the channel without any extra pre-processing.

With the signals following an ARGM model, the optimal estimator at the receiver is the

Kalman filter with random estimation error covariance matrix. Then, a method is needed

to evaluate the quality of estimation for such a large dimensional system.

In order to measure the quality of estimation, we evaluate the instantaneous random dis-

tortion, i.e. the normalized trace of the instantaneous estimation error covariance matrix.

The instantaneous random covariance matrix from the Kalman filter follows a recursive

matrix equation, which is difficult to track. In order to simplify the analysis, we make

two extra assumptions. First, we assume that source dimensions is infinitely large. This

assumption allows us to incorporate tools from large system analysis and random matrix

theory. In addition, we make the assumption that the SNR is asymptotically high. Us-

ing these assumptions, it is possible to provide an approximation of the performance of

large, but finite dimensional systems. By using tools such as the Stieltjes transform, we

are able to find an approximation to the pdf of the eigenvalue distribution of the random

estimation error covariance matrix of the Kalman filter in the high SNR regime. Although

the approximated pdf seems to be accurate for a large range of possible distortion values,

it cannot approximate the tail of the pdf well enough for outage calculations similar to

what we did in the previous chapters. However, the approximated pdf can still be used to

obtain the average MSE of the Kalman filter. The average MSE then can provide us with

an overall performance measure as a function of system parameters.
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5.1 System Model and Theoretical Background

In this section, the updated system model used in the rest of this section is introduced first.

Then, some background is provided from random matrix theory and Stieltjes transform.

These two theories are later used in the analysis in Sec. 5.2.

5.1.1 Updated System Model and Problem Definition

Consider the following updated system model

x(n) = Ax(n− 1) + u(n)

y(n) =
√
γH(n)x(n) + v(n). (5.1)

In this section, it is assumed that x(n) and u(n) are column vectors of dimension K,

H(n)N×K is a matrix consisting of i.i.d Gaussian elements with variance equal to 1
K

(nec-

essary for large system analysis), and y(n) and v(n) are column vectors of dimension N ,

and γ is used for transmit power adjustment or the equivalently the pre-filtering operation

denoted by T (·), in line with the system model in Chapter 1. The covariance matrices

for u(n) and v(n) are respectively Cu, Cv. In this section, it is assumed that all signals

are real (for a discussion on complex signals please see Section 5.4).The assumption that

H(n)’s are independent from one another is kept as well. In addition, it is also assumed

that A is non-singular and that H(0) �= 0. Note that the probability of the event H(0) = 0
is equal to 0 for the Rayleigh fading channel model.

Assuming perfect channel knowledge at the receiver, the optimal MMSE filter at the

receiver is the Kalman filter. Similar to (4.7), the vector Kalman equations adapted

from [52] are

x̂(n|n− 1) = Ax̂(n− 1|n− 1)

P (n) = AM(n− 1)AT + Cu

Gk(n) =
√
γP (n)HT (n)

(
Cv + γH(n)P (n)HT (n)

)−1

x̂(n|n) = x̂(n|n− 1) +Gk(n)
(
y(n)−√

γH(n)x̂(n|n− 1)
)

M(n) =
(
I −√

γGk(n)H(n)
)
P (n), (5.2)

the prediction error covariance matrix P (n) then evolves through the following RRE

P (n+ 1) = AP (n)AT − γAP (n)HT (n)
(
Cv + γH(n)P (n)HT (n)

)−1

H(n)P (n)AT

+ Cu. (5.3)

For large system analysis, it is assumed that K,N grow large while β = N/K � 1 is

fixed. In order to simplify the problem furthermore, it is assumed that Cv = σ2
vI and
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Cu = I (the extension to Cu = σ2
uI is straightforward). Then, an approximation for the

eigenvalue distribution of the estimation error covariance matrix is developed. We note

that in a related work, the case with A = I and γ = 1 was studied in [105], where they

obtain a set of coupled Stieltjes transform pairs for the prediction error covariance matrix

(but not the estimation error covariance matrix).

With the aforementioned assumptions, the random Riccati equation in (5.3) can be shown

to be equal to

P (n+ 1) = A(P−1(n) + γHT (n)H(n))−1AT + I (5.4)

by invoking the matrix inversion lemma on (5.4).

By using arguments similar to those in Theorem 1, it can be shown that the eigenvalue

distributions of P (n) and M(n) converge to a steady state distribution as n goes to infinity.

For the convergence of the eigenvalues, it is required (according to [10, Theorem 2.4])

that the system is conditionally Gaussian, weakly controllable and weakly observable and

that log log+ ‖A‖, log log+ ‖A−1‖ , log log+ ‖H(0)‖ , log log+ ‖Cv‖ are integrable. The

system model in this thesis is conditionally Gaussian. Weak controllability and weak

observability are easy to show for the Rayleigh fading channel (see [10, Definition 2.1]),

and the aforementioned variables are integrable if A is non-singular and H(0) �= 0, as

assumed in the system model.

This convergence is regardless of the system dimensions. However, if the number of

dimensions is high, assuming that the matrix dimensions go to infinity provides us with

tools from random matrix theory such as the Stieltjes transform that significantly can

simplify the analysis.

5.1.2 Stieltjes Transform

The interested reader is referred to [103] for further information on the following defi-

nitions and lemmas regarding the Stieltjes transform for large system analysis involving

random matrices.

Definition 1. The Stieltjes transform S(z) of a pdf f(ζ) is defined as follows

S(z) =

∫
ζ∈Z

f(ζ) dζ

ζ − z
(5.5)

where Z is the support of ζ . The pdf can be obtained from the inverse Stieltjes transform
as

f(ζ) = lim
ω→0+

1

π
Im[S(ζ + jω)] (5.6)

Lemma 14. For the symmetric matrix QK×K and random matrix HN×K as described in
Sec. 5.1, and diagonal matrix DN×N with empirical eigenvalue distribution gD(w), the
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Stieltjes transform of the eigenvalue distribution of the following random matrix

R = Q+HTDH, (5.7)

i.e. SR(z), is obtained from

SR(z) = SQ

(
z − β

∫
wgD(w)dw

1 + wSR(z)

)
, (5.8)

where SQ(z) is the Stieltjes transform of the empirical eigenvalue distribution of Q. For
the analysis afterwards, the case where D = γI is used. Given that,

SR(z) = SQ

(
z − βγ

1 + γSR(z)

)
. (5.9)

Lemma 15. For random matrix QK×K , if R = Q−1, then

SR(z) = −1

z
− SQ(z

−1)

z2
, (5.10)

Lemma 16. For random matrix QK×K and scalar a, if R = aQ, then

SR(z) =
1

a
SQ(z/a). (5.11)

5.2 High SNR Approximation and Analysis

In this section, we apply a high SNR assumption to obtain an approximation of the Stielt-

jes transform and the eigenvalue distribution of the prediction and estimation error co-

variance matrices. For our system model, the (total) SNR at the receiver is equal to

SNR =
γPx

σ2
v

. High SNR is also referred to the case where γ → ∞. This is done to

simplify the analysis procedure, which otherwise is very tedious to develop. We begin

with obtaining a simple formula for the estimation error covariance matrix.

We had from the RRE for the prediction error covariance matrix P (n) in (5.4) that

P (n+ 1) = A(P−1(n) + γHT (n)H(n))−1AT + I.

As γ → ∞, it is expected that the term γHT (n)H(n) dominates the term P−1(n), (given

that β � 1) and therefore the matrix P (n + 1) can be approximated by the matrix I . For

the steady-state case when n → ∞, P (n) should also be a matrix close to I , and therefore

P−1(n) is close to I as well. Using this assumption, it is possible to get an approximate

equation for P (n+ 1) in the high SNR regime and through that an approximate equation

for M(n). With that, one obtains an approximate equation for SM(z) and as a result for

fM(ζ) as well. Assuming that P (n) → I , one obtains that

P (n+ 1) = A(I + γHT (n)H(n))−1AT + I. (5.12)
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Also, (5.2) results in

P (n+ 1) = AM(n)AT + I. (5.13)

Combining this with (5.12) leads to the fact that the matrix M(n) should have the same

eigenvalue distribution as the matrix (I + γHT (n)H(n))−1, and as a result the same

Stieltjes transform. Using (5.12), the following set of Stieltjes transform equations can

then be obtained

R(n) = I + γHT (n)H(n) ⇔ SR(z) =
1

1−
(
z − βγ

1+γSR(z)

) (5.14)

M(n) = R−1(n) ⇔ SM(z) = −1

z
− 1

z2
SR(z

−1). (5.15)

Solving SR(z) from (5.14) leads to

(1− z)γS2
R(z) + (βγ − γ + 1− z)SR(z)− 1 = 0, (5.16)

which results in

SR(z) =
−(βγ − γ + 1− z)±

√
(βγ − γ + 1− z)2 + 4γ(1− z)

2γ(1− z)
. (5.17)

Therefore, we have that

SM(z) =

− z−1 − z−2

⎛
⎜⎝−(βγ − γ + 1− z−1)

2γ(1− z−1)
±
√

(βγ − γ + 1− z−1)2 + 4γ(1− z−1)

2γ(1− z−1)

⎞
⎟⎠ ,

(5.18)

where the correct sign of ± is chosen such that fM(ζ) � 0 is satisfied. The next step is to

take the inverse Stieltjes transform to obtain fM(ζ). This is done as follows. First, SM(z)
is rewritten as

SM(z) = −z−1 − z−2Θ(z), (5.19)

where

Θ(z) =

⎛
⎜⎝−(βγ − γ + 1− z−1)

2γ(1− z−1)
±
√

(βγ − γ + 1− z−1)2 + 4γ(1− z−1)

2γ(1− z−1)

⎞
⎟⎠ (5.20)
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One can then obtain fM(ζ) by inverse Stieltjes transform as

fM(ζ) = lim
ω→0+

1

π
Im
[
SM(ζ + jω)

]
= lim

ω→0+

1

π
Im
[−(ζ + jω)−1 − (ζ + jω)−2Θ(ζ + jω)

]
= lim

ω→0+

1

π
Im

[−(ζ − jω)

ζ2 + ω2

]

− lim
ω→0+

1

π
Im

[
(ζ − jω)(ζ − jω)

(ζ2 + ω2)2

]
Re
[
Θ(ζ + jω)

]
− lim

ω→0+

1

π
Re

[
(ζ − jω)(ζ − jω)

(ζ2 + ω2)2

]
Im
[
Θ(ζ + jω)

]
. (5.21)

It is easy to show that

lim
ω→0+

1

π
Im

[
(ζ − jω)

ζ2 + ω2

]
= 0,

lim
ω→0+

1

π
Im

[
(ζ − jω)(ζ − jω)

(ζ2 + ω2)2

]
= 0. (5.22)

Therefore, it is possible to say that

fM(ζ) = lim
ω→0+

1

π
Re

[
(ζ − jω)(ζ − jω)

(ζ2 + ω2)2

]
Im
[
Θ(ζ + jω)

]
, (5.23)

which itself is equal to

fM(ζ) = lim
ω→0+

1

π

1

ζ2
Im
[
Θ(ζ + jω)

]
. (5.24)

Furthermore, it is also possible to show that

lim
ω→0+

Im

(
−(βγ − γ + 1− z−1)

2γ(1− z−1)

)
= 0. (5.25)

This leads to

fM(ζ) = ± 1

π

1

ζ2
lim

ω→0+
Im

⎡
⎢⎣
√

(κ− (ζ + jω)−1)2 + 4γ(1− (ζ + jω)−1)

2γ(1− (ζ + jω)−1)

⎤
⎥⎦ , (5.26)

with κ = (β − 1)γ + 1, which by correct selection of the sign results in

fM(ζ) =
−1

2πγζ(ζ − 1)
Im

√
(κ− 1

ζ
)2 + 4γ(1− 1

ζ
). (5.27)
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One can also remove the Im() operator and rewrite (5.27) as

fM(ζ) =
c

2πγζ2(1− ζ)

√
(ζu − ζ)(ζ − ζl), (ζl � ζ � ζu) (5.28)

with

c =
√
(β − 1)2γ2 + 2γ(β + 1) + 1

ζl =
γ(1 + β − 2

√
β + 1)

c2

ζu =
γ(1 + β + 2

√
β + 1)

c2
. (5.29)

The following results can also be obtained from (5.28).

Theorem 5. The average MSE, i.e. MSE = 1
K
EH

(
‖x(n)− x̂(n)‖2∣∣H) is equal to the

first moment of the eigenvalue distribution of the random estimation error covariance
matrix, i.e.

MSE =

∫
Λ

ζfM(ζ) dζ, (5.30)

and can be obtained from

MSE =

ζu∫
ζl

c

2πγζ(1− ζ)

√
(ζu − ζ)(ζ − ζl)dζ

=
c

2γ

(
1−
√
ζlζu −

√
1− ζl − ζu + ζlζu

)
. (5.31)

Note that the averaging operation is over all channel realizations. It is possible to show

that in the high SNR regime, the average MSE decreases with the inverse of the square

root of γ for β = 1 and inverse of γ for β > 1, i.e. when γ → ∞

MSE =

{
(
√
γ)−1, β = 1(

(β − 1)γ
)−1

, β > 1
(5.32)

Theorem 5 is the main result of this chapter regarding the MSE for Kalman filtering over

fading channels in the high SNR regime. Equations (5.31) and (5.32) can be used to

obtain the average MSE and analyze the quality of estimation. In addition, it is also easy

to show the following corollary

Corollary 1. The eigenvalue distribution for the prediction error covariance matrix for
the special case of A =

√
aI , namely fP (ζ) can be obtained from

fP (ζ) =
ac
√
(aζu + 1− ζ)(ζ − aζl − 1)

2πγ(ζ − 1)2(a+ 1− ζ)
, (aζl + 1 � ζ � aζu + 1). (5.33)
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Proof. Given that in this case P (n) = aM(n)+ I , one could easily obtain the eigenvalue

distribution of the prediction error covariance matrix using algebraic manipulations as

given in (5.33).

With our system model, the special case of P =
√
aI , combined with Cu = I models a

collection of independent time-correlated processes, which share a common communica-

tion channel and which have similar state-space models.

Corollary 2. The eigenvalue distribution for the estimation error covariance matrix for
the case when Cu = σ2

uI , can be obtained from

fM(ζ) =
c
′

2πγζ2(1− ζ/σ2
u)

√
(ζ ′u − ζ/σ2

u)(ζ/σ
2
u − ζ

′
l ), (ζ

′
l � ζ/σ2

u � ζ
′
u) (5.34)

with

c
′
=
√

(β − 1)2γ2σ4
u + 2γσ2

u(β + 1) + 1

ζ
′
l =

γσ2
u(1 + β − 2

√
β + 1)

c′2

ζ
′
u =

γσ2
u(1 + β + 2

√
β + 1)

c′2
. (5.35)

Proof. Given that in this case

M(n) = (1/σ2
u + γHT (n)H(n))−1

= σ2
u(I + γσ2

uH
T (n)H(n))−1 (5.36)

one could easily obtain the eigenvalue distribution of the prediction error covariance ma-

trix using algebraic manipulations as given in (5.34).

In the next section and by numerical evaluations, we evaluate the accuracy of the approx-

imations for the pdf of the instantaneous estimation error and instantaneous prediction

error covariance matrices, as well as the average MSE.

5.3 Numerical Evaluation of Results

In this section, the theoretical results from Sec. 5.2, namely the results regarding fM(ζ),
fP (ζ), and MSE are evaluated.

We begin with fM(ζ) and for the purpose of evaluation select K = 8 and N = 8, 12
corresponding to the values of β = N

K
= 1, 3/2. The matrix A is created by taking

A =
1

K
QHDAQ

T
H ,

92



where QH represents the Hadamard matrix of dimension K = 8, and

DA = diag{0.95, 0.9, 0.5, −0.6, −0.75, 0.97, 0.33, 0.87}.

We note that this choice of A was only for convenience and any other A leading to a stable

process could have been used. In addition, we take γ = 10 dB, which given the current

parameters, results in SNR ≈ 26.320 dB.

We simulate a Kalman filter with the given parameters for n � 105, and plot and compare

fM(ζ) from (5.28) vs. the fM(ζ) from the simulation in Figures 5.1 and 5.2. Clearly,

the main body of the pdf from (5.28) fits well into the profile obtained by the simulation.

However, it can be noted that the behavior of the theory and simulation plots are slightly

different for the limits of the support of the pdf, especially for the tail. Though this is

generally a drawback especially for outage calculation which is considered in the previous

chapters, it does not impose a significant problem for evaluating the average MSE, as will

be shown later in this section.

Next, fP (ζ) is evaluated from (5.33). We select the same set of parameters as before,

except for a which is taken to be a = 0.8. In that case, we would have that SNR ≈
26.021 dB. The results are plotted in figures 5.3 and 5.4. It is quite visible that the same

trends mentioned for fM(ζ) hold also for fP (ζ).

Finally, we evaluate the average MSE (with the original A), i.e. MSE, from (5.31), and

its simple high SNR approximation from (5.32). K,N = 8, 16 are used respectively

and varied SNR ∈ [10, 60] dB. The results are plotted in figures 5.5 and 5.6. Clearly

increasing β and SNR decreases the average MSE as predicted by (5.32). It is also visible

from the figures that the approximate average MSE obtained from (5.31) is quite accurate

even for finite dimensions and moderate SNR. The accuracy improves when bigger β,

higher SNR, or a larger dimension is applied.
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Figure 5.1: Comparison of theory from (5.27) and simulation for N = 8, K = 8 and

γ = 10 dB.
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Figure 5.2: Comparison of theory from (5.27) and simulation for N = 12, K = 8 and

γ = 10 dB.
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Figure 5.3: Comparison of theory from (5.33) and simulation for N = 8, K = 8 and

γ = 10 dB
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Figure 5.4: Comparison of theory from (5.33) and simulation for N = 12, K = 8 and

γ = 10 dB
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Figure 5.5: Comparison of theory from (5.31) and (5.32) and simulation for N = 8, K =
8
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Figure 5.6: Comparison of theory from (5.31) and (5.32) and simulation for N =
16, K = 8
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5.4 Summary and Discussion

In this chapter, we studied the steady state eigenvalue distribution of the prediction and

estimation error covariance matrices, for Kalman filtering of certain large dimensional

sources over fading channels. With the help of the Stieltjes transform, approximate for-

mulas are found for the distributions in the high SNR regime. We also obtained a simple

formula for the average MSE in the high SNR regime. In order to make the analysis

tractable, some simplifying assumptions were made, which are discussed in more details

in the following.

One assumption was that the signals are real. Note that the formulation for complex

Kalman filtering for large dimensional signals is no different from what was presented

in this chapter, apart from the fact that all matrix transpose operations must be done as

conjugate transpose operations. All the theoretical results regarding fM(ζ), fP (ζ), and

MSE will hold as well. As for compliance with numerical simulations, good accuracy

even for dimensions as low as N = K = 8 can be observed. However, it was noticed

that for the case of complex signals, when β = 1 and for small dimensions, the accuracy

is affected such that the actual average MSE from the simulations is lower than what is

predicted from the analysis. Although, the gap between theory and simulation closes as

dimensions grow bigger, and it is the regime of large dimensions for which the theory is

actually supposed to hold, this is a phenomenon we currently cannot fully explain. As a

result, we have decided to limit the system model to real signals.

In this chapter, a Gaussian system model is assumed. In the limit of large dimensions, this

assumption is not necessary for any of the asymptotic results. The Gaussian assumption

was kept in order to be close to the original system model as much as possible. For a

Gaussian system model, the Kalman filter is the optimal filter. For other distributions, the

Kalman filter is the optimal linear filter. Given that the asymptotic results are the same

for any source distribution, it is safe to say that the Kalman filter is the optimal filter with

respect to average MSE for any source distribution, if system dimensions grow infinitely

large.

For our analysis, we assume that β � 1. Consider only one of the source dimensions

in this system model, which could be the signal from one of the assumed sensors. The

received signal consists of the transmitted signal plus noise and the signals from other

source dimensions, which for our purpose can be considered as interference. If no coding

or transform is used, e.g. space-time coding, when β < 1, asymptotically increasing the

SNR results in unlimited increase of the interference from other dimensions. This will

ruin the performance, as the effective signal-to-interference-plus-noise-ratio will actually

approach zero for β < 1. For that matter, one should always have β � 1.

The infinite dimension assumption was made in order to simplify the analysis, and it

was already observed that it has interesting consequences, e.g. the Gaussian assumption

becomes irrelevant. However, if the high SNR assumption is kept, one may obtain the

eigenvalue distribution of M(n) via manipulating the eigenvalue distribution of HTH ,
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which is a Wishart matrix. The eigenvalue distribution problem for Wishart matrices is

a well-studied one, especially in the context of digital MIMO communication. A good

review of the existing work, plus new theory on ordered eigenvalues of different Wishart

matrices can be found in [121]. The analysis using eigenvalue distribution of Wishart

matrices can however be more involved than the analysis presented in this chapter, and

for our purpose, we have chosen to apply the Stieltjes transform tool instead.
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Chapter 6

Oversampling Diversity for
Band-limited Signals

In this chapter, uncoded transmission of band-limited signals over fading channels is con-

sidered. So far, we have considered different cases of first order ARGM signals, with the

corresponding estimator, i.e. the Kalman filter. When a general band-limited signal is to

be recovered from noise, and when there is no state-space model, the Wiener filter can

be used. When the signals are sent over random fading channels, the estimation error co-

variance matrix of the filter for each channel realization is also random. Considering the

normalized trace of that matrix as the instantaneous random distortion, one is faced with

a similar problem as in the last two chapters, i.e. estimation quality assessment based

on the statistical behavior of the random distortion. In order to evaluate the quality of

estimation, we consider the outage probability as a criterion. In addition and in order to

improve the performance, we propose using additional antennas at the receiver in order to

obtain a diversity gain for the distortion outage probability.

In this chapter, it is assumed that a K-dimensional signal is transmitted over a N × K
fading channel. The mathematical model of the system can be interpreted in two different

ways. If the measured process already is a vector process of dimension K, the math-

ematical model represents transformation and dimension expansion in order to obtain a

diversity gain. This is also a zero-delay transmission scheme. On the other hand, it is also

possible to look at the scheme in such a way that the N values are consecutive samples

of an oversampled band-limited scalar process, with the oversampling ratio of N/K. In

that case, a processing delay of N − 1 samples will be incurred due to buffering. In both

cases however, there is an increase in the number of original signal samples by a factor of

N/K. We have thus selected the name oversampling diversity for the proposed scheme.

To achieve the diversity gain, it is assumed that the N fading channels are parallel, and

also perfectly known at the receiver. As the final result of this chapter, we will show

that the distortion outage probability vanishes inversely polynomially with SNR, with the

exponent of N − K + 1 in the high SNR regime, thus achieving a diversity order of

N −K + 1.
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6.1 Updated System Model and Problem Definition

Consider the following signal model1

x(n) = FDxs(n) (6.1)

where xsK×1(n) is a zero-mean, white (complex Gaussian) vector whose elements have

unit power, i.e. E
(
xs

H(n)xs(n)
)
= IK×K . The matrix DN×K is all zeros except at K

positions, whose values are equal to one. It should be noted that the elements of D as

D[k, l], and non-zero elements must be selected in such a way that each column of the

matrix must have only one non-zero element (equal to one) and no non-zero elements

(ones) should occur in the same row. The indexes of the rows k where D[k, l] are equal to

one are denoted by k̄. We call D as the oversampling matrix. Two such D’s (D1 and D2)

for the setting where N = 3, K = 2 are shown below as

D1 =

⎡
⎢⎣ 1 0

0 0
0 1

⎤
⎥⎦ , or D2 =

⎡
⎢⎣ 0 1

1 0
0 0

⎤
⎥⎦ . (6.2)

It is possible to show that DDT = D̄ is diagonal and is only non-zero (equal to one) at

positions k̄ in the main diagonal (D̄[k̄, k̄] = 1). We have for instance that

D1D
T
1 =

⎡
⎢⎣ 1 0 0

0 0 0
0 0 1

⎤
⎥⎦ , and D2D

T
2 =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 0

⎤
⎥⎦ . (6.3)

It is also easy to show that DTD = IK×K .

The matrix F is a unitary matrix and is used to model/shape the spectrum of xs. In

particular, a normalized inverse discrete Fourier transform (iDFT) matrix of dimension N

can be used, i.e. F [k, l] =
1√
N

exp(
i2πkl

N
), k, l = 0, . . . , N − 1, with i =

√−1. The

matrix FH is then the normalized DFT matrix.

Selecting different matrices for F results in different interpretations of the signal model.

If xs is originally a vector source, then the signal model is a dimension expansion in order

to enable transmission over a large number of channels. However, by selecting F to be the

normalized iDFT matrix, equation (6.1) can actually approximate a band-limited signal

x(n) as shown later. The approximation improves as the dimensions N and K increase.

However, this would incur larger delay for scalar sources. In order to show that the band-

limitedness in fact holds, we first calculate the covariance matrix for x(n) (note that xs(n)

1The variable names for the system model are selected such that they best fit the oversampled scalar

case, rather than the K-dimensional vector case.
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is zero-mean) as

Cxx = E
(
x(n)x(n)H

)
(6.4)

= E
(
FDxs(n)xs

H(n)DTFH
)

= FDE
(
xs(n)xs

H(n)
)
DTFH

= FDIDTFH

= FD̄FH . (6.5)

We can then take the DFT of the covariance (correlation) matrix to obtain the power

spectrum matrix, i.e.

Sxx = E
(
FHx(FHx)H

)
= FHE

(
xxH

)
F

= FHFD̄FHF

= D̄. (6.6)

Now, D̄ has only K non-zero elements and is diagonal as mentioned before. By selecting

the correct placement for non-zero elements of D, the model can (approximately) repre-

sent a band-limited signal due its particular spectrum shape. Note that x(n) is only truly

band-limited if N,K → ∞ at fixed rate K/N . However, smaller sizes result in a signal

with most of the energy of the spectrum in certain bands. In this way, this signal model

can also be used to analyze the transmission of a signal over fading channels while the

signal has been oversampled when going through discretization. This provides us with

a model which is useful for two applications which are different in nature, but have the

same mathematical model.

For transmission, it is assumed that the signal x(n) is sent over a frequency-flat fading

channel. The received signal will then be equal to

y(n) =

√
γ

K
H(n)x(n) + v(n). (6.7)

It is assumed that H(n) is a diagonal matrix of dimension N ×N , is random, but is fixed

for L channel uses, i.e. the block fading model. It is also assumed that y(n) and v(n) are

column vectors of length N . With this model, H(n) represents N parallel scalar channels.

The diagonal elements of H are assumed to be unit variance zero mean complex Gaussian

random variables (Rayleigh fading). Furthermore, it is assumed that entries of v(n) are

white. With this definition, the SNR at the receiver is also equal to SNR = γ.

At the receiver, MMSE estimation is performed on channel outputs y(n). It is assumed

that H(n) is known to the receiver, but not the transmitter. Given known H(n), the MMSE

estimator is linear (Wiener filter) and follows [49]

x̂(n) = CxyC
−1
yy y(n) (6.8)
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and the corresponding estimation error covariance matrix is equal to

Cx|y = Cxx − γ

K
CxyC

−1
yy Cyx. (6.9)

The random distortion d(n) is then defined as

d(n) =
1

N
tr(Cx|y). (6.10)

Note that d(n) is random due to the random channel H (the time index in H(n) is dropped

hereafter). Furthermore, the distortion outage probability is equal to

Pout = Pr
(
d(n) � dth

)
, (6.11)

where dth is an arbitrary distortion threshold. Considering the high SNR regime, the

objective of this chapter is to show how the distortion outage probability varies with the

SNR and N,K as the SNR goes to infinity, and find the eventual diversity order.

6.2 Diversity Order for Distortion Outage Probability

In this section, we analyze the distortion outage probability in the high SNR regime and

find the diversity order. First, we obtain a formula for the random distortion of the esti-

mator. Then we use that formula in order to find the diversity order.

6.2.1 Distortion Calculation

We begin the analysis by obtaining simple equations for the MMSE estimator and the

corresponding MSE and distortion. It is easy to show that Cxy =
√

γ
K
CxxH

H and Cyy =
γ
K
HCxxH

H + σ2
vI . This results in

CxyC
−1
yy =

√
γ

K
CxxH

H

(
γ

K
HCxxH

H + σ2
vI

)−1

,

which can also be written as

CxyC
−1
yy =

√
γ

K
FD̄FHHH

(
γ

K
HFD̄FHHH + σ2

vI

)−1

. (6.12)

We take the corresponding columns of F where D̄ has a one, and arrange them in a N×K
matrix Ω = FD. It is easy to see that Cxx = FD̄FH = ΩΩH . One can therefore rewrite

the expression for the estimator as

CxyC
−1
yy =

√
γ

K
ΩΩHHH

(
γ

K
HΩΩHHH + σ2

vI

)−1

. (6.13)
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Next, Cx|y matrix is simplified as

Cx|y = ΩΩH − γ

K
ΩΩHHH

(
γ

K
HΩΩHHH + σ2

vI

)−1

HΩΩH . (6.14)

Then, the Woodbury matrix identity [76] is used to obtain(
γ

K
HΩΩHHH + σ2

vI

)−1

=

(
γ

K
(HΩ)(HΩ)H + σ2

vI

)−1

=
1

σ2
v

I −
γ
K

σ4
v

HΩ

(
I +

γ
K

σ2
v

(HΩ)H(HΩ)

)−1

(HΩ)H .

(6.15)

Inserting (6.15) into (6.14) results in

Cx|y = ΩΩH − γ

K
ΩΩHHH

⎛
⎝ 1

σ2
v

I −
γ
K

σ4
v

HΩ

(
I +

γ
K

σ2
v

(HΩ)H(HΩ)

)−1

(HΩ)H

⎞
⎠HΩΩH

= ΩΩH − Ω

(
γ
K

σ2
v

(HΩ)H(HΩ)

)
ΩH

+ Ω

(
γ
K

σ2
v

(HΩ)H(HΩ)

)(
I +

γ
K

σ2
v

HΩ)H(HΩ)

)−1( γ
K

σ2
v

(HΩ)H(HΩ)

)
ΩH .

(6.16)

Taking S =
γ
K

σ2
v
(HΩ)H(HΩ) results in

Cx|y = ΩΩH − ΩSΩH + ΩS(I + S)−1ΩH . (6.17)

Now we try to find tr(Cx|y) as follows

tr(Cx|y) = tr(ΩΩH)− tr
(
ΩSΩH) + tr(ΩS(I + S)−1SΩH

)
= tr(ΩHΩ)− tr

(
ΩHΩS) + tr(ΩHΩS(I + S)−1S

)
(a)
= K − tr(S) + tr

(
S2(I + S)−1

)
(b)
= K − tr(S) + tr

(
S2S−1(I + S−1)−1

)
= K − tr(S) + tr

(
S(I + S−1)−1

)
(6.18)

= tr(I − S + S(I + S−1)−1), (6.19)

where (a) is due to ΩHΩ = IK×K and (b) comes from the following matrix equality [86,

Page 151]

(I + A−1)−1 = A(A+ I)−1 (6.20)
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for any arbitrary invertible matrix A.

In the following lemma, we provide a representation of d(n) which we will use in the

diversity analysis.

Lemma 17. The distortion for a given realization of H can be obtained from

d(n) =
1

N
tr
(
(I + S)−1

)
. (6.21)

Proof. We can rewrite tr(Cx|y) from (6.19) as

tr(Cx|y) = tr(I − S + S(I + S−1)−1)

= tr(I − S + S(I − S−1 + S−2 − S−3 + . . .))

= tr(I − S + S − I + S−1 − S−2 + . . .)

= tr(S−1 − S−2 + S−3 − S−4 + . . .)

= tr

∞∑
i=1

(−1)i−1S−i. (6.22)

We now take Z =
∞∑
i=1

(−1)i−1S−i and find a form which only depends on S−1.

We begin with

Z = S−1 − S−2 + S−3 − S−4 + . . .

= S−1(I − S−1 + S−2 − S−3 + . . .

= S−1(I + S−1)−1. (6.23)

We can also write

Z = S−1 − S−2 + S−3 − S−4 + . . .

= I − I + S−1(I − S−1 + S−2 − S−3 + . . .

= S−1(I + S−1)−1. (6.24)

Combining (6.23) and (6.24) results in

I − (I + S−1)−1 = S−1(I + S−1)−1. (6.25)

We multiply both sides in (6.25) with S. As a result, it is obtained that

S − S(I + S−1) = (I + S−1)−1. (6.26)

Then, we get that

S = S(I + S−1) + (I + S−1)−1

= (I + S)(I + S−1), (6.27)
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which results in

(I + S−1)−1 = S(I + S)−1. (6.28)

Combining (6.28) with (6.23) results in

Z = S−1(I + S−1)−1

= S−1S(I + S)−1

= (I + S)−1, (6.29)

which means that

d(n) =
1

N
tr(Z)

=
1

N
tr
(
(I + S)−1

)
, (6.30)

and proof of lemma 17 is complete.

Lemma 17 will be used for finding the diversity order in the next section.

6.2.2 Diversity Order Analysis for Parallel Channels

For parallel channels, HHH is diagonal. We take ζi = |hi|2, so that the diagonal elements

of HHH are equal to ζi. Let ζ1 ≤ ζ2 ≤ . . . ≤ ζN be the ordered diagonal elements (also

eigenvalues) of HHH in increasing order.

In order to find the diversity order for the outage probability, it must be such that if the

SNR goes to infinity, the outage probability must go to zero, unless S becomes singular.

For small enough threshold dth, outage may occur even though S is non-singular. For

that case, the event that S is close to singular is the event which leads to outage. With

that reasoning, the outage probability may be considered to be approximately equal to the

(almost) singularity probability of S, which will be studied in the following. We note that

if the eigenvalues of S are ordered, it is the smallest eigenvalues which have the most

significant effect on that event.

To perform the outage analysis, two key components are required. First, the near-zero

behavior of the cdf of the ordered eigenvalues of HHH is needed. In addition, a high

SNR approximation for the distortion can also be very useful. These are presented in

Lemmas 18 and 19.

The cdf of the unordered eigenvalues, i.e. ζi, i = 1, 2, . . . , N near zero is of the form

Fζi(ζ) ≈ c · ζ for small ζ > 0 and a SNR-dependent constant c, assuming ζi is the

magnitude squared of a complex Gaussian variable (see [111] for more details). This fact

may be used in order to obtain the cdf of the ordered eigenvalues as presented in Lemma

18.
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Lemma 18. The cdf of the (N − K + 1)-st ordered i.i.d. exponential random variable,
among N i.i.d. exponential random variables for small ζ follows FζN−K+1

(ζ) ≈ cN−K+1 ·
ζN−K+1 for some constant cN−K+1.

Proof. Consider N ordered i.i.d. exponential random variables, namely ζ1 � ζ2, . . . , ζN .

We are interested in the near zero behavior of the cdf of ζN−K+1. As all the variables are

i.i.d., then the cdf of ζi is equal to

Fζ(ζ) = Pr(ζi < ζ)

= 1− exp(ζ/γ),

for some γ. If, ζ is the magnitude square of a Rayleigh fading channel, i.e. ζi = |hi|2,
then γ is equal to the SNR of the channel. We have in addition that the pdf as fζ(ζ) =
1/γexp(ζ/γ). We also denote the pdf (cdf) of the m-smallest random variable as fm(ζ)
(Fm(ζ)), e.g. the pdf of the minimum of this random variables is denoted by f1(ζ).

From [18], know that the pdf of the (N − K + 1)’st variable in this set can be obtained

from

fN−K+1(ζ) =
N !

(N −K)!(K − 1)!
Fζ(ζ)

N−K(1− Fζ(ζ))
K−1fζ(ζ). (6.31)

The near zero behavior of FN−K+1(ζ) can now be obtained from (6.31). Simply, from

Taylor series expansion of Fζ(ζ) around zero, one can see that Fζ(ζ) = ζ/γ+ o(ζ). Now,

the Taylor series expansion of FN−K+1(ζ) around zero can be written as

FN−K+1(ζ) =
∞∑
i=0

F
(i)
N−K+1(0)

i!
ζ i, (6.32)

where F
(i)
N−K+1(0) is the i’th derivative of FN−K+1(ζ) at ζ = 0. Given that ζi � 0,

F
(i)
N−K+1(0) = lim

ζ→0

∂i

∂ζ i

ζ∫
0

fN−K+1(u) du

= f
(i−1)
N−K+1(0). (6.33)

Now, given that Fζ(ζ) = ζ/γ + o(ζ) and consequently fζ(ζ) = 1/γ + o(1), it is possible

to rewrite (6.31) as

fN−K+1(ζ)

=
N !

(N −K)!(K − 1)!
(ζ/γ + o(ζ))N−K(1− (ζ/γ + o(ζ)))K−1(1/γ + o(1))

=
N !

(N −K)!(K − 1)!
(ζ/γ + o(ζ))N−K(1− (K − 1)(ζ/γ) + o(ζ))(1/γ + o(1))

=
N !

(N −K)!(K − 1)!
(ζ/γ + o(ζ))N−K(1/γ + o(1))

=
N !

γ(N −K)!(K − 1)!
((ζ/γ)N−K + o(ζN−K)) (6.34)
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Now, clearly from (6.34), we have that

f
(l)
N−K+1(0) = 0, l = 0, 1, . . . , N −K − 1, (6.35)

while

f
(l)
N−K+1(0) �= 0, l � N −K. (6.36)

As a result

F
(l)
N−K+1(0) = 0, l = 0, 1, . . . , N −K, (6.37)

while we have that

F
(l)
N−K+1(0) �= 0, l � N −K + 1. (6.38)

Consequently, we obtain that

FN−K+1(ζ) = cN−K+1ζ
N−K+1 + o(ζN−K+1) (6.39)

for some constant cN−K+1 as claimed.

Regarding the high SNR approximation for the distortion, consider the following lemma.

Lemma 19. In the high SNR regime, the instantaneous random distortion may be approx-
imated as

d(n) ≈ 1/N(
1 + c

′
N,KγζN−K+1

) , (6.40)

for some constant c
′
N,K .

Proof. Assume that βi, i = 1, 2, . . . , K are the eigenvalues of S. Then we have that

tr(I + S)−1 =
K∑
i=1

1

1 + βi

. (6.41)

It is already assumed that K − 1 lowest ζi are equal to zero (ζ1 � ζ2 � . . . � ζK−1 = 0),

but ζN−K+1 has a small but non-negligible value ε. In this case, S is still of rank K. Now if

ε → 0, then the rank becomes K−1. That means, we will have one eigenvalue of S equal

to 0. We denote this eigenvalue by βj . Other eigenvalues of S should be non-negligible

positive values. S is a normal matrix, i.e. SHS = SSH . It can be shown from [23] that an

ε change in HHH , will at most incur εKγ/(Nσ2
v) change in the eigenvalues. This means

that βj was at most equal to ε before the change. We use that value as an approximation
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and for when ζN−K+1 = ε, write

tr(I + S)−1 ≈ 1

1 + εKγ/(Nσ2
v)

+
K∑
i=1
i �=j

1

1 + βi

≈ 1

1 + ζN−K+1Kγ/(Nσ2
v)

+
K∑
i=1
i �=j

1

1 + βi

(a)≈ 1

1 + ζN−K+1Kγ/(Nσ2
v)

=
1(

1 + c
′
N,KγζN−K+1

) , (6.42)

with c
′
N,K = K

Nσ2
v
, and where (a) comes from the fact that βi, i �= j are considerably

bigger than βj . Otherwise, the rank would become less than K − 1, which would then

contradict our assumptions. As a result, d(n) may be obtained as suggested in the lemma.

Continuing the diversity analysis, we turn to the singularity event (corresponding to the

outage event), and consider the scenario in which ζ1, . . . , ζN−K are close to zero, ζN−K+1

has small value and ζN−K+2, . . . , ζN are big enough (due to the high SNR), so that sin-

gularity of S only comes from ζN−K+1 going to zero. Then, using Lemma 19, results

in

d(n) ≈ 1/N(
1 + c

′
N,KγζN−K+1

)
≈ 1/N(1− c

′
N,KγζN−K+1). (6.43)

The behavior of the distortion d(n) in the neighborhood of the normalized sum power of

the source, i.e. the maximum possible distortion, is determined by the behavior of ζN−K+1

near zero. This neighborhood near zero is magnified by γ. So, it is a neighborhood of size

of order 1/γ. One may then write the outage probability as

Pout = Pr
(
d(n) � dth

)
= Pr(d(n) ∈ [1/N − dth, 1/N ]), (6.44)

for some arbitrary dth. Using Lemma 18, the outage probability can then be approximated

as

Pout = Pr(d(n) ∈ [1/N − dth, 1/N ])

≈ FζN−K+1
(
1−Ndth

c
′
N,Kγ

) (6.45)

= cN−K+1γ
−(N−K+1),
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Figure 6.1: Distortion outage probability for N = 4, K = 3, dth = 0.1, σ2
x = σ2

v = 1,

block size = 1.

which results in a diversity order of N − K + 1 for the outage probability. Numerical

simulations are provided in the following, in order to evaluate the accuracy of the results.

We select several values for N,K and plot the Pout vs. SNR curve in Figures 6.1 - 6.4.

we begin with selecting N = 4, K = 3 and dth = 0.1, σ2
x = σ2

v = 1. We also try different

block sizes of L = 1, 10 over which the channel H is assumed fixed. The simulation is

performed for 107 blocks. The results are depicted in Figures 6.1 and 6.2. The expected

diversity order for distortion outage probability is equal to dord = N−K+1 = 4−3+1 =
2. It is quite visible in both figures that the slope of both curves in the high SNR regime

follows the theory.

Next, we take K = 2, while L = 1, 10, and keep the other system parameters the same.

The simulation was performed for 108 blocks and the results are presented in Figures 6.3

and 6.4. A diversity order equal to N −K + 1 = 4− 2 + 1 = 3 is expected. The results

in these figures also indicate compliance with the theory.
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Figure 6.2: Distortion outage probability for N = 4, K = 3, dth = 0.1, σ2
x = σ2

v = 1,

block size = 10.
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Figure 6.3: Distortion outage probability for N = 4, K = 2, dth = 0.1, σ2
x = σ2

v = 1,

block size = 1.
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Figure 6.4: Distortion outage probability for N = 4, K = 2, dth = 0.1, σ2
x = σ2

v = 1,

block size = 10.
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6.3 Summary and Discussion

In this chapter, we proposed a simple framework to perform uncoded transmission of

a band-limited signal over N parallel fading channels with an N/K oversampling rate,

and incorporated the distortion outage probability as a measure of estimation quality. We

applied techniques from Taylor series analysis and perturbation of eigenvalues of normal

matrices, and showed that in the high SNR regime, the estimation error outage probability

vanishes inversely polynomially with SNR, with the exponent of N−K+1, and therefore

achieves a diversity order of N −K + 1.

A basic part of the system model is the (inverse) discrete Fourier transform matrix. The

mathematical system model can in fact model two different types of signals. For the

scalar ones, the matrix F is used to model the spectrum of an oversampled band-limited

signal. The transmission part will then simply consist of sending N samples over N i.i.d.

channels. For the vector case, F can be considered to be the pre-filter T (·) in the original

system model of Chapter 1, along with the matrix D. In that sense, the role of matrix F is

only to spread each of the K source dimensions over N channels. Other transformations

may be used as well, and as long as unitary matrices are concerned, the diversity results

will remain the same.
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Chapter 7

Conclusion

7.1 Summary and Conclusion

In this thesis, the performance of two specific estimation schemes, namely Kalman and

Wiener filters, has been studied for analog uncoded transmission over fading channels.

With random channels, the instantaneous mean estimation error, or simply distortion, is

also random. The instantaneous random distortion has then a steady-state probability dis-

tribution function, given that certain conditions on the system model are satisfied. The

estimation quality was afterwards analyzed with respect to distortion outage probability

and average MSE measures. One major distinction between the current work and re-

lated previous works on estimation quality analysis for analog transmission over fading

channels, is considering time-correlated sources, especially those following a state-space

model. We also introduced modified and new diversity schemes for analog communi-

cations in order to improve the outage probability performance. For estimation quality

analysis, two main approaches were followed, namely developing bounds on the outage

probability, as well as asymptotic high SNR analysis.

As finding a complete analytical solution for the outage probability turned out to be te-

dious even for the simplest cases, upper and lower bounds were developed for the outage

probability for certain SISO, SIMO, and MIMO settings in Chapters 2, 3, and 4. The

significance of the bounds is their potential to be used for system design. Given a sys-

tem model and a threshold, one can incorporate the bounds to find the minimum required

SNR and diversity order. In addition to the bounds, asymptotic high SNR analysis was

also performed on both outage and average MSE measures throughout this work. The

application of high SNR analysis is its ability to provide a simple means for estimation

quality assessment. The high SNR analysis of the SISO case shows that the outage prob-

ability decreases with the inverse of the SNR in the high SNR regime. This performance

was improved by incorporating diversity achieving techniques in Chapters 3 and 4 for

time-correlated signals and in Chapter 6 for band-limited signals. The performance im-

provement is reflected in an increased diversity order of the outage probability function.
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The asymptotic high SNR performance also lead to characterizing the asymptotic (rela-

tive) average power gain, i.e. the coding gain. The coding gain was derived as a function

of source parameters in Chapters 2 and 4, which together with the diversity order, com-

pletely describes the high SNR performance of the outage probability function.

The analysis starts in Chapter 2 by considering transmission of scalar sources over scalar

i.i.d. channels. This is a rather simple system model, which allows for simpler analysis,

which in turn, could (and did) lead to better understanding of the fundamental behavior

of the estimation error outage function for estimation over fading channels. In Chapter

3, we studied the effect of having several independent versions of the transmitted signal

at the receiver, e.g. via having multiple antennas, in order to achieve a diversity gain for

the outage probability. The effect of parameter mismatch on the diversity results was also

considered afterwards. The analysis in that chapter shows that for process and channel

noise variance, using mismatched parameters does not effect the diversity results. The

loss is rather in the coding gain and for small mismatches, i.e. good parameter estimation

techniques, the SNR loss due to mismatch is not significant. This important result shows

that the standard Kalman filtering may still be useful, even though all the simplifying

assumptions made in Chapter 2 may not always hold.

The encouraging diversity results of Chapter 3 lead to designing a joint space-time coding

and Kalman filtering scheme in Chapter 4, in order to obtain transmit diversity gains in

addition to the receive diversity gain in Chapter 3. We incorporated complex orthogonal

space-time codes in series with the Kalman filter. The decoding procedure was modified

accordingly to allow for inclusion of codes with any rates. The analysis in this chapter

shows that it is possible for the Kalman filter to achieve the maximum allowable diversity

order for distortion outage probability. This interesting result is despite the fact that such

scheme is not necessarily optimal, as it does not exploit the memory in the source at the

transmitter side. The outage probability, as well as the coding gain, were also bounded.

The results of this chapter show the potential for the practical application of the pro-

posed scheme in order to provide high quality delay-free reliable analog communication

schemes.

Further on, we studied estimation over fading channels for large dimensional systems.

We found an expression for the average MSE of the Kalman filter for estimation of sam-

ples transmitted over a large MIMO fading channel. The results of this chapter can be

used in order to get an overall performance metric for large sensor networks performing

simple analog communication. The high SNR behavior indicates also the importance of

additional antennas at the receiver. If the number of antennas at the receiver is the same

as the number of transmitters, or alternatively transmit antennas, the average MSE de-

creases with the inverse of the square root of the SNR. The asymptotic behavior changes

significantly, even only one additional antenna is applied. In that case, i.e. when the num-

ber of receive antennas is bigger than the number of transmit antennas, the average MSE

decreases with the inverse of the SNR in the high SNR regime.

Finally, we introduced a new scheme to allow for high quality, delay-free Wiener filtering

of bandlimited signals over MIMO block fading channels. We considered transmission
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of a K dimensional signal over N parallel fading channels, and proved a diversity order

of N −K + 1 for the distortion outage probability. If, N is selected large enough, high

quality estimates can be obtained in practice. There is also no limit on the block length,

which makes the results of this chapter even more interesting for practical applications.

We believe that the estimation and diversity schemes presented and analyzed in this work

have the potential to be used for providing simple but high performance delay-free com-

munication schemes. While some aspects and some of the pros and cons of these schemes

were explored in this work, there is still plenty of unanswered questions which require

further investigation. Some of these open problems are reviewed in the next section.

7.2 Further Thoughts and Future Work

The results of this thesis show that it is possible to perform low-complexity, high quality,

and at the same time delay-free estimation over fading channels. The suggested estima-

tion scheme is based on analog communication, rather than digital. There are no claims

about the optimality of analog communication in the settings which are considered in this

work. However, a comparison with relevant zero- or low-delay digital communication

schemes can be a very useful and informative future work. In addition, these results are

based on certain simplifications, most significant of which are known system parameters,

known channel at the receiver, and i.i.d. channels. While we studied certain deviations

from these assumptions, a full analysis for unknown parameters, considering channel es-

timation error and the effect of channels with memory still remains. Such analysis also

allows for better understanding the fundamental behavior of the random estimation error

variance/covariance matrix in more realistic settings.

In order to evaluate the consequences of unknown system parameters, one may take the

analysis in this thesis in Chapter 3 as a starting point and extend it to other system pa-

rameters and other system models. A natural extension to the analysis in Chapter 3 is

analyzing the effect of process and channel noise mismatch for higher dimensions. In

addition, studying the effect of modeling error/mismatch for the state transition matrix

should be considered. The effect of modeling error/ estimation error for the channel is a

slightly different problem, as the channel is time-varying and needs to be estimated for

each time instant.

To analyze the effect of channel memory, one approach is to start from Chapter 2 and try

to develop new theory for both the non-i.i.d. fading channel model and the i.i.d. block

fading model. We believe that one key issue is selecting a good model for the channel

memory, in order to be able to develop relevant theory by modifying the fundamental

equations of the estimation error variance distribution in Chapter 2. A first order Markov

model can be a good starting point. Other than that, a block fading model with a large

block size assumption may also lead to interesting results, as the analysis becomes simpler

in that case. One may then assume that the Kalman filter converges to a steady-state value

for that block, which is random but then almost constant over each block. Obtaining
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the distribution of the random estimation error variance in that case, provides a tool for

evaluating the outage performance of finite block sizes, as their performance is expected

to be limited by the two extreme cases of block sizes of one and infinity.

Another possible direction for future research is practical schemes which can employ a

trade-off between source-to-channel bandwidth ratio and the estimation quality either in

terms of outage probability or the average MSE. A similar concept and a simple example

was provided in Chapter 6. There and for the specifically presented scheme, a trade off

exists between the oversampling ratio N/K, and the diversity order given by N − K +
1. One could see that decreasing source-to-channel bandwidth ratio (increasing N/K)

results in increasing diversity order and vice versa. While theoretical limits already exist

for analog communication, and practical schemes for digital communication are already

available, practical implementations, especially for the Kalman filter, is a an interesting

problem to consider.

In this thesis, the channels are assumed known at the receiver, but not at the transmitter. It

is interesting to study the potentials that full or partial channel information at the transmit-

ter can create for improving the estimation quality. As one of the application areas of this

can be within the wireless control framework, it is expected that a feedback channel exists

between the control center and the point of observation, which might be co-located with

the control plant. One could then use this channel in order make the feed-forward channel

information available at the transmitter. One could then study how this extra information

can help improve the performance.

Finally, more general source models can also be considered. The first-order ARGM model

allowed for simplification in deriving new theory, helping understand some of the funda-

mental behavior of the instantaneous random estimation error. It is interesting to see how

more general signal models will affect the performance. It was already shown in this the-

sis that certain source parameters appear in the coding gain of the outage probability in

the high SNR regime. It remains to see how a higher AR model would affect the coding

gain.
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Appendix A

Upper and lower bounds for κ

We begin to rewrite fM(M) in the following manner for simplicity

fM(M) =

{
κλ
M2 exp(−λ

M
) M � σ2

u

g(M) M > σ2
u.

(A.1)

We have that fM(M) is a pdf, therefore
∫Mmax

0
fM(M) dM = 1. As a result, we have that

1 =

∫ Mmax

0

fM(M) dM

=

∫ σ2
u

0

κλ

M2
exp(

−λ

M
) +

∫ Mmax

σ2
u

g(M) dM (A.2)

= κexp(
−λ

M
)

∣∣∣∣∣
σ2
u

0

+

∫ Mmax

σ2
u

g(M) dM

= κexp(
−λ

σ2
u

) +

∫ Mmax

σ2
u

g(M) dM, (A.3)

which gives

∫ Mmax

σ2
u

g(M) dM = 1− κexp(
−λ

σ2
u

). (A.4)

Now we take

σ2
u < m < Mmax.

Then we have

(ρ2 + 1)σ2
u < ρ2m+ σ2

u < ρ2Mmax + σ2
u

127



and

exp

(
λ

ρ2Mmax + σ2
u

)
< exp

(
λ

ρ2m+ σ2
u

)
< exp

(
λ

(ρ2 + 1)σ2
u

)
. (A.5)

Now we have that∫ Mmax

σ2
u

exp

(
λ

ρ2m+ σ2
u

)
g(m) dm >

∫ Mmax

σ2
u

exp

(
λ

ρ2Mmax + σ2
u

)
g(m) dm (A.6)

∫ Mmax

σ2
u

exp

(
λ

ρ2m+ σ2
u

)
g(m) dm <

∫ Mmax

σ2
u

exp

(
λ

(ρ2 + 1)σ2
u

)
g(m) dm. (A.7)

Next, if we use the definition of fM(M) for M � σ2
u, we obtain the following

f(M) =
λ

M2
exp(

−λ

M
)

∫ Mmax

0

exp(
λ

ρ2m+ σ2
u

)fM(m) dm

=
κλ

M2
exp(

−λ

M
) (A.8)

=
λ

M2
exp(

−λ

M
)

(∫ σ2
u

0

exp(
λ

ρ2m+ σ2
u

)

(
κλ

m2

)
exp(

−λ

m
) dm

+

∫ Mmax

σ2
u

exp(
λ

ρ2m+ σ2
u

)g(m) dm

)
, (A.9)

from which, we may deduce that

κ = κ

∫ σ2
u

0

exp(
λ

ρ2m+ σ2
u

)

(
λ

m2

)
exp(

−λ

m
) dm+

∫ Mmax

σ2
u

exp(
λ

ρ2m+ σ2
u

)g(m) dm.

And then we obtain

κ =

∫Mmax

σ2
u

exp( λ
ρ2m+σ2

u
)g(m) dm

1− ∫ σ2
u

0
exp( λ

ρ2m+σ2
u
)
(

λ
m2

)
exp(−λ

m
) dm

. (A.10)

Now by letting

aκ = 1−
∫ σ2

u

0

exp(
λ

ρ2m+ σ2
u

)

(
λ

m2

)
exp(

−λ

m
) dm (A.11)

and combining (A.6) into (A.10) while using (A.4), we get

κaκ >

∫ Mmax

σ2
u

exp(
λ

ρ2Mmax + σ2
u

)g(m) dm

> exp(
λ

ρ2Mmax + σ2
u

)

∫ Mmax

σ2
u

g(m) dm (A.12)

> exp(
λ

ρ2Mmax + σ2
u

)(1− κexp(
−λ

σ2
u

)), (A.13)
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which leads to

κ >
1

(aκexp( −λ
ρ2Mmax+σ2

u
) + exp(−λ

σ2
u
))
. (A.14)

So, we finally get

κl =
1(

aκexp
(

−λ
ρ2Mmax+σ2

u

)
+ exp(−λ

σ2
u
)

) . (A.15)

The same procedure also holds for κu by integrating (A.7) into (2.26) while using (A.4).

We then get

κu =
1(

aκexp
(

−λ
σ2
u(1+ρ2)

)
+ exp(− λ

σ2
u
)

) . (A.16)
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Appendix B

Proof of Lemma 8

The proof is based on converting the definition of each κi into a linear inequality on other

κj’s. Then we will have d similar inequalities. We also obtain another equality by taking

into account that the pdf should integrate to one over its domain. This last equality also

involves κi’s and we then get d + 1 linear simple inequalities which result in upper and

lower bounds for κi.

We begin the proof by first noting that from (3.7), fM(M) can be written as

fM(M) =

{
f(M), M � σ2

u

g(M), M > σ2
u,

(B.1)

where

f(M) =
d−1∑
i=0

κi(−1)i
(
d− 1
i

) λd

(d− 1)!

exp(−λ
M
)

Md+1−i
. (B.2)

Given the definition for κi from (3.8), we have that

κi =

∫ Mmax

0

1

(ρ2m+ σ2
u)

i
exp

(
λ

ρ2m+ σ2
u

)
fM(m) dm

(a)
=

∫ σ2
u

0

1

(ρ2m+ σ2
u)

i
exp

(
λ

ρ2m+ σ2
u

)
f(m) dm

+

∫ Mmax

σ2
u

1

(ρ2m+ σ2
u)

i
exp

(
λ

ρ2m+ σ2
u

)
g(m) dm, (B.3)

where in (a) we partition the domain of integration and use (B.1). Inserting (B.2) into

(B.3) results in

κi =
d−1∑
j=0

κjwij +

∫ Mmax

σ2
u

1

(ρ2m+ σ2
u)

i
exp

(
λ

ρ2m+ σ2
u

)
g(m) dm, (B.4)
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where

wij = (−1)j
(
d− 1
j

) λd

(d− 1)!

∫ σ2
u

0

1

(ρ2m+ σ2
u)

i
exp

(
λ

ρ2m+ σ2
u

)
exp(−λ

m
)

md+1−i
dm,

(B.5)

when 0 � i, j � d− 1. Next, we note that we should have

1 =

∫ Mmax

0

fM(m) dm =

∫ σ2
u

0

f(m) dm+

∫ Mmax

σ2
u

g(m) dm

(a)
=

∫ σ2
u

0

d−1∑
j=0

κj(−1)j
(
d− 1
j

) λd

(d− 1)!

exp(−λ
m
)

md+1−i
dm+

∫ Mmax

σ2
u

g(m) dm, (B.6)

where (a) is obtained by using the definition of f(M) from (B.2) for 0 � M � σ2
u. Now

we can rewrite (B.6) as

1 =
d−1∑
j=0

κjcj +

∫ Mmax

σ2
u

g(m) dm, (B.7)

where

cj = (−1)j
(
d− 1
j

) λd

(d− 1)!

∫ σ2
u

0

exp(−λ
m
)

md+1−i
dm. (B.8)

At this stage, it is possible to get d equalities involving κi’s from (B.4) in addition to

another equality involving κi’s from (B.7). At the next stage of proof we convert the

aforementioned equalities (also involving g(M) which is at this stage unknown) to a set

of linear inequalities.

Now note that due to the fact that σ2
u � m � Mmax, we have (1 + ρ2)σ2

u � ρ2m + σ2
u �

ρ2Mmax + σ2
u. As a result, it is easy to show that

exp
(

λ
ρ2m+σ2

u

)
(ρ2m+ σ2

u)
i
�

exp
(

λ
(1+ρ2)σ2

u

)
((1 + ρ2)σ2

u)
i

(B.9)

and

exp
(

λ
ρ2m+σ2

u

)
(ρ2m+ σ2

u)
i
�

exp
(

λ
ρ2Mmax+σ2

u

)
(ρ2Mmax + σ2

u)
i
, (B.10)

which in turn results in

∫ Mmax

σ2
u

exp
(

λ
ρ2m+σ2

u

)
(ρ2m+ σ2

u)
i
g(m) dm �

exp
(

λ
(1+ρ2)σ2

u

)
((1 + ρ2)σ2

u)
i

∫ Mmax

σ2
u

g(m) dm (B.11)
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and

∫ Mmax

σ2
u

exp
(

λ
ρ2m+σ2

u

)
(ρ2m+ σ2

u)
i
g(m) dm �

exp
(

λ
ρ2Mmax+σ2

u

)
(ρ2Mmax + σ2

u)
i

∫ Mmax

σ2
u

g(m) dm. (B.12)

If we now define Z � 0 as

Z =

∫ Mmax

σ2
u

g(m) dm (B.13)

(Z will also play the role of the auxiliary random variable in determining bounds for κi’s),

we may rewrite (B.4) as a set of inequalities over κi given by

κi �
d−1∑
j=0

κjwij +
exp
(

λ
ρ2Mmax+σ2

u

)
(ρ2Mmax + σ2

u)
i

∫ Mmax

σ2
u

g(m) dm (B.14)

and

κi �
d−1∑
j=0

κjwij +
exp
(

λ
(1+ρ2)σ2

u

)
((1 + ρ2)σ2

u)
i

∫ Mmax

σ2
u

g(m) dm. (B.15)

Now we show that the obtained sets of inequalities may be converted into a set of linear

matrix inequalities as stated in Lemma 8. We begin by defining the constants bui and bli as

bui =
exp
(

λ
ρ2Mmax+σ2

u

)
(ρ2Mmax + σ2

u)
i

(B.16)

bli =
exp
(

λ
(1+ρ2)σ2

u

)
((1 + ρ2)σ2

u)
i
. (B.17)

We then rewrite the inequalities in (B.14) and (B.15) as

κi �
d−1∑
j=0

κjwij + bui Z (B.18)

κi �
d−1∑
j=0

κjwij + bliZ (B.19)

Also, (B.7) may be rewritten as

1 =
d−1∑
j=0

κjcj + Z. (B.20)

Now we define the vectors, bl = [bl0, b
l
1, · · · , bld−1]

T and bu = [bu0 , b
u
1 , · · · , bud−1]

T and

the augmented vectors κ = [κ0, κ1, · · · , κd−1, Z]
T and c = [c0, c1, · · · , cd−1, 1]

T . Using
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the aforementioned vectors, it is easy to write the i-th inequality in (B.18) and (B.19)

respectively as

(wu
i )

Tκ � �
T
i κ, i = 0, 1, · · · , d− 1 (B.21)

(wl
i)
Tκ � �

T
i κ, i = 0, 1, · · · , d− 1, (B.22)

where

wu
i = [wi,1, wi,2, · · · , wi,d−1, b

u
i ]

T (B.23)

wl
i = [wi,1, wi,2, · · · , wi,d−1, b

l
i]
T (B.24)

and �i is a column vector of all zeros except at position i, which there, it is equal to

one. Also the equality in (B.20) may be rewritten as cTκ = 1. Furthermore, we use this

equality as two inequalities to incorporate it into the previous inequalities when necessary,

i.e.

cTκ � 1 (B.25)

cTκ � 1 (B.26)

Then we may combine (B.21) and (B.25) to get

(wu
i )

Tκ− �
T
i κ � 0, i = 0, 1, · · · , d− 1

cTκ � 1, (B.27)

and combine (B.22) and (B.26) to get

(wl
i)
Tκ− �

T
i κ � 0, i = 0, 1, · · · , d− 1

cTκ � 1. (B.28)

Finally, we rewrite the set of inequalities in (B.27) and (B.28) as matrix inequalities given

by

[[W − Id×d|bu]T |c]Tκ � �d+1 (B.29)

[[W − Id×d|bl]T |c]Tκ � �d+1, (B.30)

with W = [wij]d×d, 0 � i, j � d− 1, which is the same form as presented in Lemma 8 if

we we take

W u = [[W − Id×d|bu]T |c]T (B.31)

W l = [[W − Id×d|bl]T |c]T . (B.32)

Note that in (B.29) and (B.30) for vectors z and w of arbitrary size N , z � w holds if and

only if zi � wi for i = 0, 1, · · · , N − 1.
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Solving (B.29) and (B.30) results in κ � κu and κ � κl respectively. The elements of

κu and κl then constitute the upper and lower bound for κi. One simple and immediate

way to solve the inequalities is by by calculating

κu = (W u)−1
�d+1 (B.33)

κl = (W l)−1
�d+1, (B.34)

which is the formulation used in Lemma 8. If any negative elements are encountered,

one could then simply replace them with zero and still have valid upper or lower bound.

Note that we have made no claims on the performance of the bounds obtained using this

method, so any valid bound for κi’s will suffice to prove our claim. However, simulation

in Sec. 3.2.2 show that the bounds obtained by using the bounds on κi in fact perform

well under the proposed system model and selected parameters.
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Appendix C

Proof of Theorem 3

We begin the proof by first showing that the cumulative distribution function of IEV, i.e.

FM(M) approaches the step function when λ → 0. We have that

FM(Mth) = 1− Pout(Mth)

= exp(
−λ

Mth

)
d−1∑
i=0

κi(−1)iλi

i!

d−i−1∑
k=0

( λ
Mth

)k

k!
(C.1)

Now for any Mth > 0, we have

lim
λ→0

FM(Mth) = lim
λ→0

exp(
−λ

Mth

) lim
λ→0

(d−1∑
i=0

κi(−1)iλi

i!

d−i−1∑
k=0

( λ
Mth

)k

k!

)
= lim

λ→0
κ0, (C.2)

where in the last step we used the fact that κi < exp( λ
σ2
u
) over different values of λ and all

the terms in the second limit with i � 1 vanish when λ → 0.
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Now we have that,

lim
λ→0

κ0 = lim
λ→0

∫ Mmax

0

exp(
λ

ρ2m+ σ2
u

)fM(m) dm

= lim
λ→0

∫ Mmax

0

∞∑
l=0

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

= lim
λ→0

∫ Mmax

0

fM(m) dm+ lim
λ→0

∫ Mmax

0

∞∑
l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

= lim
λ→0

1 + lim
λ→0

∫ Mmax

0

∞∑
l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

= 1 + lim
λ→0

∫ Mmax

0

∞∑
l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm,

(C.3)

but for m � 0, we have that 1
ρ2m+σ2

u
� 1

σ2
u

. As a result

lim
λ→0

∫ Mmax

0

∞∑
l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm � lim

λ→0

∞∑
l=1

λl

l!

1

(σ2
u)

l

∫ Mmax

0

fM(m) dm (C.4)

and thus

lim
λ→0

∫ Mmax

0

∞∑
l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm � lim

λ→0

∞∑
l=1

λl

l!

1

(σ2
u)

l
, (C.5)

but

lim
λ→0

∞∑
l=1

λl

l!

1

(σ2
u)

l
= lim

λ→0
(exp(

λ

σ2
u

)− 1) = 0. (C.6)

Therefore we obtain that,

lim
λ→0

∫ Mmax

0

∞∑
l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm = 0, (C.7)

and finally limλ→0 κ0 = 1. That shows that FM(M) approaches the unit step function

when λ → 0 and as a result fM(m) approaches the Dirac’s delta function when λ → 0.
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With this assumption we have

κi =

∫ Mmax

0

(
1

ρ2m+ σ2
u

)i

exp

(
λ

ρ2m+ σ2
u

)
fM(m) dm

=

∫ Mmax

0

1

(ρ2m+ σ2
u)

i

∞∑
l=0

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

=

∫ Mmax

0

∞∑
l=0

λl

l!

1

(ρ2m+ σ2
u)

l+i
fM(m) dm

=
∞∑
l=0

λl

l!

∫ Mmax

0

1

(ρ2m+ σ2
u)

l+i
fM(m) dm

=
∞∑
l=0

λl

l!

∫ Mmax

0

1

(σ2
u)

l+i
. (C.8)

for λ → 0 and Theorem 3 is proved.
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Appendix D

Proof of Theorem 4

We first rewrite the IEV outage function Pout(Mth) as

Pout(Mth) = 1− exp(
λ

Mth

)
d−1∑
i=0

κi(−1)iQi(Mth)

i!
, (D.1)

where

Qi(Mth) = λi

d−1−i∑
k=0

(λ/Mth)
k

k!

= λi +
λi+1

Mth

+
λi+2

2!M2
th

+ · · ·+ λd−1

(d− 1− i)!Md−1−i
th

. (D.2)

Now, we may rewrite Pout(Mth) as follows

Pout(Mth) = 1− exp(
λ

Mth

)
d−1∑
i=0

biλ
i, (D.3)

where

b0 = κ0, b1 =
κ0

Mth

− κ1, b2 =
κ0

2!M2
th

− κ1

Mth

+
κ2

2!
,

· · · , bd−1 =
(−1)d−1κd−1

(d− 1)!Md−1
th

+ · · ·+ (−1)d−1κ0

(d− 1)!
(D.4)

and in general

bi =
i∑

j=0

(−1)jκj

j!(i− j)!M i−j
th

, (i = 0, 1, · · · , d− 1). (D.5)
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Now using Theorem 3, we may claim

κi =
d−1∑
l=0

λl

(σ2
u)

i+ll!
+O(λd), (D.6)

which may alternatively be written as

κi =
d−1∑
l=0

λl

(σ2
u)

i+ll!
+ o(λd−1), (D.7)

in order to be compatible with the basic definition of diversity order.

With that at hand, we rewrite Pout(Mth) as follows

Pout(Mth) = 1− exp(
−λ

Mth

)
[
(1 + λ/σ2

u + · · ·+ o(λd−1))

+ (
1

Mth

− 1

σ2
u

)λ(1 + λ/σ2
u + · · ·+ o(λd−1))

+ (
1

2!M2
th

− 1

σ2
uMth

+
1

2!(σ2
u)

2
)λ2(1 + λ/σ2

u + · · ·+ o(λd−1))

+ · · ·

+
( i∑
m=0

(−1)m

(i−m)!M i−m
th m!(σ2

u)
m

)
λi(1 + λ/σ2

u + · · ·+ o(λd−1))

+ · · ·

+
( d−1∑
m=0

(−1)m

(d− 1−m)!Md−1−m
th m!(σ2

u)
m

)
λd−1(1 + λ/σ2

u + · · ·+ o(λd−1))

+ o(λd−1),

which may be summarized for legibility as

Pout(Mth) = 1− exp(
−λ

Mth

)
(d−1∑
i=0

ciλ
i(1 + λ/σ2

u + · · ·+ o(λd−1))
)

(D.8)

with

ci =
i∑

m=0

(−1)m

(i−m)!m!M i−m
th (σ2

u)
m
. (D.9)

Now, we can simplify Pout(Mth) and write it as

Pout(Mth) = 1− exp(
−λ

Mth

)
(d−1∑
i=0

diλ
i + o(λd−1)

)
. (D.10)
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If we could show that di = 1/(i!M i
th), then we can apply Theorem 3 and deduce that

Pout(Mth) has diversity order d. This is done in the next step.

By simplifying (D.8) and isolating powers of λ, it is straightforward to show that di =∑i
j=0

cj
(i−j)!(σ2

u)
i−j . Then, we may simplify ci and get

ci =
i∑

m=0

(−1)m

(i−m)!m!M i−m
th (σ2

u)
m

=
1

i!M i
th

i∑
m=0

(−1)mi!

(i−m)!m!
(Mth/σ

2
u)

m

=
1

i!M i
th

i∑
m=0

(−Mth/σ
2
u)

m(1)i−mi!

(i−m)!m!

=
1

i!M i
th

(1−Mth/σ
2
u)

i

=
1

i!M i
th(σ

2
u)

i
(σ2

u −Mth)
i. (D.11)

Finally, by inserting the values of ci into the equation for di, we obtain

di =
i∑

j=0

cj
(i− j)!(σ2

u)
i−j

=
i∑

j=0

(σ2
u −Mth)

i−j

(i− j)!j!(σ2
u)

i−jM j
th(σ

2
u)

j

=
1

i!(σ2
u)

i

i∑
j=0

i!(σ2
u −Mth)

i−j

(i− j)!j!M j
th

=
1

i!(σ2
u)

i

i∑
j=0

(σ2
u/Mth − 1)j1i−jC(i, j)

=
1

i!(σ2
u)

i
((σ2

u/Mth − 1 + 1)i

=
(σ2

u)
i

i!(σ2
u)

iM i
th

=
1

i!M i
th

(D.12)

and the proof is complete.
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Appendix E

Orthogonality for the Equivalent Real
Channel Matrix

In this section, we denote the elements of the arbitrary matrix W as W [i, j], where i
denotes the row position and j the column position. The i-th row of W from columns j1
to j2 is denoted by W [i, j1 : j2] and the whole row is denoted by W [i, :]. Similar rules

hold for the j-th column.

We first define Tl = T [2(l − 1)K + 1 : 2lK, 1 : 2K], l = 1, 2, . . . , Nc, i.e.

T = [T T
1 |T T

2 | · · · |T T
Nc
]T . (E.1)

Note that each block Tl then maps the variable xr to the l–th column of the matrix Xr, i.e.

Xr[:, l] = Tlxr. In order to show that Heq can in fact be orthogonalized, we first see that

xT
r H

T
eqHeqxr = xT

r T
T (INc ⊗ H̃)T (INc ⊗ H̃)Txr

= xT
r T

T

(
INc ⊗

(
H̃T H̃

))
Txr

=
Nc∑
l=1

xT
r T

T
l

(
H̃T H̃

)
Tlxr (E.2)

The matrix H̃T H̃ is of dimension 2K×2K, whereas the matrix H̃ is of dimension 2×2K.

For that reason, the rank of H̃T H̃ is equal to the rank of H̃ , which for i.i.d. Rayleigh

fading is equal to 2 with probability one. In addition, the eigenvalues of H̃T H̃ are the

same as those of H̃H̃T , with additional 2K − 2 zeros. It is easy to see that

H̃H̃T = ‖hk‖2I2. (E.3)

Therefore, we can write the eigenvalue decomposition of H̃T H̃ as

H̃T H̃ = Q diag{0, 0, . . . , 0, ‖hk‖2, ‖hk‖2}QT

= ‖hk‖2QZQT , (E.4)
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with QQT = I2K and Z = diag{0, 0, . . . , 0, 1, 1}. Note that the position of ones in Z is

only for the simplification of the proof, as the equivalent matrix QZQT will be the same

for any positioning. Inserting (E.4) into (E.2), we obtain that

xT
r H

T
eqHeqxr = ‖hk‖2

Nc∑
l=1

xT
r T

T
l QZQTTxr

= ‖hk‖2
Nc∑
l=1

xT
r (Q

TTl)
TZ(QTTl)xr

= ‖hk‖2
Nc∑
l=1

xT
r T

′
l

T
ZT

′
l xr

(a)
= ‖hk‖2

Nc∑
l=1

xT
r (T

′
l

T
Z)(ZT

′
l )xr (E.5)

where T
′
l , l = 1, 2, . . . , Nc may be assumed to be the building blocks of a matrix T

′
(same

as for T), which maps xr to the matrix QTXr in the same way as T maps xr to Xr. In

addition, (a) holds because Z2 = Z. The positioning of the ones in Z is such that it is

only the last two columns of T
′
l

T
which remain non-zero after multiplication by Z. The

last two columns of T
′
l

T
correspond to the last two rows of T

′
l (also visible in the structure

of ZT
′
l in (E.5)). In order to provide better intuition into (E.5), we see that (E.5) can be

rewritten as

xT
r H

T
eqHeqxr = ‖hk‖2

Nc∑
l=1

xT
r T

′
l

T
(Z2K−1 + Z2K)T

′
l xr

= ‖hk‖2
Nc∑
l=1

xT
r T

′
l

T
Z2K−1T

′
l xr

+ ‖hk‖2
Nc∑
l=1

xT
r T

′
l

T
Z2KT

′
l xr, (E.6)

where Z2K−1 and Z2K are all-zero matrices, except for Z2K−1[2K − 1, 2K − 1] =
Z2K [2K, 2K] = 1. We can then rewrite (E.6) as

xT
r H

T
eqHeqxr = ‖hk‖2

Nc∑
l=1

xT
r (T

′
l

T
Z2K−1)(Z2K−1T

′
l )xr

+ ‖hk‖2
Nc∑
l=1

xT
r (T

′
l

T
Z2K)(Z2KT

′
l )xr. (E.7)

Given that, the result of (E.7) and equivalently (E.5), is the sum of the squares of the last
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two rows (row 2K − 1 and 2K) of X
′
r = QTXr. This can be written as

xT
r H

T
eqHeqxr = ‖hk‖2

⎛
⎝ Nc∑

l=1

X
′
r

2
[2K − 1, l] +X

′
r

2
[2K, l]

⎞
⎠ . (E.8)

It is easy to see that X
′
r = QrXr, where Qr is a matrix of dimension 2 × 2K, which

consists of the last two rows of the matrix QT (transpose of the last two columns of

Q). From the definition of the eigenvalue decomposition for H̃T H̃ and given that H̃T H̃
only has two non-zero eigenvalues (with the corresponding eigenvectors as the last two

columns of Q, equal to QT
r ), it is readily established that

H̃T H̃ = ‖hk‖2QT
r Qr, (E.9)

which means that H̃ = ±‖hk‖Qr, i.e. Qr is a normalized version of H̃ . This is a property

we will use later on in the proof.

In order to be able to calculate the value of the sum in (E.8), we may convert the matrices

Xr and Qr to complex equivalent matrices. In that case, we are able to finally use the

orthogonality of the complex space-time code in order to prove the orthogonality of the

equivalent channel. This step is necessary, as the code’s orthogonality is best described

in the domain of the complex numbers. We perform this procedure as follows. For Xr,

take all the consecutive odd and even real rows, add the even row multiplied by i to the

previous odd row and then remove the even rows. The resulting matrix, of dimension

K ×Nc is equal to X , the original space-time code. For the matrix Qr, perform the same

procedure with odd and even columns, and call the resulting matrix, of dimension 2×K
as Qc. We further take the first row of the matrix Qc to be equal to qT

1 and the second

row as qT
2 . Note that q1 and q2 are still orthogonal to one another and we still have that

qH
1 q1 = qH

2 q2 = 1. With these definitions, the sum in (E.8) can be rewritten as

xT
r H

T
eqHeqxr

= ‖hk‖2
(
Re(qH

1 X) Re(qH
1 X)T + Re(qH

2 X) Re(qH
2 X)T

)
or equivalently

xT
r H

T
eqHeqxr

= ‖hk‖2
(
Re(qH

1 X) Re(XHq1) + Re(qH
2 X) Re(XHq2)

)
. (E.10)

The following equalities are also easy to verify

‖x‖2 = qH
2 XXHq2

= qH
1 XXHq1

= Re(qH
1 X) Re(XHq1)− Im(qH

1 X) Im(XHq1)

= Re(qH
1 X) Re(XHq1) + Im(qH

1 X) Im(qH
1 X)T . (E.11)
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If we convert the matrix H̃ to a complex equivalent matrix in the same manner as for Qr

and obtain H̃c, we see that due to the structure of H̃ (see (4.3)), we should have

Re(H̃c[1, :]) = Im(H̃c[2, :])

and

Re(H̃c[2, :]) = − Im(H̃c[1, :])

As Qr is only a scaled version of H̃ , then Qc is only a scaled (by a real number) version

of H̃c. Due to that, we should also have for Qc that

Re(Qc[1, :]) = Im(Qc[2, :]) (E.12)

and

Re(Qc[2, :]) = − Im(Qc[1, :]). (E.13)

It is then straightforward to show using (E.12) and (E.13) to that

Im(qH
1 X) = Re(qH

2 X). (E.14)

That can be understood better by considering that if Qr[1, :] = [q1,1, q1,2, . . . , q1,2K−1, q1,2K ]
T

and Qr[2, :] = [q2,1, q2,2, . . . , q2,2K−1, q2,2K ]
T , then we have from (E.12) and (E.13) that

e.g. q1,1 = q2,1 and q1,2 = −q2,1 and so on. This can be considered within the multiplica-

tion operations of qH
1 X and qH

2 X , in order to produce the result in (E.14).

Inserting (E.14) into (E.11) results in

‖x‖2 = Re(qH
1 X) Re(XHq1) + Re(qH

2 X) Re(XHq2), (E.15)

which by comparing to (E.10) confirms that

xT
r H

T
eqHeqxr = ‖hk‖2‖x‖2

= ‖hk‖2xT
r xr

= xT
r ‖hk‖2xr (E.16)

for all xr, which effectively results in

HT
eqHeq = ‖hk‖2I2K (E.17)
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Appendix F

Bounds for the Instantaneous Distortion

From (4.11), we have that M(n) = 1
γn

(
1
γn
P−1(n) + I

)−1

. If we denote the eigenval-

ues M(n) by ζl(M(n)), l = 1, 2, . . . , K, and the eigenvalues of P (n) by ζl(P (n)), l =
1, 2, . . . , K, then we have that

d(n) =
1

K
tr(M(n))

=
1

K

K∑
l=1

ζl(M(n))

=
1

K

K∑
l=1

1

γn
(
1

γn

1

ζl(P (n))
+ 1)−1

=
1

K

K∑
l=1

1
1

ζl(P (n))
+ γn

(F.1)

As P (n) is a covariance matrix, it is (semi)-positive definite. Therefore, we have that

ζl(P (n)) � 0, ∀l. If we denote the ordered eigenvalues of Cu by ζl(Cu), ∀l (ζ1(Cu) �
ζ2(Cu) � . . . � ζK(Cu)) and also order ζl(P (n)) such that ζ1(P (n)) � ζ2(P (n)) �
. . . � ζK(P (n)), we know from Weyl’s inequalities [43, Ch. 3] that

ζl(P (n)) � ζl(Cu). (F.2)

This is due to the fact that P (n) = AM(n− 1)AT + Cu and AM(n− 1)AT is a positive

definite matrix (because M(n − 1) is positive-definite). Now combining (F.1) and (F.2),
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we obtain that

d(n) =
1

K

K∑
l=1

1
1

ζl(P (n))
+ γn

� 1

K

K∑
l=1

1
1

ζl(Cu)
+ γn

.

It is easy to show that the function f(z) =
1

z + c
is convex in z for any positive c. Now,

invoking Jensen’s inequality from [15, Ch. 2.6] leads to

∑
l

plf(zl) � f

⎛
⎝∑

l

plzl

⎞
⎠ . (F.3)

Assuming then pl = 1/K and zl = 1/ζl(Cu), we would have that

1

K

K∑
l=1

1
1

ζl(Cu)
+ γn

=
K∑
l=1

1

K

1
1

ζl(Cu)
+ γn

� 1
1

K

∑K
l=1

1

ζl(Cu)
+ γn

, (F.4)

which establishes the lower bound dl(n) as stated in Lemma 11 as

dl(n) =
1

1

K

∑K
l=1

1

ζl(Cu)
+ γn

. (F.5)

For the upper bound, if we manage to find a series of random variables which are greater

than or equal to ζl(P (n)), we can then obtain the upper bound du(n) in the same manner

as we found dl(n). ζl(P (n)) are functions of all filter memory, and it is a cumbersome

task to track the filter memory. Instead, we decide to consider only the two previous time

steps, i.e. n− 1 and n− 2, and show that we are able to find reasonably good bounds.

First, we consider n − 1. Given that P (n) = AM(n − 1)AT + Cu, it is possible to

obtain an upper bound on ζl(P (n)) based on ζl(M(n− 1)). Based on Weyl’s theorem on

eigenvalues of sum of positive definite Hermitian symmetric matrices, we can state that

ζl(P (n)) � ζmax(AM(n− 1)AT ) + ζl(Cu). (F.6)

It is also easy to show from Weyl’s inequalities [43, Ch. 3] that for two symmetric matrices

A and B, we have that

ζmax(AB) � ζmax(A)ζmax(B). (F.7)

150



Based on (F.7), we may extend (F.6) to

ζl(P (n)) � ζmax(A
T )ζmax(AM(n− 1)) + ζl(Cu)

� ζmax(A
T )ζmax(A)ζmax(M(n− 1)) + ζl(Cu)

� |ζmax(A)|2ζmax(M(n− 1)) + ζl(Cu). (F.8)

The next step is to find an upper bound for ζmax(M(n− 1)). We know that

ζl(M(n− 1)) =
1

1

ζl(P (n− 1))
+ γn−1

. (F.9)

From that we conclude that

ζmax(M(n− 1)) =
1

1

ζmax(P (n− 1))
+ γn−1

. (F.10)

The next step is to find an upper bound for ζmax(P (n − 1)). Now, if we consider one

more time step backwards, i.e. n − 2, we know that P (n − 1) = AM(n − 2)AT + Cu.

Therefore, we have as before that

ζmax(P (n− 1)) � |ζmax(A)|2ζmax(M(n− 2)) + ζmax(Cu). (F.11)

In order to get an upper bound for ζmax(M(n−2)), we assume the worst case scenario for

M(n − 2). Obviously M(n − 2) cannot be worse that Cx. That happens when h(n
′
) =

0, ∀n′ < n− 2. As a result, an upper bound for ζmax(M(n− 2)) is ζmax(Cx).

ζmax(P (n− 1)) � |ζmax(A)|2ζmax(Cx) + ζmax(Cu). (F.12)

So far, we have proven that

d(n) � 1

K

K∑
l=1

1
1

θl
+ γn

(F.13)

with

θl = ζl(Cu) +
|ζmax(A)|2
1

αmax

+ γn−1

, (F.14)

and

αmax = |ζmax(A)|2ζmax(Cx) + ζmax(Cu). (F.15)
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Now, similar to the approach used to establish the lower bound, we may consider the

function f(z) =
1

1/z + c
for arbitrary positive c. It is easy to show that f(z) is a concave

function. Again invoking the Jensen’s inequality, we may say that

∑
l

plf(zl) � f

⎛
⎝∑

l

plzl

⎞
⎠ . (F.16)

Assuming then pl = 1/K and zl = θl, we would have that

1

K

K∑
l=1

1
1

θl
+ γn

=
K∑
l=1

1

K

1
1

θl
+ γn

� 1
1

1

K

∑K
l=1 θl

+ γn

, (F.17)

which finally establishes the upper bound du(n) as stated in Lemma 12 as

du(n) =
1

1
1

K

∑K
l=1 θl

+ γn

, (F.18)

with θl defined Lemma 12.
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Appendix G

Tightness of the Coding Gain Bounds

In this section, we outline how the gap between Gu and Gl behaves as a function of

system parameters and if it is eventually tight. We try to evaluate the terms log(Gu/G
l
2)

and log(Gu/Gl
1), which correspond to the gap (in dB) in the log(SNR)-scale. For the

simple lower bound Gl
2, we have that

log(Gu/Gl
2) = log

⎛
⎜⎜⎜⎝

1

dth

− 1

ζ̄ + |ζmax(A)|2αmax

1

dth

− 1

K

∑K
l=1

1

ζl(Cu)

⎞
⎟⎟⎟⎠ . (G.1)

This is a constant gap independent of the average SNR and only a function of system

parameters. We take

(
1

ζ

)
=

1

K

∑K
l=1

1

ζl(Cu)
. It is possible to show that for ζl(Cu) > 0,

we have that

1

dth

−
(
1

ζ

)
� 1

dth

− 1

ζ̄
<

1

dth

− 1

ζ̄ + |ζmax(A)|2αmax

. (G.2)

Now for fixed ζ̄ = 1/Ktr(Cu), it is easy to verify that log(Gu/Gl
2) can be minimized if

ζl(Cu) = const., i.e. the gap is minimized when Cu = σ2
uI , for some σ2

u > 0.
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Performing similar analysis for the other lower bound Gl
1, we obtain that

NK log(Gu/Gl
1) = lim

SNR→∞
log

∞∫
0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

dth

− 1

ζ̄ +
|ζmax(A)|2αmax

1 + zαmax

1

dth

−
(
1

ζ

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

NK

fγn−1(z) dz

� lim
SNR→∞

log

∞∫
0

⎛
⎜⎜⎜⎜⎜⎝

1

dth

− 1

ζ̄ + |ζmax(A)|2w
1

dth

−
(
1

ζ

)
⎞
⎟⎟⎟⎟⎟⎠

NK

fγ−1
n−1

(w) dw. (G.3)

It is possible to show (similar to Appendix C) that when SNR → ∞, then fγ−1
n−1

(w) →
δ(w), i.e. Dirac’s delta function. Consequently, we will have that

log(Gu
1/G

l) � 1

NK
lim

SNR→∞
log

∞∫
0

⎛
⎜⎜⎜⎜⎜⎝

1

dth

− 1

ζ̄ + |ζmax(A)|2w
1

dth

−
(
1

ζ

)
⎞
⎟⎟⎟⎟⎟⎠

NK

δ(w) dw

= log

⎛
⎜⎜⎜⎜⎜⎝

1

dth

− 1

ζ̄

1

dth

−
(
1

ζ

)
⎞
⎟⎟⎟⎟⎟⎠ , (G.4)

which is equal to zero iff ζl(Cu) = const. or equivalently Cu = σ2
uI . The best bounds are

thus achieved for well-conditioned Cu.
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