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Abstract

This thesis presents a stochastic method for predicting the scour depth around vertical cir-
cular slender piles and below marine pipelines due to random waves plus current on mild
sloping seabeds. An overview of the scour mechanisms around vertical piles and below ma-
rine pipelines is given. The background of the scour around vertical piles and below marine
pipelines on flat and sloping seabeds under regular waves and random waves alone, as well
as random waves plus current is presented.

A point model of the wave height distribution, consisting of two two-parameter Weibull
distribution, is chosen to describe the wave condition on mild sloping seabeds including
breaking waves. For vertical piles, a truncated wave height distribution is developed because
the scour formula is valid above a threshold value.

Four slopes are considered for waves alone case for the vertical piles and the pipelines.
The effect of combined waves plus current on scour is studied. For waves plus current,
the relationship between scour depth and the current velocity is presented. A comparison
between a stochastic method and an approximate method is made.
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Ŝcw1/n Scour caused by (1/n)th highest waves plus current
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Chapter 1

Introduction

When a structure is placed the sandy seabed, the presence of the structure will change the
incoming flow. The changed flow transports sand particles away from the structure, creating
a hole around it. This phenomenon is called scour. The scour is a threat to the stability of
marine structures, such as vertical piles (foundations of offshore wind turbines) or marine
pipelines. For vertical pipes, the scour increases the over-length of the pipe, further lowering
the natural frequency and probably leading to structural failure. For marine pipelines, scour
may expose part of the pipeline, leading it to be suspended or partially buried. If the free
span is long enough, the pipeline may experience flow-induced oscillations, resulting in
structural failure. The results of scour depend on the geometry and material of the seabeds,
the velocity of the incoming flow and ratio between the orbital fluid particle displacement
and the characteristic dimension of the structure.

The flow can be considered as a steady current in deep water, while in finite water
depth, it is commonly combined waves plus current. Scour in a steady current has been
studied extensively. Kjeldsen et al. (1973) were the first to conduct scour experiments and
presented data on the maximum scour depth below pipelines at a fixed location. Those
results suggested the relationship between scour depth and the Shields parameter (defined
in Chapter 2) in a current. Sumer and Fredsøe (1990) investigated the scour below pipelines
exposed to regular waves. They found the scour in this case weakly varies with the Shields
parameter, but strongly depends on KC number (defined in chapter 4). Further they proposed
an empirical formula for scour below pipelines in regular waves. The corresponding formula
for vertical piles was presented in Sumer et al. (1992a). The influence of cross section shape
of the pipes was investigated through laboratory experiments by Sumer et al. (1993). For
random waves, Sumer and Fredsøe (1996) conducted experiments and gave the empirical
formulas for scour depth below pipelines in random waves and combined random waves
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plus current, respectively. The corresponding formulas for vertical piles were proposed by
Sumer and Fredsøe (2001).

In real life, waves are of stochastic nature, which makes the problem more complicated.
Myrhaug and Rue (2003) presented a stochastic method for evaluation of the scour depth
below pipelines and around vertical piles in random waves on a flat seabed based on Sumer
and Fredsøe (1996, 2001) scour formulas. They assumed that the sea state is a stationary
narrow-band process and compared their results with the Sumer and Fredsøe (1996, 2001)
random waves data. Further, this approach was expanded by Myrhaug et al. (2009) to apply
on scour around marine structures due to second-order random waves plus current for wave-
dominant flow. Comparisons were also made with the data from Sumer and Fredsøe (2000)
for liner waves. Moreover, This stochastic method for scour depth assessment has been
extended to other marine structures: a group of pipes in random waves,(Myrhaug and Rue
(2005)); a spherical body (Myrhaug and Ong (2012)); a short cylinder (Myrhaug and Ong
(2009)) and truncated cones (Myrhaug and Ong (2014)).

For shoaling conditions, Cevik and Yüksel (1999) investigated the scour for sloping
beds with two beach slopes, 1/5 and 1/100. They obtained an empirical formula for scour
depth in such a shoaling condition by laboratory tests. By utilizing this formula, Myrhaug
et al. (2008) presented the stochastic method for evaluating scour below pipelines in ran-
dom waves in coastal regions. Further, Henry and Myrhaug (2013) extended this approach
on shoaling condition to calculate wave-induced drag force on vegetation under shoaling
random waves. To author’s knowledge, no studies, except for the master project of Ping
(2013), are yet available in the open literature dealing with scour around marine structures
exposed to random waves and combined random waves plus current on sloping seabeds by
stochastic method.

The purpose of this study is to provide a stochastic method for estimating the scour
depth around vertical piles and below pipelines due to random waves plus current on mild
sloping seabeds. This is achieved by using the Sumer and Fredsøe (1996, 2001) scour
formulas on flat seabeds, combined with the Battjes and Groenendijk (2000) wave height
distribution for mild slopes including the effect of breaking waves. It should be noted that
the wave motion is assumed as a stationary narrow-band random process. Results for waves
alone and waves plus current are presented and discussed. An approximated method was
proposed and compared with the present stochastic method.



Chapter 2

Background

2.1 Seabed shear stress

The presence of a structure in marine environment will change the flow pattern around it.
Generally, these changes cause an increase of the bed shear stress and the level of turbulence
close to the structure. As a result, the local sediment transport capacity increases, leading to
scour. Usually, the increase of the bed shear stress is expressed by the amplification factor
α , defined as (Sumer and Fredsøe (2002))

α =
τ

τ∞

(2.1)

where, τ is the bed shear stress around structures and τ∞ is the bed shear stress for the undis-
turbed flow. Due to the local increase in α , the sediment transport capacity will increase,
leading to the scour process. This process will continue until this process reaches a stage
where the bed shear stress around structures τ = τ∞ (α = O(1)). This stage where the scour
process come to the end is called the equilibrium stage. The corresponding scour depth is
called the equilibrium scour depth. The time it takes to develop the equilibrium scour, as
illustrated in Fig. 2.1, is called the time scale of the scour process and defined as (Sumer
and Fredsøe (2002))

St = S
(

1− exp
( t

T

))
(2.2)

where S is the equilibrium scour depth corresponding to the equilibrium stage, and St is the
instantaneous scour depth at time t. The equilibrium scour depth is of great importance for
indicating the degree of scour potential. The time scale is an equally important parameter
because scour often occurs during storms. It is essential to assess whether the storm would
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long enough to develop a substantial amount of scour.

Fig. 2.1 Time development of scour depth (reproduced from Sumer and Fredsøe (2002)).

2.2 Shields parameter

Typically, there are two scour categories: the clear-water scour and the live-bed scour. The
category can be determined by judging the Shields parameter θ , defined as

θ =
τ∞

ρg(s−1)d50
(2.3)

where s = ρs/ρ is the sediment density to fluid density ratio, ρs is the sediment density
and ρ is the fluid density. g is the gravity acceleration and d50 is the median grain size
of the sediments. It should be noted that τ∞ should be replaced by the maximum value of
undisturbed shear stress τ∞,max in waves. For the clear-water scour, the sediment transport is
localized, that means no sediment motion takes place far from the structure (θ < θcr), while
for the live-bed scour, sediment transport prevails over the entire sea bed (θ > θcr). θcr is
the critical value for the onset of motion of sediment.

When the seabed is sloping, the effect of gravity of the sediments may increase or de-
crease θcr. Thus, the threshold shear stress at an up-sloping seabed with an angle δ , denoted
as θδcr, can be expressed by modifying the corresponding critical value at horizontal seabed

θδcr

θcr
= cosδ (1+

tanδ

tanΦi
) (2.4)

where Φi is the angle of repose of the sediment.
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The maximum bed shear stress within a wave cycle is given as

τ∞

ρ
=

fwU2
m

2
(2.5)

where Um is the undisturbed linear near-bed orbital velocity amplitude and fw is the friction
factor, given from Myrhaug et al. (2001)

fw = c(
A
z0
)−d (2.6)

(c,d) = (18,1) f or 20 . A/z0 < 200

(c,d) = (1.39,0.52) f or 200 6 A/z0 < 11000

(c,d) = (0.112,0.25) f or 11000 6 A/z0

where z0 is the bed roughness and determined by z0 = d50/12 (Soulsby(1997)). A =U/ω is
the near-bed orbital displacement amplitude and ω = 2π/T is the angular wave frequency
where T is the wave period..

Myrhaug et al. (2001) stated that this molding for estimating bottom shear stress is valid
in combined waves plus current for wave-dominated flow. By utilizing this friction factor it
is possible to find an analytic solution in both waves alone case and waves plus current case.





Chapter 3

Mechanisms of Scour Around Marine
Structures

3.1 Scour around a vertical pile

Vertical piles are quite common in marine environment, such as the legs of an offshore
platform and the foundation of an offshore wind turbine. When a vertical pile is installed on
an erodible seabed, the down-flow in front of the pipe causes a horseshoe vortex that lifts the
sediment which is taken away by the flow. At the downstream side of the pipe, a lee-wake
vortex is formed due to the flow separation at the side of the pile. Those two vortices are the
main reason for scour around a vertical pile.

The horseshoe vortex will be formed if there is rotation in the coming flow. When a
vertical pile is installed on the seabed, the boundary layer approaching the pile experiences
an adverse pressure gradients in the direction of mainstream. Consequently, the boundary
layer on the bed upstream of the pile undergoes a three-dimensional separation (along the
dashed line, S, in Fig. 3.1). The separated boundary layer rolls up downstream of the sep-
aration line to form a system of horseshoe vortices around the pile. Fig. 3.1 is a definition
sketch of vortices around a pile in a flow.

For a pile exposed to a steady current, the horseshoe vortex is influenced by the ratio
of the bed boundary layer thickness to the pile diameter, δ/D; the pile Reynolds number,
ReD = UD/ν , where U is the velocity at the outer edge of the bed boundary layer and ν

is the kinematic viscosity of the flow; and the pile geometry. Sumer and Fresød (2002)
stated that δ/D and ReD influence the separation of the bed boundary layer and therefore the
horseshoes vortex. The separation of the bed boundary layer will be delayed for small δ/D

and subsequently result in a small-size horseshoe vortex, as well as for small ReD . If the



8 Mechanisms of Scour Around Marine Structures

Fig. 3.1 Flow around a vertical pile (from Roulund et al. (2005)).

value of δ/D or ReD is small enough, the boundary layer may not separate at all, and hence
no horseshoe vortex will be formed. Sumer and Fresød (2002) also displayed the bed shear
stress underneath a horseshoe vortex in a steady current. Fig. 3.2 shows the mean bed shear
stress measured along the principal axis x normalized by the undisturbed mean bed shear
stress, τ/τ∞. It clearly appears that the bed shear stress underneath the horseshoe vortex in
front of the pile is larger than the undisturbed bed shear stress.

Fig. 3.2 Bed shear stress at the horseshoe vortex side of pile. x=0 coincides with pile axis
(from Sumer and Fredsøe (2002)).

For a pile standing in waves, the Keulegan-Capenter number, KC is an additional pa-
rameter that influences the horseshoe vortex. KC number represents the ratio of the orbital
displacement of the water particles and the diameter of the pile. For small KC number, the
orbital displacement of water particles is small compared with the pile diameter, therefore,
the boundary layer may not be separated, then horseshoe vortex may not be formed. For
very large KC number, the orbital displacement is so large that the flow can be regard as
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a steady current for each half period. The horseshoe vortex in such a large KC number is
expected to behave similarly as in a steady current.

Sumer et al. (1997) investigated the existence of horseshoe vortex in waves experimen-
tally. Fig. 3.3 displays the horseshoe vortex in phase space. The reason for the asymmetric
behavior in the graphs is due to non-linearity of the waves. ωt = 0 corresponds to the zero
up-crossing in the orbital velocity near the seabed and apparently there is no horseshoe vor-
tex formed for any KC number in this phase. Their data reveals that the three-dimensional
separation occur after KC number reaches the value of 6.

Fig. 3.3 The horseshoe vortex in phase space (from Sumer and Fredsøe (2002)).

The lee-side vortices, on the other hand, are caused by the rotation in the boundary layer
over the surface of the pile: the shear layers emanating from the side edges of the pile roll
up to form these vortices (see Fig. 3.1).

For a pile installing in a steady current, lee-wake flow is described mainly by the pile
Reynolds number, ReD and pile geometry. In the case of waves, Williamson (1995) studied
the vortex flow behind a free cylinder subjected to an oscillatory flow. Sumer and Fred-
søe (1997) investigated those vortex-flow behind a vertical cylinder fixed in the seabed.
Their studies demonstrated that the near-bed lee-wake flow has a wide range of vortex-flow
regimes, depending on KC number.

3.2 Scour below a pipeline

Marine pipelines are installed in seabed to mainly transport gas and crude oil from the
offshore platform in oil and gas industry. When a pipeline placed on erodible seabed is
exposed to flow, scour may be initiated as the result of piping mechanism. The development
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of scour can usually be divided into four stages: onset of scour, tunnel erosion, lee-wake
erosion and the final equilibrium stage.

Fig. 3.4 Pressure distributions for bottom-seated pipe (from Sumer and Fredsøe (2002)).

The onset of scour is related to a seepage flow. A pipeline placed on a sandy seabed in
a transverse current experiences a pressure difference between the upstream and the down-
stream sides of the pipeline (See Fig. 3.4). The pressure difference will induce a seepage
flow underneath the pipe. For a sufficiently large current velocity, the surface of the sand
will rise at the downstream of the pipe and then a mixture of sand and water will break
through the space underneath the pipe. This process is called piping, which starts the onset
of scour. Fig. 3.5 shows the procedure of piping. In the case of waves, the variation of wave
height affects the breakthrough process. Sumer and Fredsøe also investigated the onset of
scour in waves. They found that the onset of scour takes place only in the crest-half, while
the pressure gradient in trough-half period is not large enough to onset of scour.

Fig. 3.5 Seepage flow underneath the pipe (from Sumer and Fredsøe (2002)).



3.2 Scour below a pipeline 11

The next stage is followed by the tunnel erosion. In this stage, the onset of scour and
pipe has started. There is a small gap, e, between seabed and pipe i.e. e ≪ D (See Fig. 3.6).
But a substantial amount of water will be diverted through the small gap, leading to very
large flow velocity in the gap. This results in very large shear stresses on the bed just below
the pipeline. This means a tremendous increase in sediment transport capacity. At the end
of this stage, the flow velocity will decrease as the gap becomes larger.

Fig. 3.6 Tunnel erosion below a pipeline (from Sumer and Fredsøe (2002)).

When the gap between seabed and pipeline reaches a critical value, vortex-shedding will
occur behind the pipeline. The scour will be subsequently governed by the vortex shedding.
This stage is called the lee-wake erosion (see Fig. 3.7). In this stage, the sediment transport
capacity increases significantly due to rapid increase of bed shear stress.

Fig. 3.7 Lee-wake below a pipeline in current (from Sumer and Fredsøe (2002)).

Finally, the scour process reaches a steady state that is called equilibrium stage. In this
stage the bed shear stress along the bed underneath the pipe equals to its undisturbed value.
That means the amount of sediments that enters the scour hole is identical to that leaving
the scour hole.

When pipelines is exposed to waves, it experiences piping from both side. Sumer and
Fredsød (2002) stated that the main difference between waves case and a steady current case
is that the downstream wake system now occurs on both sides of the pipeline (See Fig. 3.8)
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Fig. 3.8 Lee-wake below a pipeline in waves (from Sumer and Fredsøe (2002)).



Chapter 4

Background for Scour in Regular Waves

4.1 Scour around a vertical pile

Sumer et al. (1992b) investigated the scour around a single, slender vertical pile with a
circular cross-section in regular waves through laboratory tests. They obtained the following
empirical formula for the equilibrium scour depth S with diameter D (see Fig. 4.1) for live-
bed condition,

Fig. 4.1 Definition sketch of scour depth S around a vertical pile with diameter D.

S
D

=C{1− exp[−q(KC− r)]}; f or KC > r (4.1)

where C, q and r are coefficients given by the following values

(C, q, r) = (1.3, 0.03, 6) (4.2)

where the Keulegan-Carpenter number, KC is defined as

KC =
UT
D

(4.3)
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It should be noted that for the steady current case (T → ∞ and thus KC → ∞), S/D will
approach to C = 1.3. The Eqs. (4.1) and (4.2) are valid when the storm has lasted longer
than the time scale of the scour. Further details on the time scale of the scour are given in
Sumer et al. (1992a).

Alternatively, KC can be determined by

KC =
2πA

D
(4.4)

Based on the linear wave assumption, the near-bed wave induced displacement ampli-
tude A and velocity U are related to the linear wave height H by

A =
H

2sinhkh
(4.5)

and
U = ωA =

ωH
2sinhkh

(4.6)

moreover, by combining Eqs. (4.5) and (4.6) it follows that

ω =
U
A

(4.7)

where k is the wave number, determined from the dispersion relationship

ω
2 = gk tanhkh (4.8)

where h is the water depth, g is the gravity acceleration.

4.2 Scour below marine pipeline

Fig. 4.2 Definition sketch of scour depth S below a pipeline with diameter D.

Sumer and Fredsøe (1990) carried out experiments to study the scour below a fixed
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pipeline exposed to regular waves for flat seabeds. They proposed the following empirical
formula for the equilibrium scour depth S below the pipeline with diameter D (see Fig. 4.2)
for live-bed condition,

S
D

= 0.1KC0.5 f or 2 ≤ KC ≤ 1000 (4.9)





Chapter 5

Stochastic Method and Wave Height
Distribution

5.1 Introduction

In this chapter, a tentative stochastic method will be outlined. By means of this method,
the scour depth around the marine structures subjected to random waves plus current for
mild slopes can be derived. Moreover, Battjes and Groenendijk (2000) wave height distri-
bution based on laboratory experiment on shallow foreshore will be introduced as well as
the truncated distribution function.

5.2 Stochastic method

The stochastic method proposed here is based on the following assumptions: (1) the storm
has lasted long enough to develop the equilibrium scour depth; (2) Only the highest waves
are responsible for the scour response. The highest waves considered here are those ex-
ceeding the probability (1/n)th, denoted by H1/n. Here the highest among random waves
in a stationary narrow-band sea state are considered. The quantity of interest here is the
expected value of maximum equilibrium scour depth caused by the (1/n)th highest waves,
which is given as

E
[
S(H)|H > H1/n

]
= n

∫
∞

H1/n

S(H)p(H)dH (5.1)

where S(H) is the equilibrium scour depth that will be given in the following chapters and
p(H) is the probability density function (pdf) of H.

Based on the present assumption, the free surface elevation ζ (t) is a stationary Gaussian
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narrow-band random process with zero expectation described by the single-sided spectral
density Sζ ζ (ω). Based on that, the time-dependent near-bed orbital displacement a(t) and
velocity u(t) in deep water are both stationary narrow-band process with zero expectation
described by spectral densities

Saa(ω) =
Sζ ζ (ω)

sinh2 kh
(5.2)

Suu(ω) = ω
2Saa(ω) =

ω2Sζ ζ (ω)

sinh2 kh
(5.3)

5.3 Wave height distribution

5.3.1 Battjes and Groenendijk distribution

This thesis focuses on the scour around marine structures on a sloping seabeds in finite
water depth. In such condition, the water depth is limited and wave breaking process is
involved. Thus the wave height distribution is no longer Rayleigh distribution as it is for
non-breaking waves in deep water. Here the Battjes and Groenendijk (2000) wave height
distribution based on laboratory experiments on shallow foreshores is employed. The cumu-
lative distribution function (cdf) consists of two two-parameter Weibull distribution, given
by

FĤ ≡ P(Ĥ 6 Ĥ) =


P1(Ĥ) = 1− exp

[
−
(

Ĥ
Ĥ1

)k1
]
, Ĥ ≤ Ĥtr

P2(Ĥ) = 1− exp
[
−
(

Ĥ
Ĥ2

)k2
]
, Ĥ ≥ Ĥtr

(5.4)

It should be noted that we normalize all wave heights with Hrms, to be indicated as

Ĥx =
Hx

Hrms
(5.5)

where, exponent k1 = 2 and k2 = 3.6. Htr is the transitional wave height, given by

Htr = (0.35+5.8tanα)h (5.6)

α is the slope angle. Rms value of wave height Hrms is given as

Hrms = (2.69+3.24
√

m0/h)
√

m0 (5.7)
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where m0 is the zeroth spectrum moment.

5.3.2 Prediction of parameters

Battjes and Groenendijk (2000) wave height distribution is a point model which can be
calculated for a given water depth h, a slope angle α as well as the zeroth spectrum moment
m0. For a given seabed condition, the water depth can be determined from simple geometric
computation. For m0, it can be obtained from

m0 =
∫

∞

0
Sζ ζ (ω, h)dω (5.8)

where Sζ ζ (ω, h) is the wave spectrum in finite water depth. According to Young (1999)
and Jensen (2002), S(ω, h) can be obtained by multiplying the wave spectrum in deep water
Sζ ζ (ω) with a depth correction factor ϕ(ω, h) as

Sζ ζ (ω, h) = ϕ(ω, h)Sζ ζ (ω) (5.9)

where,

ϕ(ω,h) =
ω6

(gk)3 [tanhkh+ kh
(
1− tanh2 kh

)] (5.10)

For a given h, α and m0, the values of Ĥ1 and Ĥ2 can be either read from Table 2 in
Battjes and Groenendijk (2000), or they can be determined by solving the following two
equations together:

1) The distribution function has to be continuous, given by

F1(Ĥtr) = F2(Ĥtr) (5.11)

2) The mean square normalized wave height, or the second moment of the pdf of the
truncated CWD of Ĥ, has to equal to unity, given by

∫ Ĥtr

0
Ĥ2 p1(Ĥ)dĤ +

∫
∞

Ĥtr

Ĥ2 p2(Ĥ)dĤ = 1 (5.12)

where p1 and p2 are the probability density function of Ĥ and defined as: p1 = dP1, p2 =

dP2. The expression of p1 and p2 are given in in Appendix A.
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5.3.3 Truncated distribiton

If Ĥ is defined within a limited inter value Ĥ > Ĥt , then Ĥ follows the truncated distribution
given by

FĤ ≡ P(Ĥ 6 Ĥ) =


P1(Ĥ) = 1− exp

[
−
(

Ĥ
Ĥ1

)k1
+
(

Ĥt
Ĥ1

)k1
]
, Ĥt ≤ Ĥ ≤ Ĥtr

P2(Ĥ) = 1− exp
[
−
(

Ĥ
Ĥ2

)k2
+
(

Ĥt
Ĥ2

)k2
]
, Ĥ ≥ Ĥtr

(5.13)

For truncated distribution, the only way to determine the values of Ĥ1 and Ĥ2 is to solve
the Eqs. (5.11) and (5.12) together. But it should be emphasized that the lower limit of
integral for the first term in Eq. (5.12) should be Ĥt .



Chapter 6

Scour Around a Vertical Pile in Random
Waves Plus Current

6.1 Introduction

The stochastic approach, presented in the previous chapter, will be used here to evaluate the
scour depth on mild sloping seabeds. The focus of this chapter is on the scour depth around
a vertical pile exposed to random waves and combined random waves plus current. This
stochastic method is achieved by combining the Sumer and Fredsøe (2001) scour formula
for flat seabeds and the Battjes and Groenendijk (2000) wave height distribution for mild
slopes. This approach is also based on assuming that the experimental formulas for scour
depth around a vertical pile in random waves plus current on flat seabeds are valid for regular
waves plus current. It should be noted that this approach is only valid for wave-dominant
flow.

6.2 Scour in random waves

6.2.1 Random waves

Sumer and Fredsøe (2001) presented the results of an experimental study on scour around
a vertical pile exposed to irregular waves. They found that their empirical formula of the
equilibrium scour depth for regular waves given in Eqs. (4.1) and (4.2) can be used for
irregular waves provided that KC number is replaced by KCrms, given by

KCrms =
UrmsTp

D
=

2πArms

D
(6.1)
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For a fixed location with water depth h, Rms value of near-bed wave induced displace-
ment Arms and velocity Urms can be obtained by (based on the linear wave assumption)

Arms =
Hrms

2sinhkh
(6.2)

Urms = ωpArms =
ωpHrms

2sinhkh
(6.3)

moreover, by combining Eqs. (6.2) and (6.3) it follows that

ωp =
Urms

Arms
(6.4)

where ωp = 2π/Tp is the spectral peak frequency, Tp is the spectral peak period, and kp is
the wave number corresponding to ωp, determined from the dispersion relationship

ω
2
p = gkp tanhkph (6.5)

6.2.2 Random waves plus current

For this case, Sumer and Fredsøe (2001) found that their empirical formulas for the equi-
librium scour depth for regular waves given in Eqs. (4.1) and (4.2) can be also used for
combined waves plus current provided that the coefficients q and r are determined by

q = 0.03+0.75U2
cwrms (6.6)

r = 6exp(−4.7Ucwrms) (6.7)

where,
Ucwrms =

Uc

Uc +Urms
(6.8)

and Uc is the current velocity.

We note that for Uc = 0 in Eq. (6.8), Eqs. (6.6) and (6.7) reduce to the wave alone case
with coefficient q = 0.03 and r = 6.

It should be noted that for 0 ≤Ucwrms ≤ 0.4, the combined flow is wave-dominated. For
0.4 ≤Ucwrms ≤ 1, it is current-dominated.
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6.2.3 Regular waves plus current

The stochastic method proposed here is valid only for the wave-dominated flow. Moreover,
it is based on assuming that Eqs. (4.1), (6.6) and (6.7) for irregular waves plus current are
valid for regular waves plus current provided that Ucwrms is replaced by Ucw. That means for
0 ≤Ucwrms ≤ 0.4,

Ŝ ≡ S
D

=C{1− exp[−q(KC− r)]}; f or KC > r (6.9)

where,
q = 0.03+0.75U2

cw (6.10)

r = 6exp(−4.7Ucw) (6.11)

where Ucw is defined as
Ucw =

Uc

Uc +U
(6.12)

Based on narrow-band assumption, ω = ωp (T = Tp) and k = kp. Then by combining
Eq. (4.7) and (6.4) it follows that

Û =
U

Urms
=

A
Arms

=
H

Hrms
= Ĥ (6.13)

consequently, KC and Ucw can be re-arranged as

KC(Ĥ) =
UT
D

=
UrmsTp

D
Û =

UrmsTp

D
Ĥ = KCrmsĤ (6.14)

Ûcw(Ĥ) =
Uc/Urms

Uc/Urms +Û
=

Uc/Urms

Uc/Urms + Ĥ
(6.15)

It should be noted that Eq. (6.14) is identical to Eq. (4.3), and Eq. (6.15) is identical to
Eq. (6.12).

By substituting Eqs. (6.14) and (6.15) into Eq. (6.9)-(6.11) it follows that

Ŝ ≡ S
D

=C{1− exp[−q(KCrmsĤ − r(Ĥ))]}; f or H ≥ Ht =
r(Ĥ)

KCrms
(6.16)

where
q(Ĥ) = 0.03+0.75Ucw(Ĥ)2 (6.17)
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r(Ĥ) = 6exp(−4.7Ucw(Ĥ)) (6.18)

It should be noted that for given values of ω , Uc and h, the wave number k should be
determined from the dispersion relationship for regular waves plus current with an angle φ

to the direction of the wave propagation, which is ω = kUccosφ +(gk tanhkh)1/2 (Soulsby
(1997)). However, the k is not influenced very much by the presence of the current for
wave-dominated flow. Therefore, the wave number k can be obtained from the dispersion
relationship for waves alone in Eq. (6.5).

Now the mean scour depth around a vertical pile caused by (1/n)th highest waves fol-
lows from Eq. (5.1) as

E
[
S(Ĥ)|Ĥ > Ĥ1/n

]
= n

∫
∞

0
S(Ĥ)p(Ĥ)H(Ĥ − Ĥ1/n)dĤ (6.19)

where Ŝ(Ĥ) is the scour depth around a vertical pile in regular waves plus current, given in
Eqs. (6.16)-(6.18). p(Ĥ) is the truncated probability density function (pdf) and determined
from Eq. (5.13), i.e. p1 = dP1 for Ĥt ≤ Ĥ ≤ Ĥtr, p2 = dP2 for Ĥ > Ĥtr (the expression of
the truncated pdf is given in Appendix A); H(Ĥ − Ĥ1/n) is the Heaviside function, defined
as one for Ĥ > Ĥ1/n and zero elsewhere; Ĥ1/n is calculated by solving the equation 1−
P(Ĥ1/n) = 1/n.

6.3 Results and discussion

In this section, the results of the Battjes and Groenendijk (2000) wave height distribution
on shallow foreshore including breaking process are presented to describe the sea state in
finite water depth. A JONSWAP spectrum, which is transformed to the finite water depth,
is assumed in deep water. The effect of slopes on scour in random waves is studied. A
slope of 1/100 is considered firstly and then other three slopes, 1/50, 1/150 and 1/250, are
considered for this purpose. The scour depth around a vertical pile in combined random
waves plus current is addressed at the end. The slope of 1/100 and four locations along the
sloping seabeds are considered for this purpose.

Fig. 6.1 illustrates the the seabed conditions with slope=1/100: the water depth at the
seaward location (x = 0m) is 15m; the horizontal length of sloping seabeds is 600m; and the
diameter of the vertical pile D is 1m.

From chapter 5 it is known that the wave spectrum in finite water depth Sζ ζ (ω, h) can
be obtained from the spectrum in deep water Sζ ζ (ω). Hence, the random waves with a
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Fig. 6.1 Definition sketch of scour depth S below a vertical pile for mild slopes conditions.

standard JONSWAP spectrum (γ = 3.3) and significant wave height Hm0 = 8m are assumed
to describe the sea state in deep water. Fig. 6.2 shows some results of the wave spectra at
four locations transformed from the deep water according to Eqs. (5.9) and (5.10). Table 6.1
gives the water depth at each location. In additions, the corresponding values of KCrms and
kph in each location are presented in Table 6.1. We regard the breaking process as a source
of energy dissipation. It is clear in Fig. 6.2 that the wave energy decreases significantly due
to the effect of wave breaking. Fig. 6.3 gives the variation of zeroth spectrum moment m0

with x according to Eq. (5.8). It reveals the fact that breaking activity become more and
more pronounced with decreasing of water depths.

Table 6.1 Parameters for the four locations

Location 1 Location 2 Location 3 Location 4
x (m) 0 200 400 600
kph 0.77 0.70 0.64 0.57
KCrms 12.73 13.33 13.91 14.57

With the values of m0 along x, Hrms can be determined by Eq. (5.7) and therefore KCrms

by Eqs. (6.1) and (6.2). Fig. 6.4 gives the results of KCrms versus x for slope=1/100. It
appears that KCrms increases from 13.75 to 15.85 as water depth decreases (x −→ 600m).
It needs to be noted that although Hrms decreases as x approaches to 600m due to the wave
breaking, kph decreases because of the limited water depth. Those effects raise the KCrms

along x.
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Location 1, x=0m,      kph=0.77, KCrms=12.73
Location 2, x=200m,  kph=0.71, KCrms=13.30
Location 3, x=400m,  kph=0.64, KCrms=13.91
Location 4, x=600m,  kph=0.57, KCrms=14.57

Fig. 6.2 The transitional wave spectra in finite water depth, Sζ ζ (ω,h) (see Eq. (5.9)) versus
ω , at four locations for slope=1/100.
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Fig. 6.3 Zeroth spectrum moment, m0 (see Eq. (5.8)) versus x in finite water depth for
slope=1/100.

6.3.1 Waves alone

As mentioned previously in section 3.1, the Sumer and Fredsøe (2002) formulas for scour
around a vertical pile (Eqs. (6.16)-(6.18)) are only valid for Ĥ ≥ Ĥt since there is no horse-
shoe vortex formed for Ĥ < Ĥt = r/KCrms. Hence, the truncated Battjes and Groenendi-
jk (2000) wave height distribution in Eq. (5.13) is required to ensure that all the regular
waves considered here have physical meanings. The truncated wave height distribution of
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Fig. 6.4 KCrms versus x in finite water depth for slope=1/100.

Ĥ, which is normalized by Hrms , are shown in Figs. 6.5 (pdf) and 6.6 (cdf). Four locations
(see Table 6.1) are considered here.

The truncation point here, Ĥt , indicates the smallest wave height which could be able to
form a horseshoe vortex that takes sediment away from the pile. From Fig. 6.5 it appears
that Ĥt decreases (slightly) from Location 1 to Location 4, indicating that the threshold of
scour decreases as the water depth decreases.

The discontinuous points in Fig. 6.5 are the transitional wave height Ĥtr, representing
the limiting wave height for non-breaking waves. For large Ĥtr, the distribution reduces
to the Rayleigh distribution. The figure shows that from Location 1 to Location 4 (as x

increasing from 0 −→ 600), Ĥtr decreases from 1.78 to 1.30, reflecting that the influence of
breaking waves become more and more significant as water depth decreases. It should be
noted that the area under each truncated pdf curve must be equal to one, as seen in Fig. 6.6.

Fig. 6.7 illustrates the variation of expected normalized equilibrium scour depth (S/D)
around a vertical pipe with the bed length x for slope=1/100. The scour caused by (1/n)th

highest waves for n=(3, 10) are denoted by Ŝ1/3 and Ŝ1/10, respectively. It appears that
both Ŝ1/3 and Ŝ1/10 increase as water depth decreases (x increases from 0m to 600m). This
effect may be attributed to the increase of KCrms alone sloping bed since large KCrms creates
more scour. For a given location, (1/10)th highest waves cause more scour than (1/3)th
highest waves, i.e. Ŝ1/10 > Ŝ1/3. Further, Ŝ1/10 increases slightly from seaward location at
x = 0 to the ending point of shore at x = 600, while (1/3)th highest waves increase more.
The reason is due to the large difference in wave height distribution for Ĥ > Ĥ1/3 between
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Fig. 6.5 Truncated probability density function of Ĥ at four locations for slopes=1/100.
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Fig. 6.6 Truncated cumulative distribution function of Ĥ at four locations for slopes=1/100.

different locations but small difference for Ĥ > Ĥ1/10. Overall, from the view of scour
mechanistic, the results shows that the effect of slope increase the scour depth because the
breaking process creates strongly downward direction flow that erodes the seabed.

Now, let us compare the present results with the results from different slopes. Fig. 6.9
shows the KCrms versus x for three additional slopes together with 1/100. The seabed con-
ditions for four slopes can be seen in Fig. 6.8. From Fig. 6.9 it appears that for all slopes,
KCrms increases as water depth decreases. KCrms = 12.73 at x = 0 for all slopes. More-
over, at a given location x, it appears that KCrms increases as slope increases. It should be
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Fig. 6.7 Scour around a pile: maximum scour depth, Ŝ1/n versus x for n=(3, 10), for waves
alone case and slope=1/100.

emphasized that for all slopes, both Hrms and kph decrease as x −→ 600.

Fig. 6.8 Sketch of seabed conditions for four slopes: 1/50, 1/100, 1/150, 1/250. The total
horizontal length of sloping seabed is 600m, the water depth at seaward location is 15m.

Fig. 6.10 shows the equilibrium scour depth around a vertical pile for different slopes.
As expected, the effect of slope is to increase more scour. From the figure it is apparent that
for all slopes, Ŝ1/n for n = (3, 10) increase as the x approaches to 600m. At a given location
x, it shows that Ŝ1/n increases as slope increases. Those results are completely consistent
with those in Fig. 6.9, suggesting that large KCrms causes more scour.
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Fig. 6.9 KCrms versus x for four slope: 1/50, 1/100, 1/150, 1/250.
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Fig. 6.10 Scour around a pile: maximum scour depth, Ŝ1/n versus x for n=(3, 10) for waves
alone case and four slopes.

6.3.2 Waves plus current

The influence of current on scour depth around a vertical pile will be investigated in this
section. This is achieved by changing Uc in Ucwrms in Eq. (6.8). Four locations are consid-
ered here, as seen in Table 6.1. It should be emphasized that the stochastic method proposed
here is valid for wave-dominated flow, i.e. 0 ≤Ucwrms ≤ 0.4.

When a current is superimposed on random waves, the truncation point Ĥt which is
related to current velocity will be influenced. Consequently, the wave height distribution
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of Ĥ is changed by the present of the current. Fig. 6.11 displays the truncated Battjes and
Groenendijk (2000) wave height distribution, with respect to normalized wave height Ĥ, for
different values of Ucwrms = Uc/(Uc +Urms) at Location 1. For other locations, the results
are shown in Appendix B.

As Fig. 6.11 suggests, for Ucwrms = 0, the distribution is consistent with that for wave
alone case in Fig. 6.5. As Ucwrms increase, the truncation point Ĥt decreases significantly. It
is seen that v almost drops to zero when Ucwrms up to 0.05. This result implies that, for the
weak waves (which are not able to generate scour alone), even a slight current would cause
the threshold value of scour Ĥt decreasing significantly. For a given location, the value
of transitional wave height is identical because it is independent on the current velocity.
Fig. 6.12 gives the results of truncated cumulative distribution in random waves plus current
for different values of Ucwrms.
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Fig. 6.11 Truncated probability density function of Ĥ for different Ucwrms at four locations.
Six values of Ucwrms are shows here: Ucwrms = (0, 0.0025, 0.05, 0.1, 0.2, 0.4).

Fig. 6.13 illustrates the expected normalized equilibrium scour depth in combined ran-
dom waves plus current, with respect to Ucwrms = Uc/(Uc +Urms) in the range 0-0.4, for
slope=1/100 at four locations corresponding to Table 6.1. The expected equilibrium scour
depth in combined flow is denoted by Ŝcw1/3 and Ŝcw1/10 for n=(3, 10), respectively. The
following conclusions can be deduced from Fig. 6.13.

Firstly, It is obvious that Ŝcw1/n goes to the results given in Fig. 6.7 as the Ucwrms ap-
proaches to 0 (waves alone case). The increase of Ŝcw1/n from Location 1 to Location 4 at
Ucwrms = 0 implies that the effect of slope increases the scour depth.
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Fig. 6.12 Truncated cumulative distribution function of Ĥ for different Ucwrms at four loca-
tions. Six values of Ucwrms are shows here: Ucwrms = (0, 0.0025, 0.05, 0.1, 0.2, 0.4).
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Fig. 6.13 Scour around a pile: maximum scour depth, Ŝcw1/n versus Ucwrms for n= (3, 10)
for waves plus current case and slope= 1/100.

Secondly, it is seen from the Fig. 6.13 that the effect of the current apparently increase
the scour depth compared with that for waves alone case. The influence becomes more and
more pronounced with increasing Ucwrms. More specifically, for all locations, Ŝcw1/3 and
Ŝcw1/10 at Ucwrms = 0.4 are around 2.5 times and 1.3 times larger than those for wave alone
case, respectively. This is linked to the mechanisms of scour around a vertical piles referred
to section 3.2. The strong horseshoe vortex is formed in front of the pile even in the case of
a weak current.
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Finally, for a given current velocity, the (1/10)th highest waves plus current cause more
scour than the (1/3)th highest waves plus current. However, the difference become smaller
as Ucwrms increases. Ŝcw1/3 and Ŝcw1/10 approach to each other as Ucwrms approaches to 0.4.
The main reason for this is: for small Ucwrms, the random waves still is the mainly response
for scour depth, but with the increase of Ucwrms, the effect of current become pronounced.
The flow changes to current-dominant when Ucwrms increases to 0.4. In such flow condition,
the current becomes the main response for scour depth.

Additionally, similar to waves alone case, for a given location, the equilibrium scour
depth caused by 1/10th highest is larger than that caused by 1/3th highest waves, i.e.
Ŝcw1/10 > Ŝcw1/3 for the case of waves plus current.





Chapter 7

Scour Below a Pipeline in Random
Waves Plus Current

7.1 Introduction

In this chapter, the stochastic method will be used to calculate the scour depth below a
pipeline on mild slopes by combining the scour formula for pipelines on flat seabeds and
the Battjes and Groenendijk (2000) wave height distribution for mild slopes. Similar to
vertical piles, this approach is based on assuming that the experimental formulas for scour
depth below a pipeline in random waves plus current on a horizontal bed are valid for regular
waves plus current.

7.2 Scour in random waves

7.2.1 Waves alone

Sumer and Fredsøe (1996) presented an experimental study of scour below a pipeline in
irregular waves plus current for 5 < KC < 50 and live-bed conditions. They found that
Eq. (4.9) can be used for irregular waves as well provided that the KC number is calculated
as KCrms given in Eq. (6.1).

7.2.2 Waves plus current

For combined waves plus current, Sumer and Fredsøe (1996) found the following expression
for the scour depth S below a pipeline with diameter D with KC ranging from 5 to about 50.
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S
D

=
Scur

D
F (7.1)

where Scur/D = 0.6 is the normalized scour depth for steady-current alone. F is given by
the following empirical equations

F =
5
3

KCa exp(2.3b) f or 0 ≤Ucwrms ≤ 0.7 (7.2)

F = 1 f or 0.7 ≤Ucwrms ≤ 1 (7.3)

where Ucwrms is given by Eq. (6.8), the coefficient a and b are given by

1) For the wave-dominated flow: 0 ≤Ucwrms ≤ 0.4

a = 0.557−0.912(Ucwrms −0.25)2 (7.4)

b =−1.14+2.24(Ucwrms −0.25)2 (7.5)

2) For the wave-dominated flow: 0.4 ≤Ucwrms ≤ 1

a =−2.1Ucwrms +1.46 (7.6)

b = 3.3Ucwrms −2.5 (7.7)

It is noticed that there is a discontinuity in Eqs. (7.4), (7.5) and Eqs. (7.6), (7.7) at
Ucwrms = 0.4. However, for the wave-dominated flow, this is not an issue since 0 ≤Ucwrms ≤
0.4. Eqs. (7.1), (7.2), (7.4) and (7.5) (wave-dominant flow) will reduce to Eq. (4.9) (wave
alone case) if Uc = 0 in Eq. (6.8).

Similar to vertical piles case, here only the wave-dominated flow is considered. More-
over, the stochastic method is based on assuming that Eqs. (7.1), (7.2), (7.4) and (7.5) for
irregular waves plus current are valid for regular waves plus current provided that Ucwrms is
replaced by Ucw. That means for 0 ≤Ucwrms ≤ 0.4,

F =
5
3

KCa exp(2.3b) (7.8)
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and
a = 0.557−0.912(Ucw −0.25)2 (7.9)

b =−1.14+2.24(Ucw −0.25)2 (7.10)

By substituting Eqs. (6.14) and (6.15) into Eqs. (7.8)-(7.10), the scour formulas for
regular waves plus current is given by

Ŝ ≡ S
D

=
Scur

D
F(Ĥ) (7.11)

where
F(Ĥ) =

5
3

KC(Ĥ)a exp(2.3b) (7.12)

and,
a(Ĥ) = 0.557−0.912(Ucw(Ĥ)−0.25)2 (7.13)

b(Ĥ) =−1.14+2.24(Ucw(Ĥ)−0.25)2 (7.14)

Now the mean scour depth below a pipeline caused by (1/n)th highest waves follows
from Eq. (5.1) as

E
[
S(Ĥ)|Ĥ > Ĥ1/n

]
= n

∫
∞

Ĥ1/n

Ŝ(Ĥ)p(Ĥ)dĤ (7.15)

where Ŝ(Ĥ) is the equilibrium scour depth below a pipeline, given by Eqs. (7.11)-(7.14);
p(Ĥ) is the probability density function (pdf) of Ĥ and determined from Eq. (5.4), i.e.
p1 = dP1 for Ĥ ≤ Ĥtr, p2 = dP2 for Ĥ > Ĥtr. The expressions of pdf are found in Appendix
A, Eq. (A.3); Ĥ1/n is calculated by solving the equation 1−P(Ĥ1/n) = 1/n.

7.3 Results and discussion

The seabed conditions used for vertical piles are used here for estimating the scour depth
below a pipeline. Fig. 7.1 gives the sketch of scour depth S below a pipeline with a diameter
D on the mail sloping seabed.
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Fig. 7.1 Definition sketch of scour depth S below a vertical pile for mild slopes conditions.

7.3.1 Waves alone

Fig. 7.2 shows the probability density function of Ĥ at four locations for slope=1/100. It
should be noted that for scour below pipelines, no truncation wave height Ĥt exits because
there is no restrict condition for threshold of scour. The Battjes and Groenendijk (2000)
distribution in Eq. (5.4) is directly used to describe the wave height distribution for mild
slopes. It appears that the pdf of Ĥ almost overlap before wave breaks at Ĥtr. However,
breaking process occurs at different values of Ĥtr for different locations. The values of
transitional wave heights Ĥtr at four locations are exactly identical to that for vertical piles
because Ĥtr depends on the water depth and slope angle (see Eq. (5.6)). The cumulative
distribution function is plotted in Fig. 7.3.
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Fig. 7.2 Probability density function of Ĥ at four locations for slope=1/100.

Fig. 7.4 illustrates the variation of the expected normalized equilibrium scour depth be-
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Fig. 7.3 Cumulative distribution function of Ĥ at four locations for slope=1/100.

low a pipelines with horizontal bed length x for slope=1/100. As defined previously, the
scour caused by (1/n)th highest waves for n = (3,10) are denoted by Ŝ1/3 and Ŝ1/10 re-
spectively. Generally, it appears that the Ŝ1/n increase (slightly) as the water depth decrease
(x → 600m). For a given location x the scour depth always appears that Ŝ1/10 > Ŝ1/3. It
should be noted that the KCrms is the same as that for the vertical pile case in Fig. 6.4 due
to the identical seabeds condition. As explained in section 3.2, for large values of KCrms

the lee-wake vortices travel over a larger part of the seabed, and take more sediments away
from the pipeline, leading to large scour hole.

Fig. 7.5 shows the comparison of expected normalized equilibrium scour depth Ŝ1/n be-
low a pipeline at four locations. The corresponding value of KCrms for four sloping seabeds
are shown in Fig. 6.9. It can be concluded that for a given location x, large slope causes
more scour.

7.3.2 Waves plus current

The effect of current on scour below a pipeline will be studies in this section. Following the
same method for vertical piles in section 6.2, the effect of current is considered by changing
Uc in Ucwrms in Eq. (6.8).

Fig. 7.6 shows the expected normalized equilibrium scour depth below a pipeline ex-
posed to combined waves plus current versus Ucwrms = Uc/(Uc +Urms) in the range 0-0.4
for slope=1/100 at four locations. The expected equilibrium scour depth in combined flow
is denoted by Ŝcw1/3 and Ŝcw1/10 for n = (3,10), respectively. It should be noted that the
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Fig. 7.4 Scour below a pipeline: maximum scour depth, Ŝ1/n versus x for n=(3, 10) for
waves alone case and slope=1/100.
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Fig. 7.5 Scour below a pipeline: maximum scour depth, Ŝ1/n versus x for n=(3, 10) for
waves alone case and four slopes.

wave height distribution and KCrms are not influenced by the current. Hence the KCrms in
Fig. 6.4, the pdf in Fig. 7.2 and cdf in Fig. 7.3 are still valid for waves plus current case.

Firstly, it is obviously that Ucwrms = 0 corresponds the wave alone case in Fig. 7.4. The
increase of Ŝcw1/n from Location 1 to Location 4 at Ucwrms = 0 implies that the effect of
slope increases the scour depth.

Secondly, there is a general trend that, irrespective of locations (KCrms are different
at four locations), Ŝcw1/n increase as the Ucwrms increases from 0 to 0.4, indicating that the
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effect of current increases the scour depth compared with that for waves alone. This is linked
to the mechanisms of scour below a pipelines referred to section 3.2. Here the current can
be considered as a wave with infinite wave period (KC = +∞), resulting in strong ability
of sediment transport. Hence, When a current is superimposed on waves, the capacity of
sediment transport of the upstream of the scour hole will increase slightly in the direction
of flow, leading to increase of scour.

Finally, Fig. 7.6 illustrates that the scour depth Ŝcw1/3 and Ŝcw1/10 approach to each
other as Ucwrms approaches to 0.4. That means the effect of current reduces the difference
between the scour caused by different highest waves plus current. This effect is due to:
for small Ucwrms, the random waves are still mainly response for scour depth, but with the
increase of Ucwrms, the effect of current becomes pronounced. The flow changes to current-
dominant when Ucwrms increases to 0.4. In such flow condition, the current becomes the
main response for scour depth.
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Fig. 7.6 Scour below a pipeline: maximum scour depth, Ŝcw1/n versus Ucwrms for n= (3, 10)
for waves plus current case and slope= 1/100.





Chapter 8

Approximate Method

8.1 Outline of approximate method

Sumer and Fredsøe (1996, 2001) found that the scour formulas for regular waves can be
used for random waves if the KC number for regular waves is replaced by KCrms based
on Hrms and Tp. This is a pragmatic method to evaluate the scour depth around marine
structures. Followed by Sumer and Fredsøe’s method, an approximated practical method is
proposed in this chapter in order to be consistent with the present stochastic method. Then,
comparisons are made between the stochastic and approximate method for waves alone case
and combined waves plus current case.

Corresponding to the two statistic values of the scour depth Ŝ1/n for n = (3,10), it is
interesting to know how well the expected equilibrium scour depth caused by (1/n)th high-
est waves, E[Ŝ(Ĥ)|Ĥ > Ĥ1/n], can be represented by using the mean of the (1/n)th highest
wave variable in the scour depth formulas for regular waves, Ŝ(E[Ĥ1/n]).

For example, alternative KC number for random waves in the approximate method can
be defined as

KC1/n =
E[U1/n]Tp

D
=

2πE[A1/n]

D
; f or n = (3,10) (8.1)

Based on narrow-band assumption, E[A1/n] and E[U1/n] can be defined as

E[A1/n] =
E[H1/n]

2sinhkph
(8.2)
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E[U1/n] = ωpE[A1/n] =
ωpE[H1/n]

2sinhkph
(8.3)

where E[U1/n], E[A1/n] and E[H1/n] are the mean values of (1/n)th near-bed orbital dis-
placement amplitude, velocity and wave height, respectively.

8.2 Scour around a vertical pile

The scour depth around a vertical pile for random waves alone can be obtained by replacing
KC with KC1/n in Eq. (4.1), given by

S
D

=C{1− exp[−q(KC1/n − r)]}; f or KC > r (8.4)

(C, q, r) = (1.3, 0.03, 6)

For waves plus current case, it can be obtained by replacing KC with KC1/n in Eqs. (7.1),
and Ucwrms with E[U1/n] in Eqs. (7.4) and (7.5), given by

Ŝ =C{1− exp[−q(KC1/n − r]}; f or H ≥ Ht =
r(Ĥ)

KC1/n
(8.5)

where
q = 0.03+0.75E[U1/n]

2 (8.6)

r = 6exp(−4.7E[U1/n]) (8.7)

For scour around a vertical pile exposed to random waves, the results of the stochastic
and approximate method ratio for four slopes are shown in Fig. 8.1, denoted by R1/3 and
R1/10 for n = (3,10), respectively. It interesting to note that the approximate method gives
almost the same values as stochastic method for lager slopes, i.e. 1/50 and 1/100, while
it gives slightly lower values than stochastic one for small slops, i.e. 1/150 and 1/250.
The difference increases as the water depth decreases. But even for the smallest slope, i.e.
1/250, the largest ratio is up to around 1.1, which is acceptable in engineering application.
Overall, Fig. 8.1 shows that the approximate method can replace the stochastic method for
scour around a vertical pile exposed to random waves.

For waves plus current case, Fig. 8.2 gives the result of scour ratio between two methods
for slope=1/100. It appears that for all locations, the ratio is lager than one. The difference



8.2 Scour around a vertical pile 45

0 100 200 300 400 500 6000.8

0.9

1

1.1

1.2

1.3

x (m)

R
1/

n

R1/3, R1/10, 4 slopes, waves alone

 

 

slope=1/50,   n=3
slope=1/100, n=3
slope=1/150, n=3
slope=1/250, n=3
slope=1/50,   n=10
slope=1/100, n=10
slope=1/150, n=10
slope=1/250, n=10

Fig. 8.1 Scour around a pile: stochastic to approximate method ratio, R1/n versus x for n=(3,
10) for waves alone case and four slopes.

between two methods increases as Ucwrms increases, suggesting that the effect of current
increases the difference between two methods. Overall, the result suggests that the stochas-
tic method can not be replaced by the approximate method for estimating the scour depth
around a vertical pile for waves plus current case.
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Fig. 8.2 Scour around a pile: stochastic to approximate method ratio, R1/n versus x for n=(3,
10) for waves plus current case and four slopes.
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8.3 Scour below a pipeline

The scour depth below a pipeline for waves alone case can be obtained by replacing KC

with KC1/n in Eq. (4.9), given as

S
D

= 0.1KC0.5
1/n (8.8)

For waves plus current case, it can be obtained by replacing KC and Ucwrms with KC1/n

and E[U1/n] in Eqs. (7.2), (7.4) and (7.5), respectively, given by

Ŝ =
Scur

D
5
3

KCa
1/n exp(2.3b) (8.9)

where
a = 0.557−0.912(E[U1/n]−0.25)2 (8.10)

b =−1.14+2.24(E[U1/n]−0.25)2 (8.11)

For waves alone, the results of stochastic and approximate method ratio for four slopes
are shown in Fig. 8.3, denoted by R1/3 and R1/10 for n = (3,10), respectively. It shows that
for all slopes, the ratios are very close to 1, especially for n=10, suggesting that the scour
depth formula for pipelines exposed to regular waves can be applied for random waves if the
random waves are represented by the mean of the (1/n)th highest waves. Thus, to simplify,
the approximate method can replace the stochastic method in engineering applications for
scour below pipeline in random waves.

For waves plus current, Fig. 8.4 gives the result of scour ratio between the stochastic
method and the approximate method for slope=1/100 at four locations, denoted by Rcw1/3

and Rcw1/10 for n = (3,10), respectively. For all locations, it appears that the ratio is about
one for Ucwrms in the range 0 − 0.15, while it is lager than one for Ucwrms in the range
0.15−0.4. The difference between two methods increases as Ucwrms increases, suggesting
that the effect of current increases the difference between the stochastic method and the ap-
proximate method. Overall, the result shows that the the stochastic method can be replaced
by approximate method only for small value of Ucwrms for scour below pipeline waves plus
current case. It should be noted that those conclusions are based on the condition we dis-
cussed in this thesis.
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Fig. 8.3 Scour below a pipeline: stochastic to approximate method ratio, R1/n versus x for
n=(3, 10) for waves alone case and four slopes.
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Fig. 8.4 Scour below a pipeline: stochastic to approximate method ratio, R1/n versus x for
n=(3, 10) for waves plus current case and four slopes.





Chapter 9

Conclusions

The objective of this thesis is to provide a stochastic method by which the maximum scour
depth below marine pipelines and around vertical piles on sloping seabeds for random waves
without and with a current can be derived.

The stochastic method introduces a new way to calculate scour depth for mild slope.
This is achieved by combining the Sumer and Fredsøe (2002) scour formula for horizontal
bed and the Battjes and Groenendijk (2000) wave height distribution for mild slopes.

Scour formulas
Scour depth formulas in regular waves plus current is derived by assuming that Sumer

and Fredsøe scour formulas for irregular waves plus current is valid for regular waves plus
current provided that Ucwrms is replaced by Ucw. This is based on the stationary narrow-band
assumption.

Wave height distribution
In order to describe the wave condition on sloping seabeds including the breaking pro-

cess, the Battjes and Groenendijk (2000) wave height distribution for mild slopes is adopted.
Battjes and Groenendijk (2000) presented a point model of wave height distribution for a
given water depth, a slope angle as well as the zeroth spectrum moment. A method for
transformation of spectrum from deep water to finite water depth is presented. The zeroth
spectrum moment is calculated by integrating the corresponding wave spectrum. In addi-
tion, the truncated wave height distribution is derived for calculating the scour depth around
a vertical pile.

Waves alone
Four sloping seabeds are considered to investigate the effect of slope on scour. The

present results for the waves alone case reveal that the effect of slope increases scour com-
pared with that at seaward location. The scour depth around a vertical pile and below a
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pipeline increase by a factor of about 1.2 and 1.04, respectively, depending on the sloping
angle. For both structures, large slopes cause more scour at a fixed location.

Waves plus current
In this case, the mild slope of 1/100 is taken as an example to study the effect of cur-

rent on scour. The results show that the effect of current increase the scour depth for both
structures. This effect become more pronounced as Ucwrms increase. The scour depth below
pipelines at Ucwrms = 0.4 is approximately 1.3 times larger than that for the waves alone.
For a vertical pile, the scour depth can be 2.5 times larger than that for waves alone..

Approximate method
An approximate method is presented. The ratio between the stochastic method and

the approximate method suggests that the approximate method can replace the stochastic
method for waves alone case for engineering applications for both pipelines and vertical
piles. For waves plus current, however, the approximate method is only applicable for scour
below a pipeline for small value of Ucwrms. However, for scour around a vertical pipe, the
stochastic method should be used.

All the results in this thesis suggest that this stochastic method should be useful as a first
approximation in engineering applications when scour depth below marine pipelines and
around vertical piles due to random waves plus current is estimated.



Chapter 10

Recommendation for Further Work

The stochastic method proposed in this thesis is based on assuming that the sea state is
a stationary narrow-band process. All the results are based on the sea state and seabed
conditions exemplified in this thesis. Therefore, more data are required for comparisons in
order to give a conclusion regarding the validity of this method. At meantime, experimental
study and simulation method should be carried out, providing the data for comparing with
present results.

This thesis focuses on scour below marine pipelines and around vertical piles. More
other marine structures which may be threatened by scour could be discussed the validity of
the stochastic method.
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Appendix A

The Battjes and Groenendijk (2000) truncated probability density function of Ĥ is given by
1) Waves alone case

fĤ =
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Ĥ2
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2) Waves plus current

fĤ =
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(A.2)
The Battjes and Groenendijk (2000) probability density function of Ĥ is given by

fĤ =
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Fig. B.1 Truncated wave height distribution at Location 2 for scour around a vertical pile

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

Ĥ

P
D

F

Location 3, slope=1/100

 

 

Ucwrms=0
Ucwrms=0.025
Ucwrms=0.05
Ucwrms=0.10
Ucwrms=0.20
Ucwrms=0.4

(a) PDF

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

Ĥ
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Fig. B.2 Truncated wave height distribution at Location 3 for scour around a vertical pile
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Fig. B.3 Truncated wave height distribution at Location 4 for scour around a vertical pile
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