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Scope of work

MASTER THESIS SPRING 2014

for

Stud. Techn. Chunqi Zhou

Ultimate strength and post-ultimate behavior of hybrid platform deck girders

Sammenbruddstyrke og etterkritisk oppførsel av hybride bærekonstruksjoner i platformdekk

Topside load-carrying structures in floating offshore platforms may be constructed in many

ways. One option is to use a truss-work structure in combination with plate girders, where the

latter constitute the top flange of the girder. The plate girder carries both local, lateral loads as

we´ll as axial stresses form the global bending moment.

The deck girder may be designed according to conventional rules based on ultimate limit state

principles. These design formulations may be conservative; it may notably be considered that

the stressed skin concept may be utilized. and if it can be documented that the ultimate strength

is significantly larger, this effect may be taken into account in conjunction with reassessment of

the platform, e.g. if more equipment on the deck is desired. The behaviour in the post-ultimate

region will also have to be considered; if the load from failing members may be shed to other

intact members, the structure will be robust.

The purpose of the present work is to contribute to a better understanding of the ultimate

strength and post-ultimate behaviour of such deck girder by performing nonlinear analysis with

the computer programme USFOS.

The project work should comprise the following tasks:

1) Perform modelling of a stiffened plate girder in the deck area exposed to axial compression,
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bending and shear. Introduce appropriate boundary conditions to the girder. The analysis

shall be carried out with ABAQUS. Perform eigenvalue analysis and introduce one or more

eigenmodes as imperfections to the girder. Perform nonlinear analysis with proportional

loading. The load combinations to be agreed with the supervisor. Identify the ultimate

resistance of the girder. Compare numerical results with strength formulations given in

DNV-RP-C201 and NS-EN 1993-1-5.

2) Perform nonlinear analysis of the plate girder with stronger secondary stiffeners on the

girder web. Compare with the results from pt 1 and code formulations. It is especially

of interest to see if the girder may carry large shear forces in by tension field redistributing

axial force and bending moment to the girder flanges,

3) To the extent possible conduct alternative analysis with USFOS using the same finite ele-

ment mesh. Initial imperfection may have to be introduced differently.

4) Perform nonlinear analysis of a secondary girder with class 4 cross-section. The girder may

have cut-outs and/or patch loads. The loads shall be applied proportionally for various

load combinations. Determine the ultimate strength of the girder. Compare numerical

results with NS-EN 1993-1-5

5) Perform nonlinear finite element analysis with ABAQUS or USFOS of a hybrid plate girder-

truss-work section in a platform deck. The truss-work shall be modelled with shell fi-

nite elements including secondary stiffeners. Special attention shall be placed on mod-

elling boundary conditions and introducing initial imperfections to trigger local buckling

of plate girder. The truss-work may be modelled with beam elements. The truss work

shall be subjected to combined bending, shear and locally distributed forces. The ultimate

strength for various load shall be determined. Comparison shall be made with capacities

obtained with conventional design formulas, as given in DNV-RP-C201 Buckling Strength

of Plated Structures and NS-EN 1993-1-5 Design of steel structures, Plated structural ele-

ments.

6) If time permits, establish a model of a larger part of the deck structure, based on beam repre-

sentation of the deck girders combined with crude shell modelling of the stiffened plates.
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The plating shall be meshed one or a few all no be included. The effect of omitting the

stiffeners shall be discussed. The ultimate strength of the deck shall be assessed

7) Conclusions and recommendations for further work

Literature studies of specific topics relevant to the thesis work may be included.

The work scope may prove to be larger than initially anticipated. Subject to approval from the

supervisors, topics may be deleted from the list above or reduced in extent.

In the thesis the candidate shall present his personal contribution to the resolution of problems

within the scope of the thesis work.

Theories and conclusions should be based on mathematical derivations and/or logic reasoning

identifying the various steps in the deduction.

The candidate should utilise the existing possibilities for obtaining relevant literature.

Thesis format

The thesis should be organised in a rational manner to give a clear exposition of results, as-

sessments, and conclusions. The text should be brief and to the point, with a clear language.

Telegraphic language should be avoided.

The thesis shall contain the following elements: A text defining the scope, preface, list of con-

tents, summary, main body of thesis, conclusions with recommendations for further work, list of

symbols and acronyms, references and (optional) appendices. All figures, tables and equations

shall be numerated.

The supervisors may require that the candidate, in an early stage of the work, presents a written

plan for the completion of the work. The plan should include a budget for the use of computer

and laboratory resources which will be charged to the department. Overruns shall be reported

to the supervisors.

The original contribution of the candidate and material taken from other sources shall be clearly

defined. Work from other sources shall be properly referenced using an acknowledged referenc-

ing system.
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The report shall be submitted in two copies:

- Signed by the candidate

- The text defining the scope included

- In bound volume(s)

- Drawings and/or computer prints which cannot be bound should be organised in a separate

folder.

Thesis supervisor: Prof. Jørgen Amdahl

Deadline: June 10, 2014

Jørgen Amdahl

Trondheim, January 14, 2014

Remark: As the project goes on, more time is devoted into the first three tasks in the list. In

agreement with Professor Amdahl, the research about the first three tasks are carried out in

depth and a plenty of work is completed for this purpose.
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Summary

As for the increasing demands of offshore oil and gas, the new platforms are designed in more

and more serious conditions. The safety check and modification of the complex structure has

become a hot subject. Normally, the deck girder can be regarded as the combination of truss

works and girders, which will suffer from the axial compression from global bending as well as

shear force due to the local equipment loads.

The main goal of this paper is to make contributions to predict the ultimate strength and post-

buckling behavior of this kind of hybrid deck girder. Comparison among various cases is the

main methodology for drawing a conclusion.

The linear eigenvalue analysis is aimed to introduce the initial imperfection into the structure.

The effects of imperfection on the ultimate strength are found to be small for this kind of robust

structure. The way how the stiffener strength and boundary conditions influence the ultimate

capacity is also investigated. In addition, two nonlinear finite element software (Abaqus and

USFOS) provide similar pre- and post-buckling behavior, while the deviation for the ultimate

strength is in a quite large but acceptable level. The simplified estimate according to design

standards is also investigated here and the comparison with finite element analysis shows that

the regulations can give a quite good prediction about the ultimate capacity of stiffened plates

and primary girder section.
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Chapter 1

Introduction

Nowadays, there are a plenty of demands of new platforms to support the exploration of oil and

gas offshore. At the meantime, the modification of existing platforms is also a new hot branch

in the structure analysis field.

The hybrid deck girder, which consists of truss works and girders, is a typical type of platform

deck. The girder will suffer from both local, lateral loads as well as axial stresses form the global

bending moment.The ultimate strength analysis of the platform deck is an essential part in the

design stage to ensure the structural stability. The buckling of girders and braces within the truss

work may exert the dramatic effects on the their own resistance for failure, while the effects on

the whole system may be small since the adjacent members can take the force for the buckled

members.

As mentioned above, the complexity of structure increases the difficulties to estimate the ul-

timate strength and corresponding post ultimate behaviors. In addition, the design principle

will tend to provide the conservative estimate in the design state. Although the nonlinear finite

element method performed by the advanced software such as Abaqus and USFOS can always

predict the structure behavior well, it is hard to predict the deformation in advance due to com-

plexities.

Compared with truss works, there are more difficulties in predicting the behavior of the stiff-

ened girders. There are a lot of researches with regards to the stress estimation. Wagner [1]

developed the tension field theory for evaluating the critical shear buckling stress for web or

girders. In addition, Tang et al [2] conducted several tests to study the effects of the longitudinal

and transverse stiffeners on the girders.
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CHAPTER 1. INTRODUCTION

In this thesis, some contributions are expected to make to predict the ultimate strength and

post-buckling behavior of hybrid deck girder. For example, the effects of the stiffeners on the

girders will be investigated to provide a clear insight into the role of the stiffener strength played

in structural ultimate capacity. The check of the difference between the DNV regulations and

finite element analysis will be also studied to see the conservative effects from the design prin-

ciples. Furthermore, results from two commercial finite element software (Abaqus and USFOS)

will be compared to see the deviations in terms of the results for the ultimate analysis. In order

to provide a clear overview about this project for readers, the main work done in this thesis is

listed below.

• Effects of initial geometric imperfection on ultimate capacity – Section 7.2

• Effects of boundary conditions on ultimate capacity – Section 7.3

• Effects of secondary stiffeners on ultimate capacity –Section 7.4

• Comparison between two software (Abaqus and USFOS) – Section 8.4

• Capacity check of stiffened plates ´ – Section 9.1&9.2

• Capacity check of primary girder – Section 9.4

2



Chapter 2

Review of Frame Failure Mechanism

2.1 Introduction

In practice, structures are usually designed for the coexisting of shear force, bending moment

and even other types of loads. Evans [3] stated the complexity of estimate about the ultimate

strength for webs under both shear forces and bending moments. Compared with one frame

under pure bending moment, a frame under shear force will reduce its bending capacity. Simi-

larly, the occurrence of bending moment makes the full shear capacity not available any longer.

The various proportionality of the stress will lead to different collapse mechanisms.

Additionally, the initial imperfection will also exert an influence on the ultimate capacity of the

structure. The imperfection assumed as the out-of-straightness during manufacturing can be

simply expressed by one reasonable practical factor and the element length. As for the buckling

issues, the regulations from DNV will demonstrate the problems in details.

2.2 Bending and shear interaction

The interaction between bending and shear on the ultimate strength of one plate girder is plot-

ted in Figure 2.1. The line OC is the critical line to define the border of different failure mech-

anisms. The region OCS means the girder will fail in shear mechanism and the collapse in the

other part belongs to the flange failure.
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Figure 2.1: Diagram showing interaction between shear and bending effects [14]

Evans et al [4] carried out a study to estimate a value of the applied critical bending moment

changing the mechanism from web to flange. Their conclusion is that the critical bending

moment is approximately equal to the plastic bending capacity of the girder with the flanges

only.

Daley [5] presented an equation to show the relationship of this interaction, whereα is a param-

eter which depends on the cross-section and the value is equal to or greater than one.

(
M

Mul t
)2 + (

T

α.Tul t
)2 = 1 (2.1)

The Figure 2.2 is plotted based on the equation and it is markable that the section with α > 1

will reserve some bending strength at the point of full shear.

Theoretically, the vertical part of the girder is responsible for resisting the shear force, the height

including the top and bottom flanges instead of the web’s height is treated as the height resisting

shear force. As the shear capacity of web is used up, the moment capacity of section reduces

until the level of residual section modulus, which is defined by the free flange contribution only.

From the figure 2.2, a flat bar has no residual capacity, whereas a stiffener with flange area retain

almost 1/3 of initial moment capacity.
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Figure 2.2: Bending/shear interaction diagrams for different cross-section [5]

When the web is fully yielded and a shear hinge starts to form, the flanges can still provide ad-

ditional load capacity. In a truly pure shear collapse, even the whole area of flanges should be

expected to reach the yield stress. However, bending hinges in the flanges will occur at a lower

level of energy compared to the energy needed for pure shear collapse.

Graciano [6] studied the interaction between concentrated loads, shear and bending (shown

in Figure 2.3). He stated that the total patch loading resistance will be dramatically reduced

because of the coexisting of bending and shear and bending action has a major influence on the

reduction of patch capacity.

Figure 2.3: Intercation surface among concentrated loading pn , shear Vn and bending Mn [9]
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2.3 Collapse mechanism

In this sectin, the response mechanisms for the case with symmetric central loads are studied

and possible response mechanisms are listed below. As for the case with asymmetric loads,

please refer to IACS framing requirements.[7]

• 2 shear hinge

• 3-hinge bending/shear

• 4-hinge bending/shear

Figure 2.4: Typical symmetrical collapse mechanisms

Among different mechanisms, the mechanism requiring the lowest load capacity should be the

dominant one, which mainly depends on the shape of cross-section, the load length and the

load magnitude. The 3-hinge bending/shear is usually chosen as the dominant mechanism,

even though it normally needs a larger collapse load than the 4-hinged mechanism. Through

several finite element analyses, Daley [5] proved that the difference in the collapse loads of 3-

hinged and 4-hinged mechanisms is in an acceptable range. The 2-hinged mechanism can be

avoided by adjusting the web area to be larger than the minimum permissible web area in the

pure shear force. The shear area is shown in equation 2.2.
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A0 = 1

2
P.b.S.

p
3

σy
(2.2)

The 3-hinged mechanism is therefore usually adopted in the design state, and in this project we

can see the 2-hinged mechanism caused by simulated shear force later.

2.4 Initial imperfection

Initial imperfections have a significant impact on the physical buckling strength of structures

subjected to compression. Likewise, in a numerical simulation of system collapse, buckling is

often highly dependent on the initial deformation. There are two main sources of imperfec-

tions:

• Geometric deviations

• Residual stresses

Geometric imperfections refer to variations in the data of cross-section and axial out-of-straightness.

The variations in cross-section data is mainly caused by the manufacturing of the profile, while

the axial out-of-straightness is particularly due to structure fabrication. Additionally, welding

can induce residual stress, which arises from both the manufacturing of the profile and the

structure fabrication.

Generally, there are some difficulties in knowing the magnitude and direction of imperfections.

Design column curves, which contains the effects of true imperfections and residual stresses,

are often simulated very well by means of an equivalent imperfection. Very often this imperfec-

tion is approximately equal to the tolerance level for out-of-straightness specified by the code.

For example, the expression for equivalent imperfection based on some codes (ECCS, Euro3) is

shown below.[8]

wi /l = 0.0015(1−0.2/λ̄) (2.3)
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where wi is the out-of-straightness amplitude

l is the element length

λ̄ is reduced slenderness ratio

The equivalent imperfection is assumed to take the effects of both geometry deviations and

residual stresses into account. The second part in the bracket in the equation 2.3 can be ne-

glected for simplified cases.

Graciano [9] pointed out the reduction of capacity caused by initial imperfection is normally

less than 12% of the resistance with respect to perfect model. Additionally, for most cases, the

initial imperfection can be directly modelled by the shape of a sinus-wave or the first eigenmode

from eigenvalue analysis.

2.5 Regulation check according to DNV RP

DET NORSKE VERITAS (DNV) describes two different, but equally acceptable methods, for

buckling and ultimate strength assessment of plated structures in DNV RP C201[10].

The first method, as given in Part 1, is a conventional buckling code for stiffened and unstiffened

panels of steel, which is applicable for plates, stiffeners and girders.

The second method, as given in Part 2, is a computerized semi-analytical model called PULS

(Panel Ultimate Limit State). It is based on a recognized non-linear plate theory, Rayleigh-

Ritz discretizations of deflections and a numerical procedure for solving the equilibrium equa-

tions.The method is essentially geometrically non-linear with stress control in critical positions

along plate edges and plate stiffener junction lines for handing material plasticity.

The Excel program developed by DNV for buckling resistance includes check of unstiffened

plates, check of stiffeners from both the stiffener and plate sides, and check of the girder sec-

tion if there is.

The methodology for buckling check of stiffened plates are explained in the DNV RP C201 in

details [10]. Results from DNV Excel program and PULS will be discussed in the chapter 9.
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Chapter 3

Review of Researches on Plate Girder

Plate girders are usually used in the ships, platforms and drilling rigs. The combination of the

shear force, axial force and bending moment will decide the critical load and corresponding

buckling modes. The vital geometrical parameters are the web thickness, the flange area and

the strength of longitudinal and transverse stiffeners. In this chapter, some previous researches

relating to the strength of plate girders are reviewed.

3.1 The tension field concept

The tension field formed in the web plate can help the plate girders to reserve considerable

strength in the post-buckling region. When a plate girder is subjected to shear forces, the devel-

opment of stress in the web can be treated as two steps: [11]

Step 1: Initially, the tension and compression stress are equal and the directions are perpen-

dicular to each other.

Step 2: When the compressive stress reaches the principle value for buckling, it can’t take any

more pressure in that direction. While the in the tension direction, there is no buckling

problem and the additional stress can be tolerated by the tension band.

The experimental results published by Evans et al [12] are superimposed in the Figure 3.1 below

showing the principal strain and stress in the web during the development of tension band.
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Figure 3.1: Principal stresses and strains in the web panel LS3-A with 0.29Vmax , 0.97Vmax and
web strains on failure plateau [12]

3.1.1 Web shear capacity

In the unbuckled region, the shear capacity can be expressed as

τcr = π2E

12(1−υ2)
(

h

b
)2k (3.1)

where the buckling coefficient k, for simply supported edges is given by

k = 5.34+ 4

(a/b)2
f or a/b ≥ 1

k = 4+ 5.34

(a/b)2
f or a/b ≤ 1

(3.2)
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3.1.2 Tension band capacity

Membrane stress tends to occur and tension band will fail when it exceeds the yield stress. Using

the two-dimensional stress components in web (shown in Figure 3.2).

Figure 3.2: Stress state in a web plate [11]

Applying the von Mises’ yiled criterion, we have the membrane stress

σ
y
t =

√
σ2

Y w −3τc r 2(1− 3

4
si n22φ)− 3

2
τcr si n2φ (3.3)

Rockey [13] developed the tension field mode which can predict the failure mode accurately

with predominated shear forces.

Referring to the mathematical transformation[14], the total shear capacity can be obtained as

Vs

Vy w
= τcr

τy w
+p

3si n2θ(cotθ− b

d
)
σ

y
t

σy w
+4

p
3si nθ

√√√√(
σ

y
t

σy w
M∗

p ) (3.4)

The total shear capacities can be treated as three components:

• the first term is the buckling strength.

• the second term represents the contribution from the tension field in the post-buckling

stage.

• The third term indicates the contributions from the flanges.
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The inclination of the tension field has to be decided before calculating the shear capacity. Evans

put forward an empirical formulae that the value of inclination of the tension field causing the

ultimate shear loads tends to be roughly 2/3 of the inclination angle described by the diagonal

line in the web.[3]

θ ≈ 2

3
t an−1(

d

b
) (3.5)

3.1.3 Extreme cases with weak and strong flanges

So far, the discussion is about the case that the tension stress is anchored at both the top flange

and the vertical stiffener, but for the extreme cases, the layout of tension field may be different

from the case above.

If the flange of the girder is very weak, the contribution from the flanges may be very small

and becomes negligible. In such a case, the tension filed can only be anchored at the vertical

stiffeners as shown in Figure 3.3

Figure 3.3: Formulatin of tension field for the cases with weak flanges [11]

This way to calculate ultimate strength for weak flange is also called Basler’s theory [15] and the

expression of ultimate shear capacity is shown in equation 3.6.

Vs

Vy w
= τcr

τy w
+p

3si n2θ(cotθ− b

d
)
σ

y
t

σy w
(3.6)

If the flange becomes very strong, the hinge of the tension field will also anchor on the flange

side.Then the expression becomes
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Vs

Vy w
= 1

4

τcr

τy w
+
p

3

2

√
(1− 1

4
(
τcr

τy w
)2)+4

p
3(

b

d
)M∗

p (3.7)

3.2 The effects of stiffeners

3.2.1 Transverse stiffeners

The transverse stiffeners on the web are designed for increasing the shear resistance. Theoret-

ically, we can image that the transverse stiffeners will divide the whole web panel into several

sub-panels with smaller aspect ratios.

Tang et al [2] conducted 9 tests with various aspect ratios (0.62-1.24) to analyze the effects of

space between transverse stiffeners. The webs with very large slenderness ratios (over 800) guar-

antee the development of considerable strength during the post-buckling. His experimental

results can be concluded that

• The tension field mechanism can predict quite accurate results for the plate girders with

adequate transverse stiffeners. The maximum derivation among the nine tests is 15%.

• The empirical formulae about the inclination of the tension field works well

• The transverse stiffeners will obviously improve the strength of the plate girder. Even

though some stiffeners may be not adequate enough, they also provide a significant im-

provement in the ultimate capacity.

3.2.2 Longitudinal stiffeners

The longitudinal stiffeners are designed to improve the buckling capacity of the web panel,

mainly for the bending capacity.

Tang et al [12] conducted 18 plate girder tests with strong, intermediate, weak stiffeners, as well

as some cases without stiffeners. The results for different stiffeners are plotted in Figure 3.4.

Some conclusions can be summarized as follows
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(a) weak stiffeners (b) intermediate stiffeners

(c) strong stiffeners (d) very strong stiffeners

Figure 3.4: load/deflection plot with various stiffeners [12]

• For all the cases, tension field mechanism can always predict ultimate failure capacity in

a reasonable range.

• The bending capacity in the panels with adequate stiffeners is less than that in the unstiff-

ened panels.

• The plate girder with weak longitudinal stiffeners shows a sharp load reduction after col-

lapse, while the girder with stronger stiffeners tends to have a gentler drop-off.
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• The plate girders with inadequate stiffeners (weak and intermediated) will collapse unsta-

bly, and then the value of the load capacity in the reduced level is approximately equal to

the ultimate capacity of an unstiffened web.

3.2.3 Stiffener requirements

Transverse stiffeners must be capable of supporting the tension field. They are designed to resist

buckling, while the optimum rigidity of stiffeners refers to the minimum requirement of the

stiffener to remain stable during buckling. Mossonnet [16] pointed out the required rigidity of

stiffeners to remain fully effective during the post-buckling process to the ultimate load has to

be several times larger than γ∗.

γ= k ×γ∗ (3.8)

For simple cases, k can be found directly from the previous research[17].

One plot about the stiffener deflection in the post-buckling is shown below. The horizontal

coordinate represents the ratio between applied shear force and critical shear force, while the

vertical axis is the ratio between stiffener deformation and web thickness.

Figure 3.5: Deflection of the transverse stiffener in terms of stiffener rigidity and load factor [18]
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In order to gain a clear understanding about the function of stiffeners in the post-buckling re-

gion, three contours plots of the web deflections with different stiffener rigidities are shown in

Figure 3.6. [18]

(a) (c)γ/γ∗= 0,τ/t auc r = 2 (b) (c)γ/γ∗= 1,τ/t auc r = 3.8

(c) buckled pattern of a web in shear and fitted
with one central transverse stiffener: (c)γ/γ∗ =
3,τ/t auc r = 5.9

Figure 3.6: load/deflection plot with different rigidities [18]

From the Figure 3.6 , it is obvious that the strength of stiffeners will affect the forming of tension

field, either locally with strong stiffeners or globally with week stiffeners.
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A lot of previous researches recommended value for the flexural rigidity. For example, the tests

conducted by M. Skaloud [18] showed that when the γ∗ /γ is around 7, then the deflections of

the longitudinal stiffener are so small that the sub-panel can be treated as the rigid supports,

however, the further research showed that when the flexural rigidity reaches a certain value, a

considerable increase of the stiffness rigidity results merely in a slight growth in the ultimate

capacity. In practice, the recommended values for k should be 3 and 4 for transverse and longi-

tudinal stiffeners respectively.

According to researches so far, the ratio k is mainly affected by:

• The type of the stiffener

• The cross-section of the stiffener

• The ratio between the depth and thickness of the web
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Chapter 4

Review of Non-linear Finite Element Method

4.1 Introduction

This chapter mainly refers to the compendium about finite element method.[19].

Since M. J. Turner generated and idealized the direct stiffness method in the middle of 20th

century, finite element method has developed to be the most popular numerical technique for

approximate solutions in the structural analysis field. The three basic principles behind the

finite element methods are listed

• Equilibrium (expressed by stress )

• Kinematic compatibility (expressed by strains)

• Stress-strain relationship

When the displacements are comparatively small and the material is assumed to be linear and

elastic, then linear finite element method can be adopted. In reality, the true failure modes at

the ultimate stress or structural post-buckling behavior are essential for design in the ultimate

limited states or accidental limited states, the assumptions for linear analysis needs to be mod-

ified and nonlinearities should be taken into account.

Nowadays, nonlinear analyses are wildly used in stress analyses during the assessment of exist-

ing structures. Nonlinearities in the finite element method will definitely increase the compu-

tational time, but this issue tends to be overcame by the new generation of robust and powerful

computers.
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4.2 Nonlinearities of nonlinear analysis

4.2.1 Geometry nonlinearity

The geometrical nonlinearity of a bar system and the stiffness relationship is a third degree poly-

nomial, plotted in Figure 4.1.

Figure 4.1: Load-deflection characteristics for a two-bar system [19]

The resultant stiffness can be regarded as the sum of the linear stiffness term and an additional

correction term because of nonlinear geometrical effects. Mathematically, the linear stiffness

relationship can be expressed as

R = K r (4.1)

where R is external loads

K is a constant stiffness based on the linear strain stress relationship

r is displacement

The expressions of the stiffness relationship with geometrical nonlinearities is modified

R = K (r ).r (4.2)

where K(r) is instantaneous stiffness based on the current displacement
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In order to solve equation 4.2, it can be written based on a finite incremental form

∆R = K I (r ).∆r (4.3)

where ∆R and ∆r finite increments in loads and displacements

K I (r ) is tangent or incremental stiffness

As for the relationship among different stiffness concepts (KO ,KG ,K I ,K ), one plot is shown in

Figure 4.2

Figure 4.2: Explaination of various stiffness [19]

(KO ,KG ,K I ,K ) refers to linear, geometrical, incremental and secant stiffness respectively.

4.2.2 Material nonlinearity

After exceeding the proportionality limit (σp ), the linear relationship between stress and strain

expressed by Hook’s Law is not accurate any longer. The typical material properties is shown in

the Figure 4.3.

The elastic strain is expressed by Hooke’s law:

εe =σ/E (4.4)
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Figure 4.3: Definition of material properties [19]

Nonlinear material properties can be described by the following definitions. The stress at the

point A can be shown as:

σ= ESε (4.5)

where ES is the secant modulus, which depends on the current stress strain.

When load is applied at point A, the increment of stress, ∆σ can be expressed by:

∆σ= ET∆ε (4.6)

By unloading at point A, Hooke’s law applies:

∆σ= E∆ε (unloadi ng ) (4.7)

The elasto-plastic material behaviors can be described by three rules in non-linear FEM:

• A initial yield stress: define the condition of the criterion for yielding

• A hardening rule: describe the modification of the yield due to strain hardening during

plastic deformation

• Flow rule: allow determination of plastic strain increment at each point in the load history.

22



CHAPTER 4. REVIEW OF NONLINEAR FINITE ELEMENT METHOD

4.2.3 Boundary nonlinearity

Nonlinearity may also related to the boundary condition, for example, press a cylinder roller

onto a flat plane by a certain displacement (shown in Figure 4.4). The boundary nonlinearity

can occur even if the material is perfectly linear and the displacement is infinitesimal. This kind

of nonlinearity is mainly caused by the nonlinear changes of contact area.

Figure 4.4: Example of boundary nonlinear [19]

This type of nonlinearity is not important in this project. For the nonlinear analyses in this

project, the other two nonlinearities will be introduced.

4.3 Solution techniques

4.3.1 General

The characteristic features of various types of nonlinear response are illustrated in Figure 4.5.

Example problem
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Figure 4.5: Characteristic features of nonlinear response[19]

Basic response patterns: (a) Linear until brittle failure,

(b) Stiffening or hardening,

(c) Softening.

where F and L donate failure and limit points respectively

More complex response patterns: (d) snap-through

(e) snap-back,

(f)&(g) bifurcation combined with limit points and snap-back

where B and T identify bifurcation and turning points respectively.

For nonlinear analyses, the solution is not unique any more, which means that the solution

achieved may not necessarily be the solution sought. Three basic methods from various solu-

tions will be described here

• Euler-Cauchy method

• Newton-Rapshon iterative method

• Combined method

Mathematical knowledge and physical insight into the structural nature are usually combined

to obtain a qualified solution with satisfied accuracy.
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4.3.2 Basic solution techniques

Euler-Cauchy method

This method provides a displacement increment which is based on the external loading incre-

ment. Then the total displacement is obtained by adding the new displacement increment. For

step No. (m+1) the mathematical expressions are shown below

∆Rm+1 = Rm+1 −Rm

∆rm+1 = K I (rm)−1∆Rm+1

rm+1 = rm +∆rm+1

(4.8)

The load should be added to the desired level. The method is illustrated for a single degree of

freedom in Figure 4.6.

Figure 4.6: Euler-Cauchy increment [19]

In this method, the stiffness in the previous step will be used for calculating the increment of

displacement in the next step. Then the deviation between approximate and true values occur

as shown in Figure 4.6. The accuracy can be increased by adopting small load increment.
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Newton-Raphson method

The main principle behind this method is the iteration shown in Figure 4.7.

Figure 4.7: Newton-Raphson iteration [19]

The displacement increment at each step is based on the deviation between the approximate

and true values at that step. The mathematical expression is that

R −Ri nt = K I (n)∆rn+1 (4.9)

Since the updated K I at each step lead to an iterative procedure for calculating ∆Rn+1, this

method is quite time-consuming. In order to reduce the unnecessary calculations, the modified

Newton-Raphson iteration is put forward to update K I less frequently. Figure 4.8 demonstrates

two alternative methods to modify Netwon-Raphson methods.

The modified Newton-Raphson method can dramatically save the computational time, while

the successive estimation in Newton-Raphson methods may result in slow convergence rate or

no convergence at all. Additionally, the reasonable convergence criterion is expected to be given

to stop the calculation procedure.
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(a) No updating of K1 (b) K1updated after 1. iteration

Figure 4.8: Modified Newton-Raphson methods for single degree of freedom [19]

Combined methods

The two methods mentioned above are often combined. The external load is used to control the

increments and during each increment, iteration is used to obtain equilibrium. The combina-

tion of Euler-Cauchy method and a modified Newton-Raphson iteration is illustrated in Figure

4.9

Figure 4.9: Combined incremental and iterative solution procedure [19]

The procedure is completed by applying load based on equation 4.8 followed by iteration at each

level by using equation 4.9. Commonly, a modified Newton-Raphson method is used keeping

the gradient K I constant during several iteration cycles. Convergence criterion is also needed to

stop Iteration.
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4.3.3 Advanced solution procedures

In terms of the unstable problems, the load-displacement response may be similar with the

sketch in figure 4.5(d) - 4.5(g). During the response, the variation of load is not monotonically

increasing with displacement increment. Any extreme point in the load-displacement curve will

need special technique to get acceptable results. Under this occasions, arc-length method shall

be adopted.

As the deflection weakens the structural capacity, the external loads should be automatically

made adjustments to fit the internal reaction forces. A displacement vector∆r and a load incre-

ment parameter ∆λ are used to describe the increment in load-displacement space, such that

∆R = ∆λR. Consequently, this will result in one more equation to be solved for the equation

matrix. The advantage of this method is that the additional equation helps the solution matrix

to avoid ’singular’, while this new equation may also cause asymmetric troubles. Several existing

methods can help to solve the arc length. Two of them are plotted in Figure 4.10.

(a) Riks-Wempner’s method (b) Ramm’s method

Figure 4.10: Arc-length control method[19]

In Ramm’s method, the iterative corrector is perpendicular to the tangental plane at the current

step, while it is orthogonal to the incremental vector (∆r0,∆r0) in the Riks methods.

Fried [20] shown another alterative method, naming orthogonal trajectory iteration method.Additionally,

Crisfield [21] gave the example of very complicated iterative path.
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Chapter 5

Modelling of Platform Girder in Abaqus

5.1 Introduction

The platform main deck is primarily regarded as a truss work where the top flange consists of a

stiffened girder. The stiffened girder is subjected to axial compression from global bending as

well as shear force due to local equipment loads. In this project, part of girder section from the

platform deck is taken and analyzed. Figure 5.1 below shows a part of the drawing about the

platform deck.

Figure 5.1: Drawing of the platform deck

The red rectangular in Figure 5.1 indicates the girder section to be analyzed in this paper. The

girder section is stiffened by longitudinal stiffeners and secondary girders. Two extra section are

added at the ends to modify the connections. The simplified girder section and its correspond-

ing dimensions are shown in the Figure 5.2.
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Figure 5.2: Drawing of the girder section

The girder has two flat bars almost equally spaced. In order to increase the strength, it has been

proposed to replace the flat bars with T-profiles. The effects of this will also be investigated and

the dimensions of the stiffeners used in this paper are listed below. The yielding stress of the

material used in this girder section is 420 MPa.

Table 5.1: Dimensions of stiffeners in this project

Stiffener type h b f t

Flatbar 150 10 N/A N/A
T-profile 300 10 130 20

5.2 Geometry model

Based on the girder section shown in Figure 5.2, the similar modelled structure in Abaqus is

shown in Figure 5.3.

Figure 5.3: Girder section model in Abaqus

In the simplified model, the secondary girders are not induced, however, their effects on the web

are simulated by additional boundary conditions to restrain the lateral displacement of the web

30



CHAPTER 5. MODELLING OF PLATFORM GIRDER IN ABAQUS

at the locations of the secondary girders. Furthermore, the triangular supports for the flanges

are appended to prevent deformation of the flanges. The effects of the flange supports will be

discussed in the buckling mode analysis and the ultimate strength analysis later.

5.3 Finite element model

Abraham stated that for design purpose, the shell elements in the analysis will present more

conservative results than the solid elements. [22] The shell elements (S4R) are selected to model

the whole structure.

The Figure 5.4 below illustrates the differences between a conventional shell and a continuum

shell element.

Figure 5.4: Conventional and continuum shell elements [23]

Conventional shell elements normally discretize a body by defining the geometry at a reference

surface. In this method, thickness is defined by the section property. This type of elements have

both translational and rotational degree of freedom. In contrast, continuum shell elements dis-

cretize an entire three-dimensional body. The thickness can be obtained from the nodal posi-

tions of elements.[23]

The reason of adopting the conventional S4R element is that it can be valid to model both thin

and thick elements. Empirically, S4R elements can provide quite reasonable and accurate results

for most cases. Moreover, the reduced integration method not only suits well for cases with
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nonlinear membrane strain, but also helps to decrease the calculation time. The difference

among S4R, S8R and S4 will be analyzed later in this paper.

5.4 Material properties

The yield stress of the material is provided to be 420 MPa and Young’s Modulus is given to be

2.1E+05MPa. For nonlinear analysis, the strain hardening will also be taken into account. The

hardening properties of the actual material are not known. In lieu of this, a relatively moderate

hardening was assumed as the blue line in figure 5.5

In general, the methods to describe nonlinear material properties can be divided into two cat-

egories (nominal and true). The true strain and stress are employed in Abaqus to define the

material nonlinearity, while USFOS will use nominal strain and stress. The explanations of con-

version from nominal values to true values are attached in the Appendix A.

The assumed engineering properties and the corresponding true values are plotted in the Fig-

ure 5.5. The straight line with the slope of the young’s modulus represents the elastic properties,

which is followed by plastic nonlinear properties.

Figure 5.5: Material properties expressed by true and engineering strain and stress
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5.5 Loads in Abaqus

Various load conditions listed below will be studied in this paper from the simple single loads to

the combination loads.

• Pure compression

• Pure shear

• Combination of shear and compression

For the cases under compression, the forces are modelled by using normal ‘shell edge load’ ap-

plied on the edge of the shell elements (shown in Figure 5.6).

Figure 5.6: Applied compression at the ends in Abaqus

For cases under shear force, three concentrated loads together with proper boundary condi-

tions are utilized to model the shear force. The Figure 5.7 illustrates the applied concentrated

loads.

Figure 5.7: Applied shear in the middle in Abaqus
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Since the shear ‘shell edge load’ will lead to asymmetric deformation and obviously cause the

largest bending moment at the clamped ends. Instead, we decide to choose the concentrated

loads leading to the largest bending moment in the mid-span and the tension fields at the

ends

5.6 Boundary conditions

As mentioned that the secondary girders are not included in this simplified girder model,its

effects are modeled by extra boundary condition shown by the arrows in Figure 5.8. At the loca-

tions of the secondary girders, the web is restrained against the lateral displacement.

Figure 5.8: Boundary conditions in Abaqus

In terms of the ends of the girder section, clamped ends will be regarded as the most proper

boundary conditions due to the the fixity at the ends. Two extra sections (in red cylinders in fig-

ure 5.8) without stiffeners are added at both two ends to avoid concentration loads under shear

force. The way to model boundary conditions for this case in Abaqus is explained below.

• Clamped ends

– Compression

The end under compression is only free to move in the load direction, while the other

end is fully fixed for six degrees of freedom.

– Shear

All ends are fully fixed for all degrees of freedom.
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• Simply supported ends

– Compression

Both ends are only free to move in the compression direction, one point on the neu-

tral axis at each end is set to rotate about the outward axis. One extra point in the

middle is fixed in the compression direction. (figure 5.9(a))

– Shear

One point on the neutral axis at each end is set to be free to move in the longitudinal

direction, and to rotate about the outward axis, but the freedom in the shear force

direction has to be fixed. (Figure 5.9(b))

(a) Compression case

(b) Shear case

Figure 5.9: Modelled simply supported boundary conditions

When both loads are applied, the proper combination of shear and compression boundary con-

ditions should be chosen. The effects of boundary conditions will be investigated by comparing

cases with two simply supported ends and one clamped, one simply supported end.
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Chapter 6

Eigenmode Analyses

6.1 Introduction

In nonlinear analysis it is necessary to introduce geometric imperfections to trigger buckling in

a realistic manner. This may be done in several ways, the eigenmodes for linear buckling will be

used in this paper.

Abaqus can help to run the linear eigenvalue analysis and suitable buckling eigenmodes will be

picked out from the results.

The linear buckling analysis will consist of another two steps in addition to the initial step. The

first step consists of a pre-loading step with the characteristic load pattern. Next, the buckling

step will introduce a small perturbation load and then calculate eigenvalues and eigenvectors

based on the equation 6.1.

(K0 +λi K∆)νi = 0 (6.1)

Where K0 is the stiffness matrix caused by the preload

K∆ is the stiffness matrix due to incremental load

λi and νi are eigenvalues and eigenvectors
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6.2 Eigenmodes under compression

Initially, the top flanges were free to move without triangular supports. The first eigenmode

(Figure 6.2(a)) is dominated by flange buckling, while the web buckling mode (Figure 6.2(b))

can be found at a higher eigenmode.

(a) Flange domiated eigenmode

(b) Web dominated eigenmode

Figure 6.1: Important eigenmodes for the case without flange supports

Later, the flange supports are introduced to simulate the effects of secondary girder to prevent

the unrealistic deformation of the top flanges.The most suitable and reasonable eigenmodes

(Figure 6.2) are selected from the output results.

Due to the large cross-section area in the top flange and possibility of the flange failure, the

buckling mode in the flange seems to be as same important as the buckling mode in the web.

The combined eigenmodes in the web and flange are adopted to model the imperfections.

Through the two figures above, the flange supports can prevent the flange deformation obvi-

ously when the web buckling mode is dominated.
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(a) Flange domiated eigenmode

(b) Web dominated eigenmode

Figure 6.2: Important eigenmodes for the case with flange supports

6.3 Eigenmodes under shear

Theoretically, the shear force will cause extremely high stress in the extra web section and failure

mode will occur there as well, but these corresponding eigenmodes are not the expected ones.

So two methods are put forward to enhance the strength the added web sections at the ends in

order to gain the reasonable eigenmodes.

∗ Method 1: A new more rigid material for the web sections at the ends

A new material property for the two added web sections is defined in this method. The Young’s

Modulus is ten times larger than original value for other parts and the yield stress is enhanced

to be 1000 times larger. The potential satisfying eigenmodes are listed in Figure 6.3.

∗ Method 2: Define web sections at the ends as rigid elements in Abaqus

In Abaqus, elements can be set as rigid element using the command ‘constraint’. Then the ele-

ments can be regarded as infinite rigid elements shown in Figure 6.4.

The potential eigenmodes (18th eigenmode and 19th eigenmode) for the method 2 under pure

shear forces are shown in Figure 6.5.
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(a) 2nd eigenmode

(b) 13rd eigenmode

(c) 14th eigenmode

Figure 6.3: Potential eigenmodes for method 1 under pure shear

Figure 6.4: Method 2: model with infinite rigid elements at the ends in Abaqus
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(a) 18th eigenmode

(b) 19th eigenmode

Figure 6.5: Potential eigenmode for method 2 under shear

The 2nd eigenmode (Figure 6.3(a)) in the method 1 is used to analyze the effects of the eigen-

mode on the ultimate strength later. Two eigenmodes in each method with symmetric and

asymmetric deformed eigenmodes are selected to study influences of the deformed shape on

the ultimate capacity.

From the eigenmode analysis, we can conclude that these two methods seem to give quite sim-

ilar buckling modes. Specifically, the 18th eigenmode in method 2 is alike 13th eigenmode in

method 1, and 19th eigenmode and 14th eigenmode are quite similar. The web will mainly re-

sist shear forces, and for this shear load case, the tension fields at the ends occur easier than that

in the middle panel.

6.4 Eigenmodes under combination of compression and shear

As for the results of the eigenvalue analysis for combination of compression and shear, no shear

dominant eigenmode can be found; however, the dominated eigenmodes in the top flange and

web section are quite similar with those under pure compression. The well-shaped eigenmodes
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for combination of shear and compression are shown in the Figure 6.6.

(a) Flange domiated eigenmode

(b) Web dominated eigenmode

Figure 6.6: Important eigenmodes for the case under shear and compression

According to Figure 6.6 and Figure 6.2, the conclusion is that the effects of shear on the eigen-

mode analysis are negligible, compared with compression. Additionally, in some cases, it is also

feasible to apply eigenmodes from the cases under pure compression when running analyses

under pure shear forces.

When analyzing the effects of stiffeners, the stiffeners are changed to T-profile with double

height. The buckling eigenmodes in the flange and web are shown in Figure 6.7(a) and Fig-

ure 6.7(b) respectively.

Since the height of stiffeners is doubled, the local stiffener buckling will become more notice-

able. Due to the effects of stronger stiffeners, the buckling mode on the web tends to be replaced

by the local ones.

Furthermore, the stiffeners are strengthened by the bracketed supports at a distance of every

1875 mm. Then the larger deformation in the stiffeners shown in the Figure 6.7(b) is successfully

constrained and the buckling eigenmode of the web is not important any more. The important

eigenmode for this case is shown in the Figure 6.8.
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(a) Flange domiated eigenmode

(b) Web dominated eigenmode

Figure 6.7: Important eigenmodes for the case with T-profile stiffeners under combined loads

Figure 6.8: Important eigenmodes for the case with supported T-profiles under combined loads

In conclusion, we can find the following points from the eigenmode analyses:

¦ The buckling mode in the pure compression will dominate the deformation under the

combined shear force and compression.

¦ The reinforced stiffeners will prevent the local deformation and affect the eigenmodes

dramatically.

¦ Eigenmodes depend on the geometrical layout of the structure and the type of applied

force, but has nothing to do with the magnitude of forces.
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Chapter 7

Ultimate Strength Analyses with Abaqus

7.1 Introduction

In Abaqus, the method of riks is used to perform the post-buckling analysis. The features of riks

method are listed based on the tutorial documents with regard to Abaqus:[23]

• is generally used to predict unstable, geometrically nonlinear collapse of a structure.

• includes nonlinearities form boundary conditions and material.

• is often applied after an eigenvalue buckling analysis to investigate a structure’s collapse.

• can be used for the cases with snap-through problems

In the Riks analysis, the load during a step is always proportional and the current load magni-

tude is defined by:

Ptot al = P0 +λ(Pr e f −P0) (7.1)

where P0 is the ’dead load’, which exists at the beginning of the step and never be redefined.

Pr e f denotes the reference load defined in the Riks step.

λ is the load proportionality factor.

The load proportionality factor is the output at each increment as part of the solution.
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The Riks method performs well in post-buckling problems, no matter how stable the post-

buckling behavior is. However, since there is some discontinuous response at the point of buck-

ling, the exact post-buckling problem can be analyzed directly. One alternative is to introduce

an initial geometrical imperfection, then the problem will have continuous response instead

of bifurcation and some responses in the buckling mode will occur before reaching the critical

load.[24]

In this chapter, the effects of different eigenmodes and the magnitude of initial imperfection

will be estimated under different load conditions. The effects of different boundary conditions

and stiffeners will also be analyzed as well.

7.2 Effect of initial imperfectons

Initial imperfections are modelled with distorted coordinates using the eigenmodes from Chap-

ter 6. Originally, for one eigenmode, the maximum amplitude is somewhat arbitrarily selected

to be 10mm. This corresponds to 2% of stiffener spacing. For two included buckling modes„

the deflection about 0.15% of length is used to model the initial geometric imperfection (equa-

tion 2.3).

Here we assume that the boundary conditions are clamped for all the cases, and the effects of

boundary condition will be investigated in the next section.

7.2.1 Pure compression

As for the cases under compression, the buckling of the top flange seems to be critical. The

effects of the flange supports will be studied here as well. All the cases about compression are

listed in Table 7.1. All the corresponding stress distribution at the ultimate strength can be

found in the Appendix B.

The results of ultimate strength analysis for the first four cases are plotted in Figure 7.1 and 7.2

with flange dominated and web dominated eigenmodes respectively.
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Table 7.1: Case list under pure compression

Case No. Flange support Eigenmodes Imperfection (mm)

1 No Flange dominated 10
2 Yes Flange dominated 10
3 No Web dominated 10
4 Yes Web dominated 10
5 Yes Two eigenmodes 5 for web & 5 for flange
6 Yes Two eigenmodes 10 for web & 10 for flange
7 Yes Two eigenmodes 15 for web & 15 for flange
8 Yes Two eigenmodes No imperfections

Figure 7.1: Effect of flange supports with flange dominated eigenmodes

Figure 7.2: Effect of flange supports with web dominated eigenmodes
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From the results, it is obvious that no matter what kind of eigenmode is introduced, the addi-

tional flange support can enhance the total strength of this girder, but the increment in ultimate

capacity is limited.

The differences between the ultimate loads with web and flange dominated eigenmodes are

small, two reasons may be concluded as follows:

− The ultimate strength is quite robust to different eigenmodes.

− Due to large slenderness, the top flange is as sensitive as the web to buckle.

Based on the results above, the buckling modes of the top flange and web almost have the same

importance. In order to model the realistic imperfection of the plate girder, two eigenmodes will

be used together to modify the initial imperfection in both flange and web.

Theoretically, the 5 mm imperfections for two eigenmodes (case 5 in Table 7.1) can give a good

estimation for this 12-meter-long structure. The failure mode for the case 5 at the ultimate

strength is shown in figure 7.3 (Case 5 in Appendix B).

Figure 7.3: Von Mises stress distribution at the ultimate strength under pure compression( case
no. 5)

For the failure process, the stiffener will reach its buckling capacity at first and the stiffened

plate tends to buckle, which will weaken the whole structure, then the top flange will collapse

together with the web section. The structure fails due to buckling.
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In order to investigate the effect of initial imperfections under pure compression, more cases

with buckling eigenmodes from web and flanges (case 6-8 in table 6.1) are designed and the

results with respects to the load/deflection relationship are shown in the Figure 7.4.

Figure 7.4: Effect of imperfections under pure compression

According to the collapse behavior and the results shown in the figure above, we can draw the

following conclusions:

¦ Initial imperfection will definitely decrease the ultimate capacity.

¦ The larger the initial imperfection is, the more nonlinear the response becomes.

¦ Nonlinear analysis of this structure is robust to the initial imperfections under pure com-

pression.

7.2.2 Pure shear

As two methods for analyzing pure shear force and their corresponding potential eigenmodes

are studied in the last chapter, the influences of these two methods and different eigenmodes

on the ultimate stress of the plate girder will be discussed here. The cases under pure shear force

are listed in Table 7.2 and the corresponding stress distribution at the failure step are attached

in Appendix B.
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Table 7.2: Case list under pure shear

Case No. Method No. Eigenmodes Imperfection
(mm)

9 1 2 5
10 1 13 5
11 1 14 5
12 2 18 5
13 2 19 5
14 2 19 10
15 2 19 15
16 2 19 No

Z Methods:

Method 1: A new rigid material for the web sections at the ends

Method 2: Define web sections at the ends as rigid elements from Abaqus

The first five cases are designed for investigating the effects of two methods and different eigen-

modes. The results of ultimate analysis are plotted in Figure 7.5.

Figure 7.5: Comparison of ultimate capacity for two methods
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As for the method 1, the eigenmodes 13 and 14 can provide a larger strength capacity than eigen-

mode 2 after the initial yielding. The method 2 with the infinite rigid elements can take almost

the same global loads as method 1, but the larger inclination of slope indicates that the whole

structure becomes more rigid due to infinite rigid elements.

According to figure 75, the curves for eigenmode 13 and 14 almost overlap each other, so do

the curves for eigenmodes 18 and 19. Given the certain magnitude of largest deflection, the

symmetric and asymmetric imperfections tend to give the same level of ultimate capacity.

The failure modes for eigenmode 18 and 19 are shown in Figure 7.6. The symmetric imperfec-

tion cause the symmetric failure modes, while the asymmetric imperfection will lead to asym-

metric stress distribution during collapse.

(a) Failure mode of eigenmode 18 (asymmetric)

(b) Failure mode of eigenmode 19 (symmetric)

Figure 7.6: Comparison between failure modes based on different eigenmodes

Additionally, in contrast to method 1, the method 2 can show proper stress distribution for the

main body of the girder, references about the stress distribution at the ultimate strength can be

found in Appendix B. The Von Mises stress distribution for the ultimate strength with eigenmode

19 is shown in Figure 7.7 (Case 13 in the Appendix B).
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Figure 7.7: Von Mises stress distribution at the ultimate strength under pure shear( case no. 13)

The stress in the web section at the ends are higher than other section due to the membrane

stress near the fixed boundary conditions and the tension field will appear when the shear buck-

ling capacity is fulfilled.

The strain stress relationship is elastic until the occurrence of the first yielding, which is fol-

lowed by the hardening in the plastic zone. Then the whole structure begins to collapse and the

membrane stress forms the tension fields at the ends to bear more loads.

The sensitivity of ultimate capacity of the structure to the initial imperfection under the pure

shear is discussed by case 13-16, which is shown in Figure 7.8 in next page. Based on the ultimate

capacity study under shear force, the following conclusions are summed up:

¦ Initial imperfection will definitely decrease the shear ultimate capacity.

¦ The larger the imperfection is, the smaller the hardening zone is.

¦ Regardless of imperfections, the post-buckling behaviors due to the membrane stress are

almost the same.

¦ The magnitude of deformation determines the reduction of the capacity, while the effects

of the direction of the deformation are tiny.
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Figure 7.8: Effects of imperfections under pure shear

7.2.3 Combined shear and compression

As discussed in last chapter, the eigenmodes for combined compression and shear are similar

with those under pure compression. Based on the buckling mode analysis, the shear eigen-

modes are not dramatically important to cause the structure to collapse under combined forces.

So we introduce the imperfections in the flange and web from the buckling analysis under com-

bined forces.

The Table 7.3 illustrates the various composition of shear and compression in the combined

cases.

Table 7.3: Compositions of shear and compression in the combined loads

Case No. Shear Compression
(of ultimate stress) (of ultimate stress)

Pure shear 100% 0%
Shear dominated 80% 20%
Both equal 50% 50%
Compression dominated 20% 80%
Pure compression 0% 100%
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The cases 17-21(shown in Table 7.4) are designed for analyzing the relationship between the

ultimate capacity of the girder and the proportion of shear and compression for the combined

force. The remaining cases 22-32 are used to discuss the effects of imperfections under the

combined loads. All these cases adopt the buckling eigenmodes for combined force mentioned

in Chapter 6.

Table 7.4: Case list under combined loads

Case No. Stress composition Imperfection
(mm)

17 Pure shear 5 for web & 5 for flange
18 Shear dominated 5 for web & 5 for flange
19 Both equal 5 for web & 5 for flange
20 Compression dominated 5 for web & 5 for flange
21 Pure compression 5 for web & 5 for flange
22-26 As cases 17-21 10 for web & 10 for flange
27-31 As cases 17-21 15 for web & 15 for flange

In the nonlinear analysis for the ultimate strength, the excitation forces dominate the failure

modes of structures. Like the case 18, the case with dominated shear force motivates the shear

failure modes (Figure 7.9).

Figure 7.9: Failure modes of case 18 at post-buckling: shear dominated

Similarly, the bending failure modes will be triggered due to the dominated compress force in

case 20 (Figure 7.10).
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Figure 7.10: Failure modes of case 20 at post-buckling: compression dominated

The ultimate strength of the structure with various combined forces are shown in Figure 7.11.

The interaction of shear and compression on the ultimate strength of the structure can be ex-

pressed roughly by the parabola curve, which means the ultimate capacity can be treated as the

sum of the capacity utilizations under different loads, but the failure mechanism will greatly

depend on the dominated load.

Figure 7.11: Interaction of compression and shear for ultimate capacity
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The effects of the initial imperfections on the ultimate capacity are studied by introducing 0mm,

5mm and 10mm imperfection based on the eigenmode analysis under combined forces. It

means that no shear eigenmode is included and the results are plotted in Figure 7.12.

Figure 7.12: Effects of imperfections under the combined loads

The conclusions from the studies with regards to the ultimate strength under combined forces

with various composition, some conclusions are given below to explain the phenomenons in

this section.

¦ Although eigenmodes under combined forces are almost the same as those under the pure

compression and no shear buckling mode is introduced, it is still valid for shear dominat-

ing cases to fail in a shear mechanism .

¦ The effects of geometric imperfection become noticeable gradually when the compres-

sion starts to dominate.

¦ Since no shear buckling mode is taken into account for the combined cases, the ultimate

capacity under pure shear is almost the same with different initial imperfections

¦ The utilization can be treated as the sum of the capacity utilization under different loads,

but the failure mechanism will depend on the dominated load.
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7.3 Effect of boundary conditions

7.3.1 Introduction

The boundary conditions for a given problem can be formulated to solve the differential equa-

tions. The boundary condition is related to the prescribed displacements and stresses. In this

paper, three different boundary conditions are analyzed under the combined loads.

• Clamped at two ends

• Simply supported at two ends

• Clamped at one end and simply supported at the other one

The cases designed for comparing the different boundaries are tabulated in Table 7.5.

Table 7.5: Case list for various boundaries

Case No. Boundary conditions Stress composition

17-21 Two clamped ends
pure shear, shear dominated, both
com dominated, pure compression

32-36
One clamped end and

As cases 17-21
one simply supported end

37-41 Two simply supported ends As cases 17-21

7.3.2 Comparison of three boundary conditions

For the cases with dominant shear, dominant compression and equal shear & compression,

the stress distribution at the step of ultimate stress are shown in Figure 7.13- 7.15 for different

boundary conditions.

From the figures 7.13- 7.15, we can conclude that the clamped ends will the concentrated stress

and then fail near the ends. The failure for the simply supported case occurs in the middle of the

plate girder. For the shear dominated cases, the failure will occur in a shear failure mechanism,

while the bending failure mode takes place when the compression tends to dominate.
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(a) Shear dominated (case 18 App. B) (b) Compression dominated (case 20 App. B)

Figure 7.13: Stress distribution at the ultimate step for two clamped ends

(a) Shear dominated (case 33 App. B) (b) Compression dominated (case 35 App. B)

Figure 7.14: Stress distribution at the ultimate step for combined boundary conditions

(a) Shear dominated (case 38 App. B) (b) Compression dominated (case 40 App. B)

Figure 7.15: Stress distribution at the ultimate step for two simply supported ends
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One markable conclusion from the figures above is that clamped boundary conditions tend to

have membrane stress concentration near the ends, while simply supported case prefer to fail

in the middle section. Results about the effects of boundary conditions on the ultimate capacity

of the girder section are shown in Figure 7.16 below.

Figure 7.16: Effect of boundary conditions with the same imperfection

¦ Shear dominated cases

Clamped boundary conditions possesse more resistance, the main reason is the membrane

stress at the fixed ends can make contributions to the ultimate capacity. Another reason is that

the flange can contribute to resist more loads after the web is utilized in the shear failure mech-

anism.

¦ Compression dominated cases

The effects from the boundary conditions are quite small, even negligible because of the limi-

tations from boundary conditions. Specifically speaking, when the compression is quite large

and uniform distributed, the displacement of the whole end is totally the same in the direction

of compression force and no rationality takes place at the simply supported ends. This corre-

sponds to the clamped ends under pure compression
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7.4 Effect of secondary stiffeners

7.4.1 Introduction

As studied by previous researches, the stiffeners help to increase the structural strength and

affect the stress distribution. The magnitude of the enhancement depends on the strength of

stiffeners. In order to increase the strength, the flat bar in the previous cases are replaced by

strong T-profile stiffeners, and T-profile stiffeners with stiffener supports. The dimensions of

the stiffeners are illustrated in Table 5.1.

The cases for analyzing the stiffeners are tabulated in Table 7.6. Case 17-21 means the previous

cases with various composition under the combined forces. Case 42-46 are designed for study

the difference between different stiffeners and case 47-51 are used to analyze the effects of the

supports for stiffeners. The stress distribution of all the cases at the ultimate step can be found

in Appendix B.

Table 7.6: Case list for stiffener effects

Case No. Stiffener types Stress composition

17-21 Flat bars
pure shear, shear dominated, both
com dominated, pure compression

42-46 T-profile As cases 17-21
47-51 T-profile with supports As cases 17-21

7.4.2 T-Profile stiffeners

From the eigenmode analysis, the buckling of the double-height stiffeners tends to become

dominant and replaces the buckling of the web. So it will be introduced as the initial geomet-

ric imperfection into the ultimate analysis here. The failure modes of the flat bar and T-profile

stiffener in the shear dominated cases are given in Figure 7.17 .
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(a) Failure mode of flatbar stiffener

(b) Failure mode of T-profile stiffener

Figure 7.17: Comparison of failure modes caused by stiffeners under shear dominated

From Figure 7.17, we can observe that the strong T-profile stiffeners remain stable and the ten-

sion fields take place between the stiffeners, while the flat bar stiffeners are wrapped during the

forming of the tension field.

7.4.3 T-Profile stiffeners with supports

The stiffeners on the web are reinforced by the brackets every 1875mm. In order to simplify the

modelling, the brackets are builded as rectangular webs as shown in the figure below.

Figure 7.18: Plot of the girder with stiffener supports
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From the eigenmode analysis, the stiffener supports enable stiffeners to be strong and stable,

and then the deformations in the web and stiffener are not important anymore. Instead, the

deformation and failure tends to take place locally. The failure modes of shear and compression

dominant cases are shown in Figure 7.19.

(a) Shear dominated case

(b) Compression dominated case

Figure 7.19: Failure modes for T-profile stiffeners with supports

On the basis of the results form nonlinear analysis, the increment of the ultimate capacity due

to changes of stiffener strength is listed in Table 7.7, 7.8.

Table 7.7: Increment of ultimate strength due to strong stiffeners

Stress case Flat bar(MN) T-profile(MN) Increment(%)

Pure shear 11.565 12.004 3.80
Pure com 25.787 29.641 14.95

Table 7.8: Increment of ultimate strength due to stiffener support

Stress case T-profile(MN) T-profile Increment(%)
support(MN)

Pure shear 12.004 12.374 3.08
Pure com 29.641 30.459 2.76
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In order to show the results in a intuitionistic and clear way, the plot of ultimate strength with

various stiffeners is shown in Figure 7.20

Figure 7.20: Effect of secondary stiffener strength on ultimate capacity

For the effects of secondary stiffeners on the ultimate strength, several conclusions can be drawn

as follows:

¦ In contrast to flat bars, the stronger T-profile stiffener can improve the ultimate strength

dramatically, from around 15% under pure compression to 3.80% under pure shear. This

is because the longitudinal stiffeners can increase more bending capacity compared with

shear capacity.

¦ The stiffener supports can improve the ultimate capacity of the structure at almost the

same level ( 3%) for all the cases.

¦ Strong stiffeners can effectively prevent the global buckling or failure. Instead, the defor-

mation will occur locally between the stiffeners.
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Ultimate Strength Analyses with USFOS

8.1 Introduction

As a leading computer program, USFOS is designated for nonlinear static and dynamic analy-

sis of frame structures. As described in the USFOS manual,[25] the nonlinear analysis can be

concluded as the basic following steps:

• Incremental load is applied in steps

• The nodal coordinates and element stiffness are updated after each step

• In each load step, the plastic capacity will be checked in each element to see whether the

critical value is exceeded or not. If the capacity is fully occupied, the load step will be

scaled to make the force comply ‘exactly’ with the yield condition

• When the force in the element reaches the yield surface, a plastic hinge occurs. Since the

element later may be unloaded and become elastic, if so, the plastic hinge can be removed.

• The load step is reversed if global instability is detected

As for the load increment in each step, the sign of the load increment and size of the load incre-

ment will needed to be considered.

In USFOS, the current stiffness parameter and the tangential stiffness matrix determinate decide

the sign of the load increment. For load step no. i, the Current Stiffness is defined by

Si
p = 4r 1T 4R1

4r i T 4R i
[
4p i

4p1
]2 (8.1)
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For most problems, the current stiffness parameter mentioned in the user manual [26] can give

a good indication about the sign of the load increment. In regards the spring-back problems,

more corrections are needed.

As for the size of the load increment, it is the outcome of several functions and they can be

concluded as followings:

− The history specifications in the user’s load control file

− Occurrence of plastic hinges

− Exceedance of the maximum displacement increment defined by user

− The incremental procedure defined by ‘arc length’

− Adjustments during equilibrium iterations

Additionally, the advanced technique, arc length iteration procedure, is used to overcome the

instabilities of the iteration when passing limiting points and bifurcations. More details can be

found in the USFOS User’s manual.[26]

8.2 Introducing imperfection from Abaqus

The function ‘Struman’ in the USFOS can help to create the input model file in USFOS based on

the input file for Abaqus. As for the initial imperfection, it is not feasible to run the eigenvalue

analysis in USFOS, while one possible way is to export the geometry containing the imperfec-

tions from Abauqs and then use the function ’Struman’.

The geometries for all steps can be found from the output file (odb.) in Abaqus, (File->Import-

>Part->*.odb), next select "Import deformed configuration" option and choose the original in-

crement step as the initial imperfection. (shown in Figure below).
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Figure 8.1: Export the deformed geometry from Abaqus

8.3 Defining model parameter in USFOS

Unlike Abaqus, USFOS uses the engineering strain and stress. The characteristic values for this

material are assumed reasonably based on experience and can be found in the table in step (i) in

appendix A. The blue line in Figure 5.5 shows a clear impression about this material engineering

properties.

In terms of defining the material properties, it is hard to define the nonlinear material plasticity

in the USFOS. In USFOS, the material plasticity is simply defined by hardening parameter given

in equation 8.2, which is treated as a reference value after yielding.

H ar deni ng = σU −σY

0.15×E
(8.2)

The cases in USFOS are listed in Table 8.1. In order to calibrate results from Abaqus accurately,

all parameters should set to be the same as those in Abaqus. The imperfection is the output from

Abaqus and boundary conditions for all these cases are assumed to be fully clamped.
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Table 8.1: Case list in USOFS

Case No. Applied loads Imperfection (mm) Boundary

52 Pure shear 5 for web & 5 for flange Clamped
53 Shear dominant 5 for web & 5 for flange Clamped
54 Equally combined 5 for web & 5 for flange Clamped
55 Compression dominant 5 for web & 5 for flange Clamped
56 Pure compression 5 for web & 5 for flange Clamped

The compression forces are applied as the nodal loads at one end of the model and three con-

centrated loads at the same location are used to simulate the shear effects. In order to compare

the largest load proportional factor for collapse, the applied global load in USFOS should be

made sure to be equal to the load sum in Abaqus. The Figure 8.2 illustrates the way of the loads

applied in USFOS

Figure 8.2: Load application in USFOS

8.4 Results comparison between USFOS and Abaqus

The Von Mises stress distribution at the step of the ultimate strength and curves for the rela-

tionship between global load and displacement are shown in Figures 8.3 - 8.5 for the cases with

large shear, large compression and two equal components respectively.

68



CHAPTER 8. ULTIMATE STRENGTH ANALYSES WITH USFOS

(a) Stress distribution in USFOS

(b) Stress distribution in Abaqus

(c) Load/deflection curves

Figure 8.3: Results comparsion for compression dominated cases
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(a) Stress distribution in USFOS

(b) Stress distribution in Abaqus

(c) Load/deflection curves

Figure 8.4: Results comparsion for compression dominated cases
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(a) Stress distribution in USFOS

(b) Stress distribution in Abaqus

(c) Load/deflection curves

Figure 8.5: Results comparsion for compression dominated cases
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From the figures above, we can conclude that Abaqus and USFOS describe similar stress distri-

bution when the structure collapses. Additionally, the load deflection relationship before and

after the ultimate stress almost has the same tendency, but a dramatic deviation exists between

peak stresses estimated by these two software.

From the Von Mises stress distribution for various loads, we can see that the stress contours from

two software are quite similar under compression, while the difference becomes obvious when

shear force is dominant. The reason should be that shell elements can provide very good estima-

tion for buckling problems caused by bending, which has been proved by previous researches.

The performance of shell element under shear may be not very stable and the deviation exists

between these two softwares.

Given the same global load, the corresponding largest load proportional factors describing the

ultimate capacity for different load cases between various load cases is shown in Figure 8.4. As

for the specific values, they are tabulated in Table 8.3 in the next page.

Figure 8.6: Comparison of ultimate strength between USFOS and Abaqus
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Table 8.2: Difference between LPF in two softwares

Full Dominant Equal Dominant Full
shear shear both compression compression

Abaqus 77.098 92.118 105.323 89.359 73.678
USFOS 65.633 79.729 96.18 81.853 67.967
Difference(%) 14.87 13.45 8.68 8.40 7.75

The two softwares can provide very similar failure mechanism and post-buckling behavior, while

the range of the difference about the peak collapse loads varies from the 14.87% to 7.75%. For

the big differences in the ultimate capacity, three possible reasons are checked as follows .

• Check the applied total force

The purpose of the reaction check is to guarantee that the force with the structure is equal to the

applied force enlarged by the load proportional factor. The reaction check is completed at the

ultimate strength step for the pure compression case. The total reaction force in USFOS can be

found in the result file, while the total reaction force in ABAQUA has to be found out by summing

the nodal reaction force at the end (shown in Figure 8.7).

Figure 8.7: Check nodal reaction force in Abaqus

The procedure of summing the nodal force in Abaqus is attached in Appendix C. The difference

between the force in the structure and the applied force is tabulated in the table below.
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Table 8.3: Check the applied total force at the ultimate capacity

Reaction force Applied force Difference
(N) (N) (%)

Abaqus 25684440 25684400 1.56E-04
USFOS 23790000 23792300 9.67E-03

The differences between the applied and reaction forces are so small that we can conclude that

with regards to the big difference between the ultimate capacity, there are no errors relating to

the applied or reaction forces.

• Check the type of shell element

In Abaqus, there are various types of shell elements and integration analytical methods, while

USFOS has only one type of shell element. Two more types of elements (S4 and S8R) in Abaqus

are adopted to check the effects of the different element types. S8R represents an 8-node doubly

curved thick shell element with reduced integration and S4 stands for a 4-node doubly curved

general purpose shell element with finite membrane strains. The results of the largest load pro-

portional factor relating to ultimate capacity is given in the table below.

Table 8.4: Check load proportional factor with different elements types

Element Full Dominant Equal Dominant Full
type shear shear both com com

S4R 77.098 92.118 105.323 89.359 73.678
S8R 76.372 91.374 105.633 89.844 75.020
S4 75.690 90.846 107.282 90.509 75.493

From the table, we can notice that the different types of elements have slight effects on the ulti-

mate load proportional factor. Elements S4R will provide a little more shear capacity, while the

bending resistance is higher when adopting elements S4. Compared with the load proportional

factor from USFOS, we can conclude that the shell elements in USFOS are closer to the elements

S4 in Abaqus. In addition, the different types of shell elements won not be the reason to cause

the huge difference between Abaqus and USFOS.
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• Check material plastic properties

Abaqus can define suficient hardening in the plastic zone (blue line in Figure 8.8), while USFOS

can only accept one hardening parameter (red line in Figure 8.8). The differences for the plas-

ticity after yielding can be found in the figure below. Another material with higher hardening

parameter is defined in USFOS (green line in Figure 8.8) in order to check the effects from the

plastic material properties.

Figure 8.8: Material hardening in USFOS and Abaqus

The ultimate load proportional factor with these two plastic properties under different forces

are listed in the table below.

Table 8.5: Check load proportional factor with different plasitc material

Material Full shear Both equal Full compression

Original 65.633 96.18 67.967
New 65.639 96.196 67.977

The difference between the original and new materials is quite small, so we can conclude the

plastic behavior of the material is not dramatic for the ultimate capacity analysis and the plastic
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properties is not the reason causing the deviation between these two software. The results are

obtained based on the cases considered in this project.

Except the possible reasons above, we can only assume the difference is the algorithm between

these two software when calculating the ultimate stress. The average difference among all the

cases from these two software is approximate 10%. Although this value is a little larger than the

normal industrial range, it is still in an acceptable level after considering the nonlinear finite

element methods in two different software. One possible explanation is that Abaqus tends to

provide non-conservative results, while USFOS will normally estimate the consequences con-

servatively.
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Capacity Check based on Design Standards

9.1 Introduction

The simplified calculation method mentioned in the design standards, for example DNV RP

C201 [10] can provide an estimate with respect to the buckling strength of the structure. If setting

the material factor from 1.15 to 1.0, calibration with the finite element method can check the

feasibility of these formulae to estimate the structural ultimate capacity.

In this chapter, the EXCEL spreadsheet and software PULS based on the DNV standards are used

to check the ultimate strength of the stiffened web. In addition, another check for the whole

girder section is also completed referring to the DNV RP C201 [10]. The results are listed and

explained in the following sections, and the calculation procedures are attached in the Appendix

D & E.

9.2 Capacity check of stiffened plates according to DNV RP C201

The DNV EXCEL spreadsheet, ’ buckling of stiffened plate panel ’ is adopted to check the ulti-

mate capacity of stiffened web. The comparison between the results from this simple program

and finite element method is shown in Table 9.1. Furthermore, the calculation in the EXCEL is

attached in the Appendix D.
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Table 9.1: Capacity check for stiffened web with DNV EXCEL spreadsheet

Case DNV EXCEL(MN) Abaqus(MN) Difference(%)

Flatbar
Shear 10.899 11.565 -5.76
Compression 24.735 25.787 -4.08

T-profile
Shear 10.899 12.374 -11.92
Compression 28.694 29.641 -3.19

From Table 9.1, it is easy to notice for the cases with compression, the difference between the

DNV simplified method and nonlinear finite element method is very small, 4.08% and 3.19%

respectively for two cases with flat bar and T-profile stiffeners. This means that the simplified

method can give a good estimate for the ultimate capacity under compression by changing the

material factor from 1.15 to 1.0.

For the shear cases, the deviation between the results is a little larger. The reason may be that

the applied shear in Abaqus is simulated by the concentrated loads instead of the real shear at

the end of the web. In addition, from the EXCEL spreadsheet, we can notice the failure load for

these two cases under shear doesn’t change at all. The reason should be that the ultimate shear

capacity is mainly affected by the transverse stiffeners instead of longitudinal stiffeners. So the

reinforced longitudinal stiffener will not improve the shear capacity in a large level.

9.3 Capacity check of stiffened plates according to PULS

PULS is a software based on the DNV standards used for estimating the ultimate capacity for

simply structures. Here it is used to check the ultimate capacity of the stiffened web without

flanges. The table with the output results from PULS is shown below.

The results obtained from PULS are almost the same as those from the simple EXCEL program

except the case with T-profile stiffener under pure compression. Like the EXCEL program, in

PULS different stiffeners provide the same shear capacity. Compared with results in EXCEL, the

T-profile stiffener can increase more resistance for the compression, when strong stiffeners are

used.
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Table 9.2: Capacity check for stiffened web with PULS

Case DNV PULS (MN) Abaqus(MN) Difference(%)

Flatbar
Shear 10.899 11.565 -5.76
Compression 24.513 25.787 -4.94

T-profile
Shear 10.899 12.374 -11.92
Compression 32.490 29.641 +9.61

The global buckling mode in PULS is shown in the figure below, the location of stiffeners is

not exactly the same as the layout of model, so corresponding buckling mode and failure mode

are different from that in Abaqus. This may be the reason of the deviation between the DNV

recommended method and nonlinear finite element method.

Figure 9.1: Global buckling mode in PULS

The algorithm in the PULS is almost the same as EXCEL. So almost the same conclusion can

be found that PULS can also give a good estimate for the ultimate resistance under the pure

compression, while when the shear force is considered, some errors are introduced. These dif-

ferences are either caused by the special way to apply shear force in this paper or due to the

algorithm behind PULS. Compared with DNV EXCEL program, PULS is more user-friendly and

often used as a post-processor with other programs, while EXCEL spreadsheet is more direct to

give solutions.
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9.4 Capacity check of primary girders according to DNV-RP-C201

For the check of the primary girders, it is necessary to obtain the top and bottom stress at the

mid-span and end sections by finite element methods. For the capacity check at different sec-

tions, another parameter z∗ is regarded as the distance from the neutral axia of the effective

section to the working point of the axial force. z∗ is varied to select the maximum utilization.

Simplified z∗ can be treated as 0 for the conservative estimate. Here one assumption is made

that z∗ is equal to -150mm.

On the basis of the section force from the FEM analysis at the collapse step, the maximum uti-

lization factors checked by different equations under external excitations are very close to 1. The

two main checked sections are given below.

• 1.059 at the end supports

• 1.001 in the middle section

From the utilization factor, the capacity of the middle section and supports are fully occupied

and the supports seem to fail more easily. The values are quite close to 1.0, which means that

this calculation procedure can provide a reasonable estimation for the capacity of the whole

girder section based on some reasonable assumptions. The detailed calculation procedure is

shown in the Appendix E.

9.5 Conclusions with regards to capacity check

On the basis of the complex hand calculation referring to DNV CP R201 together with the results

from DNV EXCEL spreadsheet, the calibration with the results with regards to nonlinear finite

element methods seems to provide some positive results. The conclusion for the check in this

chapter can be concluded as follows:

¦ The EXCEL spreadsheet and PULS can provide reasonable estimation about the ultimate

capacity of stiffened plates with some differences, especially for the case under pure com-

80



CHAPTER 9. CAPACITY CHECK BASED ON DESIGN STANDARDS

pression. The reason should be that the compression will lead to the buckling issue which

is as the DNV standards assumed. When the large shear is applied, the buckling may not

be the dominant failure mode any more, which will cause some deviations.

¦ The way, concluded from the DNV RP C201, to estimate the primary girder based on the

stress from nonlinear finite element method works well to provide a good prediction about

the utilization ratio of the structure.

¦ From Table 9.1 (negative differences) and the results for the primary girder check (uti-

lization 1.059 and 1.001), it is obvious that DNV standards tend to provide a conservative

result compared with nonlinear finite element method. This conclusion fits well with the

main characteristics of design standards,
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Conclusion

The nonlinear finite element analyses in this girder section provide the ultimate capacity and

its corresponding post-ultimate behavior. Cases are studied to investigate the various effects in

details.

Based on the specific discussion about the results in this paper, the following conclusions can

be summarized from different aspects.

• Simplified method from DNV RP C201 can give a good estimate about the ultimate ca-

pacity for the girder or plated structures. The conservative difference is around 4 % for

the cases under compression, while more considerations are needed when shear is intro-

duced. The dominated compression will lead to the buckling failure and DNV rules can

estimate the buckling strength accurately, but dominated shear force will cause shear fail-

ure mechanism. In this circumstance, the DNV RP C201 will have difficulties in predicting

the ultimate strength as accurate as the cases under pure compression.

• Reinforced stiffeners can improve the ultimate capacity at a certain,but small level. In

contrast to flat bar stiffener, T-profile stiffener can improve 14.95% in compression resis-

tance, while only 3.80% in shear resistance.

• Boundary conditions influence the ultimate capacity, especially for shear dominated cases.

This may result from the flange contribution under shear. In addition, simply supported

boundary conditions can provide conservative results and the clamped ends can provide

21.9% more shear capacity compared with simply supported ends.

• For the nonlinear ultimate analysis, the effects of initial imperfections are not dramatic
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for robust structures. Compared with other cases, the effects of the imperfections under

pure shear are more markable.

• Some differences, varying from the 14.87% under pure shear to 7.75% under pure com-

pression, exist between two nonlinear programs in predicting the ultimate strength. Al-

though the tolerance is larger than the industrial criteria, it is still acceptable.

• From the eigenvalue analysis, the combined case has almost the same buckling eigen-

mode with the case under pure compression. Shear failure mechanism can occur, even

though no shear buckling mode is introduced.

• The eigenvalue analysis is essential for introducing the geometric imperfections into the

structure. The buckling modes depend on the type of applied force, the layout of the struc-

ture and so on. Choosing the most suitable buckling mode is significantly important.

• In view of the previous case studies, the shell elements perform quite well in the buckling

problems, while the performance is not very stable when shear, internal pressure or other

load conditions are applied. In this project, compared with dominating shear force, dom-

inated compression always leads to results, which fits better with theoretical knowledges.

This may prove the limitations of the shell elements.
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Recommendation for Further Work

During the case studies for the ultimate strength and post-ultimate behavior of the special girder

section, several conclusions are found through comparisons. Since the huge amount of work

and limited time, several recommended further checks are listed below based on the obtained

results so far. In addition, the remaining tasks in the original task list will be left as the further

work to be finished.

• For the deviation between the results from Abaqus and USFOS, more studies and cases

should be designed to find out the reasons or the explanations about the differences.

• The feasibility of the simplified method based on the DNV RP C201 should be further mod-

ified for the shear dominated cases. For example, the effects of the longitudinal stiffeners

on the ultimate shear capacity should be taken into account.

• The increment of ultimate strength due to stiffeners should be calculated according to

previous researches. The comparison with nonlinear finite element method is also ex-

pected to see how the simplified method works.

• Perform nonlinear analysis of a secondary girder with class 4 cross-section. The girder

may have cut-outs and/or patch loads. The loads shall be applied proportionally for vari-

ous load combinations. Determine the ultimate strength of the girder. Compare numeri-

cal results with NS-EN 1993-1-5

• Perform nonlinear finite element analysis with ABAQUS or USFOS of a hybrid plate girder-

truss-work section in a platform deck. The truss-work shall be modelled with shell fi-

nite elements including secondary stiffeners. Special attention shall be placed on mod-
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elling boundary conditions and introducing initial imperfections to trigger local buckling

of plate girder. The truss-work may be modelled with beam elements. The truss work

shall be subjected to combined bending, shear and locally distributed forces. The ultimate

strength for various load shall be determined. Comparison shall be made with capacities

obtained with conventional design formulas, as given in DNV-RP-C201 Buckling Strength

of Plated Structures and NS-EN 1993-1-5 Design of steel structures, Plated structural ele-

ments.
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Define material nonlinearity in Abaqus

The steps transforming from the measured normal stress strain data (step (i)) to the stress strain

relationship (step (vii)) in Abaqus are listed below.

(i) This data is based on the nominal (engineering) stress and strain.

Nominal stress (MPa) Nominal strain

0.00E+00 0.00E+00
4.20E+02 2.00E- 03
4.70E+02 7.50E- 02
5.00E+02 1.50E- 01

(ii) Abaqus expects the stress strain data to be entered as true stress and true plastic strain.

(iii) To convert the nominal stress to true stress, use the following equation.

σtr u =σnom(1+εnom) (A.1)

(iv) To convert the nominal strain to true strain, use the following equation

εtr u = ln(1+εnom) (A.2)

(v) To calculate the modulus of elasticity, divide the first nonzero true stress by the first nonzero

true strain.

(vi) To convert the true strain to true plastic strain, use the following equation
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εpl = εtr u − σtr u

E
(A.3)

(vii) The results as the material input in Abaqus should be

True stress (MPa) Plastic strain Elastic modulus (Mpa)

4.2084E+02 0.000E+00 2.1063E+05
5.0525E+02 6.992E- 02
5.7500E+02 1.037E- 01
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Von Mises stress distribution at the step of ul-

timate capacity for all cases
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APPENDIX B. VON MISES STRESS DISTRIBUTION AT THE STEP OF ULTIMATE CAPACITY
FOR ALL CASES

Figure B.1: Case 1

Figure B.2: Case 2
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Figure B.3: Case 3

Figure B.4: Case 4
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Figure B.5: Case 5

Figure B.6: Case 6
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Figure B.7: Case 7

Figure B.8: Case 8
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Figure B.9: Case 9

Figure B.10: Case 10
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Figure B.11: Case 11

Figure B.12: Case 12
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Figure B.13: Case 13

Figure B.14: Case 14
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Figure B.15: Case 15

Figure B.16: Case 16
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Figure B.17: Case 17

Figure B.18: Case 18
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Figure B.19: Case 19

Figure B.20: Case 20
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Figure B.21: Case 21

Figure B.22: Case 22
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Figure B.23: Case 23

Figure B.24: Case 24
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Figure B.25: Case 25

Figure B.26: Case 26
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Figure B.27: Case 27

Figure B.28: Case 28
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Figure B.29: Case 29

Figure B.30: Case 30
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Figure B.31: Case 31

Figure B.32: Case 32
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Figure B.33: Case 33

Figure B.34: Case 34

106



APPENDIX B. VON MISES STRESS DISTRIBUTION AT THE STEP OF ULTIMATE CAPACITY
FOR ALL CASES

Figure B.35: Case 35

Figure B.36: Case 36
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Figure B.37: Case 37

Figure B.38: Case 38
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Figure B.39: Case 39

Figure B.40: Case 40
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Figure B.41: Case 41

Figure B.42: Case 42

110



APPENDIX B. VON MISES STRESS DISTRIBUTION AT THE STEP OF ULTIMATE CAPACITY
FOR ALL CASES

Figure B.43: Case 43

Figure B.44: Case 44
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Figure B.45: Case 45

Figure B.46: Case 46
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Figure B.47: Case 47

Figure B.48: Case 48
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Figure B.49: Case 49

Figure B.50: Case 50
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Figure B.51: Case 51

Figure B.52: Case 52
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Figure B.53: Case 53

Figure B.54: Case 54
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Figure B.55: Case 55

Figure B.56: Case 56
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0 341342 0 260509 0 293357

50 313037 50 413698 50 489133

100 303872 100 346488 100 450004

150 293597 150 344357 150 468596

200 286215 200 339521 200 494075

250 279714 250 343438 250 785114

300 274764 300 345765 300 519916

350 271068 350 350850 350 522749

400 268381 400 354826 400 542949

450 266855 450 359020 450 613597

500 265964 500 362377 500 364484

550 266155 550 364928 sum: 5543974

600 266748 600 367997

650 268459 650 369741

700 270459 700 384296

750 273634 750 588807

800 277105 800 383234

850 281798 850 369158

900 286947 900 367515

950 293533 950 364598

1000 300921 1000 362158

1050 310287 1050 359106

1100 321064 1100 355257

1150 334540 1150 351950

1200 350160 1200 347774

1250 368654 1250 346729

1300 390466 1300 343261

1350 412700 1350 349099

1400 455519 1400 356513

sum: 8893958 1450 426548

1500 266990

sum: 11246508

25684440 =

25684400 =

Check reaction force  at the end nodes for case No.5

Web Section Top Flange Bottom Flange

8893958+11246508+5543974

73,384*1000*350

Total reaction force

Total applied force



Appendix D

Capacity check for primary girder bases on

DNV-RP-C201
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Appendix E

Capacity check for primary girder bases on
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