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Background 

Statoil is currently the leading oil and gas company on the Norwegian continental shelf, operating 

approximately 80 % of the production. All offshore installations require regular supply of cargo, 

which is transported by platform supply vessels. Optimization of the logistic concept can result in 

great costs savings. 

 

Overall Aim and Focus 

The objective is to generate a mathematical model in order to find the optimal location of 

Statoil’s supply base serving three platforms in the Barents Sea. Optimal fleet size will be solved 

simultaneous. 

 

 

The assignment should be prepared based on following points: 

 

1) Generate a mathematical formulation for the supply concept 

2) Complete various analyzes and collect essential data necessary for the mathematical  

 model 

3) Implement the mathematical model into Xpress IVE and find the optimal solution 

4) Asses technical specifications associated with the optimal solution 
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Modus operandi 

 

At NTNU, Professor Stein Ove Erikstad will be the responsible advisor. 

 

The  work shall follow the guidelines given by NTNU for the MSc Thesis work. The work load 

shall be in accordance with 30 ECTS, corresponding to 100% of one semester. 

 

 

 

 

Stein Ove Erikstad 

Professor/Responsible Advisor
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Summary 

This report present an academic study of a location-routing problem combined with the fleet size 

and mix vehicle routing problem. Operations research (OR) is utilized to examine a concept of 

Statoil’s supply logistic for oil and gas installations in the Barents Sea where a hub-networks is 

included. 

The aim of this thesis is to utilize OR to determine whether it is cost-efficient for Statoil to make 

use of a hub system in the Barents Sea to supply three offshore installations. 

A simplified realistic problem is developed to define scope and limitations for the study. It 

comprise a set of three offshore installations and seven potential base locations. The optimal 

location of exactly one onshore supply base and one forward offshore base, hub, are determined. 

The installations are placed within given locations in the Barents Sea. The range of area span from 

21°E to 36°E in longitudinal direction and from 71°N to 74°N in latitudinal direction. All facilities 

are open round the clock and the problem is assumed deterministic. 

The report present a two stage solution approach. In Phase 1, all routes are generated and 

parameters are calculated. In Phase 2, a set partitioning problem is solved, where routes generated 

in Phase 1 constitute as the columns. For comparison reasons, Phase 1 defines parameters for two 

different logistical scenarios. A hub-network is included in Case 1 and excluded from Case 2. Both 

cases build on equal assumptions and simplifications. The results from the two cases are 

implemented separately in a integer programming model presented in Phase 2. Results from the 

model are finally compared. The process is repeated a number of times, varying in the location of 

the offshore installations.  

The main results show that direct shuttle is more profitable than utilization of a hub-network for 

three installations. The optimum transportation costs are 6,8 million NOK and 2,2 million NOK 

for Case 1 and 2 respectively. Two PSVs are required for direct shuttle, where four different supply 

bases are optimal depending on the locations of the offshore installations. For Case 1, the Polarbase 

in Hammerfest is the optimal base location independent of the positions to the installations. The 

longest distance between optimal base and hub location is 160 [nm]. 
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The results from the study indicate that logistic supply with hub-network is not profitable. Direct 

shuttle is more cost efficient for the given distances when three installations are supplied.
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Sammendrag 

Denne rapporten presenterer en akademisk studie av to typer optimerings grupper, nemlig 

«location-routing»-problemet og «fleet size and mix vehicle routing»-problemet. En kombinasjon 

av disse problemklassene har vært nødvendig for å undersøke et logistikkkonsept som angår 

leveranse til tre av Statoils olje- og gassinstallasjoner i Barentshavet. Målet med denne 

avhandlingen er å fastslå hvorvidt det er kostnadseffektivt for Statoil å benytte seg av fremskutt 

base når tre offshoreinstallasjoner skal betjenes. 

I denne rapporten presenteres en forenklet problemstilling, basert på et reelt problem. Det består 

av tre offshoreinstallasjoner og sju mulige baselokasjoner. Plasseringen av nøyaktig én 

forsyningsbase og ett fremskutt baselager skal bestemmes. Mulige lokasjoner installasjonene kan 

ha er begrenset innenfor gitte koordinater i Barentshavet. Installasjonene kan plasseres på  gitte 

lokasjoner nærmere bestemt mellom 21 og 36 grader øst og fra 71 til 74 grader nord. Alle fasiliteter 

er åpne døgnet rundt og problemet antas å være deterministisk 

Rapporten presenterer en totrinns løsningstilnærming. I preprosesseringen genereres ruter og 

parametere. I den andre fasen løses et sett partisjonerings problem, der rutene som genereres i første 

steg utgjør kolonnene. Fase 1 definerer parametere for to logistikkscenarier. Scenario 1 omfatter 

transport av last med fremskutt base og scenario 2 ser på direkte leveranse mellom onshore basen 

og installasjonene. Utover dette bygger begge scenariene på like antakelser og forenklinger. Rutene 

og parameterne fra de to scenariene er implementert separat og løst i en heltallig 

programmeringsmodell. Resultatene fra modellen er til slutt sammenlignet opp mot hverandre. 

Prosessen gjentas et gitt antall ganger for forskjellige installation-lokasjoner. 

Resultatene viser at direkte transport er mer lønnsomt enn bruk av fremskutt base når tre 

installasjoner betjenes. Optimale transportkostnader er henholdsvis 6,8 millioner kroner og 2,2 

millioner kroner for scenario 1 og 2. For scenario 2 er det nødvendig å leie to PSVer, der fire 

forskjellige onshorebaser er optimale avhengig av plasseringen til offshoreinstallasjonene. For 

scenario 1, er Polarbasen i Hammerfest den optimale lokasjonen uavhengig av plasseringene til 

installasjonene. 



Sammendrag 
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Resultat|ene fra studiet tyder på at forsyning med fremskutt base ikke er lønnsomt. Direkte transport 

fra land er mer kostnadseffektivt for de gitte avstandene når tre installasjoner skal forsynes. 
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Chapter 1  

1. Introduction 

Section 1.1 describes why there is a need to highlight the problem this report focuses on. Section 

1.2 provides an overview of the objective of these thesis as well as assumptions and simplifications 

that have been done to solve the problem. Section 1.4 presents the structure of this report. 

 

1.1.  Background 

The petroleum industry constituted 30 per cent of the state revenues and 23 per cent of the country’s 

total value creation in 2012 (Bertelsen, 2013). Moreover, the sector is the largest industry in 

Norway. Today, Statoil is the leading oil and gas company on the Norwegian continental shelf, 

operating approximately 80 % of the production (ASA, 2013). 

The Arctic continental shelf is anticipated to become the petroleum area with the highest potential 

of oil and gas (Barlindhaug, 2013). The Norwegian government has been given the right to 

distribute areas in the Barents Sea to interested stakeholders (Myhra & Gilje, 2014). Among others, 

Statoil is currently exploring for oil and gas in areas of the Barents Sea proposed during the 23. 

licensing round at the Ministry of  Petroleum and Energy at the Norwegian Stortinget (Myhra & 

Gilje, 2014). 

All offshore installations require regular supply of spare parts, equipment, commodities and other 

cargo. Special supply ships, platform supply vessels (PSVs), are designed to carry out necessary 

cargo to the oil and gas installations and return backload to the onshore bases. Adequate routes and 

a proper fleet is among other things important elements in upstream logistics. In offshore supply 

logistics, the fleet of supply vessels constitutes the major resources of costs (Statoil, 2013). By 

reducing the sailing distances as much as possible, transportation costs can be kept at a minimum.  

Real logistic problems can be simplified and described as mathematical models. Such models can 

be exploited to improve logistic elements. Figure 1 (a) illustrates a traditional supply scenario 
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between one onshore supply base and three offshore installations, where one or several PSVs 

shuttle between the units. 

  

(a) (b) 

 

 

 

 

 
 

 

Figure 1 Offshore supply concepts. (a) illustrates a conventional offshore supply concept, while 

(b) suggests a offshore supply concept with a hub-network of one hub. 

 

An extension of the conventional supply is to include a forward storage unit, a hub. A proposed 

system with a hub-network is illustrated in Figure 1 (b). A big hub-vessel shuttles between an 

onshore supply base and given offshore positions. From this positions, PSVs load cargo to supply 

the offshore installations. Optimizing supply logistics can result in potentially great cost savings 

(Fagerholt & Lindstad, 2000). A hub system can under the right circumstances reduce a firms total 

transportation cost. 

 

1.2.  Objective 

The aim of this thesis is to utilize operations research to determine whether it is cost-efficient for 

Statoil to make use of a hub system in the Barents Sea when three offshore installations are to be 

serviced.  

 

 

Floating offshore base, hub 

Onshore supply base 

Offshore installation 

Proposed route 
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The main objective of this thesis, is to determine whether it is more cost efficient to utilize a hub-

network than direct shuttle. Where is the optimal onshore base location? If hub-network is 

profitable, where should the hub-location and onshore base be located so that transportation costs 

are minimized? How is this decision influenced by the location of the offshore installations? 

Finally, how many vessels are required for the optimal solution? 

 

1.3.  Scope and Limitations 

The specific tasks for this thesis are as follow: 

1) Generate a mathematical model describing a simplified version of a real problem 

2) Collect essential data necessary to run the mathematical model 

3) Implement and solve the mathematical model in Xpress IVE  

4) Asses the results and aspects related to the model 

 

1.4.  Maneuvering through the Report 

The report is structured as follows: 

Chapter 1 provide an introduction to the report. Background, objective, scope and limitations are 

presented 

Chapter 2 explains the methods used to answer the questions stated in the introduction. Why and 

how these methods are implemented in software are also explained in this Chapter. 

Chapter 3 provides an overview of existing theory and previous work. General information about 

onshore land depots, hubs, offshore installations and supply vessels is given.  

Chapter 4 presents the mathematical model by words. 

Chapter 5 presents the mathematical model. 

Chapter 6 provides an overview of data input used to solve the mathematical model. 

Chapter 7 assess and discuss the results from the mathematical model. 
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Chapter 8 presents the conclusion for the problems addressed inn this report. 

Chapter 9 provides suggestions to further work. 
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Chapter 2  

2. Method 

This Chapter provides an overview of the methods that are used to answer the questions stated in 

the introduction. Why and how the methods are implemented in software are described in detail in 

section 2.1. General strengths and weaknesses with the methodology are discussed in section 2.2. 

The report present a two-stage solution approach. In Phase 1, all routes are generated and 

parameters are calculated. In Phase 2, a set partitioning problem is solved, where the columns are 

the routes generated in Phase 1. Phase 1 defines the parameters for two different logistical 

scenarios. Case 1 includes a hub-network and Case 2 excludes a hub-network. Both cases build on 

equal assumptions and simplifications. The results from the two cases are implemented separately 

in the integer programming model. Results from the model are finally compared. A solution 

approach is illustrated in Figure 2. 

 

Figure 2 Flow chart of the solution method. “Hub.m” and “NoHub.m” represent case 1 and 2 

of Phase 1 respectively. “Output hub” and “Output No Hub” represent the results from Phase 

2, where columns from case 1 and 2 are implemented separately.  

 

The method is performed a set of times for different locations of installations. This is done to study 

how the spreading of the installations’ locations influence on the final results. Output from run 1 

of Case 1 and 2 are attached in Appendix E. and 0. The corresponding MATLAB scripts can be 

found in Appendix B and C. The only factor distinguishing the various runs are location of the 

installations. These are given in Appendix A. The output from Phase 1 can be recaptured for all 

runs. Hence, it is found unnecessary to attach the output of Phase 1 from the remaining outputs.  

 

Input
data

"Hub.m"
data Output 

Hub
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generation

data
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data Output 

No Hub
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2.1.  Implementation in Commercial Software 

Phase 1 

“MATLAB® is a high-level language and interactive environment for numerical computation, 

visualization and programming” (Math Works, 2014, pp. 1-2). The commercial software is used 

to carry out Phase 1 of the problem described in this report. The MATLAB-version used is R2014a 

(8.3.0.532).  

Two scripts are programmed during the preprocessing of the problem. “Hub.m” generates a hub-

grid (HG) and calculates parameters in correspondence with Case 1. “NoHub.m” is the MATLAB 

script for Case 2, where direct shuttle is studied. All parameters are estimated forthright with the 

functions described in Chapter 5.1 with for- and while-loops. The hub-grid generation is 

programmed less forthright and are therefore described more in detail below. Furthermore, 

MATLAB’s built-in mapping toolbox is utilized for distance calculations and map drawing. Pros 

and cons of this built-in function is discussed in Chapter 2.2.  

Both MATLAB-scripts require a set of input. Some of the inputs are used as a basis for calculations 

of the parameters, others are simply displayed unprocessed in the output. The output includes a 

data file and a map which is displaying the bases, hubs and installations in the Barents Sea. It is a 

fully functional input file for the mathematical model in Phase 2.  

Hub-grid-generation  

A set of alternative hub locations is generated in Case 1 to provide the necessary input parameters 

to the mathematical model. The positions constitute a 4x3 array. 

The grid is generated in two steps and is based on three input values; number of hubs in longitudinal 

and latitudinal direction and a geographical south-west location point, defining the corner hub of 

the grid. First, a three dimensional matrix is generated by a double for-loop. With the corner hub 

as starting point, nodes are created with regular intervals. The intervals between each position are 

chosen so the grid covers a desired area of the Barents Sea. One layer of the 3D matrix represent 

the hubs’ geographical positions in latitudinal direction. Longitudinal positions are given by the 

other layer. Second, a built-in reshape-function is applied to flatten the matrix into a two-

dimensional matrix. Consequently, the hub-matrix is displayed as a 12x2 array. Each row 

represents one hub location. The columns represent longitudinal and latitudinal locations 
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respectively. This format is necessary to utilize the mapping-toolbox for calculations of durations 

in further scripting.  

Case 2 requires no gridded hub generation as direct shuttle is evaluated. To exploit the same 

mathematical model for both Case 1 and 2, hub locations are still defined. Number of hubs and 

their respective locations are chosen similar to the onshore bases. To neglect the effect of hubs, the 

costs corresponding to shuttle between nearest hub and base are 0 NOK. A theoretical high value 

is selected for different placed bases and hubs.  

Route generation 

Due to limited number of installations described in this report, the routes are manually generated.  

Phase 2 

Operations research is a tool that can be utilized to find better ways of solving problems. It is a way 

of quantifying situations (Hiller & Lieberman, 2010). Phase 2 was implemented and solved in the 

commercial optimization software Xpress-IVE. The author has made use of Xpress IVE version 

7.2.1. and Xpress Mosel as modelling language. The Xpress optimization suit is developed to solve 

mathematical models and optimization (Andersson, et al., 2013). This software was selected as it 

is suitable for mixed integer linear problems, MILP (FICO, 2012).  

The solution process of Xpress IVE contains of three main phases. In a pre-solving phase, various 

numerical methods are applied to reduce the problem. Then the LP relaxation of the problem is 

found by use of the LP relaxation method. Finally, branch and bound (B&B) is performed to search 

for improved lower bounds and finally find the best feasible integer solution. 

The integer programming model of Phase 2 is implemented in Xpress IVE. The same model is 

utilized for both of the described logistic scenarios. Consequently, two output files are generated. 

They present the optimal results based on parameters from Case 1 and 2 respectively.  

Results for each run is compared by use of Microsoft Office Excel. 

For comparable reasons, all runs are performed on the same computer. The computer is a Samsung 

with processor Intel® Core™ i5-3317U CPU @ 1.70 GHz and 4 GB RAM. 

The implementation of the mathematical formulation, is presented in Appendix I. 
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2.2.  Strengths and Weaknesses 

General strengths and weaknesses for the methodology of Phase 1 and 2 are presented in the 

following. Comments specific to the model are discussed under Chapter 8. 

Phase 1 

Mapping Toolbox 

“The mapping toolbox provides tools and utilities for analyzing geographic data and create map 

displays” (Math Works, 2012, pp. 1-2). The mapping toolbox has been used to calculate distances 

and display the map over the Barents Sea in the two MATLAB-scripts. The map is drawn with 

Mercator cylindrical projection. This projection contains parallel spacing, where the parallels 

define the latitude of true scale. The projection is according to Math Works (2012) good enough 

for navigational purposes.   

The distance between the hubs and installations can be calculated based on two tracking types. The 

Rhumb Line calculates distances with constant azimuth. This line type is a curve crossing each 

meridian at the same angle. The Great Circle (GC) estimates the shortest path between two nodes 

on the surface of a sphere. In accordance to Math Works (2012), this track type is suitable on 

cylindrical projections like Mercator. The Great Circle line is used in combination with the 

distance-function in mapping toolbox to calculate distances between all onshore bases and hubs, 

between hubs and installations and between all installations. An overview of all distances are 

embedded in Appendix G. The corresponding script is attached in Appendix F. In Figure 3 the 

difference between the two line types are depicted. 

By making use of the mapping toolbox, the user get to draw a map with desirable geographical cut 

showing predefined cost line and onshore areas. By additionally illustrating bases, hubs and 

installations as given in the scripts’ input, the map can be used to control that the input values 

seems correct in terms of each other.  

The distance-function with Grate Circle lines do not consider shore areas. Each distance is 

calculated to be as short as possible between two points, independent of whether the shore is 
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crossed. To correct for these inaccuracy one can make use of waypoints to one define one or several 

nodes that the route shall travel through. However, this has not been done in these thesis.  

 

 

Figure 3 Great circle and Rhumb line. The figure is provided by (center, u.d.). 

 

Route generation method 

According to Fagerholt (2013), “the route generation method is especially applicable for solving 

problems in maritime transportation”. By applying the method, one variable is defined per route 

rather than per edge or leg. By predefining multiple routes, the mathematical model may be defined 

as a set partitioning problem. This structure is easier to solve than applying direct formulation. A 

route generation can often easily include constraints for time window, maximum route duration, 

capacity and other practical restrictions. On the contrary, a two-step solving approach is required 

for the route generation method. All generated routes must be feasible to ensure optimal solution. 

Finally, the number of routes grow exponentially with problem size (Fagerholt, 2013).  
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Chapter 3  

3. Literature Review 

This chapter presents a literature survey on the location-routing problem and the fleet size and mix 

vehicle routing problem. Moreover, previous works and literature that are considered relevant, are 

presented to describe meteorological and oceanographic conditions of the Barents Sea.  

To begin with, two types of optimization problems can be used to characterize the problem 

described in this report. One problem concerns optimal locations for a base and a hub. This may 

be seen as a facility location problem (FLP). According to Maranzana (1964, p. 261) “the location 

of factories, warehouses and supply points in general… is often influenced by transport costs.” 

Hence, it may be smart to study literature combining these two elements.  

The other problem involve determining the optimal size and mix of fleet of vessels. This report 

assume a homogeneous fleet of vessels. Nevertheless, the mathematical model is programmed to 

function for heterogeneous vessels. In the literature, this type of problem class can be considered 

as the maritime fleet size and mix vehicle routing problem (MFSMVRP). 

Relevant literature applicable for these two problem categories are considered in the following. 

Section 3.1 presents written works pertinent for the location-routing problem. Section 3.2 provides 

an overview of relevant literature available for the fleet size and mix vehicle routing problem. 

Section 3.3, presents literature relevant for the meteorological and oceanographic conditions in the 

Barents Sea. 

 

3.1.  The Location-Routing Problem 

“Location-routing problems (LRP) are vehicle routing problems (VRPs) in which the optimal depot 

locations and route design must be decided simultaneously” (Laporte, et al., 1988). The VRP finds 

the optimal set of routes for a fleet based on certain restrictions, such as minimized costs. This 

problem class do according to Jan Lundgren (2010) further consist of solving two problems 

simultaneously. First, customers are allocated vehicles. Secondly, the sequence of which customer 
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shall be visited per route, are determined. A sub-problem is in this relation solved, namely the 

travel salesman problem (TSP). (Jan Lundgren, 2010) presents a general mathematical model for 

the VRP with one depot. The model examine a set of given number of vehicles. No time window 

is considered. 

Location-routing problems are not as well defined as the travel salesman problem or the vehicle 

routing problem. According to Nagy and Salhi (2006) it can rather be considered as an approach 

to modeling and solving location problems. Some heuristic solution strategies are developed. 

(Laporte, et al., 1988) reformulates the LRP into a TSP by graph transformation. B&B is used as 

solving method. (Laporte & Dejax, 1989) extends this model further to a dynamic LRP problem.  

Perl and Daskin (1985) presented a heuristic solution method for simultaneously solving the 

distribution center (DC) location and vehicle routing problem. This type of problem is referred to 

as the warehouse location-routing problem (WLRP). The objective is to find the optimal location 

for the DC(s) while total costs are minimized. The model has a mixed integer programming 

formulation (MIP). The problem is decomposed into three subproblems. Each subproblem is solved 

sequentially, while the dependence between them are accounted for. The first subproblem 

constructs an initial set of routes that minimizes total delivery costs. It is assumed that all DCs are 

used. The second subproblem locates the warehouses. The routes generated in the first phase are 

allocated to the warehouses. The third subproblem solves two problems simultaneously. The 

costumers are reallocated to warehouses and a multi-depot routing problem for the warehouses 

selected in the previous subproblem are solved. The problem allows multiple depots. 

 

3.2.  The Fleet Size and Mix Vehicle Routing Problem 

The fleet size and mix vehicle routing problem (FSMVRP) determines requisite size and number 

of vehicles in order to supply demanded devices at minimal cost (Golden, et al., 1984). Golden 

(1984) proposes a mathematical formulation with respect to optimizing both acquisition and 

routing costs. The paper suggests several analytic solution procedures with optimization of fleet 

composition and routing sub-problems. The supply of frequency is limited to one per costumer. It 

is assumed an infinite size of vessel fleet, where all vessels starts and terminate their routes at one 

depot. Both fixed and variable vehicle costs are considered. 
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Fagerholt (1999) presents a solution approach for a FSMWRP for a real liner shipping problem. It 

is a multi-trip VRP with weekly routes. A three stage solution process is suggested. The first to 

phases constitute a route generation algorithm. First, all feasible, single routes are found. Second, 

these routes are  combined into multiple routes. The routes constitute as columns in the third stage. 

A set partition problem is considered.  The problem addresses various opening hours of seven 

offshore installations. Heterogeneous vessels are considered. A second size and mix problem is 

addressed by (Fagerholt & Lindstad, 2000). The paper evaluates effect on supply costs when 

opening hours on offshore installations are limited. (Halvorsen-Weare, et al., 2012) present an 

alternative route generator for a FSMVRP. Voyages are generated by a one-step algorithm. Only 

feasible routes are generated. In a second step, the optimal fleet composition and periodic routing 

of offshore supply vessels are found by the presented mathematical model. 

An extension of LRP problem from the aircraft industry is presented by (Aykin, 1991). The paper 

consider hub location and routing problem. The elements are determined simultaneously. A set of 

two interacting hubs are considered. The vehicle may travel via one or two hubs. Direct shuttle 

between origin and destination nodes are additionally considered. The paper present a 

mathematical model and a two stage solution approach, where the hub locations and the routing 

subproblems are solved separately in an iterative manner.  

(Nørdbø, 2013) studies optimal configuration of supply logistics for remote oil and gas fields. The 

report present a two-stage solution approach with a suggested set partitioning mathematical model 

with routes as columns. Nordbø (2013) claims that a minimum number of six offshore installations 

should be included in the logistical problem before a given hub-solution can be considered 

profitable. 

(Norddal, 2013) proposes a solution method and three integer, linear, mathematical models for 

optimization of helicopter hub locations and fleet composition in the Brazilian pre-salt fields. Both 

arc and path flow formulations are presented. All models assess total investment and operational 

costs in addition to total accident risk aspects.   

3.3.  Meteorological and Oceanographic Conditions in the Barents Sea 

According to Keghouche et al. (2010) icing does normally not represent a risks for maritime 

operations in the most southern part of the Barents Sea. Keghouche et al. (2010) carried out a study 
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of iceberg drift characteristics in the Barents Sea from 1987 to 2005. The study was based on 

satellite observations monitoring extend of sea ice. According to this research, the presence of 

icebergs or drifting ice in the southern part of the Barents Sea is rare (Figure 13 in Appendix P). 

Figure 14 in Appendix Q illustrates the most common areas in which icebergs drifted up to year 

2005. 

Interpretation of Appendix P indicates iceberg encountering of maximum 20 % probability south 

from 74 degree north. 

Various risk factors make logistics to and from offshore installations and search and rescue (SAR) 

operations challenging in the Barents Sea southeast. The risk factors can be icing on vessels or 

installations due to low air temperatures, fog, darkness, polar lows and lack of infrastructure 

especially related to search and rescue infrastructure capabilities. These factors appear to be more 

relevant for the northern part of the Barents Sea than in the south. The metrological conditions 

described above claim certain requirements for operation time and oil protection equipment (Eger, 

et al., 2012). Such standby parameters are not included in the problem described in this report. Nor 

have the above mentioned weather conditions been implemented as variable factors in the 

mathematical model. The model is deterministic and do not consider variety of temperature, 

precipitation, waves, etc. Nice weather and calm water are assumed. It is however assumed that the 

demanded characteristic for all vessels operating in the area meet minimum requirement, as ice 

classes. 

According to the INTSOK report (Barlindhaug, 2013), it is difficult to get hold of data on 

environmental parameters in the Barents Sea. It is lack of empirical meteorological data on 

temperatures, darkness, snow, fog, icing, rapid weather changing, surface winds and polar lows. 

Due to local formation and small size, these conditions are difficult to forecast. It is however 

expected a decrease of polar lows in the Barents Sea, given that the ice edge moves further north 

and east in the future (Barlindhaug, 2013).  
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Chapter 4  

4. Description of the Problem 

This chapter explains the scope of the mathematical model presented in this report. The description 

is based on Chapter 3. Simplifications and assumptions that have been made are presented. Section 

4.1 presents the current situation and the potential of the infrastructure in Finnmark. The hub system 

is elaborated in section 4.2, while the installations are described in section 4.3. Section 4.4 provides 

an overview of the vessels used to supply cargo to and from the installations.   

Two supply scenarios of the problem are considered. Figure 4 illustrates the composition of the 

main elements in Case 1, where a hub-network is considered. It consists of a given set of offshore 

installations and onshore supply bases. A set of potential hub locations are generated in between 

the installations and bases. Supply vessels sails between an offshore hub and the installations 

(echelon 2). The hub is serviced by large vessels from the onshore base (echelon 1). A PSV can 

sail different routes or the same route various time during one period. Consequently, echelon 2 of 

the problem can be considered as a multitrip vehicle routing problem (VRP). 

 

Figure 4 Composition of facilities including an intermediate storage unit 

For comparison reasons a second version of the logistic supply concept is generated. Case 2 differs 

from Case 1 by excluding the hub network. It examines direct shuttle between shore and 
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installations. All other assumptions and simplifications are equal for both cases. Case 2 can be 

illustrated by echelon 2 in Figure 8, where the hubs are drawn back to the base locations so the 

distances between two and two bases and hubs are neglected. 

A route is in this report defined as a schedule. It starts and terminates at the same demand center. 

A route may visit one, two or all three installations. At least one installation is visited per route. 

The problem is assumed deterministic.  

 

4.1.  Onshore Supply Base 

A certain number of bases and their locations are given by Statoil. All bases are restricted to be on 

Norwegian shore and only one base can be used as the supply base. The bases are assumed to be 

open twenty-four-seven, year round. Each supply base delivers cargo demanded by the 

installations. Depending on the two supply scenarios, only PSVs or hub-vessels load cargo at the 

current base. The variable leasing cost bases on amount of cargo transported over wharfside.  

The logistic system described in this report is handled isolated from prospective, former Phases of 

the total logistic chain. Hence, onshore or offshore transportation to and from the base is not 

considered.  

The objective is to find the onshore base location such as total transportation costs are minimized.  

 

4.2.  Hub 

In this thesis, a hub is considered an offshore storage base working as an intermediate storage unit. 

It can be a container carrier or another type of big vessel. Number and location for hubs are not 

given. A grid of possible hub locations are assumed for Case 1. In case 2, location and number of 

hubs are assumed equal with the onshore supply bases. Consequently, it is no distance between 

nearest base-hub-pair and the corresponding costs are thus zero for echelon 1. 

Each hub-vessel load commodities at an onshore supply base. Further, it sails to a given location 

to supply the PSVs in echelon 2. The hub-vessel is assumed fixed at a given location until empty 

stock. A second well-stocked hub will then take over, while vacant hub-vessel returns to shore for 
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reload.  Furthermore, the storage unit is fixed at a current position at all time, either moored or on 

dynamic positioning. It is for example not possible for a hub to change its position towards an 

installation with greater demand for periods.  

The opening hours are assumed twenty-four-seven. In order to have an available hub at all time, at 

least two vessels must shuttle between the base and hub location. When the storage at one hub is 

empty, a new hub is ready to take over. Time to swap places is not taken into account. Time for 

maintenance of hubs are not considered. 

Emergency hospital, route landing for helicopter, among other things are additional functions a hub 

could have. The hub in this report is handled as a pure storage unit, where only transshipment of 

cargo is handled.  

Each hub-vessel is assumed hired on a time charter contract. All costs are assumed included in the 

contract, including maintenance, crew costs and operational costs as fuel etc.  

Based on a set of predefined locations, the objective is to determine whether it is profitable to make 

use of an intermediate storage unit, and furthermore to decide the optimal location of the hub so 

that all transportation costs are minimized.  

 

4.3.  Offshore Installations 

A set of offshore exploration installations are given. Each unit is presented by a location in the 

Barents Sea, where one installation is placed per location. Different locations are assessed. The 

installations are localized north from the supply bases but not further north than 74 degrees, and 

from 21 to 36 degree east.  Cargo demand and number of services per period are given and assumed 

not to vary by time and/or unforeseen events. Capacity constraints are intact for each cargo delivery 

per period. All delivery of commodity is carried out by the PSVs. Supply from other units as 

helicopter or other vessels are not considered.  

In similarity with the supply bases and hubs, the installations are assumed to operate 24/7. 
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4.4.  Platform Supply Vessels 

Platform supply vessels (PSV) shuttle between two facilities to supply cargo. Two supply scenarios 

are considered. First, a set of PSVs shuttle between a hub locations and installations. Commodity 

is loaded at a hub. The supply vessels are located in echelon 2 at all time. Costs and time for sailing 

or transporting the PSVs to and from their onshore base is not considered. For the second supply 

scenario, a set of PSVs are stationed at the onshore base. In theory, these vessels transport cargo 

from a hub location. The practical interpretation is however direct shuttle from onshore base, as 

the fictive geographical locations are similar as for the bases. The fleet of vessels in both scenarios 

can visit one, two or three installations per route. One route starts and terminates at same hub/base 

location. Transshipment to and from supply vessels happen at similar unit. An upper boundary for 

number of supply vessels are given.  

The fleet of vessel is homogeneous, with given values for deck load capacity and service speed. It 

is assumed that the PSVs are able to deliver deck load and floating bulk goods after demand from 

the installations. The cargo capacity is measured by ton cargo transported. Constraints on 

maximum cargo capacity per route stays intact for all vessels. No further restrictions on cargo are 

specified.  

The PSVs are assumed to be ice classed. This assumption is based on the literature review of 

Chapter 3.3. Extra equipment or fittings necessary to meet the required ice class are assumed 

installed on the hired vessels. 

The offshore supply vessels are hired on long-term time charter contracts where all costs are 

assumed included. The costs are given. It is assumed that the vessels use dynamic positioning 

whenever waiting for an assigned route. For simplicity sake, fuel consumption for utilizing the DP 

system is assumed similar to sailing. Furthermore the costs for all hired vessels are equal. The 

charter contract includes both maintenance costs, crew costs, additional costs due to ice class, 

operational costs as fuel and so on. Time for inspection and maintenance are however not 

considered. 

Approximately 70% of  the cargo delivered to installations return as backload. This appeared from 

the workshop with Statoil March 6. According to Statoil, the volume of backload vary from day to 

day. It is here assumed that a supply vessel visiting an installation, returns backload. Time 
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consumption for loading backload is included in turn time for hubs and installations. Further 

considerations, as volume and frequency, are not considered. 

All vessels are assumed to be provided with clean hulls. Increased cost and time consumption due 

to friction and saturation resistance are not taken into consideration. 

The objective is to determine size of the PSV fleet such as the total transportation costs are 

minimized.  
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Chapter 5  

5. Mathematical Formulation 

This Chapter presents a suggestion to a two-Phase solution approach of the problem presented in 

Chapter 1. The preprocessing Phase provides input for the mathematical model and is described in 

section 5.1. Section 5.2 explains the structure of the mathematical model, presented as a column 

generation model. 

 

5.1.  Phase 1: Preprocessing  

The preprocessing Phase comprises generation of routes and determines parameters used as input 

in Phase 2. Calculations and assumptions for all the parameters are explained.  

Route generation: 

The route generation for echelon 2 represents all possible combinations of sailing distances 

between a hub and a set of installations in the Barents Sea. The routes are generated manually due 

to a relatively small problem of three offshore installations. Potentially one has 36 different 

combination of routes per hub location. Symmetric travel distances are assumed. Additionally, each 

offshore installation is visited at most once on each route and all routes are restricted to start and 

terminate at the same hub location. Consequently, the different route combinations reduce to eight. 

All routes composite of one or several arcs illustrated in Figure 5. Table 1 provides an overview of 

the final routes from an arbitrary hub location.  
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Figure 5 Combination of routes between one arbitrary hub and three installations. H represents 

a hub-location. The installations are symbolized by I and indexed by 1, 2 and 3. For Case 2, the 

distance between the hub and onshore base is removed. 

 

Table 1 Overview of ordered routes in echelon 2 from an arbitrary hub location, where H 

describe an arbitrary hub location and the installations are represented by I. 

Route number Route 

1 H-I1-H 

2 H-I1-I2-H 

3 H-I1-I2-I3-H 

4 H-I1-I3-H 

5 H-I2-H 

6 H-I2-I3-H 

7 H-I3-H 

8 H-I3-I1-I2-H 
 

 

Hub grid generation: 

For Case 1, a set of potential hub locations are assumed based on a HG generation. 12 locations 

are developed with regular intervals. The method for how the grid of possible hub locations are 

programmed are described in Chapter 2.1. The programmed code for the HG generation is only 
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current for Case 1 and is presented in Appendix B. For Case 2, the hubs are defined directly by the 

supply base input values (Appendix C). 

Duration of each route from all possible hub locations, Thr: 

The length of all the routes presented in Table 1, are calculated from each potential hub location. 

The duration of each route is determined based on the distances and a given service. As long as the 

PSVs sail, it is assumed that the service speed is constant. No route is checked up against any time 

or capacity restrictions. Infeasible routes, if any, are handled in Phase 2. Turn time at the hubs and 

installations are included in the route durations. Turn time is here defined as time for load and 

unload cargo. It is assumed that backload is taken into account of the loading/unloading procedures. 

Finally, ideal weather conditions are assumed and unforeseen events are neglected. The duration 

of each route is therefore deterministic and the same for each vessel. The calculations of the Thr-

parameter is annexed in Appendix E and 0 for the first run of Case 1 and 2. The code is similar for 

both cases. 

Air-matrix: 

The routes given in Table 1 describes which installations are visited on each route. By manually 

translating this information to a binary format, the Air matrix is generated. Elements of the matrix 

is one when an installation i is visited on route r, and zero otherwise. The matrix is embedded in 

Appendix E and 0 for the first run of Case 1 and 2. 

Cost for serving hub-vessels in Echelon 1, 𝑪𝒃𝒉
𝑬𝑶: 

The total costs for echelon 1 are found in the preprocessing phase. It varies with the number of 

hub-vessels. Given a base b and a hub h, series of hubs times chartering cost for a chosen period, 

constitute the cost for echelon 1. 𝐶𝑏ℎ
𝐸𝑂 is calculated for all possible base and hub combination. This 

means (7*12=) 84 cost calculations for echelon 1 in the first supply scenario. The calculations are 

made after the function presented in Table 2. 
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Table 2 Cost function for using hubs, Echelon 1 

𝐶𝑏ℎ
𝐸𝑂 = 𝑛𝑉𝑒𝑠𝑠𝑒𝑙 ∗

𝐶𝑌𝑒𝑎𝑟𝐸𝑂

52
∗ 𝑊 

𝑤ℎ𝑒𝑟𝑒  

𝐶𝑏ℎ
𝐸𝑂 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑡𝑒𝑟𝑖𝑛𝑔 𝑜𝑛𝑒 ℎ𝑢𝑏 − 𝑣𝑒𝑠𝑠𝑒𝑙 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 [𝑁𝑂𝐾] 

𝑛𝑉𝑒𝑠𝑠𝑒𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑡𝑒𝑟𝑒𝑑 ℎ𝑢𝑏 − 𝑣𝑒𝑠𝑠𝑒𝑙𝑠 shuttling 𝑏𝑒𝑡𝑤𝑒𝑒𝑛  

𝑒𝑎𝑐ℎ 𝑏𝑎𝑠𝑒 𝑏 𝑎𝑛𝑑 ℎ𝑢𝑏 ℎ 𝑖𝑛 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 1 [−] 

𝐶𝑌𝑒𝑎𝑟𝐸𝑂 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 ℎ𝑖𝑟𝑖𝑛𝑔 𝑜𝑛𝑒 ℎ𝑢𝑏 − 𝑣𝑒𝑠𝑠𝑒𝑙 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 [𝑁𝑂𝐾] 

𝑊 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑡𝑜 [𝑤𝑒𝑒𝑘𝑠] 
 

 

The yearly cost is given. Time value of money is not taken into account in the cost calculations. 

The costs are simply determined by dividing yearly charter cost by number of weeks in one year. 

The crucial parameter for the problem described in this report is first of all number of chartered 

vessels. The accuracy of the cost estimations are assumed sufficient without present value 

calculations.  

Period, W: 

The period W is given directly as an input parameter. It appears from the following description of 

nVessel that W influences on how many times each route maximally can be sailed.  

nVessel-generation: 

nVessel is the minimum number of hub-vessels required for echelon 1. Initially a zero matrix is 

generated. The size depends on number of hubs and installations. All elements are then given a 

value two, due to the assumption of twenty-four-seven opening hours. If a hub-vessel breaks with 

time or capacity constraints, a third intermediate unit is added to the fleet. Conditions belonging to 

the algorithm is described more in detail in the following. 

Let the dotted line in Figure 6 illustrate vessel A, while vessel B is illustrated by the orange line. 

At the start of a period (T0), vessel A is located at a given hub-location. PSVs load cargo from the 

hub until time T1, half way through the period. By time T1 the storage is empty. Vessel A sails to 

an onshore base, reloads and returns to the hub location between time T1 and T2. By T1 vessel B 

has already reloaded its storage, so that it is ready to change position with hub-vessel A. It appears 
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from the illustration that the PSVs are supplied by two fully loaded hub-vessel per period. The 

second change of hub-vessel, T2, will serve PSVs the next period.    

 

 

Figure 6 Concept behind nVessel generation. nVessel is here two, meaning that the fleet consist 

of two hub-vessel. Hub-vessel A and B sail one roundtrip.each. A roundtrip starts at a certain 

hub-location, goes via an onshore base and terminates at the same hub-location. 

 

If the total demand at the installations exceeds the capacity of the two hub-storage supplyes, it is 

possible for vessel A to sail one extra roundtrip. This will then increas the hub-delivery capacity 

by one additional unit. Figure 7 illustrates the case where vessel A sails two round trips and vessel 

B one. 

 

Figure 7 Concept behind nVessel generation. nVessel is two. Hub-vessel A sails two trips. Hub-

vessel B sails one trip. 

 

This solution is feasible as long as the sailing duration is still within given boundarys. Under the 

same condition, vessel B may additionally make two roundtrips if necessary. If the fleet of hub-
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vessels violate from feasible sailing durations and do not meet the required amount of cargo, an 

additional vessel is added to the fleet. The nVessel-algorithm do not include the scenario illustrated 

in Figure 7. The hubs sail same number of times. 

CET: 

The unit cost for using one PSV in echelon 2 is based on a given, yearly chartering cost. The 

calculations are performed with the same argumentation as used for the costs in echelon 1 (Table 

2). The cost for chartering one PSV per period is calculated by the cost function in Table 3. 

Table 3 Cost function for using one PSV, Echelon 2 

𝐶𝐸𝑇 =  
𝐶𝑌𝑒𝑎𝑟𝐸𝑇

52
 𝑊 

𝑤ℎ𝑒𝑟𝑒  

𝐶𝑌𝑒𝑎𝑟𝐸𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐ℎ𝑎𝑟𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑃𝑆𝑉, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2  

𝑊 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 
 

 

Cb: 

The base cost Cb, is given per ton cargo shipped over wharfside. It is given directly by input values 

for each base. Time value of money is not taken into consideration. 

Si: 

Si is the required number of weekly services at each installation. This value is given as input 

directly. To ensure correct scaling, Si is multiplyed by the number of periods. 

Table 4 Frequency of service at installations per period 

𝑆𝑖 = 𝑆𝑖
𝑖𝑛𝑝 ∗ 𝑊 

𝑤ℎ𝑒𝑟𝑒  

𝑆𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑  

𝑆𝑖
𝑖𝑛𝑝

 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑤𝑒𝑒𝑘𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 

𝑊 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 
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Qp: 

The capazity for all PSVs are the same as the fleet is assumed homogeneous. The value is given as 

input directly.  

Big M values: 

The three coupling constraints (4.9), (4.10) and (4.15) in the mathematical model presented in 

section 5.2, require two big M values. Mp represent the big M value for the former two constraints. 

Mr belongs to the latter constraints. Mp is determined by the maximum number of trips one PSV 

can sail on one route in echelon 2. Hence, it is calculated by dividing the period W [hours] by the 

minimum duration of all routes as described in Table 5. 

Table 5 Determination of big-M value, Mp 

𝑀𝑝 =
𝑃𝑒𝑟𝑖𝑜𝑑𝐻𝑜𝑢𝑟𝑠

min(𝑚𝑖𝑛(𝑇ℎ𝑟))
 

𝑤ℎ𝑒𝑟𝑒  

𝑀𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑖𝑔 𝑀 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (4.9) 𝑎𝑛𝑑 (4.10) 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 2 

𝑃𝑒𝑟𝑖𝑜𝑑𝐻𝑜𝑢𝑟𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑊 𝑖𝑛 ℎ𝑜𝑢𝑟𝑠, 𝑛𝑜 𝑠𝑙𝑎𝑐𝑘 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 

𝑇ℎ𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑓𝑟𝑜𝑚 ℎ𝑢𝑏 ℎ 
 

 

The min(min(Thr))-function selects the shortest duration of all considered routes. PeriodHours is 

converted from the duration W in weeks to hours. No slack is considered. Hence, PeriodHours is 

found as described in Table 6. 

Table 6 Unit conversion of period, W 

𝑃𝑒𝑟𝑖𝑜𝑑𝐻𝑜𝑢𝑟𝑠 = 𝑊 ∗ 24 ∗ 7 
 

 

Mr is determined based on the amount of cargo a PSV delivers to each installation on a route. The 

calculation builds on the assumption of that delivered cargo is equal to the demand of the 

installation. The maximum required cargo delivery for all installations rule as the big M value. The 

function is given by Table 7. 
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Table 7 Determination of big-M value, Mr 

𝑀𝑟 = max (𝐷𝑖) 

𝑤ℎ𝑒𝑟𝑒  

𝑀𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑖𝑔 𝑀 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (4.15) 

𝐷𝑖 𝑖𝑠 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑐𝑎𝑟𝑔𝑜 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 
 

 

5.2.  Phase 2: Mathematical Model 

In Phase 2, the optimization model for a single hub allocating problem is presented. The parameters 

from Phase 1 is used as columns in the following set partition problem. The problem is to determine 

the location of the hub and onshore supply base, so the sum of the transportation costs are 

minimized. In addition, the fleet size of PSVs and hubs is to be determined. 

The fundament of the mathematical model is based on Fagerholt and Lindstad’s (2000) formulation 

with minor modifications. The paper do not consider hub-network, but direct shuttle between a set 

of demand and destination nodes. By considering the hubs as onshore bases, echelon 2 is initially 

treated as the routing problem described in (Fagerholt & Lindstad, 2000).  

The mathematical model describing echelon 2 is descried as follows: 

Sets 

𝐻 𝑠𝑒𝑡 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ℎ𝑢𝑏 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 ℎ 

𝑅 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ𝑢𝑏 𝑎𝑛𝑑 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛(𝑠), 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑟 

𝑃 𝑓𝑙𝑒𝑒𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑃𝑆𝑉’𝑠 𝑝 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑢𝑠𝑒𝑑 𝑜𝑛 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑝 

 

Parameters 

𝑇ℎ𝑟 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑒𝑛𝑑𝑖𝑛𝑔 𝑎𝑡 ℎ𝑢𝑏 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ℎ, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2  

(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 1)  

𝐶𝐸𝑇 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 ℎ𝑖𝑟𝑖𝑛𝑔 𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 𝑎 𝑃𝑆𝑉 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2. 𝐼𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙  

𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑡𝑒𝑟𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 

𝑊 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑙𝑖𝑚𝑖𝑡 𝑜𝑛 𝑠𝑎𝑖𝑙𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑  
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𝑆𝑖 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑤𝑒𝑒𝑘𝑙𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖  

𝐴𝑖𝑟 𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑓𝑟𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 1) 

𝑀𝑝 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟 

 

Variables 

αp=   1 𝑖𝑓 𝑃𝑆𝑉 𝑝 𝑖𝑠 𝑢𝑠𝑒𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑥𝑝𝑟ℎ =  

 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑙𝑏𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑃𝑆𝑉 𝑝 𝑠𝑎𝑖𝑙𝑠 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑛𝑑  

𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛 ℎ𝑢𝑏 ℎ 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2 

 

min 𝑍 =  ∑ 𝐶𝐸𝑇 𝛼𝑝

𝑝∈𝐸

 
(4.1)   

∑ ∑ ∑ 𝐴𝑖𝑟𝑥𝑝𝑟ℎ ≥  𝑆𝑖

𝑟∈𝑅𝑝∈𝑃ℎ∈𝐻

 𝑖 ∈ 𝐼 (4.6) 

∑ 𝑇ℎ𝑟𝑥𝑝𝑟ℎ ≤ 𝑊

𝑟∈𝑅

 𝑝 ∈ 𝑃, ℎ ∈ 𝐻 (4.13) 

∑ 𝑥𝑝𝑟ℎ − 𝑀𝑝 𝛼𝑝 ≤ 0

ℎ∈𝐻

 𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅 (4.10) 

αp ∈ [0,1] 𝑝 ∈ 𝑃 (4.22) 

𝑥𝑝𝑟ℎ ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,   𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅, ℎ ∈ 𝐻 (4.24) 
 

 

The objective function (4.1)  minimizes the sum of transportation costs in echelon 2. In Chapter 4 

Description of the Problem it was assumed that all costs where included in the chartering cost. 

Hiring costs are the main cost component (Fagerholt & Lindstad, 2000). Hence, operational costs 

given as fuel etc. are not handled as a separate element in the objective function. Consequently, the 

number of hired vessels is the deceive factor to the cost element. 

The objective function (4.1) is defined for a heterogeneous fleet of vessels. The fleet of vessels 

evaluated in this problem is homogenous. The model is however indexed over vessels to increase 

the degree of usability. If the model should work for a homogenous fleet only, the variable 𝛼𝑝 

would instead of being binary, been defined as an integer variable describing number of chartered 
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vessels. The objective function would further be a product of number of vessels times the unit cost 

of chartering one vessel.  

Each offshore installation is serviced a minimum number of times. This is ensured by constraints 

(4.5). The sign of inequality, ‘≥’ can be changed to ‘=’. If an installation is serviced more 

frequently, the objective function will either increase or remain the same. The objective function 

is to be minimize, so the number of visits will be kept at a minimum. Furthermore, number of 

services will not be chosen higher than what is demanded. On this basis, the choice of sign of 

inequality was concluded.  

Restrictions (4.13) ensure that the duration of all routes sailed by each PSV are within a given 

period. It is here possible to introduce some slack to the problem. Given for example a period of 

one week. By choosing W to be 80% of 168 hours, one increase the ruggedness of the time aspect 

in the model (Fagerholt & Lindstad, 2000). In case of delay due to for instance bad weather, one 

could still spend some extra time on the route without getting consequences beyond the longer 

sailing time. Doing so would on the other hand restrict the feasible region of the problem even 

more. Furthermore, one could potential lose a feasible solution that is better than the optimal 

solution without slack.  

Coupling constraints (4.10)  ensure that if a PSV sails a certain route, the PSV is hired. (4.22) and 

(4.24) claim binary and integer restrictions on the variables, respectively. 

With this as a starting point, the model is further developed by connecting echelon 1 and base costs 

to the problem. The objective function is extended to include the cost from echelon 1 and the bases. 

min Z= ∑ 𝐶𝐸𝑇αp+ ∑ ∑ 𝐶𝑏ℎ
𝐸𝑂ρ

𝑏ℎ

H∈Hb∈Bp∈P

+ ∑ ∑ C𝑏𝐷𝑖𝛾𝑏

𝑖∈𝐼𝑏∈B

 
(4.5)  

 

The first term is the transportation costs from echelon 2. The second segment corresponds to the 

hub-costs in echelon 1. The base cost are described by the third element. 𝐶𝑏ℎ
𝐸𝑂 is the total cost for 

hiring and using hub-vessels. ρ
𝑏ℎ

 is a binary variable. It is one if a hub-vessel shuttle between a 

base b and a hub h, zero otherwise. Only if a hub-vessel sails on an arc between a base b and hub 

h, the corresponding cost is added to the objective value. The choice of base and hub location is 

simultaneous given indirectly. The third term consists of three factors. 𝛾𝑏 is a variable equal to one 
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if base b is optimal and zero otherwise. C𝑏 is a variable cost per unit throughput at base b. 

Restrictions for demanded cargo at all offshore installations are assumed intact. Consequently, the 

total demand from the installations are multiplied with base costs to estimate the total base costs. 

Note that the base variable 𝛾𝑏 is an auxiliary variable, as the same information is given implicit by 

the ρ
𝑏ℎ

 variable. Nevertheless, it provides a clear overview of which base location that is chosen. 

In the preprocessing Phase of Fagerholt et al. (2000) all routes that breaks with vessel capacity are 

removed. As mentioned in section 5.1, this capacity aspect is not dealt with in Phase 1 of this thesis. 

Capacity constraints could alternatively remove such infeasible routes. This becomes specially 

important for a problem counting several number of installations, as the combinations of routes 

increase exponentially (Fagerholt, 1999, p. 11). Suggested capacity constraints for the route 

generation in this thesis could be as restrictions (4.2).  

𝑄𝑝𝛼𝑝 ≥ 𝐷𝑖 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐼 (4.2)   

 

Such constraints are not included in the model described in this thesis. With three installations, the 

total demand of cargo delivery is much smaller than the capacity on each vessel. The capacity holds 

for all routes.  

Existence of only one operating hub and onshore supply base is assumed. To ensure this, two 

constraints are added to the mathematical model. 

∑ 𝛿ℎ = 1

ℎ∈𝐻

 
(4.7)  

∑ 𝛾𝑏 = 1

𝑏∈𝐵

 
(4.8) 

 

𝛿ℎ is a binary variable equal to one if a hub location h is chosen in the optimal solution and zero 

otherwise. Constraints (4.7) ensures that only one of all potential hub locations are selected in the 

optimal solution. The problem is restricted to one onshore base by (4.8). Both the binary variables 

𝛿ℎ and 𝛾𝑏 are implicit given by the binary arc variable ρ
𝑏ℎ

 from echelon 1. As a consequence of 

this equality it is necessary to make sure that the three variables are square. Hence, constraints 

(4.11) and (4.12) are added to the model. 
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𝛾𝑏 =  ∑ 𝜌𝑏ℎ

ℎ∈𝐻

 𝑏 ∈ 𝐵  (4.11) 

 

𝛿ℎ =  ∑ 𝜌𝑏ℎ

𝑏∈𝐵

 ℎ ∈ 𝐻  (4.12) 

 

Restrictions (4.11) force the two variables 𝛾𝑏 and 𝜌𝑏ℎto take value one or zero for the same base 

locations. Correspondingly, this is done for the hub locations by constraints (4.12). These two 

restrictions work as long as the problem is limited to choose one hub and one base location. If 

constraints (4.7) allowed the system to choose more than one hub location, constraints (4.11) must 

be defined differently. If for example the optimal solution is to use two hubs and one onshore base, 

the sum of 𝜌𝑏ℎ over the optimal base location would be two. As 𝛾𝑏 only can take the value one or 

zero, constraints (4.11) would not work as defined here. 

Moreover, it is necessary to connect the two segments of the logistic system, echelon 1 and echelon 

2. Restrictions (4.10) make sure that the hub position chosen from echelon 1 is the same that is 

used in echelon 2. 

∑ 𝑥𝑝𝑟ℎ − 𝑀𝑝 𝛿ℎ ≤ 0

𝑟∈𝑅

 𝑝 ∈ 𝑃, ℎ ∈ 𝐻  (4.10) 

 

 

𝑥𝑝𝑟ℎ is an integer variable describing how many times a PSV p sails on a route r from a hub h. 𝑀𝑝 

is a constant, a big number. Constraints (4.10) ensure that if a PSV sails on a route originating and 

ending at a given hub location, the specific hub location should be used in the optimal solution. If 

no PSV sails from a hub, the hub will not be used. 

Without these constraints, one could risk that the optimization model chooses two hub locations. 

One hub located closest to the installations, such as the distance for the PSV(s) in echelon 2 where 

minimized. Another location located in minimal distance from the optimal onshore base. These 

constraints are necessary in despite of the presence hub constraints (4.7) that define that number of 

hubs are exactly one. 
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Further, it is assume that all demand at each installation must be met. It is desirable to claim that 

all delivered cargo at least correspond to what is required from each installation. In mathematical 

terms, this can be described by the non linear constraints (4.3). 

∑ ∑ 𝑞𝑖𝑟𝑝𝑥𝑝𝑟ℎ ≥ 𝐷𝑖

𝑝∈𝑃𝑟∈𝑅

 𝑖 ∈ 𝐼, ℎ ∈ 𝐻 (4.3)   

 

Product of two variables breaks with linearity. Certain routes can be sailed several times and it is 

therefore not enough to make use of the quantum variable alone. To linearize constraints (4.3) and 

still keep track of number of times each route is sailed, a new index, k, is introduced. A route can 

be sailed several times within a given time period, W. The k-index report that a PSV sails a route 

r the k-th time. Hence, the quantum variable is indexed by k. In addition a new binary variable is 

introduced. 

βprk =  
1 𝑖𝑓 𝑃𝑆𝑉 𝑝 𝑠𝑎𝑖𝑙𝑠 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑡𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The correlation between βprk and the integer variable describing how many times a PSV p sails a 

route r from hub h is described by constraints (4.16). 

∑ 𝛽𝑝𝑟𝑘 =  ∑ 𝑥𝑝𝑟ℎ

ℎ∈𝐻

  

𝑘∈𝐾

 𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃  (4.16)  

 

 

The sum of all times a PSV p sails a route r is equal to the total number of times a route r is sailed. 

These constraints work since only one hub is used (ref. constraints (4.5)). By swapping 𝑥𝑝𝑟ℎwith 

𝛽𝑝𝑟𝑘 in (4.3) we get the following restrictions: 

∑ ∑ ∑ 𝑞𝑖𝑟𝑝𝑘𝛽𝑝𝑟𝑘 ≥ 𝐷𝑖

𝑘∈𝐾𝑟∈𝑅𝑝∈𝑃

 𝑖 ∈ 𝐼 (4.4)   

 

By use of special ordered set, SOS2, (4.4) are split into two linear constraints as follows: 
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∑ ∑ ∑ 𝑞𝑖𝑝𝑟𝑘 ≥  𝐷𝑖

𝑘∈𝐾𝑟∈𝑅𝑝∈𝑃

 𝑖 ∈ 𝐼  (4.14) 

 

𝐷𝑖 is the demand at installation i per period. Restrictions (4.14) ensure that total delivered cargo at 

least meet requested amount from each offshore installation. 

𝑞𝑖𝑝𝑟𝑘 − 𝑀𝑟 𝛽𝑝𝑟𝑘 ≤ 0 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾  (4.15)  

 

Constraints (4.24) are coupling constraints. If a PSV do not sail on a route r, no cargo is delivered 

to any installations. Furthermore, cargo capacity stay intact for all PSVs that deliver cargo on a 

route r. This is ensured by constraints (4.17). 

𝑄𝑝 ≥ ∑ ∑ 𝑞𝑖𝑝𝑟𝑘

𝑖∈𝐼𝑘∈𝐾

 𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃 (4.17) 

 

 

𝑄𝑝 is the deck load capacity for PSV p in echelon 2. Constraints (4.17) ensure that the total cargo 

delivered on a route do not exceed the vessel’s capacity. 

At this point of time, the run time for solving the optimization problem in Xpress IVE is three 

hours. In an attempt to reduce the solving time, anti-symmetry restrictions are added. 

𝑞𝑖𝑝𝑟,𝑘+1 ≤ 𝑞𝑖𝑝𝑟𝑘 𝑖 ∈ 𝐼,   𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅, 𝑘 ∈ (𝐾 − 1)  (4.18) 

 

𝛽𝑝𝑟,𝑘+1 ≤  𝛽𝑝𝑟𝑘 𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅, 𝑘 ∈ (𝐾 − 1)  (4.19) 

 

The constraints are made for k-indexed variables. They make sure that the indices are used in 

chronological order. First k=1 is used, then k=2, etc.  

The implementation of these anti-symmetry-restrictions reduces the run time to approximately 3 

seconds, depending on supply scenario. The final mathematical model is summarized in the 

following: 

Sets 
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𝐻 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑢𝑏 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 ℎ 

 

𝐵 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑏𝑎𝑠𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑏 

 

𝑅 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ℎ𝑢𝑏 𝑎𝑛𝑑 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛(𝑠), 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑟 

 

𝑃 𝑓𝑙𝑒𝑒𝑡 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑃𝑆𝑉𝑠 𝑝 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑠𝑢𝑝𝑝𝑙𝑦 𝑖𝑛 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑝 

 

𝐼 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑓 𝑓𝑠ℎ𝑜𝑟𝑒 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑖 

 

𝐾 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑐𝑎𝑛 𝑏𝑒 𝑠𝑎𝑖𝑙𝑒𝑑 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑏𝑦 𝑘 

 

Parameters 

𝑇ℎ𝑟 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑒𝑛𝑑𝑖𝑛𝑔 𝑎𝑡 ℎ𝑢𝑏 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ℎ, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2  

(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 1)  

 

𝐶𝐸𝑇 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐ℎ𝑎𝑟𝑡𝑒𝑟𝑒𝑑 𝑎𝑛𝑑 𝑢𝑠𝑒𝑑 𝑃𝑆𝑉 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2 

 

𝐶𝑏ℎ
𝐸𝑂 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐ℎ𝑎𝑟𝑡𝑒𝑟𝑒𝑑 𝑎𝑛𝑑 𝑢𝑠𝑒𝑑 ℎ𝑢𝑏 − 𝑣𝑒𝑠𝑠𝑒𝑙 ℎ 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 1.  

 (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 1)  

 

𝐶𝑏 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑚𝑎𝑘𝑖𝑛𝑔 𝑢𝑠𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑙𝑦 𝑏𝑎𝑠𝑒 𝑏 𝑝𝑒𝑟 𝑡𝑜𝑛 𝑐𝑎𝑟𝑔𝑜 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑏𝑎𝑠𝑒  

 

𝑊 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑙𝑖𝑚𝑖𝑡 𝑜𝑛 𝑠𝑎𝑖𝑙𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑  

 

𝑆𝑖 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑 𝑤𝑒𝑒𝑘𝑙𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖  

 

𝐴𝑖𝑟 𝑖𝑓 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 1) 
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𝑄𝑝 𝑑𝑒𝑐𝑘 𝑙𝑜𝑎𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑜𝑟 𝑃𝑆𝑉 𝑝, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2  

 

𝐷𝑖 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑  

 

𝑀𝑝 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (4.9) 𝑎𝑛𝑑 (4.10) 

 

𝑀𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑏𝑖𝑔 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (4.15) 

 

Variables 

δh= 1 𝑖𝑓 ℎ𝑢𝑏 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ℎ 𝑢𝑠 𝑢𝑠𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

γ
b
= 1 𝑖𝑓 𝑏𝑎𝑠𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑏 𝑖𝑠 𝑢𝑠𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

αp= 1 𝑖𝑓 𝑃𝑆𝑉 𝑝 𝑖𝑠 𝑢𝑠𝑒𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

ρ
𝑏ℎ

= 1 𝑖𝑓 𝑎 𝑣𝑒𝑠𝑠𝑒𝑙 𝑠ℎ𝑢𝑡𝑡𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑎𝑠𝑒 𝑏 𝑎𝑛𝑑 ℎ𝑢𝑏 ℎ, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑥𝑝𝑟ℎ = 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑃𝑆𝑉 𝑝 𝑠𝑎𝑖𝑙𝑠 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑎𝑛𝑑  

𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛 ℎ𝑢𝑏 ℎ 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2 

 

𝑞𝑖𝑝𝑟𝑘 = 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑎𝑟𝑔𝑜 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑖 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑏𝑦  

𝑃𝑆𝑉 𝑝 t𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑘 𝑡ℎ𝑒 𝑟𝑜𝑢𝑡𝑒 𝑖𝑠𝑠𝑎𝑖𝑙𝑒𝑑, 𝑒𝑐ℎ𝑒𝑙𝑜𝑛 2 

 

βprk = 1 𝑖𝑓 𝑃𝑆𝑉 𝑝 𝑠𝑎𝑖𝑙𝑠 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑟 𝑡𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑘
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Mathematical model 

min Z= ∑ 𝐶𝐸𝑇αp+ ∑ ∑ 𝐶𝑏ℎ
𝐸𝑂ρ

𝑏ℎ

H∈Hb∈Bp∈P

+ ∑ ∑ C𝑏𝐷𝑖𝛾𝑏

𝑖∈𝐼𝑏∈B

 

 

(4.5)   

∑ ∑ ∑ 𝐴𝑖𝑟𝑥𝑝𝑟ℎ ≥  𝑆𝑖

𝑟∈𝑅𝑝∈𝑃ℎ∈𝐻

 𝑖 ∈ 𝐼 (4.6)      

∑ 𝛿ℎ = 1

ℎ∈𝐻

 
 (4.7)   

∑ 𝛾𝑏 = 1

𝑏∈𝐵

 
 (4.8)      

∑ 𝑥𝑝𝑟ℎ − 𝑀𝑝 𝛼𝑝 ≤ 0

ℎ∈𝐻

 𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅 (4.9)   

∑ ∑ 𝑥𝑝𝑟ℎ − 𝑀𝑝 𝛿ℎ ≤ 0

𝑟∈𝑅ℎ∈𝐻

 𝑝 ∈ 𝑃, ℎ ∈ 𝐻 (4.10)   

𝛾𝑏 =  ∑ 𝜌𝑏ℎ

ℎ∈𝐻

 𝑏 ∈ 𝐵 (4.11)   

𝛿ℎ =  ∑ 𝜌𝑏ℎ

𝑏∈𝐵

 ℎ ∈ 𝐻 (4.12)   

∑ 𝑇ℎ𝑟𝑥𝑝𝑟ℎ ≤ 𝑊

𝑟∈𝑅

 𝑝 ∈ 𝑃, ℎ ∈ 𝐻 (4.13)   

∑ ∑ ∑ 𝑞𝑖𝑝𝑟𝑘 ≥  𝐷𝑖

𝑘∈𝐾𝑟∈𝑅𝑝∈𝑃

 𝑖 ∈ 𝐼 (4.14)   

𝑞𝑖𝑝𝑟𝑘 − 𝑀𝑟 𝛽𝑝𝑟𝑘 ≤ 0 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃, 𝑘 ∈ 𝐾 (4.15)   

∑ 𝛽𝑝𝑟𝑘 =  ∑ 𝑥𝑝𝑟ℎ

ℎ∈𝐻

  

𝑘∈𝐾

 𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃 (4.16)   

𝑄𝑝 ≥ ∑ ∑ 𝑞𝑖𝑝𝑟𝑘

𝑖∈𝐼𝑘∈𝐾

 𝑟 ∈ 𝑅, 𝑝 ∈ 𝑃 (4.17)   

𝑞𝑖𝑝𝑟,𝑘+1 ≤ 𝑞𝑖𝑝𝑟𝑘 𝑖 ∈ 𝐼,   𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅, 𝑘 ∈ (𝐾 − 1) (4.18)   

𝛽𝑝𝑟,𝑘+1 ≤  𝛽𝑝𝑟𝑘 𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅, 𝑘 ∈ (𝐾 − 1) (4.19)   

𝛿ℎ ∈ [0,1] ℎ ∈ 𝐻 (4.20)   

𝛾𝑏  ∈ [0,1] 𝑏 ∈ 𝐵 (4.21)   
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αp ∈ [0,1] 𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅 (4.22)   

ρ
𝑏ℎ

 ∈ [0,1] ℎ ∈ 𝐻, 𝑏 ∈ 𝐵 (4.23)   

𝑥𝑝𝑟ℎ ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,   𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅 (4.24)   

𝑞𝑖𝑝𝑟𝑘 ≥ 0 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,  𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅,   𝑝 ∈ 𝑃 (4.25)   

𝛽𝑝𝑟𝑘  ∈ [0,1] 𝑝 ∈ 𝑃, 𝑟 ∈ 𝑅,   𝑘 ∈ 𝐾 (4.26)    

 

The objective function (4.5) minimizes the total costs of chartering and using supply vessels and 

bases in a logistic hub network. Service constraints (4.6) assure that each platform is serviced at 

least the number of times required per period. From constraints (4.7) one assures that only one hub 

is used. Exactly one onshore service base is ensured by constraints (4.8). The coupling constraints 

(4.9) ensure that if at least one route r is selected, then the corresponding binary variable is used. 

They ensure vessel existence for the vessels that are given a route. (4.10) assure that the same hub 

is used both in echelon 1 and 2.  Base existence constraints (4.11) impose that if a base b does not 

exist, no vessel sails from the given location. Additional it ensure that if there exists a connection 

between a base b and a hub h, the given base is chosen. Correspondingly, the hub existence 

constraints (4.12) assure that if a given hub is not used, no shuttle vessel shall sail to the hub. 

Restrictions (4.13) ensure that the duration on all routes sailed by each PSV are within the given 

time period. Constraints (4.14) ensure that each installation is delivered at least the amount of cargo 

it requires. Constraints(4.15) and (4.16) are coupling constraints. Capacity constraints (4.17) ensure 

that for each route, the total supply delivered at the installation(s) does not exceed the capacity on 

the vessel. (4.14) together with (4.17) secure consistency between demand at installations and 

capacity at vessels. (4.18) and (4.19) are anti-symmetry constraints used on variables indexed by 

k. (4.20) to (4.26) impose binary and integer restrictions on the variables.  
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Chapter 6  

6. Data Assembling 

This Chapter presents all the input data used in this study. Data concerning onshore supply bases 

are presented in section 6.1. Section 6.2 presents an overview of hub specifications and 

geographical locations. Offshore installation data are provided in section 6.3. Section 6.4 contribute 

with data regarding the PSVs. 

Based on the length of the route durations calculated in the preprocessing, the period W is 1 week. 

Statoil has provided all data, unless otherwise is specified. 

 

6.1.  Onshore Supply Base 

Based on the report by Karlstrøm et al.  (2011), seven different base locations are assessed as 

potential for the logistic problem described during these thesis. An overview of the base locations 

are shown in Table 8. 

 

Table 8 Geographical coordinates for onshore supply base locations. The locations are base 

on the work performed by (Karlstrøm, et al., 2011) 

 

Base number 

 

Base name 

Geographical coordinates  

Latitude [°] N Longitude [°] E 

1 Hammerfest 70,38 70,38 

2 Honningsvåg 70,58 70,58 

3 Kifjord in Lebesby 70,54 70,54 

4 Båtsfjord 70,38 70,38 

5 Vadsø 70,04 70,04 

6 Kirkenes 69,51 69,51 

7 Vardø 70,22 70,22 
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The Polarbase in Hammerfest is at this point of time the only adequate base that can be used as a 

supply base without major changes. It is assumed that neither of the bases are in Statoil’s 

possession. The rental cost for the Polarbase is 1000 NOK per ton cargo transported over wharfside. 

The remaining base locations require in varying degree improvement. Some of the bases do not 

exist today, but the port conditions are considered appropriate for base development. To some 

extent it may also be necessary to rectify some of the harbor entrances. This appeared during the 

workshop with Statoil March 6, 2014 at Sandsli in Bergen. Wherever improvements of bases where 

found necessary, additional costs were counted for in the assumed base cost. The costs are 

estimated 150% of the utilization cost of the Polarbase. An overview of all base costs are presented 

in Table 9. The costs are given in thousand NOK per ton cargo transported from base.  

 

Table 9 Base costs per ton cargo throughput 

 

Base cost  

[103 NOK / ton] 

Base number 

1 2 3 4 5 6 7 

𝐶𝑏 1,0 1,5 1,5 1,5 1,5 1,5 1,5 
 

 

6.2.  Hub 

As described in Chapter 2.1, the hub-grid generation in Case 1 requires inputs that define the 

matrix- size and an initial hub location (south-west corner). The corner hub is positioned at 70.5°N 

and 22°E. Furthermore, number of hubs in longitudinal and latitudinal direction are four and three 

respectively. Consequently, the HG constitute a 4x3 array. These values are made so that the grid 

covers the main area between the bases and installations in the Barents Sea. The final geographical 

coordinates for all alternative hub locations are presented in Table 10. 

For the MATLAB-script “NoHub.m”, no HG is generated. All hub locations are defined with same 

location as the onshore supply bases. The geographical locations are presented in Table 11. 
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Table 10 Geographical coordinates for alternative hub locations of Case 1. The hub locations 

are generated in the MATLAB-script “Hub.m” and is based on three input values: number of 

hubs in latitudinal and longitudinal direction and an initial corner point. 

Hub location Geographical coordinates  

Latitude [°] N Longitude [°] E 

1 71,00 26,00 

2 71,50 26,00 

3 72,00 26,00 

4 72,50 26,00 

5 71,00 30,00 

6 71,50 30,00 

7 72,00 30,00 

8 72,50 30,00 

9 71,00 34,00 

10 71,50 34,00 

11 72,00 34,00 

12 72,50 34,00 
 

 

Table 11 Geographical coordinates for hubs in Case 2. The locations correspond to the 

MATLAB-script "NoHub.m". Number and position are in accordance with the onshore bases. 

Hub location Geographical coordinates  

Latitude [°] N Longitude [°] E 

1 70,38 23,40 

2 70,58 25,58 

3 70,54 27,23 

4 70,38 29,43 

5 70,04 29,44 

6 69,51 29,48 

7 70,22 31,06 
 



Chapter 6 Data Assembling  

42 

 

Data for yearly charter cost, capacity and service speed per hub-vessel are not provided by Statoil 

directly. However, a source is given and used as basis for the assumption, namely (Cooper’s 

Mechanical Oilfield Services Pte Ltd, u.d.). CMOS is a Singapore registered company established 

in 1982. These data are additionally seen in context with dimensions and costs belonging to the 

PSVs. A scaling factor of 1,9 is utilized for determining the yearly hub-vessel charter cost. It is 

furthermore assumed that the maritime company Wilhelmsen can deliver a solution fitting the 

desirable hub-concept. According to (Wilhelmsen, u.d.), the firm offers tailor made hub agency 

solutions. 

Table 12 Chartering costs, capacity and service speed for the fleet of hub-vessels. The table 

presents an overview of assumed data for chartering one hub-vessel per year, as well as the 

capacity and service speed of the hub-vessels. 

 Value Unit 

Yearly cost per hub 120 000 [103 NOK] 

Capacity 750 [knot] 

Service speed 12 [ton] 
 

 

Based on the same cost function and assumptions presented in Section 5.1 in Table 2, the cost of 

utilizing one hub-vessel per week is calculated to be 2 307 000 NOK. All costs concerning hubs 

are assumed included in the time charter contract. Consequently, the total hub-vessel costs vary 

exclusively by the number of chartered units. Hence, the hub costs can be illustrated as a step 

function in similar way as described in the following for the PSVs (Figure 9). 

 

6.3.  Offshore Installations 

All potential locations for the offshore installation are based on a hearing at the Norwegian Ministry  

of Petroleum  and Energy (Myhra & Gilje, 2014). The hearing concerns the 23rd licensing round 

regarding announced oil and gas blocks. A map of these areas are presented in Figure 8. Seven of 

these positions are evaluated for the offshore installations. The positions are presented in Table 13. 

Among these, three different locations are chosen for each run/ analyze of Case 1 and 2. 
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Table 13 Geographical coordinates for alternative locations of offshore installations.Three 

locations are assessed at a time. 

 

Location of offshore installation 

Geographical coordinates  

Latitude [°] N Longitude [°] E 

A 74,00 36,00 

B 72,00 35,00 

C 73,00 32,00 

D 71,00 32,00 

E 72,00 28,00 

F 72,00 21,00 

G 73,00 23,00 

  

The demand per offshore installation is provided by Statoil. The demand represents the amount of 

cargo [ton] that each installation requires per period. An overview is provided by Table 14. 

 

Table 14 Demand per installation per period 

Demand per installation i per period [ton] Installation number 

1 2 3 

𝐷𝑖  230 230 230 

  

In addition, a minimum number of services per installation per period is required. These service 

parameters are presented in Table 15. 

 

Table 15 Required number of services per installation per period 

Required number of services per 

installation i per period [-] 

Installation number 

1 2 3 

𝑆𝑖 3 3 3 
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Figure 8 The 23rd licensing round at the Norwegian Ministry of Petroleum and Energy. The 23rd 

licensing round regarding announced oil and gas blocks. The figure illustrate the seven 

installation locations that have been assessed during the theses. These are presented by the black 

clots. The pink areas are the announced blocks for the current licensing round. The white/grey 

are active blocks with already given production licence.  The red framed areas are areas for 

petroleum (APA) activity. Source: (Myhra & Gilje, 2014) 
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6.4.  Platform Supply Vessel 

Table 16 provides an overview of data concerning the PSVs in echelon 2.  

Table 16 Data for PSVs: yearly cost, capacity, service speed and maximum size of fleet 

 Value Unit 

Yearly charter cost per PSV 80 000 [103 NOK] 

Capacity 450 [ton] 

Service speed 15 [knot] 

Maximum fleet size 10 [-] 
 

 

The data is provided from Statoil and are based on real numbers, except for the maximum fleet 

size. The fleet size is an arbitrary chosen value that are assumed to cover the need of vessels. It is 

a necessary parameter to run the optimization model in Phase 2.  

All costs concerning the PSVs are in this report assumed to be included in the time charter contract. 

In resemblance with the hub costs, the PSV hiring costs are determined by number of necessary 

supply vessels. The cost function may be any non-decreasing function. It may be illustrated as a 

step function as shown in Figure 9.  

 

 

Figure 9 Cost-step function for hubs 𝐶𝑏ℎ
𝐸𝑂, echelon 1 
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Chapter 7  

7. Results 

In this Chapter the results obtained from the mathematical model are presented. During this study, 

the locations of the three offshore installations were combined in 35 ways. For each run, the model 

was solved for two input variants. Case 1 includes a grid of potential hub location and Case 2 

considers direct shuttle between shore and offshore installations. The main results from Case 1 and 

2 are presented in the following. The different locations of the installations are presented in 

Appendix A. The programmed MATLAB-scripts for Case 1 and 2 are annexed in Appendix B and 

Appendix C respectively.  

Among the 35 runs, the maximum distance between two installations was calculated as 288 [nm]. 

The longest distance between a base and an offshore installation was calculated as 316 [nm].  

The optimal value ρ
𝑏ℎ

* is 1 for optimal b* and h* per run and 0 for all other base and hub locations. 

Table 17 presents the optimal transportation cost and optimal base and hub locations for all runs of 

Case 1 and 2. The optimal weekly transportation cost for the first case is 6, 8 million NOK. Among 

the 35 runs, the optimal hub locations are 1, 2, 3, 4, 5, 6 and 7 depending on how the three 

installations are located. The hubs from 8 an up to 10 are never optimal. Base 1, the Polarbase in 

Hammerfest, are optimal for all analysis of this case. Maximum distance between base and hub 

location are according to Table 32 in Appendix G 160 [nm]. 

The optimal transportation cost for the second case is 2,9 million NOK per week. Among the set 

of runs for Case 2, all bases, except for base 5 and 6, are optimal at least once. The optimal base 

depends on the locations of the installations. If installations are located on positions C-D-E, C-E-

F or D-E-G, base 2 minimize total transportation costs. Base location 3 is optimal when 

installations are localized at B-C-D, B-C-E or D-F-G. If oil and gas explorations areas are relevant 

for installation-positions A-C-D base number 4 is optimal. The supply base in Kirkenes should be 

chosen if installations are located at locations A-B-D or B-D-E. For the remaining locations, base 

1 is optimal. In contrary of Case 1, the Polarbase do not conduce to minimal transportation cost for 

Case 2. Geographical coordinates for the locations were presented in Table 13 in Section 6.3. 
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Table 17 Results of study 1, case 1 and 2. Optimal base location, hub location and objective 

value for all runs are given for case 1 and 2 respectively. 

Run number Case 1 hub-network Case 2 – no hub-network 

Base, b* Hub, h* Z*[103 

NOK] 

Base, b* Hub, h* Z*[103 

NOK] 

1 1 5 6 843 1 1 3 766 

2 1 6 6 843 3 3 2 918 

3 1 1 6 843 2 2 2 918 

4 1 1 6 843 1 1 2 228 

5 1 1 6 843 1 1 2 228 

6 1 6 6 843 7 7 2 918 

7 1 6 6 843 1 1 3 766 

8 1 1 8 381 1 1 3 766 

9 1 1 8 381 1 1 3 766 

10 1 5 6 843 4 4 2 918 

11 1 3 6 843 1 1 3 766 

12 1 4 6 843 1 1 3 766 

13 1 4 6 843 1 1 3 766 

14 1 7 6 843 1 1 3 766 

15 1 1 8 381 1 1 3 766 

16 1 1 8 381 1 1 3 766 

17 1 1 8 381 1 1 3 766 

18 1 4 6 843 1 1 3 766 

19 1 1 8 381 1 1 3 766 

20 1 7 6 843 3 3 2 918 

21 1 7 6 843 1 1 3 766 

22 1 3 6 843 1 1 3 766 

23 1 7 6 843 7 7 2 918 

24 1 6 6 843 1 1 3 766 

25 1 6 6 843 1 1 3 766 

26 1 6 6 843 1 1 3 766 

27 1 7 6 843 1 1 3 766 

28 1 4 6 843 1 1 3 766 

29 1 3 6 843 1 1 3 766 

30 1 3 6 843 1 1 3 766 

31 1 2 6 843 2 2 2 918 

32 1 3 6 843 1 1 3 766 

33 1 2 6 843 1 1 3 766 

34 1 3 6 843 2 2 2 918 

35 1 4 6 843 3 3 2 918 
 

 



 

49 

 

  

 

Figure 10 Illustration of hub-grid, Case 1 Map 

over the Barents Sea with hub grid. The red 

stars illustrate the potential hub locations. The 

black clots illustrate the offshore installations, 

while the onshore bases are represented by the 

blue circles. The figure is generated in the 

MATLAB-script “Hub.m” 

 

 

Figure 11 Illustration of base-hub-pair, Case 

2. Map over the Barents Sea without hubs. 

Equally many hubs as onshore bases are 

generated with the same locations. The hubs in 

red are placed on top of one base each (blue 

circles) so there is no distance between each 

hub-base-pair. The black circles in the Barents 

Sea symbolize three offshore installations. The 

figure is generated in the MATLAB-script 

“NoHub.m” 

 

Figure 10 and Figure 11 present the visual output from the preprocessing Case 1 and 2 respectively. 

Table 18 and Table 19 present the optimal value for 𝑥𝑝𝑟𝑘* for the first run of Case 1 and 2. 𝑥𝑝𝑟𝑘 

counts how many times k PSV p sails a route r. An overview of the results for all 35 runs for Case 

1 and 2 are attached in Appendix L and M respectively.  

For the first run of Case 1, route nr 3 is sailed twice, while route number 2 and 7 are sailed once. 

Only one PSV is necessary. For the second Case, two PSVs are required to meet all restrictions. 

Route number 3, 4 and 6 are sailed by PSV 1 once. Route 2, 3 and 5 are sailed once by PSV 3. 

(Note: as the fleet of PSVs are assumed homogeneous, type of PSV is irrelevant in this report.) 



Chapter 7 Results  

50 

 

Table 18 Optimal 𝑥𝑝𝑟𝑘* Case 1 Run 1 

Run  (p,r,k) xprk* 

1 (1,2,5) :  1 

 (1,3,5) :  2 

 (1,7,5) :  1 

  

Table 19 Optimal 𝑥𝑝𝑟𝑘* Case 2 Run 1 

Run  (p,r,k) xprk* 

1 (1,3,1) :  1 

 (1,4,1) :  1 

 (1,6,1) :  1 

 (3,2,1) :  1 

 (3,3,1) :  1 

 (3,5,1) :  1 

  

Table 20 and Table 21 present the optimal values of qiprk* for Case 1 and 2 respectively. 𝑞𝑖𝑝𝑟𝑘 

specifies how much cargo PSV p can deliver to the installation i the k-th time route r is sailed. 

Among all routes, one route is at the most sailed three times. The results for all runs are enclosed 

in Appendix J and K respectively. A common trend points at little or no distribution in cargo 

delivery per installation. Normally all demanded cargo is delivered on one supply. Often, only one 

installation receives cargo on a route, despite that several installations are visited on the same route. 

Table 20 Optimal 𝑞𝑖𝑝𝑟𝑘* Case 1 Run 1 

Run  (i,p,r,k)           𝐪𝐢𝐩𝐫𝐤* 

1 (1,1,7,1) :  230 

 (2,1,3,1) :  230 

 (3,1,2,1) :  230 

  

 

Table 21 Optimal 𝑞𝑖𝑝𝑟𝑘* Case 2 Run 1 

Run  (i,p,r,k)           𝐪𝐢𝐩𝐫𝐤* 

1 (1,1,3,1) : 230 

 (2,1,4,1) :  230 

 (3,1,6,1) :  230 

  

Table 22 presents the results for optimal 𝛽𝑝𝑟𝑘* for the first run of Case 1 and 2. 𝛽𝑝𝑟𝑘 is one if PSV 

p sails on route r the k-th time and zero otherwise. The non-optimal variables are not displayed in 
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this table. A collection of the results corresponding to all 35 runs for Case 1 and 2 are presented in 

Appendix N and N respectively.  

 

Table 22 Optimal 𝛽𝑝𝑟𝑘* Case 1 and 2 Run 1 

Case 1 Case 2 

(p, r, k) 𝜷𝒑𝒓𝒌* (p, r, k) 𝜷𝒑𝒓𝒌* 

(1,3,1) :  1 (1,2,1) :  1 

(1,4,1) :  1 (1,3,1) :  1 

(1,6,1) :  1 (1,3,2) :  1 

(3,2,1) :  1 (1,7,1) :  1 

(3,3,1) :  1   

(3,5,1) :  1   
 

 

Table 23 provides an overview of optimal number of supply vessels for both cases. Moreover, the 

results provide information about the number of PSVs necessary to deliver the required amount of 

cargo. The minimum number of required PSVs are at the most two for both scenarios. One PSV is 

required for Case 1 in 83% of the cases.  
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Table 23 Optimal 𝜶*for case 1 and 2for all 35 cases. In addition, the table illustrates the 

minimum number of required PSVs for each run. 

Run number Vessel 𝜶𝒑* 

Optimal PSV p Case 1 Optimal PSV p for Case 2 

1 1 1,3 

2 1 1 

3 1 1 

4 1 1 

5 1 1 

6 1 1 

7 1 1,5 

8 1,2 1,3 

9 1,2 1,10 

10 1 1 

11 1 1,2 

12 1 1,9 

13 1 1,2 

14 1 1,6 

15 1,2 1,2 

16 1,2 1,5 

17 1,2 1,6 

18 1 1,6 

19 1,2 1,7 

20 1 1 

21 1 1,2 

22 1 1,2 

23 1 1 

24 1 1,3 

25 1 1,6 

26 1 1,6 

27 1 1,3 

28 1 1,10 

29 1 1,2 

30 1 1,5 

31 1 1 

32 1 1,4 

33 1 1,9 

34 1 1 

35 1 1 
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Table 24 provides an overview of the required number of hubs for each base-hub combination. 

From the first base, minimum two hub-vessels are required for hub-location 1 up to and including 

7. The remaining hub locations necessitate at least three hub-vessels. In general, depending on the 

distances between shore and hub-locations, two or three hub-vessels are required. Only base 4 and 

7 are located within reach of all hub-locations with two hub-vessels The hub positions 1, 2, 3, 5, 6 

and 7 are reachable with to hub vessels from all the bases. These results originated from the 

preprocessing and are presented in Table 24. 

Table 24 Results from Phase 1 Case 1: Number of vessels necessary to supply the PSVs of 

echelon 2 with required cargo 24/7. Base locations are presented in rows and hub locations 

are given in columns.  

Base/ 

Hub 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 2 2 2 2 2 2 3 3 3 3 3 

2 2 2 2 2 2 2 2 2 3 3 3 3 

3 2 2 2 2 2 2 2 2 2 2 2 3 

4 2 2 2 2 2 2 2 2 2 2 2 2 

5 2 2 2 2 2 2 2 2 2 2 2 3 

6 2 2 2 3 2 2 2 3 2 2 3 3 

7 2 2 2 3 2 2 2 2 2 2 2 2 

  

 

In addition to the 35 runs, two additional analysis have been performed as a part of this thesis. First, 

the installations were located far outside the defined boundaries used in this report. The 

geographical coordinates are attached in Appendix 0. The hub-locations remained the same. It 

appeared that even for theoretical long distances from shore, hub-network is not profitable for the 

three installations. This result bases is based on the assumptions and simplifications made in this 

report. Second, the value of required supply, 𝑆𝑖, was reduced from 3 to 2, for the first run of case 

2. All other assumptions that commensurate with the problem description were retained. The results 

show a curtail in number of PSVs from two to one. 
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Chapter 8  

8. Discussion 

This Chapter discusses the results presented in Chapter 7. Ideas and observations are considered. 

Furthermore, elements of the mathematical model are discussed. 

The optimal objective value for Case 2 points at lower total transportation costs compared to Case 

1. This is shown for all 35 input variations. These results match with the conclusion of Henrik 

Nordbø’s master thesis (2013) for three installations. For direct shuttle between shore and 

installations, the results from Table 23 claims that maximum two PSVs are required. With basis in 

the assumed time charter cost, one can charter 2,99 ≈ 2 PSVs per two hub-vessels. When at most 

two PSVs are sufficient to serve the given problem, combined with higher charter costs per hub 

than for each PSV, it is clear that direct shuttle is more cost efficient.  

It appears from the results presented in Table 17, that direct shuttle is profitable independent of 

how the installations are located in the Barents Sea. For Case 1, the first base, the Polarbase in 

Hammerfest, is optimal for all combinations of locations of installations. The hub-vessel costs are 

the most costly among the cost parameters. These costs are minimized after first priority. At least 

two hub-vessels are assumed necessary. The cost function for echelon 1 is furthermore described 

as a step wise function. The costs of echelon 1 depends on number of exclusively of chartered hub-

vessels. Hence, as long as for instance two hub-vessels manage to shuttle between given positions 

and serve the PSVs with required cargo to all time, the sailing distance is insignificant. For some 

runs, other bases than the Polarbase is placed closer, but since two hub-vessels still manage to sail 

to base 1 within the given period and the base in Hammerfest offer the lowest rental costs, this base 

is chosen to be optimal. 

Moreover, the hub-costs overrule the costs of echelon 2. The assumed charter costs for one hub-

vessel is 2 307 000 NOK per week in comparison to 1 540 000 NOK for one PSV. One can based 

on these costs observe that 4 PSVs can be chartered before it becomes less costly to charter a third 

hub-vessel. According to the results of Table 23, the maximum number of required PSVs for direct 
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shuttle is two. Hence, for Case 1, only one or two PSVs are required. Consequently, the base with 

lowest variable costs are chosen. This is related to the following observation. 

From the results presented in Table 17, one can observe that the five most faraway hubs, seen from 

base 1, are never optimal in Case 1. Faraway hubs, refer to hub location 8, 9, 10, 11 and 12. This 

can be interpret in two ways. First, as discussed on the previous paragraph the model chooses hub 

locations such as number of hub-vessels are kept at a minimum. It requires for example three hub-

vessels for serving hub position 10 from base 1. This is verified from the preprocessing data of 

Table 24. Second, the mean longitudinal location of the seven installations, are located west for the 

faraway hubs. The most eastern location for an installation is 36°E. The most western location is 

21°E. The latitude coordinates considered for the hub values are 26, 30 and 34°E. The hub-grid is 

not localized in center of the installations. 

For direct shuttle between base and installations, a greater range of bases are optimal among the 35 

runs. Observations from Case 2 (Table 17), illuminate that all bases except from 5 and 6, are 

optimal at least once. The bases in Vadsø and Kirkenes are localized relatively south compared to 

the other five bases. The two bases are localized on approximately the same latitude as the fourth 

base, Båtsfjord, but more south. Consequently, the bases are not desirable to use. 

The optimal base is not necessarily chosen due to shortest distances between the facilities. The 

following point is discussed with bases in results from the first run of Case 2. For this run, two 

PSVs are required (Table 23). Routes 3, 4 and 6 and 2, 3 and 5 are sailed once by PSV number 1 

and 3 respectively (Table 19). Furthermore, installation 1 is visited by PSV 1 (Table 21). All 

demanded cargo is delivered to the installation via route number 3. No other installations are 

supplied with cargo on this roundtrip. Since only one installation is supplied with cargo on this 

route, a shorter route could just as well been chosen, for example route 1 which include only 

installation 1 on the roundtrip. If no other reason exists for visiting the remaining installations, it is 

reasonable to believe that a shorter route would be desired. This is a limitation of the model, as the 

optimal route choice not necessarily is the shortest route. This cohere to the assumption regarding 

operational costs being included in the fixed time charter costs. On the contrary, the core aim of 

this report is not to determine optimal schedules, but rather to determine the size of fleet. Fleet size 

affects the charter costs and moreover the total transportation cost. This is reflected for all 35 runs. 
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The reason for why the model chooses vessel 1 to sail route 3 instead of a shorter route, needs to 

be seen in another context. Two PSVs are required hired, but only one of them delivers cargo. This 

appear from Table 19 and Table 22 respectively. On the other hand both PSVs are dedicated routes 

to sail (Table 19 and Table 22). According to Statoil, all installations require a minimum number 

of visits per period. Results from the additional analyze show that only one supply vessel is 

necessary when the number of services, 𝑆𝑖, are curtailed from 3 to 2. Control of the optimal values 

for Case 2 run 1, verify that the time restrictions (4.13) and capacity constraints (4.17) are met for 

each vessel. Based on the additional analyze, it is reasonable to believe that number of required 

PSVs depend on requested services. 

Further, the importance of having exactly three services per installation per period can be discussed. 

How important is the frequency of visits for Statoil? Perhaps the installations necessitate regular 

supply of consumables or spare parts. Maybe the installations have to dismiss certain backload. 

Given that the frequency of supply remains as stated in the data assembling, distribution in cargo 

may be achieved by extending or changing the model. The model presented in this report do not 

include any distribution constraints. A proposed solution is presented in further work. 

For all runs of Case 2, one can observe that the optimal base and hub are equal for each run. This 

is expected as all hub locations are given the same geographical positions as the supply bases.  

It is assumed that all costs are included in the time charter costs. It can be discussed whether this 

is a realistic assumption. It is likely to believe, that the fuel cost to some extent will influence on 

the operational costs. Moreover, it is reasonable to presume that the operational cost as fuel is tried 

kept at a minimum. It is however likely to believe that the final optimal solution would remain the 

same notwithstanding that variable fuel costs were included in the model. The additional fuel cost 

for sailing the longer distance would probably be negligible due to higher hub time charter costs. 

The p index in the optimization model imply a heterogeneous fleet of supply vessels. The vessels 

in this report are assumed to be homogeneous. A homogeneous fleet is characterized by equal 

properties, service speed and capacity, etc. for all vessels. The interesting factor for being able to 

answer the objectives of this thesis is the number of vessels. Furthermore, the p index is here indeed 

redundant. The model is made more complex by utilize the index, as it gains more variables. By 

using the p index, the model is on the other hand held at a higher generic level. One can with simple 

justifications in the preprocessing phase, run the optimization model for a heterogenic fleet. The 
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duration on each route, 𝑇ℎ𝑟, is however calculated based on equal service speed for all vessels. This 

would require changes in case of a heterogenic fleet. As the size of the problem is a relatively 

limited, the solving time is not too affected by the p index. 

AS an alternative to introduce k as an index in the mathematical model, it could be included in the 

preprocessing as a part of the route generation. This would save the model for denary number of 

constraints. Furthermore, it would positively influence on the solving time, of a problem with more 

installations than described in this report.  

A suggestion to how this could be implemented in the route generation is described in the 

following. Given an arbitrary route r* that potentially can be sailed three times per  period W. 

Based on the route r* three different route editions could be defined. To sail route r* one time only 

is one route. A second route is to sail route r* two times and the third route is to sail r* three times. 

Instead of implementing route r* alone as a parameter, one could implement the three versions as 

three different routes. This would increase the number of inputs, but the number of variables would 

decrease. For the problem described in this thesis, saved run time would be relatively confined due 

to the size of the problem. However, the k index provide the optimal results with lucidity. With a 

set of many enough routes, one would have to return to the route generation to interpret which route 

combination a given route hails from. Due to the k index, optimal routes are displayed directly. 

It can be discussed whether the approach to the quantum variable, 𝑞𝑖𝑝𝑟𝑘, is reasonable. 

Alternatively, it can be defined as a parameter. One can assume regular cargo delivery by dividing 

the total demand by the number of services per installation per period. Similar is done by 

(Andersson, et al., 2011). A benefit of this methodology is that one secure a certain distribution on 

how much cargo is delivered each installation per visit. The frequency, amount and type of cargo 

is in reality regulated by the offshore installations. The consequences of an installation not 

receiving required commodities can be of a much greater extent than hiring one additional PSV. 

By not defining qiprk as a variable, but rather as a parameter, one can potentially loose a better 

optimal solution. On the contrary, it might be more realistic. It is likely to believe that the quantum 

variable is more crucial on an operational planning level. The intention of the mathematical model 

described in these thesis is to be used as a strategic decision tool. The motive is to disclose whether 

a hub network is more cost efficient than direct shuttle between onshore and installations. The 
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consequences of using the quantum variable has however a negative influence on the model’s 

solving time.   

By not removing infeasible routes in Phase 1, one risk to feed unnecessary input into the 

mathematical model. It appears from Phase 2 that infeasible routes are rejected as potential 

solutions due to time and/or capacity constraints and are trivial for the final optimal solution. By 

removing infeasible routes in the preprocessing the model would on the other hand be presented 

with fewer columns. Given existence of infeasible routes, the model would then have less 

parameters to check for optimality and the solving time would decrease. 
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Chapter 9  

9. Conclusion 

In this report, optimization of onshore base and hub location supplying oil and gas installations in 

the Barents Sea has been studied. Based on the discussion of the results presented in Chapter 8 a 

final conclusion is presented. 

It appears from the result that it is not cost efficient to utilize a hub-network compared to direct 

shuttles when three offshore installations are served. The minimum transportation cost for supply 

scenario including hub-network is 6,8 million NOK. Sufficient reduction in hub charter cost and/or 

increased number of installations are necessary before hubs ca be considered lucrative.  

The optimal transportation cost for supply scenario of direct shuttle is 2,2 million NOK per week. 

Two PSVs are required and four bases emerge as optimal, depending on the location of the 

installations. This is summarized in Table 25. 

Table 25 Optimal base for given locations of installations 

Optimal base location Geographical coordinates for installations (lat, lon) 

Installation 1 Installation 2 Installation 3 

2 (73°N, 32°E) (71°N, 32°E) (72°N, 28°E) 

2 (73°N, 32°E) (72°N, 28°E) (72°N, 21°E) 

2 (71°N, 32°E) (72°N, 28°E) (73° N, 23°E) 

3 (72°N, 35°E) (73°N, 32°E) (71°N, 32°E) 

3 (72°N, 35°E) (73°N, 32°E) (72°N, 28°E) 

3 (71°N, 32°E) (72°N, 21°E) (73° N, 23°E) 

4 (74°N, 36°E) (73°N, 32°E) (71°N, 32°E) 

7 (74°N, 36°E) (72°N, 35°E) (72°N, 28°E) 

7 (72°N, 35°E) (71°N, 32°E) (72°N, 28°E) 
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Chapter 10  

10. Further work 

The work that has been carried out in this report has improvements in view of being more realistic. 

Further work can be done by vary the input parameters and keeping the model as it is defined in 

this report, or the model can be expanded or changed. This chapter provides suggestions to how 

the work can continue and which aspects that could be interesting to study further. 

First, the structure of the mathematical model presented in this report can be run with different 

inputs and used to assess different scenarios. The model can be used to find the mean distance 

between bases and installations, where hub-network becomes profitable. This can be detected by 

vary the number of and the location for the installations. Similarly, for a specific number of 

installations, the model can be used to determine the point of intersection where the spreading of 

installations makes it lucrative to utilize hub-network. Furthermore, the model can be used to assess 

how many PSVs that are necessary to charter if a given hub location is determined. This can be 

examined by changing the input. A hub location can be selected by assign it a sufficient low charter 

cost and simultaneous provide the remaining hubs with theoretical high costs. 

From an operations research point of view, one could additionally study the effect of small changes 

in the mathematical model’s parameters. One could for instance allow at most two hubs to operate. 

Similar could be done for number of supply bases. This would require changes at the right hand 

side in constraints (4.7) and/or (4.8). As a consequence of this operation, constraints (4.11) and/or 

(4.12) would additionally require some changes. This brings us into the next point of further work. 

The mathematical model could be expand or changed. By validating the programming model, one 

can gain insight to whether or not the important aspects of the transportation system have been 

taken into consideration. Introduce restrictions on the opening hours of one or several offshore 

installations, bases and/or hubs could be considered. This would make the model more realistic. 

Fagerholt & Lindstad (2000) provides a suggestion on how this can be solved by use of tabu search 

heuristics. 
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To avoid all the cargo from being delivered simultaneously, distribution of cargo could improve 

the degree of realism. Two suggestions are proposed in the following. First, the model could be 

changed to treat 𝑞𝑖𝑝𝑟𝑘 as a parameter rather than a variable. Delivered cargo per installation can be 

predetermined by assuming regular supply. For example, the delivered amount per supply can be 

the ratio of total demand and frequency of services. (Andersson, et al., 2011) can be a relevant 

paper for this problem. Second, the model could be extended by adding constraints. Such a 

constraints could be formulated in a way that the volume variable for each vessel and on each route 

is less or equal to demanded cargo multiplied by a factor k. The k-factor could for instance be a 

function of service frequency and a chosen number. For example, 𝑘 =  
1

𝑆𝑖
 𝑘1, where k1 is decimal 

between zero and one. Such constraints would restrict the cargo delivery per vessel per route. 

The model could be extend to include the logistics Phases before the cargo reaches the onshore 

supply base. Given that the different cargo is transported from other bases before reaching the 

supply base, it could be of interest to include these related costs into the model. In addition to the 

locations of the installations, the optimal supply base location would be considered in relation to 

these former nodes. An increased overall picture of the total logistic costs would be achieved. This 

would complicate the model. This pre-phase of the logistic system could be defined as a sub 

problem of the model described in this thesis. By iterating between the two models, one could 

achieve a near optimal or an optimal solution. 

By validate the logistic system further, one could evaluate whether certain elements require to be 

stochastically described. This could result in a more realistic model. The demand of cargo varies 

in reality from time to time. Bad weather conditions influences on route durations. This could be 

interpret as stochastic elements.  One would then have to define the model stochastically and not 

deterministic. If such changes were added, it could moreover be of interest to study consequences 

of delay. One could gain information by study sensitivity analysis or perform what if analysis. 

Specifically, one could introduce slack in constraints (4.13), namely on parameter W. By reducing 

W with for example 10%, one would gain an extra time buffer.  

Thirdly, the hub-concept requires further research. During this report, the hub concept and the hub 

time charter costs build on assumptions only. More detailed cost estimates could with advantage 

be assessed. A study on whether or not the described hub-system is executable realistic should be 

specified. Other hub-design should be evaluated. A system containing a barge and small supply 
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vessels could be less costly and a more realistic concept to charter. For Case 1, it could be 

interesting to include other logistic challenges such as SAR operations and helicopter shuttle.  

It could finally be of interest to carry out a cost benefit analysis of utilizing a hub-network. 

Although hub-network under certain conditions appear to be more expensive than direct shuttle, 

other aspects could be of importance. In case of an unforeseen event, two aspects could be 

interesting to considered: “safety first”-aspects like for instance SAR and increased frequencies of 

cargo delivery to installations.  
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Appendix 

A Definition of Locations for Offshore Installations per 35 Run 

Table 26 Definition of Locations for offshore installations 

Run 

number 

Location of offshore installation 

A: B: C: D: E: F: G: 

(74°N, 

36°E) 

(72°N, 

35°E) 

(73°N, 

32°E) 

(71°N, 

32°E) 

(72°N, 

28°E) 

(72°N, 

21°E) 

(73° N, 

23°E) 

1 1 2 3     

2  1 2 3    

3   1 2 3   

4    1 2 3  

5     1 2 3 

6 1 2  3    

7 1 2   3   

8 1 2    3  

9 1 2     3 

10 1  2 3    

11 1  2  3   

12 1  2   3  

13 1  2    3 

14 1   2 3   

15 1   2  3  

16 1   2   3 

17 1    2 3  

18 1    2  3 

19 1     2 3 

20  1 2  3   

21  1 2   3  

22  1 2    3 

23  1  2 3   

24  1  2  3  

25  1  2   3 

26  1   2 3  

27  1   2  3 

28  1    2 3 

29   1 2  3  

30   1 2   3 

31   1  2 3  

32   1  2  3 
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33   1   2 3 

34    1 2  3 

35    1  2 3 
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B MATLAB-Script “Hub.m” 

clear all 
close all 

  
%-INPUT------------------------------------------------------------------- 
%------------------------------------------------------------------------- 

  
%Geographical coordinates for supply bases and installations 
bases = [70.38, 23.40; 70.58, 25.58; 70.54, 27.23; 70.38, 29.43; 70.04, 29.44; 

69.65, 29.68; 70.22, 31.06]; 
inst = [74, 36; 72, 35; 73, 32]; 

  
%Yearly cost for chartering one vessel [10^3 NOK] 
CYearEO = 120000;           %Echelon 1 
CYearET = 80000;            %Echelon 2 

  
%Cost for making use of supply base per ton cargo transported from base [10^3 

NOK / ton]  
Cb=[1.0, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5]; 

  
%Capacity per vessel [ton] 
Q_Hub=750;                  %Echelon 1 
Q_PSV=450;                  %Echelon 2 

  
%Service speed on vessels [knot] 
vShuttle=12;                %Echelon 1 
vPSV=15;                    %Echelon 2 

  
%Number of PSVs in the fleet, echelon 2 
nPSV = 10; 

  
%Demand per installation [ton] 
Di=[230, 230, 230]; 

  
%Required number of services per installation per week 
Si=[3, 3, 3]; 

  
%Hub-grid 
nLong = 4;                  %No of hub-locations, longitudinal direction 
nLat = 3;                   %No of hub-locations, latitudinal direction 
SW = [70.5, 22];            %Soth-West corner of hub grid 

  
%Period [weeks]: 
W = 1; 

  
%-END-INPUT--------------------------------------------------------------- 
%------------------------------------------------------------------------- 

  
%% Create hub-grid 
hg = zeros(nLong,nLat,2);   %Keep the grid points in a 3-dim matrix (hg=hub-

Grid) 
stepLat = 0.5;              %Latitudinal distance between hub grid locations 
stepLong = 4;               %Longitudinal distance between hub grid locations 
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for i=1:nLong 
    for j=1:nLat 
        hg(i,j,1) = SW(1)+stepLat*i; 
        hg(i,j,2) = SW(2)+stepLong*j; 
    end  
end 

  
%% Map 

  
%Draw map with all positions and lines 
ha = axesm('mapproj', 'mercator', 'maplatlim', [65,78], 'maplonlim', [10,40]); 
setm(ha, 'MLineLocation', 5, 'PLineLocation', 5); 
axis on, gridm off, framem on; 
load('coast'); 
gc = geoshow(lat,long,'displaytype','line','color','b'); 
geoshow('landareas.shp', 'FaceColor', [0.15 0.55 0.15]) 
geoshow('worldlakes.shp', 'FaceColor', 'cyan') 
textm(inst(1,1)+0.5, inst(1,2), 'P1') 
textm(inst(2,1)+0.5, inst(2,2), 'P2') 
textm(inst(3,1)+0.5, inst(3,2), 'P3') 

  
% Draw bases 
for i=1:length(bases) 
    geoshow(bases(i,1), bases(i,2),'DisplayType','point',  'markeredgecol-

or','k', ... 
    'markerfacecolor', 'b', 'marker', 'o'); 
end 

  
%Draw platforms 
for i=1:length(inst) 
    geoshow(inst(i,1), inst(i,2),'DisplayType','point',  'markeredgecol-

or','k', ... 
    'markerfacecolor', 'k', 'marker', 'o'); 
end 

  
%Draw gridded hubs 
for j=1:size(hg,2) 
    for i=1:size(hg,1) 
        geoshow(hg(i,j,1), hg(i,j,2),'DisplayType','point',  'markeredgecol-

or','r', ... 
        'markerfacecolor', 'k', 'marker', '*');     
    end 
end 

  
%% Calculate durations, and write to tab delimited file 

  
fid = fopen('InputHUB.dat', 'w'); 
fprintf(fid, '\n\n!Input file for Xpress IVE, generated in MATLAB R2014a 

\n\n'); 
fprintf(fid, '\n\n!Master thesis, NTNU, Marine Technology by Cathrine Aksel-

sen\n\n'); 
fprintf(fid, '\n\n!"Optimization of supply base location and hub location sup-

plying oil and gas installations in the Barents Sea"\n\n'); 
fprintf(fid, '\n\n \n\n'); 
fprintf(fid, '\n\n!All durations given in [hours]\n\n'); 
fprintf(fid, '\n\n!All costs given in [10^3 NOK]\n\n'); 
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fprintf(fid, '\n\n \n\n'); 
fprintf(fid, '\n\n!Inst : ['); 
fprintf(fid,'%3.0f\t', inst); 
fprintf(fid, ']'); 
fprintf(fid, '\n\n \n\n'); 

  
%Flatten hub matrix (lat, long, 2) to a 2-by-N matrix 
hgList = reshape(hg, nLong*nLat,2); 

  
fprintf(fid, '\n'); 
fprintf(fid, '\n\nnHubs : '); 
nHubs = length(hgList); 
fprintf(fid,'%3.0f\t', nHubs); 
fprintf(fid, '\n\nnBases : '); 
nBases = length(bases); 
fprintf(fid,'%3.0f\t', nBases); 
fprintf(fid, '\n\nnRoutes : '); 
nRoutes=8; 
fprintf(fid,'%3.0f\t', nRoutes); 
fprintf(fid, '\n\nnPsv : '); 
fprintf(fid,'%3.0f\t', nPSV); 
fprintf(fid, '\n\nnInstallations : '); 
nInst = length(inst); 
fprintf(fid,'%3.0f\t', nInst); 

  
%Calculate the duration from base b to hub h (one way)[hours] 
bhDuration = zeros(length(bases),length(hgList)); 
for i=1:length(bases) 
    for j=1:length(hgList) 
        bhDuration(i,j) = 8+round(deg2nm(distance('gc',[bases(i,1),ba-

ses(i,2)],... 
                [hgList(j,1),hgList(j,2)]))/vShuttle); 
    end 
end 

  
%Calculate the duration from hub h to installation i [hours] 
hiDuration = zeros(length(inst),length(hgList)); 
for i=1:length(inst) 
    for j=1:length(hgList) 
        hiDuration(i,j) = 4+round(deg2nm(dis-

tance('gc',[inst(i,1),inst(i,2)],... 
                [hgList(j,1),hgList(j,2)])/vPSV)); 
    end 
end 

  
%Calculate the duration between the platforms [hours]  
earthRadiusInMeters=6371000; 
ppDuration = zeros (3,1); 
    ppDuration(1,1)=4+round((rad2nm(distance(inst(1,1), inst(1,2), inst(2,1), 

inst(2,2), earthRadiusInMeters)/earthRadiusInMeters)/vPSV)); 
    ppDuration(2,1)=4+round((rad2nm(distance(inst(1,1), inst(1,2), inst(3,1), 

inst(3,2), earthRadiusInMeters)/earthRadiusInMeters)/vPSV)); 
    ppDuration(3,1)=4+round((rad2nm(distance(inst(2,1), inst(2,2), inst(3,1), 

inst(3,2), earthRadiusInMeters)/earthRadiusInMeters)/vPSV)); 

  
%Calculate the duration on route r from each hub h, echelon 2 [hours] 
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Thr = zeros(nRoutes, length(hgList)); 
for i = 1:length(hgList) 
        Thr(1,i) = 2*hiDuration(1,i); 
        Thr(2,i) = hiDuration(1,i) + ppDuration(1,1) + hiDuration(2,i); 
        Thr(3,i) = hiDuration(1,i) + ppDuration(1,1) + ppDuration(3,1)+hiDura-

tion(3,i); 
        Thr(4,i) = hiDuration(1,i) + ppDuration(2,1) + hiDuration(3,i); 
        Thr(5,i) = 2*hiDuration(2,i); 
        Thr(6,i) = hiDuration(2,i) + ppDuration(3,1) + hiDuration(3,i); 
        Thr(7,i) = 2*hiDuration(3,i); 
        Thr(8,i) = hiDuration(3,i) + ppDuration(2,1) + ppDuration(1,1) + hiDu-

ration(2,i); 
end 

  
periodHours = W * 24 * 7; %Period in [hours], no slack 
fprintf(fid, '\n\nnTimes : '); 
nTimes = floor(periodHours/min(min(Thr))); 
fprintf(fid,'%3.0f\t', nTimes); 
fprintf(fid, '\n\n \n\n'); 

  
fprintf(fid, '\n\nThr : [ \n\n'); 
T_hr = zeros(length(hgList), nRoutes); 
for i = 1 : length(hgList) 
    for j = 1: nRoutes 
        T_hr(i,j) = Thr(j,i); 
        fprintf(fid,'%3.0f\t', T_hr(i,j)); 
    end 
        fprintf(fid, '\n'); 
end 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Number of vessels needed to serve each hub from each base 
nVessel= zeros(length(bases), length(hgList)); 

  
for i = 1: length(bases) 
    for j = 1:length(hgList) 
       nVessel(i,j)= nVessel(i,j)+2; 
    end 
end 

  
DiTot=sum(Di);%Total demand from all installations 
nTrips=ones(length(bases), length(hgList));%No of round trips per hub-vessel 

per period, echelon 1 

  
%Total delivery capacity per hub-location per period 
CapEO = zeros(length(bases), length(hgList)); 
for i = 1: length(bases) 
    for j = 1:length(hgList) 
        CapEO(i,j)=(nVessel(i,j)*nTrips(i,j))*Q_Hub; 
    end 
end 

  
for i = 1: length(bases) 
    for j = 1:length(hgList) 
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        if ( (2*bhDuration(i,j) > (periodHours/(2*nTrips(i,j)))) && (nVes-

sel(i,j)* Q_Hub < DiTot) ) %Logisk betingelse for duration er galt og kapasi-

tet er galt 
            nVessel(i,j) = nVessel(i,j) + 1; %(2*bhDuration) fordi NoTrips re-

presenterer antall rundturer hub-base-hub 
        elseif ((nVessel(i,j)* Q_Hub >= DiTot) && (2*bhDuration(i,j) > (pe-

riodHours/(2*(nTrips(i,j)+1))))) %Kapasitet er galt og økt varighet er galt 
               nVessel(i,j) = nVessel(i,j) + 1; 
               nTrips(i,j)=nTrips(i,j)+1; 
        end 
    end 
end 
%nVessel = 2 otherwise 

  
%Unit cost for chartering & operating one PSV p per period, echelon 2 
fprintf(fid, '\n\nCET : '); 
CET = ( CYearET / 52 ) * W ; 
fprintf(fid,'%3.0f\t', CET); 
fprintf(fid, '\n\n \n\n'); 

  
%Unit cost for chartering & operating the fleet of hub-vessels per period, 

echelon 1 
CbhEO = zeros(length(bases), length(hgList)); 
fprintf(fid, '\n\nCbhEO : [ \n\n'); 
for i = 1:length(bases) 
    for j = 1:length(hgList) 
        CbhEO(i,j) = nVessel(i,j)* ((CYearEO / 52) * W); 
        fprintf(fid,'%3.0f\t', CbhEO(i,j)); 
    end 
    fprintf(fid, '\n'); 
end 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Write to file, various  
%Base costs, Cb 
fprintf(fid, '\n\n\nCb : [ \n\n'); 
fprintf(fid,'%3.0f\t', Cb); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Period, W [weeks] 
fprintf(fid, '\n\n\nW : '); 
fprintf(fid,'%3.0f\t', periodHours); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n \n\n'); 

  
SiW=Si*W; 
%Number of services at installations, Si 
fprintf(fid, '\n\n\nSi : [ \n\n'); 
fprintf(fid,'%3.0f\t', SiW); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 
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%Air-matrix (fixed due to predefined routes & nInstallations) 
fprintf(fid, '\n\n\nAir : [ \n\n'); 
Air=[1,1,1,1,0,0,0,0;0,1,1,0,1,1,0,1;0,0,1,1,0,1,1,1]; 
A_ir = zeros(nInst, nRoutes); 
for j = 1 : nInst 
    for k = 1 : nRoutes 
        A_ir(j,k) = Air(j,k); 
        fprintf(fid,'%3.0f\t', A_ir(j,k)); 
    end 
    fprintf(fid, '\n'); 
end 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Capacity PSV, echelon 2, Qp 
fprintf(fid, '\n\n\nQp : '); 
fprintf(fid,'%3.0f\t', Q_PSV); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Demand at installations, Di  

  
fprintf(fid, '\n\n\nDi : [ \n\n'); 
D_i = zeros(1, length(Di)); 
for j = 1 : length(Di) 
    D_i(j) = Di(j); 
    fprintf(fid,'%3.0f\t', D_i(j)); 
end 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Big M: M_p 
fprintf(fid, '\n\n\nM_p : '); 
M_p = ceil(periodHours / min(min(Thr))); 
fprintf(fid,'%3.0f\t', M_p); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Big M: M_r 
fprintf(fid, '\n\nM_r : '); 
M_r = max(Di); 
fprintf(fid, '%3.0f\t', M_r); 
fprintf(fid, '\n'); 

  
fclose(fid); 
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C MATLAB-Script “NoHub.m” 

clear all 
close all 

  
%-INPUT------------------------------------------------------------------- 
%------------------------------------------------------------------------- 

  
%Geographical coordinates for supply bases and installations 
bases = [70.38, 23.40; 70.58, 25.58; 70.54, 27.23; 70.38, 29.43; 70.04, 29.44; 

69.65, 29.68; 70.22, 31.06]; 
inst = [74, 36; 72, 35; 73, 32];  

  
%Yearly cost for chartering one vessel [10^3 NOK] 
CYearEO = 0;                %Echelon 1 
CYearET = 80000;            %Echelon 2 

  
%Cost for making use of supply base per ton cargo transported from base [10^3 

NOK / ton]  
Cb=[1.0, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5]; 

  
%Capacity per vessel [ton] 
Q_Hub=750;                  %Echelon 1 
Q_PSV=450;                  %Echelon 2 

  
%Service speed on vessels [knot] 
vShuttle=12;                %Echelon 1 
vPSV=15;                    %Echelon 2 

  
%Number of PSVs in the fleet, echelon 2 
nPSV = 10; 

  
%Demand per installation [ton] 
Di=[230, 230, 230]; 

  
%Required number of services per installation per week 
Si=[3, 3, 3]; 

  
%Period [weeks]: 
W = 1; 

  
%-END-INPUT--------------------------------------------------------------- 
%------------------------------------------------------------------------- 

  
%%Draw 

  
%Draw map with all positions and lines 
ha = axesm('mapproj', 'mercator', 'maplatlim', [65,78], 'maplonlim', [10,40]); 
setm(ha, 'MLineLocation', 5, 'PLineLocation', 5); 
axis on, gridm off, framem on; 
load('coast'); 
gc = geoshow(lat,long,'displaytype','line','color','b'); 
geoshow('landareas.shp', 'FaceColor', [0.15 0.55 0.15]) 
geoshow('worldlakes.shp', 'FaceColor', 'cyan') 
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% Draw bases 
for i=1:length(bases) 
    geoshow(bases(i,1), bases(i,2),'DisplayType','point',  'markeredgecol-

or','k', ... 
    'markerfacecolor', 'b', 'marker', 'o'); 
end 

  
%Draw platforms 
for i=1:length(inst) 
    geoshow(inst(i,1), inst(i,2),'DisplayType','point',  'markeredgecol-

or','k', ... 
    'markerfacecolor', 'k', 'marker', 'o'); 
end 

  
%Draw gridded hubs 
for i=1:length(bases) 
        geoshow(bases(i,1), bases(i,2),'DisplayType','point',  'markeredgecol-

or','r', ... 
        'markerfacecolor', 'k', 'marker', '*');     
end 

  
%% Calculate durations, and write to tab delimited file 

  
fid = fopen('InputNoHUB.dat', 'w'); 
fprintf(fid, '\n\n!Input file for Xpress IVE, generated in MATLAB R2014a 

\n\n'); 
fprintf(fid, '\n\n!Master thesis, NTNU, Marine Technology by Cathrine Aksel-

sen\n\n'); 
fprintf(fid, '\n\n!"Optimization of supply base location and hub location sup-

plying oil and gas installations in the Barents Sea"\n\n'); 
fprintf(fid, '\n\n!No hub-network \n\n'); 
fprintf(fid, '\n\n \n\n'); 
fprintf(fid, '\n\n!All durations given in [hours]\n\n'); 
fprintf(fid, '\n\n!All costs given in [10^3 NOK]\n\n'); 
fprintf(fid, '\n\n \n\n'); 
fprintf(fid, '\n\n!Inst : ['); 
fprintf(fid,'%3.0f\t', inst); 
fprintf(fid, ']'); 
fprintf(fid, '\n\n \n\n'); 

  
%"Hub-network" transformed to base locations 
hgList = zeros(size(bases)); 
for i = 1 : size(bases,1) 
    for j = 1 : size(bases, 2) 
    hgList(i,j) = bases(i,j); 
    end 
end 

  
fprintf(fid, '\n'); 
fprintf(fid, '\n\nnHubs : '); 
nHubs = length(hgList); 
fprintf(fid,'%3.0f\t', nHubs); 
fprintf(fid, '\n\nnBases : '); 
nBases = length(bases); 
fprintf(fid,'%3.0f\t', nBases); 
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fprintf(fid, '\n\nnRoutes : '); 
nRoutes=8; 
fprintf(fid,'%3.0f\t', nRoutes); 
fprintf(fid, '\n\nnPsv : '); 
fprintf(fid,'%3.0f\t', nPSV); 
fprintf(fid, '\n\nnInstallations : '); 
nInst = length(inst); 
fprintf(fid,'%3.0f\t', nInst); 

  
%Calculate the duration from base b to hub h (one way)[hours] 
bhDuration = zeros(length(bases),length(hgList)); 
for i=1:length(bases) 
    for j=1:length(hgList) 
        bhDuration(i,j) = round(deg2nm(distance('gc',[bases(i,1),ba-

ses(i,2)],... 
                [hgList(j,1),hgList(j,2)]))/vShuttle); 
    end 
end 

  
%Calculate the duration from hub h to installation i [hours] 
hiDuration = zeros(length(inst),length(hgList)); 
for i=1:length(inst) 
    for j=1:length(hgList) 
        hiDuration(i,j) = 4+round(deg2nm(dis-

tance('gc',[inst(i,1),inst(i,2)],... 
                [hgList(j,1),hgList(j,2)])/vPSV)); 
    end 
end 

  
%Calculate the duration between the platforms [hours]  
earthRadiusInMeters=6371000; 
ppDuration = zeros (3,1); 
    ppDuration(1,1)=4+round((rad2nm(distance(inst(1,1), inst(1,2), inst(2,1), 

inst(2,2), earthRadiusInMeters)/earthRadiusInMeters)/vPSV)); 
    ppDuration(2,1)=4+round((rad2nm(distance(inst(1,1), inst(1,2), inst(3,1), 

inst(3,2), earthRadiusInMeters)/earthRadiusInMeters)/vPSV)); 
    ppDuration(3,1)=4+round((rad2nm(distance(inst(2,1), inst(2,2), inst(3,1), 

inst(3,2), earthRadiusInMeters)/earthRadiusInMeters)/vPSV)); 

  
%Calculate the duration on route r from each hub h, echelon 2 [hours] 
Thr = zeros(nRoutes, length(hgList)); 
for i = 1:length(hgList) 
        Thr(1,i) = 2*hiDuration(1,i); 
        Thr(2,i) = hiDuration(1,i) + ppDuration(1,1) + hiDuration(2,i); 
        Thr(3,i) = hiDuration(1,i) + ppDuration(1,1) + ppDuration(3,1)+hiDura-

tion(3,i); 
        Thr(4,i) = hiDuration(1,i) + ppDuration(2,1) + hiDuration(3,i); 
        Thr(5,i) = 2*hiDuration(2,i); 
        Thr(6,i) = hiDuration(2,i) + ppDuration(3,1) + hiDuration(3,i); 
        Thr(7,i) = 2*hiDuration(3,i); 
        Thr(8,i) = hiDuration(3,i) + ppDuration(2,1) + ppDuration(1,1) + hiDu-

ration(2,i); 
end 

  
periodHours = W * 24 * 7; %Period in [hours], no slack 
fprintf(fid, '\n\nnTimes : '); 
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nTimes = floor(periodHours/min(min(Thr))); 
fprintf(fid,'%3.0f\t', nTimes); 
fprintf(fid, '\n\n \n\n'); 

  
fprintf(fid, '\n\nThr : [ \n\n'); 
T_hr = zeros(length(hgList), nRoutes); 
for i = 1 : length(hgList) 
    for j = 1: nRoutes 
        T_hr(i,j) = Thr(j,i); 
        fprintf(fid,'%3.0f\t', T_hr(i,j)); 
    end 
        fprintf(fid, '\n'); 
end 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
DiTot=sum(Di); 

  
%Unit cost for chartering & operating one PSV p per period, echelon 2 
fprintf(fid, '\n\nCET : '); 
CET = ( CYearET / 52 ) * W ; 
fprintf(fid,'%3.0f\t', CET); 
fprintf(fid, '\n\n \n\n'); 

  
%Unit cost for chartering & operating the fleet of hub-vessels per period, 

echelon 1 
CbhEO = zeros(length(bases), length(hgList)); 
fprintf(fid, '\n\nCbhEO : [ \n\n'); 
for i = 1:length(bases) 
    for j = 1:length(hgList) 
        if i == j 
            CbhEO(i,j) = 0; 
        else 
            CbhEO(i,j) = 10^4; 
        end 
    end 
end 

  
for i = 1 : size(CbhEO,1) 
    for j = 1 : size(CbhEO,2) 
                fprintf(fid,'%3.0f\t', CbhEO(i,j)); 
    end 
    fprintf(fid, '\n'); 
end 

  
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Write to file, various  
%Base costs, Cb 
fprintf(fid, '\n\n\nCb : [ \n\n'); 
fprintf(fid,'%3.0f\t', Cb); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 
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%Period, W [weeks] 
fprintf(fid, '\n\n\nW : '); 
fprintf(fid,'%3.0f\t', periodHours); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n \n\n'); 

  
SiW=Si*W; 
%Number of services at installations, Si 
fprintf(fid, '\n\n\nSi : [ \n\n'); 
fprintf(fid,'%3.0f\t', SiW); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Air-matrix (fixed due to predefined routes & nInstallations) 
fprintf(fid, '\n\n\nAir : [ \n\n'); 
Air=[1,1,1,1,0,0,0,0;0,1,1,0,1,1,0,1;0,0,1,1,0,1,1,1]; 
A_ir = zeros(nInst, nRoutes); 
for j = 1 : nInst 
    for k = 1 : nRoutes 
        A_ir(j,k) = Air(j,k); 
        fprintf(fid,'%3.0f\t', A_ir(j,k)); 
    end 
    fprintf(fid, '\n'); 
end 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Capacity PSV, echelon 2, Qp 
fprintf(fid, '\n\n\nQp : '); 
fprintf(fid,'%3.0f\t', Q_PSV); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Demand at installations, Di  
fprintf(fid, '\n\n\nDi : [ \n\n'); 
D_i = zeros(1, length(Di)); 
for j = 1 : length(Di) 
    D_i(j) = W*Di(j); 
    fprintf(fid,'%3.0f\t', D_i(j)); 
end 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n] \n\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Big M: M_p 
fprintf(fid, '\n\n\nM_p : '); 
M_p = ceil(periodHours / min(min(Thr))); 
fprintf(fid,'%3.0f\t', M_p); 
fprintf(fid, '\n'); 
fprintf(fid, '\n\n \n\n'); 

  
%Big M: M_r 
fprintf(fid, '\n\nM_r : '); 
M_r = max(D_i); 
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fprintf(fid, '%3.0f\t', M_r); 
fprintf(fid, '\n'); 

  
fclose(fid); 
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D Output Phase 1: Air-matrix 

 

Table 27 Air-matrix, describing whether an installation is visited on a route. Air is 1 if 

installation i is visited on route r and zero otherwise. The matrix is necessary input for Phase 2 

of the problem 

            r 

 i 

1 2 3 4 5 6 7 8 

1 1 1 1 1 0 0 0 0 

2 0 1 1 0 1 1 0 1 

3 0 0 1 1 0 1 1 1 
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E Output “Hub.m” Phase 1 Run 1 

Table 28 Output from "Hub.m" Phase 1 Run 1 

!Input file for Xpress IVE, generated in MATLAB R2014a  

!Master thesis, NTNU, Marine Technology by Cathrine Akselsen 

!"Optimization of supply base location and hub location supplying oil and gas installations in 

the Barents Sea" 

            

!All durations given in [hours] 

!All costs given in [10^3 NOK] 

            

!Inst : [ 74 72 73 36 35 32 ]      

            

nHubs :  12            

nBases :   7            

nRoutes :   8            

nPsv :  10            

nInstallations 

:   3 

           

nTimes :  16            

            

Thr : [             

42 49 57 46 32 40 30 53     

38 46 53 42 30 37 26 50     

36 45 51 40 30 36 24 49     

34 44 49 38 30 35 22 48     

36 42 51 40 24 33 24 46     

32 39 47 36 22 30 20 43     

30 37 45 34 20 28 18 41     

26 35 41 30 20 26 14 39     

32 36 49 38 16 29 24 42     

28 32 45 34 12 25 20 38     

24 29 42 31 10 23 18 36     

20 28 38 27 12 22 14 35     

]             

            

CET : 1538            

            

CbhEO : [             

4615 4615 4615 4615 4615 4615 4615 6923 6923 6923 6923 6923 

4615 4615 4615 4615 4615 4615 4615 4615 6923 6923 6923 6923 

4615 4615 4615 4615 4615 4615 4615 4615 4615 4615 4615 6923 

4615 4615 4615 4615 4615 4615 4615 4615 4615 4615 4615 4615 

4615 4615 4615 4615 4615 4615 4615 4615 4615 4615 4615 6923 

4615 4615 4615 6923 4615 4615 4615 6923 4615 4615 6923 6923 
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4615 4615 4615 6923 4615 4615 4615 4615 4615 4615 4615 4615 

]             

            

Cb : [             

1 1,5 1,5 1,5 1,5 1,5 1,5      

]             

            

W : 168            

            

Si : [             

3 3 3          

]             

            

Air : [             

1 1 1 1 0 0 0 0     

0 1 1 0 1 1 0 1     

0 0 1 1 0 1 1 1     

]             

            

Qp : 450            

            

Di : [             

230 230 230          

]             

            

M_p :  17            
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F Output “NoHub.m” Phase 1 Run 1 

Table 29 Output from "NoHub.m" Phase 1 Run 1 

!Input file for Xpress IVE, generated in MATLAB R2014a  

!Master thesis, NTNU, Marine Technology by Cathrine Akselsen 

!"Optimization of supply base location and hub location supplying oil and gas installations in 

the Barents Sea" 

!No hub-network  

        

!All durations given in [hours] 

!All costs given in [10^3 NOK] 

        

!Inst : [ 74 72 73 36 35 32 ]  

        

nHubs :   7        

nBases :   7        

nRoutes :   8        

nPsv :  10        

nInstallations 

:   3 

       

nTimes :   6        

        

Thr : [         

50 57 65 54 40 48 38 61 

46 52 61 50 34 43 34 56 

42 49 58 47 32 41 32 54 

42 47 57 46 28 38 30 51 

44 49 59 48 30 40 32 53 

46 51 62 51 32 43 36 56 

40 45 56 45 26 37 30 50 

]         

        

CET : 1538        

        

CbhEO : [         

0 10000 10000 10000 10000 10000 10000  

10000 0 10000 10000 10000 10000 10000  

10000 10000 0 10000 10000 10000 10000  

10000 10000 10000 0 10000 10000 10000  

10000 10000 10000 10000 0 10000 10000  

10000 10000 10000 10000 10000 0 10000  

10000 10000 10000 10000 10000 10000 0  

]         

        

Cb : [         
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1 1,5 1,5 1,5 1,5 1,5 1,5  

]         

        

W : 168        

        

Si : [         

3 3 3      

]         

        

Air : [         

1 1 1 1 0 0 0 0 

0 1 1 0 1 1 0 1 

0 0 1 1 0 1 1 1 

]         

        

Qp : 450        

        

Di : [         

230 230 230      

]         

        

M_p :   7        

        

M_r : 230        
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G MATLAB-Script for Distance Calculations 

%% Calculate distances[nm] 
base = [70.38, 23.40; 70.58, 25.58; 70.54, 27.23; 70.38, 29.43; 70.04, 29.44; 

69.65, 29.68; 70.22, 31.06]; 
inst = [74, 36; 72, 35; 73, 32; 71, 32; 72, 28; 72, 21; 73, 23]; %Location A, 

B, C, D, E, F and G respectively 
hub = [ 

71,26;71.5,26;72,26;72.5,26;71,30;71.5,30;72,30;72.5,30;71,34;71.5,34;72,34;72

.5,34]; %From hgList 

  
%Distance from base to installations [nm] 
biDist = zeros(length(base),length(inst)); 
for i=1:length(base) 
    for j=1:length(inst) 
        biDist(i,j) = round(deg2nm(distance('gc',[base(i,1),base(i,2)],... 
                [inst(j,1),inst(j,2)]))); 
    end 
end 

  
%Distance between installations [nm] 
bhDist = zeros(length(inst), length(inst)); 
for i = 1:length(inst) 
    for j= 1:length(inst) 
        bhDist(i,j) = round(deg2nm(distance('gc',[inst(i,1),inst(i,2)],... 
                [inst(j,1),inst(j,2)]))); 
    end 
end 

  
%Distance between base and hub-locations [nm] 
bhDist = zeros(length(base), length(hub)); 
for i = 1:length(base) 
    for j= 1:length(hub) 
        bhDist(i,j) = round(deg2nm(distance('gc',[base(i,1),base(i,2)],... 
                [hub(j,1),hub(j,2)]))); 
    end 
end 
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H Output Distance Calculations 

Table 30 Distances between bases and installations [nm] 

Base/ 

Installation 

A B C D E F G 

1 316 244 226 175 132 108 157 

2 279 200 189 129 97 123 153 

3 262 173 173 98 89 149 168 

4 248 145 165 63 101 190 198 

5 267 160 184 77 121 202 216 

6 286 176 206 94 145 221 238 

7 244 131 168 50 122 222 226 

  

Table 31 Distances between installations [nm] 

Installation/ 

Installation 

A B C D E F G 

A 0 121 91 194 185 288 229 

B 121 0 81 83 130 259 224 

C 91 81 0 120 94 207 158 

D 194 83 120 0 97 218 205 

E 185 130 94 97 0 130 108 

F 288 259 207 218 130 0 70 

G 229 224 158 205 108 70 0 

 

Table 32 Distances between bases and hub-locations [nm] 

Base/ 

Hub 

1 2 3 4 5 6 7 8 9 10 11 12 

1 64 84 109 137 136 146 160 179 213 218 227 239 

2 27 56 86 116 91 102 120 143 168 173 183 197 

3 37 62 91 120 61 79 103 129 137 144 157 174 

4 78 95 118 143 39 68 98 128 98 112 131 154 

5 90 111 135 162 59 88 118 148 108 126 147 172 

6 110 133 159 185 81 111 141 171 119 141 165 191 

7 111 126 145 168 51 80 109 138 75 96 121 148 

 

The distances are calculated with great circle route 
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I Implementation of the Mathematical Model, Phase 2, in Xpress IVE  

 

model HubNetwork 

uses "mmxprs";  

!gain access to the Xpress-Optimizer solver 

 

! Line break is not an expression separator. All commands must end with a ; 

options explterm 

! Everything except indices must be declared before it is used 

options noimplicit 

 

parameters 

 DataFile = '1Hub.txt'; 

end-parameters 

! Get the data file 

 

declarations 

 nHubs  : integer; 

 nBases  : integer; 

 nRoutes : integer; 

 nPsv  : integer; 

 nInstallations : integer; 

 nTimes : integer; 

end-declarations 

! Data describing the size of the problem: 

 

initializations from DataFile 

 nHubs; 
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 nBases; 

 nRoutes; 

 nPsv; 

 nInstallations; 

 nTimes; 

end-initializations 

! The data is read from the file DataFile 

 

declarations 

 Hubs  : set of integer; 

 Bases  : set of integer; 

 Routes  :  set of integer; 

 Psv  :  set of integer; 

 Installations : set of integer; 

 Times  : set of integer; 

end-declarations 

! Defines the sets  

 

Hubs := 1 .. nHubs; 

Bases := 1 .. nBases; 

Routes := 1 .. nRoutes; 

Psv := 1 .. nPsv; 

Installations := 1 .. nInstallations; 

Times := 1 .. nTimes; 

! Define the sets based on the number of facilities 

 

finalize(Hubs); 

finalize(Bases); 

finalize(Routes); 
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finalize(Psv); 

finalize(Installations); 

finalize(Times); 

! All sets are finalized. It is no longer possible to add or remove elements from the sets 

 

writeln('Hubs : ', Hubs); 

writeln('Bases : ', Bases); 

writeln('Routes : ', Routes); 

writeln('PSV : ', Psv); 

writeln('Installations : ', Installations); 

writeln('Times : ', Times); 

! Write to screen 

 

declarations 

 Thr  : array(Hubs, Routes)   of integer; 

 CET  :     integer; 

 CbhEO : array(Bases, Hubs)   of integer; 

 Cb  : array(Bases)    of integer; 

 W  :     integer; 

 Si  : array(Installations)   of integer; 

 Air  : array(Installations, Routes)  of integer;  

 Qp  : array(Psv)   of integer; 

 Di  : array(Installations)   of integer; 

 M_p  :     integer;  

 M_r  :     integer; 

end-declarations 

! Data describing the rest of the problem 

 

initializations from DataFile 
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 Thr; 

 CET; 

 CbhEO; 

 Cb; 

 W; 

 Si; 

 Air; 

 Qp; 

 Di; 

 M_p; 

 M_r; 

end-initializations 

! Read data from "DataFile" 

 

declarations 

 deltaH  : dynamic array(Hubs)     of mpvar; 

 gammaB : dynamic array(Bases)     of mpvar; 

 alphaP  : dynamic array(Psv)     of mpvar; 

 rhoBH  : dynamic array(Bases, Hubs)    of mpvar; 

 xPRH  : dynamic array(Psv, Routes, Hubs)   of mpvar; 

 qIPRK  : dynamic array(Installations, Psv, Routes, Times) of mpvar; 

 betaPRK : dynamic array(Psv, Routes, Times)   of mpvar; 

end-declarations 

! Declare all variables 

 

forall (hh in Hubs) do 

 create(deltaH(hh)); 

end-do 
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forall (bb in Bases) do 

 create(gammaB(bb)); 

end-do 

 

forall (pp in Psv) do 

 create(alphaP(pp)); 

end-do 

 

forall (bb in Bases, hh in Hubs) do 

 create(rhoBH(bb,hh)); 

end-do 

 

forall (pp in Psv, rr in Routes, hh in Hubs) do 

 create(xPRH(pp, rr, hh)); 

end-do 

 

forall (ii in Installations, pp in Psv, rr in Routes, kk in Times) do 

 create(qIPRK(ii,pp,rr,kk)); 

end-do 

 

forall (pp in Psv, rr in Routes, kk in Times) do 

 create(betaPRK(pp,rr,kk)); 

end-do 

! Generate all variables 

 

declarations 

 TotalCost:         linctr; 

 Service:  dynamic array(Installations)    of linctr; 

 HubLocation:         linctr; 
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 BaseLocation:         linctr; 

 CouplingA:  dynamic array(Psv)     of linctr; 

 CouplingC:  dynamic array(Psv, Hubs)    of linctr; 

 ExistBase:  dynamic array(Bases)     of linctr; 

 ExistHub:  dynamic array(Hubs)     of linctr; 

 Duration:  dynamic array(Psv)     of linctr; 

 Delivery:  dynamic array(Installations)    of linctr; 

 CouplingD:  dynamic array(Installations, Routes, Psv, Times) of linctr; 

 CouplingE:  dynamic array(Routes, Psv)    of linctr; 

 CapacityVessel: dynamic array(Routes, Psv)    of linctr; 

 AntiSym_p:  dynamic array(Installations, Psv, Routes, Times) of linctr; 

 AntiSym_b:  dynamic array(Psv, Routes, Times)   of linctr; 

end-declarations 

! Declare the objective function (4.5) in the report 

! Declare constraints (4.6) in the report 

! Declare constraints (4.7) in the report 

! Declare constraints (4.8) in the report 

! Declare constraints (4.9) in the report 

! Declare constraints (4.10) in the report 

! Declare constraints (4.11) in the report 

! Declare constraints (4.12) in the report 

! Declare constraints (4.13) in the report 

! Declare constraints (4.14) in the report 

! Declare constraints (4.15) in the report 

! Declare constraints (4.16) in the report 

! Declare constraints (4.17) in the report 

! Declare constraints (4.18) in the report 

! Declare constraints (4.19) in the report 
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TotalCost:= 

 sum(pp in Psv) CET * alphaP(pp) +  

 sum(bb in Bases, hh in Hubs) CbhEO(bb,hh) * rhoBH(bb,hh) +  

 sum(bb in Bases, ii in Installations) Cb(bb) * Di(ii) * gammaB(bb); 

! Defines the objective function 

 

forall(ii in Installations) do 

 sum(hh in Hubs, pp in Psv, rr in Routes) Air(ii,rr) * xPRH(pp,rr,hh) >= Si(ii); 

end-do 

! Defines constraints (4.6) in the report 

 

 

HubLocation := 

 sum(hh in Hubs) deltaH(hh) = 1; 

! Defines constraints (4.7) in the report 

 

BaseLocation := 

 sum(bb in Bases) gammaB(bb) = 1; 

! Defines constraints (4.8) in the report 

 

forall(pp in Psv, rr in Routes) do 

 sum(hh in Hubs) xPRH(pp, rr, hh) - (M_p * alphaP(pp)) <= 0; 

end-do 

! Defines constraints (4.9) in the report 

 

 

forall (pp in Psv, hh in Hubs) do 

 sum(rr in Routes) xPRH(pp, rr, hh) - (M_p * deltaH(hh)) <= 0; 

end-do 
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! Defines constraints (4.10) in the report 

 

forall(bb in Bases) do 

 gammaB(bb) = sum(hh in Hubs) rhoBH(bb,hh); 

end-do 

! Defines constraints (4.11) in the report 

 

forall(hh in Hubs) do 

 deltaH(hh) = sum(bb in Bases) rhoBH(bb,hh); 

end-do 

! Defines constraints (4.12) in the report 

 

forall(pp in Psv, hh in Hubs) do 

 sum(rr in Routes) Thr(hh,rr) * xPRH(pp,rr,hh) <= W; 

end-do 

! Defines constraints (4.13) in the report 

 

forall(ii in Installations) do 

 sum(pp in Psv, rr in Routes, kk in Times) qIPRK(ii,pp,rr,kk) >= Di(ii); 

end-do 

! Defines constraints (4.14) in the report 

 

forall(ii in Installations, rr in Routes, pp in Psv, kk in Times) do 

 qIPRK(ii,pp,rr,kk) - M_r * betaPRK(pp,rr,kk) <= 0; 

end-do 

! Defines constraints (4.15) in the report 

 

forall(rr in Routes, pp in Psv) do 

 sum(kk in Times) betaPRK(pp,rr,kk) = sum(hh in Hubs) xPRH(pp,rr,hh); 
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end-do 

! Defines constraints (4.16) in the report 

 

forall(rr in Routes, pp in Psv) do 

 Qp(pp) >= sum(ii in Installations, kk in Times) qIPRK(ii,pp,rr,kk); 

end-do 

! Defines constraints (4.17) in the report 

 

forall(ii in Installations, pp in Psv, rr in Routes, kk in Times | kk <= (nTimes-1) ) do 

 qIPRK(ii, pp, rr, kk+1) <= qIPRK(ii, pp, rr, kk); 

end-do 

! Defines constraints (4.18) in the report 

 

forall(pp in Psv, rr in Routes, kk in Times | kk <= (nTimes-1) ) do 

 betaPRK(pp, rr, kk+1) <= betaPRK(pp, rr, kk); 

end-do 

! Defines constraints (4.19) in the report 

 

forall(hh in Hubs) deltaH(hh) is_binary; 

! Defines binary restriction on variable. Constraints (4.20) in the report 

 

forall(bb in Bases) gammaB(bb) is_binary; 

! Defines binary restriction on variable. Constraints (4.21) in the report 

 

forall(pp in Psv) alphaP(pp) is_binary; 

! Defines binary restriction on variable. Constraints (4.22) in the report 

 

forall(bb in Bases, hh in Hubs) rhoBH(bb,hh) is_integer; 

! Defines binary restriction on variable. Constraints (4.23) in the report 
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forall(pp in Psv, rr in Routes, hh in Hubs) xPRH(pp,rr,hh) is_integer; 

! Defines integer restriction on variable. Constraints (4.24) in the report 

 

forall(ii in Installations, pp in Psv, rr in Routes, kk in Times) qIPRK(ii,pp,rr,kk) is_integer; 

! Defines integer restriction on variable. Constraints (4.25) in the report 

 

forall(pp in Psv, rr in Routes, kk in Times) betaPRK(pp,rr,kk) is_binary; 

! Defines binary restriction on variable. Constraints (4.26) in the report 

 

minimize(TotalCost); 

 

writeln; 

writeln('------------------------------------------'); 

writeln('"Optimal objective value : " '); 

writeln(getobjval); 

 

writeln; 

writeln('deltaH is 1 if hub location h is used, o otherwise'); 

forall(hh in Hubs) do 

writeln('deltaH(',hh,') :', getsol(deltaH(hh))); 

end-do 

 

writeln; 

writeln('gammaB is 1 if base b is used, 0 otherwise'); 

forall(bb in Bases) do 

writeln('gamaB(',bb,') : ',getsol(gammaB(bb))); 

end-do 
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writeln; 

writeln('alphaP'); 

forall(pp in Psv) do 

writeln('alphaP(',pp,') : ', getsol(alphaP(pp))); 

end-do 

 

writeln; 

writeln('betaPRK'); 

forall(pp in Psv, rr in Routes ,kk in Times) do 

writeln('betaPRK(',pp,',', rr,',', kk,') : ', getsol(betaPRK(pp, rr, kk))); 

end-do 

 

writeln; 

writeln('qIPRK'); 

writeln(' '); 

forall(ii in Installations, pp in Psv, rr in Routes ,kk in Times) do 

writeln('qIPRK(',ii,',',pp,',', rr,',', kk,') : ',getsol(qIPRK(ii,pp, rr, kk))); 

end-do 

 

writeln; 

writeln('rhoBH'); 

forall(bb in Bases, hh in Hubs) do 

writeln('rhoBH(',bb,',', hh,') : ', getsol(rhoBH(bb,hh))); 

end-do 

 

writeln; 

writeln('xPRH'); 

forall(pp in Psv, rr in Routes ,hh in Hubs) do 

writeln('xPRH(',pp,',', rr,',', hh,') : ', getsol(xPRH(pp, rr, hh))); 
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end-do 

end-model 
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J Results Phase 2 Case 1 Optimal 𝒒𝒊𝒑𝒓𝒌* all runs 

Table 33 Optimal qiprk* Phase 2 Case 1 for all runs 

Run  (i,p,r,k)           q(i,p,r,k)* Run (i,p,r,k) q(i,p,r,k)* Run (i,p,r,k) q(i,p,r,k)* 

1 (1,1,7,1) :  230 13 (1,1,1,1) :  230 25 (1,1,7,1) :  230 

 (2,1,3,1) :  230  (2,1,6,1) :  230  (2,1,3,1) :  230 

 (3,1,2,1) :  230  (3,1,3,1) :  230  (3,1,2,1) :  230 

         

2 (1,1,1,1) :  230 14 (1,1,2,1) :  220 26 (1,1,3,1) :  230 

 (2,1,8,1) :  230  (1,1,7,1) :  10  (2,1,2,1) :  230 

 (3,1,2,1) :  230  (2,1,7,1) :  230  (3,1,2,1) :  10 

    (3,1,2,1) :  230  (3,1,3,1) :  220 

         

3 (1,1,2,1) :  220 15 (1,1,3,1) :  12 27 (1,1,1,1) :  220 

 (1,1,7,1) :  10  (1,1,3,2) :  12  (1,1,2,1) :  10 

 (2,1,7,1) :  230  (1,1,7,1) :  206  (2,1,1,1) :  230 

 (3,1,2,1) :  230  (2,1,3,1) :  230  (3,1,2,1) :  230 

    (3,1,7,1) :  230    

         

4 (1,1,1,1) :  230 16 (1,1,3,1) :  12 28 (1,1,3,1) :  230 

 (2,1,7,1) :  230  (1,1,3,2) :  12  (2,1,6,1) :  230 

 (3,1,2,1) :  230  (1,1,7,1) :  206  (3,1,2,1) :  230 

    (2,1,3,1) :  230    

    (3,1,7,1) :  230    

         

5 (1,1,1,1) :  230 17 (1,1,3,1) :  230 29 (1,1,7,1) :  115 

 (2,1,7,1) :  230  (2,1,7,1) :  230  (1,1,7,2) :  115 

 (3,1,2,1) :  230  (3,1,2,1) :  230  (2,1,3,1) :  10 

       (2,1,7,1) :  110 

       (2,1,7,2) :  110 

       (3,1,3,1) :  230 

         

6 (1,1,1,1) :  220 18 (1,1,1,1) :  230 30 (1,1,7,1) :  230 

 (1,1,2,1) :  10  (2,1,6,1) :  230  (2,1,2,1) :  230 

 (2,1,1,1) :  230  (3,1,2,1) :  230  (3,1,3,1) :  230 

 (3,1,2,1) :  230       

         

7 (1,1,1,1) :  220 19 (1,1,1,1) :  220 31 qIPRK(1,1,1,1) 

:  

230 

 (1,1,2,1) :  10  (1,1,2,1) :  10  (2,1,7,1) :  230 

 (2,1,1,1) :  230  (2,1,1,1) :  230  qIPRK(3,1,2,1) 

:  

230 

 (3,1,2,1) :  230  (3,1,2,1) :  230    
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8 (1,1,1,1) :  220 20 (1,1,1,1) :  220 32 (1,1,8,1) :  230 

 (1,1,2,1) :  10  (1,1,2,1) :  10  (2,1,2,1) :  10 

 (2,1,1,1) :  230  (2,1,1,1) :  230  (2,1,8,1) :  220 

 (3,1,2,1) :  230  (3,1,2,1) :  230  (3,1,2,1) :  230 

         

9 (1,1,1,1) :  220 21 (1,1,2,1) :  230 33 (1,1,4,1) :  220 

 (1,1,2,1) :  10  (2,1,3,1) :  230  (1,1,5,1) :  10 

 (2,1,1,1) :  230  (3,1,7,1) :  230  (2,1,5,1) :  230 

 (3,1,2,1) :  230     qIPRK(3,1,4,1) 

:  

230 

         

10 (1,1,6,1) :  230 22 (1,1,7,1) :  230 34 (1,1,1,1) :  230 

 (2,1,3,1) :  230  (2,1,1,1) :  230  qIPRK(2,1,7,1) 

:  

230 

 (3,1,2,1) :  230  (3,1,2,1) :  230  (3,1,2,1) :  230 

         

11 (1,1,3,1) :  230 23 (1,1,1,1) :  220 35 (1,1,3,1) :  230 

 (2,1,7,1) :  230  (1,1,2,1) :  10  (2,1,7,1) :  230 

 (3,1,2,1) :  230  (2,1,1,1) :  230  (3,1,2,1) :  230 

    (3,1,2,1) :  230    

         

12 (1,1,2,1) :  220 24 (1,1,3,1) :  230    

 (1,1,3,1) :  10  (2,1,7,1) :  230    

 (2,1,3,1) :  230  (3,1,2,1) :  230    

 (3,1,2,1) :  230       
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K Results Phase 2 Case 2 Optimal 𝒒𝒊𝒑𝒓𝒌* all runs 

Table 34 Optmal qiprk* Phase 2 Case 2 for all runs 

Run  (i,p,r,k)           q(i,p,r,k)* Run (i,p,r,k) q(i,p,r,k)* Run (i,p,r,k) q(i,p,r,k)* 

1 (1,1,3,1) : 230 13 (1,1,3,1) :  230 25 (1,1,2,1) :  230 

 (2,1,4,1) :  230  (2,1,4,1) :  230  (2,1,3,1) :  230 

 (3,1,6,1) :  230  (3,1,7,1) :  230  (3,1,4,1) :  230 

         

2 (1,1,4,1) :  230 14 (1,1,3,1) :  103 26 (1,1,2,1) :  96 

 (2,1,5,1) :  230  (1,1,3,2) :  2  (1,1,3,1) :  67 

 (3,1,3,1) :  230  (1,1,5,1) :  125  (1,1,3,2) :  67 

    (2,1,3,1) :  230  (2,1,3,1) :  230 

    (3,1,5,1) :  230  (3,1,2,1) :  230 

         

3 (1,1,3,1) :  230 15 (1,1,3,1) :  140 27 (1,1,3,1) :  230 

 (2,1,6,1) :  230  (1,1,3,2) :  2  (2,1,3,1) :  2 

 (3,1,1,1) :  230  (1,1,7,1) :  88  (2,1,3,2) :  2 

    (2,1,3,1) :  230  (2,1,6,1) :  226 

    (3,1,7,1) :  230  (3,1,3,1) :  3 

       (3,1,3,2) :  3 

       (3,1,6,1) :  224 

         

4 (1,1,3,1) :  230 16 (1,1,3,1) :  72 28 (1,1,3,1) :  110 

 (2,1,7,1) :  230  (1,1,4,1) :  158  (1,1,3,2) :  2 

 (3,1,3,1) :  10  (2,1,3,1) :  230  (1,1,6,1) :  118 

 (3,1,7,1) :  220  (3,1,4,1) :  230  (2,1,3,1) :  110 

       (2,1,3,2) :  110 

       (2,1,6,1) :  10 

       (3,1,6,1) :  230 

         

5 (1,1,6,1) :  230 17 (1,1,3,1) :  230 29 (1,1,3,1) :  230 

 (2,1,4,1) :  230  (2,1,6,1) :  230  (2,1,5,1) :  230 

 (3,1,1,1) :  230  (3,1,3,1) :  167  (3,1,7,1) :  230 

    (3,1,3,2) :  48    

    (3,1,6,1) :  15    

         

6 (1,1,4,1) :  230 18 (1,1,3,1) :  230 30 (1,1,4,1) :  230 

 (2,1,6,1) :  230  (2,1,4,1) :  230  (2,1,3,1) :  230 

 (3,1,2,1) :  230  (3,1,6,1) :  230  (3,1,6,1) :  230 

         

7 (1,1,3,1) :  230 19 (1,1,3,1) :  230 31 (1,1,7,1) :  230 

 (2,1,4,1) :  230  (2,1,4,1) :  230  (2,1,3,1) :  230 

 (3,1,6,1) :  230  (3,1,6,1) :  230  (3,1,2,1) :  230 
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8 (1,1,3,1) :  230 20 (1,1,1,1) :  92 32 (1,1,3,1) :  230 

 (2,1,4,1) :  230  (1,1,3,1) :  138  (2,1,6,1) :  230 

 (3,1,7,1) :  230  (2,1,3,1) :  230  (3,1,7,1) :  230 

    (3,1,1,1) :  230    

         

9 (1,1,3,1) :  230 21 (1,1,2,1) :  165 33 (1,1,3,1) :  143 

 (2,1,4,1) :  230  (1,1,3,1) :  65  (1,1,3,2) :  85 

 (3,1,5,1) :  230  (2,1,2,1) :  230  (1,1,6,1) :  2 

    (3,1,3,1) :  230  (2,1,3,1) :  142 

       (2,1,6,1) :  88 

       (3,1,6,1) :  230 

         

10 (1,1,3,1) :  230 22 (1,1,3,1) :  146 34 (1,1,1,1) :  230 

 (2,1,7,1) :  230  (1,1,3,2) :  2  (2,1,6,1) :  230 

 (3,1,2,1) :  230  (1,1,6,1) :  82  (3,1,3,1) :  230 

    (2,1,6,1) :  230    

    (3,1,3,1) :  230    

         

11 (1,1,3,1) :  230 23 (1,1,1,1) :  230 35 (1,1,1,1) :  230 

 (2,1,6,1) :  230  (2,1,3,1) :  230  (2,1,3,1) :  230 

 (3,1,3,1) :  147  (3,1,1,1) :  10  (3,1,6,1) :  230 

 (3,1,3,2) :  2  (3,1,3,1) :  220    

 (3,1,6,1) :  81       

         

12 (1,1,3,1) :  122 24 (1,1,1,1) :  230    

 (1,1,3,2) :  2  (2,1,2,1) :  230    

 (1,1,7,1) :  106  (3,1,7,1) :  230    

 (2,1,3,1) :  230       

 (3,1,7,1) :  230       

1 (1,1,3,1) : 230 13 (1,1,3,1) :  230 25 (1,1,2,1) :  230 
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L Results Phase 2 Case 1 Optimal 𝒙𝒑𝒓𝒌* all runs 

Table 35 Optimal xprk* Phase 2 Case 1 for all runs 

Run  (p,r,k) x(p,r,k)* Run  (p,r,k) x(p,r,k)* Run  (p,r,k) x(p,r,k)* 

1 (1,2,5) :  1 13 (1,1,4) :  1 25 (1,2,6) :  1 

 (1,3,5) :  2  (1,3,4) :  2  (1,3,6) :  2 

 (1,7,5) :  1  (1,6,4) :  1  (1,7,6) :  1 

         

2 (1,1,6) :  1 14 (1,2,7) :  2 26 (1,2,6) :  1 

 (1,2,6) :  2  (1,3,7) :  1  (1,3,6) :  1 

 (1,4,6) :  1  (1,7,7) :  2  (1,4,6) :  1 

 (1,7,6) :  1     (1,6,6) :  1 

 (1,8,6) :  1       

         

3 (1,2,1) :  2 15 (1,3,1) :  2 27 (1,1,7) :  1 

 (1,3,1) :  1  (1,7,1) :  1  (1,2,7) :  2 

 (1,7,1) :  2  (2,2,1) :  1  (1,6,7) :  2 

       (1,7,7) :  1 

4 (1,1,1) :  1 16 (1,3,1) :  2 28 (1,2,4) :  1 

 (1,2,1) :  1  (1,7,1) :  1  (1,3,4) :  1 

 (1,3,1) :  1  (2,2,1) :  1  (1,4,4) :  1 

 (1,5,1) :  1     (1,6,4) :  1 

 (1,7,1) :  2       

         

5 (1,1,1) :  1 17 (1,2,1) :  1 29 (1,2,3) :  2 

 (1,2,1) :  2  (1,3,1) :  1  (1,3,3) :  1 

 (1,3,1) :  1  (1,7,1) :  2  (1,7,3) :  2 

  2  (2,2,1) :  1    

         

6 (1,1,6) :  1 18 (1,1,4) :  1 30 (1,2,3) :  2 

 (1,2,6) :  2  (1,2,4) :  1  (1,3,3) :  1 

 (1,6,6) :  1  (1,3,4) :  1  (1,7,3) :  2 

 (1,7,6) :  2  (1,6,4) :  1    

    (1,7,4) :  1    

         

7 (1,1,6) :  1 19 (1,1,1) :  1 31 (1,1,2) :  1 

 (1,2,6) :  1  (1,2,1) :  1  (1,2,2) :  1 

 (1,3,6) :  1  (1,6,1) :  2  (1,3,2) :  1 

 (1,6,6) :  1  (2,3,1) :  1  (1,6,2) :  1 

 (1,7,6) :  1     (1,7,2) :  1 

         

8 (1,1,1) :  1 20 (1,1,7) :  1 32 (1,1,3) :  1 

 (1,2,1) :  1  (1,2,7) :  3  (1,2,3) :  2 

 (1,6,1) :  1  (1,6,7) :  2  (1,7,3) :  2 
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 (1,7,1) :  1  (1,7,7) :  1  (1,8,3) :  1 

 (2,3,1) :  1       

         

9 (1,1,1) :  1 21 (1,2,7) :  1 33 (1,3,2) :  2 

 (1,2,1) :  1  (1,3,7) :  2  (1,4,2) :  1 

 (1,6,1) :  1  (1,7,7) :  1  (1,5,2) :  1 

 (1,7,1) :  1       

 (2,3,1) :  1       

         

10 (1,2,5) :  1 22 (1,1,3) :  1 34 (1,1,3) :  1 

 (1,3,5) :  2  (1,2,3) :  1  (1,2,3) :  1 

 (1,6,5) :  1  (1,3,3) :  1  (1,3,3) :  2 

    (1,6,3) :  1  (1,7,3) :  1 

    (1,7,3) :  1    

         

11 (1,2,3) :  2 23 (1,1,7) :  2 35 (1,2,4) :  1 

 (1,3,3) :  1  (1,2,7) :  1  (1,3,4) :  2 

 (1,7,3) :  2  (1,6,7) :  2  (1,7,4) :  1 

    (1,7,7) :  1    

         

12 (1,2,4) :  1 24 (1,2,6) :  1    

 (1,3,4) :  2  (1,3,6) :  2    

 (1,7,4) :  1  (1,7,6) :  1    
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M Results Phase 2 Case 2 Optimal 𝒙𝒑𝒓𝒌* all runs 

Table 36 Optimal xprk* Phase 2 Case 2 for all runs 

Run  (p,r,k) x(p,r,k)* Run  (p,r,k) x(p,r,k)* Run  (p,r,k) x(p,r,k)* 

1 (1,3,1) :  1 13 (1,3,1) :  1 25 (1,2,1) :  1 

 (1,4,1) :  1  (1,4,1) :  1  (1,3,1) :  1 

 (1,6,1) :  1  (1,7,1) :  1  (1,4,1) :  1 

 (3,2,1) :  1  (2,2,1) :  1  (6,3,1) :  1 

 (3,3,1) :  1  (2,3,1) :  1  (6,4,1) :  1 

 (3,5,1) :  1  (2,6,1) :  1  (6,6,1) :  1 

         

2 (1,3,3) :  2 14 (1,3,1) :  2 26 (1,2,1) :  1 

 (1,4,3) :  1  (1,5,1) :  1  (1,3,1) :  2 

 (1,5,3) :  1  (6,2,1) :  1  (6,1,1) :  1 

    (6,3,1) :  1  (6,3,1) :  1 

       (6,4,1) :  1 

         

3 (1,1,2) :  1 15 (1,3,1) :  2 27 (1,3,1) :  2 

 (1,3,2) :  2  (1,7,1) :  1  (1,6,1) :  1 

 (1,6,2) :  1  (2,1,1) :  1  (3,1,1) :  1 

    (2,2,1) :  1  (3,2,1) :  1 

    (2,5,1) :  1  (3,6,1) :  1 

    (2,7,1) :  1  (3,7,1) :  1 

         

4 (1,2,1) :  1 16 (1,3,1) :  1 28 (1,3,1) :  2 

 (1,3,1) :  2  (1,4,1) :  1  (1,6,1) :  1 

 (1,7,1) :  1  (5,3,1) :  1  (10,2,1) :  1 

    (5,5,1) :  1  (10,3,1) :  1 

       (10,5,1) :  1 

         

5 (1,1,1) :  1 17 (1,3,1) :  2 29 (1,3,1) :  1 

 (1,2,1) :  1  (1,6,1) :  1  (1,4,1) :  1 

 (1,4,1) :  1  (6,2,1) :  1  (1,5,1) :  1 

 (1,6,1) :  2  (6,3,1) :  1  (1,7,1) :  1 

    (6,7,1) :  1  (2,2,1) :  1 

       (2,3,1) :  1 

       (2,5,1) :  1 

       (2,7,1) :  1 

         

6 (1,2,7) :  1 18 (1,3,1) :  1 30 (1,3,1) :  1 

 (1,3,7) :  1  (1,4,1) :  1  (1,4,1) :  1 

 (1,4,7) :  1  (1,6,1) :  1  (1,6,1) :  1 

 (1,6,7) :  1  (6,2,1) :  1  (5,2,1) :  1 

    (6,4,1) :  1  (5,3,1) :  1 
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    (6,7,1) :  1  (5,5,1) :  1 

         

7 (1,3,1) :  1 19 (1,3,1) :  1 31 (1,2,2) :  1 

 (1,4,1) :  1  (1,4,1) :  1  (1,3,2) :  2 

 (1,6,1) :  1  (1,6,1) :  1  (1,7,2) :  1 

 (5,3,1) :  1  (7,2,1) :  1    

 (5,5,1) :  1  (7,6,1) :  1    

 (5,7,1) :  1  (7,7,1) :  1    

         

8 (1,3,1) :  1 20 (1,1,3) :  1 32 (1,3,1) :  1 

 (1,4,1) :  1  (1,3,3) :  3  (1,6,1) :  1 

 (1,7,1) :  1     (1,7,1) :  2 

 (3,2,1) :  1     (4,2,1) :  1 

 (3,5,1) :  1     (4,3,1) :  1 

 (3,6,1) :  1     (4,7,1) :  1 

         

9 (1,3,1) :  1 21 (1,2,1) :  1 33 (1,3,1) :  2 

 (1,4,1) :  1  (1,3,1) :  1  (1,6,1) :  1 

 (1,5,1) :  1  (1,7,1) :  1  (9,2,1) :  1 

 (10,3,1) :  1  (2,3,1) :  2  (9,3,1) :  1 

 (10,5,1) :  1     (9,7,1) :  1 

 (10,6,1) :  1       

         

10 (1,2,4) :  1 22 (1,3,1) :  2 34 (1,1,2) :  1 

 (1,3,4) :  2  (1,6,1) :  1  (1,3,2) :  2 

 (1,7,4) :  1  (2,1,1) :  1  (1,6,2) :  1 

    (2,2,1) :  1    

    (2,8,1) :  1    

         

11 (1,3,1) :  2 23 (1,1,7) :  1 35 (1,1,3) :  1 

 (1,6,1) :  1  (1,3,7) :  3  (1,3,3) :  2 

 (2,2,1) :  1     (1,6,3) :  1 

 (2,5,1) :  3       

         

12 (1,3,1) :  2 24 (1,1,1) :  1    

 (1,7,1) :  1  (1,2,1) :  2    

 (9,2,1) :  1  (1,7,1) :  1    

 (9,6,1) :  1  (3,3,1) :  2    

 (9,7,1) :  1       
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N Results Phase 2 Case 1 Optimal 𝜷𝒑𝒓𝒌* all runs 

Table 37 Optimal 𝛽𝑝𝑟𝑘* Phase 2 Case 1 for all runs 

Run  (p,r,k) p(p,r,k)* Run  (p,r,k) p(p,r,k)* Run  (p,r,k) p(p,r,k)* 

1 (1,2,1) :  1 13 (1,1,1) :  1 25 (1,2,1) :  1 

 (1,3,1) :  1  (1,3,1) :  1  (1,3,1) :  1 

 (1,3,2) :  1  (1,3,2) :  1  (1,3,2) :  1 

 (1,7,1) :  1  (1,6,1) :  1  (1,7,1) :  1 

         

2 (1,1,1) :  1 14 (1,2,1) :  1 26 (1,2,1) :  1 

 (1,2,1) :  1  (1,2,2) :  1  (1,3,1) :  1 

 (1,2,2) :  1  (1,3,1) :  1  (1,4,1) :  1 

 (1,4,1) :  1  (1,7,1) :  1  (1,6,1) :  1 

 (1,7,1) :  1  (1,7,2) :  1    

 (1,8,1) :  1       

         

3 (1,2,1) :  1 15 (1,3,1) :  1 27 (1,1,1) :  1 

 (1,2,2) :  1  (1,3,2) :  1  (1,2,1) :  1 

 (1,3,1) :  1  (1,7,1) :  1  (1,2,2) :  1 

 (1,7,1) :  1  (2,2,1) :  1  (1,6,1) :  1 

 (1,7,2) :  1     (1,6,2) :  1 

       (1,7,1) :  1 

         

4 (1,1,1) :  1 16 (1,3,1) :  1 28 (1,2,1) :  1 

 (1,2,1) :  1  (1,3,2) :  1  (1,3,1) :  1 

 (1,3,1) :  1  (1,7,1) :  1  (1,4,1) :  1 

 (1,5,1) :  1  (2,2,1) :  1  (1,6,1) :  1 

 (1,7,1) :  1       

 (1,7,2) :  1       

         

5 (1,1,1) :  1 17 (1,2,1) :  1 29 (1,2,1) :  1 

 (1,2,1) :  1  (1,3,1) :  1  (1,2,2) :  1 

 (1,2,2) :  1  (1,7,1) :  1  (1,3,1) :  1 

 (1,3,1) :  1  (1,7,2) :  1  (1,7,1) :  1 

 (1,7,1) :  1  (2,2,1) :  1  (1,7,2) :  1 

 (1,7,2) :  1       

         

6 (1,1,1) :  1 18 (1,1,1) :  1 30 (1,2,1) :  1 

 (1,2,1) :  1  (1,2,1) :  1  (1,2,2) :  1 

 (1,2,2) :  1  (1,3,1) :  1  (1,3,1) :  1 

 (1,6,1) :  1  (1,6,1) :  1  (1,7,1) :  1 

 (1,7,1) :  1  (1,7,1) :  1  (1,7,2) :  1 

 (1,7,2) :  1       
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7 (1,1,1) :  1 19 (1,1,1) :  1 31 (1,1,1) :  1 

 (1,2,1) :  1  (1,2,1) :  1  (1,2,1) :  1 

 (1,3,1) :  1  (1,6,1) : 1  (1,3,1) :  1 

 (1,6,1) :  1  (1,6,2) :  1  (1,6,1) :  1 

 (1,7,1) :  1  (2,3,1) :  1  (1,7,1) :  1 

         

8 (1,1,1) :  1 20 (1,1,1) :  1 32 (1,1,1) :  1 

 (1,2,1) :  1  (1,2,1) :  1  (1,2,1) :  1 

 (1,6,1) :  1  (1,2,2) :  1  (1,2,2) :  1 

 (1,7,1) :  1  (1,2,3) :  1  (1,7,1) :  1 

 (2,3,1) :  1  (1,6,1) :  1  (1,7,2) :  1 

    (1,6,2) :  1  (1,8,1) :  1 

    (1,7,1) :  1    

         

9 (1,1,1) :  1 21 (1,2,1) :  1 33 (1,3,1) :  1 

 (1,2,1) :  1  (1,3,1) :  1  (1,3,2) :  1 

 (1,6,1) :  1  (1,3,2) :  1  (1,4,1) :  1 

 (1,7,1) :  1  (1,7,1) :  1  (1,5,1) :  1 

 (2,3,1) :  1       

         

10 (1,2,1) :  1 22 (1,1,1) :  1 34 (1,1,1) :  1 

 (1,3,1) :  1  (1,2,1) :  1  (1,2,1) :  1 

 (1,3,2) :  1  (1,3,1) :  1  (1,3,1) :  1 

 (1,6,1) :  1  (1,6,1) : 1  (1,3,2) :  1 

    (1,7,1) :  1  (1,7,1) :  1 

         

11 (1,2,1) :  1 23 (1,1,1) :  1 35 (1,2,1) :  1 

 (1,2,2) :  1  (1,1,2) :  1  (1,3,1) :  1 

 (1,3,1) :  1  (1,2,1) :  1  (1,3,2) :  1 

 (1,7,1) :  1  (1,6,1) :  1  (1,7,1) :  1 

 (1,7,2) :  1  (1,6,2) :  1    

    (1,7,1) :  1    

         

12 (1,2,1) :  1 24 (1,2,1) :  1    

 (1,3,1) :  1  (1,3,1) :  1    

 (1,3,2) :  1  (1,3,2) :  1    

 (1,7,1) :  1  (1,7,1) :  1    
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O Results Phase 2 Case 2 Optimal 𝜷𝒑𝒓𝒌* all runs 

Table 38 Optimal 𝛽𝑝𝑟𝑘* Phase 2 Case 2 for all runs 

Run  (p,r,k) p(p,r,k)* Run  (p,r,k) p(p,r,k)* Run  (p,r,k) p(p,r,k)* 

1 (1,3,1) :  1 13 (1,3,1) :  1 25 (1,2,1) :  1 

 (1,4,1) :  1  (1,4,1) :  1  (1,3,1) :  1 

 (1,6,1) :  1  (1,7,1) :  1  (1,4,1) :  1 

 (3,2,1) :  1  (2,2,1) :  1  (6,3,1) :  1 

 (3,3,1) :  1  (2,3,1) :  1  (6,4,1) :  1 

 (3,5,1) :  1  (2,6,1) :  1  (6,6,1) :  1 

         

2 (1,3,1) :  1 14 (1,3,1) :  1 26 (1,2,1) :  1 

 (1,3,2) :  1  (1,3,2) :  1  (1,3,1) :  1 

 (1,4,1) :  1  (1,5,1) :  1  (1,3,2) :  1 

 (1,5,1) :  1  (6,2,1) :  1  (6,1,1) :  1 

    (6,3,1) :  1  (6,3,1) :  1 

       (6,4,1) :  1 

         

3 (1,1,1) :  1 15 (1,3,1) :  1 27 (1,3,1) :  1 

 (1,3,1) :  1  (1,3,2) :  1  (1,3,2) :  1 

 (1,3,2) :  1  (1,7,1) :  1  (1,6,1) :  1 

 (1,6,1) :  1  (2,1,1) :  1  (3,1,1) :  1 

    (2,2,1) : 1  (3,2,1) :  1 

    (2,5,1) :  1  (3,6,1) :  1 

    (2,7,1) :  1  (3,7,1) :  1 

         

4 (1,2,1) :  1 16 (1,3,1) :  1 28 (1,3,1) :  1 

 (1,3,1) :  1  (1,4,1) :  1  (1,3,2) :  1 

 (1,3,2) :  1  (5,3,1) :  1  (1,6,1) :  1 

 (1,7,1) :  1  (5,5,1) :  1  (10,2,1) :  1 

       (10,3,1) :  1 

       (10,5,1) :  1 

         

5 (1,1,1) :  1 17 (1,3,1) :  1 29 (1,3,1) :  1 

 (1,2,1) :  1  (1,3,2) :  1  (1,4,1) :  1 

 (1,4,1) :  1  (1,6,1) :  1  (1,5,1) :  1 

 (1,6,1) :  1  (6,2,1) :  1  (1,7,1) :  1 

 (1,6,2) :  1  (6,3,1) :  1  (2,2,1) :  1 

    (6,7,1) :  1  (2,3,1) :  1 

       (2,5,1) :  1 

       (2,7,1) :  1 

         

6 (1,2,1) :  1 18 (1,3,1) :  1 30 (1,3,1) :  1 

 (1,3,1) :  1  (1,4,1) :  1  (1,4,1) :  1 
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 (1,4,1) :  1  (1,6,1) :  1  (1,6,1) :  1 

 (1,6,1) :  1  (6,2,1) :  1  (5,2,1) :  1 

    (6,4,1) :  1  (5,3,1) :  1 

    (6,7,1) :  1  (5,5,1) :  1 

         

7 (1,3,1) :  1 19 (1,3,1) :  1 31 (1,2,1) :  1 

 (1,4,1) :  1  (1,4,1) :  1  (1,3,1) :  1 

 (1,6,1) :  1  (1,6,1) :  1  (1,3,2) :  1 

 (5,3,1) :  1  (7,2,1) :  1  (1,7,1) :  1 

 (5,5,1) :  1  (7,6,1) :  1    

 (5,7,1) :  1  (7,7,1) :  1    

         

8 (1,3,1) :  1 20 (1,1,1) :  1 32 (1,3,1) :  1 

 (1,4,1) :  1  (1,3,1) :  1  (1,6,1) :  1 

 (1,7,1) :  1  (1,3,2) :  1  (1,7,1) :  1 

 (3,2,1) :  1  (1,3,3) :  1  (1,7,2) :  1 

 (3,5,1) :  1     (4,2,1) :  1 

 (3,6,1) :  1     (4,3,1) :  1 

       (4,7,1) :  1 

         

9 (1,3,1) :  1 21 (1,2,1) :  1 33 (1,3,1) :  1 

 (1,4,1) :  1  (1,3,1) :  1  (1,3,2) :  1 

 (1,5,1) :  1  (1,7,1) :  1  (1,6,1) :  1 

 (10,3,1) :  1  (2,3,1) :  1  (9,2,1) :  1 

 (10,5,1) :  1  (2,3,2) :  1  (9,3,1) :  1 

 (10,6,1) :  1     (9,7,1) :  1 

         

10 (1,2,1) :  1 22 (1,3,1) :  1 34 (1,1,1) :  1 

 (1,3,1) :  1  (1,3,2) :  1  (1,3,1) :  1 

 (1,3,2) :  1  (1,6,1) :  1  (1,3,2) :  1 

 (1,7,1) :  1  (2,1,1) :  1  (1,6,1) :  1 

    (2,2,1) :  1    

    (2,8,1) :  1    

         

11 (1,3,1) :  1 23 (1,1,1) :  1 35 (1,1,1) :  1 

 (1,3,2) :  1  (1,3,1) :  1  (1,3,1) :  1 

 (1,6,1) :  1  (1,3,2) :  1  (1,3,2) :  1 

 (2,2,1) :  1  (1,3,3) :  1  (1,6,1) :  1 

 (2,5,1) :  1       

 (2,5,2) :  1       

 (2,5,3) :  1       

         

12 (1,3,1) :  1 24 (1,1,1) :  1    

 (1,3,2) :  1  (1,2,1) :  1    

 (1,7,1) :  1  (1,2,2) :  1    
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 (9,2,1) :  1  (1,7,1) :  1    

 (9,6,1) :  1  (3,3,1) :  1    

 (9,7,1) :  1  (3,3,2) :  1    
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P Iceberg Drift Characteristics in the Barents Sea 1987 – 2005 

 

 
Figure 12 Iceberg drift charateristics in the Barents Sea 1987-2005 

 

Study of iceberg drift characteristics in the Barents 1987 – 2005.The figure illustrate iceberg 

trajectories from the year 2000 (left) and 2005 (right). The figures are based on different sources, 

thereby the different colors.  

(Keghouche, et al., 2010) 
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Q Iceberg occurrence in the Barents Sea 

 

 
Figure 13 Iceberg occurence in the Barents Sea 1987-2005 

 

Study of iceberg occurrence in the Barents Sea  "Probability (%) of encountering an iceberg within 

a year in the domain from 1987 to 2005 within a 25 × 25 km grid cell. The scale is logarithmic. 

The northern boundary of the model is shown by the thick gray line.” 

 (Keghouche, et al., 2010) 
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R Additional analysis  

Table 39 Additional analysis for faraway installations 

Location H Location I Location 

J 

Z* Hub b* h* Z* No 

Hub 

b* h* Decision 

80,30 74,36 71,15 9919 1 7 5304 1 1 No hub 

80,30 72, 15 71,50 9919 1 6 5304 1 1 No hub 

71,50 72,29 80,30 9919 1 1 5304 1 1 No hub 

 

 

 
Figure 14 Map over faraway installations for one of the additional analysis 



 

 

 

 


