
Analysis and Synthesis of Rope Rosettes

Sigrid Brevik Andersson

Master of Science in Computer Science

Supervisor: Theoharis Theoharis, IDI

Department of Computer and Information Science

Submission date: February 2016

Norwegian University of Science and Technology

i

Abstract
Creating rose rosettes and other similar interlace patterns is an old form of creative
expression. Rope rosettes is rooted in the seafaring tradition, where they were
made both for decoration, to protect the sailors from slipping on the deck and
to limit wear and tear of the wood. The creation of new patterns was quite
time-consuming with no guarantee of success.

In recent years, Nils Kristian Rossing at Trondheim Science Center has devel-
oped a method to analyze rope rosettes and describe them mathematically. His
approach is based on the Fourier analysis rooted in signal theory. With the new
mathematical description, rosette patterns can be synthesized easily. Rossing’s
work also includes extensive work in describing rosette properties and categoriz-
ing them, as well as studies on the impact of different parameters in the rosette
description.

Based on Rossing’s findings, the goal of this thesis is to build a software tool to
automatically analyze and synthesize rope rosettes. I name this tool Rosette Ana-
lyzer (RosAna), and it is built using the modern tools of Qt(C++) and OpenCV.
The tool has three distinct parts: image analysis to extract the rosette pattern;
Fourier analysis to determine the mathematical parameters; and pattern synthe-
sis.

i

ii

ii

iii

Sammendrag
Fletting av taurosetter og andre mønstre er en gammel kunst. Taurosetter har
sitt utspring i sjømannstradisjonen. En taurosett var for det første vakker å se
på, men ble også brukt for å hindre at sjømennene skled på det våte dekket og
redusere slitasje. Å lage nye rosettmønstre var en tidkrevende prosess, uten noen
garanti for suksess.

I nyere tid har Nils Kristin Rossing ved Trondheim Vitensenter utviklet en
metode for å analysere taurosetter og beskrive dem matematisk. Han baserer sin
metode på Fourieranalysen, hentet fra signalteori. Med Rossings matematiske
beskrivelse er det enkelt å tegne nye rosettmønstre. Rossing har også lagt ned
arbeide i å beskrive egenskapene ved taurosetter, samt kategoriseringen av disse.
Han har også studert sammenhengen mellom de matematiske parametrene og
taurosettens egenskaper.

Målet for masteroppgaven er å bygge et verktøy for rosettanalyse og syntese,
basert på Rossings resultater. Jeg kaller verktøyet Rosette Analyzer (RosAna),
og det er implementert i Qt(C++) og OpenCV. Verktøyet har tre distinkte sek-
sjoner: bildeanalyse av en taurosett for å avdekke det underliggende mønsteret;
fourieranalyse for å finne parametrene for den matematiske beskrivelsen; og møn-
stersyntese basert på resultatene fra fourieranalysen.

iii

iv

iv

v

Preface
This paper is written as a part of my Master thesis conducted at the Norwegian
University of Science and Technology (NTNU) in Trondheim. The time frame for
the masters thesis has been 21 weeks. The master project is the continuation of my
specialization project Analyzing rope rosettes using image processing techniques
(Andersson, 2015).

I wish to thank my main supervisor Theoharis Theoharis (Department of
Computer and Information Science (IDI), NTNU) and co-supervisor Nils Kris-
tian Rossing (Trondheim Science Center). A special thank you to Nils Kristian
for sharing his encyclopedic knowledge of rope rosettes and Fourier analysis code
with me. I would also like to thank the Visual Computing Group for technical
suggestions and ideas. An extra special thank you goes to my family for love and
support.

Sigrid Andersson
Trondheim, February 5, 2016

v

vi

vi

Contents

Abstract i

Sammendrag iii

Preface v

List of Illustrations xi
Algorithms . xi
Equations . xi
Figures . xi
Tables . xii

1 Introduction 1
1.1 Task specification . 2
1.2 Development tools . 2
1.3 Outline . 3

2 Background 5
2.1 Rope rosettes . 5

2.1.1 Properties . 6
2.1.2 Mathematical foundation 6
2.1.3 Fourier analysis . 8

2.2 Field overview . 9
2.2.1 Analysis of interlace patterns 10
2.2.2 Contour detection . 10

2.3 Previous work . 13

3 Implementation of RosAna 17
3.1 System description . 17

3.1.1 Rosette pattern tracing . 17

vii

viii CONTENTS

3.1.2 Fourier analysis . 17
3.1.3 Pattern synthesis . 19

3.2 Software architecture . 20
3.2.1 The MVC pattern . 21
3.2.2 Class interaction . 21

3.3 Automating parameter selection 22
3.3.1 Parameter selection . 22
3.3.2 Negative frequencies . 23

4 RosAna installation and user guide 25
4.1 Installation . 26
4.2 Usage . 26

4.2.1 RosAna input and output formats 28

5 Results 29
5.1 Rosette analysis . 29
5.2 Benchmarks . 31

5.2.1 Machine resource usage . 31
5.2.2 Fourier analysis runtime 31

6 Evaluation and conclusion 33
6.1 Contributions . 34
6.2 Future work . 34

Glossary 37
Abbreviations . 37
Nomenclature . 37
Software . 38
Symbols . 38

Bibliography 41
References . 41
Software . 43
Images . 44

A RosAna file list 45

B Rosette analysis results 47
B.1 Parameter adjustment . 47
B.2 Fourier plots . 48

viii

CONTENTS ix

C RosAna documentation 51

ix

x CONTENTS

x

List of Illustrations

Algorithms
3.1 Equidistant sample point calculation 18
3.2 Fourier analysis (X-values) . 19

Equations
2.1 Mathematical rosette pattern description 6
2.2 Fourier components . 8
2.3 Combining Fourier components 8
3.1 Calculate trace length . 18

Figures

2.1 Select interlace patterns . 5
2.2 Variations of the Turk’s head rosette 7
2.3 Rosettes and their properties . 8
2.4 Fourier analysis . 9
2.5 Results of rosette contour extraction, simple methods 14
2.6 Results of rosette contour extraction, advanced methods 15

3.1 Class diagram . 21
3.2 Signal-slot diagram . 22
3.3 Phase angles and quadrants . 24

4.1 RosAna start screen . 25
4.2 RosAna screenshots . 27

xi

xii ALGORITHMS

5.1 Analasis of selected rope rosettes 30
5.2 Plot of average run times . 32

B.1 Fourier analysis results for the Turk’s Head rosette 48
B.2 Fourier analysis results for the Closed Twist rosette 49
B.3 Fourier analysis results for the Open Twist rosette 49
B.4 Fourier analysis results for the Ratan rosette 50

Tables

3.1 Significant values of a twisted rosette 23
3.2 Phase values of a twisted rosette 24

5.1 Machine resource usage . 31
5.2 Average run time is ms . 32

A.1 RosAna file list . 45

B.1 Parameter results of Fourier analysis for selected rosettes 47

xii

Chapter 1

Introduction

Rope Rosettes and related interlace patterns can be found all over the world and
in many cultures (Grünbaum & Shephard, 1992; Gerdes, 2007; Yanagisawa &
Nagata, 2007).

The analysis of a Rope Rosette covers several disciplines; signal processing for
mathematical analysis, trigonometry for synthesis and craftsmanship for the final
production. In an effort to digitize such patterns and to simplify the process of
analysis, automatic pattern extraction would be useful. The use of image pro-
cessing techniques for rosette analysis was researched in my specialization project
(Andersson, 2015).

Rossing has developed a tool to perform rosette analysis using MATLAB R©.
Currently, his process is composed of several steps (Rossing & Krifel, 2003, ch.
9.3).

1. Trace a rosette onto a piece of transparent plastic

2. Place the plastic over the screen and trace the rosette onto MATLAB R©s
coordinate system

3. Run the MATLAB R© analyzer

4. Select number of components

5. Tweak parameters and synthesis using some other program (e.g. Winplot
etc)

1

2 CHAPTER 1. INTRODUCTION

1.1 Task specification
Goal Build a software application to analyze and synthesize Rope Rosettes.

The main goal is to make a unified software tool where image tracing, Fourier
analysis and pattern synthesis can be done within the same application.

Sub-goal Automatic parameter selection.
After a Fourier analysis in Rossing’s old tool, the user is left to make deci-
sions about some of the parameters for the mathematical description. Specif-
ically, deciding which frequencies to choose and whether a frequency in fact is
negative. Parameter selection places high demands on the user’s knowledge
of mathematical rosette analysis. Therefore it would be useful to obtain
automatic parameter selection in the new tool.

1.2 Development tools
Three main languages are used in image processing; MATLAB R©, Python and
C++. The latter two combined with the open source library OpenCV. Examples
of specifically geared programming languages are Halide (Ragan-Kelley et al.,
2012) and Diderot (Chiw, Kindlmann, Reppy, Samuels, & Seltzer, 2012). How-
ever, using a more widespread language seemed prudent to ensure portability and
simplify potential future development.

Previous work by Rossing and myself has been done in MATLAB R©. While
MATLAB R© and its Image Processing Tool Kit (IPTK) makes image analysis sim-
ple, it suffers from drawbacks in speed and portability (Mallick, 2015). Therefore,
it was decided that the new application should be developed in a new framework.

As summarized in (Mallick, 2015), and in the general opinion of the devel-
oper community, MATLAB R© and Python are mostly used for prototyping, while
C++ for actual application development. The choice of C++ is based on speed,
portability and ease of use with OpenCV.

To make the Graphical User Interface (GUI) of the application, the choice fell
on Qt, an open-source framework for cross-platform development. It natively sup-
ports C++, but has bindings to other languages as well (e.g. Python, Java)(The
Qt Company, 2015a). The open source visualization library OpenGL is also built
in with Qt.

1.3. OUTLINE 3

In summary, the tools of choice for this project are C++(4.8) with OpenCV(2.4)
and Qt(5.5), and documentation generated with Doxygen (van Heesch, 2015). In
addition, Figure 3.1 and Figure 3.2 was created using Visual Paradigm (Visual
Paradigm, 2016), and Figure 3.3 with GeoGebra (International GeoGebra Insti-
tute, 2016). This report was typeset with LATEX.

1.3 Outline
The remaining chapters are organized as follows. Chapter two gives an introduc-
tion of rope rosettes and their properties, and of the mathematical background. It
also contains an overview of the current state-of-arts for interlace pattern analysis
and a summary of current image processing techniques for contour extraction.
The implementation details for RosAna is given in chapter three, and the com-
pleted tool is presented in chapter four. Results of rosette analysis and RosAna
performance is given in chapter five with more details in Appendix B, followed by
evaluation and conclusion in chapter six. Glossary, bibliography and appendices
are included at the end.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter gives a brief overview of the technicalities and mathematical founda-
tions of rope rosettes. An overview of the field as it is today is provided, focusing
on scientific work done on rope rosettes and related types of patterns. Finally,
the findings in my specialization project (Andersson, 2015) is summarized.

2.1 Rope rosettes

(a) Kolam pattern,
Wikipedia Commons, 2012

(b) Celtic knot,
Wikipedia Commons, 2007

(c) Rattan rope rosette,
Rossing, 2012

Figure 2.1: Select interlace patterns

Rope rosettes comes in many forms. They have their foundations in the seafar-
ing tradition, and have many similarities with other traditional interlace patterns,
like the Sona patterns from Angola and neighboring regions, Kolam patterns from
South India and Celtic decorations, to mention a few (Rossing & Krifel, 2003, ch.
2).

5

6 CHAPTER 2. BACKGROUND

2.1.1 Properties
Rope rosettes have some important properties that can be exploited in the con-
struction of an analysis tool. Although it is possible to synthesize many different
patterns, some of these are hard or impossible to realize in rope form. As the goal
is to analyze physical rope rosettes, some simplifying assumptions can be made:
• Only a single run is required to trace the whole pattern. All line segments

are connected in one continuous line.

• Crossings are made at an approximate 90 degree angle. Each crossing in-
volves exactly two line segments.

• Crossings should not be too close, and ideally approximately equidistant.

• Which segment goes under and which goes over in a crossing is irrelevant.
As the first crossing is defined, all other crossings will alternate along the
path traced from the starting point.

• Rosettes are rotational symmetrical around the center. The symmetry is
based on the number of times the sub-pattern repeats.

2.1.2 Mathematical foundation
As discovered by Rossing, any rope rosette can be described by two periodic
functions with several components, one each for the x- and y-direction (Rossing,
2012). One can visualize the periodic functions as a series of rotating vectors,
connected end to end to each other. Each vector has a length, a direction of
rotation, a speed of rotation and a starting point. The visual properties of the
rosette can all be determined by analysis of the mathematical description, and
vice verse. These properties of the periodical functions and the rope rosettes and
how they are related to each other are summarized below. The mathematical
property is listed first, and the rosette property in bold italic font. A more
in-depth description can be found in (Rossing & Krifel, 2003, ch. 7, 9).

The mathematical description of a Rope Rosette is as follows; two periodical
equations, one for x- and one for y-direction. Following the convention of Rossing
and Krifel, they have the general form of Equation 2.1, where Ai is the amplitude
and fi the frequency of component i. Note that for some rosettes, the sines and
cosines might be switched in some components.

X = f(t) = A1 cos f1t+ A2 cos f2t+ . . . (2.1a)
Y = f(t) = A1 sin f1t+ A2 sin f2t+ . . . (2.1b)

2.1. ROPE ROSETTES 7

(a) Closed,
A1 = 1, A2 = 1.4

(b) Ring-shaped,
A1 = 1, A2 = 4

(c) Non-overlapping,
A1 = 1, A2 = 0.9

Figure 2.2: Variations of the Turk’s head rosette.
f1 = 1, f2 = 5 Images: Sigrid Andersson

Number of components Defines the order of the rosette.
Rosettes are categorized after their order, which is the minimum number of
Fourier components needed to describe the rosette. For instance, the Turk’s
head rosette is of order 2, and the Eye rosette of order 5. The concept of
order is not stringently defined, and should be seen more as a guide.

Amplitude Ai Defines the type of the rosette.
A rosette is one of three main types; closed and overlapping, open and ring-
shaped or non-overlapping. A rosette is closed if the bights encloses the
center, which makes the center hole very small or disappear. An open, ring-
shaped rosette lies as a ring around the center. A non-overlapping rosette
has bights which do not enclose the center. Figure 2.2 shows the different
types.

Frequency fi Defines the general shape of the rosette. Below follows some
descriptions of the specific frequency properties.

Pairwise frequency differences The bights of the rosette.
A bight is a loop on the outer edge. In this setting, a bight equals a sub-
pattern, such that the frequency differences are the number of sub-pattern
repetitions. See Figure 2.3.

Fundamental frequency The largest frequency, defining the rosette slotting.
The slotting is the number of strands crossing an imaginary straight line
from the rosette center, see Figure 2.3. Slotting is not well defined for a
non-overlapping rosette.

8 CHAPTER 2. BACKGROUND

Figure 2.3: Rosettes and their properties, (Rossing, 2012).

Base frequency The smallest, positive frequency, determining the skipping of
the rosette, that is how the sub-patterns are interconnected.
With a skipping factor of 1, each sub-pattern is connected to its direct
neighbors. With a skipping factor of 2, each sub-pattern is connected to its
second nearest neighbors, and so forth. The skipping factor is the same as
the number of circuits traced around the center before reaching the starting
point. Skipping is not well defined for higher order rosettes.

Due to the constraints of the task, the assumption is made that all relevant
frequencies are integers and equidistant, and amplitude values in x- and y-direction
are identical and positive for the same components (Axi == Ayi).

2.1.3 Fourier analysis
The basis of the mathematical analysis of rope rosettes is the Fourier analysis.
The formulas of interest are:

Am = 1
π

∫ 2π

0
f(t) sinmtdt (2.2a)

Bm = 1
π

∫ 2π

0
f(t) cosmtdt (2.2b)

Am sinmt+Bm cosmt = Cm sin(mt+ ϕ) (2.3)

where f(t) is the signal resulting from a trace of the rosette, Am andBm are Fourier
coefficients at frequency m, Cm =

√
A2
m +B2

m and ϕ is the phase displacement. A
detailed background on the mathematics in provided in (Rossing & Krifel, 2003,
ch. 9).

2.2. FIELD OVERVIEW 9

Figure 2.4: Fourier analysis, (Rossing, 2012).

Starting from a skeleton graph of a rosette, the Fourier analysis consists of the
following steps:

1. Trace the pattern once, plotting the projection in the x- and y-direction,
resulting in the signal f(t)

2. Solve Equation 2.2 for all integers within a given limit. Where the result
is significantly larger than zero, the frequency/amplitude pair is one of the
components of the rosette description.

3. Using the properties of trigonometry, Equation 2.1 can be written with only
sine or cosine components.

2.2 Field overview
Subsection 2.2.1 summarizes the work done on analysis of rope rosettes and related
interlace patterns, namely Sona, Celtic, Kolam, Nirosula, Oceania sand drawings,
patterns of ancient Egypt and Mesopotamia, Lunda/Liki patterns, Cantor, mir-
ror and meander patterns, Roman mosaic mazes and Islamic Laceria patterns.
Subsection 2.2.2 summarizes the research into image processing methods to de-
tect contours.

10 CHAPTER 2. BACKGROUND

2.2.1 Analysis of interlace patterns
Several tools exist to generate different interlacing patterns, including a Celtic
knot generator (Fung, 2007), a tool drawing a rosette with three vectors (HiB-
Mediesenteret, 2004) and (Browne, 2005) which generates more advanced patterns
out of simple ones, to mention some. Work has also been done in the digitaliza-
tion and representation of interlace patterns (Nagata, 2007), and of classification
of these patterns using a Cayley diagram (Grünbaum & Shephard, 1992). Ostro-
moukhov’s method analyzes interlace patterns utilizing user driven input to help
determine the pattern center and basic components of the pattern. Purkayasth,
Dingliana, and Stalley uses a regular grid to identify crossing points in a Celtic
pattern image, while Bhakar et al. extracts pattern components from textiles.

The closest tool that currently exists needs extensive user input to analyze
patterns (Ostromoukhov, 1998). Several of the methods mentioned above relies
on mirror symmetry. Rope rosettes contain circular symmetry, and benefits little
from previous work in this area.

2.2.2 Contour detection
Contour detection is a difficult task, and has thus spawned a wide field. The
many approaches has to deal with problems like noise, poorly defined edges,
shadows and highlights, and detection of contours that arise from optical illu-
sions. Pre-processing such as edge-preserving smoothing can alleviate some issues
with noise and textures. However, care needs to be taken when choosing the de-
tection method(s), as the different techniques are often tuned for a specific type
of problem. Below is a short overview of the field, partly based on the findings of
(Papari & Petkov, 2011) and (N. R. Pal & S. K. Pal, 1993).

Contour detection can be divided into roughly three different categories: (i)
region-oriented methods, which extract the boundaries of closed regions; (ii) edge
oriented methods, which directly extracts boundaries; and (iii) multiresolution
methods, which employs some variety of scale space. Within each category, a
given approach can be either local, global or hybrid. Local methods only take
into account the data that can be extracted from the close neighborhood, while
global methods consider much larger parts of an image. The global methods are
often applied on the results of a local method.

2.2. FIELD OVERVIEW 11

Region oriented methods

Region oriented contour extraction can be divided into the following categories:
thresholding, iterative methods, and surface techniques.

Thresholding is dividing an image into regions based most commonly on pixel
values. The selected threshold can be global, multivalued or locally adaptive. The
most well-known and extensively used thresholding method is Otsu’s method,
maximizing the class separability (Otsu, 1975). Iterative methods compute the
regions in several iterations. Region growing and watershed transforms fall into
this category, as well as the more advanced mean shift algorithm, which performs
gradient ascent on the combined spatial-range feature space (Comaniciu & Meer,
2002). Relaxation labeling uses probabilities to assign labels to pixels (Kittler
& Illingworth, 1985) but often gets stuck at local minima, while methods based
on Markov Random Fields (MRF) are stochastic in nature and more likely to
find global maxima. The usage of Neural Networks (NN) is another prominent
methodology that can take into account both shape and texture, extract contours,
cluster pixels and more. Egmont-Petersen, de Ridder, and Handels provides a re-
view of MRF methods (Egmont-Petersen et al., 2002). Surface based segmentation
is based on the idea of surface primitives: peak, pit, ridge, saddle ridge, valley,
saddle valley, flat and minimal (Besl & Jain, 1986). These can be connected
through region growing, spanning trees, clustering and differential geometry etc.

For multichannel images, all channels can be treated equally, or one or more
channel can be segmented using different techniques.

Edge oriented methods

Local edge-oriented techniques include differential operators, statistical methods,
energy and phase congruency analysis, morphological detectors and combinations
of these. Of the differential operators, the Laplacian looks for zero-crossings to
determine edges, the Sobel, Prewitt, Roberts and Beaudet operators looks for pix-
els matching a defined neighborhood, while the more advanced Canny operator
provides a more optimized filter as well as some ground rules for edge detec-
tion (Canny, 1986). Some methods also try fitting polynomials or splines (Chen,
1995) to the edge, often by minimizing the mean squared error of the distance.
The differential operators are all sensitive to noise. The statistical methods are
more robust, but have a higher computational load. Many approaches compare
two samples from different parts and directions in an image and computes the
dissimilarity between them. Other statistical methods evaluate the gradient dis-
tribution around each pixel, analyzing co-variance or co-occurrence matrices, or

12 CHAPTER 2. BACKGROUND

Eigenvalues and Eigenvector pairs. Analysis of phase congruency or local energy
includes Gabor filters, Gaussian derivatives and difference of Gaussians (Kovesi,
1999). They are based on the Fourier transform and extract salient points where
the decomposed Fourier components’ phases are in sync. Morphological detectors
uses ideas from morphology, namely the morphological gradient and extensions
of it (Trahanias & Venetsanopoulos, 1996). These are similar both to linear fil-
ters and to statistical analysis, and have a trade-of between fast computation and
robustness to noise and outliers. Several attempts have been made to unify two
or more of the techniques above, using different methods from machine learning
(Martin, Fowlkes, & Malik, 2004).

Global edge-oriented approaches can be grouped into three classes: (i) con-
tour saliency; (ii) pixel grouping; and (iii) active contours. To compute con-
tour saliency, the context around the detected points is taken into consideration.
Points that are co-linear are enhanced while all other points are suppressed (Li
& Gilbert, 2002). Popular approaches includes local averages, tensor voting and
probabilistic methods like relaxation labeling. Pixel grouping is guided by the
Gestalt principles (Wagemans et al., 2012), which are modeled on human per-
ception of proximity, continuation, closure and symmetry. These often take into
account the orientation of the detected edges and tries to connect them, as in ap-
plications for curvilinear extraction (Raghupathy & Parks, 2004). These methods
provide more useful results for object recognition, but the computational demands
are higher. Active contours, or snakes, are curves drawn around an object before
an energy function is minimized (Kass, Witkin, & Terzopoulos, 1988). The basic
snake can be extended to account for low contrast, noise and prior knowledge.

2.3. PREVIOUS WORK 13

2.3 Previous work
In the preparation of this thesis, I conducted a specialization project (Andersson,
2015). The focus was the investigation of different techniques for contour detec-
tion. The techniques tested were Canny edge detection (Canny, 1986), Otsu’s
method (Otsu, 1975), marker-based watershed transform (MathWorks, n.d.), re-
laxation labeling (Kittler & Illingworth, 1985), active contours (Kass et al., 1988)
and curvi-linear extraction (Raghupathy & Parks, 2004).

While the most methods were fairly successful at simple images, they all per-
formed very badly on images closer to real photos. Test results are shown below
for two images in Figure 2.5 and Figure 2.6. It is clear that no method yielded
good results on the real rosette photograph. Canny, Otsu and relaxation labeling
yielded fair results on the simple example. A detailed discussion can be found in
(Andersson, 2015, ch 4).

As an implication of the results below, the focus on this thesis has been on
building a complete tool with manual tracing, rather than automatic rosette pat-
tern extraction.

14 CHAPTER 2. BACKGROUND

Method Simple rosette1 Turk’s head photo2

Original

Canny

Otsu

Relaxation

Figure 2.5: Results of rosette contour extraction, simple methods
(Andersson, 2015).

Images: 1(Andersson, 2015), 2(Wikipedia Commons, 2013)

2.3. PREVIOUS WORK 15

Method Simple rosette1 Turk’s head photo2

Original

Watershed

Active contours

Curvi-linear

Figure 2.6: Results of rosette contour extraction, advanced methods
(Andersson, 2015)

Images: 1(Andersson, 2015), 2(Wikipedia Commons, 2013)

16 CHAPTER 2. BACKGROUND

Chapter 3

Implementation of RosAna

This chapter documents the implementation and architecture of a new analyzing
tool, named RosAna.

3.1 System description
RosAna is comprised of three main parts: i) rosette pattern tracing; ii) Fourier
analysis; and iii) pattern synthesis. In addition, there are some files solely for
Graphical User Interface (GUI) and some helper files. Lastly, two files were down-
loaded to provide plots and a link between OpenCV and Qt. Table A.1 lists the
corresponding files. More detail is provided in Section 3.2.

3.1.1 Rosette pattern tracing
As shown in my specialization project (Andersson, 2015), automatic rosette pat-
tern tracing is very difficult. The results are summarized in Section 2.3. None of
the investigated methods would yield acceptable results in a real world setting.
Therefore the decision was made to implement a simple hand trace only, using
mouse clicks. The trace is saved as a list of coordinate points in xData and yData.
When the trace is complete, the results are passed on for Fourier analysis.

3.1.2 Fourier analysis
The Fourier analysis is heavily based on Rossing’s previous version, implemented
in MATLAB R©. This subsection documents the contents of Rossing’s algorithm,
and Section 3.3 describes the steps taken to automate parameter selection.

17

18 CHAPTER 3. IMPLEMENTATION OF ROSANA

Algorithm 3.1 Equidistant sample point calculation
Require: x, y, z in xData, yData, zData
Ensure: j ≯ numberOfSamplePoints

1: step = tracelength/NFFT
2: j = 1
3: for i = 0 to NFFT-1 do
4: if i ∗ step > zj then . Keep track of old sample points
5: j = j + 1
6: end if
7: if zj − zj−1 == 0 then . 0 distance between sample points
8: j = j + 1
9: else . Interpolate new points

10: xNewi = (xj−xj−1)
(zj−zj−1) ∗ (i ∗ step− zj−1) + xj−1

11: yNewi = (yj−yj−1)
(zj−zj−1) ∗ (i ∗ step− zj−1) + yj−1

12: end if
13: end for
14: return List of x- and y-coordinates (xNew and yNew)

Data adjustments

In preparation for the Fourier transform, xData and yData are subject to a number
of adjustments. First the coordinates are normalized to the range [0, 1]. All x-
coordinates are scaled by a factor of 1.337 to get the correct relation between
the axes. Then an estimate of the trace length is calculated using a rearranged
Pythagoras formula (Equation 3.1), which results are saved in variable zData.

zi+1 =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + zi (3.1)

where xi, yi, zi are the i-th entries of xData, yData and zData respectively.
The range of all coordinates are then adjusted to be centred around 0 by

subtracting the mean. Between all sample points, intermediate equidistant points
are calculated as by Algorithm 3.1, where xj, yj, zj are the j-th entries of xData,
yData and zData respectively. The variable tracelength corresponds to the total
length of the pattern trace, and variable NFFT corresponds to the number of data
points for the Fourier analysis. This concludes the preparation phase. xNew and
yNew are lists of coordinates to be used in the Fourier analysis.

3.1. SYSTEM DESCRIPTION 19

Algorithm 3.2 Fourier analysis (X-values)
Require: xNew

1: for all points xp in xNew do
2: FFT = Fourier(xp) . Format: FFT = a+ bi
3: amplitudes] abs(FFT)/

√
NFFT . abs(FFT) =

√
a2 + b2

4: phases] angle(FFT) . angle(FFT) = tan− 1(b, a)
5: end for
6: return amplitudes sorted in decreasing order, keep the order in indexes
7: return phases

Fourier analysis

The Fourier analysis consists of several steps, where all steps are performed in both
x- and y-direction (using xNew and yNew). The x- and y-direction calculations
are independent of each other. The steps for xNew are shown in Algorithm 3.2,
where FFT is the result of the Fourier transform, amplitudes and phases are the
magnitude and phase angles of the Fourier transform.

3.1.3 Pattern synthesis
Using the values found in the Fourier analysis (see Table 3.1), a synthesized
pattern can now be constructed, with the Rosette pattern description given by
Equation 2.1, repeated below for convenience. Equation 2.1 is the standard equa-
tion form, however the trigonometric functions may be changed between sines and
cosines. The parameters Ai and fi are the amplitude and frequency of the i-th
row of the final two columns in Table 3.1. The plot is drawn using qcustomplot.

X = f(tx) = A1 cos(f1t) + A2 cos(f2t) + A3 cos(f3t) + . . .

Y = f(ty) = A1 sin(f1t) + A2 sin(f2t) + A3 sin(f3t) + . . .
(Equation 2.1 revisited)

20 CHAPTER 3. IMPLEMENTATION OF ROSANA

3.2 Software architecture
An overview of the RosAna is shown in Figure 3.1. See also Table A.1 for an
overview of project files.

MainWindow Main class of the RosAna. It initializes the other classes, holds
the main window GUI and sets up the model and signal/slots. User actions
are initiated from MainWindow.

ProcessWidget GUI for image display and tracing. Image is displayed using
cvimagewidget.1 Has the capability of recording a rosette pattern trace,
sending the results to FourierAnalysis when complete. Trace data can be
saved to file.

FourierAnalysis Performs the Fourier analysis on sampled data. Displays the
results to user using FourierDisplayWidget and creates a new model to be
displayed in DrawWidget.

DrawWidget Draws the rosette pattern plot determined by the model, using
qcustomplot.2 Also holds the GUI of VariableAdjustWidget. Rosette pat-
tern plot can be saved to file.

VariableAdjustWidget Provides a GUI for the user to view and edit parame-
ters for the Rosette pattern description. Pattern parameters can be saved
to file.

LoadExampleDialog The GUI for the user to load an example rosette pat-
tern to display in DrawWidget. Loads the data read by ReadExampleFile,
sending them to MainWindow to build a model.

ReadExampleFile Reads a file of example rosette pattern parameters. The file
is on the format name, Ai, fi,

HelpDialogWidget Provides the user with some rosette theory, usage guide for
RosAna, and author and licence information.

1Mottalli, 2012.
2Eichhammer, 2015.

3.2. SOFTWARE ARCHITECTURE 21

Figure 3.1: RosAna: Class diagram showing the most important relations and
functions. Note that gray classes are external

3.2.1 The MVC pattern
Many classes need to access or write the values of a Rosette pattern description.
To facilitate this, the implementation uses the Model-View-Controller (MVC)
pattern. Pattern parameters are stored in a Model, specifically a QStandardItem-
Model. DrawWidget is a pure View class, only displaying data from the model.
The Controllers are FourierAnalysis and MainWindow, both of which creates
new models based on either Fourier analysis results or the values loaded from
the example file. Lastly, VariableAdjustWidget can both View and Control the
model data.

3.2.2 Class interaction
In Qt, class interaction is handled through a system of signals and slots. All
signals are public, and can be compared to events. Slots can be public or private,
and is analogous to a listener. Figure 3.2 shows the most important signal-slot
interactions. In addition to those shown, there are more private slots that are
used internally in the classes, particularly in MainWindow. Class interaction due
to Model-View-Controller is not shown in Figure 3.2.

22 CHAPTER 3. IMPLEMENTATION OF ROSANA

Figure 3.2: RosAna: Signal-slot diagram showing class interaction

3.3 Automating parameter selection
In Rossing’s old Fourier analyser, some parameter selection and tweaking was
done by hand. This section focuses on the selection of the number of components
and the determination of which vectors (if any) had an opposite rotation. This is
represented by negative frequencies.

3.3.1 Parameter selection
The frequency/amplitude pairs (fi, Ai) of the x- and y-direction are sorted based
on decreasing amplitude values. Each frequency/amplitude pair is compared to
the following criteria until a pair fails.

1. fxi == fyi

2. Axi ≥ threshold && Ayi ≥ threshold (set to 0.5 in the current implemen-
tation).

The final amplitude value is the average of x- and y-direction. Only the fre-
quency/amplitude pairs that meet the criteria above are used for the rosette de-
scription. The remaining amplitudes are set to 0. Table 3.1 shows values obtained
when analysing a twisted rosette.

3.3. AUTOMATING PARAMETER SELECTION 23

X Y Final

fxi Axi fyi Ayi fi Ai

1 6.64 1 6.27 1 6.46

7 5.44 7 5.35 7 5.39

5 1.66 5 1.34 5 1.50

13 0.76 13 0.68 13 0.72

6 0.46 11 0.32 0 0

19 0.30 0 0.30 0 0

.

Table 3.1: The most significant parameter values for a twisted rosette, including
the resulting frequency and amplitude values. fi and Ai denote frequency and

amplitude, respectively.

3.3.2 Negative frequencies
A Rope Rosette pattern description can be visualized using a series of rotating
vectors connected end to end (Rossing, 2012), with amplitude as vector length
and frequency as vector rotation. In general, frequencies are positive, denoting a
counter-clockwise (CCW) rotation. However, clockwise (CW) rotation is some-
times used, represented by using a negative frequency.

Due to the nature of magnitude computation, all frequencies show up as pos-
itive. By examining the phase values, the rotation direction can be determined.
Each phase is placed in a quadrant of the unity circle (Figure 3.3). If the quadrant
Xi is CCW from the quadrant of Yi, the frequency is positive and the vector rota-
tion is CCW. Otherwise, the frequency is negative with CW rotation. Table 3.2
summarizes the steps mentioned above for the twisted rosette.

24 CHAPTER 3. IMPLEMENTATION OF ROSANA

Figure 3.3: Phase angles and quadrants. The values are taken from Table 3.2
where Xi and Yi refers to the i-th row. Xs are marked by • and Ys are marked

with x. Corresponding pairs are linked with 99K99K99K.

x-phase y-phase x-quadrant y-quadrant Frequency

1 44.24 313.54 1 4 1 (CCW)

2 130.32 41.56 2 1 7 (CCW)

3 216.67 323.64 3 4 -5 (CW)

4 42.44 303.32 1 4 13 (CCW)

Table 3.2: Phase values and their responding quadrants of a twisted rosette.
Column 5 shows the changes to the frequencies.

Chapter 4

RosAna installation and user
guide

The tool is named RosAna, from Rosette Analyzer. It comes preloaded with one
example image, a four bight Turk’s head, courtesy of Wikipedia Commons (2013).
Figure 4.1 shows the start screen.

Figure 4.1: RosAna start screen

25

26 CHAPTER 4. ROSANA INSTALLATION AND USER GUIDE

4.1 Installation
Running RosAna and further development requires the installations of Qt and
OpenCV. See http://doc.qt.io/qt-5/supported-platforms.html for further infor-
mation pertaining to the specific development operation system.

4.2 Usage
Currently, there are two modes available; Process and Synthesize. Pattern tracing
is done in Process mode, as shown in Figure 4.2a. This includes initiation of the
Fourier analysis, where the results are shown as in Figure 4.2b. Pattern synthesis
is done in Synthesis mode, see Figure 4.2c, where also example rosettes can be
loaded (Figure 4.2d). The following actions are available in RosAna:

Open image Ctrl+o RosAna currently accepts images on
the formats .xpm, .jpg, and .png.

Save image Ctrl+s Saves the current trace in Process
mode, or the plot and optionally the
Rosette pattern description parame-
ters if in Synthesize mode.

Begin trace Ctrl+t Initiate user led trace of the current
rosette image. Each mouse click’s
position is recorded. This option is
inactive in Synthesis mode.

End trace Enter End the current rosette trace and ini-
tiate Fourier analysis. Has no effect
if no trace is in progress. The Fourier
analysis results are displayed in its
own window and RosAna is set in
synthesize mode.

Load example Ctrl+l Load example rosette in synthesize
mode. Currently there are six exam-
ple rosettes available; 7-bight Turk’s
Head, 6-bight Twist, 6-bight Double
Bow, 6-bight Eye, and 8- and 10-
bight Alternating Eye.

http://doc.qt.io/qt-5/supported-platforms.html

4.2. USAGE 27

Help & about F1 Open the Help and About dialog.
The dialog includes basic rosette the-
ory, this usage guide and credit and
licensing information.

(a) RosAna, tracing a rosette (b) RosAna, Fourier analysis result

(c) RosAna, synthesize mode (d) RosAna, load example rosettes

Figure 4.2: RosAna screenshots

In addition, the following shortcuts are available:

28 CHAPTER 4. ROSANA INSTALLATION AND USER GUIDE

Alt+p Switch to Process mode

Alt+s Switch to Synthesize mode

Ctrl+m Maximize window

Ctrl+Shift+m Normal size window

Esc Escape dialog (if applicable)

Alt+F4 Exit application

4.2.1 RosAna input and output formats
RosAna reads input from a file of example rosettes, and write output on request to
two .txt files. By following the formats as described below, new example rosettes
can be added to exampleValues.txt. Note that spaces, commas and line breaks
are important. . . . and ... are purely for visualization.

Example rosettes
name, a1, f1, a2, f2, . . .
name, a1, f1, a2, f2, . . .
...

where name is the name of the rosette, and ai, fi the Rosette pattern de-
scription parameters.

Saved pattern trace
x1, y1
x2, y2
..., ...

where xi, yi are the normalized coordinates for each trace point.

Saved parameters a1, f1, a2, f2, . . .
where ai, fi are the Rosette pattern description parameters.

Chapter 5

Results

To test the performance of RosAna, two types of tests were executed. Rosette
analysis was run on select rope rosettes, the results are in Section 5.1. Some
benchmarks were also computed, namely machine resource use and Fourier anal-
ysis runtime (see Section 5.2).

5.1 Rosette analysis
The performance of RosAna was tested using several different rosettes. Figure 5.1
shows the results for four different rosettes; Turk’s head, Closed Twist, Open Twist
and Ratan. The second column displays the plot results after analysis. Column
three displays the plots after small parameter adjustment. Nearly all adjustments
were either a) negative frequencies; b) negative amplitudes; or c) adding more
parameters. Option c) consisted of adding parameters that were left out in the
parameter selection. The added values were based on the Fourier analysis results
as seen in Figure 4.2b. The Fourier results and parameters from Figure 5.1 can
be found in Appendix B.

1Wikipedia Commons, 2013.
2Wikipedia Commons, 2008.
3Andersson, 2015.
4Rossing, 2012.

29

30 CHAPTER 5. RESULTS

Original Fourier analysis Adjusted

Figure 5.1: Analysis of selected rope rosettes.
Top to bottom: Turk’s head1, Closed Twist2, Open Twist3 and Ratan4.

Parameter values are in Appendix B

5.2. BENCHMARKS 31

5.2 Benchmarks
Testing the performance of RosAna was done in two areas; machine resource and
runtime for the Fourier analysis.

All test were performed on a Lenovo E550 ThinkPad running Linux Mint 17.2
Rafaela. The machine sports an Intel R© CoreTM i7-5500U CPU 2.40GHz processor
and has 8 GB of RAM.

5.2.1 Machine resource usage

Resource statistics were gathered ev-
ery second using ps aux in the terminal.

Statistics were recorded during a
typical run of RosAna; opening a new
image, image tracing, Fourier analysis,
pattern synthesis and saving the trace,
plot and parameters to file.

CPU RAM

Average 1,31% 1,05%

Peak 3,9% 2,9%

Table 5.1: Machine resource usage

5.2.2 Fourier analysis runtime
The most computationally heavy section of RosAna is the Fourier analysis. To
test the performance, Fourier analysis was tested with 3, 10, 50, 100, 250, 500,
1000, 1500 and 2000 sample points. For each set of sample points, 100 runs were
made, without displaying graphics. The results can be found in Table 5.2 and
Figure 5.2.

32 CHAPTER 5. RESULTS

Figure 5.2: Plot of average run times, see Table 5.2

Average runtime (100 runs)

points Time

3 0,05 ms

10 0,04 ms

50 0,06 ms

100 0,05 ms

250 0,04 ms

500 0,04 ms

1000 0,07 ms

1500 0,07 ms

2000 0,07 ms

Table 5.2: Average run time is ms

Chapter 6

Evaluation and conclusion

RosAna works fairly well. While simple, manual pattern tracing is robust as to
image quality and rosette complexity. The Fourier analysis successfully shows
which Rosette pattern description parameters are important. The discrepancy
between the original and the synthesized rosettes are caused when automatic
parameter selection fails. After studying the values of Section B.1, three causes
for failure can be determined. It is to be noted that the adjustments made to
correct the parameters were fairly simple.

Frequency selection does not extract all the important frequencies. Studying
the results in Section B.2, frequency selection fails when the Fourier results are
different in x- and y-direction. This is likely due to non-perfect rosettes, as a
rosette made of rope is not likely to be perfectly symmetrical. This could be
mitigated by allowing more user input in the analysis process.

Detection of negative frequencies does work some times, as with the Closed
Twist rosette. The method of Subsection 3.3.2 was developed from values gained
from Rossing’s Fourier analyzer. It is therefore possible that RosAna’s values are
different and the method needs some calibration.

The final failure point is the identification of negative amplitudes. Currently,
there is no good way of identifying the negative amplitudes. More work is needed
in this area.

The most prominent point of failure was identification of negative amplitudes.
This was expected, as no such method has been implemented. Disregarding errors
due to negative frequencies, three of the rosettes were synthesized correctly. The
Ratan rosette had additional errors due to key frequencies not being selected.

When it comes to performance, the results from RosAna are good. Machine
resource usage remains low, even on peak demand. Average runtime is extremely
low even for a significant number of sample points, running at max 0,07 ms. In

33

34 CHAPTER 6. EVALUATION AND CONCLUSION

fact, average run times are most likely inaccurate, due to limitations in the timer
accuracy. However, for normal usage of RosAna, the number of sample points is
not likely to exceed 200, nor is it needed to make the analysis more accurate.

RosAna has some limitations. All possible rosettes are not describable in
RosAna, as it does not allow for different Ai values in x- and y-direction. Example
rosettes cannot deviate from the standard description of Equation 2.1, specifically
the trigonometric functions. Rosette pattern extraction is limited to hand-trace
only.

6.1 Contributions
In this thesis, I have presented an integrated tool to analyze and synthesize rope
rosettes. To my knowledge, no other such tool exists. Rope rosette description and
theory has been gathered in this thesis based on Rossing’s previous work (Rossing
& Krifel, 2003; Rossing, 2012). The procedure of his Fourier analysis has been
documented. The Fourier analysis is not specific for rope rosettes, and can be
applied to any problem with some form of signal processing. Some extensions to
the mathematical theory has been made, although they are not perfect.

6.2 Future work
RosAna has several areas for improvement and added features. Some points are
highly mathematical in nature.

Automatic pattern extraction As of today, RosAna does not extract rosette
patterns automatically. The vision is for RosAna to do pattern extraction
automatically, using image processing techniques. Possible difficulties in-
clude dealing with texture, shadows and poor image quality.

Rosette description mathematics More work is needed on Rosette pattern
description parameter selection, specifically in identifying negative ampli-
tudes and making frequency selection more robust. Currently, there is no
mathematical theory on how to identify a negative amplitude.

3D model Synthesizing the rosette pattern as a 3D model, possibly including
texture. This also include determining the crossing points of the rosette to
properly offset the ropes of the model.

6.2. FUTURE WORK 35

Simple user interface Enable the user to select properties like rosette type,
slotting, skipping and the number of bights and calculate Rosette pattern
description parameters from that.

Pattern instructions A new feature for users to realize the rosette with rope.
These instructions may include: i) indicating on the pattern if the rope goes
over or under on each crossing; and ii) determination of rope length and
rope thickness based on the size of the rosette and the number of runs.

3D printer Integrating the tool with 3D printing software. Printing rope rosettes
have already been accomplished by Regueiro (Regueiro, 2012).

36 CHAPTER 6. EVALUATION AND CONCLUSION

Glossary

Abbreviations
CCW counter-clockwise.

CPU Central Processing Unit.

CW clockwise.

GB GigaBytes.

GHz GigaHertz.

GUI Graphical User Interface.

IDI Department of Computer and Information Science.

IPTK Image Processing Tool Kit.

MVC Model-View-Controller.

NTNU Norwegian University of Science and Technology.

RAM Random Access Memory.

RosAna Rosette Analyzer.

37

38 Software

Nomenclature
Model-View-Controller Design pattern in software architecture.

Rope Rosette A type of circular mat made of rope laid out in a specific pattern.

Rope Rosette Analyzer The software tool developed by Andersson as a Mas-
ters thesis. This document contains documentation of the tool.

Rosette pattern description the parameters Ai and fi the describes a rosette
pattern according to Equation 2.1.

Software
C++ Programming language ∼ Standard C++ Foundation (2016).

Doxygen A tool for generating documentation from annotated sources ∼ van
Heesch (2015).

GeoGebra mathematical visualization tool ∼ International GeoGebra Institute
(2016).

Image Processing Tool Kit Image processing algorithms for MATLAB R©.

LATEX typesetting software ∼ Lamport (1994).

MATLABR© Scientific programming language and editor ∼ Mathworks (2016).

OpenCV Programming library for image processing and computer vision Origi-
nally made for C++ but can also be used with Python. ∼ itseez (2016).

Python Programming language ∼ Python Software Foundation (2016).

Qt GUI framework for cross-platform application development ∼ The Qt Com-
pany (2015b).

Visual Paradigm tool to draw UML figures ∼ Visual Paradigm (2016).

Winplot A Windows program to plot graphs ∼ Parris (2012).

Symbols 39

Symbols
Ai Amplitude of the i-th component.

Axi Amplitude of the i-th component in the x-direction.

Ayi Amplitude of the i-th component in the y-direction.

] Add to set.

fi Frequency of the i-th component.

fxi Frequency of the i-th component in the x-direction.

fyi Frequency of the i-th component in the y-direction.

40 Symbols

Bibliography

References
Andersson, S. (2015). Analyzing rope rosettes using image processing techniques

(specialisation thesis, Norwegian University of Science and Technology). Un-
der the supervision of Theoharis Theoharis, IDI, NTNU.

Besl, P. J. & Jain, R. C. (1986). Invariant surface characteristics for 3d object
recognition in range images. Computer vision, graphics, and image process-
ing, 33 (1), 33–80.

Bhakar, S., Dudek, C. K., Muise, S., Sharman, L., Hortop, E., & Szabo, F. (2004).
Textiles, patterns and technology: digital tools for the geometric analysis of
cloth and culture. Textile: The Journal of Cloth and Culture, 2 (3), 308–327.

Browne, C. (2005). Cantor knots. Computers & Graphics, 29 (6), 998–1003.
Canny, J. (1986). A computational approach to edge detection. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, (6), 679–698.
Chen, G. (1995). Edge detection by regularized cubic b-spline fitting. Systems,

Man and Cybernetics, IEEE Transactions on, 25 (4), 636–643.
Chiw, C., Kindlmann, G., Reppy, J., Samuels, L., & Seltzer, N. (2012). Diderot:

a parallel DSL for image analysis and visualization. In Acm sigplan notices
(Vol. 47, 6, pp. 111–120). ACM.

Comaniciu, D. & Meer, P. (2002). Mean shift: a robust approach toward feature
space analysis. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 24 (5), 603–619.

Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with
neural networks—a review. Pattern recognition, 35 (10), 2279–2301.

Fung, K. (2007). Celtic knot generator. BSc (Hons) thesis, University of Bath.
Gerdes, P. (2007). African sona, mirror curves and lunda-designs. Forma, 22 (1),

129–131.
Gonzalez, R. C. (2009). Digital image processing. Pearson Education India.

41

42 BIBLIOGRAPHY

Grünbaum, B. & Shephard, G. (1992). Interlace patterns in islamic and moorish
art. Leonardo, 331–339.

Ji, L. & Yan, H. (2002). Robust topology-adaptive snakes for image segmentation.
Image and Vision Computing, 20 (2), 147–164.

Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models.
International journal of computer vision, 1 (4), 321–331.

Kittler, J. & Illingworth, J. (1985). Relaxation labelling algorithms—a review.
Image and Vision Computing, 3 (4), 206–216.

Kovesi, P. (1999). Image features from phase congruency. Videre: Journal of com-
puter vision research, 1 (3), 1–26.

Li, W. & Gilbert, C. D. (2002). Global contour saliency and local colinear inter-
actions. Journal of neurophysiology, 88 (5), 2846–2856.

Mallick, S. (2015). OpenCV(C++ vs Python) vs MATLAB for Computer Vision.
Retrieved January 11, 2016, from http://www.learnopencv.com/opencv-c-
vs-python-vs-matlab-for-computer-vision/

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect natural
image boundaries using local brightness, color, and texture cues. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 26 (5), 530–549.

Nagata, S. (2007). Digitalization and analysis of traditional cycle patterns in the
world, and their contemporary applications. Forma, 22 (1), 119–126.

Ostromoukhov, V. (1998). Mathematical tools for computer-generated ornamental
patterns. Electronic Publishing, Artistic Imaging, and Digital Typography,
193–223.

Otsu, N. (1975). A threshold selection method from gray-level histograms. Auto-
matica, 11 (285-296), 23–27.

Pal, N. R. & Pal, S. K. (1993). A review on image segmentation techniques.
Pattern recognition, 26 (9), 1277–1294.

Papari, G. & Petkov, N. (2011). Edge and line oriented contour detection: state
of the art. Image and Vision Computing, 29 (2), 79–103.

Purkayasth, S., Dingliana, J., & Stalley, R. (2014). A new approach to analysis of
interlace in the book of kells.

Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S. P., & Durand,
F. (2012). Decoupling algorithms from schedules for easy optimization of
image processing pipelines. ACM Trans. Graph. 31 (4), 32. Retrieved from
http://people.csail.mit.edu/jrk/halide12/

Raghupathy, K. & Parks, T. W. (2004). Improved curve tracing in images. In
Icassp.

http://www.learnopencv.com/opencv-c-vs-python-vs-matlab-for-computer-vision/
http://www.learnopencv.com/opencv-c-vs-python-vs-matlab-for-computer-vision/
http://people.csail.mit.edu/jrk/halide12/

SOFTWARE 43

Regueiro, M. D. (2012). Mathematical art galleries - manuel diaz regueiro.
Retrieved January 25, 2016, from http : / / gallery . bridgesmathart . org /
exhibitions/2012-bridges-conference/mdregueiro

Rossing, N. K. (2012). How to make rope mats and rosettes.
Rossing, N. K. & Krifel, C. (2003). Matematisk beskrivelse av taumatter (2nd ed.).

NTNU-trykk.
Sargin, M. E., Altinok, A., Rose, K., & Manjunath, B. (2007). Tracing curvilinear

structures in live cell images. In Image processing, 2007. icip 2007. ieee
international conference on (Vol. 6, pp. VI–285). IEEE.

Steger, C. (1998). An unbiased detector of curvilinear structures. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 20 (2), 113–125.

The Qt Company. (2015a). LanguageBindings. Retrieved January 11, 2016, from
http://wiki.qt.io/Category:LanguageBindings

Trahanias, P. E. & Venetsanopoulos, A. N. (1996). Vector order statistics op-
erators as color edge detectors. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 26 (1), 135–143.

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh,
M., & von der Heydt, R. (2012). A century of gestalt psychology in visual
perception: i. perceptual grouping and figure–ground organization. Psycho-
logical bulletin, 138 (6), 1172.

Wang, L., Assadi, A. H., & Spalding, E. (2008). Tracing branched curvilinear
structures with a novel adaptive local pca algorithm. In Ipcv (pp. 557–563).

Yanagisawa, K. & Nagata, S. (2007). Fundamental study on design system of
kolam pattern. Forma, 22 (1), 31–46.

Software
Eichhammer, E. (2015). QCustomPlot. Retrieved January 13, 2016, from http:

//www.qcustomplot.com/
HiB-Mediesenteret. (2004). Rosettverksted. Retrieved June 29, 2015, from http:

//www.matemania.no/matemania_m/verksted_rosett2/index.html
International GeoGebra Institute. (2016). GeoGebra - Dynamic Mathematics for

Everyone. Retrieved January 20, 2016, from https://app.geogebra.org/
itseez. (2016). OpenCV. Retrieved January 11, 2016, from http://opencv.org/
Lamport, L. (1994). LATEX. Addison-wesley.
MathWorks. (n.d.). Marker-controlled watershed segmentation. Retrieved June

29, 2015, from http://se.mathworks.com/help/images/examples/marker-
controlled-watershed-segmentation.html

http://gallery.bridgesmathart.org/exhibitions/2012-bridges-conference/mdregueiro
http://gallery.bridgesmathart.org/exhibitions/2012-bridges-conference/mdregueiro
http://wiki.qt.io/Category:LanguageBindings
http://www.qcustomplot.com/
http://www.qcustomplot.com/
http://www.matemania.no/matemania_m/verksted_rosett2/index.html
http://www.matemania.no/matemania_m/verksted_rosett2/index.html
https://app.geogebra.org/
http://opencv.org/
http://se.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html
http://se.mathworks.com/help/images/examples/marker-controlled-watershed-segmentation.html

44 BIBLIOGRAPHY

Mathworks. (2016). MATLAB - The Language of Technical Computing. Retrieved
January 11, 2016, from http://se.mathworks.com/products/matlab/

Mottalli, M. (2012). Integrating OpenCV in Qt GUI applications. Retrieved Jan-
uary 13, 2016, from http://develnoter.blogspot.no/2012/05/integrating-
opencv-in-qt-gui.html

Parris, R. (2012). Winplot for Windows 95/98/ME/2K/XP/7. Retrieved January
13, 2016, from http://math.exeter.edu/rparris/winplot.html

Python Software Foundation. (2016). Python. Retrieved January 11, 2016, from
https://www.python.org/

Standard C++ Foundation. (2016). Standard C++. Retrieved January 11, 2016,
from https://isocpp.org/

The Qt Company. (2015b). Qt. Retrieved January 11, 2016, from http://www.
qt.io/

van Heesch, D. (2015). Doxygen. Retrieved February 4, 2016, from http://www.
stack.nl/~dimitri/doxygen/

Visual Paradigm. (2016). Visual Paradigm - Free UML Software Design Tool. Re-
trieved January 20, 2016, from http://www.visual-paradigm.com/solution/
freeumldesigntool/

Images
Stardock Design. (2009). WinCustomize - MyColors"Think Green". Retrieved Jan-

uary 27, 2016, from http://www.wincustomize.com/explore/screenshots/
24848/

Wikipedia Commons. (2007). Image of celtic knot. Retrieved June 29, 2015, from
https://commons.wikimedia.org/wiki/Category:Celtic_knots?uselang=
nb#/media/File:Celtic-knot-insquare-transp.png

Wikipedia Commons. (2008). Fancy work platting. Retrieved July 1, 2015, from
https://commons.wikimedia.org/wiki/File :Fancy-Work-Platting- 6x4_
Original.JPG

Wikipedia Commons. (2012). Image of kolam pattern. Retrieved June 29, 2015,
from https://commons.wikimedia.org/wiki/File:Kolam-Attur_town-2012-
Salem-Tamil_Nadu-11.JPG

Wikipedia Commons. (2013). Bonnet turc. Retrieved July 1, 2015, from https://
commons.wikimedia.org/wiki/File:Bonnet_Turc_3x4_%C3%A0_plat.jpg

http://se.mathworks.com/products/matlab/
http://develnoter.blogspot.no/2012/05/integrating-opencv-in-qt-gui.html
http://develnoter.blogspot.no/2012/05/integrating-opencv-in-qt-gui.html
http://math.exeter.edu/rparris/winplot.html
https://www.python.org/
https://isocpp.org/
http://www.qt.io/
http://www.qt.io/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.visual-paradigm.com/solution/freeumldesigntool/
http://www.visual-paradigm.com/solution/freeumldesigntool/
http://www.wincustomize.com/explore/screenshots/24848/
http://www.wincustomize.com/explore/screenshots/24848/
https://commons.wikimedia.org/wiki/Category:Celtic_knots?uselang=nb#/media/File:Celtic-knot-insquare-transp.png
https://commons.wikimedia.org/wiki/Category:Celtic_knots?uselang=nb#/media/File:Celtic-knot-insquare-transp.png
https://commons.wikimedia.org/wiki/File:Fancy-Work-Platting-6x4_Original.JPG
https://commons.wikimedia.org/wiki/File:Fancy-Work-Platting-6x4_Original.JPG
https://commons.wikimedia.org/wiki/File:Kolam-Attur_town-2012-Salem-Tamil_Nadu-11.JPG
https://commons.wikimedia.org/wiki/File:Kolam-Attur_town-2012-Salem-Tamil_Nadu-11.JPG
https://commons.wikimedia.org/wiki/File:Bonnet_Turc_3x4_%C3%A0_plat.jpg
https://commons.wikimedia.org/wiki/File:Bonnet_Turc_3x4_%C3%A0_plat.jpg

Appendix A: RosAna file list

Function File (.cpp & .h) Responsibility
Pattern tracing processwidget Record pattern tracing
Fourier analysis fourieranalysis Analyse trace and display

results
Pattern synthesis drawwidget Display rosette patterns
GUI fourierdisplaywidget Display Fourier analysis re-

sults
helpdialogwidget Display help and about in-

formation
loadexampledialog Select example rosette
mainwindow GUI and setup of the main

application window
variableadjustwidget Adjust rosette parameters

Helper code delegate GUI settings for
variableadjustwidget

main Main application loop
readexamplefile Read examples from file

External code cvimagewidget Provide link between
OpenCV and Qt (2012)

qcustomplot Store and display plots
(2015)

Extra files master.* Configuration files from Qt
Resources resources.qrc Qt resource file

exampleValues.txt Example rosettes with pa-
rameters

turk.jpg Example rosette image
(2013)

icons/ Custom icons (2009)

Table A.1: RosAna file list

45

46 APPENDIX A. ROSANA FILE LIST

Appendix B: Rosette analysis results
B.1 Parameter adjustment

Rosette Fourier results Adjusted

Turk’s Head

Ai fi

2,8 1

6,6 3

Ai fi

2,8 1

6,6 -3

Closed Twist

Ai fi

2,7 -2

2,7 1

6,8 4

Ai fi

2,7 -2

2,7 1

-6,8 4

Open Twist

Ai fi

1,9 -5

6,8 1

0,7 13

4,8 7

Ai fi

1,9 -5

6,8 1

-0,7 13

-4,8 7

Ratan
Ai fi

7,4 7

Ai fi

3,9 -7

-1,4 1

-1,2 9

Table B.1: Parameter results of Fourier analysis for selected rosettes.
See also Figure 5.1

47

48 APPENDIX B. ROSETTE ANALYSIS RESULTS

B.2 Fourier plots
Below follows the Fourier plots from analysis of selected Rope Rosettes. Their
layout is as following:

Top-Left: Fourier result, x-direction.

Bottom-Left: Fourier result, y-direction.

Top-Right: Rosette pattern description Equation 2.1a, x-direction.

Bottom-Right: Rosette pattern description Equation 2.1b, y-direction.

Figure B.1: Fourier analysis results for the Turk’s Head rosette

B.2. FOURIER PLOTS 49

Figure B.2: Fourier analysis results for the Closed Twist rosette

Figure B.3: Fourier analysis results for the Open Twist rosette

50 APPENDIX B. ROSETTE ANALYSIS RESULTS

Figure B.4: Fourier analysis results for the Ratan rosette

Appendix C: RosAna documentation

51

1 Class Documentation 1

1 Class Documentation

1.1 DrawWidget Class Reference

The DrawWidget class plots a rosette based on the parameters found in its model.

Public Slots

• void itemChanged (QStandardItem ∗item)

Is executed when an item has changed in the model.

• void rowDeleted ()

Is executed when a row is deleted.

Public Member Functions

• DrawWidget (QWidget ∗parent=0)

Constructs the DrawWidget. Sets up customPlot, main graph and layout.

• ∼DrawWidget ()

Destroys DrawWidget.

• void setModel (QStandardItemModel ∗newModel)

Sets a new model.

• bool saveImage (QString filename)

Saves current plot as image.

Private Member Functions

• void generatePlotData ()

Generates plot data from model to display with customPlot.

• bool saveParameters (QString filename)

Saves the current parameters to file.

Private Attributes

• QCPCurve ∗ graph
• QCustomPlot ∗ customPlot
• QStandardItemModel ∗ model
• QVector< double > xdata
• QVector< double > ydata
• QVector< double > zdata

1.1.1 Detailed Description

The DrawWidget class plots a rosette based on the parameters found in its model.

It inherits QWdiget and makes use of QCustomPlot.

1.1.2 Constructor & Destructor Documentation

1.1.2.1 DrawWidget::DrawWidget (QWidget ∗ parent = 0) [explicit]

Constructs the DrawWidget. Sets up customPlot, main graph and layout.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

52 APPENDIX C. ROSANA DOCUMENTATION

2

Parameters

parent The parent of the widget.

1.1.2.2 DrawWidget::∼DrawWidget ()

Destroys DrawWidget.

Deletes customPlot, graph and model.

1.1.3 Member Function Documentation

1.1.3.1 void DrawWidget::itemChanged (QStandardItem ∗ item) [slot]

Is executed when an item has changed in the model.

Triggers a recalculation of plot data with generatePlotData().

Parameters

item The changed item, unused.

1.1.3.2 void DrawWidget::rowDeleted () [slot]

Is executed when a row is deleted.

Triggers a recalculation of plot data with generatePlotData().

1.1.3.3 bool DrawWidget::saveImage (QString filename)

Saves current plot as image.

Parameters

filename Name of the saved file.

Returns

True if the save is successfull; otherwise False.

1.1.3.4 bool DrawWidget::saveParameters (QString filename) [private]

Saves the current parameters to file.

Parameters

filename Name of the saved file.

Returns

True if the save is successfull; otherwise False.

1.1.3.5 void DrawWidget::setModel (QStandardItemModel ∗ newModel)

Sets a new model.

Parameters

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

53

1.2 FourierAnalysis Class Reference 3

newModel The new model to display.

1.1.4 Member Data Documentation

1.1.4.1 QCustomPlot∗ DrawWidget::customPlot [private]

Displays the rosette plot.

1.1.4.2 QCPCurve∗ DrawWidget::graph [private]

Holds data points for the rosette plot.

1.1.4.3 QStandardItemModel∗ DrawWidget::model [private]

The model containing rosette desccription parameters.

1.1.4.4 QVector<double> DrawWidget::xdata [private]

List of x-coordinates for the rosette plot.

1.1.4.5 QVector<double> DrawWidget::ydata [private]

List of y-coordinates for the rosette plot.

1.1.4.6 QVector<double> DrawWidget::zdata [private]

List of time-coordinates for the rosette plot.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/drawwidget.h
• /home/sigrid/Code/drawwidget.cpp

1.2 FourierAnalysis Class Reference

The FourierAnalysis class handles data adjustment and Fourier analysis of trace data.

Static Public Member Functions

• static QStandardItemModel ∗ analyze (QVector< QPointF > ∗trace)

Initiates analysis of a sampled and normalized trace.

Static Private Member Functions

• static cv::Mat adjustSamplePoints (QVector< QPointF > ∗normalizedSamples)

Adjusts the sample points.

• static void meanAdjust (QVector< QPointF > ∗samples)

Adjusts samples by subtracting their mean from all points.

• static QStandardItemModel ∗ fourier (cv::Mat samples)

Performs Fourier analysis on the sample points.

• static QStandardItemModel ∗ buildModel (cv::Mat values, QVector< int > indexes)

Builds a model of the detected parameters.

• static QVector< int > adjustValues (QVector< int > indexes, cv::Mat angles)

FourierAnalysis::adjustValues.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

54 APPENDIX C. ROSANA DOCUMENTATION

4

1.2.1 Detailed Description

The FourierAnalysis class handles data adjustment and Fourier analysis of trace data.

1.2.2 Member Function Documentation

1.2.2.1 cv::Mat FourierAnalysis::adjustSamplePoints (QVector< QPointF > ∗ normalizedSamples) [static],
[private]

Adjusts the sample points.

Parameters

normalized←↩
Samples

The sample points.

Returns

adjusted sample points in a cv::Mat.

1.2.2.2 QStandardItemModel ∗ FourierAnalysis::analyze (QVector< QPointF > ∗ trace) [static]

Initiates analysis of a sampled and normalized trace.

Parameters

trace New sample points.

Returns

a new model with the results of the Fourier analysis.

1.2.2.3 QStandardItemModel ∗ FourierAnalysis::buildModel (cv::Mat values, QVector< int > indexes) [static],
[private]

Builds a model of the detected parameters.

Parameters

values Amplitude values.
indexes The significant indexes.

Returns

a new model.

1.2.2.4 QStandardItemModel ∗ FourierAnalysis::fourier (cv::Mat samples) [static], [private]

Performs Fourier analysis on the sample points.

Parameters

samples Adjusted sample points.

Returns

a model of the detected paramters.

1.2.2.5 void FourierAnalysis::meanAdjust (QVector< QPointF > ∗ samples) [static], [private]

Adjusts samples by subtracting their mean from all points.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

55

1.3 FourierDisplayWidget Class Reference 5

Parameters

samples Sample points to be adjusted.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/fourieranalysis.h
• /home/sigrid/Code/fourieranalysis.cpp

1.3 FourierDisplayWidget Class Reference

The FourierDisplayWidget class displays results from FourierAnalysis.

Static Public Member Functions

• static void displayResults (cv::Mat amplitudes, QVector< int > indexes, cv::Mat angles)

Displays the results from FourierAnalysis.

1.3.1 Detailed Description

The FourierDisplayWidget class displays results from FourierAnalysis.

1.3.2 Member Function Documentation

1.3.2.1 void FourierDisplayWidget::displayResults (cv::Mat amplitudes, QVector< int > indexes, cv::Mat angles)
[static]

Displays the results from FourierAnalysis.

Parameters

amplitudes Amplitudes from the Fourier analysis.
indexes Indexes of significant components.
angles Angles from the Fourier analysis.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/fourierdisplaywidget.h
• /home/sigrid/Code/fourierdisplaywidget.cpp

1.4 HelpDialogWidget Class Reference

The HelpDialogWidget class displays a dialog which containts a user guide for this tool, some rosette theory, and
author and licence information.

Public Member Functions

• HelpDialogWidget (QWidget ∗parent=0)

Constructs HelpDialogWidget.

1.4.1 Detailed Description

The HelpDialogWidget class displays a dialog which containts a user guide for this tool, some rosette theory, and
author and licence information.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

56 APPENDIX C. ROSANA DOCUMENTATION

6

1.4.2 Constructor & Destructor Documentation

1.4.2.1 HelpDialogWidget::HelpDialogWidget (QWidget ∗ parent = 0) [explicit]

Constructs HelpDialogWidget.

Parameters

parent The parent widget.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/helpdialogwidget.h
• /home/sigrid/Code/helpdialogwidget.cpp

1.5 LoadExampleDialog Class Reference

The LoadExampleDialog class displays the available example rope rosettes.

Signals

• void selectedExample (int selectedRow)

Public Member Functions

• LoadExampleDialog (QStringList names, QWidget ∗parent=0)

Constructs LoadExampleDialog.

• ∼LoadExampleDialog ()

Detroys LoadExampleDialog.

Private Slots

• void accept () Q_DECL_OVERRIDE

Triggered when an example is selected and LoadExampleDialog closed.

Private Attributes

• QListWidget ∗ nameList

1.5.1 Detailed Description

The LoadExampleDialog class displays the available example rope rosettes.

It inherits QDialog. Examples are loaded through ReadExampleFile. When an example is selected, the model for
plot and paramters is changed to model of the selected example rosette.

1.5.2 Constructor & Destructor Documentation

1.5.2.1 LoadExampleDialog::LoadExampleDialog (QStringList names, QWidget ∗ parent = 0) [explicit]

Constructs LoadExampleDialog.

Sets up the LoadExampleDialog GUI and connects signals for user interaction.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

57

1.6 MainWindow Class Reference 7

Parameters

names A list of named example rosettes.
parent The parent of LoadExampleDialog.

1.5.3 Member Function Documentation

1.5.3.1 void LoadExampleDialog::accept () [private], [slot]

Triggered when an example is selected and LoadExampleDialog closed.

Gets the index of the selected example rosette. Emits signal selectedExample(index).

1.5.3.2 LoadExampleDialog::selectedExample (int selectedRow) [signal]

This signal is emitted when an example has been selected.

Parameters

selectedRow The index of the selected row.

1.5.4 Member Data Documentation

1.5.4.1 QListWidget∗ LoadExampleDialog::nameList [private]

< list of names for available example rosettes

The documentation for this class was generated from the following files:

• /home/sigrid/Code/loadexampledialog.h
• /home/sigrid/Code/loadexampledialog.cpp

1.6 MainWindow Class Reference

The MainWindow class is the main window of RosAna.

Public Member Functions

• MainWindow (QWidget ∗parent=0)

Contructs MainWindow. Sets up Gui and interactions.

• ∼MainWindow ()

Destroys MainWindow. Deletes exampleValues.

Private Slots

• void helpDialog ()

Executes HelpDialogWidget.

• void loadDialog ()

Executes LoadExampleDialog.

• void setModels (int index)

Gets the selected model from exampleValues and sets the new model for drawGraphWidget and variableAdjustment←↩
Widget.

• void tracedModel (QStandardItemModel ∗model)

Is executed when a new model has been generated from Fourier analysis.

• void setStatusBar (QString text)

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

58 APPENDIX C. ROSANA DOCUMENTATION

8

Is executed when a signal is triggered with a message for the status bar.
• void clearStatusBar ()

Is executed when a signal is triggered to clear the status bar.
• void openImage ()

Is executed when openImageAction is triggered. Opens an open file dialog.
• void saveImage ()

Is executed when saveImageAction is executed. Opens a save file dialog.
• void updateActionBar (int index)

Updates the action bar icons. Is executed when the active tab is changed.

Private Member Functions

• void setupToolbar ()

Sets up the main toolbar, adds actions and shortcuts.
• void setShortcuts ()

Adds extra shortcuts to MainWindow.

Private Attributes

• DrawWidget ∗ drawGraphWidget
• HelpDialogWidget ∗ helpWidget
• LoadExampleDialog ∗ loadExampleDialog
• ProcessWidget ∗ processImage
• ReadExampleFile ∗ exampleValues
• VariableAdjustWidget ∗ variableAdjustmentWidget

1.6.1 Detailed Description

The MainWindow class is the main window of RosAna.

Setup of Gui, interactions and connections is done in this class.

QTabWidget:

• ProcessWidget processImage.

• DrawWidget drawGraphWidget.

QDockWidget:

• VariableAdjustWidget variableAdjustmentWidget.

Dialogs:

• LoadExampleDialog loadExampleDialog.

• HelpDialogWidget helpWidget.

Helpers:

• ReadExampleFile exampleValues.

1.6.2 Constructor & Destructor Documentation

1.6.2.1 MainWindow::MainWindow (QWidget ∗ parent = 0) [explicit]

Contructs MainWindow. Sets up Gui and interactions.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

59

1.6 MainWindow Class Reference 9

Parameters

parent The parent widget.

1.6.3 Member Function Documentation

1.6.3.1 void MainWindow::saveImage () [private], [slot]

Is executed when saveImageAction is executed. Opens a save file dialog.

Detects the current mode and forwards the save trigger to either ProcessWidget or DrawWidget

1.6.3.2 void MainWindow::setModels (int index) [private], [slot]

Gets the selected model from exampleValues and sets the new model for drawGraphWidget and variable←↩
AdjustmentWidget.

Parameters

index The selected index

1.6.3.3 void MainWindow::setStatusBar (QString text) [private], [slot]

Is executed when a signal is triggered with a message for the status bar.

Parameters

text The text to display.

1.6.3.4 void MainWindow::tracedModel (QStandardItemModel ∗ model) [private], [slot]

Is executed when a new model has been generated from Fourier analysis.

Sets the new model for DrawWidget and VariableAdjustWidget. Sets the current mode to synthesize.

Parameters

model The model resulting from Fourier analysis.

1.6.3.5 void MainWindow::updateActionBar (int index) [private], [slot]

Updates the action bar icons. Is executed when the active tab is changed.

Parameters

index The current tab index.

1.6.4 Member Data Documentation

1.6.4.1 DrawWidget∗ MainWindow::drawGraphWidget [private]

The widget for synthesis mode.

1.6.4.2 ReadExampleFile∗ MainWindow::exampleValues [private]

Class for reading example file.

1.6.4.3 HelpDialogWidget∗ MainWindow::helpWidget [private]

Dialog for user guide and about.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

60 APPENDIX C. ROSANA DOCUMENTATION

10

1.6.4.4 LoadExampleDialog∗ MainWindow::loadExampleDialog [private]

Dialog for selecting which example rosette to load.

1.6.4.5 ProcessWidget∗ MainWindow::processImage [private]

The widget for process mode.

1.6.4.6 VariableAdjustWidget∗ MainWindow::variableAdjustmentWidget [private]

Widget for editing of rosette parameters.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/mainwindow.h
• /home/sigrid/Code/mainwindow.cpp

1.7 ProcessWidget Class Reference

The ProcessWidget class handles image display and pattern tracing.

Public Slots

• void manualTrace ()

Initiates manual trace.

Signals

• void manualTraceInProgress (QString text)

This signal is emitted once a trace has been initiated.

• void traceDone (QStandardItemModel ∗traceModel)

This signal is emitted when the trace is completed.

Public Member Functions

• ProcessWidget (QWidget ∗parent=0)

Constructs ProcessWidget.

• ∼ProcessWidget ()

Destroys ProcessWidget.

• bool saveTrace (QString filepath)

Saves a normalized pattern trace to disk.

• bool openImage (const QString &filepath)

Loads an image from disk.

Private Member Functions

• cv::Point convertPoint (QPoint old)

Converts between Qt::Qpoint and cv::Point.

• void drawLine (cv::Point start, cv::Point end)

Draws a line on traceImg.

• void keyPressEvent (QKeyEvent ∗ev)

Captures key press events.

• void mousePressEvent (QMouseEvent ∗ev)

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

61

1.7 ProcessWidget Class Reference 11

Records mouse clicks if a trace is active.

• QVector< QPointF > ∗ normalize (QVector< QPoint > ∗samples)

Normalizes trace points.

1.7.1 Detailed Description

The ProcessWidget class handles image display and pattern tracing.

1.7.2 Constructor & Destructor Documentation

1.7.2.1 ProcessWidget::ProcessWidget (QWidget ∗ parent = 0) [explicit]

Constructs ProcessWidget.

Reads an example file and sets up gui elements.

Parameters

parent The parent widget.

1.7.2.2 ProcessWidget::∼ProcessWidget ()

Destroys ProcessWidget.

Releases resources held by img and traceImg.

1.7.3 Member Function Documentation

1.7.3.1 Point ProcessWidget::convertPoint (QPoint old) [private]

Converts between Qt::Qpoint and cv::Point.

Parameters

old QPoint to be converted.

Returns

a cv::Point.

1.7.3.2 void ProcessWidget::drawLine (cv::Point start, cv::Point end) [private]

Draws a line on traceImg.

Parameters

start Start point.
end End point.

1.7.3.3 void ProcessWidget::keyPressEvent (QKeyEvent ∗ ev) [private], [virtual]

Captures key press events.

Using the Enter key triggers a stop to the current trace. The trace is normalized and passed on to FourierAnalysis←↩
::analyze(QVector<QPointF>)

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

62 APPENDIX C. ROSANA DOCUMENTATION

12

Parameters

ev Key press event.

Reimplemented from QWidget.

1.7.3.4 void ProcessWidget::manualTraceInProgress (QString text) [signal]

This signal is emitted once a trace has been initiated.

Parameters

text The message

1.7.3.5 void ProcessWidget::mousePressEvent (QMouseEvent ∗ ev) [private], [virtual]

Records mouse clicks if a trace is active.

Parameters

ev the mouse event.

Reimplemented from QWidget.

1.7.3.6 QVector< QPointF > ∗ ProcessWidget::normalize (QVector< QPoint > ∗ samples) [private]

Normalizes trace points.

Parameters

samples The trace to be normalized.

Returns

a normalized trace on the range [0,1].

1.7.3.7 bool ProcessWidget::openImage (const QString & filepath)

Loads an image from disk.

Parameters

filepath The image file path.

Returns

True if the load is successful; otherwise False.

1.7.3.8 bool ProcessWidget::saveTrace (QString filepath)

Saves a normalized pattern trace to disk.

Format: x1, y1, \n x2, y2, \n etc.

Parameters

filepath The image file path.

Returns

True if the save is successful; otherwise False.

1.7.3.9 void ProcessWidget::traceDone (QStandardItemModel ∗ traceModel) [signal]

This signal is emitted when the trace is completed.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

63

1.8 ReadExampleFile Class Reference 13

Parameters

traceModel The model resulting from the Fourier Analysis.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/processwidget.h
• /home/sigrid/Code/processwidget.cpp

1.8 ReadExampleFile Class Reference

The ReadExampleFile class reads example rosettes from file.

Public Member Functions

• ReadExampleFile ()

Constructs an instance of ReadExampleFile and calls readFile().

• ∼ReadExampleFile ()

Destroys ReadExampleFile and deleted values.

• QStringList fetchNames ()

returns the names of example rosettes.

• QStandardItemModel ∗ getModel (int index)

Returns a model of an example rosette.

Private Member Functions

• void readFile ()

reads the file of example rosettes.

Private Attributes

• QStringList nameList
• QVector< QStringList > ∗ values

1.8.1 Detailed Description

The ReadExampleFile class reads example rosettes from file.

Stores the values in a model such that other classes can get the model

1.8.2 Member Function Documentation

1.8.2.1 QStringList ReadExampleFile::fetchNames ()

returns the names of example rosettes.

Returns

a list of example rosette names.

1.8.2.2 QStandardItemModel ∗ ReadExampleFile::getModel (int index)

Returns a model of an example rosette.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

64 APPENDIX C. ROSANA DOCUMENTATION

14

Parameters

index of which rosette example to load.

Returns

a new model containing the parameters of the example rosette.

1.8.2.3 void ReadExampleFile::readFile () [private]

reads the file of example rosettes.

The examples are on the format "name, a1, f1, a2, f2, Values are stored in nameList and values.

1.8.3 Member Data Documentation

1.8.3.1 QStringList ReadExampleFile::nameList [private]

A list of paramter values for example rosettes.

1.8.3.2 QVector<QStringList>∗ ReadExampleFile::values [private]

A list of example rosette names.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/readexamplefile.h
• /home/sigrid/Code/readexamplefile.cpp

1.9 VariableAdjustWidget Class Reference

The VariableAdjustWidget class holds the GUI for rosette parameters.

Signals

• void rowDeleted ()

Public Member Functions

• VariableAdjustWidget (QWidget ∗parent=0)

Constructs VariableAdjustWidget.

• ∼VariableAdjustWidget ()

Destroys VariableAdjustWidget, deletes viewDelegate.

• void setModel (QStandardItemModel ∗model)

Sets a new model for parametersTableView and mapper.

Private Slots

• void addRow ()

Is executed when addRowButton is clicked. Adds a new row to the internal model.

• void deleteRow ()

Is executed when deleteRowButton is clicked. Gets the selected index from parametersTableView and deletes the
corresponding row in its internal model. Emits signal rowDeleted()

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

65

1.9 VariableAdjustWidget Class Reference 15

Private Attributes

• VariableEditDelegate ∗ viewDelegate
• QDataWidgetMapper ∗ mapper
• QPushButton ∗ addRowButton
• QPushButton ∗ deleteRowButton
• QTableView ∗ parametersTableView

1.9.1 Detailed Description

The VariableAdjustWidget class holds the GUI for rosette parameters.

The VariableAdjustWidget class inherits QWidget. Parameters are set from a model shared with DrawWidget.

1.9.2 Constructor & Destructor Documentation

1.9.2.1 VariableAdjustWidget::VariableAdjustWidget (QWidget ∗ parent = 0) [explicit]

Constructs VariableAdjustWidget.

Initialize all GUI elements:

• QTableView parametersTableView

• VariableEditDelegate viewDelegate

• QDataWidgetMapper mapper

• QPushButton addRowButton

• QPushButton deleteRowButton Connect signals and set layout

Parameters

parent The parent of VariableAdjustWidget.

1.9.3 Member Function Documentation

1.9.3.1 VariableAdjustWidget::rowDeleted () [signal]

This signal is emitted when a row has been deleted from the model.

1.9.3.2 void VariableAdjustWidget::setModel (QStandardItemModel ∗ newModel)

Sets a new model for parametersTableView and mapper.

Parameters

newModel The new model to display

1.9.4 Member Data Documentation

1.9.4.1 QPushButton∗ VariableAdjustWidget::addRowButton [private]

Adds a row to paramteresTableView and the model.

1.9.4.2 QPushButton∗ VariableAdjustWidget::deleteRowButton [private]

Deleted a row from paramtersTableView and the model.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

66 APPENDIX C. ROSANA DOCUMENTATION

16

1.9.4.3 QDataWidgetMapper∗ VariableAdjustWidget::mapper [private]

Maps model values to strings.

1.9.4.4 QTableView∗ VariableAdjustWidget::parametersTableView [private]

Displays the model parameters as a editable table.

1.9.4.5 VariableEditDelegate∗ VariableAdjustWidget::viewDelegate [private]

Provides an interface between parametersTableview and the model.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/variableadjustwidget.h
• /home/sigrid/Code/variableadjustwidget.cpp

1.10 VariableEditDelegate Class Reference

Handles display of model data for VariableAdjustWidget.

Public Member Functions

• QWidget ∗ createEditor (QWidget ∗parent, const QStyleOptionViewItem &option, const QModelIndex
&index) const Q_DECL_OVERRIDE

Creates the editor based on index.

• void setEditorData (QWidget ∗editor, const QModelIndex &index) const Q_DECL_OVERRIDE

Sets editor data from model. Triggered when the model is changed.

• void setModelData (QWidget ∗editor, QAbstractItemModel ∗model, const QModelIndex &index) const Q←↩
_DECL_OVERRIDE

Sets model data from editor. Triggered when an editor is changed.

• void updateEditorGeometry (QWidget ∗editor, const QStyleOptionViewItem &option, const QModelIndex
&index) const Q_DECL_OVERRIDE

Handles editor styling.

1.10.1 Detailed Description

Handles display of model data for VariableAdjustWidget.

This class is heavily based on the example SpinBoxDelegate provided by the Qt framework.

1.10.2 Member Function Documentation

1.10.2.1 QWidget ∗ VariableEditDelegate::createEditor (QWidget ∗ parent, const QStyleOptionViewItem & option,
const QModelIndex & index) const [virtual]

Creates the editor based on index.

Parameters

parent The parent widget.
index The index of the current element.

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

67

1.10 VariableEditDelegate Class Reference 17

option Editor option (unused).

Returns

the apropriate editor.

Reimplemented from QStyledItemDelegate.

1.10.2.2 void VariableEditDelegate::setEditorData (QWidget ∗ editor, const QModelIndex & index) const [virtual]

Sets editor data from model. Triggered when the model is changed.

Parameters

editor The editor to provide with data.
index The index of the data.

Reimplemented from QStyledItemDelegate.

1.10.2.3 void VariableEditDelegate::setModelData (QWidget ∗ editor, QAbstractItemModel ∗ model, const
QModelIndex & index) const [virtual]

Sets model data from editor. Triggered when an editor is changed.

Parameters

editor The editor source.
model The model to edit.
index The index to edit.

Reimplemented from QStyledItemDelegate.

1.10.2.4 void VariableEditDelegate::updateEditorGeometry (QWidget ∗ editor, const QStyleOptionViewItem & option,
const QModelIndex & index) const [virtual]

Handles editor styling.

Parameters

editor The editor to style.
option Styling option.
index The data index (unused).

Reimplemented from QStyledItemDelegate.

The documentation for this class was generated from the following files:

• /home/sigrid/Code/delegate.h
• /home/sigrid/Code/delegate.cpp

Generated on Fri Feb 5 2016 14:09:25 for RosAna by Doxygen

68 APPENDIX C. ROSANA DOCUMENTATION

	 Abstract
	 Sammendrag
	 Preface
	 List of Illustrations
	 Algorithms
	 Equations
	 Figures
	 Tables

	1 Introduction
	1.1 Task specification
	1.2 Development tools
	1.3 Outline

	2 Background
	2.1 Rope rosettes
	2.1.1 Properties
	2.1.2 Mathematical foundation
	2.1.3 Fourier analysis

	2.2 Field overview
	2.2.1 Analysis of interlace patterns
	2.2.2 Contour detection

	2.3 Previous work

	3 Implementation of RosAna
	3.1 System description
	3.1.1 Rosette pattern tracing
	3.1.2 Fourier analysis
	3.1.3 Pattern synthesis

	3.2 Software architecture
	3.2.1 The MVC pattern
	3.2.2 Class interaction

	3.3 Automating parameter selection
	3.3.1 Parameter selection
	3.3.2 Negative frequencies

	4 RosAna installation and user guide
	4.1 Installation
	4.2 Usage
	4.2.1 RosAna input and output formats

	5 Results
	5.1 Rosette analysis
	5.2 Benchmarks
	5.2.1 Machine resource usage
	5.2.2 Fourier analysis runtime

	6 Evaluation and conclusion
	6.1 Contributions
	6.2 Future work

	 Glossary
	 Abbreviations
	 Nomenclature
	 Software
	 Symbols

	 Bibliography
	 References
	 Software
	 Images

	A RosAna file list
	B Rosette analysis results
	B.1 Parameter adjustment
	B.2 Fourier plots

	C RosAna documentation

