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Background 

The gas evaporating from the LNG, usually called Boil-off Gas (BOG), has previously been 

out of focus regarding its composition and corresponding heating value. A concentration of 

the BOG has been assumed to be identical to the loaded LNG, or has been given by another 

constant value, as the gas has been something to the carrier has “to get rid off”. However, 

these assumptions have seemed to give deviating results in reported fuel consumption for the 

vessel in some cases. This is interesting as the assumed concentration of the BOG is used to 

calculate its heating value, which further is used to estimate the over all fuel consumption 

reported as amount of Heavy Fuel Oil (HFO).  

Each vessel has a given chartering contract specifying upper limits of total fuel consumption 

for the vessel per day. Deviating values by assumed concentration of the BOG might result in 

breach of contract, and corresponding economical consequences. Thereby, it is very important 

to understand the properties of the BOG by a given LNG concentration, and the 

corresponding contractual consequences by deviations in reported fuel consumption for the 

vessel.  

 

Overall aim and focus 

The overall aim is to understand the changing quality of the boil-off gas (BOG) during 

voyage, how it affects the heating value per day for an LNG Carrier, and what contractual and 

economical consequences this will have from a ship owner’s perspective. 

 



 

Scope and main activities 

The'candidate'should'presumably'cover'the'following'main'points:'

1. Gathering some information on today’s practice to calculate the heating value of the BOG. 

2. Develop a mathematical model to calculate concentration of the BOG during voyage 
compared to the transported LNG. 

3.  Validate the results from the mathematical model. 

4. Look into corresponding contractual and economical consequences by assuming a wrong 
concentration of the BOG 

!
!
Modus operandi   

The work shall follow the guidelines given by NTNU for an MSc Master thesis. The 

workload shall be in accordance with 30 ECTS, corresponding to 100% of one semester. 

This master thesis is written with inputs from Golar Wilhelmsen Management (GWM).  

At NTNU, Professor Stein Ove Erikstad will be the responsible supervisor.  

'

'
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Abstract 
 

 

The gas evaporating from the Liquefied Natural Gas (LNG), usually called Boil-off 

Gas (BOG), has previously been out of focus regarding its composition and 

corresponding heating value. A concentration of the BOG has been assumed to be 

identical to the loaded LNG, or has been given by another constant value, as the gas 

has been something to the carrier has “to get rid off”. However, these assumptions 

have seemed to give deviating results in reported fuel consumption for the vessel in 

some cases. This master thesis is therefore investigating the difference in 

concentration of the BOG evaporating from the transported LNG during voyage, and 

corresponding deviations in reported fuel consumption by assumed characteristics of 

the BOG.  

 

To do this, a dynamic model is developed to see the change in concentration of the 

BOG per day of the voyage by a given loaded LNG quality. By knowing the change 

in concentration of the BOG, the model calculates the corresponding change in 

Higher Heating Value (HHV), since the BOG is used as fuel for the vessel. Any 

changes in concentration of the LNG during the loading process is taken into account 

as well, as it will influence the initial concentration of the product at the first day of 

the voyage.  

 

To report the total fuel consumption for an LNG Carrier (LNG/C), a Fuel Oil 

Equivalent (FOE) is used to convert amount LNG to tons of Heavy Fuel Oil (HFO). 

This equivalent depends on the HHVs of both the BOG and the HFO, which is also 

calculated by the dynamic model. Since it has been a normal procedure for a ship 

owner to assume a value for this FOE, the last part of the master thesis looks into 

deviations in reported fuel consumption by different assumptions, and corresponding 

economical consequences.  

 

The results from the model showed a significant increase in fraction of nitrogen in the 

BOG by only a small increase of nitrogen in the transported LNG. Since nitrogen is 
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highly volatile at the given cargo temperature of -162°!, the LNG tended to contain a 

lower fraction of nitrogen when finally loaded. The difference in concentration of the 

BOG during voyage caused a lower HHV compared to the LNG, as the fraction of 

nitrogen in the BOG was higher. This affected the calculated FOE of the BOG, and 

caused significant deviations in reported fuel consumption when utilizing common 

ways to assume the FOE. By having a HFO price of 600 USD/ton, this led to an 

unnecessary cost of 366,000 USD for one voyage of 28 days, when transporting LNG 

with approximately 1 Mole% nitrogen.  
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Sammendrag 
 

 

Gass som koker av fra LNG har tidligere ikke vært i fokus hva gjelder dens 

komposisjon og korresponderende brennverdi. Før har den avkokte gassens 

konsentrasjon vanligvis blitt antatt å være identisk med den lastede LNGen, da denne 

har blitt ansett som noe skipet kun skal ”kvitte seg med”. Imidlertid ser det ut til at 

slike antagelser kan føre til feilrapportering av skipets drivstofforbruk ved noen 

tilfeller. I denne masteroppgaven vil derfor konsentrasjonen av gass avkokt fra LNG 

under transport med LNG-skip undersøkes, samt eventuelle avvik i rapportert forbruk 

grunnet gassens antatte egenskaper. 

 

En dynamisk modell er utviklet for å undersøke konsentrasjonen av den avkokte 

gassen, hvorav denne viser gassens konsentrasjonsendringer per dag ved en gitt 

kvalitet på LNGen som er lastet ombord. Etterfulgt av dette regner modellen ut 

hvordan dette påvirker gassens brennverdi, ettersom denne brukes som drivstoff til 

skipet. Videre tas det hensyn til endringer av LNGen under lasting, da slike 

konsentrasjonsendringer kan forekomme.  

 

For å rapportere et LNG-skips totale drivstofforbruk benyttes en såkalt Fuel Oil 

Equivalent (FOE). Den regner om mengden LNG brukt som drivstoff til tilsvarende 

mengde tungolje (HFO). Denne ekvivalenten avhenger av både HFOen og den 

avkokte gassens brennverdi, og blir også beregnet i den dynamiske modellen. Det har 

vært vanlig prosedyre at rederen antar verdien for denne ekvivalenten, ettersom 

gassens konsentrasjonen ikke har vært i fokus. Avslutningsvis vil derfor avvik i 

rapportert forbruk ved slike antagelser belyses, samt deres påfølgende økonomiske 

konsekvenser. 

 

Resultatene fra modellen viste en betydelig større andel av nitrogen i den avkokte 

gassen enn i LNGen i lastetankene. Dette fordi nitrogen er svært flyktig ved normal 

transporttemperatur. Samtidig førte dette til en lavere brennverdi for den avkokte 

gassen enn for LNGen. Dette hadde videre påvirkning på FOEens virkelige verdi, og 
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førte til store avvik i rapportert forbruk ved bruk av antatte verdier. Ved å benytte en 

drivstoffpris for HFO på 600 USD/tonn førte eksempelvis én slik antagelse til en 

unødvendig kostnad på 366,000 USD for kun én reise på 28 dager, når man fraktet 

LNG med et nitrogeninnhold på omtrent 1 mol%. 
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1. Introduction 
 

 

The global transport of Liquefied Natural Gas (LNG) has grown rapidly during the 

last decades and thereby the competition in the market. By 1st of October 2013 there 

was a fleet of 380 LNG Carriers. The total fleet compromised 56.1 cubic metres, 

while the orderbooks was equivalent to 35.2 per cent of the total fleet capacity 

(Novikova, 2013). Many ship owners have joined the LNG transport sector, which 

makes efficiency more important in order to provide the lowest freight rates. Some of 

the transported LNG will vaporize during voyage, which is normally used as fuel for 

the vessel. As the insulation of the cargo tanks become better the rate of evaporations 

decreases, and thereby requires a more efficient fuel economical carrier for transport.  

 

The gas evaporating from the LNG, usually called Boil-off Gas (BOG), has 

previously been out of focus regarding its composition and corresponding heating 

value. A concentration of the BOG has been assumed to be identical to the loaded 

LNG, or has been given by another constant value, as the gas has been something to 

the carrier has “to get rid off”. However, these assumptions have seemed to give 

deviating results in reported fuel consumption for the vessel in some cases. This is 

interesting as the assumed concentration of the BOG is used to calculate its heating 

value, which further is used to estimate the over all fuel consumption reported as 

amount of Heavy Fuel Oil (HFO).  

 

Each vessel has a given chartering contract specifying upper limits of total fuel 

consumption for the vessel per day. Deviating values by assumed concentration of the 

BOG might result in breach of contract, and corresponding economical consequences. 

Thereby, it is very important to understand the properties of the BOG by a given LNG 

concentration, and the corresponding contractual consequences by deviations in 

reported fuel consumption for the vessel.  

 

Some studies have been conducted concerning the BOG. Hasan et al. (2009) have 

been focusing on minimizing boil-off losses during transport, while Dimopoulos and 
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Frangopoulos (2008) have been focusing more on the changing evaporation rate per 

day of the voyage. Shin and Lee (2009), on the other hand, have studied the 

reliquefaction process of the BOG and corresponding design of a control system. 

However, these studies’ main focuses have not been the change in concentration of 

the BOG by a given LNG quality, and corresponding deviations in reported fuel 

consumption. Therefore it was interesting to focus on the changing characteristics of 

the BOG itself and how it affects the ship owner. 

!
1.1. Objective 
The main objective of this thesis is to get a better understanding of the gas 

evaporating from the LNG during voyage, as the BOG’s concentration has significant 

influence on the reported fuel consumption for the vessel. To accomplish this, a 

mathematical model to estimate day-to-day changes in concentration of the BOG by a 

given LNG concentration will be developed. The following output will be used to 

investigate changes in reported fuel consumption for the vessel by different LNG 

qualities, and to highlight deviations caused by assuming a concentration of the BOG 

to be constant or equal the loaded LNG. Finally, this will be analysed from a ship 

owner’s perspective regarding contractual and economical consequences by assuming 

a wrong concentration of the BOG.  

 

1.2. Limitations 
There are several factors that could potentially influence the results that are not 

included in this master thesis. It is likely to think that the evaporation rate of the LNG 

will be affected by outside temperature and sea conditions. This may also affect the 

composition of the BOG. The thesis are focusing on the theoretical aspects, assuming 

a concentration of the BOG based on boiling points for the different substances. In 

reality, movements on the cargo tanks due to different sea conditions might affect the 

substances boiling off from the LNG. However, this is not included as it would be 

excessive in relation to the size of a master thesis. The validation of the model in 

Chapter 5 will reflect any deviations from the results of the theoretical model, and 

thereby reveal whether the theoretical model is sufficient for explaining the overall 

trends. 

 

! !
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1.3. Structure of Report 
To understand all the aspects of the LNG and the 

BOG, some theory of the transported LNG has to be 

known. Consequently, what LNG is and its properties 

will be introduced in Chapter 2. When all the basic 

theory of the product is established the next chapter 

will create a mathematical model to estimate changes 

in the BOG per day of the voyage by a given LNG quality. The results from the 

model will be analysed regarding different loading scenarios in order to compare 

changes in the BOG by different concentrations of the loaded LNG. Additionally, 

how this affects the reported fuel consumption for the vessel will be analysed. When 

having these results, the next chapter will compare the theoretical model with real 

measurement of the BOG for some of Golar Wilhelmsen Management’s (GWM) 

vessels, to see how well they correlate. Finally, contractual and economical 

consequences of the given results will be presented, in addition to how this influences 

the chartering contract of the vessel.  

!
!

Chapters 
2. Theory 
3. Creating Model 
4.  Model Results 
5.  Validating Model 
6. Consequences  
7. Conclusion 
8. Further Work 
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2. Chemical and Physical Properties of LNG as Fuel 
 

 

This chapter will look into different aspects of Liquefied Natural Gas (LNG). The 

main part of this section is obtained from the Project Thesis written as a pre-study for 

this master thesis in the fall 2013. The overall focus is to give an introduction to the 

product, and create a basis for further calculations in the thesis. Thermodynamic 

properties of the LNG will be introduced in addition to short descriptions of how it is 

handled as a product and later transported on an LNG Carrier (LNG/C). 

 

The first part will discuss what LNG is, and its difference from the related product 

called Natural Gas (NG). Further, the liquefaction process of the LNG will be 

introduced, before moving on to the part concerning transport of the product. This 

will handle evaporation during voyage and corresponding heating values of the gas 

used as fuel. 

!

2.1. What is LNG 
Liquefied Natural Gas (LNG) is Natural Gas (NG) that has been cooled down to a 

liquefied state, but the mixture of the two products is not the same. The products 

contain different chemical substances, and thereby have different thermodynamic and 

chemical properties. However, not even LNG is a fixed mixture, which causes the 

heating value (described in Chapter 2.5) to change and thereby affect the total fuel 

consumption of the vessel transporting it. Before moving on with these aspects, it is 

important to distinguish LNG from NG. 

!
2.1.1. Difference Between NG and LNG 
Natural gas is often discovered during search for oil. It primarily consists of methane, 

but does also contain ethane, propane, butane and other heavier hydrocarbons, even 

small quantities of nitrogen, water, sulphur compounds and carbon dioxide (Foss, 

2007).  Liquefied Natural Gas (LNG) is natural gas (NG) that has been cooled to a 

temperature of about -162°C to make it liquefied. 1  The liquefaction process makes 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The temperature of -162°C is an approximate value, as it may differ slightly by some degrees Celsius. 
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the gas more economical to transport as it compromises the gas approximately 600 

times (BP, 2012). Figure 1 illustrates a typical composition of the natural gas when 

discovered, but to prevent components from forming solids during liquefaction, as 

will happen with water and carbon dioxide at LNG temperature (-162°C), some non-

methane components needs to be removed. In addition, much of the propane and 

butane will be removed and sold as a separate product called Liquefied Petroleum Gas 

(LPG). The result is a typical higher methane ratio in the LNG composition than in 

the discovered NG, as illustrated in Figure 1. 

 

! !
Figure!1:!Composition!of!NG!and!LNG!(Foss,!2007)!

 

The figure only illustrates that the main part of methane increases and that other 

components are removed before the gas is transported as LNG. The exact ratio of 

methane compared to other substances will vary by location around the world and will 

differ from this value. It is just meant to be an illustration of how significant the 

change in composition is to make it transportable on LNG Carriers. 

 

The product, LNG itself, is colourless, non-corrosive, odourless and non-toxic. Still, 

the natural gas that vaporizes from the LNG can cause asphyxiation in an unventilated 

room. Thereby safety is very important when handling the product, as leakage may 

result in hazardous consequences. However, the risk factor is not a focus area in this 

master thesis.!

82!%!

18!%!

NG!Composition!

95!%!

5!%!

LNG!Composition!

Methane!
Other!
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2.2. Liquefaction of the Gas 
There are mainly two ways to liquefy gas: either by pressure or by lowering the 

temperature. The required pressure and temperature depends on the properties of the 

gas normally illustrated by a Pressure-Enthalpy Diagram, illustrated in Figure 2. Note 

that this figure is only used as an example to illustrate how a substance is changing 

phase by pressure or by temperature. It reflects what the diagram will look like for the 

substances in LNG, and illustrates the changing phase from liquid to vapour, but the 

figures exact shape will depend on given substance. 

 

!
Figure!2:!PressureBEnthalpy!Diagram,!Example!(Holmgren,!2007)!

 

The horizontal axis corresponds to the enthalpy of the substance, while the vertical 

axis is the pressure. 2 The blue line is saturated liquid and the red line is saturated 

vapour.3 Between these two lines is where the liquid partly change phase, and finally 

become 100% gas at the red line. The black lines indicate the different temperatures. 

An important aspect of the diagram is the critical temperature illustrated by a black 

dot. Above this point no liquefaction is possible by just increasing the pressure, as the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Enthalpy is the total energy of a thermodynamic product, measured in kJ/kg MORAN, M. J. & 
SHAPIRO, H. N. 2010. Fundamentals of Engineering Thermodynamics, Wiley. 
3 Saturated liquid is liquid that is about to vaporize. Saturated vapour is the phase where no more 
liquid exists and the substance is in 100% gas phase.!
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temperature have to be decreased as well for the substance to become liquid (Moran 

and Shapiro, 2010). 

 

As an example two different products transported by ship is compared; Liquefied 

Petroleum Gas (LPG), which is normally liquefied by pressure, and LNG, that has to 

be liquefied by lowering the temperature. In difference to LPG, which is mainly 

propane transported under high pressure, LNG is transported in cargo tanks with 

around atmospheric pressure and with no cooling system commonly used. It is 

interesting to highlight why these two products are handled differently. Methane has 

different thermodynamic properties and a different critical temperature, which is an 

essential difference to propane. Since LNG is mainly methane and LPG is mainly 

propane, the two different products have to be treated differently before transport. In 

Appendix A1 and A2 are the properties of both methane and propane illustrated in 

Pressure-Enthalpy Diagrams. Methane has a critical temperature of -82.7°C (Starling, 

1973), which means methane has to be cooled to a temperature below -82.7°C to 

liquefy the gas by increased pressure. It is simply not possible to liquefy by pressure 

at temperatures above this point. On the other hand, propane has a critical temperature 

of 96.6°C (Starling, 1973), which enables liquefaction by increasing the pressure 

since the temperature normally is below this point. Therefore, LNG is liquefied by 

decreased temperature, and LPG by increased pressure. However, there exists 

combinations of both pressurized and cooled tanks, but this will not be further 

discussed, as it is not relevant for this thesis. The essential part is that LNG has to be 

cooled to a temperature below -82.7°C to become liquid, and thereby there is no 

reason to have pressurized tanks aboard.   

 
2.3. Tank Concepts for Transport on LNG Carriers 
Most of the LNG is transported around the world using specially designed ships, 

called LNG Carriers (LNG/C). This way the gas can be transported in a very efficient 

way and keep the total cost of the product as low as possible.  Some may argue 

pipelines to be a more economically beneficial way to transport the gas, but that only 

counts for shorter distances. There will be an economically intersection between a gas 

pipeline and transport by an LNG Carrier, where transportation done by ship is more 

economically beneficial for longer distances!(Foss, 2007). 
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There exist several different cargo tank designs for an LNG/C, which can be 

Cylinders (Type A, B, C), Esso design, Self-supporting Prismatic Type B (SPB), 

Membrane design or the Spherical Moss design (Novikova, 2013). However, the most 

commonly used designs, representing nearly all of the total world fleet of LNG 

Carriers, are the Membrane Design and the Spherical Moss design (Novikova, 2013). 

The spherical design by Moss is illustrated in Figure 3. This characteristic design has 

been the most commonly used on older vessels after it was introduced to the market in 

1973 (Maritime, 2013), and can easily be recognized by its spherical dome tops 

visible above deck. However, the trend is now pointing in direction of membrane 

designs, illustrated in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

It is very interesting to compare the existing fleet by 2006 with the fleet by 2013 and 

corresponding newbuildings. It has been a significant trend of moving away from the 

spherical design, and the trend is still decreasing for newbuildings in 2013 (Foss, 

2007). The trend of moving away from spherical tanks may have to do with the 

membrane tanks utilizing more of the void space between the cargo tanks and thereby 

requiring less hull space for transporting the same amount of LNG. Having less void 

Figure!4:!LNG!Carrier!of!Membrane!Type!(MAN,!2009) 

Figure!3:!LNG!Carrier!of!the!Spherical!(Moss)!Type!(MAN,!2009) 
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space between the cargo tanks makes it easier for the vessel’s main dimension to fulfil 

different limitations, e.g. the Panamax. 4 

 

2.4. Boil-off Gas During Transport 
Although the cargo tanks on the LNG Carriers are highly insulated, some heat 

exchange is inevitable. As illustrated in Figure 5, some of the liquid will vaporize and 

change into gas phase, known as boil-off gas (BOG). The rate the liquid vaporizes, 

called boil-off rate (BOR), mainly depends on the heat exchange through the tank 

walls, and thereby how well the tanks are insulated. More heat exchange means more 

energy stored in the tank, and thereof more vaporization. This phenomenon of 

vaporized LNG during transport is called ageing. The BOG will mainly consist of 

nitrogen and methane, but it may contain a very small amount of heavier 

hydrocarbons as well (Benito). The vaporization of LNG is not totally homogeneous; 

it depends on the mixture and the properties of the different components. 

!

!
Figure!5:!Change!in!composition!and!properties!(Benito)!

 

The boiling point at atmospheric pressure (the pressure during transport) is essential 

and individual for all the components. Methane, which is the main part of LNG, has a 

boiling point of -161.5°C. Only nitrogen has a lower boiling point (-196°C) among 

the important components in LNG. All the other heavier hydrocarbons as ethane, 

propane and butane have boiling points above the liquefaction temperature (-162°C) 

as illustrated in Table 1 (Aylward and Findlay, 2007).  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 Panamax defines the restrictions for maximum main dimensions of a ship that can transit the Panama 
Canal, i.e. a beam of 32.3m, a length of 294.1m and a draft of 12m. Note that a scheduled increase of 
the canal in 2014 will increase the allowed main dimensions (AUTHORITY, P. C. 2013. This is the 
Canal [Online]. Available: http://www.pancanal.com/eng/acp/asi-es-el-canal.html. 
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!

Table!1:!Boiling!Points!(Aylward!and!Findlay,!2007)!

Component Boiling Point 
(Atmospheric pressure) 

Nitrogen -196°C 
Methane -161.5°C 
Ethane -88.6°C 

Propane -42.1°C 
Butane -0.5°C 

!

The boiling point is the temperature at a given pressure where a substance is changing 

phase from liquid to vapour. Thereby, it is reasonable that the BOG only consists of 

methane and nitrogen as the temperature during transport is around -162°C.  

 

During transport the LNG will be stirred and moved within the tanks caused by 

movements on the ship. This, together with heat exchange, causes some parts of the 

substances in LNG to vaporize and become BOG, but the amount of each substance in 

the BOG will be different and change during transport. The main part of the gas will 

always be methane as it is the main component of LNG, and it will contain some 

nitrogen if present. However, other substances will not have a significant impact on 

the mixture of the BOG since their boiling points are above the liquefaction 

temperature of -162°C.  

 

In the beginning of the voyage the LNG will often contain some nitrogen 

(Dimopoulos and Frangopoulos, 2008), which has a boiling point below the 

liquefaction temperature. This causes nitrogen to boil off easily in the beginning of 

the voyage until there is nearly no nitrogen left. Therefore, nitrogen will be a more 

essential part of the BOG in an early stage of the voyage than in the end. This 

phenomenon of ageing causes the LNG to have slightly different properties at the 

destination port than the liquid originally loaded. It will contain less nitrogen when 

unloaded, and it may be a lower amount of methane compared to other heaver 

hydrocarbons. However, this difference will most likely be so small that it will be 

unnoticeable. Methane is still the main part of the product at the destination port. 

Nevertheless, it may affect the heating value of the LNG and the BOG and thereby 

the amount consumed as fuel for the vessel. 
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!
2.5. Heating Values 
The heating value of a substance gives the amount of energy released when burning it 

(Moran and Shapiro, 2010). This is important since Boil-off Gas (BOG) is used as 

fuel, and the amount energy released when burning it (the heating value) affects the 

amount LNG needed to propel the vessel. The heating value of the BOG, given by 

Equation 2.5.1, is calculated as the mean value of all the substances in the product, 

and thereby depends on mixture. M is the total mass [kg] of the LNG transported in 

the cargo tanks, i is the index for all different substances, and hi together with mi is 

the heating value and the total mass of each substance respectively. 

 

!"!"#$%!!"#$%!!"!!"#! =! ℎ!! ∗!!!
! ! (2.5.1) 

!
!  Mass of LNG [kg] 
ℎ!  Heating Value of Substance i [MJ/kg] 
!!  Mass of Substance i [!"] 

 

It is important to distinguish between a lower and a higher heating value, also called 

Gross and Net Calorific values. The higher heating value (HHV) includes the energy 

released when the vapour in the exhaust gas are condensing into liquid, while the 

lower heating (LHV) is obtained when all the water formed by combustion is still 

vapour (Moran and Shapiro, 2010). According to ISO 3046-1 (2002), specific fuel 

consumption is specified for a reference fuel with lower heating value, as sulphur in 

the fuel may cause corrosion if the exhaust gas is cooled to a temperature below 150-

160°C. This is specified as a lower temperature limit for sulphur-containing fuels. The 

reason is that sulphur combines with oxygen in the combustion process to form 

sulphur dioxide (SO2), which further may combine to form sulphur trioxide (SO3). 

The sulphur trioxide reacts with moisture from the combustion process and forms 

sulphuric acid vapour. This can lead to corrosion if it condenses to sulphuric acid, 

caused by exhaust temperatures below the acid dew point of 160°C (Woodyard, 

2009). 

 

However, LNG does not contain any sulphur, which means more of the energy in the 

LNG can be utilized by cooling the exhaust gas below this limit. Therefore, some 
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U.S. calculations tend to use the HHV, but it should be noted that it might cause 

problems when comparing utilization of different fuel types, as comparing with 

sulphur containing fuels will require use of the LHV.  

 

Still, the HHV will be used in this thesis to compare changes in properties of the 

BOG, since Golar Wilhelmsen Managemnet (GWM) is using these values in their 

calculations. Thereby, it is easier to compare any results with values used by a 

company in the LNG business. To highlight the difference between LHV and HHV, 

both values are given in Table 2. 

 
Table!2:!Heating!Values!(Genapathy,!2002)!

Substance Formula LHV [MJ/kg] HHV [MJ/kg] 

Methane CH4 50.0 55.5 
Ethane C2H6 47.5 51.9 
Propane C3H8 46.4 50.4 
n-Butane C4H10 45.8 49.6 
Isobutane C4H10 45.7 49.4 
n-Pentane C5H12 45.4 49.1 
Isopentane C5H12 45.3 49.0 
Nitrogen N2 - - 

 

 

There will be a change in mixture of the LNG during voyage due to gas boiling off. 

This will affect the concentration of the BOG and thereby the total fuel consumption 

for the vessel. Dimopoulos and Frangopoulos (2008) have done some research 

regarding liquefied natural gas evaporation during marine transport. 5 Even though 

their research mainly focuses on change in mass flow of gas boiling off per day, it 

includes some results of change in composition of both the LNG and the BOG during 

voyages as well. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 These results are based on data from Kuver, Clucas & Fuhrmann (2002 in DIMOPOULOS, G. G. & 
FRANGOPOULOS, C. A. 2008. A dynamic model for liquefied natural gas evaporation during marine 
transportation. International Journal of Thermodynamics, 11, 123-131. 
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Their findings are based on a 25 days voyage with a fully loaded LNG vessel of 

150,000 m3, without any forced boil-off or reliquefaction onboard. 6 7 It confirms that 

the amount of methane in the final delivered product is nearly equal to the previous 

initial state for the loaded LNG. However, there is a noticeable difference in 

composition, and thereby properties of the BOG used as fuel. This affects the amount 

of gas needed to propel the vessel and thereby its fuel economy. Their results are 

given in Table 3. 

 
Table!3:!Changes!in!composition!during!voyage!(Dimopoulos!and!Frangopoulos,!2008)!

 LNG [Mole %] BOG [Mole %] 

 Initial Final Initial Final 
Methane 89.9 % 89.7 % 92.7 % 96.8 % 
Ethane 6.0 % 6.2 % 0.0 % 0.0 % 
Propane 2.2 % 2.3 % 0.0 % 0.0 % 
Butane 1.5 % 1.6 % 0.0 % 0.0 % 
Nitrogen 0.4 % 0.2 % 7.4 % 3.2 % 
LHV of LNG 49.5 [MJ/kg] 49.6 [MJ/kg] 46.4 [MJ/kg] 48.5 [MJ/kg] 
 

 

Their results clearly indicate that the BOG includes a high percentage of 7.43% 

nitrogen at the beginning of the voyage before it decreases to 3.15% at the final 

destination. It is also interesting to see that the BOG almost does not include any 

ethane, propane or butane at all, which is reasonable since methane and nitrogen are 

the only substances around or above their boiling point during transport in the LNG 

Carrier. Thereby, only the change in composition of methane and nitrogen affects the 

heating value of the BOG used as fuel, which changes from 46.37 [MJ/kg] initially to 

48.45 [MJ/kg] at final state (Note that the LHVs are used in their research). The 

reason is that nitrogen does not contribute to the total heating value at all, which 

makes the total value better during voyage since the amount of nitrogen in the BOG 

decreases by time.  

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 Forced Boil-off means to extract LNG as liquid from the cargo tanks, and vaporize it by use of 
external energy. This can be done if more gas is needed as fuel. 
7 Reliquefaction means to liquefy the gas by cooling it down to cargo temperature and send it back to 
the cargo tanks. This can be done if more LNG is vaporizing than the amount needed as fuel.!
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In addition, their results clearly shows that the total mixture of the final delivered 

LNG is almost identical to the initial loading state, while the BOG changes more 

significantly in composition. The mixture of the LNG itself tends to be better during 

voyage since much of the nitrogen has boiled off. However, the initial part of nitrogen 

in the LNG is very low (0.40%) compared to other substances, which only causes the 

heating value of LNG to change from 49.55 [MJ/kg] to 49.67 [MJ/kg]. As some 

methane and nitrogen has boiled off during voyage, the amount of other hydrocarbons 

in the mixture will slightly increase, but not by much. The overall understanding is 

that both the LNG itself and the resulting BOG becomes better during voyages.  

 

It has been a normal procedure for a shipping company to assume a concentration of 

the BOG identical to the concentration of the loaded LNG or a fixed value, as the 

BOG has not been an area of focus. However, greater competition in the market and 

stricter limits on fuel consumption makes it more interesting to know the exact 

concentration of the BOG used as fuel. Especially as Dimopoulos and Frangopoulos 

(2008) have found a significant difference in composition of the BOG compared to 

the LNG. Therefore, the next chapter creates a model to identify the exact changes of 

the BOG per days of the voyage by a given concentration of the loaded LNG. The aim 

is to look for changes in the HHV of the BOG per day in order to highlight any 

deviations in reported fuel consumption due to assuming the concentration of the 

BOG. 
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3. Model to Estimate Change During Transport 
 

 

The Boil-off Gas (BOG) has been out of the ship owner’s focus regarding its 

changing concentration and thermodynamic properties compared to the loaded LNG. 

It has been common to assume a composition of the BOG identical to the loaded LNG 

when calculating its HHV and corresponding fuel consumption. Some of the 

substances in the LNG, as nitrogen and methane, are more volatile at the given 

loading temperature, which implies a higher fraction of these substances in the BOG 

than in the LNG itself. Any difference in composition of the BOG will influence the 

fuel consumption of the vessel since it is used as fuel during transport. It is therefore 

interesting to develop a dynamic mathematical model to gain a better understanding 

of the changes in physical and chemical properties of the BOG during transport, and 

to see how it affects the reported fuel consumption of the vessel. The model itself is 

divided into subsections, but the basis of all these sub-models is to understand the 

change in composition of the BOG per days of the voyage compared to the loaded 

LNG.  

 

The following subsections will go through all the assumptions and equations that 

provide the foundation of the model. It is divided into subsections to illustrate all the 

aspects that underline the calculations to report the total fuel consumption for the 

vessel. The first part is about calculating change in concentrations of the BOG per day 

relative to the LNG in the cargo tanks. However, some of the LNG will be flashing 

off during the loading process and sent back to the terminal (Haugbraaten). 8 This can 

cause change in composition of the finally loaded LNG compared to the product 

delivered by the terminal. In order to have the correct initial state of the LNG at the 

first day of the voyage, subsection two is focusing on changes in initial state of the 

LNG by gas flashing off during loading. The last two subsections are looking into 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 Gas flashing off means that parts of the LNG will evaporate and thereby be flashing off from the 
product. 



3. Creating Model 

!16!

changes in HHV and corresponding Fuel Oil Equivalent (FOE) of the BOG due to 

change in concentration of the BOG. 9 

 

However, to create this dynamic model it was required a good knowledge about the 

steady-state equilibrium between the LNG and the BOG. This aspect of the product 

had to be covered before moving on with the model, as it will be used as an input. 

Thereby, the following section will be handling this equilibrium phase before looking 

into the subsections of the dynamic model.  

  

3.1. Steady-State Equilibrium of LNG and BOG 
There will always be a steady-state equilibrium between liquid and vapour in a cargo 

tank containing LNG. This is important when further modelling the change in 

composition of the BOG. Even though liquid might vaporize by a changing rate per 

day, depending on heat exchange with the surroundings and the composition, there 

will always exist an initial state, which can be considered as a steady-state 

equilibrium. Different parts of the thermodynamic discipline was attempted analysed 

in an early phase of this thesis work to calculate this steady-state equilibrium, but it 

was to heavy and deviated from the focus of this master thesis. However, SINTEF at 

NTNU was contacted for advice, and they recommended the Design II software to 

simulate the concentration of gas and liquid in equilibrium phase.10!11 Simplified, this 

software gives the concentration of the gas when input parameters, as molar 

concentration of liquid added to the tank, the gas pressure and amount flashing off per 

time are given. The only problem was that this software only gives the instant 

concentration of the gas relative to the liquid. A dynamic model needs to recalculate 

this equilibrium phase for every day of the voyage, as the concentration of the LNG 

will change due to gas boiling off. Thereby, the solution was to run several cases of 

different LNG concentrations in the software to look for correlations in the results. 

The aim was to find corresponding functions that could be used in the following 

dynamic model in this thesis. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 Fuel Oil Equivalent (FOE) – Used to calculate the amount of HFO the given LNG corresponds to. 
10 A personal meeting with Senior Scientist Ole Oldervik at SINTEF OLDERVIK, O. 05.03.2014. RE: 
Meeting with SINTEF, Ole Oldervik. 
11 The Design II Software is an advanced engineering software developed by WinSim INC., W. 1996 - 
2013. Advanced Engineering Software [Online]. Available: www.winsim.com.!



3. Creating Model 

! 17!

To get accurate results by use of the software, good knowledge on usage and input 

parameters were required. Fortunately, The Project Engineer in Golar LNG, Kristin 

Haugbraaten, had access to this simulation tool and helped with the calculations in 

order to get correct results. To get an idea of the composition of the BOG, some cases 

of different concentration of the LNG were conducted. All these simulations 

supported the assumptions of only methane and nitrogen containment in the BOG, 

which corresponded very well with studies by Dimopoulos and Frangopoulos (2008).  

Some other hydrocarbons were present, but the fractions were approximately zero. 

This is illustrated in Table 4. 

 
Table!4:!Results!from!Design!II!Calculations!(All!Substances)!

Input (LNG Mole%) Output (BOG Mole%) 

CH4 C2H6 C3H8 C4H10 N2 CH4 C2H6 C3H8 C4H10 N2 

89.9 6.0 2.2 1.5 0.4 89.6 0.0 0.0 0.0 10.4 

91.5 6.3 2.0 0.2 0,03 99.2 0.0 0,0 0,0 7.9 

88.0 8.4 2.0 0.6 1.0 75.8 0.0 0,0 0,0 24.2 

 

 

The table clearly indicate that the BOG does almost exclusively contain methane and 

nitrogen. Additionally, since ethane has a heating value nearly equal to methane 

(Goodger, 1977), it was assumed that ignoring the fraction of ethane in the BOG 

would have nearly no impact on the overall results. Thereby, when running more 

simulations to cover several aspects of the LNG, it was assumed that the loaded LNG 

only contained methane and nitrogen. This means all the heavier hydrocarbons in the 

LNG was excluded and replaced by methane in the simulations.  

 

However, it was suspected that including heavier hydrocarbons in the simulations 

could affect the evaporations rate of the nitrogen. By running some new test 

simulations, it appeared that this was actually the case. The fraction of nitrogen in the 

BOG tended to increase when including heavier hydrocarbons, even though the 

nitrogen content in the LNG was constant. Thereby, new simulations were preformed, 

including all the common substances in the LNG, in order to obtain correct functions 

for the concentration of the BOG. To illustrate these changes, both iterations are 

included in the following subsections. 
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3.1.1. First Iteration: Only methane and nitrogen in the LNG 
It was expected that the calculations of the BOG would be independent of heavier 

hydrocarbons in the LNG. Therefore, for the first iteration in the software, it was 

assumed a loaded LNG containing only methane and nitrogen. Additionally, the 

Design II software required some assumptions, which were set to be equal common 

values for an LNG/C in GWM’s fleet. These values were decided by guidance from 

the Project Engineer in Golar LNG.  The gas pressure was set equal to a regular 

pressure in the cargo tanks of an LNG/C, an overpressure of 0.132 bars. Additionally, 

the amount of gas flashing off per day was set to be 0.12% of the total volume, which 

is a reasonable value for an LNG/C. Table!5 gives the results from this first iteration 

of the equilibrium phase. 

 
Table!5:!Results!from!Design!II!Calculations!(Only!Methane!and!Nitrogen)!

Input (LNG Mole %) Output (BOG Mole%) 

CH4 N2 CH4 N2 

99.97 0.03 99.3 0.7 

99.9 0.1 97.8 2.2 

99.7 0.3 93.6 6.4 

99.5 0.5 89.6 10.4 

99.0 1.0 80.4 19.6 

 

 

The results clearly indicate an increasing trend of nitrogen in the BOG by increased 

fraction of nitrogen in the loaded LNG. However, in order to use these results in a 

dynamic model to calculate changes per day, it was desirable to find a function 

corresponding to these results. To do this the results were plotted to look for 

correlations. Polynomial regression fitted perfectly and made it possible to determine 

a suitable function for the nitrogen content to be used in the dynamic model. The 

correlations in the results are illustrated in Figure! 6, where the horizontal axis 

represents the fraction of nitrogen in the LNG, and the vertical axis represents the 

corresponding nitrogen in the BOG. Note that these values are fractions of 1 in total, 

not the percentage value. 
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!
Figure!6:!Regression!of!Nitrogen!Content!in!BOG!versus!LNG!

 

The resulting function of the nitrogen content in the BOG, found by polynomial 

regression is given by Equation 3.1.1: 

!
!!(!)! =! −233.7!! + 22.0!! (3.1.1) 

!
This function gives the corresponding mole fraction of nitrogen in the BOG when the 

fraction of nitrogen in the LNG is known, which is very useful as the fraction of 

nitrogen in the LNG is provided by the loading papers from the terminal. It enables a 

dynamic illustration of changes per day, as the changing concentration of the LNG 

always will be a known value.  

 

Even though the BOG mostly contains methane and nitrogen, it was suspected that 

the evaporation rate of methane and nitrogen could vary by the fraction of other 

substances in the loaded LNG. Since that was confirmed when running some test 

cases, more thoroughly simulations were performed in a second iteration.  
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3.1.2. Second Iteration: Including heavier hydrocarbons in the LNG 
In the second iteration, it turned out that including ethane and heavier hydrocarbons in 

the simulations of the equilibrium had a significant influence on the results, yet only 

on the concentration of nitrogen in the BOG. Still, methane and nitrogen were the 

only main substances in the gas. This time, more systematic simulations were 

performed to look for differences by changing the amount of ethane in the cargo. 16 

simulations were done in total, varying the fraction of ethane from 0% to 8% by a step 

length of 2. In addition, the fraction of nitrogen was varied from 0.03% to 1%, which 

is identical to the first iteration. Other heavier hydrocarbons as propane and butane 

were kept at a constant level of 2% and 0.5%, respectively. All these values were 

based on common values given by loading papers from terminals. It is normal for the 

LNG to contain some propane and butane, but the fractions are small according to 

provided loading papers for some vessels (see Appendix A3 and A4). Thereby, 

keeping the values at a constant level was assumed to not have a significant influence 

on the overall results. 

 

All the results from the simulations in Design II due to changing the fraction of 

ethane, methane and nitrogen are given in Figure!7. The horizontal axis corresponds 

to the fraction of nitrogen in the loaded LNG, while the vertical axis gives the 

corresponding fraction of nitrogen in the BOG. Note that the values of the axis 

represent fractions of 1 in total, not the percentage values. 

!
Figure!7:!Nitrogen!Content!in!BOG!by!Fraction!of!Ethane 
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!
The results clearly indicate that an increased fraction of ethane and heavier 

hydrocarbons in the LNG results in a higher fraction of nitrogen in the gas flashing 

off. Simply increasing the concentration of ethane from 0 to 2 Mole% in addition to 1 

Mole% nitrogen in the LNG will result in 23 Mole % of nitrogen in the BOG. 

Additionally, further increases in fraction of ethane results in an even higher 

concentration of nitrogen in the BOG, which is very important for further calculations 

in the dynamic model. 

!
Polynomial regression fitted for these results as well. Equation 3.1.1 is still valid 

when the fraction of ethane in the loaded LNG is approximately zero, but the equation 

had to be updated with new constants to match these new variations in the BOG by 

ethane content in the LNG. This more general function of the nitrogen content in the 

BOG is given by Equation 3.1.2, and Table 6 gives the corresponding constants, 

depending on the ethane content. 

 

!!(!)! =! !!! + !"! (3.1.2) 

 
Table!6:!Constants!foe!Equation!3.1.2!

Ethane Content a b 

0 Mole % -233.7 22.0 
2 Mole % -375.4 27.5 
4 Mole % -396.2 28.5 
6 Mole % -418.5 29.5 
8 Mole % -442.9 30.6 

 

 

Having these functions to give the instant concentration of the BOG by a given LNG 

concentration made it possible to generate a dynamic model adapting to everyday 

changes of the LNG. The following model is made to choose the most appropriate 

constants for Equation 3.1.2 according to remaining fraction of all the substances in 

the LNG at each day. Values between these given fractions of ethane are rounded to 

the nearest value.  
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The following subsections will show the development of the model, which later will 

be used in calculating the changing concentration of the BOG and the LNG per day of 

the voyage, in addition to corresponding change in HHV and reported fuel 

consumption. The part of the model considering change in concentration of the BOG 

per day of the voyage by a given LNG concentration is explained first, as it is the 

fundamental part of the complete dynamic model. 

! !
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3.2. Model Part 1: Change in Composition of the BOG 
This first part of the model explains how the concentration of the BOG is calculated 

for each day of a complete voyage. The concentration of the LNG and the gas 

flashing off will change per day of the voyage, as some parts of the containing 

substances are removed from the tanks and used as fuel. To calculate these daily 

changes, the model is recalculated for each day of the voyage, making a new initial 

state of the LNG per day. All these changes were calculated by looping the whole 

model in a numerical computation software, in this case MATLAB. Before explaining 

all the equations to calculate the changes of the BOG, some assumptions are needed. 

 

3.2.1. Assumption for the Model of the BOG 
The first assumption is that the BOG only contained methane and nitrogen, as it was 

indicated theoretically and by simulations in the Design II software (See Chapter 3.1). 

The second assumption is no significant change in concentration of the BOG by 

increased volume flashing off per day, i.e. Equation 3.1.2 is used regardless the 

amount of BOG per day. The last assumption is that the density of the LNG is kept 

constant for a whole voyage. The reason for this last assumption is that nitrogen 

represents a very low fraction of the LNG, and thereby does not cause any significant 

changes to the LNG when boiling off. The methane is always the main part, and will 

still be the main part at the destination port. This is also supported by the studies of 

Dimopoulos and Frangopoulos (2008). 

 

3.2.2. Model to Calculate Composition of the BOG 
To make a mathematical model for the concentration of the BOG compared to the 

LNG, and how it changes during a voyage, some conversions were needed. This 

model is handling both gas phase and liquid phase, which has different chemical 

properties. The gas phase can be modelled by assuming ideal gas behaviour, and 

thereby look at all the substances separately (Moran and Shapiro, 2010). However, the 

liquid phase is more complicated as all the substances are mixed together. In addition, 

a normal cargo report provided by the terminal often gives the fraction of all 

substances in the loaded LNG, which is in liquid phase, meaning a more complicated 

liquid phase must be taken into account. Still, these two phases have something in 

common: the number of moles. The exact number of moles of each substance 

extracted from the liquid by vaporization will be the same when changing into gas 
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phase, even though the required volume is different (Zumdahl, 2009). This is used as 

a cornerstone for all calculations in this model. 

 

In order to make the results of the model unique for each voyage and vessel, the 

model is designed so the user has to specify some input parameters. The mole fraction 

of each substance in the LNG (!!) and its density (!!"#) are often specified in the 

loading papers for the vessel, while ship specific parameters as cargo tank volume (!) 
and average boil-off rate (!"#) is known by the technical department in the company 

operating the vessel. In addition, days of the voyage (!) have to be entered in order to 

get correct results. All these required input parameters are listed below: 

 

!!  Mole fraction of substance i in the LNG [Mole fraction] 
!!"#   Density of loaded LNG [kg/!!] 
!  Vessel’s Cargo Tank Volume [!!] 
!"#  Boil-off rate [Volume (%)/Day] 
!  Number of days at sea [Days] 

 

In addition, all other variables and parameters used in the model to calculate for each 

day of the voyage are given below: 

 

!!"#!   Mole fraction of substance i in the LNG [Mole fraction] 

!!"#!   Mole fraction of substance i in the BOG [Mole fraction] 
!!  Mole fraction of substance i in liquid form [Mole fraction] 
!!  Number of moles of substance i [Moles] 

!!"#!   Number of moles of substance i in the BOG [Moles] 
!!"#!"!   Total number of moles in the BOG [Moles] 

!!"#!   Number of moles of substance i in liquid form [Moles] 
!!  Molar mass of substance i [kg/mole] 
!! !   Regression from Design II [Mole fraction] 
!"#!"#  Boiled off gas per day (given as liquid volume) [!!/!"#] 
!!"!  Weight total [kg] 
!!  Weight of substance i [kg] 

 

Numbers of moles of a substance are a fundamental part in this model. All cargo data 

reported from the vessel are often represented in mole fractions, which specifies the 

moles of each substance i (Ni) relative to the total moles of all substances in the cargo 
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( !!! ). In this model, a mole fraction of substance i is represented as !!, given by 

Equation 3.2.1. 

 
!!
!!!
! =! !! ! (3.2.1) 

 

Even though the mole fraction of each substance is a given parameter, the total moles 

of the product are still unknown. In general, by knowing the total moles of a 

substance (!!"!) , the mole fraction of each containing substance (!!)  and their 

corresponding molar mass (!!), the total mass !!  in kilograms of each substance 

can be calculated by Equation 3.2.2: 

 

!! ! =! !!"!!!!! ! (3.2.2) 

 

Thereby, the total mass !!"!  of the product can be calculated by adding up molar 

fractions multiplied by molar mass for all the substances, and the multiply it all by the 

total amount of moles. Given by Equation 3.2.3: 

 

!!"! ! =! !!"! (!!!!)
!

! (3.2.3) 

 

When loading the LNG to the vessel, the loading terminal specifies the density 

!!"#  and the total volume !  of the loaded product. By multiplying these given 

parameters, the total mass !!"!  of the LNG can be calculated by Equation 3.2.4: 

!
!!"! ! =! !!"#!! (3.2.4) 

!
Combining Equation 3.2.3 and Equation 3.2.4 enables solving the total moles (!!"!) 
of the loaded LNG, as it is the only unknown variable in these equations. By 

restructuring for total moles, Equation 3.2.5 is given: 

 

!!"! ! =! !!"#!
(!!!!)!

! (3.2.5) 

 



3. Creating Model 

!26!

When knowing the total moles in the LNG, the corresponding moles of each 

substance (!!) can be calculated by multiplying total moles in the LNG (!!"!) by the 

mole fraction (!!) of each substance, given by!Equation!3.2.6:!
!

!! ! =! !!"!!! ! (3.2.6) 

!
All the necessary parameters of the loaded LNG are then known, but the composition 

of the gas boiling off will be slightly different from the loaded LNG (See Chapter 

3.1), which makes it necessary to perform additional calculations of the BOG. The 

corresponding concentration, hereby mole fraction, of nitrogen in the BOG (!!"#!"# ) 
can be calculated by use of the regression formula !! !  in Chapter 3.1.1, showed by 

Equation 3.2.7: 

!
!!"#!"# ! =! !! ! ! (3.2.7) 

!
Since the BOG only contains nitrogen and methane (See Chapter 3.1), the 

corresponding mole fraction of methane (!!"#!"#) can be calculated by Equation 3.2.8: 

!

!!"#!"# ! =! 1− !!"!!"# ! (3.2.8) 

!
To calculate the number of moles in the BOG, the volume of the BOG needs to be 

known. A typical boil-off rate (BOR) for a vessel will vary, often by how well the 

cargo tanks are insulated, but it is a known value for a ship owner. By knowing this 

rate of vaporization the total volume of the gas flashing off per day (!"#!"#) is 

given by multiplying the BOR with the cargo tank volume (V), as given by Equation 

3.2.9. Note that this volume corresponds to liquid volume of the LNG, not the volume 

of the gas phase.  

!
!"#!"# ! =! !"#$! (3.2.9) 

!
By knowing the total volume of the gas flashing off per day (!"#!"#) , the 

corresponding moles of each substance in the gas can be calculated. The moles of 

each substance evaporating from the LNG will be equal the number of moles in the 

BOG (!!"#!"! ). Thereby, the total moles of the gas can be calculated in liquid phase, 
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enabling use of the density of the loaded LNG (!!"#). The constant density is a 

simplified assumption, as it will change by changes in the concentration of the LNG. 

However, the changes in the LNG are nearly negligible during a whole voyage, which 

makes the assumption reasonable for this model.  The equation is very similar to 

Equation 3.1.6, but the volume and mole fractions are replaced by values for the gas, 

(!"!!"# and !!"#! ). Equation 3.2.10 gives the modified version. 

!

!!"#!"! ! =!
!!"#!"!!"#
(!!"#! !!)!

! (3.2.10) 

 

Then the moles of nitrogen (!!"#!"# ) and methane (!!"#!"#) in the BOG corresponding to 

the mole fractions in Equation 3.2.7 and 3.2.8 are calculated by multiplying total 

moles (!!"#!"! ) by the mole fraction of each substance (!!"#! ), given by!Equation 

3.2.11 and Equation 3.2.12 respectively.  

!
!!"#!"# ! =! !!"#!"! !!"#!"# ! (3.2.11) 

!
!!"#!"# ! =! !!"#!"! !!"#!"# ! (3.2.12) 

!
The last step is to calculate the remaining moles of nitrogen (!!"#!"# ) and methane 

(!!"#!"#) in liquid form (LNG), which corresponds to the previous amount in liquid 

phase (!!) minus the amount evaporated as BOG (!!"#! ). Equation 3.2.13 gives 

moles in total (!!"#!"! ), while Equation 3.2.14 and Equation 3.2.15 give nitrogen 

(!!"#!"# ) and methane (!!"#!"#) respectively. 

 

!!"#!"! ! =! !!"! − !!"#!"! ! (3.2.13) 

 

!!"#!"# ! =! !! − !!"#!"# ! (3.2.14) 

 

!!"#!"# ! =! !! − !!"#!"# ! (3.2.15) 
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These new values of methane (!!"#!"#) and nitrogen (!!"#!"# ) gives the new mole 

fractions of the LNG (!!"#! ) by dividing on total remaining moles in the LNG 

(!!"#!"! ), given by Equation 3.2.16 and Equation 3.2.17: 

 

!!"#!"# ! =! !!"#!"#

!!"#!"! ! (3.2.16) 

!
!!"#!"# ! =! !!"#!"#

!!"#!"! !
(3.2.17) 

 

All the equations given above have to be recalculated for each day of the voyage for 

an LNG/C. The new fractions of nitrogen (!!"#!"# ) and methane (!!"#!"#) are used to 

calculate the remaining moles of LNG by the next day of the voyage, representing a 

new initial state for the remaining LNG.  

 

Even though the mole fraction of the loaded LNG is reported from the terminal and 

used as inputs for the model above, the values may not be completely correct. Some 

of the LNG will be flashing off and sent back to the terminal during the loading 

process (Haugbraaten). This may cause the finally loaded LNG to differ in 

concentration from the reported loading papers, which will influence the results in the 

model above by giving a different initial state. Thereby this flashing of gas has to be 

included in the final model, which will be described in the next section. 

 
!
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3.3. Model Part 2: Flashing of Gas During Loading 
During loading of the vessel some of the LNG will be flashing off and sent back to 

the terminal (Haugbraaten). This amount of gas may have significant influence on the 

concentration of the finally loaded LNG, and thereby deviate from the values 

specified in the loading papers. The concentrations specified in the loading papers, 

provided by the terminal, are often based on the product delivered from the terminal 

without considering change in concentration of the product by gas flashing off. 

Nitrogen and methane, especially nitrogen, are highly volatile substances at the 

loading temperature (-162°C), which causes both substances to flash off during the 

loading process. The amount of gas flashing off is sent back to the terminal, and 

compensated when specifying the total loaded volume. Even if the volume is 

compensated and thereby correct, the concentration and the corresponding mole 

fraction might change from the original loading papers. This difference in 

concentrations will have influence on the modelling of the BOG, as the initial state of 

the finally loaded LNG may contain a different fraction of nitrogen and methane.  

 

Therefore, to be able to model the change in concentration of both the BOG and the 

LNG per day of the voyage, it is important to obtain the correct initial values of the 

first day of the voyage. This new initial state was obtained by including the model 

given below. Note that this change in concentration might not be the case for all 

loading terminals. However, even if this sub-model is included in the main model, 

whether to run it or not is up to the user by input arguments. 

!
3.3.1. Assumption for the Model of Flashing of Gas 
The terminal is specifying the amount of gas sent back to the terminal, but the amount 

is often specified in kilograms and not as volume. However, the density of the loaded 

LNG will be specified as well, enabling an easy conversion to corresponding volume. 

The density will change as the mole fraction of each substance changes, but the 

difference will be so small that it was ignored in this part of the model. In addition, 

the whole loading process of gas flashing off per hour is considered as one total 

amount. Small changes from hour to hour were ignored, as it was assumed to only 

cause small changes to the overall result. 

!
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3.3.2. Model to Calculate Flashing of Gas when Loading 
This model will eventually be a part of the model developed in Chapter 3.2, but it 

requires some additional input parameters, which are given below. The parameter ! 
represents the loading time to fill all the cargo tanks in the LNG/C, while the 

parameter !!"#$! represents the amount of gas flashing off per time of loading. This 

amount is measured in kilograms, and sent back to the terminal. 

 

!  Loading time [hours] 
!!"#$!  Mass of Gas Flashing Off per loading hour [kg/hour] 

 

In addition, several parameters and variables equal to the model in Chapter 3.2 are 

given below. The parameter !! represents the mole fraction of nitrogen in the loaded 

LNG, reported from the terminal, while !!"#$%!  gives the mole fraction of substance i 

in the gas flashing off during loading. !!"#$%!  and !!"#$%!"!  are the corresponding 

moles of each substance i and in total, respectively. The regression formula from 

Chapter 3.1, !! ! , is used to estimate the mole fraction of nitrogen in the gas 

flashing off relative to the loaded LNG, while !!"#$! and !!"#  are the total volume of 

the gas flashing off and the density of the loaded LNG, respectively. 

!
!!  Mole fraction of Nitrogen in loaded LNG [Mole fraction] 

!!"#$%!   Mole fraction of substance i in the flashing gas [Mole fraction] 
!! !   Regression from Design II [kg/hour] 
!!"#$%!"!   Moles Flashing off in total [Moles] 

!!"#$%!   Moles of substance i flashing off in total [Moles] 
!!"#$!  Total Volume of gas flashing off [m3] 
!!"#   Density of loaded LNG [kg/m3] 

!
Equation 3.3.1 gives the mole fraction of nitrogen in the gas flashing off during 

loading, which is based on the regression formulas in Chapter 3.1. In addition, the 

corresponding mole fraction of methane in the gas is given by Equation 3.3.2. 

 

!
!!"#$%!"# ! =! !! ! ! (3.3.1) 

!
!!"#$%!"# ! =! 1− !!"#$%!"# ! (3.3.2) 
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Equation 3.3.3 gives the corresponding moles in total, as the mole fraction of each 

substance is known (!!"#$%! ). This equation are based on the same principles of mass 

calculations for liquid used in Chapter 3.2, but the volume and density are replaced by 

mass per hour (!!"#$!) multiplied by total hours of loading (!).  
 

!!"#$%!"! ! =! !!"#$!!
(!!"#$%! !!)!

! (3.3.3) 

 

Equation 3.3.4 and 3.3.5 gives the corresponding moles of nitrogen and methane 

flashing off when loading. 

 

!!"#$%!"# ! =! !!"#$%!"! !!"#$%!"# ! (3.3.4) 

 

!!"#$%!"# ! =! !!"#$%!"! !!"#$%!"# ! (3.3.5) 

!
The initial state of the finally loaded LNG in the cargo tanks can then be calculated by 

extracting the moles of nitrogen and methane in Equation 3.3.4 and 3.3.5 from the 

total amount of moles based on the loading papers. 

 

Since all reported data on the gas sent back to the terminal are given in kilograms, it is 

interesting to calculate the corresponding volume, as all other data of gas boiling off 

are given by volume. One of the assumptions for this model was constant density of 

the loaded LNG, which makes volume calculation relatively simple. Equation 3.3.6 

thereby gives the corresponding liquid volume of the gas flashing off during loading 

at the terminal. 

 

!!"#$!! =! !!"#$!!
!!"#

! (3.3.6) 

!
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3.4. Model Part 3: Change in Heating Value by Gas Quality 
The heating value of the BOG is very important in order to compare the amount of 

gas needed to propel the vessel. It specifies the amount of energy transferred by 

kilogram of gas used as fuel, and will indicate necessary changes in fuel consumption 

for the vessel. In addition, the Higher Heating Value (HHV) will change by 

concentration of the BOG, indicating how the changes in fractions of nitrogen and 

methane in the BOG will influence the fuel consumption of the vessel. However, to 

create a suitable model to calculate the HHV some assumptions were needed. 

!
3.4.1. Assumptions for the Model 
It is common to specify the transferred energy of the fuel as higher or lower heating 

values, depending on how well the energy in the fuel is utilized (See Chapter 2.5). 

HHV is assumed for this model, as many of the vessels in GWM’s fleet are using 

steam engines. Those engines can normally utilize more of the energy in the exhaust 

gas, making the higher heating values most appropriate (Egeberg). In addition, 

today’s energy calculations done by GWM are based on these HHVs, which made it 

most appropriate to do the same in this model in order to get comparable results. The 

HHV of all the substances in the LNG are varying by pressure and temperature. 

Thereby, identical values used by GWM are used in this thesis is order to compare the 

results. The last assumptions is that all calculations below are based on the same 

technique used by GWM to calculate the total heating vale of the product, which is 

theoretically correct, to enable comparison.  

  

3.4.2. Model to Calculate Change in Heating Value 
To calculate the total HHV of the BOG, some input parameters had to be specified, 

which are given below. Those are the higher heating value of each substance (!!!!), 
the molar mass of each substance (!!) and the corresponding mole fraction (!!). All 

these parameters will be implemented in the main model, as this part is just a sub-

model. Thereby, the user does not have to specify these values when calculating 

changes for a voyage. 

!
!
!!!!  Higher heating value of substance i [MJ/kg] 
!!  Molar mass of substance i [kg/!"#$] 
!!  Mole fraction of substance i [Mole fraction] 
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!
!
In addition, all other parameters and variables for the model are given below: 

!
!
!!!  Molar mass ratio of each substance i [kg/mole] 
!"#$!!  Molar mass fraction of each substance i [-] 
!!"#$%!!  Energy fraction of each substance [MJ/kg] 
!!!!"!  Total higher heating value of the product [MJ/kg] 

!
!
Firstly, a ratio considering both the mole fraction (!!) and the molar mass of each 

substance (!!) have to be calculated, given by Equation 3.4.1. The reason is that the 

HHV is specifying energy per kilogram, while the fractions specified in this case are 

dealing with moles. The ratio can be calculated by multiplying the values, as both 

parameters handles number of moles.  

!
!

!!! ! =! !!!! ! (3.4.1) 
!
!
When knowing the ratio of each substance (!!!), their relative fractions (!"#$!!) 
can be calculated by dividing each ratio on the sum of all substances, given by 

Equation 3.4.2. 

!
!"#$!! ! =! !!!

!!!!
! (3.4.2) 

!
!
By knowing these fractions, each part of the total HHV of the BOG or LNG 

(!!"#$%!!)  can be calculated by multiplying the fraction of each substance 

(!"#$!!) by their corresponding higher heating value (!!!!), given by Equation 

3.4.3 

!
!

!!"#$%!! ! =! !!!!!"#$!! ! (3.4.3) 
!
!
Then the total higher heating value of the product (!!!!"!) can be calculated by 

summing up all the fractionated parts, as given by Equation 3.4.4 

!
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!
!!!!"!! =! !!"#$%!!

!
! (3.4.4) 

 
 

By performing these calculations for every day of the voyage, the energy delivered 

per kilogram of BOG is known. Yet, a ship owner is very interested in the resulting 

amount of fuel used per day of the voyage. Since the vessels are using both HFO and 

BOG as fuel, some equivalents have to be calculated in order to compare days of the 

trial. Therefore, the next section will specify how to calculate the FOE by a given 

concentration of the BOG. 
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3.5. Model Part 4: Change in Fuel Oil Equivalent by Gas Quality 
An LNG/C are utilizing both HFO and LNG as fuel, in addition to other fuel types 

(Küver et al., 2002). However, only HFO and LNG will be considered in this thesis, 

as those are the main fuel types. Sometimes the daily amount of gas boiling off is not 

sufficient for the power requirements aboard, which causes the vessel to choose 

whether to force more gas to boil off or to supplement with HFO. Since the LNG is 

transported for the reason of delivering gas at the destination terminal, HFO is often 

used in addition to the natural BOG, preventing loosing too much cargo during 

transport.  For these reasons a Fuel Oil Equivalent (FOE) is calculated to measure the 

total amount of fuel used for power supply. By using this FOE the amount of LNG 

can be converted to corresponding amount of HFO in order to compare consumption 

per days of voyage. Normally LNG is given as cubic metres, while HFO is given as 

metric tons. Thereby, the FOE gives metric tons of HFO per cubic metres LNG. 

!
3.5.1. Assumptions for the Model 
The density of the loaded LNG is assumed to be constant for the whole voyage, 

ignoring small daily fluctuations due to gas flashing off. The calculation of the FOE is 

based on the same procedures as used by GWM in order to make results suitable for 

comparison. Note that the heating values are given as energy per metric tons, not by 

kilograms. The reason is that metric tons are more frequently used for the amount 

HFO loaded. 

!
3.5.2. Model to Calculate Change in Fuel Oil Equivalent 
The model to calculate the FOE is relatively simple, but it requires some input 

arguments that are given below. HHVs of LNG (!!!!"#) and HFO (!!!!"#) have 

to be known, in addition to the density of the loaded LNG (!!"#). 
!
!
!!!!"#   Higher Heating Value of LNG [MJ/MT] 
!!!!"#  Higher Heating Value of HFO [MJ/MT] 
!!"#   Density of the Loaded LNG [MT/!!] 

!
!
All other variables and parameters used for calculations are given below. 

!
!
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!"#!!"#   Conversion from energy per kilogram to energy per 
volume 

[MJ/!!] 

!"#  Molar mass fraction of each substance i [MT/!!] 

!!
!
Since LNG is often measured by volume, the HHV has to be converted from energy 

per metric tons into energy per cubic metres (!"#!!"#). This conversion is done by 

multiplying the density of the loaded LNG (!!"#)  by the HHV of the LNG 

(!!!!"#), given by Equation 3.5.1. 

!
!

!"#!!"# ! =! !!!!"#!!"# ! (3.5.1) 
!

!
Then the FOE is calculated by dividing the energy per cubic metres for the LNG 

(!"#!!"#) by the energy per metric tons for the HFO (!!!!"#), given by Equation 

3.5.2. 

 

!
!"#! =! !"#!!"#

!!!!"#
! (3.5.2) 

!
 

By knowing this FOE and its changing value per day of the voyage, the total amount 

of fuel used by the vessel per day can be calculated very accurately. Thereby, it is 

interesting to see how the concentration of the loaded LNG, especially the nitrogen 

content, affects the HHV of the BOG and the corresponding FOE.  

 

The next chapter contains the results by testing the model with different 

concentrations of the loaded LNG, all to look for changing trends by days of a 

complete voyage. The cases highlight the difference in concentration of the BOG 

compared to the LNG per day, in addition to changes in HHV and FOE. The cases 

will also look into deviations in today’s practice of calculating the FOE, and compare 

it to values given by this theoretical model. 
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4. Results from Model by Assumed LNG Quality 
 

 

In general, this part of the thesis is meant for displaying the results of the model in 

Chapter 3 by different concentrations of the loaded LNG. The aim is to see how the 

quality and concentration of the BOG is affected by assumed concentration of 

nitrogen and ethane in the LNG loaded at the terminal. The model will display 

corresponding changes in higher heating value (HHV) and fuel oil equivalent (FOE) 

per day of the voyage, in addition to changing concentrations of all the substances in 

the BOG per day. It is important to know how the assumed concentration of the BOG 

affects the calculated HHV and FOE, as it will affect the reported fuel consumption of 

the vessel. Since it has been a common technique to assume the concentration of the 

BOG to be equal the values given by the loading papers, any deviating results by use 

of this technique compared to the actual concentration of the BOG will be 

highlighted.  

 

In total, three cases of different nitrogen content in the loaded LNG have been 

evaluated. Each case has two subcases of changing ethane content to highlight all 

aspects of the BOG. The first case contains a very small fraction of nitrogen, nearly 

zero. However, it is important to evaluate a case of low nitrogen content, as it might 

be a real case for some of the vessels. The nitrogen content is gradually increased, 

until it finally constitutes a high fraction of the LNG in the last case. The main goal is 

to highlight overall trends by a given LNG quality, and not focus too much on actual 

values given by the model. However, in some cases a large numbers of decimals are 

included, where the purpose is to highlight the trends, not to give specific results.  

 

All results from the sub-models in Chapter 3 is considered, and structured in order to 

represent changes during a whole voyage between the terminals. Sub-model 2 is 

represented first, as changes by loading of the vessel is the first part of the voyage. 

This part is important in order to have a correct initial state of the LNG. Further on, 

the changing concentration of the gas will be evaluated, before corresponding change 
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in HHV and FOE will be displayed. However, in order to evaluate the results of the 

model, some assumptions were needed. 

 

4.1. General Assumptions for the Cases 
These cases were meant to be as identical as possible to a complete voyage, which 

means many of the general assumptions in these cases are based on known values 

from a typical voyage for an LNG/C. The boil-off rate will normally change from day 

to day, and vary by vessel type, weather conditions and whether the vessel are 

supplementing with HFO or not. Still, a steady rate of boil-off per day was assumed to 

be 0.12% of the total loading capacity (normally 98.5% of total tank volume), as it 

was recommended to be a suitable mean value by GWM. Additionally, the total tank 

volume of the vessel was assumed to be 144,000 m3, which corresponds to some 

vessels in GWM’s fleet.  

 

It is assumed only methane and nitrogen in the BOG, as the fraction of heavier 

hydrocarbons in the BOG tends to be negligible. Thereby, the nitrogen concentration 

in the BOG versus the LNG is based on the Design II regression formulas from 

Chapter 3.1. Additionally, the density of the loaded LNG reflects a given loading 

paper for one of the vessels (see Appendix A3 and A4), and was assumed to be 465 

[kg/m3]. In reality this value will change by composition of the LNG, but it was 

assumed to not have a significant influence on the result as it only influences the 

amount of the LNG boiling off per day (See Equation 3.2.10). There were made 

several attempts to calculate the exact density by a given LNG concentration. 

However, this proved to be rather complicated, as the percentage value of each 

substance is given by mole fractions, while the density is given as kilogram per cubic 

meter. The intention of this section is to highlight overall trends, and not give specific 

results. Therefore using an assumed value was considered sufficient. 

 

Another important aspect to include is the loading process. Some gas will normally 

flash off during the loading, which was assumed to be 24,000 [kg/hour] kilograms of 

LNG per hour of loading. The total amount of hours estimated for loading the vessel 

was 15 hours, given by the loading papers for one of the vessels (Appendix A5). Note 

that this amount of time will depend on many factors, which resulted in an assumed 
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mean value of 15 hours. Additionally, the HHV of the loaded HFO had to be known 

to enable calculation of the corresponding FOE. This value of energy per kilogram of 

HFO will vary by quality, which made an assumed mean value necessary. This value 

was approximately 43 [MJ/kg] for many reported cases. Some deviations existed, but 

they were all fairly equal. Thereby, the HHV of the HFO was assumed to be 43 

[MJ/kg] for all the cases. 

 

The total number of days for a complete voyage will vary by voyage, but the 

important part of these cases was not to calculate changes of concentrations for a 

fixed period of time, rather highlight the changing trend of the product per days of the 

voyage. A high value of 60 days was chosen to see the overall trend of the product as 

most of the voyages will be covered by this value, although they normally require 

fewer days at sea. Table 7 below summarizes all the chosen general parameters for the 

cases. 

 
Table!7:!General!Assumptions!for!Cases!

Boil-Off Rate (BOR) = 0.12 [% of Total Cargo Volume] 

Density LNG (!!"#) = 465 [kg/!!] 
Cargo Tank Volume (!) = 144,000 [!!] 
Flashing of Gas During Loading = 24,000 [kg/hour] 

Estimated Loading hours = 15 [Hours] 

Higher Heating Value HFO = 43 [MJ/kg] 

Days at Sea = 60 [Days] 

 

 

By having all the required assumptions for the model, the three different cases could 

be evaluated. The nitrogen content will gradually be increased, starting at a low level.!  
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4.2. Case 1: Low Concentration of Nitrogen in the LNG   
4.2.1. Case Specific Assumptions 
In this first case it is assumed a very low content of nitrogen in the loaded LNG. The 

concentration is not assumed to be zero, as it is normal for the LNG to contain some 

nitrogen, but the value is set to 0.003 [Mole %] of the loaded product. It was initiated 

theoretically in Chapter 3 that the concentration of nitrogen in the gas flashing off will 

depend on concentration of ethane in the LNG. Thereby, two different subcases are 

analysed regarding additional changes in ethane content to highlight all aspects of the 

BOG. Table 8 gives all the concentrations that are tested in this specific case. Both 

subcases represent typical values specified in the loading papers provided by the 

terminal, meaning flashing of gas during the loading process is not yet included. 

 
Table!8:!Subcases!for!Case!1!

Subcase 1.1 Subcase 1.2 
Nitrogen = 0.003 %   Nitrogen = 0.003 %  
Methane = 97.5 %   Methane = 89.5 %  
Ethane = 0.0 %   Ethane = 8.0 %  
Propane = 2.0 %   Propane = 2.0 %  
Iso-Butane = 0.25 %  Iso-Butane = 0.25 % 
n-Butane = 0.25 %  n-Butane = 0.25 % 

 

4.2.2. Change in Concentration of LNG by Flashing of Gas During Loading 
When the vessel starts loading LNG at the terminal, some of the product will be 

flashing off and sent back to the terminal. This might cause deviations in 

concentration of the finally loaded LNG compared to the product delivered by the 

terminal. The reason is that some substances in the LNG are more volatile than others, 

i.e. nitrogen and methane, and will be flashing off from the product, which causes a 

lower fraction of these substances in the finally loaded LNG. This deviating value has 

to be known in order to obtain a correct initial state for the first day of the voyage. 

Normally, the terminal specifies amount of gas sent back to the terminal, but does not 

specify how this affects the concentration of the LNG (Haugbraaten). The changes in 

composition regarding the LNG delivered from the terminal and its final values when 

finished loading are given below for both subcases.  
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Table!9:!LNG!Containing!No!Ethane!and!0.003!Mole%!Nitrogen!

Loading Papers from Terminal Finally loaded LNG  
Nitrogen = 0.003 %   Nitrogen = 0.003 %  → 
Methane = 97.5 %   Methane = 97.5 %  → 
Other = 2.5 %   Other = 2.5 %  → 

 
Table!10:!LNG!Containing!8!Mole%!Ethane!and!0.003!Mole%!Nitrogen!

Loading Papers from Terminal Finally loaded LNG  
Nitrogen = 0.003 %   Nitrogen = 0.002 %  → 
Methane = 89.5 %   Methane = 89.4 %  ↓ 
Other = 10.5 %   Other = 10.6 %  ↑ 

 

This specific case with almost no nitrogen in the LNG delivered by the terminal was 

expected to have nearly no significant differences in the finally loaded product, but 

some trend lines appeared. The fraction of nitrogen and methane tended to decrease in 

the finally loaded LNG, which was reasonable as mostly methane and nitrogen are 

flashing off during loading. However, many decimals had to be included to see these 

changes for both the subcases. As the cases are based on several assumptions, these 

results are insignificant. It was decided to include only one decimal in the 

concentrations, as changes in that specific decimal will influence the concentration of 

the BOG. On the other hand, the fraction of nitrogen includes more decimals for this 

case, not because it is significant, but to illustrate that the LNG still contains a very 

small fraction of the substance when finally loaded. 

 

For the case of low nitrogen content, the changing trends in nitrogen content are 

negligible, as indicated by blue neutral arrows. This is reasonable, as the LNG only 

contains a small fraction of nitrogen to evaporate, and because the methane is such a 

dominant part of the product. However, methane constitutes a lower fraction of the 

LNG when ethane is present, and thereby the flashing of gas during loading results in 

a lower fraction of methane when finally loaded, as indicated by a red arrow. The 

result in this subcase is also heavier hydrocarbons constituting a larger share of the 

LNG, as those substances tend to remain in liquid form. This is indicated by a green 

arrow.  

!
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4.2.3. Change in Concentration of BOG and its Influence on HHV and FOE 
The concentration of the BOG will change per day of the voyage, as the LNG will 

contain less of the substances boiling off per day. The main parts of the BOG are 

theoretically proven to be methane and nitrogen, while the mole fraction of these two 

substances will vary by concentration of the LNG in the cargo tanks. In general, more 

nitrogen in the LNG means more nitrogen flashing off per day, resulting in a higher 

concentration of nitrogen in the BOG. 

 

Figure 8 represents this specific case of low nitrogen content in the LNG. The blue 

line indicates the mole percentage of nitrogen in the BOG by having no ethane in the 

LNG, while the dashed red line gives the corresponding fraction by having 8 Mole% 

of ethane in the LNG. The results are plotted for a period of 60 days in total, even 

though not many transport routes require that many days.  

 

!
Figure!8:!Change!in!N2!Content!of!the!BOG!During!Voyage!–!Low!N2!Content!

!
The figure clearly illustrates that the fraction of nitrogen in the BOG is higher at an 

early stage of the voyage, and then decreases by days at sea. Additionally, there is a 

small difference in nitrogen content by fraction of ethane in the LNG. At the first day 

of the voyage, the BOG contains 0.058% nitrogen if the LNG does not contain any 
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ethane, while the value increases to 0.076% if ethane is present. It is also interesting 

to see that, even if the values are not very significant themselves, the trend is a higher 

fraction of nitrogen in the BOG than in the LNG itself. At the first day of the voyage 

the LNG only contains 0.002% nitrogen, which is significantly lower than its fraction 

of the BOG. This shows that nitrogen is a highly volatile product, which easily 

evaporates from its liquid form at the given conditions. This also results in nearly no 

nitrogen present after 60 days at sea. However, note that these values are too accurate 

to be based on all the given assumptions for the cases. Still, the figure is scaled up to 

provide an overall picture of the trend of the gas per day of the voyage. 

 

The dashed line indicates that a higher fraction of ethane in the LNG results in more 

nitrogen flashing off from the cargo. This higher rate of nitrogen evaporation causes a 

lower fraction of nitrogen in the LNG by time, which results in a steeper decreasing 

trend of the nitrogen content in the BOG. Thereby, after 60 days the BOG contains 

0.006 Mole% of nitrogen if ethane is present, while the remaining part is 0.011% by 

no ethane at all. The reason is a significant reduction in fraction of nitrogen in the 

LNG at the end of the voyage, as much of the nitrogen has evaporated from the liquid. 

 

Any change in composition of the BOG will have influence on the HHV of the gas, 

which is important as the gas is used as fuel for the vessel. Having a lower HHV 

results in a lower amount of energy released when burning the product. Thereby, 

more gas has to be supplied to the engine in order to deliver the same amount of 

propulsive power. It is a common procedure to calculate the HHV of the BOG by 

assuming a concentration identical to values of the LNG specified in the loading 

papers, and then use this value to estimate the fuel consumption of the vessel. 

However, the BOG tends to have a different concentration than the LNG itself, which 

means that deviations in the calculated HHV might appear. Thereby, it is interesting 

to see how significant the differences are per day of the voyage.  

 

Figure 9 illustrates the corresponding HHVs for this specific case per day at sea. The 

dark and light blue lines gives respectively the resulting HHVs of the actual BOG and 

the concentration assumed identical to the loading papers, containing no ethane. 

Additionally, the dark and the light red lines gives the HHVs on the same basis, but 

with 8 Mole% of ethane in the LNG.  
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!
Figure!9:!Corresponding!Change!in!HHV!During!Voyage!–!Low!N2!Content!

 

By looking at the calculated values of the BOG, the figure clearly illustrates that there 

is barely any deviations in the HHVs of the BOG regarding ethane content in the 

loaded LNG. By having no ethane in the LNG, the HHV is 55.5 [MJ/kg] at the first 

day, while the corresponding value with 8 Mole% of ethane is 55.4 [MJ/kg], and the 

values are hardly changing during the whole voyage. The reason is that this specific 

case of a very low fraction of nitrogen in the LNG (0.003 Mole%) results in a BOG 

containing mainly methane. On the other hand, by comparing with the HHVs based 

on an assumed concentration of the BOG to be identical to the loaded LNG, some 

differences do appear. These values are slightly lower, even though there is nearly no 

nitrogen present in this specific case. The HHV drops to 55.1 [MJ/kg] and 54.7 

[MJ/kg] for no ethane and 8 Mole% ethane in the LNG, respectively. This means the 

vessel seems to be using fuel with a lower energy content than it actually does, which 

may result in an underreported fuel consumption when converted by the Fuel Oil 

Equivalent (FOE) into corresponding amount HFO. 

 

The FOE is based on the HHV of the HFO and the BOG used as fuel, which makes it 

correspond very well with the calculated changes in the HHV. Figure 10 illustrates 
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these changes in FOE by days of the voyage. The colours and styles of the lines are 

kept identical to the previous figure, and illustrates the same cases of ethane content, 

and if the values are based on the BOG or the loading papers. Since the FOE is the 

conversion factor to be used in order to report the total fuel consumption of the vessel 

in amount HFO, it is very important to know any deviations by assuming 

concentrations of the BOG.  

 

!
Figure!10:!Corresponding!Change!in!FOE!During!Voyage!–!Low!N2!Content 

 

The figure clearly illustrates that FOE based on the BOG is nearly independent of 

ethane content for this specific case, which was expected by the almost identical 

HHVs. At the first day of the voyage the FOE is approximately 0.60, and remains 

unchanged for the complete voyage for both ethane concentrations. However, the 

deviating values of the HHV by assuming concentrations of the BOG identical to the 

loading paper affect the FOE as well.  Making this assumption results in a lower FOE 

of 0.60 and 0.59 for no ethane and 8 Mole% of ethane, respectively.  This means the 

vessel is underreporting its fuel consumption by making this assumption, but the 

deviations are not very significant for this specific case. The next section will handle a 

higher fraction of nitrogen in the LNG to see if it affects the results differently.!  
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4.3. Case 2: Medium Concentration of Nitrogen in the LNG 
4.3.1. Case Specific Assumptions 
This specific case will have identical scenarios to the previous case, but the fraction of 

nitrogen, as an input to the model, is increased to 0.5 Mole%. This is assumed to be 

the middle value of nitrogen content in a typical LNG cargo for transport on an 

LNG/C. Since the fraction of ethane in the LNG tends to have influence on the results 

as well, both an LNG containing no ethane and an LNG with 8 Mole% of ethane will 

be analysed to look for changing trends. 

 

Table 11 gives the assumed concentrations of all the substances in the loaded LNG 

for both the subcases. In addition to the previous case, all the subcases in this part 

represent plausible values for the loading papers for an LNG/C.  

 
Table!11:!Subcases!for!Case!2!

Subcase 2.1 Subcase 2.2 
Nitrogen = 0.5 %   Nitrogen = 0.5 %  
Methane = 97.0 %   Methane = 89.0 %  
Ethane = 0.0 %   Ethane = 8.0 %  
Propane = 2.0 %   Propane = 2.0 %  
Iso-Butane = 0.25 %  Iso-Butane = 0.25 % 
n-Butane = 0.25 %  n-Butane = 0.25 % 

!

4.3.2. Change in Concentration of LNG by Flashing of Gas During Loading 
This specific case has a more significant amount of nitrogen in the loaded cargo than 

the previous case, which causes more nitrogen to flash off from the LNG during the 

loading process. The tables below represents the change in composition of the LNG 

when finally loaded onto the vessel.  

!
!
! !



! ! 4. Model Results 

! 47!

Table!12:!LNG!Containing!No!Ethane!and!0.5!Mole%!Nitrogen!

Loading Papers from Terminal Finally loaded LNG  
Nitrogen = 0.5 %   Nitrogen = 0.5 %  → 
Methane = 97.0 %   Methane = 97.0 %  → 
Other = 2.5 %   Other = 2.5 %  → 

!

Table!13:!LNG!Containing!8!Mole%!Ethane!and!0.5!Mole%!Nitrogen!

Loading Papers from Terminal Finally loaded LNG  
Nitrogen = 0.5 %   Nitrogen = 0.4 %  ↓ 
Methane = 89.0 %   Methane = 89.0 %  → 
Other = 10.5 %   Other = 10.6 %  ↑ 

!
The fraction of nitrogen is decreasing for both these subcases compared to the 

previous case, which would have been visible if more decimals were included, but the 

change is still very small and thereby negligible for the subcase of no ethane in the 

LNG. Additionally, the fraction of methane stays relatively unchanged, while the 

remaining heavier hydrocarbons constitute a higher fraction of the LNG in the last 

subcase. This is caused by methane and nitrogen being the substances flashing off 

during loading, while the remaining substances remains in liquid form. By knowing 

these new initial states of the LNG, it is interesting to see how the larger fraction of 

nitrogen affects the changes of the BOG per days of the voyage, as represented in the 

next section. 

 

4.3.3. Change in Concentration of BOG and its Influence on HHV and FOE 
As for the previous case of low nitrogen content, the resulting concentrations of the 

BOG have been calculated for both the case of no ethane and 8 Mole% of ethane in 

the LNG. Figure 11 gives the resulted concentration of the BOG over a period of 60 

days, with 0.5 Mole% of nitrogen in the LNG delivered by the terminal. 
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!
Figure!11:!Change!in!N2!Content!of!the!BOG!During!Voyage!–!Med.!N2!Content 

 

The higher fraction of nitrogen in the LNG results in a higher content of nitrogen in 

the BOG, in addition to a steeper change in concentration per day. The most 

significant change happens when the LNG contains 8 Mole% of ethane. Then the 

fraction of nitrogen in the BOG is 12.3 Mole% at the first day of the voyage, while 

the LNG with no ethane results in a BOG containing 9.4 Mole% of nitrogen. This is a 

significant difference, as both the subcases only have 0.4 and 0.5 Mole% of nitrogen 

in the LNG at the first day, respectively.  

 

It is interesting to notice that there is an intersection in nitrogen content in the BOG 

after approximately 25 days at sea. The reason is a higher rate of nitrogen evaporating 

from the liquid when ethane is present, resulting in a lower remaining fraction of 

nitrogen in the LNG. Actually, after 25 days at sea there is only 0.17 Mole% nitrogen 

left in the LNG containing ethane, while the other subcase of no ethane has 0.24 

Mole% nitrogen left. The overall trend is that the LNG hardly contains any nitrogen 

after a long period at sea. 
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This significant change in concentration of the BOG has great influence on the HHVs, 

especially deviations by assuming concentrations of the BOG based on the loading 

papers. Figure 12 gives the resulting HHVs. 

 

!
Figure!12:!Corresponding!Change!in!HHV!During!Voyage!–!Medium!N2!Content 

 

The higher fraction of nitrogen in the BOG results in a significant difference in 

calculated HHV compared to calculations based on the loading papers, especially at 

an early stage of the voyage. At the first day the BOG have HHVs of 44.6 [MJ/kg] 

and 47.0 [MJ/kg], with and without ethane respectively. At the same time, using the 

concentration given by the loading papers will result in HHVs of 54.2 [MJ/kg] and 

54.7 [MJ/kg], with and without ethane respectively, which is a significant difference 

compared to the actual values. 

 

The increasing trend of the HHVs based on the BOG results in a smaller difference 

between the assumed values and the real values by days at sea. After approximately 

60 days the HHVs of both techniques tend to be equal when the LNG contains 8 

Mole% of ethane, while there still exists a difference of 1.2 [MJ/kg] for the two 

techniques when no ethane is present. However, a voyage of 60 days is very unusual, 

which means the differences will be significant for a normal shipping route. 
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These deviating HHVs caused by assuming the concentration of the BOG to be equal 

the loading papers will have influence on the reported fuel consumption, as the BOG 

used as fuel might seem to have more energy per kilograms than it actually does. This 

can clearly be seen by the corresponding FOE in Figure 13.  

 

!
Figure!13:!Corresponding!Change!in!FOE!During!Voyage!–!Medium!N2!Content!

 

The FOE changes more significantly for this specific case of higher nitrogen content, 

as expected by the differences in HHVs. At the first day of the voyage the FOE of the 

BOG is 0.48 and 0.51, with and without ethane respectively. However, using the 

common technique of basing the calculations on the loading papers will result in 

much higher FOEs, approximately 0.59 for both subcases. This means the vessel will 

overreport its fuel consumption for a complete voyage when basing the calculations 

on the loading papers, although the differences become smaller by days at sea. Before 

looking into what this means in both contractual and economical terms for a ship 

owner, a last case of high nitrogen content will be evaluated. The next section will 

look into the upper range of possible nitrogen content and its influence on the BOG. 

 

0,4!

0,45!

0,5!

0,55!

0,6!

0,65!

1! 10! 20! 30! 40! 50! 60!

FO
E!
[B
]!

Days!of!Voyage!

Fuel!Oil!Equivalent!(FOE)!

BOG!P!No!Ethane! Loading!Paper!P!No!Ethane!
BOG!P!8!Mole!%!Ethane! Loading!Paper!P!8!Mole!%!Ethane!



! ! 4. Model Results 

! 51!

4.4. Case 3: High Concentration of Nitrogen in the LNG  
4.4.1. Case Specific Assumptions 
In this third case, the fraction of nitrogen in the loaded LNG, specified by the loading 

papers, is 1 Mole% in total. That is actually in the upper range of possible nitrogen 

content in the LNG at the given pressure and temperature (Haugbraaten). Yet some 

vessels are transporting LNG with such a high concentration of nitrogen. Since the 

evaporation rate of nitrogen is highly significant by such a high content of nitrogen in 

the LNG, it was interesting to evaluate the results for this specific concentration. The 

same fractions of ethane as in the previous cases will be investigated, and Table 14 

specifies the corresponding concentrations of the LNG in both subcases.  

!
Table!14:!Subcases!for!Case!3!

Subcase 3.1 Subcase 3.2 
Nitrogen = 1.0 %   Nitrogen = 1.0 %  
Methane = 96.5 %   Methane = 88.5 %  
Ethane = 0.0 %   Ethane = 8.0 %  
Propane = 2.0 %   Propane = 2.0 %  
Iso-Butane = 0.25 %  Iso-Butane = 0.25 % 
n-Butane = 0.25 %  n-Butane = 0.25 % 

 
4.4.2. Change in Concentration of LNG by Flashing of Gas During Loading 
This case had the most significant amount of nitrogen in the LNG with its 1 Mole% in 

total, which resulted in a higher fraction of nitrogen in the gas flashing off during the 

loading process. As for the previous cases, the difference between the values specified 

by the loading papers and the finally loaded LNG is given with and without ethane. 

 !
Table!15:!LNG!Containing!No!Ethane!and!1.0!Mole%!Nitrogen!

Loading Papers from Terminal Finally loaded LNG  
Nitrogen = 1.0 %  Nitrogen = 0.9 %  ↓ 
Methane = 96.5 %   Methane = 96.6 %  ↑ 
Other = 2.5 %   Other = 2.5 %  → 

 
Table!16:!LNG!Containing!8!Mole%!Ethane!and!1.0!Mole%!Nitrogen!

Loading Papers from Terminal Finally loaded LNG  
Nitrogen = 1.0 %   Nitrogen = 0.9 %  ↓ 
Methane = 88.5 %   Methane = 88.6 %  ↑ 
Other = 10.5 %   Other = 10.6 %  ↑ 
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The deviations in concentrations of the nitrogen are the most prominent part for both 

the subcases. In general, the trend is more nitrogen flashing off when ethane is 

present, but it does not show as the differences between the subcases are too small to 

be significant. The important aspect is that the finally loaded product has a better 

quality (i.e. less nitrogen) than the LNG originally sent from the terminal. Still, there 

is a large remaining fraction of nitrogen in the LNG when it is finally loaded, which 

makes it interesting to look at corresponding concentrations of the BOG. 

 
4.4.3. Change in Concentration of BOG and its Influence on HHV and FOE 
Given the initial state of the finally loaded LNG from the last section, the change in 

concentration of the BOG during voyage can be calculated. This case generally has a 

higher content of nitrogen than the previous cases, which causes the BOG to contain 

even more nitrogen. Thereby the difference in concentration of the BOG compared to 

the LNG itself will be even more significant. Figure 14 represents the changing 

nitrogen content of the BOG at the given conditions. 

 

!
Figure!14:!Change!in!N2!Content!of!the!BOG!During!Voyage!–!High!N2!Content 
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This specific case of a very high nitrogen content results in a highly significant 

fraction of nitrogen in the BOG. At the first day of the voyage 23.5 Mole% of the 

BOG is nitrogen when the LNG contains 8 Mole% of ethane, while it contains 18.1 

Mole% if no ethane is present. However, the high rate of nitrogen evaporation results 

in a very steep decreasing trend of the BOG concentration, due to a reduced fraction 

of nitrogen in the LNG per day.  

 

Additional to the previous case, the same type of intersection between the results 

happens, but this time at day number 30. At this point the LNG only contains 0.32 

Mole% and 0.46 Mole% of nitrogen, with and without ethane respectively. After this 

point the fraction of nitrogen in the BOG decreases and becomes 3.0 Mole% and 4.6 

Mole% after 60 days at sea. Overall, these large differences in concentrations of the 

BOG compared to the LNG are very interesting, and will cause large deviations in 

calculated HHVs. The corresponding HHVs representing both the actual value of the 

BOG and the assumed value by loading papers are given by Figure 15.  

 

!
Figure!15:!Corresponding!Change!in!HHV!During!Voyage!–!High!N2!Content 

 

35!

40!

45!

50!

55!

60!

1! 10! 20! 30! 40! 50! 60!

H
H
V
![
M
J/
k
g]
!

Days!of!Voyage!

Higher!Heating!Values!(HHV)!

BOG!P!No!Ethane! Loading!Paper!P!No!Ethane!
BOG!P!8!Mole!%!Ethane! Loading!Paper!P!8!Mole!%!Ethane!



4. Model Results 

!54!

The corresponding HHVs in the figure clearly illustrate that performing calculations 

based on the loading papers will result in too high values of the energy content in the 

BOG, and thereby cause significant deviations in reported fuel consumption. The 

large fraction of nitrogen in the BOG at the first day results in HHVs of 36.2 [MJ/kg] 

and 40.1 [MJ/kg], with and without ethane respectively. However, basing the 

calculations on the loading papers will result in HHVs of 53.8 [MJ/kg] and 54.2 

[MJ/kg], for the same ethane differences respectively.  

 

The vessel has to sail many days at sea for the values to be closing in on each other. 

Even after 60 days at sea the values are not yet equal. The BOG containing ethane has 

a steeper increasing trend, which results in a HHV of 52.7 [MJ/kg] at day 60. Still, 

there is a gap to the HHV of 53.8 [MJ/kg], based on the loading papers. Additionally, 

it has to be remembered that a sea voyage does not normally last for that many days, 

which makes the deviations even more significant. The big difference in calculated 

HHVs reflects in the corresponding FOEs, which is given by Figure 16. 

 

!
Figure!16:!Corresponding!Change!in!FOE!During!Voyage!–!High!N2!Content 
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The trends of the corresponding FOEs are identical to the trend lines in the previous 

figure, as the values are related by difference in HHV of the LNG and HFO used as 

fuel. The figure clearly illustrates that wrong assumptions for the concentration of the 

BOG will cause large deviations in reported fuel consumption, especially at an early 

stage of the voyage. At the first day the large difference in HHVs results in FOEs 

equal to 0.39 and 0.43 for actual concentration of the BOG, while the assumed 

concentration results in values increased to 0.58 and 0.59. This concerns LNG with 

and without ethane content respectively. The values become more equal after several 

days at sea, but the gap is still highly significant. This means the vessel gets 

significant overreported fuel consumption by the given LNG concentration if 

calculations are based on assumed concentrations of the BOG. 

!  
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4.5. General Trend in All the Given Cases 
The overall trend in the results from the model was a significant increase in fraction 

of nitrogen in the BOG by only a small increase of nitrogen in the transported LNG. 

The concentration of the LNG will change during the loading process, which might 

influence the initial state of the cargo for the first day of the voyage. Especially LNG 

with a high content of nitrogen experienced a noticeable loss in fraction of nitrogen in 

the finally loaded product.  

 

The difference in concentration of the BOG compared to the transported LNG did 

affect the calculated HHVs. It has been a common technique to assume the 

concentration of the BOG to be equal the values of the LNG given by the terminal. 

However, this resulted in large differences in calculated HHVs, especially in cases of 

high nitrogen content, where the BOG tended to have a much lower HHV than the 

calculations based on assumed concentrations. Additionally, this change in HHVs 

resulted in deviations in the calculated FOEs, which as a consequence will result in 

highly significant overreported fuel consumption for the vessel. 

 

However, all these results are based on theoretical assumptions, which made it 

necessary to compare the results by real measurements from LNG Carriers. Thereby, 

the following chapter will compare the concentration of the BOG calculated by the 

model with real measurements from two GWM vessels on equal basis. 
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5. Validation of Model by Real Measurements 
 

 

The model developed in the last section was only based on theoretical assumptions, 

which makes it interesting to compare its results with real values reported from some 

of the vessels in GWM’s fleet. The focus on the characteristics of the BOG is 

relatively new, and therefore not many vessels in the fleet had equipment to sample 

data of the gas boiling off per day of the voyage. However, gas chromatographs were 

newly installed on two of the vessels making it possible to validate the results of the 

theoretical model by real values for a voyage.  

 

5.1. Assumptions for the Validations 
The overall aim of the validation was to look for changes in the in the BOG by quality 

of the loaded LNG. Thereby, it was desirable to compare two identical vessels, called 

sister vessels, transporting LNG of different quality. The two sister vessels, here 

called Vessel 1 and Vessel 2, was chosen for this purpose as they were identical 

vessels, but mainly transported gas of different quality. Vessel 1 had LNG with a high 

content of nitrogen, while Vessel 2 had nearly no nitrogen in the loaded LNG. 

 

Both the vessels were built in 2006, and have an International Gross Tonnage of 

97491 metric tons. Their cargo capacity are approximately 146,000 m3 fully loaded, 

but its normal procedure to only utilize 98.5% of the overall cargo volume at normal 

fillings. However, the loaded quantity given as input to the theoretical model was set 

equal to the loading papers for the vessels, and not their theoretical capacity, in order 

to get comparable results. Additionally, it was only focused on the laden condition for 

the vessels, as that is the condition were the concentration of the LNG in the cargo 

tanks are given by the loading papers provided by the terminal. Reported values of the 

voyage were distinguished by weather conditions to look for changes in concentration 

of the BOG. Only measurements for calm weather condition were considered valid 

for comparison.12 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 Calm weather conditions means a wave height and wind speed less than 5 on Beaufort scale. 
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5.2. Reported Values From LNG/C – Vessel 1 
Vessel 1 experienced some problems with the installed gas chromatograph during the 

validation period, causing only a small amount of days to be reported. Of a complete 

voyage of 28 days in laden condition, only 8 days were reported. This was too few 

days to establish a good validation of the model. Still, it was included as it was the 

only reported values on a voyage containing a high content of nitrogen in the loaded 

LNG. These reported values were plotted in the same figure showing the results of the 

theoretical model to look for correlations in concentration of the BOG. 

 
5.2.1. Data for the Voyage 
Vessel 1 experienced calm weather conditions for all the reported days at sea. The 

BOR varied from 0.16% to 0.09%, which caused an assumption of the average value 

as input for the theoretical model, which was 0.12% per day. Additionally, all 

reported days had a steaming time of more than 23 hours per day and no forced boil 

off, making the reported values suitable for validation.  

 
5.2.2. Loading Papers for the Loaded LNG and Input Requirements 
The same concentrations of the LNG, as specified in the loading papers, were used as 

input for the theoretical model to enable comparison. This specific voyage for Vessel 

1 had a great amount of nitrogen in the LNG with its approximately 1 Mole%. All the 

values of the loaded LNG are specified in Table 17.  

 
Table!17:!Loading!Paper!B!Vessel!1!

Loading Paper 

Nitrogen 1.0 % 

Methane 87.7 % 

Ethane 8.4 % 

Propane 2.2 % 

isoButane 0.3 % 

nButane 0.5 % 

Density 465.6 [kg/m3] 

 

 

It was shown in Chapter 4 that the concentration of the finally loaded LNG could 

deviate from the values specified by the loading papers, especially at high nitrogen 
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content. However, the specific time of the loading and the amount of gas sent back to 

the terminal was not available in this case, which resulted in assumed values for the 

loading time and the amount of gas returned. On the basis of data from other loading 

procedures, an approximate value of 15 hours of loading and 24,000 kilograms sent 

back to the terminal per hour were assumed. Additionally, the density of the LNG was 

assumed the same as given by the loading papers, which in this case was 465.6 

[kg/m3]. At last the HHV of the HFO was assumed to be 43.0 [MJ/kg], which is a 

normal average value of the loaded product. By using all these input requirements it 

was possible to validate the theoretical model by real values from the vessel.  

 

5.2.3. Validation - Concentration of BOG 
The results from the theoretical model established in Chapter 3 were plotted in a 

graph along with values reported from the vessel. Unfortunately, only values from 

day 15 to day 22 of the complete voyage of 28 days were reported, due to technical 

problems with the measuring equipment. Still, the values reported from the vessel 

were implemented in the same graph at the corresponding days of the trial. Figure 17 

gives the compared nitrogen content of the BOG, while Figure 18 gives the 

corresponding methane content.  

 

!
Figure!17:!Nitrogen!Content!BOG!B!Vessel!1 
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Figure!18:!Methane!Content!BOG!B!Vessel!1!

 

This specific case had a very high content of nitrogen in the LNG, causing the 

concentration of nitrogen in the BOG to be highly significant. It is interesting to 

notice that the reported values from the vessel matches very well with the results from 

the theoretical model. There are some variations in the reported values, which were 

anticipated, but the overall trend of decreasing amount of nitrogen in the BOG per 

days is similar. Additionally, the significant amount of nitrogen as well as the 

methane, representing the rest of the BOG, corresponds very well with the reported 

values. The correlation coefficient13 of the reported values compared to the theoretical 

values indicated a very well fit by a value of 0.96 for both methane and nitrogen. 

 
 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13!Correlation!Coeffeicient!is!equal!1!in!case!of!perfect!direct!(increasing)!linear!relationship,!
called!correlation.!Its!value!can!vary!from!P1!to!1,!where!P1!indicates!anticorrelation.!!
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5.3. Reported Values From LNG/C – Vessel 2 
Vessel 2 had the gas chromatograph running for a complete voyage of 16 days, 

making it possible to validate the theoretical model. However, some of the reported 

values were given by intervals of only some minutes, and the corresponding 

fluctuations made it difficult to set an average value of the concentration of the BOG 

per day. These values were finally assumed to be the average of all the reported 

values for a day.  

 
5.3.1. Data for the Voyage 
Vessel 2 experienced calm weather conditions for the complete voyage of 16 days. 

However, the vessel had a more significant BOR than Vessel 1, varying from 0.11% 

to 0.24%. The average value of 0.16% was chosen as input for the theoretical model. 

Additionally, all the days of the voyage had a steaming time of more than 23 hours 

per day, and no forced boil off. 

 
5.3.2. Loading Papers for the Loaded LNG and Input Requirements 
As for the previous vessel, Vessel 1, the same concentration as specified by the 

loading papers were used as input for the theoretical model. For this specific case, 

Vessel 2 had a very low fraction of nitrogen in the loaded LNG, containing only 

0.03% in total. This voyage was chosen to validate the theoretical model for LNG 

containing a small fraction of nitrogen. All the values of the loaded LNG are specified 

in Table 18. 

 
Table!18:!Loading!Paper!B!Vessel!2!

Loading Paper 

Nitrogen 0.03 % 

Methane 97.7 % 

Ethane 2.0 % 

Propane 0.3 % 

isoButane 0.03 % 

nButane 0.02 % 

isoPenthane 0.01 % 

Density 427.5 [kg/m3] 
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It was assumed the same loading time of 15 hours for this case, and 24,000 kilograms 

of gas sent back to the terminal per hour, as both vessels are identical. However, in 

this case the density of the loaded LNG was 427.5 [kg/m3], given by the loading 

papers for this specific voyage. Similar to Vessel 1, the HHV of the HFO was set to 

be 43.0 [MJ/kg]. By use of all these input requirements the theoretical model was 

validated on an equal basis as the real voyage. 

!

5.3.3. Validation – Concentration of BOG 
As for the previous case the results from the theoretical model were plotted along 

with reported values from the vessel over the same period of time. This voyage was a 

bit shorter in time with its 16 days in total, and the fraction of nitrogen in the LNG 

was significantly lower. Figure 19 and Figure 20 give the compared values of the 

nitrogen and the methane content in the BOG, respectively. There were some 

deviations in the reported values, as some days were reported by minute intervals. 

However, by assuming an average value for every day these values were plotted for 

comparison.  

!

!
Figure!19:!Nitrogen!Content!BOG!–!Vessel!2!
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deviations between real measures and the theoretically calculated values are 

noticeable, but the error is not very significant. The important aspect is that both lines, 

model output and reported values, lies within the small range. 

 

!
Figure!20:!Methane!Content!BOG!B!Vessel!2!

!
Figure 20 clearly illustrates that the assumption of methane being the remaining part 

of the BOG corresponds very well with the real measures from the vessel, even with 

such a low fraction of nitrogen in the LNG. The theoretical results, which are based 

on this assumption of only methane and nitrogen in the BOG, are indicated with the 

dashed line. The correlation coefficient was a bit weaker for this case of low nitrogen 

content, but values of 0.79 and 0.85 indicated a well fit for both nitrogen and methane 

respectively. 

 

When knowing that the results from the model correspond well with real 

measurements from LNG Carriers, it is time to move on to the deriving consequences 

of the findings in this thesis. Therefore, the next chapter will look into deviations in 

reported fuel consumption for the vessel by assuming a concentration of the BOG, 

and corresponding contractual and economical consequences by not utilizing the 

model given in Chapter 3. 
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6. Contractual and Economical Consequences 
 

 

Up to now, it has been illustrated that the BOG contains a much higher fraction of 

nitrogen than the loaded LNG, which further will have a significant influence on the 

HHV and the corresponding FOE of the BOG. These important aspects have also 

been proven to correspond very well with real measurements from two LNG Carriers. 

However, two important aspects have not yet been considered, namely how these 

findings can cause economical and contractual consequences for a ship owner. 

Therefore, this chapter will illustrate important consequences of not using the model 

to calculate the correct concentration of the BOG. 

 

Normally, every LNG/C in a shipping company has a given chartering contract 

specifying the upper limit of allowed fuel consumption for the vessel per day. These 

upper limits depend on given speed ranges, and are specified by tons of fuel oil 

equivalent per day. The FOE converts all fuel types to a corresponding amount of 

HFO, in order to easily measure the overall fuel consumption of the vessel. However, 

there is no contractually committed way to calculate the FOE. Since the concentration 

of the BOG has been previously out of focus, the ship owner has normally assumed 

this conversion factor. Two commonly used ways to assume the FOE have been: 

Assuming a fixed value calculated on the basis of experience, or by assuming a 

concentration of the BOG identical to the loaded LNG. 

 

The latter assumption method might result in deviations, as the concentration of the 

BOG used as fuel is normally different from the loaded LNG, while a fixed FOE 

might be wrong as the concentration of the BOG tends to change per day. This might 

result in inaccurate values of the total reported fuel consumption for the vessel, and 

cause economical consequences for the ship owner by breach of chartering contract. 

The following section will compare deviations in reported fuel consumption by 

making such assumptions, and how significant they are regarding loaded LNG 

quality. Furthermore, a last section illustrates corresponding economical 

consequences of making these assumptions. In both sections, the methods of 
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assuming the FOE will be compared with values given by the model in Chapter 3. 

This is because the model is taking into account the changing concentration of the 

BOG during voyage, and thereby gives correct reported fuel consumption per day.  

 

6.1. Influence of Assumed FOE on Reported Fuel Consumption 
To make it as realistic as possible two real loading conditions are considered, having a 

low and a high fraction of nitrogen in the loaded LNG. The vessels used to validate 

the model in Chapter 5, Vessel 1 and Vessel 2, are transporting LNG of different 

quality, and will be used in the comparison. It turned out that these vessels have been 

utilizing different techniques to assume the FOE before gas chromatographs were 

installed. Vessel 2 was assuming a FOE based on the concentration of the LNG in the 

loading papers, while Vessel 1 was assuming a fixed FOE of 0.475. The latter vessel 

considered changing into a FOE based on the loading papers, which made it 

interesting to see how this affects the reported fuel consumption as well. To cover all 

aspects of both high and low nitrogen content, a fixed FOE and a FOE based on the 

loading papers will be considered for both cases.  

 

6.1.1. Deviation in Reported Fuel Consumption - Low Nitrogen Content 
Vessel 2 is normally transporting LNG with a low content of nitrogen. Thereby, this 

vessel can illustrate any deviation in reported fuel consumption by using assumed 

FOEs for an LNG with a low nitrogen level. The vessel has been utilizing a FOE 

based on the loading papers, which will be analysed. However, it is interesting to see 

changes caused by using a fixed FOE as well. This value was set to be 0.547 by 

running several iterations and look for the constant that gave the best result for a sea 

voyage of 16 days, as that is the case for this specific vessel. 

 

Table 19 gives the loading paper used in this analysis. This is an actual voyage for the 

vessel. The BOR varied from day to day of the voyage, but it was considered 

appropriate to use an average value of 0.162% of the cargo volume per day. This is 

identical to the rate used in Chapter 4. 

 
! !
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Table!19:!Loading!Paper!B!Vessel!2!

Loading Paper 

Nitrogen 0.03 % 

Methane 97.7 % 

Ethane 1.9 % 

Propane 0.3 % 

isoButane 0.03 % 

nButane 0.02 % 

isoPenthane 0.01 % 

Density 427.5 [kg/m3] 

 

 

The resulted deviation in reported fuel consumption per day, both for a constant FOE 

and a FOE based on the loading paper, are given in Figure 21. The dashed line 

represents the FOE based on the loading paper, while the continuous line represents a 

constant FOE of 0.547.  

 

!
Figure!21:!Deviation!in!Reported!Consumption!B!Low!Nitrogen!Content 
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loading paper results in an overreported value of 1.1 tons of HFO at the first day of 

the voyage. The value decreases per day of the voyage and becomes zero after 27 

days at sea. The fixed FOE of 0.547 is not very interesting for this specific case, as it 

is adapted to even out any deviations in reported consumption for a voyage of 16 

days. Still, it is included to illustrate the trend of an overreported consumption at an 

early stage, while the value becomes negative after 6 days to even out the deviations. 

This is better illustrated by accumulating the deviations for a long period of time, as 

given by Figure 22. 

 

!
Figure!22:!Accumulated!Deviation!B!Low!Nitrogen!Content 
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paper, but this will depend on the duration of the voyage and the composition of the 

LNG. However, it is important to be aware that the accumulated value of the fixed 

FOE decreases rapidly after its maximum value is reached, which means an incorrect 

assumed value will cause large deviations in overall reported fuel consumption by 

time at sea.  

 

Overall, the deviations are not very significant by using the two techniques to assume 

the FOE, when the fraction of nitrogen in the LNG is very low. On the other hand, it 

will be interesting to see how a more significant fraction of nitrogen will affect the 

results.!
 

6.1.2. Deviation in Reported Fuel Consumption - High Nitrogen Content 
Since Vessel 1 was mainly transporting LNG with a high content of nitrogen, it was 

interesting to see if a fixed value of the FOE and a value based on the loading paper 

would result in deviations in reported fuel consumption per day. Similar to the case of 

low nitrogen content, it was assumed a real loading condition, but with high nitrogen 

content in this case. Table 19 gives the loading paper for this specific voyage. The 

BOR was assumed to be the average value of all the days as sea, and was set to be 

0.12% of the cargo volume.  

 
Table!20:!Loading!Paper!!B!Vessel!1!

Loading Paper 

Nitrogen 1.0 % 

Methane 87.7 % 

Ethane 8.4 % 

Propane 2.2 % 

isoButane 0.3 % 

nButane 0.4 % 

Density 465.6 [kg/m3] 

 

Figure 23 gives the corresponding deviations in reported fuel consumption per day. 

The dashed line indicates the deviation in reported values when using a FOE based on 

the loading paper, while the continuous line gives the deviation by using a constant 

FOE of 0.475. This fixed value is actually the value chosen for this vessel, which 
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makes it interesting to see how well it corresponds with the actual values given by the 

model. 

!
Figure!23:!Deviation!in!Reported!Consumption!B!High!Nitrogen!Content 

 

The graph clearly illustrates a big gap in reported values in an early phase of the 

voyage. At the first day, using a FOE based on the loading paper will result in 31.6 

tons of HFO overreported. The amount decreases by days of the voyage, but still, at 

day 20, 17.7 tons HFO is overreported. This means the vessel seems to be using more 

fuel in total than its actual consumption. Additionally, using a constant FOE of 0.475 
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report less fuel after 19 days or more at sea. This negative value at the end of the 

voyage affects the overall reported consumption positively, which is easier illustrated 

by accumulating over a long period of time.  Figure 24 gives the accumulated value of 

both the FOE based on the loading paper, which is given by the dashed line, and the 

constant FOE, given by the continuous line. 
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!
Figure!24:!Accumulated!Deviation!B!High!Nitrogen!Content 
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contract and its upper limit of allowed fuel consumption per day. Therefore, it is 

interesting to see how significant these findings are in economical terms. 

 

6.2. Influence on Contract and Economical Consequences 
The total reported fuel consumption per day for an LNG/C is very important 

regarding the vessel’s chartering contract. If the vessel exceeds the upper limit of 

maximum allowed fuel consumption per day there might be a financial settlement 

including fines, and the ship owner may has to cover the overconsumption. This can 

be very expensive, depending on the given fuel price.  

 

To stay within the range of allowed fuel consumption, it is important that all the 

reported values are correct. A FOE being too low will benefit the ship owner, as their 

vessel seems to be using less fuel than it actually does, but that will probably be 

rejected by the charterer of the vessel. On the other hand, a chosen FOE being too 

high will benefit the charterer of the vessel, as they can claim payments for the 

overconsumption, but then the ship owner will loose money. Additionally, an 

overreported fuel consumption might not be durable in the long run as it can weaken 

the reputation of the company by having incorrect values of the vessels fuel 

consumption. 

 

The best solution, that satisfies both parties, is to use the correct FOE calculated on 

basis of the current concentration of the BOG, which is given by the theoretical model 

in Chapter 3. However, the necessity of these calculations will depend on the 

concentration of the loaded LNG. To highlight this and its corresponding costs, it is 

assumed that the overreported fuel consumption has to be covered by the ship owner, 

as this is the amount that exceeds the upper contractual limit per day. 

 

6.2.1. Cost of Deviations 
The cost of the deviations in total reported fuel consumption for an LNG/C will 

depend on the given price of the HFO. This price will fluctuate per day, which caused 

a conservative price assumption of 600 USD per ton HFO (Bunkerworld) for the 

calculations. Figure 25 illustrates the corresponding costs of deviations per days of the 

voyage in the case of low nitrogen content.  
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!
Figure!25:!Cost!of!Deviation!B!Low!Nitrogen!Content 

 

Transporting LNG with a low fraction of nitrogen and a FOE based on the loading 

paper, as represented by Vessel 2 in this case, would result in an unnecessary cost of 

around 6,500 USD for a voyage of 16 days, although this is insignificant related to 

operational expenses for the vessel. On the other hand, by using a constant FOE of 

0.547 the total cost is almost negligible for this voyage, as shown in the figure. 

However, it is interesting to notice that the cost by using a constant FOE increases 

relatively rapidly in a negative direction after several days at sea. This illustrates 

unexpected costs that can occur when using a FOE that is not adapted to the exact 

number of days at sea. After 60 days at sea it would reach a negative cost of around 

20,000 USD. 

 

Even though these small deviations results in some unnecessary costs for the 

overreported fuel consumption, they become relatively insignificant compared to the 

transport of LNG that contains a higher fraction of nitrogen. Figure 26 illustrates the 

corresponding cost of deviation per days of the voyage for Vessel 1, when 

transporting LNG with a high fraction of nitrogen. Both a constant FOE, as used on 

this vessel, and a FOE based on the loading paper is displayed in the figure. 
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!
Figure!26:!Cost!of!Deviation!B!High!Nitrogen!Content 

 

There is a big difference in cost by choosing a constant FOE compared to a FOE 

based on the loading paper for the voyage. The high fraction of nitrogen in the loaded 

LNG results in a large amount of nitrogen in the BOG, which gives a significant 

deviation in reported fuel consumption. The cost increases constantly with a FOE 

based on the loading paper, which causes an overreported fuel usage with a cost of 

485,000 USD in total after 60 days at sea. Vessel 1 used 28 days to complete the 

voyage, which would result in an overreported fuel consumption having a cost of 

approximately 366,000 USD in total, which is highly significant. Today, the vessel is 

using a constant FOE of 0.475. This gives a better result, but still leads to an 

unnecessary cost of approximately 55,000 USD for a complete voyage of 28 days.  

 

These examples illustrates the importance of knowing the exact concentration of the 

BOG per day of the voyage, as assumptions of the FOE will much likely result in 

significant deviations and unnecessary costs. The changing value of the FOE per day 

can easily be calculated by use of the theoretical model represented in this thesis, and 

its importance increases by nitrogen content in the LNG. When transporting LNG 

with a very low fraction of nitrogen, as illustrated by Vessel 2, the deviations were 

insignificant. In this case the ship owner can assume the value of the FOE, although it 

will most likely result in some unnecessary costs of deviations. However, when the 
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fraction of nitrogen in the LNG increases, the model becomes highly relevant. When 

transporting LNG with a very high concentration of nitrogen, as Vessel 1 does with its 

1 Mole%, making assumptions will be very costly for the ship owner. This only 

considers the cost of covering the overreported fuel usage. In reality, this overreported 

fuel consumption might result in breach of contract and additional fines for the ship 

owner. 

 

!  
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7. Conclusion 
 

 

This thesis has been looking into the chemical and thermodynamic properties of LNG 

transported on an LNG Carrier. The main focus has been the change in concentration 

of the Boil-off gas (BOG) per day of the voyage compared to the loaded LNG. As 

BOG is used as fuel for the vessel, it was desirable to get a better understanding of its 

change in concentration. Further, it was investigated how this difference influenced 

the reported fuel consumption for the vessel, and deviations caused by assuming a 

concentration of the BOG. 

 

The general trend was a significant increase in the amount of nitrogen in the BOG by 

a small increase in fraction of nitrogen in the loaded LNG. Additionally, the amount 

of ethane in the LNG influenced the evaporation rate of nitrogen, where the most 

significant difference appeared in case of a high fraction of both ethane and nitrogen 

in the LNG. By having 1 Mole% of nitrogen and 8 Mole% of ethane in the loaded 

cargo, the BOG theoretically contained 23.5 Mole% of nitrogen at the first day of the 

voyage, while methane represented the rest of the BOG. On the other hand, 

transporting LNG with a very small fraction of nitrogen resulted in a BOG containing 

nearly solely methane.  

 

The fraction of nitrogen in the BOG tended to decrease per day of the voyage, as 

nitrogen is a volatile substance at the given cargo temperature of -162°!. This 

resulted in a delivered LNG with a better quality than what was originally loaded. 

Additionally, some of the substances in the LNG were flashing off during the loading 

process. Nitrogen and methane both have boiling points below the liquefaction 

temperature, which resulted in an LNG with lower nitrogen content when it was 

finally loaded onto the vessel. The results from two cases of both high and low 

nitrogen content in the loaded LNG were tested by real measurements from two of the 

LNG Carriers in the fleet of Golar Wilhelmsen Management (GWM).  

 

The total reported fuel consumption for an LNG Carrier is estimated by use of a fuel 

oil equivalent (FOE), which depends on higher heating value (HHV) of both the BOG 
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and the HFO. This constant is very important as it affects the reported fuel 

consumption for the vessel when converting the amount of LNG to corresponding 

HFO. It has been a common technique to assume the concentration of the BOG to be 

equal the concentration of the loaded LNG, or to assume a constant value for all the 

voyages. However, using these assumptions to calculate the total fuel consumption of 

the vessel caused significant deviations in reported fuel consumption, as differences 

in concentrations of the BOG affects its HHVs. In cases of having a low fraction of 

nitrogen in the loaded LNG, the deviations were not that significant. However, by 

increasing the fraction of nitrogen and ethane it resulted in significant deviations 

when assuming concentrations of the BOG. The worst case resulted in an unnecessary 

cost of 366,000 USD for a voyage of 28 days.  

 

Overall all, it is more important to know the exact concentration of the BOG when a 

vessel is transporting LNG with a high fraction of nitrogen, while the deviations in 

reported consumption are not that significant with a low fraction of nitrogen. In order 

to report correct fuel consumption the best solution is always to know the exact 

concentration of the BOG to calculate the FOE and corresponding fuel consumption. 

This value can be estimated by use of the theoretical model, or measured every day of 

the voyage by use of a gas chromatograph. This is very important in cases of high 

nitrogen content in the LNG, while cases of nearly no nitrogen can utilize assumed 

values.  
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8. Further Work 
 

 

As the scope of a master thesis does not permit including the limitations mentioned in 

the introduction, this chapter will suggest possible issues for further work. The model 

developed in this thesis corresponded well with measurements from two vessels. 

However, due to few validations in this thesis, the theoretical model might not always 

perfectly reflect the reality. It is desirable for the model to predict exact changes in 

concentration of the BOG per day of the voyage, and reflect real measurements from 

an LNG Carrier. A ship owner wants to be sure that the model can give accurate 

results on deviations caused by making different assumptions of the BOG. Some of 

the factors that can prevent the theoretical model from perfectly reflecting reality are 

hereby stated: There will not be a steady boil-off rate per day, due to different sea 

conditions and outside temperature. Movements on the vessel might also affect the 

composition of the BOG. Furthermore, significant movements during transport might 

stir the LNG in the cargo tanks and affect the evaporation rate of the substances in the 

LNG. Including these factors by further developing the existing model would ensure 

more accurate and reliable results. 

 

By use of several measurements the model can be adapted to reflect each vessel 

individually. Plotting several measurements enable creating corresponding functions 

by use of mathematical regression. Using these formulas in the model will result in a 

more customized model for each vessel and its transport routes. Then it will be 

possible to take into account weather conditions and speed during voyage. As the 

chartering contract specifies different limits of allowed fuel consumption regarding 

vessel speed, different regression formulas can be made in order to reflect all aspects 

of the voyage. 
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Appendix 
A1 – Pressure-Enthalpy Diagram, Propane 
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A2 – Pressure Enthalpy Diagram, Methane 
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A3 – Loading Paper – Vessel 1 
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A4 – Loading Paper – Vessel 2 
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A5 – Loading Process 
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A6 – MATLAB script – Main Model, Change in Concentration 
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A7 – MATLAB script – Sub-Model, Flashing During Loading 
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A8 – MATLAB script – Sub-Model, Change in HHV 
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A9 – MATLAB script – Sub-Model, Change in FOE 

 


