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Abstract

Due to the variable and stochastic offshore environment, offshore wind turbines are
prone to fatigue. Fatigue damage usually occurs as cracks and is an important indicator
of the structure’s condition and the remaining life-time. However, the detection of
fatigue cracks today is very cumbersome and easier and more straight-forward methods
are desirable.

In this thesis, it is investigated whether fatigue damage can be identified or detected
based on operational vibrations. The idea is that sensors like accelerometers are placed
at the offshore wind turbine, for example at the relatively easily accessible tower, to
monitor the structure’s response over time. Changes of the dynamic characteristics
over time might then be an indicator for structural damage.

To this end, an offshore wind turbine jacket support structure model is developed in
Matlab by means of the finite element method. Realistic operational conditions are
assumed and loads from wind and waves calculated accordingly. Models to represent
a crack in structural members are reviewed and suitable methods are combined and
adapted to fit the present model. To account for measurement and model errors, a
Kalman filter is implemented that gives an optimal estimate for the structure’s response.
The response is then calculated for an undamaged support structure model and a
support structure model, where at a certain location a crack has been simulated. The
severity of the damage is varied and the effects are investigated.

In an eigenvalue analysis it is found that the effect of the damage on the eigenfre-
quencies is small. Higher local brace modes at the crack location are affected most,
however in a small order of magnitude. Based on ambient vibrations due to wind and
waves the response of the support structure is investigated. In an attempt to amplify
the deviation between the undamaged and the damaged support structure, a forced
harmonic vibration is introduced into the system.
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1 Introduction

1.1 Background

By the end of 2013 a bit more than 6.5 GW of offshore wind capacity has been installed
in European waters, of which 1.5 GW were installed in 2013 alone [1]. With a goal of
20 % share of renewable energy in the European Union by 2020 [2], further growth is
expected as offshore wind energy plays a major role in many countries’ future plans to
avoid CO2 emissions and meet climate targets.

Most offshore wind farms so far have been built in rather shallow water (2–20 m)
and mainly with monopile foundations. Recent developments proceed to greater water
depths around 40 m, e.g. the Global Tech 1 offshore wind farm in Germany, which
is currently under construction. The Beatrice demonstration project in the United
Kingdom built a few years ago is an early example of the deployment of offshore wind
energy in larger water depth. The combination of larger water depth and the trend to
bigger wind turbines demands stiffer support structures. Space frame structures like
jacket support structures provide sufficient stiffness and comparably small weight at the
same time, so that their use is regarded as more cost-effective under these conditions.

Figure 1.1: Jacket support structures in the Alpha Ventus offshore wind farm [3]

Jacket support structures are composed of tubular slender elements that are welded
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at intersections. The stochastic nature of wind and waves acting on the turbine and the
support structure cause a large number of stress cycles. Moreover, the operation of the
wind turbine induces further cyclic loads in the support structure. Stress raising effects
make tubular joints the most critical points with respect to fatigue strength in the
jacket structure and their design a crucial and challenging task in the planning stage.
However, fatigue degradation and thus cracks cannot always be avoided. In order to
guarantee the structural integrity and to predict the remaining fatigue life, inspections
have to be carried out.

A major focus of the industry, the European Union and the national governments
is to reduce the cost of energy in offshore wind. The investment in an offshore wind
farm is divided into capital expenditures (CAPEX) and operational expenditures
(OPEX). The CAPEX are one-time expenditures and comprise the cost for planning,
manufacturing and installing the offshore wind farm, whereas the OPEX are either one-
time or recurring expenditures occurring for operating the wind farm, e.g. inspection,
maintenance and repair. The goal is to balance the requirements and cost from on the
one hand inspection, maintenance and repair and on the other hand from design point
of view. The designer would like the structure to be light and slender and thus cheaper,
whereas from an operational point of view the design should possibly be robust and
heavier in order to save money on inspections and repairs during the operational life.

1.2 State of the Art in Operation and Maintenance

As operation and maintenance comprises roughly 25 % of the life-time cost of an offshore
wind farm, ways to reduce the OPEX are searched for. Operation and maintenance
planning and activities are framed by statutory requirements, the available inspection
techniques and the associated costs. Operations and maintenance of an offshore wind
turbine support structure consists of many different scopes. Here, the focus is narrowed
down to the detection of cracks in the support structure. Innovative methods that are
able to detect damage at the structure with low effort will help to reduce cost.

1.2.1 Maintenance Principles

In general, different maintenance principles can be distinguished: Corrective mainten-
ance, preventive maintenance and predictive maintenance (see Figure 1.2).

Corrective or reactive maintenance is also known as repair. It is performed when a
failure or damage occurs that needs to be rectified. The maintenance is executed on
demand (whenever a failure occurs) or batch-wise. Often repair is considered more
expensive than preventing a failure. Preventive maintenance describes the maintenance
activities that are performed to prevent a failure from happening. It comprises routine
inspections and replacements of fragile components. A more sophisticated maintenance
type is predictive maintenance. As the name indicates it refers to predicting neces-
sary maintenance activities, thus minimising unscheduled maintenance, which is very
expensive, and optimising scheduled maintenance by knowledge about the condition
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Figure 1.2: Breakdown of maintenance principles

of the asset. Predictive maintenance requires some sort of condition monitoring. For
an offshore wind turbine this is preferably done remotely by means of sensors or
other measurement devices that monitor certain operational parameters. For example,
accelerometers can be used to measure accelerations as is already done nowadays in
many offshore wind turbine towers.

1.2.2 Inspection Methods for Fatigue Cracks

Inspection for fatigue cracks, especially under water, is a difficult and expensive task.
Figure 1.3 shows a snapshot taken by a remotely operated vehicle (ROV).

Figure 1.3: Snapshot of a boat-landing flange by an remote operating vehicle [4]

It is obvious that the detection of fatigue cracks in this environment is not easily
accomplishable. The parts of the structure to inspect are usually covered with marine
growth and marine life. Visibility in water may be bad. Thus, a visual inspection
(by eye in case of a diver or by camera in case of a ROV) is limited to qualitative
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statements about e.g. gross damage of the structure, coating protection, sacrificial
anodes or similar. For the detection of cracks, non-destructive techniques (NDT) are
commonly employed, where the tested parts are not harmed. Different techniques with
different accuracy level and complexity exist. Whereas they might be suitable to detect
very small cracks, they all have the common disadvantage of being time consuming
and expensive. For the inspection it is necessary to employ a diving team, to access
the structure, which may lie remotely offshore, clean the part of the structure to be
tested and perform the testing in adverse conditions. Since the testing itself is a very
local process, the procedure has to be repeated for other areas of the structure or even
for other structures.

Figure 1.4: Diver performing non-destructive testing [5]

1.3 Objective

Today’s methods to detect damage in offshore wind turbine support structures could
be classified as preventive maintenance and are very cumbersome and inefficient. A
cheaper and reliable method is desired. Recent trends in operations and maintenance
show a shift from preventive or even corrective maintenance to predictive maintenance.

Remote monitoring is relatively cheap and easy to perform because the structure
does not need to be accessed and thus a lot of time and effort can be saved. Sensors
that transmit their data to a remote onshore location are attached to the structure at
different places. The data is then used to draw conclusions on the structure’s condition.
The main benefit would be that the structure is only visited when it is necessary,
thereby reducing cost.

This work’s main objective is to investigate whether this remote monitoring principle
is viable for the detection of damage or cracks in an complex offshore wind turbine
jacket support structure, especially underwater. To this end, two two-dimensional
simplified offshore wind turbine jacket support structure are modelled. A crack is
simulated in one of the support structures. Accelerometers are placed at the wind
turbine tower at different heights to measure the accelerations of the structure due
to ambient excitation by wind and waves. The dynamic responses of the undamaged
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and the damaged support structure are compared for visible differences that allow to
detect damage in the support structure.

1.4 Reading Guide

After this introduction, the support structure model is presented and explained in
Chapter 2. The UpWind jacket is taken as reference and simplified to a two-dimensional
model. The representation of the wind turbine and the soil-structure interaction are
defined.

In Chapter 3 concepts to simulated cracks in beams are reviewed and suitable
methods are combined to give a proper crack model.

Chapter 4 includes the description of the ambient environment. Aerodynamic and
hydrodynamic loads are defined and the implementation in the model is shown.

In Chapter 5 state-space representation is introduced to solve the system and to
incorporate the Kalman filter.

In Chapter 6 the results of the investigations are presented. An eigenvalue analysis,
ambient vibration testing and forced vibration testing is performed in order to identify
changes in the modal characteristics due to the damage.
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2 Support Structure Modelling

2.1 Introduction

To investigate the dynamic behaviour of an offshore wind turbine with a jacket support
structure in the damaged and undamaged condition, a model for the calculation has
to be developed. As reference, the jacket support structure developed in the UpWind
project is chosen. For this work the reference jacket is simplified to a two-dimensional
offshore wind turbine jacket support structure. Only the primary steel structure is
considered, secondary steel appurtenances and other effects like marine growth are
neglected. The support structure is modelled by means of the finite element method,
where the braces and legs of the jacket structure and the turbine tower are modelled
by plane-frame elements.

The offshore wind turbine itself, thus the rotor-nacelle assembly, is modelled by a
circular, stationary disc and a cuboid on top of the turbine tower. The size and the
masses are taken from the NREL 5 MW turbine. The interaction of the wind flow
with the moving rotor that occurs in reality, is thus neglected. Dynamic excitation
characteristics of the turbine such as the 1P and 3P excitation1 or multiples of them
are thus not taken into account. For damage identification these higher-order excitation
frequencies could be beneficial because they could excite higher local modes, where
identification might be easier. However, including those effects would go beyond the
scope of this thesis.

The soil-structure interaction is represented by additional stiffness matrices at the
soil-structure interface.

2.2 Support Structure

2.2.1 Introduction

For the purpose of this investigation a simplified two-dimensional jacket support
structure is developed. The term support structure refers here to the jacket support
structure and the wind turbine tower. The UpWind reference jacket [6] is chosen as
guideline regarding layout and geometrical dimensions. In the following simplifying
assumptions allowing to transform the three-dimensional jacket support structure to
two dimensions are presented.

11P and 3P excitation refer to frequency ranges that are excited by the rotation of the rotor and its
interaction with the wind.
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Figure 2.1: Side view (left) and isometric projection (right) of the UpWind jacket
support structure [6]

The UpWind reference jacket is shown in Figure 2.1. The jacket support structure is
designed for a water depth of 50 m, has a height of about 62 m from seabed to transition
piece, a top width of 8 m and a bottom width of 12 m. The structure is composed of
four legs connected by four bays with X-bracings made of tubular steel members. A
cuboid concrete transition piece connects the jacket substructure with a 70 m high
tubular steel tower with the wind turbine on top.

The support structure is founded in the soil by tubular steel piles with a length of
45 m, a diameter of 2.082 m and a wall thickness of 0.06 m.

In Appendix B the node coordinates, the element list and the member’s properties
are listed. The node coordinates are taken from the UpWind reference jacket, however
only from one plane parallel to the mean wind and wave direction.

2.2.2 Finite Element Model

Introduction

The dynamic behaviour of the offshore wind jacket support structure shall be investig-
ated and compared to a damaged support structure. To this end, the real structure
has to be described mathematically.

Both beams and bars are one-dimensional structures that are much longer in one dir-
ection than the other two. Their behaviour can be described by the displacements (and
hence velocities and accelerations) in time and along the longitudinal space coordinate
only. Continuous theory takes into account the distributed material properties of real
structures. In order to express one-dimensional continuous structures mathematically,
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partial differential equations are employed. In theory, the partial differential equations
describe the behaviour of the structure at infinitely many points, which is why they
could also be considered as systems with infinite number of degrees of freedom, as
opposed to discrete systems with a finite number of degrees of freedom. Continuous
systems are superior to discrete systems because the shape of the elastic system and
thus the deformations and stresses are taken into account. However, for complex and
large models continuous theory does not provide straight-forward solutions.

Fortunately, the finite element method is a good approximation to the closed-form
solutions that the continuous theory provides. The finite element method uses a
discretisation of the structure into single (finite) elements to reduce the complexity of
the problem and the number of degrees of freedom from infinite to finite. The elements’
continuous properties and external forces are lumped into the elements’ nodes and
the governing equations are established on element level. Subsequently, the element
equations are merged to a global equation for the whole structure.

Mathematically, the finite element method dissolves the higher order partial dif-
ferential equations used in continuous theory into second order ordinary differential
equations in matrix form, the solution of which is straight-forward.

Plane Frame Element

The support structure’s elements are represented by so-called plane frame elements.
Two dimensional plane frame elements consist of one node with three degrees of freedom
at each end. These degrees of freedom are translation in axial and transversal direction
and rotation. For every element, element matrices are established. As the plane frame
element is a combination of the bar and the beam element, these elements’ matrices
are presented first.

The element mass and stiffness matrix for a bar element are given in equations (2.1)
and (2.2) and for a beam element in equations (2.3) and (2.4) [7]:

Mbar =
1

6
ρAL

[
2 1
1 2

]
(2.1)

Kbar =
EA

L

[
1 −1
−1 1

]
(2.2)

Mbeam =
ρAL

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (2.3)

Kbeam =
EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (2.4)

The derivation of these element matrices are described in Appendix A.
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The beam and the bar element are combined to obtain the plane frame element that
provides us with the characteristics of both the beam and the bar. To this end, the
equation of motion is extended to six degrees of freedom as shown in equations (2.5)
to (2.7), so that the mass and the stiffness matrix become 6 by 6 matrices, as every
element has six degrees of freedom. The corresponding spots in the matrices are filled
with the beam and the bar matrix entries and the rest is filled with zeros.

Mü + Ku = f (2.5)

u =
[
u1 w1 θ1 u2 w2 θ2

]T
(2.6)

ü =
[
ü1 ẅ1 θ̈1 ü2 ẅ2 θ̈2

]T
(2.7)

The resulting mass matrix for the plane frame element is then obtained:

M =
ρAL

420


140 0 0 70 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

70 0 0 140 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2

 (2.8)

Equivalently, the stiffness matrix is:

K =
EI

L3


α 0 0 −α 0 0
0 12 6L 0 −12 6L
0 6L 4L2 0 −6L 2L2

−α 0 0 α 0 0
0 −12 −6L 0 12 −6L
0 6L 2L2 0 −6L 4L2

 (2.9)

where

α =
AL2

I
(2.10)

Transformation from Local to Global Coordinate System

Every element has its own local coordinate system, in which its element mass and
stiffness matrices as well as the nodal force vector are defined. In a multi-member
structure like the jacket support structure, members with different orientations occur.
In order to assemble the element matrices to global system matrices, the element
matrices first have to be transformed to the global coordinate system. In the following
the global coordinate system is denoted with the coordinates x, z, θ and the local
coordinate system with the coordinates x̄, z̄, θ̄.
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The displacements of a two node (i,j) plane frame element in the local coordinate
system can be expressed in the global coordinate system as follows

ūi = ui cos(ϕ) + wi sin(ϕ) (2.11)

w̄i = −ui sin(ϕ) + wi cos(ϕ) (2.12)

ūj = uj cos(ϕ) + wj sin(ϕ) (2.13)

w̄j = −uj sin(ϕ) + wj cos(ϕ) (2.14)

In matrix form

ū =


c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
0 0 0 0 0 1




ui
wi
θi
uj
wj
θj

 = Tu (2.15)

where c = cos(ϕ) and s = sin(ϕ).
T is called the displacement-transformation matrix. The nodal forces are transformed

in exactly the same manner:
f̄ = Tf (2.16)

In the global coordinate system, the equation of motion reads

Mü + Ku = f (2.17)

The matrices in the local coordinate system are denoted with a bar on top:

M̄¨̄u + K̄ū = f̄ (2.18)

Applying equations (2.15) and (2.16) yields

M̄Tü + K̄Tu =Tf (2.19)

T−1M̄Tü + T−1K̄Tu = f (2.20)

Since T is square and orthogonal, its inverse is equal to its transform.

T−1 = TT (2.21)

Equation (2.20) becomes then:

TTM̄Tü + TTK̄Tu = f (2.22)

Comparing equation (2.22) with the equation of motion in (2.17), the following global
element matrix definitons are obtained:

M = TTM̄T (2.23)

K = TTK̄T (2.24)

M is the element mass matrix in global coordinates and K is the element stiffness
matrix in global coordinates.

The force vector in global coordinates is determined by equation (2.16):

f = TTf̄ (2.25)
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Assembly of System Matrices

So far only the element level has been considered. To investigate the structure’s
behaviour, the elements have to be assembled to constitute the whole structure.
Mathematically this means that the element equations of motion are merged together,
so that they form one global equation of motion.

The assembly is the merging of the element’s nodes. Two important mechanical rules
have to fulfilled:

• Compatibility of displacements

• Force equilibrium

The first rule requires that the displacements of different members meeting in one node
have to be the same, i.e. they should move as one entity. The second rule states that
all internal forces in a node imposed by attached members have to be balanced by
external forces. The assembly process is thus governed by the following relationship:

f = f (1) + f (2) + . . .+ f (n) (2.26)

The element equations are given as

f (1) = M(1)ü + K(1)u

f (2) = M(2)ü + K(2)u

f (n) = M(n)ü + K(n)u

(2.27)

Using equation (2.26) and equations (2.27) yields

f =
(
M(1) + M(2) + . . .+ M(n)

)
ü +

(
K(1) + K(2) + . . .+ K(n)

)
u (2.28)

f = Mü + Ku (2.29)

The merging process turns out to be a simple matrix addition. Equation (2.29) is the
global equation of motion.

The global stiffness matrix has to be quadratic, symmetric and singular after assembly
and before application of boundary conditions. Hence, a good check is to determine
whether the stiffness matrix is singular. A quadratic matrix is singular if its determinant
is zero. If this check is done in Matlab with the code written for this report, sometimes
values much larger than zero are obtained. Since numerical errors are assumed as
reason for this, the system stiffness matrix is also assembled using Mathematica. The
determinant is then calculated using symbolic variables. This way the determinant of
the system stiffness matrix is in fact zero.

Damping

Damping is the dissipation of kinetic energy for vibrating systems. It is present in
every real structure. A straight-forward way of accounting for damping is based on the
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master mass and stiffness matrices, where it is assumed that the damping matrix C is
proportional to the mass matrix M and stiffness matrix K:

C = α1M + α2K (2.30)

This way of accounting for damping in the structure is called Rayleigh damping. In
the model, damping is not of big importance because it is usually small and here only
forced vibrations are considered. The coefficients α1 and α2 are thus chosen as small
values, so that the response is not affected much.

2.2.3 Transition Piece

The transition piece is a concrete block with dimensions 9.6 × 8 × 4 m and a mass
of 666 t. In the model the transition piece is represented by plane frame elements by
an equivalent area moment of inertia and cross-section with the following formulae:

ITP =
bTPh

3
TP

12
(2.31)

ATP =
mTP

ρclTP

(2.32)

2.2.4 Implementation

The finite element model is developed in Matlab. Routines for the different steps are
developed and programmed. The programme takes the support structure’s properties
as input and determines the response of the structure at every degree of freedom. The
input consists of a node coordinate list, an element list, element properties and material
properties. Possible outputs variables are displacements, velocities and accelerations.
The programme code can be found in Appendix ABC. (figure programme?)

2.3 Representation of the Soil in the Model

2.3.1 Stiffness of the Soil-Pile System

For simplicity it is assumed that the soil at the fictitious location of the jacket structure
consists solely of dense sand as can be encountered more often in the North Sea.
Important soil parameters are listed in Table 2.1.

The foundation of the jacket support structure consists of four (in case of the
two-dimensional jacket structure two) long, slender piles that are embedded in the
soil and ensure the load transmission into the sea bed. Different models to represent
the soil-structure interaction for offshore wind turbine support structures have been
investigated by Zaaijer [8]. He recommends the use of a stiffness matrix, that is added
to the two nodes that are located at the soil-structure interface to represent the
soil-structure interaction.
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Parameter Value

Es 80 · 106 N/m2

Gs 3.0769 · 107 N/m2

νs 0.3

Table 2.1: Soil properties

The stiffness matrix is of the following form:

Ksu =

 kx 0 kxθ
0 kz 0
kxθ 0 kθ

uw
θ

 (2.33)

The stiffness matrix consists of three global degrees of freedom, i.e. horizontal motion,
vertical motion and rotation. The stiffness values on the diagonal of the matrix can
be seen as adding springs in the respective degree of freedom at the nodes. The two
non-diagonal term kxθ stand for the coupling between the horizontal stiffness and the
rotational stiffness. No interaction between the two slender foundation piles in the soil
is assumed.

Horizontal and Rotational Soil-Pile Stiffness

Carter [9] analysed laterally loaded flexible shafts in rock subjected to lateral loads and
moments. He states two closed-form expressions that provide accurate approximations
for the horizontal displacement u and rotation θ of the shaft at the level of the soil
surface.

u = 0.50

(
H

G∗L

)(
Ee
G∗

)−1/7

+ 1.08

(
M

G∗L2

)(
Ee
G∗

)−3/7

(2.34)

θ = 1.08

(
H

G∗L2

)(
Ee
G∗

)−3/7

+ 6.40

(
M

G∗L3

)(
Ee
G∗

)−5/7

(2.35)

H and M are the horizontal force and moment respectively. G∗ is the equivalent
shear modulus of the soil and is defined as

G∗ = Gs

(
1 +

3νs

4

)
(2.36)

For an isotropic soil the soil’s shear modulus Gs is given by

Gs =
Es

2(1 + νs)
(2.37)

Ee is the effective Young’s modulus of the elastic shaft embedded in the soil and given
by

Ee =
EI

πD4/64
(2.38)
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where E and I are the Young’s modulus and the area moment of inertia in bending of
the shaft. According to the UpWind reference jacket support structure the piles are
assumed to be made of steel and have a diameter D of 2.082 m and a wall thickness t
of 0.06 m. The pile’s embedment depth L is 45 m.

In contrast to the paper, in this report expressions for piles in soil and not in rock
are searched for. However, the equations (2.34) and (2.35) cover also Young’s moduli
and shear moduli that are characteristic for sandy soils, as can be seen from the range
of applicability stated by Carter. He verified that the modulus ratio Ee/Es can lie
between 1 and 106 and that the slenderness ratio L/D has to be larger than 1. Soil
and pile properties used in this report fall within the range of applicability.

From equations (2.34) and (2.35) it is straight-forward to determine the stiffness
constants for the soil-pile interaction. The two equations can be written in matrix form
as

u = Ccoefff (2.39)

Transforming this equation into the well-known stiffness relation yields the stiffness
matrix for the horizontal and rotational terms. The stiffness is obtained as the inverse
of the coefficient matrix.

K = C−1
coeff (2.40)

The inverse of the coefficient matrix Ccoeff is

K = C−1
coeff =


0.50

(
1

G∗L

)(
Ee
G∗

)−1/7

1.08

(
1

G∗L2

)(
Ee
G∗

)−3/7

1.08

(
1

G∗L2

)(
Ee
G∗

)−3/7

6.40

(
1

G∗L3

)(
Ee
G∗

)−5/7


−1

(2.41)

The upper left and the lower right diagonal entries stand for the horizontal and
rotational stiffness term, respectively. With the soil properties stated previously, the
horizontal and rotational stiffness constants become

kx = 6.7821 · 108 N

m2
(2.42)

kθ = 1.3061 · 1010 N

m2
(2.43)

kxθ = −1.7969 · 109 N

m2
(2.44)

Because of different coordinate system definitions here and in Carter’s paper, the
negative value of kxθ has to be taken.

Vertical Soil-Pile Stiffness

Randolph [10] investigated the deformation characteristics of vertically loaded piles.
By means of an analytical approach, he developed an approximate closed-form solution
for the settlement of a pile under a given load, which can be used here to derive a
stiffness value for the vertical soil-structure interaction.
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Randolph gives the load settlement ratio for a pile-soil system with the following
formula:

Pt

GsRwt

=
Pb

GsRwb

+
Ps

GsRws

=
4

η(1− νs)
+

2πL

ζR
(2.45)

The total deformation of the pile has been divided into a part due to the pile’s base
and a part due to the pile’s shaft deformation. ζ is defined as

ζ = ln

(
Rm

R

)
(2.46)

Rm defines a magical radius where the effect of the shear stress becomes negligible and
is given as

Rm = 2.5L(1− νs) (2.47)

Rewriting equation (2.45) to obtain the vertical stiffness term yields

kz =
Pt

wt

=

(
4

η(1− νs)
+

2πL

ζR

)
GsR (2.48)

Here, the same definitions as before apply for Gs, νs and L. R is simply the radius of
the foundation pile and η a depth factor that allows for the interaction of the soil above
and below the pile base and whose value is 1. Inserting the coefficients and properties,
the vertical stiffness term is obtained:

kz = 2.1940 · 109 N

m2
(2.49)

2.3.2 Soil Damping

To account for the damping effect of the soil-pile system, a damping matrix similar to
the soil-pile stiffness matrix is set up.

Csu =

 cx 0 cxθ
0 cz 0
cxθ 0 cθ

uw
θ

 (2.50)

The damping value estimation is based on the consideration of a single degree of
freedom system. The natural frequency ωn is then given by

ωn =

√
k

m
(2.51)

The stiffness k is given by the soil’s stiffness determined in the previous section and
the mass is determined based on the knowledge of the first natural frequency of the
overall system as follows

m =
k

ω2
n

(2.52)
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Assuming the damping ratio to be ξ = 0.02, the damping coefficients can be determined:

ξ =
c

2
√
km

(2.53)

c = 2ξ
√
km (2.54)

This procedure is repeated for every coefficient, so that the soil damping coefficients
are finally obtained as

cx = 8.8800 · 107 N

m2
(2.55)

cxθ = 2.3527 · 108 N

m2
(2.56)

cθ = 1.7101 · 109 N

m2
(2.57)

cz = 2.8727 · 108 N

m2
(2.58)

2.4 Offshore Wind Turbine

The wind turbine used for the investigation is the NREL offshore 5 MW baseline wind
turbine that has been developed for research purposes and is also used in the UpWind
project [11]. It is a conventional, three-bladed, horizontal upwind variable-speed turbine.
Important parameters for the further investigation are listed in Table 2.2.

Parameter Symbol Value

Rotor diameter DR 126 m

Top mass mRNA 350 t

Rotor mass mR 110 t

Nacelle mass mNA 240 t

Nacelle height hNA 3.5 m

Nacelle length lNA 14 m

Rated wind speed Vr 11.4 m/s

Table 2.2: Important parameters of the NREL turbine

The wind turbine, or the rotor-nacelle assembly, is represented by a circular disc for
the rotor and a cuboid for the nacelle on top of the turbine tower with the respective
masses given in Table 2.2. The procedure to introduce the turbine into the matrix
equation of motion is similar to that for the soil springs. Neglecting interaction or
coupling effects, the equation for the turbine can be written as an additional mass
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matrix on the top node:

Mü =

mRNA 0 0
0 mRNA 0
0 0 IRNA

 üẅ
θ̈

 (2.59)

where IRNA is determined by

IRNA = IR + INA =
mRR

2
R

4
+

1

12
mNA

(
l2NA + h2

NA

)
(2.60)

For the translational degrees of freedom the mass of the rotor-nacelle assembly is added
to the diagonal term of the matrix. For the rotational degree of freedom, the mass
moment of inertia is subdivided into the mass moment of inertia for the rotor and the
nacelle first. The rotor is assumed to be a circular disc with the same mass as the rotor
of the NREL turbine. The nacelle is assumed as a cuboid with the mass of the NREL
nacelle. The values for the calculation are specified in Table 2.2. Most values have been
taken from the NREL turbine [11], however, nacelle dimensions are not defined there
except for the height, so that a value has been assumed for the length of the nacelle.
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3 Crack Modelling for Beam
Elements

3.1 Introduction

Jacket support structures are composed of tubular slender elements that are welded at
intersections. The stochastic nature of wind and waves acting on the turbine and the
support structure cause a large number of stress cycles. Moreover, the operation of
the wind turbine induces further cyclic loads in the support structure. Stress raising
effects make tubular joints the most critical points with respect to fatigue strength in
the jacket structure. Fatigue cracks are thus most likely to develop from these tubular
joints. Two effects make welded tubular joints especially prone to fatigue initiation.
On the one hand, the geometric layout of tubular joints leads to increased stresses in
the vicinity of the joints. These additional stresses are also called geometrical stress
or hot spot stress. On the other hand, the local weld geometry influences the stress
level. At the weld toe, the most fatigue critical area, unavoidable irregularities like
notches occur and induce very localised stress concentrations. Together, these two
effects make tubular joints in jacket support structures the most prone area for fatigue
crack initiation and growth.

Tubular joint K2 in the right leg is chosen (cf. Figure 2.1) as the location where a
crack is introduced to the model. The location is chosen, on the on hand, because the
joint K2 lies below sea level and is thus not easily accessible and, on the other hand,
because it lies close to the sea surface, where wave excitation is larger than in lower
areas.

In this chapter, different ways to model structural damage or cracks in beams
are investigated in the literature review. Subsequently, a method is selected and the
implementation is described.

3.2 Literature Review

The effects of cracks or local defects on the dynamic response of structural members
have been investigated for the past decades. Different concepts have been developed.
The early investigations considered mainly one-dimensional single members like beams
or bars. The crack was then modelled as a local flexibility causing local variations
in the stiffness of the member, often described as ‘softening’ effect. The flexibility of
the crack area is a highly local phenomenon and has only influence on the crack’s
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immediate neighbourhood. However, the overall dynamic behaviour is affected to a
considerable degree, which attracted the attention of the researchers.

First approaches to the problem modelled the crack by an equivalent reduced section
or local bending moment, with magnitudes estimated by experimentation. Later, the
local flexibility was quantified by relating it to the crack’s stress intensity factor
(SIF) based on fracture mechanics methods. In this way, the magnitude of the local
flexibility was related to the crack’s geometry. Subsequently, this approach was used
extensively for the dynamic investigation of cracked one-dimensional structures. Most
works in this area deal with beams subject to various boundary conditions. Parameters
that are investigated are especially the natural frequencies and the mode shapes.
Okamura et al. [12] studied the stability of cracked columns. Adams et al. [13] were
among the first to represent the crack by an equivalent linear spring to investigate axial
vibrations of cracked bars. Chondros et al. [14] used experiments to find a relation
between the crack depth and the rotational spring constant. For damage detection,
they suggested periodic measurements of the first three natural frequencies to compare
the rate of change to natural frequencies of the structure when it was first erected. The
aforementioned ‘softening’ effect of the crack leads to a reduction of the eigenfrequencies
that can possibly be measured. Rizos et al. [15] related the measured vibration modes
to the crack location and depth. Ostachowicz et. al. [16] studied the effect of two cracks
on the dynamic behaviour of a cantilever beam. Narkis [17] developed a method that
only requires the first two natural frequencies to identify a crack in a beam.

The aforementioned investigations that model the crack by means of a rotational
spring assume that only one degree of freedom, namely in-plane rotation, is affected by
the crack. Other researchers, cf. e.g. Liu et al. [18], developed the concept of a local
flexibility matrix with a maximum size of 6× 6, which is equivalent to inserting a joint
at the crack location and representing that joint by local flexibility matrix. Such a
matrix defines the relationship between the displacements and the forces at the crack
location and gives a flexibility constant for every considered degree of freedom on its
diagonal. Additional non-diagonal terms indicate coupling between the different modes
of vibration.

An important step was made when Christides and Barr [19] developed a continuous
cracked beam theory, which was further developed by Chondros et al. [20]. They
developed a crack disturbance function, that distributes the effect of the flexibility
along the beam, turning away from the concept of local flexibility to ‘continuous’
flexibility introduced by the crack.

Dimarogonas [21] has performed an extensive review of the early publications until
1996 on vibrations of cracked structures to which the reader is referred for further
information.

Most publications mentioned here deal with solid rectangular or circular cross-
sections. However, many realistic civil engineering structures like bridges and offshore
wind turbine jacket support structures comprise hollow section members. Liu et al. [18]
were among the first to examine cracked hollow section beams by means of coupled
response measurements, where the crack is simulated by a local flexibility matrix.
Furthermore, Zheng et al. [22] derived general integral formulae for the equivalent
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flexibility coefficient of a crack for hollow section beams with different cross-sections.

The concepts presented so far have a significant restriction because they only apply
to simple single element structures. For the investigation of an offshore wind turbine
jacket support structure, the concepts are not applicable. Today, it would be possible
to study the whole support structure by a detailed finite element model that includes
modelling of the crack itself by very small three-dimensional finite elements to represent
the sharp crack tip. However, this requires extensive modelling and computation time.
For identification problems, a simple and straight-forward way to simulate the crack is
needed because of the possibility to shift the crack location in the model or change the
crack depth. In general, the computational model has to be capable of performing fast
and extensive modifications of the crack.

To this end, cracked beam finite elements have been developed. They allow the
study of more complex structures as well as easy modifications because the crack
itself is not modelled but represented by one of the local flexibility methods presented
before. The cracked beam finite elements can be easily inserted into a finite element
model. Gounaris et al. [23] and Krawczuk et al. [24] formulated cracked beam finite
elements based on static interpolation functions. Skrinar [25] presented a dynamic
cracked beam finite element, where so-called dynamic interpolation functions were
used, which reduces the size of the problem as a minimum number of finite elements
are needed to model structural members.

For the dynamic analysis in this thesis, a cracked beam finite element formulation is
chosen, where the crack is modelled by a local flexibility (cf. Section 3.3). Subsequently,
a relation between the crack geometry and the local flexibility is determined (cf.
Section 3.4).

3.3 Cracked Beam Finite Element

The crack is modelled by means of a rotational spring, i.e. a local flexibility. Thus, only
the bending stiffness of the beam is reduced due to the crack. It is assumed that the
beam stays continuous in horizontal and vertical direction. To introduce the rotational
spring in the model of the jacket support structure, a new finite element is needed.
Krawczuk et al. [24] have developed a cracked beam finite element that consists of
three parts: an elastic beam of length L/2, a rotational spring with stiffness Kr and
no geometrical length and an elastic beam of length L/2. The finite element has four
degrees of freedom consisting of one translational and one rotational degree of freedom
per node. The cracked beam finite element is shown in Figure 3.1. Since the crack,
represented by the rotational spring, introduces a discontinuity of the slopes of the
left and right beam segment, different shape functions for the left and the right beam
sections have to be employed.

w1(x) = a1 + a2x+ a3x
2 + a4x

3 (3.1)

w2(x) = a5 + a6x+ a7x
2 + a8x

3 (3.2)
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Figure 3.1: Cracked beam finite element [24]

In matrix form, equations (3.1) and (3.2) can be written as

w1(x) =
[
1 x x2 x3

] 
a1

a2

a3

a4

 (3.3)

w2(x) =
[
1 x x2 x3

] 
a5

a6

a7

a8

 (3.4)

The corresponding derivatives are determined to be

w′1(x) = φ1(x) = a2 + 2a3x+ 3a4x
2 (3.5)

w′2(x) = φ2(x) = a6 + 2a7x+ 3a8x
2 (3.6)

w′′1(x) = 2a3 + 6a4x (3.7)

w′′2(x) = 2a7 + 6a8x (3.8)

w′′′1 (x) = 6a4 (3.9)

w′′′2 (x) = 6a8 (3.10)
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The boundary conditions are the unknown translations and rotations at both ends of
the element:

w1(0) = q1 (3.11)

φ1(0) = q2 (3.12)

w2(L) = q3 (3.13)

φ2(L) = q4 (3.14)

The interface conditions are

• the equality of displacements:

w1(L/2) = w2(L/2) (3.15)

• the equality of rotations taking into account the increase of rotation due to the
rotational spring:

φ1(L/2) = φ2(L/2)− EI

Kr

w′′2(L/2) (3.16)

• the equality of bending moments:

w′′1(L/2) = w′′2(L/2) (3.17)

• and the equality of shear forces:

w′′′1 (L/2) = w′′′2 (L/2) (3.18)

In the following, the factor EI/Kr in equation (3.16) is replaced by a crack coefficient K
introduced by Krawczuk et al. [24].

With these eight equations the constants a1 to a8 can be determined. The following
equation system is obtained:

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 L L2 L3

0 0 0 0 0 1 2L 3L3

1 L
2

L2

4
L3

8
−1 −L

2
−L2

4
−L3

8

0 1 L 3
4
L2 0 −1 −L+ 2K −3

4
L2 + 3LK

0 0 2 3L 0 0 −2 −3L

0 0 0 6 0 0 0 −6





a1

a2

a3

a4

a5

a6

a7

a8



=



q1

q2

q3

q4

0

0

0

0



(3.19)

23



The equation system is solved and the coefficients of q1, q2, q3 and q4 are collected in a
matrix A, so that

1 0 0 0

0 1 0 0

− 3
L2 − 3K+4L

2L(K+L)
3
L2 − 3K+2L

2L(K+L)

2
L3

1
L2 − 2

L3
1
L2

1 KL
2(K+L)

0 − KL
2(K+L)

0 L
K+L

0 K
K+L

− 3
L2 − 3K+4L

2L(K+L)
3
L2 − 3K+2L

2L(K+L)

2
L3

1
L2 − 2

L3
1
L2




q1

q2

q3

q4

 =



a1

a2

a3

a4

a5

a6

a7

a8



(3.20)

which is equivalent to
Au = a (3.21)

u contains the four nodal degrees of freedom of the finite element. Inserting equa-
tion (3.21) into (3.3) and (3.4) and having in mind that

w(x) = Nu (3.22)

the shape function matrices N1 and N2 are obtained as

N1 =
[
1 x x2 x3

]


1 0 0 0

0 1 0 0

− 3
L2 − 3K+4L

2L(K+L)
3
L2 − 3K+2L

2L(K+L)

2
L3

1
L2 − 2

L3
1
L2

 (3.23)

N2 =
[
1 x x2 x3

]


1 KL
2(K+L)

0 − KL
2(K+L)

0 L
K+L

0 K
K+L

− 3
L2 − 3K+4L

2L(K+L)
3
L2 − 3K+2L

2L(K+L)

2
L3

1
L2 − 2

L3
1
L2

 (3.24)

The strain-displacement matrix is

Bi =
d2

dx2
Ni with i = 1, 2 (3.25)

The stiffness matrix of the cracked beam finite element is given by the following formula
that is derived in Appendix A.2:

K =

∫ L

0

EIBTB dx (3.26)
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Adapted to the case with discontinuous shape functions the formula reads

K =

∫ L/2

0

EIBT
1 B1 dx+

∫ L

L/2

EIBT
2 B2 dx (3.27)

The stiffness matrix is then determined to be

K = EI



12
L3

6
L2 − 12

L3
6
L2

6
L2

3K2+6KL+4L2

L(K+L)2
− 6
L2

3K2+6KL+2L2

L(K+L)2

− 12
L3 − 6

L2
12
L3 − 6

L2

6
L2

3K2+6KL+2L2

L(K+L)2
− 6
L2

3K2+6KL+4L2

L(K+L)2

 (3.28)

When the crack coefficient K is equal to zero, the stiffness matrix for the beam
element with a crack reduces to the stiffness matrix of a normal beam element (cf.
equation (2.4)).

Since plane frame elements are considered, the stiffness matrix for the beam has to
be extended to a 6× 6 matrix, as has been done in Section 2.2.2.

A similar approach could have been taken for the mass matrix as well. However,
Krawczuk et al. [24] concluded that the mass matrix of a non-cracked beam element
can be taken as the results are not influenced. They also provided numerical examples
that confirmed the form of the stiffness matrix.

The Mathematica code for the derivation of the stiffness matrix of the cracked beam
finite element can be found in Appendix C.1.

3.4 Determination of Spring Constant

Zheng et al. [22] present a derivation for the flexibility coefficient of cracked hollow
section beams. Fracture mechanics theory is employed to describe the size and the
influence of the crack on the stiffness or flexibility of the beam. The flexibility coefficient
is, among others, dependent on the depth of the crack.

The derivation is divided into two parts to account for the abrupt change of cross-
section when the crack reaches the inner hollow section of the beam. Case 1 covers
a shallow open crack whose penetration depth is contained in the top solid sectional
region. Case 2 covers deeper penetration in which the crack advances to and within
the middle hollow section.

During the whole derivation it is assumed that the crack stays always open and that
the beam acts in its linear-elastic range.

3.4.1 Case 1

Figure 3.2 shows the circular hollow cross-section of the beam with a sectional crack.
The crack depth is denoted a, the external diameter De and the internal diameter Di.
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Figure 3.2: Crack in a circular hollow section beam – Case 1 [22]

ξ and η are location variables. This case is applicable when 0 ≤ a ≤ (De − Di)/2.
The additional strain energy due to the crack can be expressed by a local flexibility
coefficient C, which by definition is

C =
∂θ

∂M
(3.29)

The relative rotation θ, that is caused by the presence of the crack, can be derived by
Castigliano’s theorem in the linear elastic range [26]. Castigliano’s theorem states that
the partial derivative of the strain energy with respect to an applied force or moment
is equal to the displacement or rotation of the force or moment along its line of action
for linearly elastic structures. In equation form for this case:

ui =
∂U

∂Fi
(3.30)

where ui is the relative displacement or rotation of the cracked section and Fi is a
force or moment acting at the same location. The strain energy U can be expressed as
follows:

U =

∫
Ac

J dA (3.31)

J is the strain energy release rate, which can be related to the stress intensity factor [21]

J =

( 6∑
i=1

KIi

)2

+

(
6∑
i=1

KIIi

)2

+m

(
6∑
i=1

KIIIi

)2
 /E (3.32)
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The crack in this investigation is an fracture mode I crack1 and influences only one
degree of freedom, namely the rotation in the plane of the beam. Using equations (3.30)
and (3.31) the relative rotation is then

θ =
∂

∂M

∫
Ac

J dA (3.33)

Together with equation (3.32) we get

θ =
∂

∂M

[∫ a

0

∫ be

−be

K2
I

E
dη dξ

]
(3.34)

where be is defined as

be =

√
D2
e

4
−
(
De

2
− ξ
)2

(3.35)

Considering a small vertical sectional strip with depth h′, width dη and ξ′, a local
depth variable measured from the top of the vertical strip, the stress intensity factor
KI is

KI =
Mh′

2I

√
πξ′F ′ (3.36)

where the area moment of inertia I is defined as

I = π
D4
e −D4

i

64
(3.37)

and F ′ is a function of the local relative position:

F ′ =

√
2
πx′

tan
(
πx′

2

) [
0.923 + 0.199

(
1− sin

(
πx′

2

))4
]

cos
(
πx′

2

) (3.38)

The local relative position x′ is given by

x′ =
ξ′

h′
=

2x+
√

1− 4y2 − 1

2
√

1− 4y2
(3.39)

where x = ξ/De and y = η/De. Finally, the flexibility coefficient is obtained when
equation (3.36) together with equations (3.37) to (3.39) is inserted into (3.34), which
subsequently is applied in the definition equation for the flexibility coefficient (3.29):

C =
1024

ED3
eπ(1− γ4)2

∫ a/De

0

∫ √x−x2
−
√
x−x2

(1− 4y2)(2x+
√

1− 4y2 − 1)F ′2 dy dx (3.40)

where γ = Di/De.

1There are three standard crack modes in which a crack propagates. Mode I is called the opening
mode, where tensile stresses act normal to the plane of the crack, mode II is called the shearing
mode and mode III is called tearing mode. The latter two are only of minor importance.
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3.4.2 Case 2

The procedure for the second case is very similar to the first case. Figure 3.3 shows
the situation when the crack has propagated into the middle hollow section of the
beam cross-section. This case is applicable when (De −Di)/2 ≤ a ≤ (De +Di)/2. The

Figure 3.3: Crack in a circular hollow section beam – Case 2 [22]

formula for the relative rotation θ is now adapted to the new situation, where the
cracked cross-section consists of three parts: First, the solid sectional part with a depth
of t = (De −Di)/2, second the part left of the hollow middle section from depth t to
the crack depth a and third the part right of the hollow middle section from depth t to
the crack depth a. These three parts can be found in equation (3.41).

θ =
∂

∂M

[∫ t

0

∫ be

−be

K2
I

E
dη dξ +

∫ a

t

∫ −bi
−be

K2
I

E
dη dξ +

∫ a

t

∫ be

bi

K2
I

E
dη dξ

]
(3.41)

Substituting equation (3.36) into equation (3.41) and then into the definition equa-
tion (3.29) the formula for the local flexibility constant is obtained:

C =
1024

ED3
eπ(1− γ4)2

(∫ t/De

0

∫ √x−x2
−
√
x−x2

+

∫ a/De

t/De

∫ −β
−
√
x−x2

+

∫ a/De

t/De

∫ √x−x2
β

)
·
(

(1− 4y2)(2x+
√

1− 4y2 − 1)F ′2
)

dy dx (3.42)

where β =
√
x− x2 − (1− γ2)/4 and the rest is defined as before in case 1.
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3.4.3 Implementation

The rotational spring’s constant representing the influence of the crack is denoted Kr

and related to the local flexibility constant C as follows

Kr =
1

C
(3.43)

The crack coefficient K in the cracked beam’s stiffness matrix is then

K = EIC (3.44)

where C is the local flexibility of the crack whose integral equation has just been
derived.

The cracked beam finite element is inserted into the finite element model at the
lower brace of joint K2 in the right jacket leg. The element’s length is approximately
one meter, so that the crack is located at a distance of half a metre from the centreline
of the jacket’s leg.

The brace diameter is 0.8 m and the wall thickness is 0.02 m. With this information,
the local flexibility for the crack in that brace can be calculated. The result is shown in
Figure 3.4, where the crack coefficient K is plotted as a function of the crack depth a.

0.1 0.2 0.3 0.4
a @mD
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0.03

0.04
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K

Figure 3.4: Rotational spring coefficient as function of crack depth

There are two different values in the cracked beam finite element’s stiffness matrix
that are affected by the presence of the crack, here they are denoted kθθ and kθz. They
are defined as:

kθθ = EI
3K2 + 6KL+ 4L2

L(K + L)2
(3.45)

kθz = EI
3K2 + 6KL+ 2L2

L(K + L)2
(3.46)
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For K = 0 (no crack), the equations reduce to

kθθ0 = 4
EI

L
(3.47)

kθz0 = 2
EI

L
(3.48)

To estimate the effect of the crack on the stiffness of the beam finite element, equa-
tions (3.45) and (3.46) are divided by (3.47) and (3.48). The results are presented in
Table 3.1.

Crack depth Relative crack depth Crack coefficient Relative stiffness variation

a [m] a/De [–] K [m] kθθ/kθθ0 [–] kθz/kθz0 [–]

0.01 m 0.0125 0.00158 0.999 1.001

0.02 m 0.0250 0.00871 0.996 1.008

0.05 m 0.0625 0.02155 0.991 1.019

0.10 m 0.1250 0.03208 0.986 1.028

0.20 m 0.2500 0.04381 0.981 1.037

0.30 m 0.3750 0.05021 0.979 1.042

0.40 m 0.5000 0.05607 0.977 1.047

Table 3.1: Chosen crack depth and their coefficients

In comparison with the stiffness values of the uncracked beam finite element, it seems
that the two diagonal terms become less stiff and that the two non-diagonal terms
become stiffer.
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4 Loads on the Structure

4.1 Introduction

In the previous two chapters, the structural model and the simulation of the crack in the
model have been presented. Now, the loads on the structure are considered. The loading
or excitation of an offshore wind turbine jacket support structure consists of mainly
two types: aerodynamic and hydrodynamic loading. Aerodynamic loading arise due to
the interaction of the airflow with the stationary and moving parts of the wind turbine.
As discussed in Chapter 2, the rotating blades of the turbine are neglected. Thus, the
aerodynamic loads in this investigation consist of the time-dependent thrust force on
the rotor and the time-dependent wind load on the turbine tower. The hydrodynamic
loads are caused by the interaction of the water flow with the structure. The water
flow is dominated by waves and currents.

The IEC 61400-3 [27] specifies normal external conditions for the wind and wave
environment of an offshore wind turbine. Those conditions are used because the
investigation is focussed on the dynamic properties of the structure during normal
ambient excitation and operation. Thus, no extreme wind or wave events are taken
into account.

The wave conditions are described by an irregular sea state with a significant wave
height Hs of 6 m and a spectral peak period Tp of 10 s. An unidirectional sea state is
assumed, which means that no directional spreading is taken into account. The sea
current is taken as 1 m/s and assumed constant over the water depth.

The ambient wind is defined by its mean wind speed Vm at hub height of 12 m/s and
its turbulence intensity, which can be assumed to be 12 % in an offshore environment.
The chosen mean wind speed lies just above the rated wind speed of the NREL turbine,
so that the thrust force on the rotor is highest.

Wind, waves and current are assumed to be co-directional and unidirectional as a
two-dimensional support structure is considered.

4.2 Hydrodynamic Loads

4.2.1 Morison’s Equation

In DNV-OS-J101 [28] Morison’s equation is suggested for the wave force calculation of
slender structures such as jacket structures. Morison’s equation gives a horizontal force
on a vertical element dz of the structure at level z. It consists of an inertia force term
and a drag force term, but neglects wave diffraction, radiation and viscous effects. It is
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furthermore assumed that the wave is not affected or disturbed by the structure itself.
These neglected effects are usually only important for large volume structures. Inertia
and drag term are 90◦ out of phase and simply superimposed:

dF = dFM + dFD (4.1)

dF =
1

4
πρwCMD

2u̇rel dz +
1

2
ρwCDDurel|urel| dz (4.2)

urel and u̇rel are the relative velocity and acceleration between the water flow and the
structure’s motion perpendicular to the member, D is the diameter of the cylinder,
ρw is the density of sea water, CM and CD are the dimensionless inertia and drag
coefficients. The coordinate system’s origin is located at still water level with the z-axis
pointing upwards. This contradicts the coordinate system definition of the support
structure model, where the origin is located at the sea bed, and some modifications
have to be made.

The drag and inertia coefficient are dependent, among others, on the Reynolds
number, the Keulegan-Carpenter number and the relative roughness. At a typical
southern North Sea site in 30 to 40 m water depth, they can be assumed as CM = 1.6
and CD = 0.8 according to DNV’s offshore standard DNV-OS-J101 [28].

4.2.2 Regular Wave Kinematics

To determine the hydrodynamic loads by means of the Morison equation, the water
kinematics must be known. Linear wave theory is assumed. Contributions from wave
crests are ignored (profile extension methods, constant extension, how implemented?).

The following formulae and derivations are loosely based on the book “Offshore
Hydromechanics” [29]. For a regular wave, the wave profile can be defined as

ζ(x, t) = ζa sin(ωt− kx) (4.3)

The linear wave potential φ in shallow water is

φ(x, z, t) = −gζa

ω

cosh k(z + h)

cosh kh
cos(ωt− kx) (4.4)

Wave frequency ω and wave number k are related by the dispersion relation. In shallow
water it is defined as

ω2 = gk tanh kh (4.5)

The horizontal and vertical wave velocity u and w are obtained by taking the derivative
of the wave potential with respect to the x and the z coordinate, respectively:

u(x, z, t) =
∂φ

∂x
= ωζa

cosh k(z + h)

sinh kh
sin(ωt− kx) (4.6)

w(x, z, t) =
∂φ

∂z
= ωζa

sinh k(z + h)

sinh kh
cos(ωt− kx) (4.7)
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The time derivatives of the wave velocities u and w yield the horizontal and vertical
water particle acceleration ax and az:

ax(x, z, t) =
∂u

∂t
= ω2ζa

cosh k(z + h)

sinh kh
cos(ωt− kx) (4.8)

az(x, z, t) =
∂w

∂t
= −ω2ζa

sinh k(z + h)

sinh kh
sin(ωt− kx) (4.9)

Equations (4.6) to (4.9) have to be adapted because of the different coordinate
system definitions for the wave kinematics (origin at sea level) and for the jacket
structure (origin at sea bottom). The structure’s coordinate system will be used for
the waves in the following as well. Hence, the wave velocities and accelerations are
written as

u(x, z, t) = ωζa
cosh kz

sinh kh
sin(ωt− kx) (4.10)

w(x, z, t) = ωζa
sinh kz

sinh kh
cos(ωt− kx) (4.11)

ax(x, z, t) = ω2ζa
cosh kz

sinh kh
cos(ωt− kx) (4.12)

az(x, z, t) = −ω2ζa
sinh kz

sinh kh
sin(ωt− kx) (4.13)

where h is the water depth.

4.2.3 Irregular Wave Kinematics

As a single linear wave is not a realistic description of a real sea state, irregular sea
states are considered. An irregular sea state is obtained by linearly superposing regular
wave components with different amplitude ζai, frequency ωi and phase εi. A long-crested
irregular sea state propagating along the x-axis can be described by [30]

ζ(x, t) =
n∑
i=1

ζai sin(ωit− kix+ εi) (4.14)

Along the lines of equations (4.6) to (4.9), the wave velocities and accelerations u, w,
ax and az for an irregular sea state can be written as

u(x, z, t) =
n∑
i=1

ωiζai
cosh ki(z + h)

sinh kih
sin(ωit− kix+ εi) (4.15)

w(x, z, t) =
n∑
i=1

ωiζai
sinh ki(z + h)

sinh kih
cos(ωit− kix+ εi) (4.16)

ax(x, z, t) =
n∑
i=1

ω2
i ζai

cosh ki(z + h)

sinh kih
cos(ωit− kix+ εi) (4.17)
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az(x, z, t) =
n∑
i=1

−ω2
i ζai

sinh ki(z + h)

sinh kih
sin(ωit− kix+ εi) (4.18)

A wave spectrum Sζ(f) can be used to describe an irregular sea state. As the term
‘state’ indicates, the sea is then assumed to be a stationary random process. The
spectrum describes how the amplitude of the wave components is distributed over the
frequency components.

The JONSWAP spectrum is applied here as it specifically accounts for the limited
fetch length in the North Sea, which leads to a not fully developed sea state. The
spectrum is defined by its significant wave height Hs and the mean wave period Tp and
given as

Sζ(f) = 0.3125 ·H2
s · Tp ·

(
f

fp

)−5

· (1− 0.287 ln γ) · exp

(
−1.25

(
f

fp

)−4
)
· γA (4.19)

where A and γ are defined as

A = exp

(
−0.5

(
f − fp
σfp

)2
)

(4.20)

γ =



5 for
Tp√
Hs

≤ 3.6

exp

(
5.75− 1.15

Tp√
Hs

)
for 3.6 ≤ Tp√

Hs

≤ 5

1 for
Tp√
Hs

> 5

(4.21)

The JONSWAP spectrum is shown in Figure 4.1 for a significant wave height Hs of
6 m and a spectral peak period Tp of 10 s.

The wave components’ amplitude ζai can be retrieved from the wave spectrum by
the following formula [30]:

Sζ(fi)∆f =
1

2
ζ2

ai (4.22)

ζai =
√

2Sζ(fi)∆f (4.23)

To create a realistic sea state in the time domain as required for the wave force
calculation with the Morison equation, equation (4.14) is used. The JONSWAP wave
spectrum is discretised into equally spaced frequency intervals ∆f , for each of which
a wave amplitude ζai can be computed by equation (4.23). The wave frequency ωi is
obtained by multiplying the discrete frequency values by 2π. The phase εi for every
wave component is a random value between 0 and 2π.

The JONSWAP spectrum used for the wave load calculation is created with a
frequency range from 0.001 Hz to 0.5 Hz in steps of 0.001 Hz. This corresponds to the
superposition of 500 regular waves with periods between 2 s and 1 000 s.
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Figure 4.1: JONSWAP spectrum (Hs = 6 m, Tp = 10 s)

4.2.4 Inertia Term

Now, that the wave kinematics are defined, the force calculation can be performed.
First, the inertia term of the Morison equation is presented as it is used in this report’s
calculations.

The phenomenon of an oscillating cylinder in an oscillating flow can be subdivided
into a fixed cylinder in an oscillating flow plus the effect of the oscillating cylinder. A
fixed cylinder in oscillating flow is subjected to a Froude-Krilov force and a disturbance
force. The Froude-Krilov force arises from the time-dependent pressure gradient in
the ambient flow, the disturbance force is a result of the flow disturbance of the
impermeable cylinder. The cylinder oscillation obviously affects the disturbance force
term. However, the Froude-Krilov force is not influenced by the cylinder’s oscillation
because it is assumed that the motion of the cylinder is small relative to the motion of
the wave. Hence, the inertia term of the Morison equation for an oscillating cylinder in
oscillating flow is written as

dFM =
1

4
πD2ρwCMan︸ ︷︷ ︸

dFWF

− 1

4
πD2ρw(CM − 1)ẍn︸ ︷︷ ︸

dFA

(4.24)

an is the flow acceleration normal to the member’s longitudinal axis, ẍn is the structure’s
acceleration normal to its longitudinal axis.

The left term is the wave force term dFWF consisting of the Froude-Krilov force and
the disturbance force, the right term is often denoted as added mass term dFA. As the
added mass term on the right-hand side is uncoupled from the rest of the force, it can
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be moved to the left-hand side of the equation of motion:

(M + A) ẍ + Cẋ + Kx = f (4.25)

The added mass matrix A is derived equivalently to the mass matrix. The mass matrix
for an element is defined in Section A.2 as

M = ρA

∫ L

0

NTN dx =
1

2
ρAL

∫ 1

−1

NTN dξ (4.26)

The term ρA is constant along the length of the element and describes the mass per
unit length. From the added mass term, the added mass per unit length ma can be
extracted as well:

dFA = mẍ = ρwAdCA︸ ︷︷ ︸
ma

ẍ (4.27)

Ad = 1
4
πD2 is the displaced water volume per unit length (thus, in fact, a cross-section

area). The added mass matrix A is thus defined as

A = ρwAdCA

∫ L

0

NTN dx =
1

2
ρwAdLCA

∫ 1

−1

NTN dξ (4.28)

A =
ρwVdCA

420


140 0 0 70 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

70 0 0 140 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2

 (4.29)

CA = CM−1 is the added mass coefficient and Vd = AdL is the displaced water volume.
The part of the inertia force dFM remaining on the right-hand side of the equation

of motion is:

dFM =
1

4
πD2ρwCMan (4.30)

It can be determined with the wave acceleration perpendicular to the member, which
is determined to be

an = ax sin(ϕ) + az cos(ϕ) (4.31)

The angle ϕ represents the angle between the global coordinate system and the element’s
local coordinate system.

4.2.5 Drag Term

Drag is a phenomenon occurring in real flows that is caused by flow disturbance and
wake formation. The drag term in the Morison equation is given by:

dFD =
1

2
ρwCDDurel|urel| (4.32)
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In the case of an oscillating cylinder in an oscillating fluid, urel denotes the relative
velocity between the flow and the structure. The relative velocity is given as

u = un − ẋn (4.33)

so that the drag term becomes

dFD =
1

2
ρwCDD (un − ẋn) |un − ẋn| (4.34)

un is the flow’s velocity normal to the member’s axis and ẋn is the structure’s velocity
normal to the member’s axis. The flow’s velocity consists not only of the velocity due
to the waves, but also of the current velocity uc:

un = u sin(ϕ) + w cos(ϕ) + uc sin(ϕ) (4.35)

The drag force in equation (4.34) is coupled with the left-hand side of the equation of
motion, more specifically with the damping term. Therefore, the equations of motion
have to be solved iteratively. This has been implemented in the calculations by means
of the ode solver in Matlab.

In the later analysis and damage identification techniques, non-linear forces are very
cumbersome to incorporate in the model. Thus, a fixed cylinder in oscillating fluid is
considered and implemented as well to obtain a linear relationship:

dFD =
1

2
ρwCDDun|un| (4.36)

4.3 Wind Loads

4.3.1 Introduction

The variable nature of wind can be described by a mean wind speed superimposed by
turbulent fluctuations. The mean wind speed depends on seasonal, synoptic and diurnal
effects and varies on a time scale of one to several hours or days, whereas the turbulent
fluctuations vary on a relatively small time scale of a few minutes and have a zero mean
value if averaged over a short time span [31]. In this report the time-dependent and
varying wind velocity V is represented by two terms, as suggested. However, the mean
wind speed is assumed to be a time-independent and constant mean value V̄ because
in this investigation a time scale in the order of minutes is of interest and hourly or
daily variations can be neglected. The turbulent part of the wind velocity is described
by a wind spectrum. Only horizontal wind components are considered, so that

Vx(t) = V̄x + Ṽx(t) (4.37)

The wind speed variations are characterised by their frequency ω. Since long-term
variations as seasonal, daily or hourly variations are not of interest, only turbulent
variations are taken into account in the varying part of the wind force. As can be seen
in Figure 4.2, the turbulence peak in the wind speed spectrum is associated with a
period T of approximately one minute.
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Figure 4.2: Typical wind speed spectrum [31]

4.3.2 Wind Conditions

The wind conditions at a certain height are described by the mean wind speed V̄ and
the turbulence intensity I. The turbulence intensity is defined as

I =
σ

V̄
(4.38)

The mean wind speed at hub height Vhub is taken as 12 m/s. With the normal wind
profile model from the IEC-61400-1 [32] the variation of the mean wind speed with
height can be determined:

V (z) = Vhub

(
z

zhub

)α
(4.39)

α is the power law exponent and assumed to be 0.2.
The turbulence standard deviation σ is defined for the normal turbulence model as

σ = Iref (0.75Vhub + 5.6 m/s) (4.40)

Iref is the expected value of the hub height turbulence intensity at a 10 minute average
wind speed of 15 m/s. In the IEC-61400-1 values for different categories are specified.
Category C is chosen, where Iref is given as 12 %, because in an offshore environment
lower turbulence characteristics are common.

With V̄ and σ known, the turbulence intensity I in equation (4.38) can determined
for different heights.

4.3.3 Kaimal Spectrum

To describe the varying and irregular nature of wind, a Kaimal spectrum is employed
as it is one of the spectra recommended both in the “Wind Energy Handbook” [31]

38



and in the IEC 61400-1 [32]. The Kaimal spectrum for the longitudinal wind direction
is defined in the IEC 61400-1 [32] as

fSV (f)

σ2
=

4fL/V̄

(1 + 6fL/V̄ 5/3)
(4.41)

where f is the frequency in Hertz, SV (f) is the power spectral density function for the
longitudinal wind velocity component, L is the longitudinal wind velocity component
integral scale parameter, σ is the longitudinal wind velocity standard deviation and V̄
is the mean wind speed.

Employing equation (4.38), equation (4.41) becomes

SV (f) =
4I2LV̄

(1 + 6fL/V̄ )5/3
(4.42)

L is defined as
L = 8.1Λ (4.43)

where Λ is the turbulence scale parameter at height z and defined as

Λ =

{
0.7z z ≤ 60 m

42 m z > 60 m (4.44)

With V̄ and I changing for different heights, a Kalman spectrum has to be calculated
for every height of interest. The Kaimal spectrum is calculated in the frequency range
from 0.001 Hz to 0.5 Hz in steps of 0.001 Hz. In Figure 4.3 a Kaimal spectrum is plotted
at a hub height of 120 m and a wind speed at hub height of 12 m/s.

To obtain a realistic wind speed time series, the same procedure as in Section 4.2.3
for the wave time series is followed. The turbulent wind speed part is defined as

Ṽ (x, t) =
n∑
i=1

Ṽai sin(ωit+ εi) (4.45)

The wind speed time series is then obtained as:

V (x, t) = V̄ +
n∑
i=1

Ṽai sin(ωit+ εi) (4.46)

From the Kaimal spectrum, the amplitudes Ṽai are obtained as function of the wind
frequency f :

Ṽai =
√

2SV (fi)∆f (4.47)

From the wind time series, the wind loads on the structure can be calculated. The
wind load on the turbine tower is a drag force and thus determined by the (linear)
drag term of the Morison equation:

dFD =
1

2
ρaCDDVn|Vn| (4.48)

The density of air ρa is 1.225 kg/m3 and the drag coefficient CD is assumed to be 0.8.
Vn is the wind velocity perpendicular to the element:

Vn = V sinϕ (4.49)
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Figure 4.3: Kaimal spectrum of longitudinal wind velocities

4.3.4 Estimation of Thrust Force

The thrust force on the rotor of the wind turbine shall be modelled as a point force at
the tower top here. The thrust force is determined with a slightly altered drag force
formulation:

FT =
1

2
ρaCTARVn|Vn| (4.50)

where AR is the rotor area. To find a suitable and realistic value for the thrust coefficient
CT, the thrust force of the NREL 5 MW offshore wind turbine [11] is determined first.

In order to determine the constant mean part of the thrust force, results from
numerical calculations are used. The Computational Fluid Dynamics (CFD) method is
believed to be the most advanced and accurate method. The normal force distribution
along one blade of the NREL 5 MW wind turbine is shown among other numerical
calculations in Figure 4.4. There, the loads on the blade have been determined for a
wind speed of 11.4 m/s and a rotational speed of the wind turbine of 12.1 rpm [33].
These conditions correspond to a normal operation condition, where the turbine turns
with its rated rotational speed and produces at rated power, but is far from extreme
conditions. The values for the distributed normal force are read from the graph. Only
values between blade radius 15.85 m and 61.63 m are given. Between 1.5 m and 15.85 m
values are linearly interpolated. At the blade tip (63 m) zero force is assumed as the
chord is very small there. Since the numerical calculations are performed for one blade,
the result has to be multiplied by the number of blades, which in this case is 3:

F̄x = 3 · F̄x,blade (4.51)

The determination of the thrust force is shown in Table 4.1. The entries in the column
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Figure 4.4: Normal force distribution along one blade [33]

labelled “Radius” are the distance from the centre of the hub. The diameter of the
hub is 3 m, so that the blade starts at radius 1.5 m. The last three columns in Table
4.1 are not related to nodes as the first three columns, but to sections between two
adjacent nodes. That means that e.g. section 1 (in line 2) is defined by the nodes in
line 1 and line 2. The total constant mean thrust force at a wind speed of 11.4 m/s is

F̄x = 648.18 kN (4.52)

This value is used to calibrate CT in equation (4.50).

4.4 Nodal Forces

A global force vector has to be obtained in order to solve the equations of motion. To
this end, the forces are calculated at every node on element level. The beam element
nodal force vector is derived in Section A.2 as

f =

∫ L

0

NTq(x) dx (4.53)

The first step in obtaining the nodal forces is the calculation of the hydrodynamic loads
or wind loads for every element at the two nodes of each plane frame element. The
loads on the nodes are then assumed to vary linearly over the length of the element.
Thus, a line load q(x) is obtained:

q(x) = f1 +
f2 − f1

x2 − x1

(x− x1) (4.54)
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With x1 = 0 and x2 = L, the formula simplifies to

q(x) = f1 +
f2 − f1

L
x (4.55)

Inserting equation (4.55) into (4.53) yields:

f =

∫ L

0

NT

(
f1 +

f2 − f1

L
x

)
dx (4.56)

The result of the integration are four force components, namely one transverse force
component and one moment per node as only loads perpendicular to the elements are
considered.

fz1 =
1

20
(13f1 − 3f2)L (4.57)

fθ1 =
1

60
(7f1 − 2f2)L2 (4.58)

fz2 =
1

20
(17f1 − 7f2)L (4.59)

fθ2 =
1

60
(−8f1 + 3f2)L2 (4.60)

The element force vector is then obtained as:

f =


0
fz1
fθ1
0
fz2
fθ2

 (4.61)

To transfer the element force vector, that is given in its local coordinate system, into
the global coordinate system the following transformation is applied:

f = TTf̄ (4.62)

Finally, the global force vector is obtained by assembling the element force vectors.
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Nodes Sections

Radius Norm. Load Length Load Force

[m] radius [kN/m] [m] [kN/m] [kN]

1.50 0.02 0.00

2.87 0.05 0.15 1.37 0.08 0.10

5.60 0.09 0.46 2.73 0.30 0.83

8.33 0.13 0.76 2.73 0.61 1.66

11.75 0.19 1.14 3.42 0.95 3.26

15.85 0.25 1.60 4.10 1.37 5.62

19.95 0.32 2.00 4.10 1.80 7.38

24.05 0.38 2.30 4.10 2.15 8.82

28.15 0.45 2.90 4.10 2.60 10.66

32.25 0.51 3.40 4.10 3.15 12.92

36.35 0.58 4.10 4.10 3.75 15.38

40.45 0.64 5.00 4.10 4.55 18.66

44.55 0.71 5.50 4.10 5.25 21.53

48.65 0.77 6.00 4.10 5.75 23.58

52.75 0.84 6.40 4.10 6.20 25.42

56.17 0.89 6.60 3.42 6.50 22.23

58.90 0.93 6.50 2.73 6.55 17.88

61.63 0.98 5.50 2.73 6.00 16.38

63.00 1.00 0.00 1.37 2.75 3.77

Total normal force per blade 216.06

Total thrust force 648.18

Table 4.1: Calculation of the thrust force for the NREL wind turbine
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5 State-Space Representation and
State Estimation

5.1 Introduction

In the previous chapters the support structure model has been set up and explained.
The process of describing a system or a real structure by mathematical equations is
called system modelling and represents the first step when the response of such a
structure shall be obtained. Here, the whole model can be described by one equation:

Mü + Cu̇ + Ku = f (5.1)

In fact, the equation of motion of the support structure is a system of nDOF non-
homogeneous second order linear differential equations. These equations describe the
dynamic characteristics of the support structure.

In this chapter, the solution of equation (5.1) is presented. To this end, the so-called
state-space representation is introduced. The state-space representation describes the
physical system by input, output and state variables, which are related by first-order
differential equations. It provides a convenient and straight-forward model to analyse
dynamic input-output systems. The term states refers to the variables that fully describe
the system (e.g. displacements, velocities).

Furthermore, the state-space representation forms the basis for the application of
the Kalman filter, which accounts for the shortcomings of purely deterministic systems.
The Kalman filter provides an optimal estimate of the state of a system based on input,
model and measurement information. Based on the state estimate by the Kalman filter,
the response of the support structure can be predicted.

5.2 State-Space Representation

5.2.1 Deterministic Continuous-Time State-Space Model

The classical continuous-time state-space formulation consists of a state equation and
an observation equation:

ẋ = Acx + Bcp (5.2)

d = Gcx + Jcp (5.3)
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In equations (5.2) and (5.3), x is the state vector, a set of variables describing the
system’s state at time t, p is the input vector representing the externally applied forces,
ẋ is the time derivative of the state vector and d is the output vector, where the
measured data is stored.

For a system with np inputs, nd outputs and ns state variables, the sizes of the
matrices and vectors in equations (5.2) and (5.3) are listed in Table 5.1.

Name Variable Size

State vector x ns × 1

Derivative of state vector ẋ ns × 1

Input vector p np × 1

Output vector d nd × 1

System matrix Ac ns × ns

Input matrix Bc ns × np

Output matrix Gc nd × ns

Direct transmission matrix Jc nd × np

Table 5.1: Matrix and vector sizes for state-space model

The state equation is obtained by transforming the equations of motion (5.1), which
are second order differential equations, into first order differential equations. To this
end, the displacements u(t) and the velocities u̇(t) are defined as the state variables
and collected in the state vector x(t):

x(t) =

(
x1

x2

)
=

(
u(t)
u̇(t)

)
(5.4)

The derivative of the state vector is

ẋ(t) =

(
ẋ1

ẋ2

)
=

(
u̇(t)
ü(t)

)
(5.5)

Usually, the equation of motion is modified a bit to set up the state vector. The force
vector f(t) is replaced by the product of a force selection matrix Sp with size nDOF×np

and the output vector p(t) [34]:

Mü(t) + Cu̇(t) + Ku(t) = f(t) = Spp(t) (5.6)

However, in the response calculation of the support structure model, the force selection
matrix Sp is taken as the unity matrix I with size nDOF × nDOF because forces in all
degrees of freedom are considered, np = nDOF. Thus, in fact, the force vector f is used
in the following.

Equation (5.6) can be rearranged to obtain an expression for the accelerations ü

ü(t) = −M−1Cu̇(t)−M−1Ku(t) + M−1f(t) (5.7)
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Thus, the expression for the derivative of the state vector is

ẋ(t) =

(
ẋ1

ẋ2

)
=

(
x2

−M−1Cẋ1 −M−1Kx1 + M−1f(t)

)
(5.8)

With equation (5.4) the state equation is then determined to be

ẋ(t) = Acx(t) + Bcf(t) (5.9)

where the system matrix Ac and the input matrix Bc are defined as

Ac =

[
0 I

−M−1K −M−1C

]
(5.10)

Bc =

[
0

M−1

]
(5.11)

Since possible measurement quantities are accelerations, velocities and displacements,
the observation equation is given as

d(t) = Saü(t) + Svu̇(t) + Sdu(t) (5.12)

Sa, Sv and Sd are selection matrices for acceleration, velocities and displacements with
size nd × nDOF, respectively. The selection matrices specify the measurement locations,
so that the observation equation in this form collects the measured data at those
degrees of freedom. With the definitions from equations (5.4) and (5.5) equation (5.12)
becomes

d(t) = Saẋ2 + Svẋ1 + Sdx1 (5.13)

The observation equation in state-space form is then determined to be

d(t) = Gcx(t) + Jcf(t) (5.14)

where the output matrix Gc and the direct transmission matrix Jc are

Gc =
[
Sd − SaM

−1K Sv − SaM
−1C

]
(5.15)

Jc = SaM
−1 (5.16)

When solving the support structure model, the outputs at all degrees of freedom
are considered, nd = nDOF. This implies that the selection matrices change their size
as well. The matrices and vectors characterising the state-space representation are
summarised in Table 5.2.
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Name Variable Size

State vector x 2nDOF × 1

Derivative of state vector ẋ 2nDOF × 1

Input vector f nDOF × 1

Output vector d nDOF × 1

System matrix Ac 2nDOF × 2nDOF

Input matrix Bc 2nDOF × nDOF

Output matrix Gc nDOF × 2nDOF

Direct transmission matrix Jc nDOF × nDOF

Acceleration selection matrix Sa nDOF × nDOF

Velocity selection matrix Sv nDOF × nDOF

Displacement selection matrix Sd nDOF × nDOF

Table 5.2: Matrix and vector sizes for state-space model as applied in the solution of
the system

5.2.2 Deterministic Discrete-Time State-Space Model

The derivations so far assumed a continuous-time model. To obtain a discrete-time
state-space model, the time range of interest is discretised at a certain sampling rate
fs = 1/∆t into N samples. For the force f(t) a zero-order hold is assumed. It implies
that the sample values are assumed constant during one sample interval.

The discrete-time state-space model can be written as [34]

xk+1 = Axk + Bfk (5.17)

dk = Gxk + Jfk (5.18)

where xk = x(k∆t), fk = f(k∆t), dk = d(k∆t) and k = 1, ..., N . The discrete matrices
are defined as:

A = eAc∆t (5.19)

B = (A− I) A−1
c Bc (5.20)

G = Gc (5.21)

J = Jc (5.22)

To determine the state xk+1 at a time step k + 1, the previous state xk and force fk
must be known. Hence, initial conditions x0 are defined. Physically, this means initial
conditions for displacements x1 = u and velocities x2 = u̇ are imposed. These are
collected in a vector

x0 =

[
x10

x20

]
=

[
u0

u̇0

]
(5.23)
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Consequently, the support structure model can be solved with equations (5.17) and
(5.18). In practice, this means, that the accelerations, velocities and displacements can
be calculated with equation (5.14) when one of the selection matrices Sa, Sv or Sd is
set to the unity matrix and the others are set to zero.

5.3 State Estimation

5.3.1 Introduction

Deterministic systems analysis has some shortcomings that make a direct translation
of results into reality difficult. Hence, stochastic methods are employed to account for
the various sources of uncertainty in the analysis. A physical system, in this case the
offshore wind turbine support structure, is modelled by mathematical equations to
relate known inputs with wanted outputs. These mathematical equations are based
on physical laws or empirical testing and describe the system sufficiently accurate
for the engineer’s purpose. The model of the system is thus never perfect because
it only represents certain characteristics of the system and the mathematical model
also only depicts an approximation to reality. Since the prediction of the response of
the system can not be fully trusted, often the actual system response is measured
with measurement devices. Offshore wind turbine support structures are frequently
equipped with accelerometers in the wind turbine tower. However, these measurement
devices do not provide exact data, because they might be noise corrupted or distorted.
Thus, a method is desired that takes all these uncertainties into account and provides
an optimal estimate of the state of the structure. The Kalman filter provides such a
method.

5.3.2 Combined Deterministic-Stochastic State-Space Model

The two aforementioned sources of uncertainty, namely the noise on the model equations
and on the measurement data, are taken into account by introducing two random
vectors into the deterministic state-space equations.

xk+1 = Axk + Bfk + wk (5.24)

dk = Gxk + Jfk + vk (5.25)

The vectors wk and vk represent the process and measurement noise. For the Kalman
filter to work, they are assumed to be white, stationary and mutually uncorrelated
processes with normal probability distributions. Their mean values are zero and their
covariances are denoted as process noise covariance Q and measurement noise covariance
R, respectively.

5.3.3 The Discrete Kalman Filter Algorithm

The Kalman filter is a recursive linear state estimator. For every time step k, the filter
estimates the states based on knowledge of the process prior to step k and based on
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given measurements at step k. The former is denoted the a priori state estimate x̂−k ,
whereas the latter is denoted the a posteriori state estimate x̂k. The a priori and the a
posteriori estimate errors are then defined as:

e−k = xk − x̂−k (5.26)

ek = xk − x̂k (5.27)

The a priori and a posteriori error covariances P−k and Pk are then

P−k = E
[
e−k e−T

k

]
(5.28)

Pk = E
[
eke

T
k

]
(5.29)

The Kalman filter determines the a posteriori estimate with the following formula [35]:

x̂k = x̂−k + Kk

(
dk −Gx̂−k − Jfk

)
(5.30)

The a posteriori state estimate x̂k is a linear combination of the a priori state estimate x̂−k
and a weighted measurement innovation. The measurement innovation dk−Gx̂−k −Jfk
gives the difference between an actual measurement dk and a measurement prediction
Gx̂−k + Jfk. The weighting is performed by the gain matrix Kk, that minimises the a
posteriori error covariance Pk. One popular form is given in equation (5.31).

Kk = P−k GT
(
GP−k GT + R

)−1
(5.31)

When the measurement error R is small, the gain matrix weighs the measurement
innovation more heavily as the measurement is ‘trusted’ more. Equivalently, the gain
matrix weighs the measurement innovation less heavily when the a priori estimate error
is smaller because then the model equations are expected to be relatively accurate.

The Kalman filter algorithm consists of time update and measurement update equa-
tions (cf. (5.32) to (5.36)).

Time update equations

x̂−k = Ax̂−k−1 + Bfk−1 (5.32)

P−k = APk−1A
T + Q (5.33)

Measurement update equations

Kk = P−k GT
(
GP−k GT + R

)−1
(5.34)

x̂k = x̂−k + Kk

(
dk −Gx̂−k − Jfk

)
(5.35)

Pk = (I−KkG) P−k (5.36)

In the time update equations, the current state x̂k−1 and error covariance Pk−1 are
projected forward in time to obtain the a priori estimates x̂−k and P−k for the next time
step k. The equations (5.32) and (5.33) are, in fact, predicting the state at the next
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time step based on the knowledge of the previous state and the system characteristics
expressed by the matrices A and B. In the measurement update, the a priori estimates
are improved or corrected by incorporating an actual (noisy) measurement dk to obtain
the a posteriori estimates x̂k and Pk, as has already been explained.

For the algorithm to work, a number of inputs have to be defined. The four matrices A,
B, C and D have to be determined beforehand by equations (5.19) to (5.22). Whereas
the system and the input matrix do not change compared to the deterministic state-
space model, the output and direct transmission matrix are adapted because the
selection matrices are changed. In accordance with the objective of this thesis, accelero-
meters are ‘placed’ on the support structure at the wind turbine tower at a number of
locations nd to measure the response. Thus, the acceleration selection matrix becomes
a matrix of size nd×nDOF, where each row stands for a sensor and the columns for the
degrees of freedom measured. A 1 indicates that this degree of freedom is measured, a 0
indicates no measurement. Naturally, there will be only one 1 per row as it is assumed
that one sensor can measure only one quantity. The velocity and displacement selection
matrices will be zero as those quantities are not measured.

Moreover, the input vector f , the measurement vector d, the process error covari-
ance Q and the measurement error covariance R have to be known. The force vector
is computed for every time step as described in Chapter 4. The measurement vector is
determined by taking the acceleration output from the deterministic state-space model
at the ‘measured’ locations and adding some noise that represents the inaccuracy of
the sensors. The noise level is assumed to be 10 percent of the standard deviation of
the true accelerations. A comparison between the ‘true’ accelerations and the measured
accelerations is presented in Figure 5.1. For a smoother appearance, the sampling
frequency has been increased for the plot.

For the measurement error covariance a slightly different value is chosen as in reality
it can not be assumed that the measurement uncertainty is known precisely. The
process error covariance is estimated at 10−5.

Furthermore, initial estimates for the state vector x̂0 and the a posteriori error P0

have to be assumed. The initial state vector is assumed to be a zero vector and the
initial a posteriori error covariance is taken as 10−3. The choice of the latter two
variables is not of utmost importance because the initial state estimate is considered
as a random variable and under the assumed conditions here the error covariance will
stabilise quickly [34] [35].

Having determined all the inputs, the states of the system or support structure model
can be estimated by means of the time update and measurement update equations
for every time step. For the sake of clarity, the inputs to the Kalman filter a listed in
Table 5.3.
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Figure 5.1: Comparison between ‘true’ and ‘measured’ accelerations

Name Variable Size

System matrix A 2nDOF × 2nDOF

Input matrix B 2nDOF × nDOF

Output matrix G nd × 2nDOF

Direct transmission matrix J nd × nDOF

Input vector f nDOF × 1

Output vector d nd × 1

Process noise covariance Q 2nDOF × 2nDOF

Measurement noise covariance R nd × nd

A posteriori error covariance P0 2nDOF × 2nDOF

Initial state estimate x̂0 2nDOF × 1

Table 5.3: Inputs for the Kalman filter
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5.4 Response Prediction

The Kalman filter algorithm estimates the states x̂k for every time step k. Now, the
response of the support structure model can be predicted at any (unmeasured) degree
of freedom with the observation equation:

dk = Gx̂k + Jfk (5.37)

The accelerations are obtained by setting the acceleration selection matrix Sa with
size nDOF × nDOF to unity and the other two selection matrices to zero. Then, the
output and direct transmission matrix G and J are calculated with equations (5.15)
and (5.16) and the accelerations can be obtained with above formula. Equivalently, the
velocities and displacements can be determined.

To prove the functionality of the Kalman filter algorithm, the ‘true’ and the predicted
accelerations at a measured location in the turbine tower are plotted together in Figure
5.2. For a properly working filter, the two time series should be almost the same. This
can be verified from Figure 5.2.
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Figure 5.2: Comparison between ‘true’ and predicted accelerations

5.5 Conclusions

For clarity, the steps undertaken in this chapter are recapitulated:

• The response of the support structure model developed in Chapters 2 to 4 shall
be investigated by acceleration measurements at a few locations in the turbine
tower. To this end, the model is transformed into a deterministic state-space
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model to obtain the ‘true’ accelerations at the measurement locations. These
accelerations are called the ‘true’ accelerations because the deterministic model
assumes that the model equations are completely accurate. This assumption,
however, does not hold in reality.

• Therefore, the deterministic state-space model is extended to a combined deterministic-
stochastic state-space model that accounts for the uncertainties in the model
equations and in the measurements. The combined deterministic-stochastic state-
space model is solved by means of the Kalman filter algorithm that gives optimal
estimates of the state of the model for every time step.

• In the last step, the response prediction, the accelerations at any degree of freedom
are predicted from the state estimates.
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6 Damage Identification Based on
Operational Vibrations

6.1 Introduction

In this chapter the dynamic properties and the response of the modelled jacket support
structure, that has been developed along the lines of the UpWind reference jacket
support structure, are investigated. Two main parameters in the model are changed
during the analysis. On the one hand, the crack depth at the specific location is varied
from 0.01 m to 0.4 m, where the bigger values represents a crack through the half-width
of the brace. On the other hand, the number of degrees of freedom is increased once
in order to describe the local modes more accurately. In Table 6.1 the different crack
depths are listed together with the crack coefficient. For the relative stiffness change
due to the crack, confer Table 3.1.

Denotation Crack depth Rel. crack depth Crack coefficient

a [m] a/De [–] K

Cracked 0 0.00 0.0000 0

Cracked 1 0.01 0.0125 0.00158

Cracked 2 0.02 0.0250 0.00871

Cracked 3 0.05 0.0625 0.02155

Cracked 4 0.10 0.1250 0.03208

Cracked 5 0.20 0.2500 0.04381

Cracked 6 0.30 0.3750 0.05021

Cracked 7 0.40 0.5000 0.05607

Table 6.1: Different jacket models used in the analysis

The locations where measurements are conducted are distributed over the height of
turbine tower. One accelerometer measures the horizontal accelerations at the tower
top, one accelerometer measures at approximately half height and one accelerometer
measures at the tower bottom.

In a first step, the eigenvalues and natural frequencies and their corresponding mode
shapes (eigenvectors) are determined. A comparison between the cracked and the
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uncracked structure is conducted. Subsequently, the structure’s response to ambient
excitation by wind and waves is considered. Finally, a forced harmonic vibration is
imposed on the support structure and the effect is investigated.

6.2 Eigenvalue Analysis

6.2.1 Theory

For the determination of the eigenvalues of a dynamic system free undamped vibrations
are considered (C = 0, f = 0).

Mü + Ku = 0 (6.1)

When assuming harmonic vibration

u = û sin(ωt+ ϕ) (6.2)

the solution becomes (
K− ω2M

)
û = 0 (6.3)

Rewriting equation (6.3) yields
KV = MVD (6.4)

where V is a square matrix of size n x n containing the eigenvectors ûi as columns

V =
[
û1 . . . ûn

]
(6.5)

and D is a square matrix of size n x n containing the eigenvalues λi = ω2
i on the

diagonal

D =

λ1

. . .

λn

 (6.6)

Equation (6.3) or (6.4) are the generalised eigenvalue problem, in which ω2 represents
the eigenvalue and û the corresponding eigenvector. It has a non-trivial solution if, and
only if, the determinant of the coefficient matrix is zero:

det (K−DM) = 0 (6.7)

Equation (6.7) is the characteristic polynomial of the generalised eigenvalue problem.
For systems with n degrees of freedom n eigenvalues λi are found. The corresponding
eigenvectors û are obtained applying equation (6.3).

6.2.2 UpWind Reference Jacket

Jacket with 96 DOFs

The built-in Matlab function eig is used to solve the generalised eigenvalue problem
described in the previous section. The UpWind reference jacket is modelled with 96
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degrees of freedom, thus 96 eigenvalues and eigenvectors will be obtained. Usually
the lowest natural frequencies are of most interest because the structure’s response is
dominated by the lowest modes and the excitation frequencies in an offshore environment
with wind and waves are relatively low, so that structures are designed to have a
fundamental frequency above the excitation frequencies.
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Figure 6.1: First three mode shapes of the undamaged support structure

Modelling the UpWind reference jacket in two dimension has important implications
on the design. Since in this investigation the support structure’s dynamic behaviour is
of primary interest, the support structure model is adapted to match the first three
eigenfrequencies of the UpWind reference jacket [36] (see Table 6.4). In this way,
realistic response spectra can be obtained because the support structure lies above the
main excitation frequencies.

The first three eigenfrequencies of the undamaged support structure are shown in
Figure 6.1. Qualitatively, the mode shapes look familiar from, for example, the dynamic
investigation of a cantilever beam. The jacket substructure, however, is apparently
stiffer than the turbine tower leading to the larger observed displacements in the tower.

The UpWind reference jacket’s first eigenfrequencies include tower fore-aft and
side-to-side mode shapes as well as torsional mode shapes. The mode shapes in Figure
6.1 and eigenfrequencies in Table 6.4 refer only to the so-called tower fore-aft modes
because the support structure is modelled in 2D and thus neglects the effects in the
third dimension.

In Figure 6.2 the first 50 eigenfrequencies of the undamaged and the (most) damaged
support structure are plotted. The absolute difference between the eigenfrequencies is
almost not observable, so the relative deviation is computed and plotted in Figure 6.3.
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Figure 6.2: Damaged and undamaged structure’s eigenfrequencies

The relative deviation between the eigenfrequencies of the undamaged support
structure ωnu and the eigenfrequencies of the damaged support structure ωnc are
calculated as follows:

ωnu − ωnc

ωnu

(6.8)

The lowest modes show almost no deviation from the undamaged structure. Mode
35 shows the highest deviation with a maximum of approximately 0.5 %. A number of
modes follow in the range of 0.2 to 0.4 % deviation.

This overall behaviour can be expected as the crack in one of the joints introduces a
local decrease of stiffness. This local decrease does not affect the global modes, where
the whole structure is moving in a consistent manner.

The modes with the highest deviation are local modes of the brace the crack is
located in. This interpretation is supported by a plot of the modes in Figure 6.4.
The nodes of the crack element and the brace it is located in are displaced and/or
rotated most in their respective modes. The mode shapes look almost the same in
the undamaged structure and are therefore not repeated here. Another observation
that can be made is the reduction of the eigenfrequencies in the damaged structure.
This effect has already been explained in Section 3.2 and is due to the crack’s stiffness
decrease in the structure.
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Figure 6.3: Relative difference between damaged and undamaged structure’s eigen-
frequencies

Eigenfrequency [Hz] Rel. dev. [–]

Undamaged Damaged

f1 0.304 0.304 5.6 · 10−7

f2 1.064 1.064 4.3 · 10−11

f3 2.507 2.507 2.4 · 10−7

f28 52.562 52.459 2.0 · 10−3

f35 72.456 72.104 4.9 · 10−3

f38 83.628 83.399 2.7 · 10−3

f40 89.755 89.408 3.9 · 10−3

Table 6.2: Comparison of eigenfrequencies between damaged and undamaged jacket
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Figure 6.4: Mode shapes and eigenfrequencies of higher local modes in damaged
structure
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Jacket with 312 DOFs

Modelling the jacket’s braces and legs with more nodes and thus more degrees of
freedom is expected to increase the accuracy of the analysis because local brace or leg
modes can be described. In Figure 6.5 the first three mode shapes are plotted again.
In that figure the locations of the additional nodes can be clearly seen.

−10 0 10

0

20

40

60

80

100

120

f
1
=0.304 Hz

x [m]

z 
[m

]

−10 0 10

0

20

40

60

80

100

120

f
2
=1.064 Hz

x [m]

z 
[m

]

−10 0 10

0

20

40

60

80

100

120

f
3
=2.506 Hz

x [m]

z 
[m

]

Figure 6.5: First three mode shapes of the undamaged support structure

Again, the relative deviation of the damaged structure from the undamaged structure
is compared. Figure 6.6 presents the result of this comparison. In Table 6.3 the relative
deviation of the first three modes and the modes with the highest deviation are presented.
As before with the smaller model, the first three eigenfrequencies hardly change. The
four modes with the largest relative deviation from the undamaged structure are shown
in Figures 6.7 and 6.8. Now, it can be seen more clearly, that the modes that are
affected most are indeed higher local modes. An interesting distinction can be made.
Whereas the modes in Figure 6.7 seem to be local modes of the brace the crack is
located in, the modes in Figure 6.8 seem to local ’crack modes’ of the cracked finite
element with much higher frequencies.
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Figure 6.6: Relative difference between damaged and undamaged structure’s eigen-
frequencies

Eigenfrequency [Hz] Rel. dev. [–]

Undamaged Damaged

f1 0.304 0.304 5.6 · 10−7

f2 1.064 1.063 1.7 · 10−10

f3 2.506 2.506 2.5 · 10−7

f37 49.916 49.845 1.4 · 10−3

f79 134.825 134.570 1.9 · 10−3

f286 1798.526 1795.179 1.9 · 10−3

f304 3771.164 3758.142 3.5 · 10−3

Table 6.3: Comparison of eigenfrequencies between damaged and undamaged jacket
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Figure 6.7: Mode shapes and eigenfrequencies of higher local modes in damaged
structure

−10 −5 0 5 10

0

10

20

30

40

50

60

70

f
286

=1795.179 Hz

x [m]

z 
[m

]

−10 −5 0 5 10

0

10

20

30

40

50

60

70

f
304

=3758.142 Hz

x [m]

z 
[m

]

Figure 6.8: Mode shapes and eigenfrequencies of higher local modes in damaged
structure
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Comparison

In Figure 6.9 the eigenfrequencies of the undamaged support structure are shown for the
model with 96 and 312 degrees of freedom. The eigenfrequencies cover approximately
the same range, but, naturally, the larger model has more eigenfrequencies than the
smaller model. That is, among others, due to the fact that a lot more and higher local
brace modes can be described. This fact also leads to the large differences between the
modes that are most affected by the presence of the crack. Tables 6.2 and 6.3 document
this fact.
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Figure 6.9: Eigenfrequencies of structure with 96 DOFs and 312 DOFs

The lowest three eigenfrequencies are almost the same for both models as can be seen
in Table 6.4. Based on different assumptions regarding, among others, the flexibility of
the foundation and marine growth, a range of eigenfrequencies is given for the UpWind
reference jacket [36].

Eigenfrequency [Hz]

UpWind Model 1 Model 2

1st 0.291–0.310 0.304 0.304

2nd 0.813–1.104 1.063 1.063

3rd 2.001–2.622 2.507 2.506

Table 6.4: Comparison of eigenfrequencies in the model and the UpWind reference
jacket
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6.2.3 Conclusions

The introduction of a crack in the support structure model affects the structure’s
eigenfrequencies. Whereas the first modes of the support structure show almost no
deviation in the eigenfrequencies, there exist higher modes that are local brace or even
crack modes and that show small deviations from the uncracked structure. Since the
model with 96 degrees of freedom did not represent those local modes well, a model
with 312 degrees of freedom was modelled. The more precise description of the local
brace modes lead to an much better description of the local modes and is also assumed
to be much more accurate.

The model with more degrees of freedom seems to have no influence on the lowest
eigenfrequencies compared to the model with less degrees of freedom. Therefore, the
model with 96 degrees of freedom is used in the following for the ambient and forced
vibration tests because only the frequency range up to 0.5 Hz is excited.

6.3 Ambient Vibration Testing

6.3.1 Introduction

Ambient vibration testing uses the natural excitation sources like wind and waves and
the operational vibrations due to the interaction of the wind flow and the (moving)
structure to determine the modal characteristics of the structure. Accelerometers
measure the response spectra at the wind turbine tower. Kalman filtering is applied
on the measurements and the model and the response is predicted for the whole
structure. The excitation frequencies range from 0.001 Hz to 0.5 Hz, thus only the first
eigenfrequency is excited.

It was concluded from the eigenvalue analysis that the difference between the
lowest eigenfrequencies of the undamaged support structure and the damaged support
structure is negligible and thus probably not detectable. However, there exists the
possibility that a difference between the damaged and the undamaged support structure
can be seen in the response spectra, for example in the height of the peaks.

6.3.2 Time Series

As a first step, the response in the time domain is considered. Wave, wind, structure’s
displacement, velocities and acceleration time series for a certain degree of freedom
are plotted. The first plot shows the wave time series. The waves have zero mean
and varying amplitude up to around 6 m as has been defined in the wave spectrum.
The wind time series in the second plot varies around a mean value of 12 m/s and
varies between approximately 7 and 17 m/s. The last three plots show the structure’s
response to this loading at the wind turbine tower bottom in the horizontal direction.
The structure’s displacement has a small positive mean value, indicating a mean force
that acts on the structure (due to wind). The structure’s velocity and acceleration
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vary around zero, The acceleration’s amplitude is larger than the velocity’s amplitude,
which, in turn, is larger then the displacement’s amplitude.
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Figure 6.10: Excitation and response time series of undamaged support structure at
tower bottom

6.3.3 Frequency Spectra

The excitations and responses shown in the previous section in time domain are trans-
formed into frequency domain to obtain frequency spectra. In Appendix D important
parameters are explained. A representation in frequency domain allows an easy insight
into the frequency content of the response (and the excitation).

Figure 6.11 presents the frequency spectra of wave and wind time series in the first
two plots. The spectra resemble closely the spectra (JONSWAP and Kaimal) that
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were used to create the time series. The response spectra all show a clear peak around
0.3 Hz, where the first eigenfrequency of the structure is located. The displacement
spectrum also contains some low frequency content due to the wind excitation.
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Figure 6.11: Excitation and response frequency spectra of undamaged support structure
at tower bottom

In Figure 6.12 the acceleration spectrum at the tower bottom is plotted for the
Kalman filtered response and for different damage conditions. In Figure 6.13 only
the range around the first eigenfrequency peak is presented for better visibility. Some
differences can be observed between the different damage conditions, however they seem
to be random. This becomes clearer when Figures 6.14 and 6.15 are considered, where
the same spectra are plotted for the unfiltered response. As can be seen, hardly any
difference exists between the damaged and undamaged structures. Thus, the greater
variability for the filtered spectra can be explained with the Kalman filter algorithm
that gives an optimal estimate, however not always the same. The scatter due to the
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Kalman filter can be reduced if either the measurement uncertainty of the sensors is
reduced or the model accuracy is increased or both.
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Figure 6.12: Comparison of filtered acceleration response frequency spectra at tower
bottom
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Figure 6.13: Detail around first eigenfrequency of Figure 6.12
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Figure 6.14: Comparison of acceleration response frequency spectra at tower bottom
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Figure 6.15: Detail around first eigenfrequency of Figure 6.14
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6.3.4 Conclusions

As predicted from the results of the eigenvalue analysis, damage identification by
ambient vibration testing is not possible for the investigated complex structure as there
is hardly any difference visible in the response spectra. Actually, the variability due to
the uncertainty of the Kalman filter applied here is larger than the difference between
damaged and undamaged structure.

6.4 Forced Vibration Testing

In contrast to ambient vibration testing, forced vibration testing uses an (additional)
artificial excitation source to excite the structure at a specific location with a certain
frequency. So-called shakers can be employed to excite the structure with a harmonic
force.

The harmonic excitation force is applied to the support structure model to investigate
how the response or dynamic characteristics are changed. The considered spectrum
from 0.001 Hz to 0.5 Hz covers only the first eigenfrequency, where a peak occurs in
the response spectra. The objective is thus to obtain a more distinct difference in the
response spectral peak of a damaged and an undamaged structure. To this end, the
harmonic excitation force is taken with the same frequency as the first eigenfrequency
of the structure.

This investigation obviously constitutes a proof of concept as the application of a
harmonic excitation close to the first eigenfrequency is a very delicate matter.

The harmonic force is defined by

Fh = Ah sin(ωht) (6.9)

where Ah is the amplitude of the force and ωh is the frequency of the force:

ωh = 2πfh (6.10)

It is applied at the tower bottom in the horizontal direction as the first eigenfrequency
deflects in that direction.

Figure 6.16 and 6.17 show the acceleration power spectrum at the tower bottom in
horizontal direction. There is no significant improvement in the detectability of the
damage. When these figures are compared to the spectra of the previous section, it
is noted that the peak at the first eigenfrequency is increased significantly as can be
expected when a harmonic force with that frequency is applied.
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Figure 6.16: Comparison of acceleration response frequency spectra at tower bottom
with added harmonic force
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Figure 6.17: Detail around first eigenfrequency of Figure 6.16
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6.5 Conclusions

Three kinds of investigations have been conducted in this chapter to analyse whether
it is possible to detect and identify the presence of a crack in a complex system as an
offshore wind turbine jacket support structure.

The eigenvalue analysis revealed that there are some changes in the eigenfrequencies,
but mainly for higher local brace modes, where the crack is located. Even those
deviations proved to be relatively small. In the ambient vibration test the results from
the eigenvalue analysis were confirmed. In the excitation frequency band there is no
visible and reliable difference in the response spectrum between the undamaged and
the damaged support structure.

In a final step, forced vibration testing was conducted on the support structure at
the first eigenfrequency to see whether it is possible to amplify the differences in the
spectrum that were hardly visible in the ambient vibration test. It was found that the
peak in the spectrum increases clearly, but the difference between the damaged and
the undamaged support structure did not increase.
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7 Conclusions

7.1 Recapitulation

In this thesis, the question has been investigated whether a crack in a complex
structure as an offshore wind turbine jacket support structure can be detected by online
measurements. As measured quantity accelerations have been chosen because they
can be measured directly by accelerometers. The measurement sensors were placed on
the turbine tower, where these days accelerometers are already often installed. The
investigation was based on comparisons between the undamaged and the damaged
structure because only a relative approach could possibly yield useful results.

A support structure model has been developed and implemented, that is described in
Chapters 2 to 4. The crack was introduced into the model below water as the detection
of cracks in the submerged part of the support structure is especially difficult, yet
desirable. To account for the model and measurement uncertainties, a Kalman filter
has been implemented and the responses have been predicted.

An eigenvalue analysis showed that the presence of the crack has mainly influence
on higher local brace or crack modes. Still, the deviation were found to be small, which
makes the identification difficult. The lowest eigenfrequencies in the damaged structure,
which were of primary interest in this thesis, because damage detection based on
ambient vibrations has been considered as a primary goal, showed no deviation from
the undamaged structure.

In a second step, the responses of the damaged and the undamaged structure due
to ambient vibrations were compared. The results from the eigenvalue analysis were
confirmed as there was no visible shift of the first eigenfrequency or a significant
difference in the peak of the spectra. Finally, in an attempt to amplify the deviation
between undamaged and damaged support structure, a forced harmonic vibration with
the frequency of the first eigenfrequency has been added to the support structure at
the tower bottom in the horizontal direction. It was, however, not possible to increase
the deviation.

To conclude the investigations so far, it can be said that it is not possible or very
unlikely to identify small damage in a complex and large structure as an offshore wind
turbine jacket support structure based on ambient vibrations. The main reason for this
is the small frequency band that is excited by wind and waves.
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7.2 Recommendations for Future Work

This thesis constitutes a first step towards the damage identification of large and complex
offshore wind turbine support structures based on ambient and forced vibrations. Several
issues should be tackled in future work to improve the quality and possibility to identify
damage.

• The results of the eigenvalue analysis showed that higher local modes are affected
most by the presence of the crack. With a model that is able to describe these
local modes, the forced vibration test should be repeated with a harmonic force
at one of the eigenfrequencies of the support structure that were affected most.

• There exist extensions of the Kalman filter that are able to estimate the force
input as well, so that it must not be known beforehand. Also a non-linear Kalman
filter could be implemented to account for the motions of the structure in the
force calculations.

• In the literature, many different concepts exist to represent a crack. Other
concepts could be tested to see how they influence the results of identification.

• Only one sea state has been considered in this analysis. In a statistical analysis
it could be investigated how changing the sea state and wind conditions affects
the results of the identification.
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Appendix
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A Derivation of Finite Element
Theory for Bars and Beams

A.1 Bar Element

A.1.1 Definition Bar/Assumptions

A bar is a one-dimensional, continuous and straight structure. It describes axial
displacements due to axial forces. The axial displacement u(x, t) is a function of the
longitudinal space coordinate x and time t. It is assumed that the bar’s vibrations are
small and that the material is linear-elastic, thus obeying Hooke’s law.

A.1.2 Equation of Motion/Strong Form

A bar with length L, cross-section area A, Young’s modulus E and distributed axial
line load n is assumed.

The bar’s motion is described by the axial displacement u(x, t). To derive the bar’s
equation of motion the displacement u is linked to the strain by the following kinematic
relation

ε =
∂u

∂x
(A.1)

Hooke’s Law is applied as constitutive relation to relate stresses and strains.

σ = Eε (A.2)

The normal force N is given as

N =

∫
σ dA = σA (A.3)

Combining equations (A.1) to (A.3) yields

N = EAu′ (A.4)

Dynamic equilibrium in axial direction of an infinitesimal part of a straight bar is

ρA∆x
∂2u

∂t2
= −N(x) +N(x+ ∆x) + n(x)∆x (A.5)

Taylor expansion of N(x+ ∆x) yields

N(x+ ∆x) = N(x) +
∂N

∂x
∆x (A.6)
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Inserting equation (A.6) into (A.5) and dividing by ∆x equation (A.7) is obtained.

ρA
∂2u

∂t2
=
∂N

∂x
+ n (A.7)

After application of equation (A.4) the bar’s equation of motion eventually reads

ρA
∂2u(x, t)

∂t2
− EA∂

2u(x, t)

∂x2
= n(x, t) (A.8)

This is also denoted as the strong form of the initial value problem(?).

A.1.3 Variational Formulation/Weak Form

The variational formulation of equation (A.8) is written as:∫
δu

(
ρA

∂2u

∂t2
− EA∂

2u

∂x2
− n

)
dx = 0 (A.9)

Rearranging yields:∫
δuρA

∂2u

∂t2
dx−

∫
δuEA

∂2u

∂x2
dx−

∫
δun dx = 0 (A.10)

Integration by parts is defined as∫ b

a

uv′ dx = [uv]ba −
∫ b

a

u′v dx (A.11)

Substitution of u = δu and v = u′′

−
∫
δuEAu′′ dx = −

[
δuEAu′︸ ︷︷ ︸

N

]L
0

+

∫
δu′EAu′ dx (A.12)

Finally, the weak form is:∫
δuρAü dx+

∫
δu′EAu′ dx−

∫
δun dx = 0 (A.13)

A.1.4 Bar Finite Element

Shape Functions

The bar finite element has two degrees of freedom u

u =
[
u1 u2

]T
(A.14)
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The displacement u(x, t) is approximated by (separation of variables)

u(x, t) = Nu = N(x)u(t) (A.15)

The derivatives are

u̇(x, t) = Nu̇ = N(x)u̇(t) (A.16)

ü(x, t) = Nü = N(x)ü(t) (A.17)

Equation (A.15) can be written in matrix form:

u(x, t) =
[
Nu1 Nu2

] [u1

u2

]
(A.18)

The shape functions N are given as

Nu1(ξ) = 1− ξ
Nu2(ξ) = ξ

(A.19)

The shape functions are defined in terms of the space coordinate ξ

ξ =
x

L
(A.20)

u′(x, t) =
∂u

∂x
=

1

L

∂u

∂ξ
=

1

L

dN

dξ
u = Bu = N′u = N′(x)u(t) (A.21)

B is the strain-displacement matrix.

B =
1

L

[
−1 1

]
(A.22)

Same interpolation functions for virtual displacements δu as for unknown displace-
ments u

δu = Nδu

δu̇ = Nδu̇

δü = Nδü

δu′ = N′δu = Bδu

(A.23)

Inserting those expressions yields:∫
δuTρANTNü dx+

∫
δuTEABTBu dx−

∫
δuTNTn dx = 0 (A.24)

Rearranging

δuT

∫
ρANTN dxü + δuT

∫
EABTB dxu− δuT

∫
NTn dx = 0 (A.25)

The equation of motion for the bar element in weak form is then:∫
ρANTN dx︸ ︷︷ ︸

M

ü +

∫
EABTB dx︸ ︷︷ ︸

K

u =

∫
NTn dx︸ ︷︷ ︸

f

(A.26)

Mü + Ku = f (A.27)
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Mass Matrix

Every structural element has a distributed mass characterised by its material density.
Associated with these distributed mass there are inertia forces occurring when the body
is subject to accelerations. In the process of constructing a mass matrix the distributed
inertia forces are transformed to nodal forces. There are two standard methods for the
construction of mass matrices on the element level: direct mass lumping and variational
mass lumping.

If direct mass lumping is applied, a diagonally lumped mass matrix is obtained,
where no interaction or coupling effects between the nodal masses occur. Variational
mass lumping is based on a variational formulation as performed in section xxx.

According to equation (A.13) the mass matrix is then given by

M =

∫
ρANTN dx (A.28)

The mass matrix M is called a consistent mass matrix because the applied shape
functions N are the same shape functions as applied in the definition of the stiffness
matrix K and the force vector f .

For a bar with uniform density ρ, constant cross-section area A and length L the
consistent mass matrix of the bar finite element is defined as

M = ρA

∫ L

0

NTN dx =
1

2
ρAL

∫ 1

0

NTN dξ (A.29)

M =
1

6
ρAL

[
2 1
1 2

]
(A.30)

Stiffness Matrix

K =

∫ L

0

EABTB dx = EAL

∫ 1

0

BTB dξ (A.31)

Performing the integration

K =
EA

L

[
1 −1
−1 1

]
(A.32)

Nodal Force Vector

f =

∫ L

0

NTn dx = L

∫ 1

0

NTn dξ (A.33)

For a constant load n

f =
1

2
nL
[
1 1

]T
(A.34)
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A.2 Beam Element

A.2.1 Definition Beam/Assumptions

The model of a beam in bending is a special case of a one-dimensional continuous
structure. The beam describes lateral displacements due to moments and lateral
loads. Euler-Bernoulli beam theory is assumed, which implies the assumption of small
vibrations. Euler-Bernoulli beam theory furthermore states that the beam’s cross-
section is infinitely rigid in its own plane, i.e. no deformations occur in the plane of
the cross-section, and that the cross-section remains plane and normal to the beam’s
deformed axis (normality assumption). The material obeys Hooke’s law, which means
that linear-elastic material is considered.

A.2.2 Equation of Motion/Strong Form

The equation of motion for the transverse motion of a bending beam is derived. To this
end, an infinitesimal part of a straight beam under a transverse distributed external
load q(x, t) is considered. The beam has a bending stiffness EI, a cross-sectional
area A and a mass density ρ. The beam’s motion is described by a two dimensional
displacement field [

u(x, z, t)
w(x, z, t)

]
(A.35)

u and w are the axial and the transverse displacement respectively. In order to
simplify the beam problem to one dimension kinematic relations between u and w
are introduced. To this end, the static case is considered. From the assumption that
plane cross-sections remain plane and perpendicular to the neutral axis the following
kinematic relations can be derived

u(x, z) = zθ = zφ = −z∂w
∂x

= −zw′ (A.36)

w(x, z) = w(x) (A.37)

The beam’s transverse displacement w(x) is a continuous function of coordinate x only.
The axial displacement u(x, z) is expressed in terms of the transverse displacement
w(x) and the z coordinate. The bending due to the distributed external load q causes
axial stresses and strains in the beam. Using relationship (A.36) the strain can be
expressed as

ε =
∂u

∂x
= −z∂

2w

∂x2
= −zw′′ (A.38)

The constitutive relation, which relates stresses and strains, is based on Hooke’s law.

σ = Eε (A.39)

Inserting (A.38) into (A.39) the stress reads

σ = −zEw′′ (A.40)
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Consequently, bending moment and curvature are related as

M =

∫
zσ dA = −w′′E

∫
z2 dA = −EIw′′ (A.41)

Here, the definition for the area moment of inertia I was used. From the vertical
equilibrium the equation of motion can be derived using Newton’s second law:

ρA∆x
∂2w

∂t2
= −V (x) + V (x+ ∆x) + q∆x (A.42)

The shear forces are assumed to be vertical because of the condition of small vibrations
introduced in section xxx. Taylor expansion of the second term on the right-hand side
yields

V (x+ ∆x) = V (x) +
∂V

∂x
∆x (A.43)

Equation (A.42) simplifies to

ρA
∂2w

∂t2
=
∂V

∂x
+ q (A.44)

Neglecting rotational inertia the moment equilibrium reads

V =
∂M

∂x
(A.45)

Insertion of equation (A.45) into the equation of motion (A.44) yields

ρA
∂2w

∂t2
=
∂2M

∂x2
+ q (A.46)

Applying equation (A.41) and assuming EI to be constant the equation of motion can
be written as

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
= q(x, t) (A.47)

The equation of motion is an inhomogeneous partial differential equation of the fourth
order and describes the response of the beam to the initial conditions and the applied
external loading q(x, t). It does not take into account the type of supporting as it
applies to an infinitesimal element of the beam. The manner the beam is supported has
a large impact on the dynamic behaviour and is introduced by means of the boundary
conditions. Interface conditions are applied if an abrupt change of one of the distributed
parameters occurs. The equation of motion is valid as long as the assumptions of small
vibrations, the Euler-Bernoulli beam and neglected rotational inertia are not violated.
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A.2.3 Variational Formulation/Weak Form

The static equation is a special case of the dynamic equation of motion, where velocities
and accelerations are set to zero. The resulting ordinary differential equation for beam
bending together with the corresponding boundary conditions represents the strong
form of the boundary value problem.

ρA
∂2w(x, t)

∂t2
+ EI

∂4w(x, t)

∂x4
− q(x, t) = 0 (A.48)

The strong form may be reformulated into an equivalent weak form, where equilibrium
is satisfied in an integral (averaged) sense as opposed to the pointwise equilibrium in
the strong form. ∫

δw

(
ρA

∂2w

∂t2
+ EI

∂4w

∂x4
− q
)

dx = 0 (A.49)

δw is the virtual displacement. Rearranging (and assuming EI to be constant) yields∫
δwρA

∂2w

∂t2
dx+

∫
δwEI

∂4w

∂x4
dx−

∫
δwq dx = 0 (A.50)

Stiffness term: Integration by parts is defined as∫ b

a

uv′ dx = [uv]ba −
∫ b

a

u′v dx (A.51)

Substitution of u = δw and v = wiv results in equation (A.52).

∫
δwEIwiv dx =

[
δw EIw′′′︸ ︷︷ ︸

V

]L
0

−
∫
δw′EIw′′′ dx (A.52)

The second term on the right-hand side is integrated by parts again with u = δw′ and
v = w′′′

−
∫
δw′EIw′′′ dx = −

[
δw′EIw′′︸ ︷︷ ︸

M

]L
0

+

∫
δw′′EIw′′ dx (A.53)

The weak form of the boundary value problem finally reads (nodal forces go into q)∫
δwρAẅ dx+

∫
δw′′EIw′′ dx−

∫
δwq dx = 0 (A.54)

This is the principle of virtual displacements (work?)/D’Alembert’s principle.

Explanation
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A.2.4 Beam Finite Element

Shape Functions

To arrive at a finite element formulation, the beam structure or the weak form respect-
ively is discretised into one or more elements. Since the deflection w(x) is the primary
unknown, a displacement pattern in each element is assumed. The variational index
of equation (??) is 2, because it includes derivatives of the second order in the space
coordinate x. Thus, admissible displacements must be C1 continuous, meaning that
displacements and their first derivatives must be continuous within the element and
especially between elements. Each beam element has two end nodes 1 and 2 and four
degrees of freedom. The nodal displacement vector is

u =
[
w1 θ1 w2 θ2

]T
(A.55)

Figure beam element
The displacement w(x) is defined by the degrees of freedom u and shape functions N,

which approximate the displacement pattern. The simplest shape functions satisfying
the C1 continuity are the Hermitian cubic shape functions.

w(x) =
[
Nw1 Nθ1 Nw2 Nθ2

] 
w1

θ1

w2

θ2

 = Nu (A.56)

The shape functions are expressed in terms of a dimensionless coordinate ξ, which
ranges from ξ = −1 at node 1 and ξ = 1 at node 2.

ξ =
2x

L
− 1 (A.57)

The shape functions are (figure shape functions)

Nw1(ξ) =
1

4
(1− ξ)2(2 + ξ)

Nθ1(ξ) =
1

8
L(1− ξ)2(1 + ξ)

Nw2(ξ) =
1

4
(1 + ξ)2(2− ξ)

Nθ2(ξ) = −1

8
L(1 + ξ)2(1− ξ)

(A.58)

It is furthermore assumed that the displacement w(x) consists of a space- and a
time-dependent part. The principle of separation of variable is applied. The shape
functions N are only dependent on the x (or ξ coordinate respectively) coordinate and
the degrees of freedom u are only dependent on time t:

w(x) = Nu = N(x)u(t) (A.59)
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The respective time derivatives (nodal velocities and nodal accelerations) are

ẇ(x) = Nu̇ = N(x)u̇(t) (A.60)

ẅ(x) = Nü = N(x)ü(t) (A.61)

The derivatives with respect to the space coordinate can be obtained in a similar
manner. The curvature w′′ can be expressed in terms of the assumed displacement field
by

w′ =
dw

dx
=

2

L

dw

dξ
=

2

L

dN

dξ
u = N′u = N′(x)u(t) (A.62)

w′′ =
d2w

dx2
=

4

L2

d2w

dξ2
=

4

L2

d2N

dξ2
u = Bu = N′′u = N′′(x)u(t) (A.63)

B is the curvature-displacement matrix and is determined to be

B =
4

L2

d2N

dξ2
=

1

L

[
6 ξ
L

3ξ − 1 −6 ξ
L

3ξ + 1
]

(A.64)

The factor 4/L2 is introduced into equation (A.62) by the switch from space coordinate
x to the dimensionless coordinate ξ as shown below.

df(x)

dx
=

df(ξ)

dξ

dξ

dx
=

2

L

df(ξ)

dξ
(A.65)

d2f(x)

dx2
=

d(2/L)

dx

df(ξ)

dξ
+

2

L

d

dx

(
df(ξ)

dξ

)
=

4

L2

d2f(ξ)

dξ2
(A.66)

The virtual displacement field δw and their derivatives in time and space are interpolated
with the same set of interpolation/shape functions as the unknown displacement field
w.

δw = Nδu

δẇ = Nδu̇

δẅ = Nδü

δw′ = N′δu

δw′′ = Bδu

(A.67)

Compatibility between virtual displacements and virtual curvatures (strain) yields
Substituting the derived relationships into equation (A.54) results in equation (A.68).∫

δuTρANTNü dx+

∫
δuTEIBTBu dx−

∫
δuTNTq dx = 0 (A.68)

Rearranging

δuT

∫
ρANTN dx ü + δuT

∫
EIBTB dxu− δuT

∫
NTq dx = 0 (A.69)

85



Taking into account that δw and w are independent (and thus δu and u) (A.69)
becomes ∫

ρANTN dx︸ ︷︷ ︸
M

ü +

∫
EIBTB dx︸ ︷︷ ︸

K

u =

∫
NTq dx︸ ︷︷ ︸

f

(A.70)

Equation (A.70) represents the well-known form of the equation of motion in matrix
form obtained by a variational formulation.

Mü + Ku = f (A.71)

Mass Matrix

For a beam with uniform density ρ, constant cross-section area A and length L the
consistent mass matrix is defined as

M = ρA

∫ L

0

NTN dx =
1

2
ρAL

∫ 1

−1

NTN dξ (A.72)

Evaluation of the integral yields the consistent mass matrix for a beam finite element:

M =
ρAL

420


156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

 (A.73)

Stiffness Matrix

The element stiffness matrix K is defined in (A.70) as

K =

∫ L

0

EIBTB dx (A.74)

Assuming a prismatic beam with constant stiffness EI equation (A.74) becomes

K =
1

2
LEI

∫ 1

−1

BTB dξ (A.75)

Performing the integration eventually yields the stiffness matrix for a beam finite
element with four degrees of freedom.

K =
EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (A.76)
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Nodal Force Vector

The consistent element node force vector f is according to equation (A.70)

f =

∫ L

0

NTq dx (A.77)

The coordinate change yields

f =
1

2
L

∫ 1

−1

NTq dξ (A.78)

For a constant load q the result finally reads

f =
1

2
qL
[
1 1

6
1 −1

6

]T
(A.79)
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B Support Structure Model

Node x [m] z [m] Node x [m] z [m]

1 -6.000 0.000 17 4.016 61.151
2 -6.000 0.500 18 4.000 61.650
3 -5.967 1.499 19 0.000 12.127
4 -5.939 2.373 20 0.000 29.129
5 -5.333 20.886 21 0.000 43.542
6 6.000 0.000 22 0.000 55.762
7 6.000 0.500 23 0.000 61.650
8 5.967 1.499 24 0.000 62.650
9 5.939 2.373 25 0.000 73.650

10 5.333 20.886 26 0.000 83.650
11 -4.820 36.578 27 0.000 95.650
12 -4.385 49.878 28 0.000 105.650
13 -4.016 61.151 29 0.000 115.650
14 -4.000 61.650 30 0.000 124.650
15 4.820 36.578 31 0.000 129.650
16 4.385 49.878 32 4.277 35.738

Table B.1: Nodal coordinates of the jacket support structure
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Node DOFs Node DOFs

1 1, 2, 3 17 49, 50, 51
2 4, 5, 6 18 52, 53, 54
3 7, 8, 9 19 55, 56, 57
4 10, 11, 12 20 58, 59, 60
5 13, 14, 15 21 61, 62, 63
6 16, 17, 18 22 64, 65, 66
7 19, 20, 21 23 67, 68, 69
8 22, 23, 24 24 70, 71, 72
9 25, 26, 27 25 73, 74, 75

10 28, 29, 30 26 76, 77, 78
11 31, 32, 33 27 79, 80, 81
12 34, 35, 36 28 82, 83, 84
13 37, 38, 39 29 85, 86, 87
14 40, 41, 42 30 88, 89, 90
15 43, 44, 45 31 91, 92, 93
16 46, 47, 48 32 94, 95, 96

Table B.2: Global degrees of freedom of the jacket support structure
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Member Node 1 Node 2 Prop. Member Node 1 Node 2 Prop.

1 1 2 2 23 10 20 1
2 2 3 2 24 20 11 1
3 3 4 2 25 20 32 1
4 4 5 2 26 32 15 1
5 6 7 2 27 11 21 1
6 7 8 2 28 15 21 1
7 8 9 2 29 21 12 1
8 9 10 2 30 21 16 1
9 5 11 3 31 12 22 1

10 11 12 3 32 16 22 1
11 12 13 3 33 22 13 1
12 13 14 3 34 22 17 1
13 10 15 3 35 14 23 14
14 15 16 3 36 23 18 14
15 16 17 3 37 23 24 6
16 17 18 3 38 24 25 7
17 3 8 1 39 25 26 8
18 4 19 1 40 26 27 9
19 9 19 1 41 27 28 10
20 19 5 1 42 28 29 11
21 19 10 1 43 29 30 12
22 5 20 1 44 30 31 13

Table B.3: Element node list of the jacket support structure
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Jacket support structure

Property set D [m] t [m] E [N/m2] ρ [kg/m3]

1 0.800 0.020 2.1 · 1011 7850
2 1.200 0.050 2.1 · 1011 7850
3 1.200 0.035 2.1 · 1011 7850
4 1.200 0.040 2.1 · 1011 7850

Foundation piles

5 2.082 0.060 2.1 · 1011 7850

Tower

6 5.589 0.032 2.1 · 1011 7850
7 5.448 0.031 2.1 · 1011 7850
8 5.200 0.029 2.1 · 1011 7850
9 4.941 0.026 2.1 · 1011 7850
10 4.683 0.023 2.1 · 1011 7850
11 4.447 0.021 2.1 · 1011 7850
12 4.224 0.025 2.1 · 1011 7850
13 4.059 0.030 2.1 · 1011 7850

Transition piece

A [m2] I [m4] E [N/m2] ρ [kg/m3]

14 41.625 51.200 3.0 · 1010 2000

Table B.4: Member properties
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C Mathematica Code

C.1 Determination of Stiffness Matrix for Finite

Beam Element with Crack
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In[1]:= A = 881, 0, 0, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 1, L, L^2, L^3<, 80, 0, 0, 0, 0, 1, 2 * L, 3 * L^2<,

81, L � 2, L^2 � 4, L^3 � 8, -1, -L � 2, -L^2 � 4, -L^3 � 8<,

80, 1, L, 3 � 4 * L^2, 0, -1, -L + 2 * K, -3 � 4 * L^2 + 3 * K * L<,

80, 0, 2, 3 * L, 0, 0, -2, -3 * L<, 80, 0, 0, 6, 0, 0, 0, -6<<;

In[2]:= q = 8q1, q2, q3, q4, 0, 0, 0, 0<;

In[3]:= Simplify@LinearSolve@A, qDD;

In[4]:= 8a, Cm< = SimplifyBNormalBCoefficientArraysB:q1 � a1, q2 � a2,

-

3 K H2 q1 - 2 q3 + L Hq2 + q4LL + 2 L H3 q1 - 3 q3 + L H2 q2 + q4LL
2 L2 HK + LL

� a3,

2 q1 - 2 q3 + L Hq2 + q4L
L3

� a4,
2 L q1 + K H2 q1 + L Hq2 - q4LL

2 HK + LL
� a5,

L q2 + K q4

K + L

� a6,

-

3 K H2 q1 - 2 q3 + L Hq2 + q4LL + 2 L H3 q1 - 3 q3 + L H2 q2 + q4LL
2 L2 HK + LL

� a7,

2 q1 - 2 q3 + L Hq2 + q4L
L3

� a8>, 8q1, q2, q3, q4<FFF;

In[6]:= pol = 81, x, x^2, x^3<;

In[7]:= N1 = pol.Cm@@1 ;; 4, 1 ;; 4DD;

In[8]:= N2 = pol.Cm@@5 ;; 8, 1 ;; 4DD;

In[9]:= B1 = D@N1, 8x, 2<D;

In[10]:= B2 = D@N2, 8x, 2<D;

In[11]:= K1 = Simplify@Integrate@Outer@Times, B1, B1D, 8x, 0, L � 2<DD;

In[12]:= K2 = Simplify@Integrate@Outer@Times, B2, B2D, 8x, L � 2, L<DD;

In[13]:= Km = Simplify@K1 + K2D;

Printed by Wolfram Mathematica Student Edition



C.2 Determination of Crack Coefficient
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In[1]:= De = 0.8;

In[2]:= t = 0.02;

In[3]:= Di = De - 2 * t;

In[4]:= Β = Sqrt@x - x^2 - H1 - Γ^2L � 4D;

In[5]:= Γ = Di � De;

In[6]:= Imom = Pi � 64 * HDe^4 - HDe - 2 * tL^4L;

In[7]:= Em = 2.1 * 10^11;

In[8]:= a = Table@0.001 * i, 8i, 1, 400<D;

In[9]:= na = Length@aD;

In[10]:= int = Table@0, 8na<D;

In[11]:= int1 = Table@0, 8na<D;

In[12]:= int2 = Table@0, 8na<D;

In[13]:= int3 = Table@0, 8na<D;

In[14]:= c = Table@0, 8na<D;

In[15]:= Kr = Table@0, 8na<D;

In[16]:= xp = H2 * x + Sqrt@1 - 4 * y^2D - 1L � H2 * Sqrt@1 - 4 * y^2DL;

In[17]:= F = Sqrt@2 � HPi * xpL * Tan@Pi * xp � 2DD *

H0.923 + 0.199 * H1 - Sin@Pi * xp � 2DL^4L � HCos@Pi * xp � 2DL;

In[18]:= For@i = 1, i < 401, i++, i;

If@a@@iDD £ t,

int@@iDD = NIntegrate@H1 - 4 * y^2L * H2 * x + Sqrt@1 - 4 * y^2D - 1L * F^2,

8x, 0, a@@iDD � De<, 8y, -Sqrt@x - x^2D, Sqrt@x - x^2D<D,

int1@@iDD = NIntegrate@H1 - 4 * y^2L * H2 * x + Sqrt@1 - 4 * y^2D - 1L * F^2,

8x, 0, t � De<, 8y, -Sqrt@x - x^2D, Sqrt@x - x^2D<D;

int2@@iDD = NIntegrate@H1 - 4 * y^2L * H2 * x + Sqrt@1 - 4 * y^2D - 1L * F^2,

8x, t � De, a@@iDD � De<, 8y, -Sqrt@x - x^2D, -Β<D;

int3@@iDD = NIntegrate@H1 - 4 * y^2L * H2 * x + Sqrt@1 - 4 * y^2D - 1L * F^2,

8x, t � De, a@@iDD � De<, 8y, Β, Sqrt@x - x^2D<D;

int@@iDD = int1@@iDD + int2@@iDD + int3@@iDDD;

c@@iDD = 1024 � HEm * De^3 * Pi * H1 - Γ^4L^2L * int@@iDD;

Kr@@iDD = Em * Imom * c@@iDD;

D;

In[19]:= list1 = Table@8a@@iDD, Re@Kr@@iDDD<, 8i, 1, 400<D;

Printed by Wolfram Mathematica Student Edition



D Frequency Domain
Representation

D.1 Introduction

The structure’s response can be presented in time domain and in frequency domain. The
frequency domain has the advantage of providing a clear overview over the frequency
content of the response. It thus allows for comparisons of responses, which is not easily
possible in time domain because mathematically it is a superposition of randomly
shifted sinusoidally waves.

D.2 Frequency Spectra

A discrete time series of data points has a certain sample frequency fs, number of
samples N and duration T . Sample frequency and time step ∆t are related by

fs =
1

∆t
(D.1)

The time series can hence be represented by

tn = n∆t n = 1, ..., N (D.2)

The time step, number of samples and duration are related by

∆t =
T

N
(D.3)

In the frequency domain, the frequencies are defined as

fq = q∆f (D.4)

The lowest frequency in the considered frequency range fmin is simultaneously the
frequency resolution ∆f :

fmin = f1 = ∆f =
1

T
(D.5)

Equation (D.5) determines the relation between the smallest frequency fmin and the
simulation duration T . The longer the simulation duration is chosen, the smaller the
lowest frequency in the spectrum and the bigger the frequency resolution. The upper
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end of the frequency range fmax is usually chosen. Wind and wave excitation frequencies
do not exceed 0.5 Hz, which is therefore chosen as upper limit here. fmax is defined in
equation (D.6) [37].

fmax = fN/2 =
N

2T
(D.6)

With equations (D.1) and (D.3) a suitable sample frequency (and thus time step) can
be determined:

fs = 2fmax (D.7)

The sample frequency fs is thus (at least) 1 Hz. The number of samples N then
automatically follows from equation (D.3).
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E Matlab Code

E.1 Jacket Model with 96 DOF

% 2D jacket structure according to Vorpahl's UpWind Reference Jacket
% 96 DOF

clc
clear all
close all
tic

%% Input values

global eom f zeta omega k phase JS u c Cm Cd d f wi df wi phase list ...
V hub sigma1 nodcoor elemnod elemD elemSubm elemWind Kc

% Crack 'number'
cn = 8; % 1 to 8
cn str = num2str(cn-1);

% Time span of solution
fs = 1;
dt = 1/fs; % Sample size/time step
T = 1200;
t = 0:dt:T-dt; % [s]
N = length(t);

% Node coordinates
nodcoor = [-6.000 0.000;... % 1

-6.000 0.500;... % 2
-5.967 1.499;... % 3
-5.939 2.373;... % 4
-5.333 20.886;... % 5
6.000 0.000;... % 6
6.000 0.500;... % 7
5.967 1.499;... % 8
5.939 2.373;... % 9
5.333 20.886;... % 10
-4.820 36.578;... % 11
-4.385 49.878;... % 12
-4.016 61.151;... % 13
-4.000 61.650;... % 14
4.820 36.578;... % 15
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4.385 49.878;... % 16
4.016 61.151;... % 17
4.000 61.650;... % 18
0.000 12.127;... % 19
0.000 29.129;... % 20
0.000 43.542;... % 21
0.000 55.762;... % 22
0.000 61.650;... % 23
0.000 62.650;... % 24
0.000 73.650;... % 25
0.000 83.650;... % 26
0.000 95.650;... % 27
0.000 105.650;... % 28
0.000 115.650;... % 29
0.000 124.650;... % 30
0.000 129.650;... % 31
4.218 35.647]; % 32

nDOF = size(nodcoor,1)*3;

% Element nodes
elemnod = [ 1, 2; 2, 3; 3, 4; 4, 5;...

6, 7; 7, 8; 8, 9; 9,10;...
5,11; 11,12; 12,13; 13,14;...
10,15; 15,16; 16,17; 17,18;...
3, 8; 4,19; 9,19; 19, 5;...
19,10; 5,20; 10,20; 20,11;...
20,32; 32,15; 11,21; 15,21;...
21,12; 21,16; 12,22; 16,22;...
22,13; 22,17; 14,23; 23,18;...
23,24; 24,25; 25,26; 26,27;...
27,28; 28,29; 29,30; 30,31];

% Material properties
Es = 2.1e11; % [N/m2]
Ec = 3e10; % [N/m2]
rho s = 7850; % [kg/m3]
rho c = 2000; % [kg/m3]

elemE = [Es, Es, Es, Es,...
Es, Es, Es, Es,...
Es, Es, Es, Es,...
Es, Es, Es, Es,...
Es, Es, Es, Es,...
Es, Es, Es, Es,...
Es, Es, Es, Es,...
Es, Es, Es, Es,...
Es, Es, Ec, Ec,...
Es, Es, Es, Es,...
Es, Es, Es, Es];

elemrho = [rho s, rho s, rho s, rho s,...
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rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s,...
rho s, rho s, rho c, rho c,...
rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s];

% Member properties

% Jacket
D1 = 0.8;
D2 = 1.2;
D3 = 1.2;
D4 = 1.2;
t1 = 0.02;
t2 = 0.05;
t3 = 0.035;
t4 = 0.04;
A1 = pi/4*(D1ˆ2-(D1-2*t1)ˆ2);
A2 = pi/4*(D2ˆ2-(D2-2*t2)ˆ2);
A3 = pi/4*(D3ˆ2-(D3-2*t3)ˆ2);
A4 = pi/4*(D4ˆ2-(D4-2*t4)ˆ2);
I1 = pi/64*(D1ˆ4-(D1-2*t1)ˆ4);
I2 = pi/64*(D2ˆ4-(D2-2*t2)ˆ4);
I3 = pi/64*(D3ˆ4-(D3-2*t3)ˆ4);
I4 = pi/64*(D4ˆ4-(D4-2*t4)ˆ4);

% Tower
% Dt = [5.600/1.95; 5.577/1.95; 5.318/1.95; 5.082/1.95; 4.800/1.95;...
% 4.565/1.95; 4.329/1.95; 4.118/1.95; 4.000/1.95];
% tt = [0.032/2; 0.032/2.3; 0.030/2; 0.028/2; 0.024/2; 0.022/2; 0.020/2;...
% 0.030/2; 0.030/2];
Dt = [5.600/1; 5.577/1; 5.318/1; 5.082/1; 4.800/1; 4.565/1; 4.329/1;...

4.118/1; 4.000/1];
tt = [0.032/1; 0.032/1; 0.030/1; 0.028/1; 0.024/1; 0.022/1; 0.020/1;...

0.030/1; 0.030/1];
Dte = zeros(length(Dt)-1,1);
tte = zeros(length(Dt)-1,1);
At = zeros(length(Dt)-1,1);
It = zeros(length(Dt)-1,1);
for i = 2:length(Dt)

Dte(i-1) = (Dt(i-1)+Dt(i))/2;
tte(i-1) = (tt(i-1)+tt(i))/2;
At(i-1) = pi/4*(Dte(i-1)ˆ2-(Dte(i-1)-2*tte(i-1))ˆ2);
It(i-1) = pi/64*(Dte(i-1)ˆ4-(Dte(i-1)-2*tte(i-1))ˆ4);

end

% Transition piece
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b TP = 9.6; % [m]
h TP = 4; % [m]
l TP = 8; % [m]
I TP = b TP*h TPˆ3/12; % [m4]
m TP = 666000; % [kg]
A TP = m TP/(rho c*l TP); % [m2]

elemA = [A2, A2, A2, A2,...
A2, A2, A2, A2,...
A3, A3, A3, A3,...
A3, A3, A3, A3,...
A1, A1, A1, A1,...
A1, A1, A1, A1,...
A1, A1, A1, A1,...
A1, A1, A1, A1,...
A1, A1, A TP/2, A TP/2,...
At(1), At(2), At(3), At(4),...
At(5), At(6), At(7), At(8)];

% A1, A1, A TP/2.5, A TP/2.5,...

elemI = [I2, I2, I2, I2,...
I2, I2, I2, I2,...
I3, I3, I3, I3,...
I3, I3, I3, I3,...
I1, I1, I1, I1,...
I1, I1, I1, I1,...
I1, I1, I1, I1,...
I1, I1, I1, I1,...
I1, I1, I TP/2, I TP/2,...
It(1), It(2), It(3), It(4),...
It(5), It(6), It(7), It(8)];

% I1, I1, I TP/30, I TP/30,...

elemD = [D2, D2, D2, D2,...
D2, D2, D2, D2,...
D3, D3, D3, D3,...
D3, D3, D3, D3,...
D1, D1, D1, D1,...
D1, D1, D1, D1,...
D1, D1, D1, D1,...
D1, D1, D1, D1,...
D1, D1, 1, 1,...
Dt(1), Dt(2), Dt(3), Dt(4),...
Dt(5), Dt(6), Dt(7), Dt(8)];

elemSubm = ones(size(elemnod,1),1); % Element submerged? 0=false, 1=true
subm = [11,12,15,16,31:44];
elemSubm(subm) = 0; % Insert elements that are NOT submerged

elemWind = zeros(size(elemnod,1),1); % Subject to wind load? 0=false, 1=true
elemWind(37:44) = 1; % Insert elements that are subject to wind
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elemCrack = zeros(size(elemnod,1),1); % Element cracked? 0=false, 1=true
elemCrack(26) = 1;

Kc = [0, 0.00157821, 0.00871166, 0.0215477, 0.0320845, 0.0438089, 0.0502119,...
0.0560688]; % Crack depth (0.01 m 0.02 m 0.05 m 0.10 m 0.20 m 0.30 m 0.40 m)

Kc = Kc(cn);

%% System Matrices

% System mass and stiffness matrices M and K
[M,K] = SystemMatrices(nodcoor,elemnod,elemSubm,elemCrack,elemE,elemrho,...

elemA,elemI,elemD);

% Check for singularity of stiffness matrix separately in Mathematica

% Boundary conditions

% Top mass
% m RNA = 350000/10; % Top mass in [kg] (NREL 5 MW 350t RNA)
m RNA = 350000/1.5;
m R = 110000; % Rotor mass: 110,000 kg
m NA = 240000; % Nacelle mass: 240,000 kg
r R = 63; % Rotor diameter: 63 m
l NA = 14; % Length of nacelle: 14 m
h NA = 3.5; % Height of nacelle: 3.5 m
I R = m R*r Rˆ2/4;
I NA = 1/12*m NA*(l NAˆ2+h NAˆ2);
I RNA = I R + I NA;
% m top = 8000;
M(91,91) = M(91,91) + m RNA;
M(92,92) = M(92,92) + m RNA;
M(93,93) = M(93,93) + I RNA/3;

% Additional tower point masses
m t1 = 1900;
% m t1 = 500;
M(67,67) = M(67,67) + m t1;
M(68,68) = M(68,68) + m t1;

m t2 = 1400;
% m t2 = 300;
M(79,79) = M(79,79) + m t2;
M(80,80) = M(80,80) + m t2;

m t3 = 1000;
% m t3 = 200;
M(91,91) = M(91,91) + m t3;
M(92,92) = M(92,92) + m t3;

% Soil springs
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k x = 6.7821e+08; % Soil stiffness in x direction
k xr = 1.7969e+09; % Soil stifness coupling between x and r
k z = 2.1940e+09; % Soil stiffness in z direction
k r = 1.3061e+10; % Soil stiffness in rotational direction

K(1,1) = K(1,1) + k x; % Leg 1
K(2,2) = K(2,2) + k z;
K(3,3) = K(3,3) + k r;
K(1,3) = K(1,3) + k xr;
K(3,1) = K(3,1) + k xr;

K(16,16) = K(16,16) + k x; % Leg 2
K(17,17) = K(17,17) + k z;
K(18,18) = K(18,18) + k r;
K(16,18) = K(16,18) + k xr;
K(18,16) = K(18,16) + k xr;

% Rayleigh damping matrix
% C = zeros(size(M,1),size(M,1));
C = 0.0001*M + 0.0001*K;

% Soil dashpots
c x = 8.8800e+07; % Damping value in x direction
c z = 2.8727e+08; % Damping value in z direction
c r = 1.7101e+09; % Damping value in rotational direction
c xr = 2.3527e+08;

C(1,1) = C(1,1) + c x; % Leg 1
C(2,2) = C(2,2) + c z;
C(3,3) = C(3,3) + c r;
C(1,3) = C(1,3) + c xr;
C(3,1) = C(3,1) + c xr;

C(16,16) = C(16,16) + c x; % Leg 2
C(17,17) = C(17,17) + c z;
C(18,18) = C(18,18) + c r;
C(16,18) = C(16,18) + c xr;
C(18,16) = C(18,16) + c xr;

% Mass matrix
eom.M = M;
Mi = Mˆ(-1);
eom.Mi = Mi;

% Stiffness matrix
eom.K = K;

% Damping matrix
eom.C = C;

% Matrix multiplications
eom.MK = -eom.Mi * eom.K;
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eom.MC = -eom.Mi * eom.C;

%% Hydrodynamic load

% Irregular wave properties
Hs = 6; % Significant wave height [m]
Tp = 10; % Spectral peak period [s]
u c = 1; % Current velocity [m/s]
Cm = 1.6; % Inertia coefficient
Cd = 0.8; % Drag coefficient
d = 49.878; % Water depth [m]
fp = 1/Tp; % Spectral peak frequency [Hz]

% Frequency band
df = 0.001;
f = df:df:0.5;
% phase JS = 2*pi*rand(length(f),1); % Random phases
load('phase JS')

S JS = zeros(length(f),1);
zeta = zeros(length(f),1);
omega = zeros(length(f),1);
k = zeros(length(f),1);
eta = 0;

% JONSWAP spectrum
if Tp/sqrt(Hs) <= 3.6

gamma = 5;
elseif Tp/sqrt(Hs) > 3.6 && Tp/sqrt(Hs) <= 5

gamma = exp(5.75-1.15*Tp/sqrt(Hs));
else

gamma = 1;
end

for i = 1:length(f)

if f(i) <= fp
sigma = 0.07;

else
sigma = 0.09;

end

S JS(i) = 0.3125*Hsˆ2*Tp*(f(i)/fp)ˆ(-5)*(1-0.287*log(gamma))...

*exp(-1.25*(f(i)/fp)ˆ(-4))*gammaˆexp(-0.5*((f(i)-fp)/(sigma*fp))ˆ2);

zeta(i) = sqrt(2*S JS(i)*df); % Wave amplitude [m]
omega(i) = 2*pi*f(i); % Wave frequency [rad/s]
k(i) = kSolve(omega(i),d); % Wave number [rad/m]
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% Wave elevation
eta = eta + zeta(i)*sin(omega(i)*t+phase JS(i));

end

%% Wind load

% Wind properties
V hub = 12; % Mean wind speed at hub height
Iref = 0.12; % Turbulence intensity
sigma1 = Iref*(0.75*V hub+5.6); % Standard deviation (invariant with height)

% Frequency band
df wi = 0.001;
f wi = df wi:df wi:0.5;
% phase list = 2*pi*rand(10,length(f wi));
load('phase list')

S KM = zeros(length(f wi),1);
amp wi = zeros(length(f wi),1);
omega wi = zeros(length(f wi),1);
V var = 0;

z hub = 129.65;
if z hub-d < 60

Lk = 5.67*(z hub-d); % Integral scale parameter Lk
else

Lk = 8.1*42;
end
I = sigma1/V hub;

for j = 1:length(f wi)
S KM(j) = 4*Iˆ2*V hub*Lk/((1+6*f wi(j)*Lk/V hub)ˆ(5/3)); % Kaimal spectrum
amp wi(j) = sqrt(2*S KM(j)*df wi); % Wind amplitude [m/s]
omega wi(j) = 2*pi*f wi(j); % Wind frequency [rad/s]
V var = V var + amp wi(j)*sin(omega wi(j)*t+phase list(1,j));

end

V mean = V hub; % Mean wind speed at hub height
V = V mean + V var;

%% Force vector

f hydro = zeros(nDOF,N);
f wind = zeros(nDOF,N);
f total = zeros(nDOF,N);
for w = 1:N

v = t(w);
f hydro(:,w) = Hydro Morison irr lin(v);
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f wind(:,w) = Wind Morison lin(v);
f total(:,w) = f hydro(:,w) + f wind(:,w);

end

% Add harmonic force with f=0.305 Hz
A h = 50; % [N]
f h = 0.305; % [Hz]
omega h = 2*pi*f h; % [rad/s]
f harm = A h*sin(omega h*t);
f total(70,:) = f total(70,:) + f harm;

% Wave velocities and accelerations
u x1 = 0;
u z1 = 0;
u x2 = 0;
u z2 = 0;
a x1 = 0;
a z1 = 0;
a x2 = 0;
a z2 = 0;

x1 = -4.385;
z1 = 49.878;
for l = 1:length(f)

u x1 = u x1 + omega(l)*zeta(l)*cosh(k(l)*z1)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x1+phase JS(l));
u z1 = u z1 + omega(l)*zeta(l)*sinh(k(l)*z1)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x1+phase JS(l));
a x1 = a x1 + omega(l)ˆ2*zeta(l)*cosh(k(l)*z1)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x1+phase JS(l));
a z1 = a z1 - omega(l)ˆ2*zeta(l)*sinh(k(l)*z1)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x1+phase JS(l));
end

%% Solution

% 1) Initialise solution
n p = nDOF; % Number of forces
n d = nDOF; % Number of observations
x0 = zeros(2*nDOF,1); % Initial conditions

% Selection matrices
S v = zeros(n d,nDOF); % Velocity
S d = zeros(n d,nDOF); % Displacements
S p = eye(nDOF); % Forces
S a = eye(n d,nDOF); % Accelerations (all degrees of freedom)

% 2) Construct the (discrete-time) state-space matrices A, B, C and D
% System matrix A
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A c = [zeros(nDOF,nDOF) eye(nDOF); -Mi*K -Mi*C];
A = expm(A c*dt);

% Input matrix B
B c = [zeros(nDOF,n p); Mi*S p];
B = (A-eye(2*nDOF))*A cˆ(-1)*B c;

% Output matrix G
G = [S d-S a*Mi*K S v-S a*Mi*C];

% Direct transmission matrix J
J = S a*Mi*S p;

% Force matrix
p = f total;

% State matrices
state.A = A;
state.B = B;
state.G = G;
state.J = J;

% 3) Solve
x k = zeros(2*nDOF,N); % Preallocation
for time = 1:N

% Time update
if time==1

x k(:,time) = A*x0;
else

x k(:,time) = A*x k(:,time-1)+B*p(:,time-1);
end

end

% 4) Response determination
n d = nDOF; % Number of output positions
% Displacements
S d1 = eye(n d,nDOF);
S v1 = zeros(n d,nDOF);
S a1 = zeros(n d,nDOF);
G1 = [S d1-S a1*Mi*K S v1-S a1*Mi*C];
J1 = S a1*Mi*S p;
u k = G1*x k+J1*p; % Displacements [n d x N], here [nDOF x N]

% Velocities
S d2 = zeros(n d,nDOF);
S v2 = eye(n d,nDOF);
S a2 = zeros(n d,nDOF);
G2 = [S d2-S a2*Mi*K S v2-S a2*Mi*C];
J2 = S a2*Mi*S p;
v k = G2*x k+J2*p; % Velocities [n d x N], here [nDOF x N]
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% Accelerations
S d3 = zeros(n d,nDOF);
S v3 = zeros(n d,nDOF);
S a3 = eye(n d,nDOF);
G3 = [S d3-S a3*Mi*K S v3-S a3*Mi*C];
J3 = S a3*Mi*S p;
a k = G3*x k+J3*p; % Accelerations [n d x N], here [nDOF x N]

% 4) Save
% cd('C:\Users\s.brauer\Documents\01 Thesis\04 Model Setup\2 MATLAB\Solver\UpWind Jacket\Response\Results\Uncracked');
% dir = ['W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 1\Cracked ' cn str '\1Hz'];
dir = ['W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 1\Cracked ' cn str '\harmonic'];
% dir = ['W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 1\Cracked ' cn str' '\10Hz'];
% dir = 'W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 1\Uncracked\stat1';
cd(dir);

save('eom.mat','eom')
save('state.mat','state');
save('u k.mat','u k');
save('v k.mat','v k');
save('a k.mat','a k');
save('t.mat','t');
save('p.mat','p');
save('eta.mat','eta');
save('V.mat','V');

toc

E.2 Jacket Model with 312 DOF

% 2D jacket structure according to Vorpahl's UpWind Reference Jacket
% 312 DOF

clc
clear all
close all
tic

global eom f zeta omega k phase JS u c Cm Cd d f wi df wi phase list V hub...
sigma1 nodcoor elemnod elemD elemSubm elemWind Kc

%% Input values

% Crack 'number'
cn = 1; % 1 to 8
cn str = num2str(cn-1);

% Time span of solution

109



fs = 300;
dt = 1/fs; % Sample size/time step
T = 1200;
t = 0:dt:T-dt; % [s]
N = length(t);

% Node coordinates
nodcoor = [-6.000 0.000;... % 1 -

-6.000 0.500;... % 2 -
-5.967 1.499;... % 3 -
-5.939 2.373;... % 4 -
-5.788 7.001;... % 5
-5.636 11.630;... % 6
-5.485 16.258;... % 7
-5.333 20.886;... % 8 -

6.000 0.000;... % 9 -
6.000 0.500;... % 10 -
5.967 1.499;... % 11 -
5.939 2.373;... % 12 -
5.788 7.001;... % 13
5.636 11.630;... % 14
5.485 16.258;... % 15
5.333 20.886;... % 16 -

-5.205 24.809;... % 17
-5.077 28.732;... % 18
-4.948 32.655;... % 19
-4.820 36.578;... % 20 -
-4.711 39.903;... % 21
-4.603 43.228;... % 22
-4.494 46.553;... % 23
-4.385 49.878;... % 24 -
-4.293 52.696;... % 25
-4.201 55.515;... % 26
-4.108 58.333;... % 27
-4.016 61.151;... % 28 -
-4.000 61.650;... % 29 -

5.205 24.809;... % 30
5.077 28.732;... % 31
4.948 32.655;... % 32
4.820 36.578;... % 33 -
4.711 39.903;... % 34
4.603 43.228;... % 35
4.494 46.553;... % 36
4.385 49.878;... % 37 -
4.293 52.696;... % 38
4.201 55.515;... % 39
4.108 58.333;... % 40
4.016 61.151;... % 41 -
4.000 61.650;... % 42 -
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-4.454 4.812;... % 43
-2.970 7.250;... % 44
-1.485 9.689;... % 45
4.454 4.812;... % 46
2.970 7.250;... % 47
1.485 9.689;... % 48

0.000 12.127;... % 49 -

-1.333 14.317;... % 50
-2.667 16.507;... % 51
-4.000 18.696;... % 52
1.333 14.317;... % 53
2.667 16.507;... % 54
4.000 18.696;... % 55

-4.000 22.947;... % 56
-2.667 25.008;... % 57
-1.333 27.068;... % 58
4.000 22.947;... % 59
2.667 25.008;... % 60
1.333 27.068;... % 61

0.000 29.129;... % 62 -

-1.205 30.991;... % 63
-2.410 32.854;... % 64
-3.615 34.716;... % 65
1.205 30.991;... % 66
2.410 32.854;... % 67
3.615 34.716;... % 68

-3.615 38.319;... % 69
-2.410 40.060;... % 70
-1.205 41.801;... % 71
3.615 38.319;... % 72
2.410 40.060;... % 73
1.205 41.801;... % 74

0.000 43.542;... % 75 -

-1.096 45.126;... % 76
-2.193 46.710;... % 77
-3.289 48.294;... % 78
1.096 45.126;... % 79
2.193 46.710;... % 80
3.289 48.294;... % 81

-3.289 51.349;... % 82
-2.193 52.820;... % 83
-1.096 54.291;... % 84
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3.289 51.349;... % 85
2.193 52.820;... % 86
1.096 54.291;... % 87

0.000 55.762;... % 88 -

-1.004 57.109;... % 89
-2.008 58.457;... % 90
-3.012 59.804;... % 91
1.004 57.109;... % 92
2.008 58.457;... % 93
3.012 59.804;... % 94

0.000 61.650;... % 95 -
0.000 62.650;... % 96 -
0.000 73.650;... % 97 -
0.000 83.650;... % 98 -
0.000 95.650;... % 99 -
0.000 105.650;... % 100 -
0.000 115.650;... % 101 -
0.000 124.650;... % 102 -
0.000 129.650;... % 103 -
4.218 35.647]; % 104

nDOF = size(nodcoor,1)*3;

% Element nodes
elemnod = [ 1, 2; 2, 3; 3, 4; 4, 5; 5, 6; 6, 7; 7, 8;... % Legs (1-14)

9,10; 10,11; 11,12; 12,13; 13,14; 14,15; 15,16;...
8,17; 17,18; 18,19; 19,20; 20,21; 21,22; 22,23; 23,24; 24,25;...
25,26; 26,27; 27,28; 28,29;... % Legs (15-40)
16,30; 30,31; 31,32; 32,33; 33,34; 34,35; 35,36; 36,37; 37,38;...
38,39; 39,40; 40,41; 41,42;...
4,43; 43,44; 44,45; 45,49;... % X-braces (41-104)
12,46; 46,47; 47,48; 48,49;...
49,50; 50,51; 51,52; 52, 8;...
49,53; 53,54; 54,55; 55,16;...
8,56; 56,57; 57,58; 58,62;...
16,59; 59,60; 60,61; 61,62;...
62,63; 63,64; 64,65; 65,20;...
62,66; 66,67; 67,68; 68,104; 104,33;...
20,69; 69,70; 70,71; 71,75;...
33,72; 72,73; 73,74; 74,75;...
75,76; 76,77; 77,78; 78,24;...
75,79; 79,80; 80,81; 81,37;...
24,82; 82,83; 83,84; 84,88;...
37,85; 85,86; 86,87; 87,88;...
88,89; 89,90; 90,91; 91,28;...
88,92; 92,93; 93,94; 94,41;...
3,11; 29,95; 95,42;... % Horizontal (105-107)
95,96; 96,97; 97,98; 98,99; 99,100; 100,101; 101,102; 102,103];

% Tower (108-115)
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% Material properties
Es = 2.1e11; % [N/m2]
Ec = 3e10; % [N/m2]
rho s = 7850; % [kg/m3]
rho c = 2000; % [kg/m3]

elemE = [Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Es, Es, Es, Es, Es, Es, Es,...
Es, Ec, Ec,...
Es, Es, Es, Es, Es, Es, Es, Es];

elemrho = [rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s,...
rho s, rho c, rho c,...
rho s, rho s, rho s, rho s, rho s, rho s, rho s, rho s];

% Member properties

% Jacket
D1 = 0.8;
D2 = 1.2;
D3 = 1.2;
D4 = 1.2;
t1 = 0.02;
t2 = 0.05;
t3 = 0.035;
t4 = 0.04;
A1 = pi/4*(D1ˆ2-(D1-2*t1)ˆ2);
A2 = pi/4*(D2ˆ2-(D2-2*t2)ˆ2);
A3 = pi/4*(D3ˆ2-(D3-2*t3)ˆ2);

113



A4 = pi/4*(D4ˆ2-(D4-2*t4)ˆ2);
I1 = pi/64*(D1ˆ4-(D1-2*t1)ˆ4);
I2 = pi/64*(D2ˆ4-(D2-2*t2)ˆ4);
I3 = pi/64*(D3ˆ4-(D3-2*t3)ˆ4);
I4 = pi/64*(D4ˆ4-(D4-2*t4)ˆ4);

% Tower
% Dt = [5.600/1.95; 5.577/1.95; 5.318/1.95; 5.082/1.95; 4.800/1.95; 4.565/1.95;...
% 4.329/1.95; 4.118/1.95; 4.000/1.95];
% tt = [0.032/2; 0.032/2.3; 0.030/2; 0.028/2; 0.024/2; 0.022/2; 0.020/2;...
% 0.030/2; 0.030/2];
Dt = [5.600/1; 5.577/1; 5.318/1; 5.082/1; 4.800/1; 4.565/1; 4.329/1;...

4.118/1; 4.000/1];
tt = [0.032/1; 0.032/1; 0.030/1; 0.028/1; 0.024/1; 0.022/1; 0.020/1;...

0.030/1; 0.030/1];
Dte = zeros(length(Dt)-1,1);
tte = zeros(length(Dt)-1,1);
At = zeros(length(Dt)-1,1);
It = zeros(length(Dt)-1,1);
for i = 2:length(Dt)

Dte(i-1) = (Dt(i-1)+Dt(i))/2;
tte(i-1) = (tt(i-1)+tt(i))/2;
At(i-1) = pi/4*(Dte(i-1)ˆ2-(Dte(i-1)-2*tte(i-1))ˆ2);
It(i-1) = pi/64*(Dte(i-1)ˆ4-(Dte(i-1)-2*tte(i-1))ˆ4);

end

% Transition piece
b TP = 9.6; % [m]
h TP = 4; % [m]
l TP = 8; % [m]
I TP = b TP*h TPˆ3/12; % [m4]
m TP = 666000; % [kg]
A TP = m TP/(rho c*l TP); % [m2]

elemA = [A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2, A2,...
A3, A3, A3, A3, A3, A3, A3, A3, A3, A3, A3, A3, A3,...
A3, A3, A3, A3, A3, A3, A3, A3, A3, A3, A3, A3, A3,...
A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A1, A1, A1, A1, A1, A1, A1,...
A1, A TP/2, A TP/2,...
At(1), At(2), At(3), At(4), At(5), At(6), At(7), At(8)];

elemI = [I2, I2, I2, I2, I2, I2, I2, I2, I2, I2, I2, I2, I2, I2,...
I3, I3, I3, I3, I3, I3, I3, I3, I3, I3, I3, I3, I3,...
I3, I3, I3, I3, I3, I3, I3, I3, I3, I3, I3, I3, I3,...
I1, I1, I1, I1, I1, I1, I1, I1,...
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I1, I1, I1, I1, I1, I1, I1, I1,...
I1, I1, I1, I1, I1, I1, I1, I1,...
I1, I1, I1, I1, I1, I1, I1, I1, I1,...
I1, I1, I1, I1, I1, I1, I1, I1,...
I1, I1, I1, I1, I1, I1, I1, I1,...
I1, I1, I1, I1, I1, I1, I1, I1,...
I1, I1, I1, I1, I1, I1, I1, I1,...
I1, I TP/2, I TP/2,...
It(1), It(2), It(3), It(4), It(5), It(6), It(7), It(8)];

elemD = [D2, D2, D2, D2, D2, D2, D2, D2, D2, D2, D2, D2, D2, D2,...
D3, D3, D3, D3, D3, D3, D3, D3, D3, D3, D3, D3, D3,...
D3, D3, D3, D3, D3, D3, D3, D3, D3, D3, D3, D3, D3,...
D1, D1, D1, D1, D1, D1, D1, D1,...
D1, D1, D1, D1, D1, D1, D1, D1,...
D1, D1, D1, D1, D1, D1, D1, D1,...
D1, D1, D1, D1, D1, D1, D1, D1, D1,...
D1, D1, D1, D1, D1, D1, D1, D1,...
D1, D1, D1, D1, D1, D1, D1, D1,...
D1, D1, D1, D1, D1, D1, D1, D1,...
D1, D1, D1, D1, D1, D1, D1, D1,...
D1, 1, 1,...
Dt(1), Dt(2), Dt(3), Dt(4), Dt(5), Dt(6), Dt(7), Dt(8)];

elemSubm = ones(size(elemnod,1),1); % Element submerged? 0=false, 1=true
subm = [23:27,36:40,90:116]; % Insert elements that are NOT submerged
elemSubm(subm) = 0;

elemWind = zeros(size(elemnod,1),1); % Element subject to wind load? 0=false, 1=true
elemWind(109:116) = 1; % Insert elements that are subject to wind

elemCrack = zeros(size(elemnod,1),1); % Element cracked? 0=false, 1=true
elemCrack(73) = 1;

Kc = [0, 0.00157821, 0.00871166, 0.0215477, 0.0320845, 0.0438089, 0.0502119,...
0.0560688]; % Crack depth (0.01 m 0.02 m 0.05 m 0.10 m 0.20 m 0.30 m 0.40 m)

Kc = Kc(cn);

%% System Matrices

% System mass and stiffness matrices M and K
[M,K] = SystemMatrices(nodcoor,elemnod,elemSubm,elemCrack,elemE,elemrho,...

elemA,elemI,elemD);

% Check for singularity of stiffness matrix separately in Mathematica

% Boundary conditions

% Top mass
% m RNA = 350000/10; % Top mass in [kg] (NREL 5 MW 350t RNA)
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m RNA = 350000/1.5;
m R = 110000; % Rotor mass: 110,000 kg
m NA = 240000; % Nacelle mass: 240,000 kg
r R = 63; % Rotor diameter: 63 m
l NA = 14; % Length of nacelle: 14 m
h NA = 3.5; % Height of nacelle: 3.5 m
I R = m R*r Rˆ2/4;
I NA = 1/12*m NA*(l NAˆ2+h NAˆ2);
I RNA = I R + I NA;
% m top = 8000;
M(307,307) = M(307,307) + m RNA;
M(308,308) = M(308,308) + m RNA;
M(309,309) = M(309,309) + I RNA/3;

% Additional tower point masses
m t1 = 1900;
% m t1 = 500;
M(283,283) = M(283,283) + m t1;
M(284,284) = M(284,284) + m t1;

m t2 = 1400;
% m t2 = 300;
M(295,295) = M(295,295) + m t2;
M(296,296) = M(296,296) + m t2;

m t3 = 1000;
% m t3 = 200;
M(307,307) = M(307,307) + m t3;
M(308,308) = M(308,308) + m t3;

% Soil springs
k x = 6.7821e+08; % Soil stiffness in x direction
k xr = 1.7969e+09; % Soil stifness coupling between x and r
k z = 2.1940e+09; % Soil stiffness in z direction
k r = 1.3061e+10; % Soil stiffness in rotational direction

K(1,1) = K(1,1) + k x; % Leg 1
K(2,2) = K(2,2) + k z;
K(3,3) = K(3,3) + k r;
K(1,3) = K(1,3) + k xr;
K(3,1) = K(3,1) + k xr;

K(25,25) = K(25,25) + k x; % Leg 2
K(26,26) = K(26,26) + k z;
K(27,27) = K(27,27) + k r;
K(25,27) = K(25,27) + k xr;
K(27,25) = K(27,25) + k xr;

% Rayleigh damping matrix
% C = zeros(size(M,1),size(M,1));
C = 0.0001*M + 0.0001*K;
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% Soil dashpots
c x = 8.8800e+07; % Damping value in x direction
c z = 2.8727e+08; % Damping value in z direction
c r = 1.7101e+09; % Damping value in rotational direction
c xr = 2.3527e+08;

C(1,1) = C(1,1) + c x; % Leg 1
C(2,2) = C(2,2) + c z;
C(3,3) = C(3,3) + c r;
C(1,3) = C(1,3) + c xr;
C(3,1) = C(3,1) + c xr;

C(25,25) = C(25,25) + c x; % Leg 2
C(26,26) = C(26,26) + c z;
C(27,27) = C(27,27) + c r;
C(25,27) = C(25,27) + c xr;
C(27,25) = C(27,25) + c xr;

% Mass matrix
eom.M = M;
Mi = Mˆ(-1);
eom.Mi = Mi;

% Stiffness matrix
eom.K = K;

% Damping matrix
eom.C = C;

% Matrix multiplications
eom.MK = -eom.Mi * eom.K;
eom.MC = -eom.Mi * eom.C;

%% Hydrodynamic load

% Irregular wave properties
Hs = 6; % Significant wave height [m]
Tp = 10; % Spectral peak period [s]
u c = 1; % Current velocity [m/s]
Cm = 1.6; % Inertia coefficient
Cd = 0.8; % Drag coefficient
d = 49.878; % Water depth [m]
fp = 1/Tp; % Spectral peak frequency [Hz]

% Frequency band
df = 0.001;
f = df:df:0.5;
% phase JS = 2*pi*rand(length(f),1); % Random phases
load('phase JS')
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S JS = zeros(length(f),1);
zeta = zeros(length(f),1);
omega = zeros(length(f),1);
k = zeros(length(f),1);
eta = 0;

% JONSWAP spectrum
if Tp/sqrt(Hs) <= 3.6

gamma = 5;
elseif Tp/sqrt(Hs) > 3.6 && Tp/sqrt(Hs) <= 5

gamma = exp(5.75-1.15*Tp/sqrt(Hs));
else

gamma = 1;
end

for i = 1:length(f)

if f(i) <= fp
sigma = 0.07;

else
sigma = 0.09;

end

S JS(i) = 0.3125*Hsˆ2*Tp*(f(i)/fp)ˆ(-5)*(1-0.287*log(gamma))...

*exp(-1.25*(f(i)/fp)ˆ(-4))*gammaˆexp(-0.5*((f(i)-fp)/(sigma*fp))ˆ2);

zeta(i) = sqrt(2*S JS(i)*df); % Wave amplitude [m]
omega(i) = 2*pi*f(i); % Wave frequency [rad/s]
k(i) = kSolve(omega(i),d); % Wave number [rad/m]

% Wave elevation
eta = eta + zeta(i)*sin(omega(i)*t+phase JS(i));

end

%% Wind load

% Wind properties
V hub = 12; % Mean wind speed at hub height
Iref = 0.12; % Turbulence intensity
sigma1 = Iref*(0.75*V hub+5.6); % Standard deviation (invariant with height)

% Frequency band
df wi = 0.001;
f wi = df wi:df wi:0.5;
% phase list = 2*pi*rand(10,length(f wi));
load('phase list')

S KM = zeros(length(f wi),1);
amp wi = zeros(length(f wi),1);

118



omega wi = zeros(length(f wi),1);
V var = 0;

z hub = 129.65;
if z hub-d < 60

Lk = 5.67*(z hub-d); % Integral scale parameter Lk
else

Lk = 8.1*42;
end
I = sigma1/V hub;

for j = 1:length(f wi)
S KM(j) = 4*Iˆ2*V hub*Lk/((1+6*f wi(j)*Lk/V hub)ˆ(5/3)); % Kaimal spectrum
amp wi(j) = sqrt(2*S KM(j)*df wi); % Wind amplitude [m/s]
omega wi(j) = 2*pi*f wi(j); % Wind frequency [rad/s]
V var = V var + amp wi(j)*sin(omega wi(j)*t+phase list(1,j));

end

V mean = V hub; % Mean wind speed at hub height
V = V mean + V var;

%% Force vector

f hydro = zeros(nDOF,N);
f wind = zeros(nDOF,N);
f total = zeros(nDOF,N);
for w = 1:N

v = t(w);
f hydro(:,w) = Hydro Morison irr lin(v);
f wind(:,w) = Wind Morison lin(v);
f total(:,w) = f hydro(:,w) + f wind(:,w);

end

% Add harmonic force with w=0.305 Hz
% A h = 50; % [N]
% f h = 0.305; % [Hz]
% omega h = 2*pi*f h; % [rad/s]
% f harm = A h*sin(omega h*t);
% f total(70,:) = f total(70,:) + f harm;

% Wave velocities and accelerations
u x1 = 0;
u z1 = 0;
u x2 = 0;
u z2 = 0;
a x1 = 0;
a z1 = 0;
a x2 = 0;
a z2 = 0;
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x1 = -4.385;
z1 = 49.878;
for l = 1:length(f)

u x1 = u x1 + omega(l)*zeta(l)*cosh(k(l)*z1)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x1+phase JS(l));
u z1 = u z1 + omega(l)*zeta(l)*sinh(k(l)*z1)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x1+phase JS(l));
a x1 = a x1 + omega(l)ˆ2*zeta(l)*cosh(k(l)*z1)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x1+phase JS(l));
a z1 = a z1 - omega(l)ˆ2*zeta(l)*sinh(k(l)*z1)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x1+phase JS(l));
end

%% Solution

% 1) Initialise solution
n p = nDOF; % Number of forces
n d = nDOF; % Number of observations
x0 = zeros(2*nDOF,1); % Initial conditions

% Selection matrices
S v = zeros(n d,nDOF); % Velocity
S d = zeros(n d,nDOF); % Displacements
S p = eye(nDOF); % Forces
S a = eye(n d,nDOF); % Accelerations (all degrees of freedom)

% 2) Construct the (discrete-time) state-space matrices A, B, C and D
% System matrix A
A c = [zeros(nDOF,nDOF) eye(nDOF); -Mi*K -Mi*C];
A = expm(A c*dt);

% Input matrix B
B c = [zeros(nDOF,n p); Mi*S p];
B = (A-eye(2*nDOF))*A cˆ(-1)*B c;

% Output matrix G
G = [S d-S a*Mi*K S v-S a*Mi*C];

% Direct transmission matrix J
J = S a*Mi*S p;

% Force matrix
p = f total;

% State matrices
state.A = A;
state.B = B;
state.G = G;
state.J = J;
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% 3) Solve
x k = zeros(2*nDOF,N); % Preallocation
for time = 1:N

% Time update
if time==1

x k(:,time) = A*x0;
else

x k(:,time) = A*x k(:,time-1)+B*p(:,time-1);
end

end

% 4) Response determination
n d = nDOF; % Number of output positions
% Displacements
S d1 = eye(n d,nDOF);
S v1 = zeros(n d,nDOF);
S a1 = zeros(n d,nDOF);
G1 = [S d1-S a1*Mi*K S v1-S a1*Mi*C];
J1 = S a1*Mi*S p;
u k = G1*x k+J1*p; % Displacements [n d x N], here [nDOF x N]

% Velocities
S d2 = zeros(n d,nDOF);
S v2 = eye(n d,nDOF);
S a2 = zeros(n d,nDOF);
G2 = [S d2-S a2*Mi*K S v2-S a2*Mi*C];
J2 = S a2*Mi*S p;
v k = G2*x k+J2*p; % Velocities [n d x N], here [nDOF x N]

% Accelerations
S d3 = zeros(n d,nDOF);
S v3 = zeros(n d,nDOF);
S a3 = eye(n d,nDOF);
G3 = [S d3-S a3*Mi*K S v3-S a3*Mi*C];
J3 = S a3*Mi*S p;
a k = G3*x k+J3*p; % Accelerations [n d x N], here [nDOF x N]

% 4) Save
dir = ['W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 2\Cracked ' cn str '\300Hz'];
cd(dir);

save('eom.mat','eom')
save('state.mat','state');
save('u k.mat','u k');
save('v k.mat','v k');
save('a k.mat','a k');
save('t.mat','t');
save('p.mat','p');
save('eta.mat','eta');
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save('V.mat','V');

toc

E.3 Function: Element Matrix

function [Me,Ke] = ElementMatrices(nodcoor,subm,crack,E,rho,A,I,D)
% ElementMatrices Establishes element stiffness and mass matrix
% nodcoor: Nodal coordinates [2x2 matrix]
% E: Young's modulus (assumed constant over length)
% A: Cross-section area (assumed constant over length)
% I: Area moment of inertia (assumed constant over length)
% rho: Material density (assumed constant over length)

global Kc

% Local coordinates
x1 = nodcoor(1,1);
x2 = nodcoor(2,1);
z1 = nodcoor(1,2);
z2 = nodcoor(2,2);

L = sqrt((x2-x1)ˆ2+(z2-z1)ˆ2); % Length [m]

% Stiffness and mass matrix
if ~crack % Element cracked?

Kr = 0;
else

Kr = Kc;
end

% Stiffness matrix with crack
a = A/(I*L);
b = 3*Krˆ2+6*Kr*L+4*Lˆ2;
c = 3*Krˆ2+6*Kr*L+2*Lˆ2;
Ke loc = E*I*[ a 0 0 -a 0 0;

0 12/Lˆ3 6/Lˆ2 0 -12/Lˆ3 6/Lˆ2;
0 6/Lˆ2 b/(L*(Kr+L)ˆ2) 0 -6/Lˆ2 c/(L*(Kr+L)ˆ2);

-a 0 0 a 0 0;
0 -12/Lˆ3 -6/Lˆ2 0 12/Lˆ3 -6/Lˆ2;
0 6/Lˆ2 c/(L*(Kr+L)ˆ2) 0 -6/Lˆ2 b/(L*(Kr+L)ˆ2)];

% a = A*Lˆ2/I;
% Ke loc = E*I/Lˆ3*[ a 0 0 -a 0 0; % Stiffness matrix
% 0 12 6*L 0 -12 6*L;
% 0 6*L 4*Lˆ2 0 -6*L 2*Lˆ2;
% -a 0 0 a 0 0;
% 0 -12 -6*L 0 12 -6*L;
% 0 6*L 2*Lˆ2 0 -6*L 4*Lˆ2];
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% Body mass matrix
Mbe loc = rho*A*L/420*[140 0 0 70 0 0;

0 156 22*L 0 54 -13*L;
0 22*L 4*Lˆ2 0 13*L -3*Lˆ2;

70 0 0 140 0 0;
0 54 13*L 0 156 -22*L;
0 -13*L -3*Lˆ2 0 -22*L 4*Lˆ2];

% Added mass matrix
if subm % Element submerged?

rho w = 1025; % Density of sea water [kg/m3]
Cm = 1.6; % Inertia coefficient (see also Morison equation)
Ca = Cm-1; % Added mass coefficient
V d = pi*Dˆ2/4*L; % Displaced volume [m3]

Mae loc = rho w*Ca*V d/420*[140 0 0 70 0 0;
0 156 22*L 0 54 -13*L;
0 22*L 4*Lˆ2 0 13*L -3*Lˆ2;
70 0 0 140 0 0;
0 54 13*L 0 156 -22*L;
0 -13*L -3*Lˆ2 0 -22*L 4*Lˆ2];

else
Mae loc = 0;

end

Me loc = Mbe loc + Mae loc; % Total mass matrix

% Transformation to global coordinate system
c = (x2-x1)/L;
s = (z2-z1)/L;

T = [c s 0 0 0 0;
-s c 0 0 0 0;
0 0 1 0 0 0;
0 0 0 c s 0;
0 0 0 -s c 0;
0 0 0 0 0 1];

Ke = T.'*Ke loc*T;
Me = T.'*Me loc*T;

E.4 Function: System Matrix

function [M,K] = SystemMatrices(nodcoor,elemnod,elemSubm,elemCrack,elemE,...
elemrho,elemA,elemI,elemD)

% SystemMatrices Establishes system stiffness and mass matrix
% nodcoor: List of nodal coordinates [nnod x 2 matrix]
% elemnod: List of element nodes [nelem x 2 matrix]
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% elemE: List of elements' Young's moduli
% elemA: List of elements' cross-section area
% elemI: List of elements' area moment of inertia
% elemrho: List of elements' material density

nnod = size(nodcoor,1);
nelem = size(elemnod,1);

M = zeros(3*nnod,3*nnod);
K = zeros(3*nnod,3*nnod);

for i = 1:nelem % Loop over all elements

% Global coordinates
nod1 = elemnod(i,1);
nod2 = elemnod(i,2);
eft = [3*nod1-2, 3*nod1-1, 3*nod1, 3*nod2-2, 3*nod2-1, 3*nod2];

% Local coordinates
elemnodcoor = [nodcoor(nod1,:); nodcoor(nod2,:)];

% Member's properties
E = elemE(i);
rho = elemrho(i);
A = elemA(i);
I = elemI(i);
D = elemD(i);

% Member submerged?
subm = elemSubm(i);

% Member cracked?
crack = elemCrack(i);

% Element matrices
[Me,Ke] = ElementMatrices(elemnodcoor,subm,crack,E,rho,A,I,D);

% Assembly to global matrices
for j = 1:6 % Loop over all rows of el. matrix

jj = eft(j); % jj: Global degree of freedom
for k = 1:6 % Loop over all columns of el. matrix

kk = eft(k); % kk: Global degree of freedom
M(jj,kk) = M(jj,kk) + Me(j,k);
K(jj,kk) = K(jj,kk) + Ke(j,k);

end
end

end

E.5 Function: Aerodynamic Load
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function f wind = Wind Morison lin(t)
% Calculates force vector
% t: Time [s]

global f wi df wi phase list V hub sigma1 d nodcoor elemnod elemD elemWind

rho w = 1.225; % Density of air [kg/m3]
Cd = 0.8; % Drag coefficient

% Automatic sizing of y vector
aa = size(nodcoor,1)*3;
fd = zeros(aa,1);
counter = 0;

nelem = size(elemnod,1); % Number of elements
for i = 1:nelem % Loop over all elements

% Global coordinates
nod1 = elemnod(i,1);
nod2 = elemnod(i,2);
eft = [3*nod1-2, 3*nod1-1, 3*nod1, 3*nod2-2, 3*nod2-1, 3*nod2];

if elemWind(i)
counter = counter+1;
phase KM = phase list(counter,:);

% Local coordinates
elemnodcoor = [nodcoor(nod1,:); nodcoor(nod2,:)];
x1 = elemnodcoor(1,1);
x2 = elemnodcoor(2,1);
z1 = elemnodcoor(1,2);
z2 = elemnodcoor(2,2);

nod hub = elemnod(end,2); % Assuming hub has always highest node number
z hub = nodcoor(nod hub,2);

S KM1 = zeros(length(f wi),1);
S KM2 = zeros(length(f wi),1);
amp wi1 = zeros(length(f wi),1);
amp wi2 = zeros(length(f wi),1);
omega wi = zeros(length(f wi),1);
V var1 = 0;
V var2 = 0;

alpha = 0.2;
V mean1 = V hub*((z1-d)/(z hub-d))ˆalpha; % Mean wind speed at node 1
V mean2 = V hub*((z2-d)/(z hub-d))ˆalpha; % Mean wind speed at node 2
I1 = sigma1/V mean1;
I2 = sigma1/V mean2;

if z1-d < 60
Lk1 = 5.67*(z hub-d); % Integral scale parameter Lk1
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else
Lk1 = 8.1*42;

end

if z2-d < 60
Lk2 = 5.67*(z hub-d); % Integral scale parameter Lk2

else
Lk2 = 8.1*42;

end

for k = 1:length(f wi)
% Kaimal spectrum node 1
S KM1(k) = 4*I1ˆ2*V mean1*Lk1/((1+6*f wi(k)*Lk1/V mean1)ˆ(5/3));
% Kaimal spectrum node 2
S KM2(k) = 4*I2ˆ2*V mean2*Lk2/((1+6*f wi(k)*Lk2/V mean2)ˆ(5/3));
amp wi1(k) = sqrt(2*S KM1(k)*df wi); % Wind amplitude [m/s]
amp wi2(k) = sqrt(2*S KM2(k)*df wi);
omega wi(k) = 2*pi*f wi(k); % Wind frequency [rad/s]
V var1 = V var1 + amp wi1(k)*sin(omega wi(k)*t+phase KM(k));
V var2 = V var2 + amp wi2(k)*sin(omega wi(k)*t+phase KM(k));

end

% Member's properties
D = elemD(i); % Member's diameter [m]
L = sqrt((x2-x1)ˆ2+(z2-z1)ˆ2); % Member's length

c = (x2-x1)/L; % cos(phi)
s = (z2-z1)/L; % sin(phi)

T = [c s 0 0 0 0; % Transformation matrix
-s c 0 0 0 0;
0 0 1 0 0 0;
0 0 0 c s 0;
0 0 0 -s c 0;
0 0 0 0 0 1];

% Drag force term
fd1 = 0.5*rho w*Cd*D * ((V mean1+V var1)*s) * abs((V mean1+V var1)*s);
fd2 = 0.5*rho w*Cd*D * ((V mean2+V var2)*s) * abs((V mean2+V var2)*s);

% Integration of linear wave force distribution
fd 1 = 1/20*(13*fd1-3*fd2)*L;
fd 2 = 1/60*(7*fd1-2*fd2)*Lˆ2;
fd 3 = 1/20*(17*fd1-7*fd2)*L;
fd 4 = 1/60*(-8*fd1+3*fd2)*Lˆ2;

fde = [0;fd 1;fd 2;0;fd 3;fd 4];

fde = T.'*fde; % Tranformation

else
fde = zeros(6,1);
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end

% Assembly to global force vector
for m = 1:6

mm = eft(m);
fd(mm) = fd(mm)+fde(m);

end
end

% 'Thrust' force
eft hub = [3*nod hub-2, 3*nod hub-1, 3*nod hub];
I = sigma1/V hub;
if z hub-d < 60

Lk = 5.67*(z hub-d); % Integral scale parameter Lk1
else

Lk = 8.1*42;
end

V var hub = 0;
S KM = zeros(length(omega wi),1);
amp wi = zeros(length(omega wi),1);
for p = 1:length(omega wi)

S KM(p) = 4*Iˆ2*V hub*Lk/((1+6*f wi(p)*Lk/V hub)ˆ(5/3));
amp wi(p) = sqrt(2*S KM(p)*df wi);
V var hub = V var hub + amp wi(p)*sin(omega wi(p)*t+phase KM(p));

end

V thr = V hub + V var hub; % Same as V

% 'Rotor' properties
Cd hub = 0.1; % Higher drag coefficient to account for rotor
D rot = 126; % Rotor diameter [m]
A rot = pi*D rotˆ2/4; % Rotor area [m2]

% Drag force term
fd hub = 0.5*rho w*Cd hub*A rot*V thr * abs(V thr); % Local

% Total global force vector
f wind = fd;
f wind(eft hub(1)) = f wind(eft hub(1)) + fd hub;

E.6 Function: Hydrodynamic Load

function f hydro = Hydro Morison irr lin(t)
% Calculates force vector
% t: Time [s]

global f zeta omega k phase JS u c Cm Cd d nodcoor elemnod elemD elemSubm

rho w = 1025; % Density of sea water [kg/m3]
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% Automatic sizing of y vector
aa = size(nodcoor,1)*3;
fi = zeros(aa,1);
fd = zeros(aa,1);

nelem = size(elemnod,1); % Number of elements
for j = 1:nelem % Loop over all elements

% Global coordinates
nod1 = elemnod(j,1);
nod2 = elemnod(j,2);
eft = [3*nod1-2, 3*nod1-1, 3*nod1, 3*nod2-2, 3*nod2-1, 3*nod2];

if elemSubm(j)

% Local coordinates
elemnodcoor = [nodcoor(nod1,:); nodcoor(nod2,:)];
x1 = elemnodcoor(1,1);
x2 = elemnodcoor(2,1);
z1 = elemnodcoor(1,2);
z2 = elemnodcoor(2,2);

% Wave velocities and accelerations
u x1 = 0;
u z1 = 0;
u x2 = 0;
u z2 = 0;
a x1 = 0;
a z1 = 0;
a x2 = 0;
a z2 = 0;

for l = 1:length(f)
u x1 = u x1 + omega(l)*zeta(l)*cosh(k(l)*z1)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x1+phase JS(l));
u z1 = u z1 + omega(l)*zeta(l)*sinh(k(l)*z1)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x1+phase JS(l));
u x2 = u x2 + omega(l)*zeta(l)*cosh(k(l)*z2)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x2+phase JS(l));
u z2 = u z2 + omega(l)*zeta(l)*sinh(k(l)*z2)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x2+phase JS(l));
a x1 = a x1 + omega(l)ˆ2*zeta(l)*cosh(k(l)*z1)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x1+phase JS(l));
a z1 = a z1 - omega(l)ˆ2*zeta(l)*sinh(k(l)*z1)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x1+phase JS(l));
a x2 = a x2 + omega(l)ˆ2*zeta(l)*cosh(k(l)*z2)/sinh(k(l)*d)...

*cos(omega(l)*t-k(l)*x2+phase JS(l));
a z2 = a z2 - omega(l)ˆ2*zeta(l)*sinh(k(l)*z2)/sinh(k(l)*d)...

*sin(omega(l)*t-k(l)*x2+phase JS(l));
end
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% Member's properties
D = elemD(j); % Member's diameter [m]
A = 1/4*pi*Dˆ2; % Member's cross-section area [mˆ2]
L = sqrt((x2-x1)ˆ2+(z2-z1)ˆ2); % Member's length

c = (x2-x1)/L; % cos(phi)
s = (z2-z1)/L; % sin(phi)

T = [c s 0 0 0 0; % Transformation matrix
-s c 0 0 0 0;
0 0 1 0 0 0;
0 0 0 c s 0;
0 0 0 -s c 0;
0 0 0 0 0 1];

% Inertia force term
fi1 = rho w*Cm*A*(a x1*s+a z1*c);
fi2 = rho w*Cm*A*(a x2*s+a z2*c);

% Integration of linear wave force distribution from 0 to L
fi 1 = 1/20*(13*fi1-3*fi2)*L;
fi 2 = 1/60*(7*fi1-2*fi2)*Lˆ2;
fi 3 = 1/20*(17*fi1-7*fi2)*L;
fi 4 = 1/60*(-8*fi1+3*fi2)*Lˆ2;

fie = [0;fi 1;fi 2;0;fi 3;fi 4];

fie = T.'*fie; % Tranformation

% Drag force term
fd1 = 0.5*rho w*Cd*D * (u x1*s+u z1*c+u c*s) * abs(u x1*s+u z1*c+u c*s);
fd2 = 0.5*rho w*Cd*D * (u x2*s+u z2*c+u c*s) * abs(u x2*s+u z2*c+u c*s);

% Integration of linear wave force distribution
fd 1 = 1/20*(13*fd1-3*fd2)*L;
fd 2 = 1/60*(7*fd1-2*fd2)*Lˆ2;
fd 3 = 1/20*(17*fd1-7*fd2)*L;
fd 4 = 1/60*(-8*fd1+3*fd2)*Lˆ2;

fde = [0;fd 1;fd 2;0;fd 3;fd 4];

fde = T.'*fde; % Tranformation

else

fie = zeros(6,1);
fde = zeros(6,1);

end

% Assembly to global force vector
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for m = 1:6
mm = eft(m);
fi(mm) = fi(mm)+fie(m);
fd(mm) = fd(mm)+fde(m);

end

end

% Total global force vector
f hydro = fi+fd;

E.7 State-Space Representation

% Generate the discrete-time state space model and determine the filtered
% data by means of the Kalman filter

clear all
close all
clc

% Crack 'number'
cn = 8; % 1 to 8
cn str = num2str(cn-1);

% 1) Generate and load the data and add noise
% dir = ['W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 1\Cracked ' cn str '\1Hz'];
dir = ['W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 1\Cracked ' cn str '\harmonic'];
% dir = ['W:\Master Thesis\UpWind Jacket\Response\Results\Jacket 1\Cracked ' cn str '\10Hz'];

cd(dir);
load('eom.mat')
load('state.mat')
load('a k.mat')
load('t.mat') % Time/sample vector [N x 1]
load('p.mat') % Force matrix [nDOF x N]

A = state.A; % System matrix A
B = state.B; % Input matrix B

dt = t(2)-t(1); % Sample size/time step
nDOF = size(A,1)/2; % Number of degrees of freedom
N = size(t,2); % Number of samples
n p = nDOF; % Number of forces
n d = 3; % Number of observations

% 2) Create observation/measurement data
% Selection matrices
S d = zeros(n d,nDOF); % Velocity
S v = zeros(n d,nDOF); % Displacements
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S p = eye(nDOF); % Forces
S a = zeros(n d,nDOF); % Selection matrix for accelerations

a = a k; % Acceleration matrix [nDOF x N]
loc = [70 79 91]; % Degrees of freedom where measured [a1 a2 ...]
S a(1,loc(1)) = 1;
S a(2,loc(2)) = 1;
S a(3,loc(3)) = 1;
d = S a*a; % Observation matrix [n d x N]

% Add measurement noise
nl = 0.1; % Noise level
noise = zeros(n d,N);
d n = zeros(n d,N);
for ind = 1:n d

noise(ind,:) = nl*std(d(ind,:))*randn(1,N);
d n(ind,:) = d(ind,:) + noise(ind,:);

end

% 3) Construct the (discrete-time) state-space matrices A, B, C and D
Mi = eom.Mi; % Inverse mass matrix [nDOF x nDOF]
C = eom.C; % Damping matrix [nDOF x nDOF]
K = eom.K; % Stiffness matrix [nDOF x nDOF]

G = [S d-S a*Mi*K S v-S a*Mi*C]; % Output matrix G [n d x 2nDOF]
J = S a*Mi*S p; % Direct transmission matrix J [n d x nDOF]

% 4) State estimation
Q = 1e-5*eye(nDOF*2); % Process noise covariance matrix
R = 0.1*diag(std(noise,0,2)); % Measurement noise covariance matrix
x0 = zeros(nDOF*2,1); % Initial state estimate
P0 = 1e-3*eye(nDOF*2); % Initial state error covariance matrix

[x id,P id] = kalman filter(A,B,G,J,Q,R,P0,x0,p,d n); % x id [2nDOF x N]

% 5) Response prediction
n d = nDOF; % Number of output positions
% Displacements
S d1 = eye(n d,nDOF);
S v1 = zeros(n d,nDOF);
S a1 = zeros(n d,nDOF);
G1 = [S d1-S a1*Mi*K S v1-S a1*Mi*C];
J1 = S a1*Mi*S p;
u pr = G1*x id+J1*p; % Predicted displacements [n d x N], here [nDOF x N]

% Velocities
S d2 = zeros(n d,nDOF);
S v2 = eye(n d,nDOF);
S a2 = zeros(n d,nDOF);
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G2 = [S d2-S a2*Mi*K S v2-S a2*Mi*C];
J2 = S a2*Mi*S p;
v pr = G2*x id+J2*p; % Predicted velocities [n d x N], here [nDOF x N]

% Accelerations
S d3 = zeros(n d,nDOF);
S v3 = zeros(n d,nDOF);
S a3 = eye(n d,nDOF);
G3 = [S d3-S a3*Mi*K S v3-S a3*Mi*C];
J3 = S a3*Mi*S p;
a pr = G3*x id+J3*p; % Predicted accelerations [n d x N], here [nDOF x N]

% Save
% dir = ['W:\Master Thesis\UpWind Jacket\Kalman filter\Results\Jacket 1\Cracked ' cn str '\1Hz'];
dir = ['W:\Master Thesis\UpWind Jacket\Kalman filter\Results\Jacket 1\Cracked ' cn str '\harmonic'];
% dir = ['W:\Master Thesis\UpWind Jacket\Kalman filter\Results\Jacket 1\Cracked ' cn str '\10Hz'];

cd(dir);
save('u pr.mat','u pr')
save('v pr.mat','v pr')
save('a pr.mat','a pr')
save('t.mat','t')
% save('P id.mat','P id')

E.8 Function: Kalman Filter

function [x f,P f] = kalman filter(A,B,C,D,Q,R,P0,x0,p,d)

% DISCRETE-TIME STATE-SPACE MODEL:
% x k+1 = A*x k + B*p k + w k
% d k = C*x k + D*p k + v k
% Q: process noise covariance [2*nDOF x 2*nDOF]
% R: measurement noise covariance [2*nDOF x 2*nDOF]
% x0: initial state estimate at t = 0 [2*nDOF x 1]
% P0: initial error covariance at t = 0 [2*nDOF x 2*nDOF]
% N: number of samples
% p: applied forces [n p x N]
% d: data vector [n d x N]

N = size(d,2); % Number of samples
nDOF = size(A,1)/2; % Number of degrees of freedom
x f = zeros(2*nDOF,N); % Preallocation
P f = zeros(2*nDOF,2*nDOF); % Preallocation

for k = 1:N
% Time update
if k==1

x f(:,k) = A*x0;
P f(:,:,k) = A*P0*A' + Q;

else
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x f(:,k) = A*x f(:,k-1)+B*p(:,k-1);
P f(:,:,k) = A*P f(:,:,k-1)*A' + Q;

end

% Measurement update
K k = P f(:,:,k)*C'*(C*P f(:,:,k)*C'+R)ˆ(-1);
x f(:,k) = x f(:,k) + K k*(d(:,k)-C*x f(:,k)-D*p(:,k));
P f(:,:,1) = P f(:,:,k) - K k*C*P f(:,:,k);

end
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Nomenclature

δu Virtual horizontal displacement [m]
ε Phase angle [rad]
A System matrix
A Cross-section area [m2]
ax Horizontal fluid acceleration [m/s2]
az Vertical fluid acceleration [m/s2]
B Curvature-displacement matrix
B Input matrix
B Strain-displacement matrix
C Local flexibility coefficient [rad/Nm]
CD Drag coefficient
CM Inertia coefficient
δw Vertical virtual displacement [m]
d Output/measurement vector
D Diameter [m]
D Diameter [m]
ε Strain [–]
E Young’s modulus [N/m2]
f Force vector
f Frequency [Hz]
fp Peak frequency [Hz]
G Output matrix
h Height [m]
Hs Significant wave height [m]
I Area moment of inertia [m4]
I Mass moment of inertia [kgm2]
J Direct transmission matrix
K Stiffness matrix
K Crack coefficient [m]
k Wave number [rad/m]
Kr Rotational spring coefficient [Nm/rad]
L Length [m]
lNA Length [m]
M Mass matrix
M Bending moment [Nm]
m Mass [kg]
N Shape function matrix

139



N Normal force [N]
n Distributed axial line load [N/m]
nDOF Number of degrees of freedom
nd Number of outputs/measurements
np Number of inputs/forces
ω Wave frequency [rad/s]
P A posteriori error covariance
P− A priori error covariance
P0 Initial a posteriori error covariance
φ Rotation of neutral axis
φ Wave potential
ϕ Rotation angle [◦]
Q Process noise covariance
q Vertical distributed load [N/m]
R Measurement noise covariance
ρ Mass density [kg/m3]
σ Stress [N/m2]
T Transformation matrix
θ Rotation of the cross-section
t Time coordinate [s]
Tp Spectral peak period [s]
ü Horizontal acceleration [m/s2]
u̇ Horizontal velocity [m/s]
u̇rel Relative acceleration between water flow and structure’s motion [m/s2]
u Vector with degrees of freedom
u Horizontal displacement [m]
u Horizontal wave velocity [m/s]
urel Relative velocity between water flow and structure’s motion [m/s]
V Shear force [N]
Vr Rated wind speed [m/s]
w Vertical displacement [m]
w Vertical wave velocity [m/s]
w′ Slope of w
w′′ Curvature of w
x̂ A posteriori state estimate
x̂− A priori state estimate
x̂0 Initial state vector
x State vector
ξ Natural coordinate [–]
x Space coordinate [m]
ζ Wave elevation [m]
ζa Wave amplitude [m]
z Vertical space coordinate [m]
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