
Thermodynamical Analysis Tool in 
MATLAB
Development of a thermodynamical analysis 

tool for the Combustion Rig in the 

combustion laboratories at MARINTEK, 

Trondheim

Anders Rohde

Marine Technology

Supervisor: Harald Valland, IMT

Department of Marine Technology

Submission date: June 2014

Norwegian University of Science and Technology



 



Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Marine Technology

Master’s Thesis

Thermodynamical Analysis Tool in MATLAB

Development of a thermodynamical analysis tool for the Combustion Rig in the

combustion laboratories at MARINTEK, Trondheim

Author: Anders Rohde

Supervisor: Prof. Harald Valland

Tuesday 10th June, 2014









Abstract

To meet the increasing world populations need for transportation, fossil fueled ships will

are ready to offer their services. Less fuel fuel consumed per cargo unit transported, is

favourable for both the operator and the enviroment. Reduced fuel consumption means

less money spent on fuel and less pollution to the air. Stricter regulations regarding air

pollutions from ship also requiare actions to be take to meet these.

Better understanding of the combustion processes, is an important factor to improve the

diesel and gas engines operating around the world today. To obtain this understanding

and knowledge, experiments needs to be performed. Knowing the proper test conditions

during an experiment is vital to improve the accuracy of the results.

This thesis have coped with a way to improve the experiments performed in a fixed

volume combustion rig at MARINTEK. The problem at current time is to have a proper

estimate of the gas compsiton in the righ when the test fuel is injected. Creating the

proper test temperature and pressure is made by the combustion of a combustable gas.

The problem is to know how much of the combustable species in the gas that have

actually combusted.

Estimating the compostion have been done by creating a two-zone model, where the

unburned gas is in one and the completely combusted is in the other. This make a set

of four differential equations, that is solved simultaniously. Input to these calculations

is the measured pressure from a finished experiment. The calcualations is performed

offline after an experiment is performed.

Based on the estimate of the composition after solving the two-zone model, an estimate

for the rate of heat release from the gas combustion is calculated based on the mass of

gas burned and the exact known composition of the combustables.

A estimate for the ROHR of the test fuel is calculated, using a closed system analysis.

The a plot of the ROHR for the pre-combustion and injection experiment is displayed

in a graphical user interface developed for this purpose.

Accuracy of the assumptions and methodes used is discussed, and suggestions for

improvements and future work is implemented in the disucussion.





Sammendrag

For å møte en voksende verdensbefolknings økende behov for transport, st̊ar skip drevet

av fossile brensler klare til å levere. Lavere fuelforbruk per enhet last transportert, er

fordelaktig operatøren av skipet og for miljøet. Redusert fuelforbruk betyr penger spart

og mindre utslipp av drivhusgasser. Lavere utslippskrav fra skip til luft medfører at

tiltak m̊a iverksettes for å møte disse.

En bedre forst̊aelse av forbrenningsprossesen, er en av nøkkelfaktorene for å forbedre

diesel og gasmotorer som er i drift verden rundt i dag. For å øke kunnskapen rundt

forbrenningsprossessen, er eksperimenter nødvendig. Presis kjennskap til testforholdene

under eksperimentene er nødvendig for å f̊a nøyaktige resultater.

Denne masteroppgaven har sett p̊a en m̊ate å forbedre resultater fra eksperimenter

utført i en forbrenningsbombe med konstant volum hos MARINTEK. P̊a n̊aværende

tidspunkt er det ikke noen presis m̊ate å estimere sammensetningen av gassen i bomben

n̊ar testdrivstoffet sprøytes inn. For å øke trykket og temperaturen til det niv̊aet som

trengs for å gjennomføre eksperimentet, brennes en gassblanding best̊aende av CO, N2

og O2. Hvor mye av denne gassen som brenner er det laget en algoritme for å estimere.

Denne algoritmen tar utgangspunkt i at bomba kan deles opp i to soner, en med

helt uforbrent og en med helt forbrent gass. Dette modelleres med total fire

differensialligninger, som løses simulatant. Målt trykk er input til disse beregningene,

som utføres etter at eksperimentet er ferdig.

Rate of heat release for gassen har blitt beregnet med løsningen av tosone-modellen.

Et estimat for rate of heat release for test drivstoffet er ogs̊a beregnet. Alle relevante

resultater gis til brukeren gjennom et grafisk brukergrensesnitt.

Avslutningsvis er nøyaktigheten av de utførte antagelsene drøftet, presisjonen p̊a

estimatet sett i forhold til nøyaktighten p̊a m̊alingene, samt forslag til implementeringer

som vil øke presisjonen.





Acknowledgements

This thesis is written during the spring semester of 2014 at Department of Marine

Technology at NTNU in Trondheim. I will thank my supervisor prof. Harald Valland

for thoughtful guidance and help in gaining insigth in thermodynamical problemsolving.

Thanks also to Maximilian Malin at MARINTEK for providing me with this thesis to

help improving his research. I would like to thank the other members of office C1.076

for a good working enviroment this semester.

Thanks also to Ida Marlen Strand at AMOS for helping me structuring my toughts and

forcing me to keep going when problems seemed unsolvable.

Trondheim, June 10th

Anders Rohde





Contents

Abstract iv

Abstract - Norwegian vi

Acknowledgements viii

Contents x

List of Figures xiii

List of Tables xv

Abbreviations xvi

Physical Constants xvii

Symbols xviii

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 4

2.1 Analysis of the pre-combustion phase . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Ideal gas properties . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Resulting equations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Fractions of each gas . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Calculation of the thermodynamic properties . . . . . . . . . . . . 12

2.1.6 Specifications for the two-zone model . . . . . . . . . . . . . . . . . 13

2.1.7 Mixing of the gases in the two zones . . . . . . . . . . . . . . . . . 14

2.1.8 Heat losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Rate of heat release (ROHR) . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Pre-mixed combustion . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Diesel injection experiment . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Implementation of theoretical background to develop the MATLAB
algorithm 22

x



Contents xi

3.1 Creating structure and import of data . . . . . . . . . . . . . . . . . . . . 22

3.2 Loading of constants and import of measurements . . . . . . . . . . . . . 24

3.3 Thermodynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Heat losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Chemical reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Fit of pressure curve and Eichelbergs coefficient . . . . . . . . . . . 29

3.5 Differential equations in the two-zone model . . . . . . . . . . . . . . . . . 30

3.6 Rate of heat release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Pre-combustion phase . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Injection experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Graphical User Interface (GUI) . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Discussions regarding accuracy of calculations and future work to
improve estimation 42

4.1 Assumtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Perfect mixed gases . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Relative combustion rate of H2 and CO . . . . . . . . . . . . . . . 43

4.2 Constant temperature of the rig Twall . . . . . . . . . . . . . . . . . . . . 44

4.3 Unaccuracies in measured pressure . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Precisicion of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Verification of gas mixture composition . . . . . . . . . . . . . . . 47

4.5.2 Heat losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.3 ROHR in injection experiment . . . . . . . . . . . . . . . . . . . . 48

A Thermodynamic Coefficents from NASA GLENN DATABASE 49

B Thermochemical Data 51

C Numerical differential 52

D Matlab scripts 53

D.1 GUI function and figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

D.2 Function to initiate calculations . . . . . . . . . . . . . . . . . . . . . . . . 53

D.3 Import measurements and calculate gas composition based on user input . 55

D.4 Gas composition after pre-combustion . . . . . . . . . . . . . . . . . . . . 62

D.5 Heat loss coefficient calcualtion . . . . . . . . . . . . . . . . . . . . . . . . 64

D.6 Heat capacites calulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D.7 NASA GLENN COEFFICIENTS . . . . . . . . . . . . . . . . . . . . . . . 69

D.8 Two-zone model execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

D.9 Function to update variables in two-zone model . . . . . . . . . . . . . . . 74

D.10 Function to calculate the mass fraction in zone 1 and zone 2 . . . . . . . . 77

D.11 Function to calculate the thermodynamic properties of zone 1 and zone 2 78

D.12 Function to calculate the specific entalphy in zone 1 and zone 2 . . . . . . 81

D.13 Rate of heat release calculations . . . . . . . . . . . . . . . . . . . . . . . 83

D.14 Function to calculate kappa for ROHR of injection experiment . . . . . . 89



Contents xii

D.15 Output generated on user request . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 94



List of Figures

1.1 MARPOL Annex VI NOx Emission Limits . . . . . . . . . . . . . . . . . 2

1.2 MARPOL Annex VI Fuel Sulfur Limits . . . . . . . . . . . . . . . . . . . 2

1.3 Combustion Rig layout, made by Maximilian Malin, MARINTEK . . . . 3

2.1 Illustration of two-zone model in the CR . . . . . . . . . . . . . . . . . . . 5

2.2 Control volume around the CR . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Control volume for zone 1 and zone 2 . . . . . . . . . . . . . . . . . . . . 7

2.4 Unity-feedback control configuration . . . . . . . . . . . . . . . . . . . . . 20

3.1 Flowchart of the MATLAB algorithm . . . . . . . . . . . . . . . . . . . . 23

3.2 Measured pressure from two dynamic and one static pressure sensor
during one experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Specific heat capacity at constant pressure cp . . . . . . . . . . . . . . . . 26

3.4 Specific heat capacity at constant volume cv . . . . . . . . . . . . . . . . . 27

3.5 Heat capacity ratio κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Specific enthalpy h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Specific internal energy u . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 Rate of heat loss in cool down phase Newtons law of cooling with fitted
value from Eichelbergs formula . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 α from Eq. 2.49 and fitted value for Eichelbergs formula . . . . . . . . . . 31

3.10 p from measurements and fitted with Fourier . . . . . . . . . . . . . . . . 32

3.11 Differentiation of pressure measurements, numerically and from fitted
Fourier function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.12 Mass transported from zone 1 to zone 2 during pre-combustion as % of
total mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.13 Temperature in zone 1 during the pre-combustion . . . . . . . . . . . . . . 35

3.14 Volume in zone 1 during pre-combustion as % of total volume . . . . . . . 35

3.15 Temperature in zone 2 during pre-combustion . . . . . . . . . . . . . . . . 36

3.16 Effect of no controller, P-controller and PI-controller on ∆T . . . . . . . . 37

3.17 Plot of ROHR for the pre-combustion phase with numerical differentiation
of the mass and with fitted curve . . . . . . . . . . . . . . . . . . . . . . . 38

3.18 Plot of ROHR for the injection experiment with numerical differentiation
of pressure and with smoothened curve . . . . . . . . . . . . . . . . . . . . 39

3.19 GUI at startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.20 GUI after finished calculations . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Laminar flame speed of CO and H2 mixture . . . . . . . . . . . . . . . . . 43

4.2 ROHR from refrence experiment plotted by Maximilian Malin, MARIN-
TEK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



List of Figures xiv

4.3 Resulting temperature curves with varying ηcomb . . . . . . . . . . . . . . 46



List of Tables

3.1 Molar masses and gas constants for components . . . . . . . . . . . . . . . 24

4.1 Variation in combustion efficency and resulting temperature . . . . . . . . 47

4.2 Variation in combustion efficency and resulting temperature . . . . . . . . 47

A.1 Thermodynamic coefficients CO, CO2 and H2 in the range 200-1000 [K] . 49

A.2 Thermodynamic coefficients N2, O2 and H2O in the range 200-1000 [K] . 50

A.3 Thermodynamic coefficients CO, CO2 and H2 in the range 1000-6000 [K] 50

A.4 Thermodynamic coefficients N2, O2 and H2O in the range 1000-6000 [K] . 50

B.1 Thermochemical data for combustion gases . . . . . . . . . . . . . . . . . 51

xv



Abbreviations

CR Combustion Rig

LHV Lower Heating Value

ROHR Rate Of Heat Release

LNG Liqufied Natural Gas

xvi



Physical Constants

Gas constant R0 = 8.31451
[

J
molK

]

xvii



Symbols

A area
[
m2
]

a1 thermodynamic coefficent
[
K2
]

a2 thermodynamic coefficent [K]

a3 thermodynamic coefficent [−]

a4 thermodynamic coefficent
[
K−1

]
a5 thermodynamic coefficent

[
K−2

]
a6 thermodynamic coefficent

[
K−3

]
a7 thermodynamic coefficent

[
K−4

]
b1 thermodynamic integration coefficient [K]

c specific heat capacity
[

kJ
kgK

]
cp specific heat capacity at constant pressure

[
kJ
kgK

]
cv specific heat capacity at constant volume

[
kJ
kgK

]
h specific entalphy

[
kJ
kg

]
∆h0f,i Standard enthalpy of formation

[
MJ
kg

]
∆T temperature difference pre-combustion ended [K]

m mass [kg]

m1 mass in zone 1 [kg]

m2 mass in zone 2 [kg]

p pressure 2 [Pa]

T temperature [K]

T1 temperature in zone 1 [K]

T2 temperature in zone 2 [K]

u specific internal energy
[
kJ
kg

]
V volume

[
m3
]

V1 volume in zone 1
[
m3
]

xviii



Symbols xix

V2 volume in zone 2
[
m3
]

α convection factor
[

J
m2K

]
ε correction factor in Eichelbergs formula

[
J

m2K
√
PaK

]
ηcomb combustion efficiency [%]

κ specific heat capacity ratio [-]



Chapter 1

Introduction

1.1 Background and motivation

Reducing the emissions from combustion of fossil fuels are a topic of major interst.

Governments and international organisations make regulations to limit the maximum

amount of specific types of emissions from marine diesel engines. Operators want to

get more power out of their machinery at the same fuel consumption, saving costs and

reduce the production of emission gases.

Marine diesel operators need to meet the regulations made by IMO, expecially regarding

NOx and S as IMO regulation in Fig. 1.1 and Fig. 1.2. NOx formation is due to reaction

with the N2 in the air and fuel, while SOx emissions emerge from sulphur in the fuel.

Better knowledge about the combustion process is a key factor to reduce the emissions

from diesel engines. This could lead to reduced fuel consumption due to increased

efficiency, lower NOx formation with a better understanding on how this formation

occurs and even implementation of new fuels, like LNG. To gain this understanding

experiments is necessary.

Combustion experiments can be performed in different equipment depending on what

is to be investigated. Testing real operation properties, an engine equiped with

pressure and temeperature sensors can be used. For close up investigation of the flame

propagation, combustion rigs or combustion bombs can be used. These provide easily

visible access to the combustion, which then can be recorded with an high speed camera.

1



Chapter 1. Introduction and motivation 2

Figure 1.1: MARPOL Annex VI NOx Emission Limits

Figure 1.2: MARPOL Annex VI Fuel Sulfur Limits

The combustion rig (CR) this Master Thesis is related to, is located in the combustion

laboratory at MARINTEK, Trondheim. This combustion rig is a fixed volume

combustion bomb, with the layout seen in Fig. 1.3. When performing an experiment

this rig is first scavanged with pressurized air, to make sure all exhaust gases from



Chapter 1. Introduction and motivation 3

previous experiments are removed. The air inlet is then closed, and when the pressure

have stabilized, the exhaust is closed. Air at atmospheric pressure is then filling the CR.

The CR is then charged with a gas mixture consisting of CO, N2 and O2, up to a

required pressure. Gas inlet valve is then closed. A spark plug then ignites the burnable

gas mixture in the rig, increasing both the temperature and pressure. At a set time

after the spark ignition, the experiment is performed with injection of liquid fuel. An

new experiment can then be prepeared.

Figure 1.3: Combustion Rig layout, made by Maximilian Malin, MARINTEK

1.2 Problem description

The aim of this master thesis is to develop a thermodynamic analysis tool useful to verify

the test conditions in the combustion rig. Main parameters to investigate is the pressure

and temperature when the combustion experiment starts. All calculations is to be done

offline, using recorded data measurements from an already performed experiment.

The challange is to determine the composition of the gas in the rig before injection.

This requires to know the composition of the gas in the rig when it is charged with

the burnable mixture and after this mixture have been combusted. When these values

have been calculated, the rate of heat release in both the gas combustion and liquid fuel

combustion is to be calculated.

The thermodynamic analysis tool have been made in MATLAB, providing the user with

a grapical program to use.



Chapter 2

Theoretical Background

This chapter describes the theoretical background to build up a model for the combustion

in the pre-mixed phase, to get a better estimate of the composition of the gas in the

CR during the experiment. The equations needed to calculate the rate of heat release

(ROHR) in the pre-mixed phase and in the fuel injection phase is also described.

2.1 Analysis of the pre-combustion phase

The pre-combustion of the mixed gases is taking place in a closed chamber having only

heat interaction with the surroundings. This combustion process can be modelled as

a reaction going from one zone with unburned gases to a zone with completely burned

gases, as illustrated in Fig. 2.1. In both zones the gas is assumed to be perfectly mixed.

Between the two zones there is a mass transport ṁ12, representing the gas burned. The

gas composition in the two zones is clearly stated, zone 1 being the pre-charged gas

mixture and zone 2 being products of the completely combustion of the mixture in zone

1. The gases present in each of the two zones are shown in Fig. 2.1. The composition is

fixed in both zones during the pre-combustion. N2 is assumed to not react during the

combustion, and excess O2 is present in zone 2.

4



Chapter 2. 5

1

2

Unburned gas
Burned gas

ṁ12

CO

N2

O2

H2

H2O

CO2

N2

O2
p(t) = p(t)

Figure 2.1: Illustration of two-zone model in the CR

2.1.1 Ideal gas properties

During the pre-combustion the pressure and temperature is relatively low, and it is

assumed that the gases can be treated as ideal gases, following the ideal gas law:

pV = mRT (2.1)

where p is the pressure, V is the volume, m is the mass, R the gas constant and T is

the temperature.

To study the changes on one or several of the parameters, the ideal gas law can be

logarithmically differentiated:

ṗ

p
+
V̇

V
=
ṁ

m
+
Ṙ

R
+
Ṫ

T
(2.2)

where ṗ, V̇ , ṁ, Ṙ and Ṫ is the time derivative of pressure, volume, mass, gas constant

and temperature. R is a constant, and will therfore not be time dependent. Taking R

out of the equation and collect all factors on one side gives:

ṗ

p
− Ṫ

T
+
V̇

V
− ṁ

m
= 0 (2.3)



Chapter 2. 6

CV

Combustion rig

Q̇

m

R(t)

p(t)

T(t)

V

Figure 2.2: Control volume around the CR

2.1.2 Conservation of energy

Through experiments, it have been proved that energy is conserved. Some of the

experiment was performed by James Joule (1818-1889) (Tipler and Mosca, 2008). In

Joule’s most famous experiment, he found the potential energy needed to heat 1 lb of

water by 1 degree F. This was the starting point for what is known today as the first

law of thermodynamics.

The combustion rig needs to be studied in two different ways regarding the first law of

thermodynamics. First, it is treated globally as a closed system with a control volume

(CV) around the CR, illustrated in Fig. 2.2. Accross the CV border it is only heat

interaction with the surroundings. Secondly, the CR is separated into two zones, each

zone an open system with heat, mass and work interaction, illustrated in Fig. 2.3

Generally, the first law of thermodynamics is:

U = Q−W (2.4)

where U is the total internal energy in the system, Q is the total heat in or out of the

system and W is the total of work either made on the system or from the system on the

surroundings.

Evaluating the first law of thermodynamics with respect to time:



Chapter 2. 7

CV1

CV2V1(t)

m1(t)

T1(t)
T2(t)

m2(t)

V2(t)

ṁ12

Q̇1

Q̇2

Figure 2.3: Control volume for zone 1 and zone 2

∂U

∂t
=
∂Q

∂t
− ∂W

∂t
or U̇ = Q̇− Ẇ (2.5)

where both equations are equal, using Newton’s notation for time derivative with the

dot above the variable.

For the change in time, the internal energy U can be specified:

U̇ = mcṪ + uṁ (2.6)

where m is the total mass of the system, c is the specific heat capacity, Ṫ is the rate of

temperature change, u is the specific internal energy and ṁ is the rate of mass change.

For the work W the rate of change is given as:

Ẇ = pV̇ (2.7)

where p is the pressure and V̇ is the rate of volume change.



Chapter 2. 8

For a closed system as the combustion rig is assumed to be during the first phase of the

experiment, there is no mass interaction or change in total volume. This reduces the

first law of thermodynamics to:

U̇ = Q̇ = mcvṪ (2.8)

Equation 2.8 can be used to calculate the internal energy change in the CR due to heat

energy transferred from the gas to the walls in the CR.

For the mass and volume interaction between the two zones in Fig. 2.1, the combustion

process is treated as an open system. This two open systems have mass and work

interactions when the volume of each of the two zones change during the pre-combustion.

The first law of thermodynamics for an open combustion system is given as:

mcvṪ + pV̇ + uṁ = Q̇+ hF ṁF (2.9)

where hF is specific enthalphy of the fuel and ṁF is the rate of fuel mass flow into the

system.

2.1.3 Resulting equations

In the two-zone model zone 1 and zone 2 have the same pressure, as illustrated in Fig.

2.1. Temperature, volume and mass is determined inside each zone, seen in Fig. 2.3.

For zone 1 Eq. 2.3 then becomes:

ṗ

p
− Ṫ1
T1

+
V̇1
V1
− ṁ1

m1
= 0 (2.10)

where the subscript 1 represent zone 1.

Fuel in the two-model is the burnable gas transported from zone 1 to zone 2. The rig is

assumed to be completely sealed off against the surroundings, so no gas is lost to leakage

or transported into the system. The rate of mass change in zone 1 ṁ1 then equals the

rate of fuel mass change ṁF :



Chapter 2. 9

ṁ1 = ṁF (2.11)

The fuel beeing represented by zone 1, give that:

h1 = hF (2.12)

where h1 is the specific enthalphy of zone 1 and hF is the fuel specific enthalphy.

Combining Eq. 2.9, 2.11 and 2.12 for zone 1 give:

m1cv,1Ṫ1 + pV̇1 + u1ṁ1 = Q̇1 + h1ṁ1 (2.13)

For zone 2 Eq. 2.3 becomes:

ṗ

p
− Ṫ2
T2

+
V̇2
V2
− ṁ2

m2
= 0 (2.14)

where subscript 2 represent zone 2.

The mass transport can only take place between zone 1 and zone 2, such that:

ṁ1 + ṁ2 = 0→ ṁ2 = −ṁ1 (2.15)

where ṁ2 is the rate of mass change in zone 2.

Now combining Eq. 2.9, 2.11, 2.12 and 2.15 give:

m2cv,2Ṫ2 + pV̇2 + u2ṁ2 = Q̇2 − h1ṁ2 (2.16)

The total volume of the CR consists of the two zones:

V1 + V2 = V (2.17)



Chapter 2. 10

and since the CR is a constant volume combustion chamber the total volume change is

zero:

V̇1 + V̇2 = 0 (2.18)

A system of equations have been set up in matrix notation. For zone 1 the Eq. 2.10 and

Eq. 2.10 is implemented, for zone 2 Eq. 2.14 and Eq. 2.16 and the relations between

them bescribed in Eq. 2.15 and Eq. 2.18 give the following system:



1
p − 1

T1

1
V1
− 1

m1
0 0

0 m1cv1 p u1 0 0

0 0 1 0 0 1

0 0 0 1 0 0

1
p 0 0 1

m2
− 1

T2

1
V2

0 0 0 −u2 m2cv2 p





ṗ

Ṫ1

V̇1

ṁ1

Ṫ2

V̇2


=



0

Q̇1 + h1ṁ1

0

−ṁ12

0

Q̇2 − h1ṁ2


The relation in Eq. 2.18 also give:

V̇1 = −V̇2 (2.19)

Implementing Eq. 2.19, the system of equaitons can be reduced to:

1
p − 1

T1

1
V1
− 1

m1
0

0 m1cv1 p u1 0

0 0 0 1 0

V2
p 0 −1 V2

m2

V2
T2

0 0 −p −u2 m2cv2





ṗ

Ṫ1

V̇1

ṁ1

Ṫ2


=



0

Q̇1 + h1ṁ1

−ṁ12

0

Q̇2 − h1ṁ2


Defining the mass transport from zone 1 to zone 2 as:

ṁ1 = −ṁ12 (2.20)

Equation 2.20 and 2.15 reduces the system of equations to:



Chapter 2. 11



1
p − 1

T1

1
V1

0

0 m1cv1 p 0

−1
p 0 1

V2

1
T2

0 0 p −m2cv2





ṗ

Ṫ1

V̇1

Ṫ2


=



− ṁ12
m1

Q̇1 + (u1 − h1)ṁ12

− ṁ12
m2

Q̇2(u2 − h1)ṁ12


Finally the system of equations can be solved for ṗ, this being known from measurements:



1
m1

− 1
T1

1
V1

0

(h1 − u1) m1cv1 p 0

− 1
m2

0 1
V2

1
T2

(h1 − u2) 0 p −m2cv2





ṁ12

Ṫ1

V̇1

Ṫ2


=



− ṗ
p

Q̇1

ṗ
p

Q̇2



2.1.4 Fractions of each gas

Mass and molar fractions is necessary to perform the calculations. Mass fractions have

been used to calculate the total thermodynamic state of a mixed gas. Molar fractions

will be used to calculate the number of mole of each substance in the reactants and

products of the combustion.

Definition of the molar fraction is:

yi =
ni∑
n

(2.21)

where yi is the molar fraction, ni is the number of moles of a substance, and
∑
ni is the

total amount of moles.

In an similar matter, the mass fraction is defined as:

xi =
mi∑
m

(2.22)

where xi is the mass fraction, mi mass of the substance and
∑
m is the total mass of

the gas.

If the molar fraction is known, the mass fraction can be calculated with:



Chapter 2. 12

xi =
yiMi

j=k∑
j=1

Mjyj

(2.23)

where Mi is the molar mass of the specific substance, and
j=k∑
j=1

Mjyj is the sum of molar

mass multiplied with molar fraction for each substance of the gas, up to substance k.

If the mass fraction is known, the molar fraction can be calculated with:

yi =
xiR0

Mi

j=k∑
j=1

Rjxj

(2.24)

where R0 is the universal gas constant, Rj is the gas constant for each gas and xj is the

mass fraction of each gas.

2.1.5 Calculation of the thermodynamic properties

With the gases in the unburned and burned zones perfect mixed, the thermodynamic

properties for the gases are equal in the entire zone. Heat capacity for constant volume,

cv can be calculated based on the pressure and temperature for each specie and for the

entire zone it can be found based on the mass fraction of each substance.

Using the equations in the NASA GLENN database for calculating specific heat capacity

at constant pressure and specific enthalpy (McBride et al., 2002)

C0
p(T )

R
= a1T

−2 + a2T
−1 + a3 + a4T + a5T

2 + a6T
3 + a7T

4 (2.25)

H0(T )

RT
= −a1T−2 + a2

ln(T )

T
+ a3 + a4

T

2
+ a5

T 2

3
+ a6

T 3

4
+ a7

T 4

5
+
b1
T

(2.26)

here a1 to a7 and b1 is factors given in the database, with temperature range from 200

- 1000 [K] and for 1000 - 6000 [K]. Values for all gases used can be found in App. A

From this equations the thermodynamic properties can be evaluated:



Chapter 2. 13

cp(T ) =

[
C0
p(T )

R

]
·R (2.27)

where cp(T ) is the specific heat capacity at constant pressure as a function of

temperature. Further the heat capacity at constant volume cv(T ) as a function of

temperature can be calculated with:

cv(T ) = cp(T )−R (2.28)

The specific enthalphy as a function of temperature h(T ) is calculated with:

h(T ) =

[
H0(T )

RT

]
·RT (2.29)

For all gases the specific internal energy u(T ) can be calculated:

u(T ) = h(T )−RT (2.30)

2.1.6 Specifications for the two-zone model

Knowing the thermodynamic properties for each gas at the temperature in the zone, the

final properties can be calculated using the mass fraction of each gas in the respective

zone. The equation used for the specific heat in zone 1 is seen below.

c(1)v (T ) = cv,CO(T ) · x(1)CO + cv,H2(T ) · x(1)H2
+ cv,O2(T ) · x(1)O2

+ cv,N2(T ) · x(1)N2
(2.31)

In zone two the equation is extended with the to gases of H2O and CO2 seen in Eq.

2.32.

c(2)v (T ) = cv,CO(T ) · x(2)CO + cv,H2(T ) · x(2)H2
+ cv,CO2(T ) · x(2)CO2

+cv,O2(T ) · x(2)O2
+ cv,N2(T ) · x(2)N2

+ cv,H2O(T ) · x(2)H2O

(2.32)



Chapter 2. 14

In the same manner the specific internal energy in zone 1 is found with:

u(1)(T ) = uCO(T ) · x(1)CO + uH2(T ) · x(1)H2
+ uO2(T ) · x(1)O2

+ uN2(T ) · x(1)N2
(2.33)

And the specific internal energy for zone 2 is calculated with:

u(2)(T ) = uCO(T ) · x(2)CO + uH2(T ) · x(2)H2
+ uCO2(T ) · x(2)CO2

+uO2(T ) · x(2)O2
+ uN2(T ) · x(2)N2

+ u
(2)
H2O

(T ) · x(2)H2O

(2.34)

The specific entalphy h represent the entalphy of the fuel, and in the two-zone model

this is the mass transported from zone 1 to zone 2. Then the specific is not necessary

for zone 2, and for zone 1 it can be calculated with:

h(1)(T ) = hCO(T ) · x(1)CO + hH2(T ) · x(1)H2
+ hO2(T ) · x(1)O2

+ hN2(T ) · x(1)N2
(2.35)

2.1.7 Mixing of the gases in the two zones

After the pre-combustion is finished, the two zones mixes. This process is assumed to

happen instantaneousely. The resulting temperature after the mixing can be found by

solving the equation:

m1h1(T ) +m2h2(T ) = (m1 +m2) · hmix(T ) (2.36)

where m1 is the mass in zone 1, h1(T ) is the specific entalphy in zone 1, m2 is the mass

in zone 2, h2(T ) is the enthalphy in zone 2 and hmix(T ) is the resulting enalphy after

mixing.

2.1.8 Heat losses

Heat losses can be calculated with the first law of thermdynamics as bescribed in Eq. 2.8.

Another way of calculating heat losses, is with the convective law, known as Newton’s

law of cooling from (Moran and Shapiro, 2010).



Chapter 2. 15

Q̇ = α(T ) ·A · (Tgas − Twall) (2.37)

where α(T ) is heat transfer coefficient as a function of temperature T , A is the area

where the gas is exposed to the wall, Tgas is the gas temperature and Twall is the wall

temperature. The wall temperature Twall is assumed constant over the entire experiment.

The gas temperature Tgas needs to be determined. Solving the ideal gas law, Eq. 2.1

for temperature, gives the gas temperature:

Tgas =
pV

mR
(2.38)

Assuming the mass and volume does not change during one cycle, and that the pressure

is measured, the unknown is the gas constant.

The gas constant for a mixture is dependend on the compostion of the mixture. Using

a combustion efficiency, ηcomb defined as:

ηcomb =
mCO,comb

mCO
=
mH2,comb

mH2

(2.39)

where mCO,comb is combusted mass of CO, mCO is the total mass of CO, mH2,comb is

the combusted mass of H2 and is the total mass of H2. The combustion efficency is

assumed to be equal for CO and H2.

The composition of the gas after an combustion with combustion efficency ηcomb have

been calculated requiring that the following equation is in chemical equilibrium:

On general form, the chemical equilibrium can be stated as:

nRO2O2+n
R
COCO + nRH2

H2 + nRN2
N2 → (2.40)

nPO2O2 + nPCOCO + nPH2
H2 + nPN2

N2 + nPCO2
CO2 + nPH2OH2O

where nRj is the number of moles of gas j as a reactant, and nPj is the number of moles

of gas j as a product of the reaction.



Chapter 2. 16

Using ηcomb defined in Eq. 2.39, the number of moles of reactants can be calculated

with:

nPO2
= nRO2

− 1

2
ηcomb

[
nRCO + nRH2

]
(2.41)

nPH2
= (1− ηcomb) · nRH2

(2.42)

nPCO = (1− ηcomb) · nRCO (2.43)

nPN2
= nRN2

(2.44)

nPCO2
= ηcomb · nRCO (2.45)

nPH2O = ηcomb · nRH2
(2.46)

Including Eq. 2.41 to 2.46 into Eq. 2.40 results in:

nRO2
O2 + nRCOCO + nRH2

H2 + nRN2
N2 → nPO2

(
nO2 −

1

2
ηcomb [nCO + nH2 ]

)
O2 (2.47)

+ (1− ηcomb) · [nCOCO + nH2H2] + ηcomb [nCO2CO2 + nH2OH2O] + nN2N2

With the composition after combustion known, the mass fraction can be found with Eq.

2.21 and Eq. 2.22. With the mass fraction, xi calculated for each gas, the gas constant

R for the mixture is found with:

R =

j=k∑
j=1

R0

Mj
xj =

j=k∑
j=1

Rjxj (2.48)



Chapter 2. 17

where R0 is the universal gas constant, Mj is the molar mass of gas j, xj is the mass

fraction of gas j, Rj is the gas constant of gas j and k is total number of gases. Rj is

shown in Tab. 3.1.

Combining Eq. 2.8 and Eq. 2.37 solving for α gives:

α =
mcvṪ

A · (Tgas − Twall)
(2.49)

Assuming that the combustion efficiency is close to unity, this α can be used to calculate

the heat loss from zone 2 containing the burned gases.

To include the effect of pressure in the calculation of α, Eichelberg’s formula from

(Stapersma, 2010) can be:

α = ε ·
√
pT (2.50)

where ε is a correction factor, p is the pressure and T is the temperature. ε can be found

setting Eq. 2.49 and Eq. 2.50 equal in one point or by optimizing over a period.

2.2 Rate of heat release (ROHR)

Rate of Heat Release (ROHR) is defined as the rate at which the chemical energy in the

fuel is converted into heat in the combustion.

2.2.1 Pre-mixed combustion

For the pre-mixed phase the rate of mass transport from zone 1 to zone 2 is known.

The precise composition of the fuel, H2 and CO is also known. ROHR (Q̇comb) is then

calculated:

Q̇comb = hn · ṁf (2.51)

where hn is the lower heating value of the fuel and ṁf is the rate of mass flow.



Chapter 2. 18

From Ch. 3.5.2 and Ch. 3.5.3 in (Heywood, 1988), the lower heating value hn when

knowing the specific composition can be calculated with:

H0
P =

∑
products

ni∆h
0
f,i (2.52)

H0
R =

∑
reactants

ni∆h
0
f,i (2.53)

where H0
P is the enthalpy of products, H0

R is the enthalpy of reactants, ni is the number

of moles and ∆h0f,i is the standard enthalpy of formation for each substance. Combining

Eq. 2.52 and Eq. 2.53 leads to:

LHV = −(∆H) = H0
P −H0

R (2.54)

where LHV is the lower heating value and ∆H is the enthalpy increase due to the

combustion.

An equivalent lower heating value for the mixture of CO and H2 have been calculated

with:

LHV12 = LHVCOxCO,1 + LHVH2xH2,1 (2.55)

where LHV12 is the lower heating value for the mixture containing CO and H2, with

mass fractions xCO,1 for CO and xH2,1 for H2 in zone 1.

Assuming that the H2 and CO burns with the same rate as the mass transported from

zone 1 to zone 2, ROHR for the pre-combustion phase can be calculated with:

Q̇12 = LHV12ṁ12 (2.56)

where ṁ12 is the rate of mass transport from zone 1 to zone 2.



Chapter 2. 19

2.2.2 Diesel injection experiment

For the diesel injection only the pressure is determined exactely. As described in Ch.

10.4 in (Heywood, 1988), the following problems also arise for the CR:

• Mass of fuel is added as a liquid. This vaporixing and mixing process between fuel

and air produce non-uniform fuel/air ratio and is time variant.

• The composition of burned gases is unknown.

• The accuracy of avaialbe heat transer predictions is not well defined.

From the first law of thermodynamics for an open system, stated in Eq. 2.9, an apparant

net heat-release rate can be formulated as:

Q̇n = Q̇ch − Q̇ht (2.57)

where Q̇ch is the gross heat-release rate, equal to the chemical energy released from the

burning fuel and Q̇ht is the rate of heat-transfer to the walls.

Assuming that the fuel entalphy hF is negligable, Eq. 2.9 can be written as:

Q̇n = pV̇ +mcvṪ (2.58)

With m, R and V assumed constant, it follows from the ideal gas law that:

ṗ

p
=
Ṫ

T
(2.59)

Equation 2.59 can be used to eliminate T from Eq. 2.58, including that V̇ = 0:

Q̇n = mcvT
ṗ

p
(2.60)

Transforming the ideal gas law to:



Chapter 2. 20

V

R
=
Tm

p
(2.61)

reduces Eq. 2.60 to:

Q̇n =
cv
R
V ṗ (2.62)

Finally the relation:

cv
R

=
cv

cp − cv
=

cv

cv

(
cp
cv
− 1
) =

1

κ− 1
(2.63)

can be implemented into Eq. 2.62:

Q̇n =
1

κ− 1
V ṗ (2.64)

which is the form ROHR have been calculated in this thesis.

2.3 Control theory

A general discription of a control system with a feedback loop is illustrated in Fig. 2.4.

y0 e u y
SystemController

−

Figure 2.4: Unity-feedback control configuration

y0 is the set point, y is the output response from the system leading to the error e

between the set point and the output, which is feed into the Controller, generating a

controller output u feed into the System to adjust y.

The controller could be a P-controller, where the controller output is calculated with:



Chapter 2. 21

u(t) = Kp · e(t) (2.65)

where Kp is the proportional gain, and both u and e are functions of time. Kp needs to

be tuned to get a required reaction speed. If its value is to small, the reaction against the

set value takes to long, and if it is to high it makes the system unstable and introduces

oscilations on the system output. An P-controller can reduce the error, but may be

unsufficent to erase it completely. The error may be reduced to a stable value unequal

to zero.

Using an PI-controller with both proportional gain and integration constant makes it

possible to remove the steady state error. From (Balchen et al., 2003) an continous

PI-controller can be modeled as:

u(t) = Kp

e(t) +
1

Ti

t∫
0

e(σ) dσ

 (2.66)

where Ti is the integration constant, and σ is a integration variable to integrate up the

error e from start to point t.

For a discrete case the PI-controller is modeled at point k with:

u[k] = u[k − 1] +Kp

(
1 +

T

2Ti

)
e[k]−Kp

(
1− T

2Ti

)
e[k − 1] (2.67)

where T is the sampling time, given as the time between each measurement of the system

output.



Chapter 3

Implementation of theoretical

background to develop the

MATLAB algorithm

This chapter presents how the theoretical background presented in chapter 2 have been

implemented in MATLAB. Some of the intermediate results are presented for each step

performed.

3.1 Creating structure and import of data

Several computations is required to find an reasonable value for the temperature in the

CR when the injection experiment starts. To keep track of the different calulations

performed, an logical structure had to be developed. All major calulations was decided

to put in their own functions with logical names to make editing of them easier.

A simplified overview of the program structure is shown in Fig. 3.1. The circle on top is

the input of measured data from the experiment of interest. First the exact composition

of the mixture is determined based on charge pressure of air and combustable gas. Then

the absolute pressure curve is determinded from the dynamic pressure sensor and the

initial difference between the dynamic pressure sensor and the stativ pressure sensor.

22



Chapter 3. Implementation and development 23

Heat release

ṁ12

xgas

xair

ηcomb,0

Rmix ε

ṁ12

ηcomb

Tdiff

ROHR

(
dQ
dt

)
injection(

dQ
dt

)
pre−combustion

p p

p

∆ηcomb

and/or

∆Tdiff

GUI

> set value

≤ set value

Input

Two-zones

pabs
Gas fractions

Chemical
reaction

Figure 3.1: Flowchart of the MATLAB algorithm

Gas and air composition, combined with the an pre-set combustion efficiency, is then

used to calculate the composition in the CR after the pre-combustion. Knowing the

pressure and composition of the gas, the coefficient ε in Eichelbergs formula in Eq.

2.50 can be found for the cool down phase. The cool down phase is the phase from

pre-combustion is ended to liquid fuel is injected.

ε is then passed on to solving the two-zone model. With the pressure and heat loss known,

the necessary mass of gas combusted going from zone 1 til zone 2 can be calculated.



Chapter 3. Implementation and development 24

The total mass transported give the combustion efficiency, ηcomb. If ηcomb difference

more than the set value between the current and last calculation, the calculation of

pre-combustion composition, heat loss and two-zone solving is done again.

Another parameter to check agains is the difference in temperature resulting from the

two-zone model and the resulting composition from the chemical equation, named ∆T .

This difference is used to improve the estimate of rate of heat loss from zone 2. If the

temperature difference ∆T becomes smaler than a set value, calculation of rate of heat

release (ROHR) is performed. The result of this calculation is then sent to the output

circle to be displayed in the GUI developed for simplify the execution of this algorithm.

3.2 Loading of constants and import of measurements

When initiating the algorithm, molar masses and the universal gas constant is loaded.

The universal gas constant value used is from (McBride et al., 2002), with a value of

R0 = 8.31451
[

J
molK

]
. With the molar masses for all six gases implemented, the gas

constant for each gas is calculated. The values used is seen in Tab. 3.1.

Species M
[ g
mol

]
R
[

J
kgK

]
O2 31.99880 259.845
N2 28.01340 296.805
CO 28.01010 296.840
H2 2.015880 4124.506
CO2 44.00950 188.925
H2O 18.01528 461.525

Table 3.1: Molar masses and gas constants for components

Measured values from the experiment to be investigated, are stored in an Excel-

spreadsheet. This spreadsheet have a known lay-out, which is necessary for the import

of data to MATLAB. The imported data:

• Measurements from the dynamic pressure sensor

• Initial static pressure

• Initial temperature in the gas and the wall of the rig

• Time relative to ignition



Chapter 3. Implementation and development 25

Time [s]

P
re

ss
u

re
[P

a
]

0 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
× 106

pdyn1 with pmax = 43.95 [bar]

pdyn2 with pmax = 46.34 [bar]

pstat with pmax = 45.42 [bar]

Figure 3.2: Measured pressure from two dynamic and one static pressure sensor during
one experiment

• Delay from ignition to injection

Pressure curves made from measurements during an experiment performed January 31st

2014, is shown in Fig. 3.2. This measurement have been used to calculate the other

results described in this thesis. The refrence pressure in the laboratory is set to be

patm = 100[kPa], so the pressure curves made from the dynamic pressure sensors are

found with:

pi = pstat,0 − pdyn,0 + pdyn,i + patm (3.1)

where pstat,0 is the inital pressure measured by the static pressure sensor, pdyn,0 is the

inital pressure measured by the dynamic pressure sensor, pdyn,i is the dynamic pressure

measured at time i and patm is to get the absolute pressure.

As can be seen in Fig. 3.2, the pressure from the static sensor and the second dynamic

pressure sensor, gets and stays higher than the pressure curve based on the measurements



Chapter 3. Implementation and development 26

CO, CO2, N2, O2, H2O to scale

H2 divided by 10

Temperature [K]

c p

[ k
J

k
g
K

]

500 1000 1500 2000 2500 3000

1

1.5

2

2.5

3

3.5

CO2

H2

H2O

CO
N2

O2

Figure 3.3: Specific heat capacity at constant pressure cp

of dynamic pressure sensor one. The static and second dynamic pressure sensor are

exposed to direct gas flame in the end of the pre-combustion. This exposure introduce

a large distrouption to the sensors, and their values are discarded.

3.3 Thermodynamic properties

The necessary thermodynamic properties, u, h, cv and κ are calculated using the

equations described in Section 2.1.5. The calculated values for all six gases in the

temperature range 250-3000 [K] are shown in Fig. 3.3 to 3.7.

For all calculations were one or several of these properties are needed, they are calculated

in a specific function for that purpose. The first property to be calculated, is κ solving

Eq. 2.64. This is done in several stages. First the gas composition and temperature

of the gas mixture is passed to the calculating function. This function then pass the

temperature on to a function containing all the coefficients in Tab. A.1 to A.4, and

checking the temperature. If the temperature is lower than 200 [K], the function returns



Chapter 3. Implementation and development 27

CO, CO2, N2, O2, H2O to scale

H2 divided by 10

Temperature [K]

c v

[ k
J

k
g
K

]

500 1000 1500 2000 2500 3000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

H2O

H2

CO2

N2CO

O2

Figure 3.4: Specific heat capacity at constant volume cv

Temperature [K]

κ
[-

]

500 1000 1500 2000 2500 3000
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

H2

N2COO2

H2O

CO2

Figure 3.5: Heat capacity ratio κ



Chapter 3. Implementation and development 28

Temperature [K]

h
[ M

J
k
g

]

500 1000 1500 2000 2500 3000

-10

0

10

20

30

40

H2

N2

O2CO

CO2

H2O

Figure 3.6: Specific enthalpy h

Temperature [K]

u
[ M

J
k
g

]

500 1000 1500 2000 2500 3000

-10

0

10

20

30

40

H2 N2

CO
O2

H2O

CO2

Figure 3.7: Specific internal energy u



Chapter 3. Implementation and development 29

an error stating: ”Temperature to low”. If the temperature is higher than 6000 [K], the

funtion return an error stating: ”Temperature to high”. When the temperature is in the

working range of the function, 200-6000 [K], a final control is performed to check which

range the coefficents to return is in, 200-1000 [K] or 1000-6000 [K].

The coefficents are then returned to the function calling them, which calculate the

required thermodynamic property for each gas. Finally κ is calculated using the mass

fraction of each substance, and return this to the main function. This if performed for

all cases were an thermodynamic property is required.

3.4 Heat losses

3.4.1 Chemical reaction

Initialy the mass of each gas mi is calculated. Knowing the mass, the number of moles

ni of each substance can be found with:

ni =
mi

Mi
(3.2)

where ni is the number of moles, mi the mass fraction and Mi is the molar mass of

substance i.

For the first calculation, a combustion efficency ηcomb,0 is assumed. Default value for

ηcomb,0 is 95%, corresponding to the range for SI-engines of 93-98 % given in (Heywood,

1988). The resulting composition after pre-combustion can then be calculated with Eq.

2.40.

The next step is to calculate the molar fraction in the products are calculated using Eq.

2.21, giving the mass fractions with Eq. 2.23.

3.4.2 Fit of pressure curve and Eichelbergs coefficient

With the R known after pre-combustion, the temperature in the cool-down phase can

be precicely determined by the ideal gas law given in Eq. 2.59. Then the rate of heat



Chapter 3. Implementation and development 30

Time [s]

d
Q d
t

[ J s

]

1 1.5 2 2.5 3 3.5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

× 104

dQ Newton

dQ Eichelberg

Figure 3.8: Rate of heat loss in cool down phase
Newtons law of cooling with fitted value from Eichelbergs formula

transport Q̇ is then calculated with the last part of Eq. 2.64. The calculated Q̇ with

the resulting fit for Eichelbergs formula is shown in Fig. 3.8. The procedure to find κ

and all the other thermodynamic properties is described in section 2.1.5

With the rate of heat loss calculated, the value for α in Eq. 2.49 is calculated. Using

a an built in least-squares method in MATLAB, the value for the Eichelberg coefficient

ε is estimated. The resulting fit for α is seen in Figure 3.9. The estimated ε is used to

calculate the rate of heat loss from zone 2 when solving of the differential equations. Zone

2 is used since the resulting composition is assumed to be almost completely burned,

and then more similiar to zone 2 than zone 1.

3.5 Differential equations in the two-zone model

Having found an estimation for the heat losses, all necessary input to solve the two-

zone model is found. Before combustion and computations starts, zone 2 containing the



Chapter 3. Implementation and development 31

Time [s]

α
[ J m

2
K

]

1 1.5 2 2.5 3 3.5

-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60
α Newton

α Eichelberg

Figure 3.9: α from Eq. 2.49
and fitted value for Eichelbergs formula

burned gases needs to be given an initial mass m2,0 and an inital volume V2,0. Due to

some computatial problems if the initial value is to small, these values are set to 3 % of

the total mass and volume of the CR.

Several methods were tried for calculating ṗ from the pressure curve, such as the

numerical differential method described in App. C. The final solution was to make

a smooth curve with a fourier fit function in MATLAB, on the form:

f(x) = a0 + a1 · cos(w · x) + b1 · sin(w · x)

+ a2 · cos(2 · w · x) + b2 · sin(2 · w · x) . . . (3.3)

+ an · cos(n · w · x) + bn · sin(n · w · x)

where x is the input variable, a0 to an and b1 to bn is fitting parameters, w is to make

the fit periodical. n can be varied between 1 and 8. The fourier fit against the pressure



Chapter 3. Implementation and development 32

curve for the pre-combustion phase is shown in Fig. 3.10. The resulting continous ṗ is

plotted against the numerical solution in Fig. 3.11.

Time (s)

d
p d
t

[ Pa s

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

3

3.5

4

4.5
× 106

pmeasured

pFourier

Figure 3.10: p from measurements and fitted with Fourier

The output from the two zone model is the mass transport from zone 1 to zone 2, which

give the combustion efficency ηcomb:

ηcomb =
m12

mtot
(3.4)

which is equal to ηcomb used in the chemical equation.

where m12 is the mass transported from zone 1 to zone 2 and mtot is the total mass in

the CR. The combustion efficency from the solution of the two-zone model is returned

to the chemical equation and heat loss coefficent calculation until the error between runs

is smaler than a given value, here chosen to be 0.01. The results of mass from zone 1 to

zone 2 m12, temperature in zone 1 T1, volume in zone 1 V1 and temperature in zone 2

T2 for the refrence experiment is seen in Fig. 3.12 to 3.15.



Chapter 3. Implementation and development 33

Time [s]

d
p d
t

[ Pa s

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1

-0.5

0

0.5

1

1.5

2
× 107

ṗnumerical

ṗfourier

Figure 3.11: Differentiation of pressure measurements, numerically
and from fitted Fourier function

Right after the pre-combustion is finished, the two zones are assumed to be completely

mixed. Having different composition and temperature, the resulting tempereature Tmix

of this mixing if found with Eq. 2.36.

To get a better model for the heat loss during pre-combustion, the difference between

Tmix and the temperature found in the heat loss model, is calculated. This difference

is then used to vary the value of Eichelbers coefficent ε til the temperature difference is

smaller than 5 [K].

Minimizing the error between the temperatures from the two-zone model and the

chemical equation, a discrete PI-controller is implemented. This is necessary since the

temperature difference is quite large without any controller. The temperature difference

with and without controller is shown in Fig. 3.16. It ends up within the prescribed 5

[K] after a few runs.

If the set precicion of ∆T , ηcomb or both of them not is reached after 25 runs, the

algorithm stops and displays the calculated result. This is to prevent the calculation to



Chapter 3. Implementation and development 34

M
a
ss

in
[%

]
of

to
ta

l

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Figure 3.12: Mass transported from zone 1 to zone 2 during pre-combustion as % of
total mass

run for an infinite time without increasing the accuracy. This can happen if the solution

of the two-zone model is to stiff, and the MATLAB solver fail to calculate the solution.

The algorithm then calculate the resulting temperature based on a combustion efficency

of 95 %. The failure in solving the two-zone model is seen by a warning in MATLAB

and that the ROHR for the pre-combustion is impossible to calculate.

3.6 Rate of heat release

3.6.1 Pre-combustion phase

The inital gas mixture in the CR can contain both H2 and CO. Since it is outside the

scope of this thesis to investigate differences in combustion speed of these two gases,

they are assumed to combust in a rate so that 1% of the mass of CO combust at the

same time as 1% of the mass of H2.



Chapter 3. Implementation and development 35

T
em

p
er

at
u

re
[K

]

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
250

300

350

400

450

500

Figure 3.13: Temperature in zone 1 during the pre-combustion

V
o
lu

m
e

in
[%

]
of

to
ta

l

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Figure 3.14: Volume in zone 1 during pre-combustion as % of total volume



Chapter 3. Implementation and development 36

T
em

p
er

at
u

re
[K

]

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

400

600

800

1000

1200

1400

1600

1800

Figure 3.15: Temperature in zone 2 during pre-combustion

Assuming that both gases combust with the relative same rate, make it possible to

simplify and have one LHV for the mixture, given in Eq. 2.55. The ROHR for the

pre-combustion phase is then calculated with both numerical differentiation of m12 with

the formula in App. C and smoothened with fourier fit. The need for fitting is due to

that the calculated differentials for solving the equations are variables only inside the

calculating function. A resulting plot is shown in Fig. 3.17.

3.7 Injection experiment

To estimate the value of heat release during injection of diesel, a closed system analysis

have been performed. As a closed system, no mass is added, gas compostion is constant

and the pressure rise is due to heat interaction with the surroundings.

As seen in Eq. 2.64, the pressure difference is needed. For the few [ms] the combustion

takes place, this is calculted using the formula in C. To get a smoother curve, an



Chapter 3. Implementation and development 37

Run nr [-]

∆
T

[K
]

0 5 10 15 20 25
-140

-120

-100

-80

-60

-40

-20

0

20

Inital values
No controller

P-controller

PI-controller

Figure 3.16: Effect of no controller, P-controller and PI-controller on ∆T

integrated smoothening function in MATLAB is used. Both results are shown in Fig.

3.18.

The lower heating value (LHV) of the diesel is assumed to be constant over the entire

experiment. Taking the integral of Q̇ for the time of the injection experiment, give the

total fuel energy released. Then the time a specific amount of the fuel take to burn can

be found by an linear interpolation with:

tp = ti−1 + (Qtot · p−Qi−1) ·
Qi −Qi−1
ti − ti−1

(3.5)

where tp is the time when a given amount of fuel in [%] is burned, Qtot is the total heat

released, Qi−1 is the total heat released at time ti−1 and Qi is the total heat released at

time ti.



Chapter 3. Implementation and development 38

Time from ignition [s]

d
Q d
t

[ kJ s

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

50

100

150

200

250

300

350

ROHR fitted

ROHR numeric

Figure 3.17: Plot of ROHR for the pre-combustion phase with numerical
differentiation of the mass and with fitted curve

3.8 Graphical User Interface (GUI)

With a goal to make the use of this MATLAB program easier, a graphical user interface

(GUI) have been created using the built in ”guide” funtion in MATLAB. The start up

picture is seen in Fig. 3.19. The user need to input the name of the Microsoft Excel file

where the measurements of interest is located. In the upper left corner mass fractions of

the four gases in the pre-mixed combustable gas is to be typed in by the user. Below the

panel for the gas mixture, volume fractions of the air is displayed. The air have a default

composition of 79 % N2 and 21 % O2, but these two values can be changed by the user.

Below the input of the file name, the calculated temperature at injection of diesel is

displayed in degrees Celsius, togheter with the pressure at injection and the total mass

of gas and air in the rig. At the bottom centre input for calculating time from injection

to a given amount of the fuel is combusted. The default values are 2, 50 and 90 %. The

time is then displayed in [ms] from injection started. On the top right the ROHR for

the pre-combustion is displayed, and on the bottom right the ROHR for the injection



Chapter 3. Implementation and development 39

Time from injection [ms]

d
Q d
t

[ kJ s

]

0 2 4 6 8 10 12 14
-200

0

200

400

600

800

1000

1200

1400
Numerical

Smooth

Figure 3.18: Plot of ROHR for the injection experiment with numerical differentiation
of pressure and with smoothened curve

experiment is displayed. The final GUI is shown in Fig. 3.20. An output file containing

the calculated values of interest is at default stored under the name ”Output.txt”, but

this can be changed by the user.



Chapter 3. Implementation and development 40

Figure 3.19: GUI at startup



Chapter 3. Implementation and development 41

Figure 3.20: GUI after finished calculations



Chapter 4

Discussions regarding accuracy of

calculations and future work to

improve estimation

4.1 Assumtions

In this section the assumtions made to create the MATLAB algorithm is described.

Their accuracy is discussed, and suggestions to improve the accuracy of the algorithm

is included.

4.1.1 Perfect mixed gases

The gas in the CR is assumed to be perfectly mixed inside one control volume. The

control volume (CV) could either be the entire rig, Fig. 2.2 or each of the two zones

during the pre-combustion, as shown in Fig. 2.3. Compared to a reciprocating engine,

the gas velocities inside the CR is very small. Due to the small gas velocities, the mixing

of the gas after pre-combustion does not necessary be uniform.

This makes the gas mixture non-uniform and the temperature may vary trough out

the CV. To simulate this, a CFD-model of the gas flows could be made to increase the

accuracy of the estimate of the gas temperature at injection of fuel.

42



Chapter 4. Discussion and future work 43

Figure 4.1: Laminar flame speed of CO and H2 mixture from (Sun et al., 2007)

4.1.2 Relative combustion rate of H2 and CO

The combustable gases, H2 and CO is assumed to burn with the same relative speed.

This is very simplified way to treat this combustion. As seen in Fig. 4.1, the laminar

flame speed drop with increased amount of CO. H2 will be combusted early in the

pre-combustion, while the CO takes some more time to be combusted.

This also indicates that the combustion efficency ηcomb is unequal for both gases. To

improve this model measurements of the gas before and after pre-combustion to clearly

state the gas compositon, can be performed.



Chapter 4. Discussion and future work 44

4.2 Constant temperature of the rig Twall

For calculating the temperature difference between the rig and the gas, needed in the

convective law Eq. 2.37, the wall temperature in the rig is needed. This temperature is

measured at the beginning of the experiment, and assumed to be constant during the

entire experiment.

The energy released during the pre-combustion is in the range of 90 [kJ]. From Table

6.2 in (Atkins and Jones, 2008), the specific heat capacity csteel for stainless steel is .51[
kJ
kgK

]
. For a mass of 100 [kg], the temperature rise will be:

∆T =
Q

csteelm
=

90

0.51 · 100
= 1.77[K] (4.1)

This is about 0.1 % of the maximum temperature of the gas, and neglecting this change

during the experiment is reasonable.

4.3 Unaccuracies in measured pressure

Precicion of the dynamic pressure measurements depends on several factors. The

pressure sensor can have both a full scale and a relative accuracy, given % A high-

temperature pressure sensor for combustion engine measurements from Kislter (Kistler,

2011) have an linearity smaller than 0.4 % of the full scale output (FSO). This means

for a 50 [bar] sensor, the accuracy of the measured data in the entire range is ± 0.2

[bar]. Even such a small error resulting in an inacccuracy of the injection temperature

T of:

T =
pV

mR
=
±0.2 · 105[Pa] · 0.0049[m3]

0.00517[kg] · 260
[

J
kgK

] = ±7.29[K] (4.2)

where the mass m and gas constant R is from the refrence experiment.

High sampling frequenzy, 5000 [Hz], may introduce large errors when calculating the

time derivative of the pressure, ṗ. An small measurement error is escalating into a large



Chapter 4. Discussion and future work 45

differential error, as seen in Fig. 3.11. The measured values seems like a smooth curve,

but when trying to calculate the differential, this turns into a highly fluctuation curve.

Implementation of a low pass filter to exclude this high frequency measurements noise

was tried, shown for three values of the filter time constant τ . This smoothens the

curve, but also reduce the peak value and introduce a phase shift from the original

measurements. Since the both the combusiton in the pre-combustion pahse and the

liquid fuel experiment takes place over such a short period of time, the phase shift made

the filtering unnapplicable.

MATLAB have a wide range of functions to fit agains measured data. Both fourier

functions and exponential functions have been used, since they fit the measured values

in the range of interest very well and are easy to differentiate. This resulting in a smooth

curve for the mass-transport from zone 1 til zone 2 in the pre-combustion and for the

pressure drop during the cool down phase.

The numerical fit formula by O. Amble in App. C is used for the pressure rise in the

diesel injection experiment. This is because the experimental time is very short, just

a few [ms] and the pressure increase is very steep when the fuel ignites. To not lose

information about exactely when this large pressure increase occures and how large it

is, the function is used. This result in a quite fluctuating ROHR, expecially after the

fuel is burned. ROHR function is then again smoothened with a integrated function in

MATLAB, to increase readability and to come closer to the refrence caluclations. The

ROHR for the refrence experiment have been allready been calculated, Fig. 4.2, and

with the smoothening function these calculations is quite much closer than ROHR with

the numerical fit, both plots shown in Fig. 3.18.

4.4 Precisicion of the algorithm

The final algorithm performs control of two parameters, the ηcomb and ∆T . These needs

to stabilize before the calculations finish. In Fig. 4.3, the variation in temperature

due to the different gas compostion is shown for ηcomb from 80 % to 1 % combusted.

Resulting values is shown in Tab. 4.1.



Chapter 4. Discussion and future work 46

Figure 4.2: ROHR from refrence experiment plotted by Maximilian Malin,
MARINTEK

Time [s]

T
em

p
er

at
u
re

[K
]

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

550

600

650

700

750

800

850

900

950

1000

1050

1100

ηcomb = 80 %

ηcomb = 90 %

ηcomb =100 %

Figure 4.3: Resulting temperature curves with varying ηcomb



Chapter 4. Discussion and future work 47

ηcomb[%] T [K]

80 538.2
90 543.5
100 548.9

Table 4.1: Variation in combustion efficency and resulting temperature

Specifying a precicion of the combustion efficency to be less then 1 %, give a precicion

in the temperature less than 1 [K]. The precicion on the combustion efficency can be

made smaller, but this requires more calculation time.

The reduced ∆T in Fig. 3.16, also influence ηcomb, as shown in Tab. 4.2

Controller type ∆T [K] ηcomb

No controller -122.4 88.5
P -66.3 91.9
PI -0.2 96.8

Table 4.2: Variation in combustion efficency and resulting temperature

Combining the set precicion of the combustion efficency ηcomb with a set precicion of

the temperature difference ∆T , increase the precicion of the estimated temperature.

4.5 Future work

4.5.1 Verification of gas mixture composition

The gas mixture composition after pre-combustion can be verified by taking a gas sample

from the CR and analyze its containt. Doing this for several experiments, the two-zone

model calculations can be verified and the model even corrected agains analyze values.

4.5.2 Heat losses

Implementation of thermocuoples to measure the instantaneous heat flux inside the

CR can be performed to increase the heat loss model for the cool down phase. If the

measurements are enable to change output value fast enough, the measured values can

be implemented directely into the two-zone model and the rate of heat release during the

injection phase. Solutions and implementation is described in Ch. 12.6 in (Heywood,

1988).



Chapter 4. Discussion and future work 48

4.5.3 ROHR in injection experiment

Using an open system model for calculating the ROHR from the injection experiment,

may increase the accuracy of these calculations. The quite small amount of fuel injected

into the relatively large volume in the CR, is making the closed system analysis quite

unceartain, since it does not include heat losses from the gas to the wall during this

combustion.



Appendix A

Thermodynamic Coefficents from

NASA GLENN DATABASE

CO CO2 H2

a1
[
K2
]

1.489045326 · 104 4.943650540 · 104 4.078323210 · 104

a2 [K] −2.922285939 · 102 −6.264116010 · 102 −8.009186040 · 102

a3 [−] 5.724527170 5.301725240 8.214702010
a4
[
K−1

]
−8.176235030 · 10−3 2.503813816 · 10−3 −1.269714457 · 10−2

a5
[
K−2

]
1.456903469 · 10−5 −2.127308728 · 10−7 1.753605076 · 10−5

a6
[
K−3

]
−1.087746302 · 10−8 −7.689988780 · 10−10 −1.202860270 · 10−8

a7
[
K−4

]
3.027941827 · 10−12 2.849677801 · 10−13 3.368093490 · 10−12

b1 [K] −1.303131878 · 104 −4.528198460 · 104 2.682484665 · 103

Table A.1: Thermodynamic coefficients CO, CO2 and H2 in the range 200-1000 [K]

49



Appendix A. Thermodynamic Coefficents 50

N2 O2 H2O

a1
[
K2
]

2.210371497 · 104 −3.425563420 · 104 −3.947960830 · 104

a2 [K] −3.818461820 · 102 4.847000970 · 102 5.755731020 · 102

a3 [−] 6.082738360 1.119010961 9.317826530 · 10−1
a4
[
K−1

]
−8.530914410 · 10−3 4.293889240 · 10−3 7.222712860 · 10−3

a5
[
K−2

]
1.384646189 · 10−5 −6.836300520 · 10−7 −7.342557370 · 10−6

a6
[
K−3

]
−9.625793620 · 10−9 −2.023372700 · 10−9 4.955043490 · 10−9

a7
[
K−4

]
2.519705809 · 10−12 1.039040018 · 10−12 −1.336933246 · 10−12

b1 [K] 7.108460860 · 102 −3.391454870 · 103 −3.303974310 · 104

Table A.2: Thermodynamic coefficients N2, O2 and H2O in the range 200-1000 [K]

CO CO2 H2

a1
[
K2
]

4.619197250 · 105 1.176962419 · 105 5.608128010 · 105

a2 [K] −1.944704863 · 103 −1.788791477 · 103 −8.371504740 · 102

a3 [−] 5.916714180 8.291523190 2.975364532
a4
[
K−1

]
−5.664282830 · 10−4 −9.223156780 · 10−5 1.252249124 · 10−3

a5
[
K−2

]
1.398814540 · 10−7 4.863676880 · 10−9 −3.740716190 · 10−7

a6
[
K−3

]
−1.787680361 · 10−11 −1.891053312 · 10−12 5.936625200 · 10−11

a7
[
K−4

]
9.620935570 · 10−16 6.330036590 · 10−16 −3.606994100 · 10−15

b1 [K] −2.466261084 · 103 −3.908350590 · 104 5.339824410 · 103

Table A.3: Thermodynamic coefficients CO, CO2 and H2 in the range 1000-6000 [K]

N2 O2 H2O

a1
[
K2
]

5.877124060 · 105 −1.037939022 · 106 1.034972096 · 106

a2 [K] −2.239249073 · 103 2.344830282 · 103 −2.412698562 · 103

a3 [−] 6.066949220 1.819732036 4.646110780
a4
[
K−1

]
−6.139685500 · 10−4 1.267847582 · 10−3 2.291998307 · 10−3

a5
[
K−2

]
1.491806679 · 10−7 −2.188067988 · 10−7 −6.836830480 · 10−7

a6
[
K−3

]
−1.923105485 · 10−11 2.053719572 · 10−11 9.426468930 · 10−11

a7
[
K−4

]
1.061954386 · 10−15 −8.193467050 · 10−16 −4.822380530 · 10−15

b1 [K] 1.283210415 · 104 −1.689010929 · 104 −1.384286509 · 104

Table A.4: Thermodynamic coefficients N2, O2 and H2O in the range 1000-6000 [K]



Appendix B

Thermochemical Data

JANAF Thermochemical Tables Third Edition:

Substance

Molar weight[ g
mol

] Heat of formation
∆H0

f298.15

[
kJ
mol

] Lower Heating Value[
MJ
kg

]
CO 28.0104 -110.527 10.1032

H2 2.01588 0 119.961

CO2 44.0098 -393.522 -

O2 31.9988 0 -

H2O 18.01528 -241.826 -

Table B.1: Thermochemical data for combustion gases. Ref: (Chase, 1986)

51



Appendix C

Numerical differential

Numerical differential formula for measured values with some uncertianity in the

registered data points. The differential method includes some smoothening of the

measured data.

(
dy

dx

)
i

=
1

h

[
2

3
(yi+1 − yi−1)−

1

12
(yi+2 − yi−2)

]
(C.1)

with

h = xi+1 − xi = constant (C.2)

where yi−2 to yi+2 is the measured data points around point yi, where the differential is

found. xi is the free variable corresponding to yi.

This formula is taken from O. Amble, Numerical Methods II, lectures held at NTH fall

1966 - spring 1967.

52



Appendix D

Matlab scripts

D.1 GUI function and figure

Digital version handed in with the thesis

D.2 Function to initiate calculations

% Run file to initate all parameters and calculations

function Global = RUN(Global)

% Load measurements, calculate absolute pressure and fractions of each gas

% at start of experiment

[ Global ] = CONSTANTS(Global);

% Calculate resulting composition after pre-combustion with the initial

% combustion efficency

[ Global ] = CHEMICAL REACTION( Global );

% Calculate the heat loss coefficent based on gas constant after

% pre-combustion and pressure drop from pre-combustion ends to injection

% starts

[ Global ] = HEAT LOSS COEFFICIENT( Global );

53



Appendix D. Matlab scripts 54

% Solve the two-zone model

[ Global ] = TWO ZONES( Global );

% If the values for combustion efficency and/or temperature difference

% between the two-model solution and chemical reaction, the calculations

% are performed again with PI-controller to the temp-difference.

while ((abs((Global.eta comb(Global.s+1)...

-Global.eta comb(Global.s)))>0.01) ...

| |(abs(Global.T diff(end))>5)) && Global.s<25

[ Global ] = CHEMICAL REACTION( Global );

[ Global ] = HEAT LOSS COEFFICIENT( Global );

Global.s = Global.s+1;

[ Global ] = TWO ZONES( Global );

end

% If while loop stops by maximum number of runs, calculate composition for

% eta comb = 0.95 and display the resulting values

if Global.s == 25;

Global.eta comb = 0.95;

Global.s = 1;

[ Global ] = CONSTANTS(Global);

[ Global ] = CHEMICAL REACTION( Global );

[ Global ] = HEAT LOSS COEFFICIENT( Global );

[ Global ] = TWO ZONES( Global );

end

% Rate of heat release calculated for pre-cobustion and injection

% experiment

[ Global ] = ROHR( Global );



Appendix D. Matlab scripts 55

% Print calculated values to text-file

OUTPUT( Global )

D.3 Import measurements and calculate gas composition

based on user input

function [ Global ] = CONSTANTS(Global)

% Constants to use in Thermodynamic Analysis Tool (TDAT)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Gas constant from the NASA GLENN DATABASE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Global.R0 = 8.31451; % [J mol-1 K-1]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Molar weights for O2, N2, CO, H2, CO2, H2O from the NASA GLENN DATABASE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Global.MO2 = 31.9988000; % Molar weight O2 [g/mol]

Global.MN2 = 28.0134000; % Molar weight N2 [g/mol]

Global.MCO = 28.0101000; % Molar weight CO [g/mol]

Global.MH2 = 2.0158800; % Molar weight H2 [g/mol]

Global.MCO2 = 44.0095000; % Molar weight CO2 [g/mol]

Global.MH2O = 18.0152800; % Molar weight H2O [g/mol]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Gas constants for O2, N2, CO, H2, CO2, H2O from the NASA GLENN DATABASE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Global.RCO = Global.R0/Global.MCO*1e3; % Gas constant CO [J/kgK]

Global.RCO2 = Global.R0/Global.MCO2*1e3; % Gas constant CO2 [J/kgK]

Global.RH2 = Global.R0/Global.MH2*1e3; % Gas constant H2 [J/kgK]

Global.RO2 = Global.R0/Global.MO2*1e3; % Gas constant O2 [J/kgK]

Global.RH2O = Global.R0/Global.MH2O*1e3; % Gas constant H2O [J/kgK]

Global.RN2 = Global.R0/Global.MN2*1e3; % Gas constant N2 [J/kgK]



Appendix D. Matlab scripts 56

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Volume of combustion rig

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Radius of rig

Global.r = 0.125; % [m]

% Hight of rig

Global.h = 0.1; % [m]

% Area of the combustion rig

Global.A = 2*pi*Global.rˆ2 + pi*2*Global.r*Global.h; % [mˆ2]

% Volume of combustion rig

Global.V = pi * Global.rˆ2 * Global.h; %[mˆ3]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial conditions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Setting parameters for importing data from the excel-spreadsheets

file = Global.file name;

input = 'Data Input';

% Time releative to ignition pulse start

Global.time = xlsread(file,input,'A6:A50005'); % [s]

% Time between spark ignition and diesel injection

Global.injection time = xlsread(file,input,'F2')/1e6; % [s]

% Temperature in combustion rig wall

Global.Tw = xlsread(file,input,'G6') + 273.15; % [K]

% Temperature in 1mm sensor converted to [K]

Global.T0 = xlsread(file,input,'C6') + 273.15;

% Static and gas charge pressure

Global.p0= xlsread(file,input,'H6')*1e5; % [Pa]

% Air pressure set to 1 [bar]

Global.pair = 1*1e5; % [Pa]



Appendix D. Matlab scripts 57

% Static pressure sensor

p stat = (xlsread(file,input,'H6:H50005').*1e5)'; % [Pa]

% Temperature in 1mm sensor

Global.T1mm = xlsread(file,input,'C6:C50005')+ 273.15; % [K]

% Temperature in 3mm sensor

Global.T3mm = xlsread(file,input,'B6:B50005') + 273.15; % [K]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dynamic pressure implementation and numeric differation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dynamic pressure sensor 1

pdyn1 = xlsread(file,input,'K6:K50005')*1e5; % [Pa]

% Dynamic pressure sensor 2

pdyn2 = xlsread(file,input,'M6:M50005')*1e5; % [Pa]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Numerical differation from measured values of pdyn with uncertinites

% Method from O. Amble; "Numeriske metoder II", lectures fall 1966 and

% spring 1967

% dy = 1/h [2/3*(y {i+1}-y {i-1}) - 1/12(y {i+2}-y {i-2})] with h = x {i+1}

%-x {i} = constant. Here it is the time between measurements

% This method also partly smoothens the measurements

% Differential from i=1 to 2 is lost, but assume p(2) = p(1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Inital difference between dynamic pressure sensor 1 and static pressure

% sensor

pdiff1 = Global.p0-pdyn1(1); % [Pa]

% Inital difference between dynamic pressure sensor 2 and static pressure

% sensor

pdiff2 = Global.p0-pdyn2(1); % [Pa]

% Initiating matrixes to increase calculation speed

p1 = zeros(1,length(pdyn1));

p2 = zeros(1,length(pdyn2));

for m=1:length(pdyn1)

p1(m) = pdyn1(m) + pdiff1 + 1e5;



Appendix D. Matlab scripts 58

p2(m) = pdyn2(m) + pdiff2 + 1e5;

end

Global.p = p1; % [Pa]

Global.p stat = p stat+1e5; % [Pa]

Global.p1 = p1; % [Pa]

Global.p2 = p2; % [Pa]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TIME FOR SIMULATION OF COOL DOWN PHASE FOR HEAT LOSS SIMULATIONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set the timespan for the calculations

[~, idx] = max(p1);

% Add 250*0.002 = 0.05 [s] to finish the pre-combustion

Global.combustion end = idx + 250;

% Find the index for the injection start

Global.injection start = find(Global.time==Global.injection time);

% Finding the max value after injection

[~, id max] = max(Global.p(Global.injection start:end));

% Set finishing time for calculating ROHR from the injection experiment

Global.injection end = id max*2 + Global.injection start;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Gas composition

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Gas constant gas mixture

Global.Rgas = Global.RCO * Global.xCOgas + Global.RN2 * Global.xN2gas ...

+ Global.RO2 * Global.xO2gas; % [J/kgK]

% Molar mass of gas mixture

Global.Mgas = Global.R0/Global.Rgas*1e3; % [g/mol]

% Calculates volumfractions based on y i = x i * R0 / (M i + sum[R i*x i])

Global.yCOgas = (Global.xCOgas * Global.R0)/(Global.MCO*...

(Global.RCO*Global.xCOgas + Global.RN2*Global.xN2gas + ...

Global.RO2*Global.xO2gas + Global.RH2*Global.xH2gas))*1e3;

Global.yH2gas = (Global.xH2gas * Global.R0)/(Global.MH2*...



Appendix D. Matlab scripts 59

(Global.RCO*Global.xCOgas + Global.RN2*Global.xN2gas + ...

Global.RO2*Global.xO2gas + Global.RH2*Global.xH2gas))*1e3;

Global.yO2gas = (Global.xO2gas * Global.R0)/(Global.MO2*...

(Global.RCO*Global.xCOgas + Global.RN2*Global.xN2gas...

+ Global.RO2*Global.xO2gas + Global.RH2*Global.xH2gas))*1e3;

Global.yN2gas = (Global.xN2gas * Global.R0)/(Global.MN2*...

(Global.RCO*Global.xCOgas + Global.RN2*Global.xN2gas...

+ Global.RO2*Global.xO2gas + Global.RH2*Global.xH2gas))*1e3;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Air composition and properties

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Mass fraction O2 [-]

Global.xO2air = Global.yO2air*Global.MO2/...

(Global.yO2air*Global.MO2 + Global.yN2air*Global.MN2);

% Mass fraction N2 [-]

Global.xN2air = Global.yN2air*Global.MN2/...

(Global.yO2air*Global.MO2 + Global.yN2air*Global.MN2);

% Gas constant air

Global.Rair = Global.RO2 * Global.xO2air ...

+ Global.RN2 * Global.xN2air; % [J/kgK]

% Molar mass air

Global.Mair = Global.R0/Global.Rair*1e3; % [g/mol]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Masses in rig

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Mass of each gas in air and mixture

Global.mO2air = Global.V/Global.T0 * ((Global.pair*Global.xO2air)/...

Global.Rair); % [kg]

Global.mN2air = Global.V/Global.T0 * ((Global.pair*Global.xN2air)/...

Global.Rair); % [kg]

Global.mO2gas = Global.V/Global.T0 * ((Global.p0*Global.xO2gas)/...

Global.Rgas); % [kg]

Global.mN2gas = Global.V/Global.T0 * ((Global.p0*Global.xN2gas)/...

Global.Rgas); % [kg]

Global.mCOgas = Global.V/Global.T0 * ((Global.p0*Global.xCOgas)/...



Appendix D. Matlab scripts 60

Global.Rgas); % [kg]

Global.mH2gas = Global.V/Global.T0 * ((Global.p0*Global.xH2gas)/...

Global.Rgas); % [kg]

% Mass of air and gas in rig

Global.mair = Global.mO2air + Global.mN2air; % [kg]

Global.mgas = Global.mO2gas + Global.mN2gas + Global.mCOgas; % [kg]

% Masses each component in gas mixture

Global.mO2mix = Global.mO2air + Global.mO2gas; % [kg]

Global.mN2mix = Global.mN2air + Global.mN2gas; % [kg]

Global.mCOmix = Global.mCOgas; % [kg]

Global.mH2mix = Global.mH2gas; % [kg]

% Mass fractions gas mix

Global.xO2mix = Global.mO2mix / (Global.mO2mix + Global.mN2mix ...

+ Global.mCOmix + Global.mH2mix);

Global.xN2mix = Global.mN2mix / (Global.mO2mix + Global.mN2mix ...

+ Global.mCOmix + Global.mH2mix);

Global.xCOmix = Global.mCOmix / (Global.mO2mix + Global.mN2mix ...

+ Global.mCOmix + Global.mH2mix);

Global.xH2mix = Global.mH2mix / (Global.mO2mix + Global.mN2mix + ...

Global.mCOmix + Global.mH2mix);

% Gas constant gas mix

Global.Rmix = Global.RCO*Global.xCOmix + ...

Global.RN2*Global.xN2mix + Global.RO2*Global.xO2mix ...

+ Global.RH2*Global.xH2mix; % [J/kgK]

% Molar mass gas mix

Global.Mmix = Global.R0/Global.Rmix*1e3; % [kg/kmol]

% Total mass in rig summing mass of air and mass of gas

Global.mrig = Global.mair + Global.mgas; % [kg]

% Total mass in rig for control summing each gas in the air and in the rig

Global.mrig control = Global.mO2air + Global.mN2air + Global.mCOgas ...

+ Global.mN2gas + Global.mO2gas + Global.mH2gas; % [kg]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constants initiatet

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



Appendix D. Matlab scripts 61

% Variable to count number of runtroughs

Global.s = 1;

% Initial set combustion efficinecy

Global.eta comb(1) = 0.95;

% Initial temperature difference between temperature calculated from the

% combustion efficency and the Two-zone model solving

Global.T diff(1) = 0;

% Inital value for gain in PI-control of k in Eichelbergs heat coefficient

% formula

Global.v(1) = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ROHR for pre-combustion phase

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Lower heating value CO from Heywood Ch. 3.5.2

Global.hn CO = 10.1032*1e6; % [J/kg]

% Lower heating value H2 from Heywood Ch. 3.5.2

Global.hn H2 = 119.961*1e6; % [J/kg]

% For the two zone model total mass transport dm = dm12

% ROHR = dQ/dt = h n*dm f = hn CO*dm CO + hn H2*dmH2

% ROHR = (hn CO*xCOmix + hn H2*xH2mix)*dm12

% Lower heating value for mixture of H2 and CO,

% to be multiplied with total mass, m12

Global.hn = Global.hn CO*Global.xCOmix...

+ Global.hn H2*Global.xH2mix; % [J/kg]

% Fuel energy in CO

Global.Q CO = Global.hn CO*Global.mCOmix; % [J]

% Fuel energy in H2

Global.Q H2 = Global.hn H2*Global.mH2mix; % [J]

% Total fuel energy in the charged bomb

Global.Q tot = Global.Q CO + Global.Q H2; % [J]



Appendix D. Matlab scripts 62

D.4 Gas composition after pre-combustion

function [ Global ] = CHEMICAL REACTION( Global )

%CHEMICAL REACTION Calculate compostion after pre-combustion

% This function use the combustion efficency to calculate composition of

% the gas in the combustion rig after pre-combustion

%Combustion efficiency, first inital value and later runs based on the

%two-zone calculations

eta comb = Global.eta comb(Global.s);

% Number of moles in the mix of gas and air

nO2 = Global.mO2mix/Global.MO2;

nCO = Global.mCOmix/Global.MCO;

nN2 = Global.mN2mix/Global.MN2;

nH2 = Global.mH2mix/Global.MH2;

% Reactants

Global.nO2r = nO2;

Global.nCOr = nCO;

Global.nN2r = nN2;

Global.nH2r = nH2;

% Molar fractions of the reactants

Global.yO2r = nO2/(nO2+nCO+nN2+nH2);

Global.yCOr = nCO/(nO2+nCO+nN2+nH2);

Global.yN2r = nN2/(nO2+nCO+nN2+nH2);

Global.yH2r = nH2/(nO2+nCO+nN2+nH2);

% Calculate the products

for i = 1:length(eta comb)

% Number of moles

Global.nO2p(i) = nO2 - 0.5*eta comb(i)*(nCO+nH2);

Global.nN2p = nN2;

Global.nCO2p(i) = eta comb(i) * nCO;

Global.nH2Op(i) = eta comb(i) * nH2;

Global.nH2p(i) = (1-eta comb(i)) * nH2;

Global.nCOp(i) = (1-eta comb(i)) * nCO;



Appendix D. Matlab scripts 63

% Mole fractions

Global.yO2p(i) = Global.nO2p(i) / (Global.nO2p(i) + Global.nN2p ...

+ Global.nCO2p(i) + Global.nCOp(i) + Global.nH2p(i) + Global.nH2Op(i));

Global.yN2p = Global.nN2p / (Global.nO2p(i) + Global.nN2p ...

+ Global.nCO2p(i) + Global.nCOp(i) + Global.nH2p(i) + Global.nH2Op(i));

Global.yCOp(i) = Global.nCOp(i) / (Global.nO2p(i) + Global.nN2p ...

+ Global.nCO2p(i) + Global.nCOp(i) + Global.nH2p(i) + Global.nH2Op(i));

Global.yCO2p(i) = Global.nCO2p(i) / (Global.nO2p(i) + Global.nN2p ...

+ Global.nCO2p(i) + Global.nCOp(i) + Global.nH2p(i) + Global.nH2Op(i));

Global.yH2p(i) = Global.nH2p(i) / (Global.nO2p(i) + Global.nN2p ...

+ Global.nCO2p(i) + Global.nCOp(i) + Global.nH2p(i) + Global.nH2Op(i));

Global.yH2Op(i) = Global.nH2Op(i) / (Global.nO2p(i) + Global.nN2p ...

+ Global.nCO2p(i) + Global.nCOp(i) + Global.nH2p(i) + Global.nH2Op(i));

% Mass fractions

Global.xO2p(i) = Global.yO2p(i)*Global.MO2/...

(Global.yO2p(i)*Global.MO2...

+ Global.yN2p*Global.MN2 + Global.yCOp(i)*Global.MCO...

+ Global.yCO2p(i)*Global.MCO2 + Global.yH2p(i)*Global.MH2...

+ Global.yH2Op(i)*Global.MH2O);

Global.xN2p = Global.yN2p*Global.MN2/(Global.yO2p(i)*Global.MO2 + ...

Global.yN2p*Global.MN2 + Global.yCOp(i)*Global.MCO + ...

Global.yCO2p(i)*Global.MCO2 + Global.yH2p(i)*Global.MH2...

+ Global.yH2Op(i)*Global.MH2O);

Global.xCOp(i) = Global.yCOp(i)*Global.MCO/...

(Global.yO2p(i)*Global.MO2 + Global.yN2p*Global.MN2...

+ Global.yCOp(i)*Global.MCO + Global.yCO2p(i)*Global.MCO2...

+ Global.yH2p(i)*Global.MH2 + Global.yH2Op(i)*Global.MH2O);

Global.xCO2p(i) = Global.yCO2p(i)*Global.MCO2/...

(Global.yO2p(i)*Global.MO2 + Global.yN2p*Global.MN2...

+ Global.yCOp(i)*Global.MCO + Global.yCO2p(i)*Global.MCO2...

+ Global.yH2p(i)*Global.MH2 + Global.yH2Op(i)*Global.MH2O);

Global.xH2p(i) = Global.yH2p(i)*Global.MH2/...

(Global.yO2p(i)*Global.MO2 + Global.yN2p*Global.MN2...

+ Global.yCOp(i)*Global.MCO + Global.yCO2p(i)*Global.MCO2...

+ Global.yH2p(i)*Global.MH2 + Global.yH2Op(i)*Global.MH2O);

Global.xH2Op(i) = Global.yH2Op(i)*Global.MH2O/...

(Global.yO2p(i)*Global.MO2 + Global.yN2p*Global.MN2...

+ Global.yCOp(i)*Global.MCO + Global.yCO2p(i)*Global.MCO2...

+ Global.yH2p(i)*Global.MH2 + Global.yH2Op(i)*Global.MH2O);



Appendix D. Matlab scripts 64

% Resulting gas constant

Global.Rburned(i) = Global.RO2 .* Global.xO2p(i) + ...

Global.RN2 * Global.xN2p + ...

Global.RCO * Global.xCOp(i) + ...

Global.RCO2 * Global.xCO2p(i) ...

+ Global.RH2 * Global.xH2p(i) ...

+ Global.RH2O * Global.xH2Op(i);

end

end

D.5 Heat loss coefficient calcualtion

function [ Global ] = HEAT LOSS COEFFICIENT( Global )

%HEAT LOSS COEFFICIENT Calculates the heat loss coefficient

% This function calculates a first approximation of the heat loss in the

% CR based on Eichelbergs formula alpha=2.47(p*T)ˆ0.5 and using the gas

% compostion based on a fixed combustion efficency

% Area of wall in rig

A = Global.A; % [mˆ2]

% Volume of the CR

V = Global.V; % [mˆ3]

% Gas constant of burned gas

R = Global.Rburned; % [J/kgK]

% Total mass in rig

m = Global.mrig; % [kg]

% Temperature of combustion rig

T w = Global.Tw; % [K]

% Pressure in the cool down phase

p = Global.p(Global.combustion end:Global.injection start); % [Pa]

% Time span for the cool down phase

cool down time = ...

Global.time(Global.combustion end:Global.injection start); % [s]

% Counting variable

s = Global.s; % [-]

% Temperature difference between T12 and T(1) in cool down phase

T diff = Global.T diff; % [K]

% Volume of the CR



Appendix D. Matlab scripts 65

v = Global.v; % [mˆ3]

% Calculates the temperature in the zone assuming prefect mixed gas and

% ideal gas properties

% pV = mRT

% Creating initial matrixes to increase calculation speed

alpha N = zeros(length(R),length(p));

dQ N = zeros(length(R),length(p));

Cv = zeros(length(R),length(p));

kappa = zeros(length(R),length(p));

% Temperature calculated using the ideal gas law

temp = ((V.*p)/(m*R)); % [K]

% Time step

h = cool down time(2)-cool down time(1); % [s]

% Finding curve fit

f2 = fit(cool down time,p','exp2');

% Coefficents from the fit to the cool down curve with

% f2(x) = a*exp(b*x) + c*exp(d*x)

a2 = f2.a;

b2 = f2.b;

c2 = f2.c;

d2 = f2.d;

% Calculate the pressure fit for the cool down phase

dp exp2 = a2*b2*exp(b2.*cool down time) + c2*d2*exp(d2.*cool down time);

% Using Newtons law of Convection to determine the heat loss

% dQdt = alpha * A * (T gas-T wall) = m * c v * dTdt

for i = 1:length(R)

for j = 1:length(p)

% Calculating the total heat capacity and kappa at the specified

% temperature

[ Cv(j), kappa(j) ] = HEAT CAPACITY( Global, temp(i,j));



Appendix D. Matlab scripts 66

% Ideal gas: R = c p - c v, c p/c v = kappa and dTdt = dpdt*V/(m*R)

dQ N(j) = 1/(kappa(j)-1)*V*dp exp2(j);

% Solving for alpha

alpha N(j) = dQ N(j)/(A * (temp(i,j) - T w));

end

end

% Fit the Eichelberg formula alpha = k * sqrt(p*T) to the alpha calculated

% by Newtons formula

% Guess of Eichelberg factor

x0 = -0.003;

xdata = cool down time;

ydata = alpha N;

% Create the anonmous function to calculate alpha with Eichelbergs formula

fun = @(x,xdata)(x.*sqrt(p.*temp));

% Turn off the option of printing the resulting fitting value

options = optimoptions(@lsqcurvefit,'Display','off');

lb = [];

ub = [];

% Coefficient to fit Eichelbergs formula against Newtons law of cooling

epsilon = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options);

% PI-controller for tuning Eichelbergs constant with difference in

% temperature in start of cool down phase based on temperatures calculated

% the two-zone model and from the comopstion after chemical reaction

T = 1; % Universal sampling time

T i = 1; % Integration constant

Kp = 2.5e-6; % Proportional gain

e = T diff; % Error between set and measured value

% Calculate the controller output to correct epsilon

if s>1

for z = s:s

v(z) = v(z-1) + Kp*((1+T/(2*T i))*e(z) - (1-T/(2*T i))*e(z-1));



Appendix D. Matlab scripts 67

end

end

% Store epsilon to calculate the heat loss from zone 2 when solving the

% two-zone model

Global.epsilon = epsilon - v(s);

% Global.T comb end = temp(1);

% Global.cooldown time = cool down time;

% Calculated values to be displayed in GUI

Global.p injection = p(end);

Global.T injection = temp(end);

Global.T cooldown = temp(1);

% Set the correction from the controller to store in the Global struct to

% be able to check it for later runs

Global.v = v;

end

D.6 Heat capacites calulated

function [ Cv, kappa ] = HEAT CAPACITY( Global, T)

%HEAT CAPACITY Calculate cv and kappa

% Uses the NASA GLENN DATABSE to calculate Cv and kappa for the gas after

% the pre-combustion based on the chemical equation

% Defines the gas constants for use in this function

RCO = Global.RCO/1000; % [kJ/kgK]

RCO2 = Global.RCO2/1000; % [kJ/kgK]

RH2 = Global.RH2/1000; % [kJ/kgK]

RN2 = Global.RN2/1000; % [kJ/kgK]

RO2 = Global.RO2/1000; % [kJ/kgK]

RH2O = Global.RH2O/1000; % [kJ/kgK]



Appendix D. Matlab scripts 68

% Calculates Cpˆ0(T)/R and Hˆ0(T)/RT using NASA GLENN DATABASE polynom

[CO, CO2, H2, N2, O2, H2O] = COEFFICIENTS(T);

CpR CO = (CO(1)*Tˆ-2 + CO(2)*Tˆ-1 + ...

CO(3) + CO(4)*T + CO(5)*Tˆ2 + ...

CO(6)*Tˆ3 + CO(7)*Tˆ4);

CpR CO2 = (CO2(1)*Tˆ-2 + CO2(2)*Tˆ-1 + ...

CO2(3) + CO2(4)*T + CO2(5)*Tˆ2 + ...

CO2(6)*Tˆ3 + CO2(7)*Tˆ4);

CpR H2 = (H2(1)*Tˆ-2 + H2(2)*Tˆ-1 + ...

H2(3) + H2(4)*T + H2(5)*Tˆ2 + ...

H2(6)*Tˆ3 + H2(7)*Tˆ4);

CpR N2 = (N2(1) * Tˆ-2 + N2(2) * Tˆ-1 + ...

N2(3) + N2(4)*T + N2(5)*Tˆ2 + ...

N2(6)*Tˆ3 + N2(7)*Tˆ4);

CpR O2 = (O2(1) * Tˆ-2 + O2(2) * Tˆ-1 + ...

O2(3) + O2(4)*T + O2(5)*Tˆ2 + ...

O2(6)*Tˆ3 + O2(7)*Tˆ4);

CpR H2O = (H2O(1)*Tˆ-2 + H2O(2)*Tˆ-1 + ...

H2O(3) + H2O(4)*T + H2O(5)*Tˆ2 + ...

H2O(6)*Tˆ3 + H2O(7)*Tˆ4);

% Calculates Cp(T) [J/kgK] with Cp(T) = [Cpˆ0(T)/R]*R for each gas

Cp CO = CpR CO * RCO;

Cp CO2 = CpR CO2 * RCO2;

Cp H2 = CpR H2 * RH2;

Cp N2 = CpR N2 * RN2;

Cp O2 = CpR O2 * RO2;

Cp H2O = CpR H2O * RH2O;

% Calculates Cv(T) [J/kgK] with Cv(T) = Cp(T) - R for each gas

Cv CO = Cp CO - RCO;

Cv CO2 = Cp CO2 - RCO2;

Cv H2 = Cp H2 - RH2;



Appendix D. Matlab scripts 69

Cv N2 = Cp N2 - RN2;

Cv O2 = Cp O2 - RO2;

Cv H2O = Cp H2O - RH2O;

Cv = Cv CO*Global.xCOp + Cv CO2*Global.xCO2p ...

+ Cv H2*Global.xH2p + Cv N2*Global.xN2p ...

+ Cv O2*Global.xO2p + Cv H2O*Global.xH2Op;

% Calculates kappa [-] with kappa = Cp/Cv for each gas

kappa CO = Cp CO/Cv CO;

kappa CO2 = Cp CO2/Cv CO2;

kappa H2 = Cp H2/Cv H2;

kappa N2 = Cp N2/Cv N2;

kappa O2 = Cp O2/Cv O2;

kappa H2O = Cp H2O/Cv H2O;

kappa = kappa CO*Global.xCOp + kappa CO2*Global.xCO2p ...

+ kappa H2*Global.xH2p + kappa N2*Global.xN2p ...

+ kappa O2*Global.xO2p + kappa H2O*Global.xH2Op;

D.7 NASA GLENN COEFFICIENTS

function [CO, CO2, H2, N2, O2, H2O] = COEFFICIENTS(T)

% Coefficients a1 to a7 divided into temperature range from

% T = 200 to 1000 K and from 1000 to 6000 [K]

if T>=200

if T <=1000

CO = [1.489045326e04, -2.922285939e02, 5.724527170e+00, ...

-8.176235030e-03, 1.456903469e-05, -1.087746302e-08, ...

3.027941827e-12, -1.303131878e+04, -7.859241350e+00];

CO2 = [4.943650540e+04, -6.264116010e+02, 5.301725240e+00,...

2.503813816e-03, -2.127308728e-07, -7.689988780e-10, ...

2.849677801e-13, -4.528198460e+04, -7.048279440e+00];

H2 = [4.078323210e+04, -8.009186040e+02, 8.214702010e+00, ...

-1.269714457e-02, 1.753605076e-05, -1.202860270e-08,...

3.368093490e-12, 2.682484665e+03, -3.043788844e+01];



Appendix D. Matlab scripts 70

N2 = [2.210371497e+04, -3.818461820e+02, 6.082738360e+00, ...

-8.530914410e-03, 1.384646189e-05, -9.625793620e-09, ...

2.519705809e-12, 7.108460860e+02, -1.076003744e+01];

O2 = [-3.425563420e+04, 4.847000970e+02, 1.119010961e+00, ...

4.293889240e-03, -6.836300520e-07, -2.023372700e-09, ...

1.039040018e-12, -3.391454870e+03, 1.849699470e+01];

H2O = [-3.947960830e+04, 5.755731020e+02, 9.317826530e-01, ...

7.222712860e-03, -7.342557370e-06, 4.955043490e-09, ...

-1.336933246e-12, -3.303974310e+04, 1.724205775e+01];

elseif ((T>1000) && (T<=6000))

CO = [4.619197250e+05, -1.944704863e+03, 5.916714180,...

-5.664282830e-04, 1.398814540e-07, -1.787680361e-11,...

9.620935570e-16, -2.466261084e+03, -1.387413108e+01];

CO2 = [1.176962419e+05, -1.788791477e+03, 8.291523190e+00, ...

-9.223156780e-05, 4.863676880e-09, -1.891053312e-12, ...

6.330036590e-16, -3.908350590e+04, -2.652669281e+01];

H2 = [ 5.608128010e+05, -8.371504740e+02, 2.975364532e+00, ...

1.252249124e-03, -3.740716190e-07, 5.936625200e-11, ...

-3.606994100e-15, 5.339824410e+03, -2.202774769e+00];

N2 = [5.877124060e+05, -2.239249073e+03, 6.066949220e+00, ...

-6.139685500e-04, 1.491806679e-07, -1.923105485e-11, ...

1.061954386e-15, 1.283210415e+04, -1.586640027e+01];

O2 = [-1.037939022e+06, 2.344830282e+03, 1.819732036e+00, ...

1.267847582e-03, -2.188067988e-07, 2.053719572e-11, ...

-8.193467050e-16, -1.689010929e+04, 1.738716506e+01];

H2O = [ 1.034972096e+06, -2.412698562e+03, 4.646110780e+00, ...

2.291998307e-03, -6.836830480e-07, 9.426468930e-11, ...

-4.822380530e-15, -1.384286509e+04, -7.978148510e+00];

else

% Display a warning if the temperature exceeds 6000 [K]

disp('Temperature to high')

end

else

% Display a warning if the temperature is below 200[K]

disp('Temperature to low')

end

D.8 Two-zone model execution



Appendix D. Matlab scripts 71

function [ Global ] = TWO ZONES( Global )

%TWO ZONES Function for solving the two-sone model in the pre-combustion

% Time in pre-combustion phase

time = Global.time(1:Global.combustion end+1); % [s]

% Pressure in pre-combustion phase

p = Global.p(1:Global.combustion end+1); % [Pa]

% Volume of combustion rig

V = Global.V; % [mˆ3]

% Mass in rig

mrig = Global.mrig; % [kg]

% Initial temperature in rig when gas combustion starts

T0 = Global.T0; % [K]

% Initial part of total mass and volume in zone 2

initial part zone2 = 0.03; % [-]

% Inital volume of zone 1

V1 0 = V; % [mˆ3]

% Counter variable for number of runs

s = Global.s; % [-]

% Temperature at beginning of cool down phase

T cooldown = Global.T cooldown; % [K]

% Make curve fit for making a smooth differential

% Make a fit for the pressure curve using the General model Fourier8:

% f(time) = a0 + a1*cos(w.*time) + b1*sin(w.*time) + a2*cos(2*w.*time)...

% + b2*sin(2*w.*time) + a3*cos(3*w.*time) + b3*sin(3*w.*time)...

% + a4*cos(4*w.*time) + b4*sin(4*w.*time) + a5*cos(5*w.*time)...

% + b5*sin(5*w.*time) + a6*cos(6*w.*time) + b6*sin(6*w.*time)...

% + a7*cos(7*w.*time) + b7*sin(7*w.*time) + a8*cos(8*w.*time)...

% + b8*sin(8*w.*time)

p fit = fit(time,p','fourier8');

a0 = p fit.a0;

a1 = p fit.a1;

a2 = p fit.a2;

a3 = p fit.a3;

a4 = p fit.a4;

a5 = p fit.a5;

a6 = p fit.a6;



Appendix D. Matlab scripts 72

a7 = p fit.a7;

a8 = p fit.a8;

b1 = p fit.b1;

b2 = p fit.b2;

b3 = p fit.b3;

b4 = p fit.b4;

b5 = p fit.b5;

b6 = p fit.b6;

b7 = p fit.b7;

b8 = p fit.b8;

w = p fit.w;

% Calculate differential of pressure from fitted function

dp fit = w*(-a1*sin(w.*time) - 2*a2*sin(2*w.*time) - 3*a3*sin(3*w.*time)...

- 4*a4*sin(4*w.*time) - 5*a5*sin(5*w.*time) - 6*a6*sin(6*w.*time)...

- 7*a7*sin(7*w.*time) - 8*a8*sin(8*w.*time)...

+ b1*cos(w.*time) + 2*b2*cos(2*w.*time) + 3*b3*cos(3*w.*time)...

+ 4*b4*cos(4*w.*time) + 5*b5*cos(5*w.*time) + 6*b6*cos(6*w.*time)...

+ 7*b7*cos(7*w.*time) + 8*b8*cos(8*w.*time));

% Calculate pressure from fitted function

p fit calc = a0 + a1*cos(w.*time) + b1*sin(w.*time) + a2*cos(2*w.*time)...

+ b2*sin(2*w.*time)+ a3*cos(3*w.*time) + b3*sin(3*w.*time)...

+ a4*cos(4*w.*time) + b4*sin(4*w.*time) + a5*cos(5*w.*time)...

+ b5*sin(5*w.*time) + a6*cos(6*w.*time) + b6*sin(6*w.*time)...

+ a7*cos(7*w.*time) + b7*sin(7*w.*time) + a8*cos(8*w.*time)...

+ b8*sin(8*w.*time);

% Initial conditions where x0(1) = m12, x0(2) = T1, x0(3) = V1, x0(4) = T2

x0 = [0 T0 V1 0 T0];

% Set timespan for the solving

timespan = [0 time(Global.combustion end)];

% Set integration tolerances

options=odeset('RelTol',1e-6,'AbsTol',1e-6*ones(1,4));

% Solve the differential equations

[T,X] = ode15s(@ODEFUN,timespan,x0,options,...

Global, p fit calc, dp fit, initial part zone2);

% Finding resulting temperature in rig after pre-combustion



Appendix D. Matlab scripts 73

T1 = X(end,2);

T2 = X(end,4);

m2 = X(end,1);

m1 = mrig-m2;

% Check if temperature is above the minimum limit by coefficients in NASA

% GLENN DATABASE

% The resulting value may be to low when the solver fails early and the

% value of T2 drop

if T2>= 200

% Set up composition of each zone

[ zone1, zone2 ] = ZONES DATA( Global );

% Calculate entalphy in zone 1

[ ~, ~, ~, h ] = ZONES THERMO PROPERTIES( T1, Global, zone1 );

h1 = h.zone; % [J/kg]

% Calculate entalphy in zone 2

[ ~, ~, ~, h ] = ZONES THERMO PROPERTIES( T2, Global, zone2 );

h2 = h.zone; % % [J/kg]

% Calculate the entalphy of the CR after pre-combustion,

% both zones completely mixed, based on resulting temperature in zone 2

[ h, temp ] = ENTALPHY(T2, Global);

% Solve the equation: m1*h1+m2*h2 = (m1+m2)*h for h12

h12 = (m1*h1+m2*h2)/(m1+m2); % [kJ/kg]

% Find the resulting temperature

ind = find(h12-h<10,1,'first');

T12 = temp(ind); % [K]

% Calculate the resulting difference

Global.T diff(s) = T12 - T cooldown; % [K]

% Resulting combustion efficiency

Global.eta comb(s+1) = max(X(:,1))/mrig;

else

Global.eta comb(s+1) = Global.eta comb(s)-0.001;

Global.T diff(s) = 0;



Appendix D. Matlab scripts 74

end

% Set final variables to display them in the GUI

Global.m12 = X(:,1); % [kg]

Global.T1 = X(:,2); % [T1]

Global.V1 = X(:,3); % [V1]

Global.T2 = X(:,4); % [T2]

Global.time two zones = T; % [s]

end

D.9 Function to update variables in two-zone model

function dx = ODEFUN( t, x, Global, p, dp, initial part zone2)

%ODEFUN Calculate and update the state matrix for the two-zone model

% This function take the solved states from ode15s to update the A matrix

% used to calculate dotx = Aˆ-1 * x

% Time in calculation

time = Global.time; % [s]

% Volume of rig

V = Global.V; % [mˆ3]

% Area of rig

A = Global.A; % [mˆ2]

% Rig wall temperature

Tw = Global.Tw; % [K]

% Mass in rig

mrig = Global.mrig; % [kg]

% Time step between measurements

h = time(2)-time(1); % [s]

% Coefficient in Eichelbergs formula

epsilon = Global.epsilon;

% Find the pressure corresponding to the simulation time

i = find((time-t)<=h,1,'first');

psolver = p(i); % [Pa]

dpsolver = dp(i); % [Pa]



Appendix D. Matlab scripts 75

% Initial mass in zone two, must be unequal to zero

m2 0 = mrig*initial part zone2; % [kg]

% Inital mass in rig, all in zone one

m1 0 = mrig - m2 0; % [kg]

% Initial volume zone 2

V2 0 = V*initial part zone2; % [mˆ3]

% Mass in zone decrease with m12

m1 = m1 0 - x(1); % [kg]

% Mass in zone increase with m12

m2 = m2 0 + x(1); % [kg]

% Temperature in zone 1

T1 = x(2); % |K]

% Volume in zone 1

V1 = x(3); % [mˆ3]

% Temperature in zone 2

T2 = x(4); % [K]

% Volme in zone 2 V = V1+V2

V2 = V2 0 + V-V1; % [mˆ3]

% Calculation of composition in zone 1 and zone 2

[ zone1, zone2 ] = ZONES DATA( Global );

% Check if the temperature in zone 1 is above required 200 K, which can

% occur in the initiating phase of the differential solution

if T1>=200

% Calculate the thermodynamic properties in zone 1

[ ~, Cv, ~, h, u ] = ZONES THERMO PROPERTIES( T1, Global, zone1 );

h1 = h.zone; % [J/kg]

u1 = u.zone; % [J/kg]

Cv1 = Cv.zone; % [J/kgK]

else

% If the temperature is to low, set to the minimum value to continue

% calculations

T1 = 200;

% Calculate the thermodynamic properties in zone 1

[ ~, Cv, ~, h, u ] = ZONES THERMO PROPERTIES( T1, Global, zone1 );

h1 = h.zone; % [J/kg]

u1 = u.zone; % [J/kg]

Cv1 = Cv.zone; % [J/kgK]



Appendix D. Matlab scripts 76

end

% Check if the temperature in zone 2 is above required 200 K, which can

% occur in the initiating phase of the differential solution

if T2>=200

% Calculate the thermodynamic properties in zone 2

[ ~, Cv, ~, ~, u ] = ZONES THERMO PROPERTIES( T2, Global, zone2 );

u2 = u.zone; % [J/kg]

Cv2 = Cv.zone; % [J/kgK]

else

% If the temperature is to low, set to the minimum value to continue

% calculations

T2 = 200;

% Calculate the thermodynamic properties in zone 2

[ ~, Cv, ~, ~, u ] = ZONES THERMO PROPERTIES( T2, Global, zone2 );

u2 = u.zone; % [J/kg]

Cv2 = Cv.zone; % [J/kgK]

end

% Heat losses in zone 1 and zone 2 wiht dotQ = alpha * A * (T-Tw)

% Heat loss from zone 1

alpha 1 = epsilon * sqrt(psolver*T1);

% dQ1 = 0 because the gas composition used to calculate epsilon is assumed

% to be more similiar to zone 2

dQ1 = 0; %alpha 1 * A * (T1-Tw) * V1/V;

% Heat loss from zone 2

alpha 2 = epsilon * sqrt(psolver*T2);

dQ2 = alpha 2 * A * (T2-Tw);

% Matrixes for solving the two zone model A*dx/dt = b

A = [1/m1, 1/T1, 1/V1, 0; ...

(h1-u1), m1*Cv1, psolver, 0; ...

1/m2, 0 , 1/V2, 1/T2;...

(h1-u2), 0, psolver, -m2*Cv2];

b = [-dpsolver/psolver; dQ1 ; dpsolver/psolver; -dQ2 ];

% Return changes in the states

dx = A\b;



Appendix D. Matlab scripts 77

end

D.10 Function to calculate the mass fraction in zone 1 and

zone 2

function [ zone1, zone2 ] = ZONES DATA( Global )

%ZONES DATA Calculates the mass fraction of each gas

% This function calculates the mass fraction of each gas in zone 1 and

% zone 2 to determine the thermodynamic state of the entire zone based

% on the thermodynaic state of each substance

nO2 = (Global.mrig * Global.xO2mix)/Global.MO2;

nCO = (Global.mrig * Global.xCOmix)/Global.MCO;

nN2 = (Global.mrig * Global.xN2mix)/Global.MN2;

nH2 = (Global.mrig * Global.xH2mix)/Global.MH2;

% Composition of zone 1 expressed in mass fractions

zone1.xCO = Global.xCOmix;

zone1.xN2 = Global.xN2mix;

zone1.xO2 = Global.xO2mix;

zone1.xH2 = Global.xH2mix;

zone1.xCO2 = 0;

zone1.xH2O = 0;

% Compostion of zone 2 expressed in mass fractions

zone2.nO2 = nO2-0.5*(nCO+nH2);

zone2.nN2 = nN2;

zone2.nCO2 = nCO;

zone2.nH2O = nH2;

zone2.yO2 = zone2.nO2/(zone2.nO2+zone2.nN2+zone2.nCO2+zone2.nH2O);

zone2.yN2 = zone2.nN2/(zone2.nO2+zone2.nN2+zone2.nCO2+zone2.nH2O);

zone2.yCO2 = zone2.nCO2/(zone2.nO2+zone2.nN2+zone2.nCO2+zone2.nH2O);

zone2.yH2O = zone2.nH2O/(zone2.nO2+zone2.nN2+zone2.nCO2+zone2.nH2O);

zone2.xO2 = zone2.yO2*Global.MO2/(zone2.yO2*Global.MO2 + ...

zone2.yN2*Global.MN2 + zone2.yCO2*Global.MCO2);

zone2.xN2 = zone2.yN2*Global.MN2/(zone2.yO2*Global.MO2 + ...

zone2.yN2*Global.MN2 + zone2.yCO2*Global.MCO2);



Appendix D. Matlab scripts 78

zone2.xCO2 = zone2.yCO2*Global.MCO2/(zone2.yO2*Global.MO2 + ...

zone2.yN2*Global.MN2 + zone2.yCO2*Global.MCO2);

zone2.xCO = 0;

zone2.xH2 = 0;

zone2.xH2O = zone2.yH2O*Global.MH2O/(zone2.yO2*Global.MO2 + ...

zone2.yN2*Global.MN2 + zone2.yCO2*Global.MCO2);

end

D.11 Function to calculate the thermodynamic properties

of zone 1 and zone 2

function [ Cp, Cv, kappa, h, u ] = ZONES THERMO PROPERTIES( ...

temp, Global, zone )

%ZONES THERMO PROPERTIES Calculates the termodynamic properties of the

%combustion gases for both zone 1 and zone 2

% Set matrixes for increased calculation speed

CpR CO = zeros(1,length(temp));

CpR CO2 = zeros(1,length(temp));

CpR H2 = zeros(1,length(temp));

CpR N2 = zeros(1,length(temp));

CpR O2 = zeros(1,length(temp));

CpR H2O = zeros(1,length(temp));

h.CO = zeros(1,length(temp));

h.CO2 = zeros(1,length(temp));

h.H2 = zeros(1,length(temp));

h.N2 = zeros(1,length(temp));

h.O2 = zeros(1,length(temp));

h.H2O = zeros(1,length(temp));

u.CO = zeros(1,length(temp));

u.CO2 = zeros(1,length(temp));

u.H2 = zeros(1,length(temp));

u.N2 = zeros(1,length(temp));

u.O2 = zeros(1,length(temp));

u.H2O = zeros(1,length(temp));



Appendix D. Matlab scripts 79

% Defines the gas constants for use in this function

RCO = Global.RCO; % [J/kgK]

RCO2 = Global.RCO2; % [J/kgK]

RH2 = Global.RH2; % [J/kgK]

RN2 = Global.RN2; % [J/kgK]

RO2 = Global.RO2; % [J/kgK]

RH2O = Global.RH2O; % [J/kgK]

% Calculates Cpˆ0(T)/R and Hˆ0(T)/RT using NASA GLENN DATABASE polynom

for i = 1:length(temp)

% Import coefficents for the calculations

[CO, CO2, H2, N2, O2, H2O] = COEFFICIENTS(temp(i));

CpR CO(i) = (CO(1)*temp(i)ˆ-2 + CO(2)*temp(i)ˆ-1 + ...

CO(3) + CO(4)*temp(i) + CO(5)*temp(i)ˆ2 + ...

CO(6)*temp(i)ˆ3 + CO(7)*temp(i)ˆ4);

CpR CO2(i) = (CO2(1)*temp(i)ˆ-2 + CO2(2)*temp(i)ˆ-1 + ...

CO2(3) + CO2(4)*temp(i) + CO2(5)*temp(i)ˆ2 + ...

CO2(6)*temp(i)ˆ3 + CO2(7)*temp(i)ˆ4);

CpR H2(i) = (H2(1)*temp(i)ˆ-2 + H2(2)*temp(i)ˆ-1 + ...

H2(3) + H2(4)*temp(i) + H2(5)*temp(i)ˆ2 + ...

H2(6)*temp(i)ˆ3 + H2(7)*temp(i)ˆ4);

CpR N2(i) = (N2(1) * temp(i)ˆ-2 + N2(2) * temp(i)ˆ-1 + ...

N2(3) + N2(4)*temp(i) + N2(5)*temp(i)ˆ2 + ...

N2(6)*temp(i)ˆ3 + N2(7)*temp(i)ˆ4);

CpR O2(i) = (O2(1) * temp(i)ˆ-2 + O2(2) * temp(i)ˆ-1 + ...

O2(3) + O2(4)*temp(i) + O2(5)*temp(i)ˆ2 + ...

O2(6)*temp(i)ˆ3 + O2(7)*temp(i)ˆ4);

CpR H2O(i) = (H2O(1)*temp(i)ˆ-2 + H2O(2)*temp(i)ˆ-1 + ...

H2O(3) + H2O(4)*temp(i) + H2O(5)*temp(i)ˆ2 + ...

H2O(6)*temp(i)ˆ3 + H2O(7)*temp(i)ˆ4);

% Calculates h(T) [J/kg] with h(T) = [Hˆ0(T)/RT]*RT for each gas



Appendix D. Matlab scripts 80

h.CO(i) = (-CO(1)*(temp(i)ˆ-2) + CO(2)*(log(temp(i))/temp(i)) ...

+ CO(3) + CO(4)*temp(i)/2 + CO(5)*(temp(i)ˆ2)/3 ...

+ CO(6)*(temp(i)ˆ3)/4 + CO(7)*(temp(i)ˆ4)/5 ...

+ CO(8)/temp(i)) * RCO*temp(i);

h.CO2(i) = (-CO2(1)*temp(i)ˆ-2 + CO2(2)*(log(temp(i))/temp(i)) + ...

CO2(3) + CO2(4)*temp(i)/2 + CO2(5)*((temp(i)ˆ2)/3) + ...

CO2(6)*((temp(i)ˆ3)/4) + CO2(7)*((temp(i)ˆ4)/5) + ...

CO2(8)/temp(i)) * RCO2*temp(i);

h.H2(i) = (-H2(1)*temp(i)ˆ-2 + H2(2)*(log(temp(i))/temp(i)) + ...

H2(3) + H2(4)*temp(i)/2 + H2(5)*((temp(i)ˆ2)/3) + ...

H2(6)*((temp(i)ˆ3)/4) + H2(7)*((temp(i)ˆ4)/5) + ...

H2(8)/temp(i)) * RH2*temp(i);

h.N2(i) = (-N2(1)*temp(i)ˆ-2 + N2(2)*(log(temp(i))/temp(i)) + ...

N2(3) + N2(4)*temp(i)/2 + N2(5)*((temp(i)ˆ2)/3) + ...

N2(6)*((temp(i)ˆ3)/4) + N2(7)*((temp(i)ˆ4)/5) + ...

N2(8)/temp(i)) * RN2*temp(i);

h.O2(i) = (-O2(1)*temp(i)ˆ-2 + O2(2)*(log(temp(i))/temp(i)) + ...

O2(3) + O2(4)*temp(i)/2 + O2(5)*((temp(i)ˆ2)/3) + ...

O2(6)*((temp(i)ˆ3)/4) + O2(7)*((temp(i)ˆ4)/5) + ...

O2(8)/temp(i)) * RO2*temp(i);

h.H2O(i) = (-H2O(1)*temp(i)ˆ-2 + H2O(2)*(log(temp(i))/temp(i)) + ...

H2O(3) + H2O(4)*temp(i)/2 + H2O(5)*((temp(i)ˆ2)/3) + ...

H2O(6)*((temp(i)ˆ3)/4) + H2O(7)*((temp(i)ˆ4)/5) + ...

H2O(8)/temp(i)) * RH2O*temp(i);

% Calculates h(T) for the specific zone in the two zone model

h.zone = h.CO*zone.xCO + h.CO2*zone.xCO2 + h.H2*zone.xH2 + ...

h.N2*zone.xN2 + h.O2*zone.xO2 + h.H2O*zone.xH2O;

% Calculates u(T) [J/kg] with u(T) = h(T) - RT for each gas

u.CO(i) = h.CO(i) - RCO*temp(i);

u.CO2(i) = h.CO2(i) - RCO2*temp(i);

u.H2(i) = h.H2(i) - RH2*temp(i);

u.N2(i) = h.N2(i) - RN2*temp(i);

u.O2(i) = h.O2(i) - RO2*temp(i);

u.H2O(i) = h.H2O(i) - RH2O*temp(i);



Appendix D. Matlab scripts 81

% Calculates u(T) for the specific zone in the two zone model

u.zone = u.CO*zone.xCO + u.CO2*zone.xCO2 + u.H2*zone.xH2 + ...

u.N2*zone.xN2 + u.O2*zone.xO2 + u.H2O*zone.xH2O;

end

% Calculates Cp(T) [J/kgK] with Cp(T) = [Cpˆ0(T)/R]*R for each gas

Cp.CO = CpR CO .* RCO;

Cp.CO2 = CpR CO2 .* RCO2;

Cp.H2 = CpR H2 .* RH2;

Cp.N2 = CpR N2 .* RN2;

Cp.O2 = CpR O2 .* RO2;

Cp.H2O = CpR H2O .* RH2O;

% Calculates Cv(T) [J/kgK] with Cv(T) = Cp(T) - R for each gas

Cv.CO = Cp.CO - RCO;

Cv.CO2 = Cp.CO2 - RCO2;

Cv.H2 = Cp.H2 - RH2;

Cv.N2 = Cp.N2 - RN2;

Cv.O2 = Cp.O2 - RO2;

Cv.H2O = Cp.H2O - RH2O;

% Calculates Cv(T) for the specific zone in the two zone model

Cv.zone = Cv.CO*zone.xCO + Cv.CO2*zone.xCO2 + Cv.H2*zone.xH2 + ...

Cv.N2*zone.xN2 + Cv.O2*zone.xO2 + Cv.H2O*zone.xH2O;

% Calculates kappa [-] with kappa = Cp/Cv for each gas

kappa.CO = Cp.CO./Cv.CO;

kappa.CO2 = Cp.CO2./Cv.CO2;

kappa.H2 = Cp.H2./Cv.H2;

kappa.N2 = Cp.N2./Cv.N2;

kappa.O2 = Cp.O2./Cv.O2;

kappa.H2O = Cp.H2O./Cv.H2O;

D.12 Function to calculate the specific entalphy in zone 1

and zone 2



Appendix D. Matlab scripts 82

function [ h, temp ] = ENTALPHY(T2, Global)

%ENTALPHY Calculates the entalphy for the mixed gases in the combustion rig

% This function generates the entalphy from NASA GLENN DATABASE

% for the mixed gases from zone 1 and zone 2 after pre-combustion

% is completed.

% Set temperature span for the calculations

T = round(T2);

% Temperatures 100 K above and 100 K below the final temperature in zone 2

temp = T-200:0.001:T+200;

% Set matrixes for increased calculation speed

h CO = zeros(1,length(temp));

h CO2 = zeros(1,length(temp));

h H2 = zeros(1,length(temp));

h N2 = zeros(1,length(temp));

h O2 = zeros(1,length(temp));

h H2O = zeros(1,length(temp));

% Defines the gas constants for use in this function

RCO = Global.RCO/1000; % [kJ/kgK]

RCO2 = Global.RCO2/1000; % [kJ/kgK]

RH2 = Global.RH2/1000; % [kJ/kgK]

RN2 = Global.RN2/1000; % [kJ/kgK]

RO2 = Global.RO2/1000; % [kJ/kgK]

RH2O = Global.RH2O/1000; % [kJ/kgK]

% Calculates Cpˆ0(T)/R and Hˆ0(T)/RT using NASA GLENN DATABASE polynom

for i = 1:length(temp)

% Load coefficents from COEFFICIENTS function

[CO, CO2, H2, N2, O2, H2O] = COEFFICIENTS(temp(i));

% Calculates h(T) [J/kg] with h(T) = [Hˆ0(T)/RT]*RT for each gas

h CO(i) = (-CO(1)*(temp(i)ˆ-2) + CO(2)*(log(temp(i))/temp(i)) ...

+ CO(3) + CO(4)*temp(i)/2 + CO(5)*(temp(i)ˆ2)/3 ...

+ CO(6)*(temp(i)ˆ3)/4 + CO(7)*(temp(i)ˆ4)/5 ...

+ CO(8)/temp(i)) * RCO*temp(i);

h CO2(i) = (-CO2(1)*temp(i)ˆ-2 + CO2(2)*(log(temp(i))/temp(i)) + ...



Appendix D. Matlab scripts 83

CO2(3) + CO2(4)*temp(i)/2 + CO2(5)*((temp(i)ˆ2)/3) + ...

CO2(6)*((temp(i)ˆ3)/4) + CO2(7)*((temp(i)ˆ4)/5) + ...

CO2(8)/temp(i)) * RCO2*temp(i);

h H2(i) = (-H2(1)*temp(i)ˆ-2 + H2(2)*(log(temp(i))/temp(i)) + ...

H2(3) + H2(4)*temp(i)/2 + H2(5)*((temp(i)ˆ2)/3) + ...

H2(6)*((temp(i)ˆ3)/4) + H2(7)*((temp(i)ˆ4)/5) + ...

H2(8)/temp(i)) * RH2*temp(i);

h N2(i) = (-N2(1)*temp(i)ˆ-2 + N2(2)*(log(temp(i))/temp(i)) + ...

N2(3) + N2(4)*temp(i)/2 + N2(5)*((temp(i)ˆ2)/3) + ...

N2(6)*((temp(i)ˆ3)/4) + N2(7)*((temp(i)ˆ4)/5) + ...

N2(8)/temp(i)) * RN2*temp(i);

h O2(i) = (-O2(1)*temp(i)ˆ-2 + O2(2)*(log(temp(i))/temp(i)) + ...

O2(3) + O2(4)*temp(i)/2 + O2(5)*((temp(i)ˆ2)/3) + ...

O2(6)*((temp(i)ˆ3)/4) + O2(7)*((temp(i)ˆ4)/5) + ...

O2(8)/temp(i)) * RO2*temp(i);

h H2O(i) = (-H2O(1)*temp(i)ˆ-2 + H2O(2)*(log(temp(i))/temp(i)) + ...

H2O(3) + H2O(4)*temp(i)/2 + H2O(5)*((temp(i)ˆ2)/3) + ...

H2O(6)*((temp(i)ˆ3)/4) + H2O(7)*((temp(i)ˆ4)/5) + ...

H2O(8)/temp(i)) * RH2O*temp(i);

end

% Calculates the resulting entalphy for the CR

h = h CO.*Global.xCOp + h CO2.*Global.xCO2p + h H2.*Global.xH2p ...

+ h N2.*Global.xH2p + h O2.*Global.xO2p + h H2O.*Global.xH2Op;

end

D.13 Rate of heat release calculations

function [ Global ] = ROHR( Global )

%ROHR Calculates rate of heat release (ROHR)

% ROHR is first calculated for the pre-combustion, then ROHR from the

% injection experiment is calculated



Appendix D. Matlab scripts 84

% Setting time span for the two-zone combustion

time tz = Global.time two zones; % [s]

% Mass transport from zone 1 to zone 2

m12 = Global.m12; % [kg]

% Lower heating value for mixture of CO an H2

hn = Global.hn; % [J/kg]

% Pressure in injection phase

p = Global.p(Global.injection start:Global.injection end); % [Pa]

% Setting timespan for injection experiment

time = Global.time(Global.injection start:Global.injection end); % [s]

% Temperature at injection start

T injection = Global.T injection; % [K]

% Volume of the combustion rig

V = Global.V; % [mˆ3]

% Rate of heat release for the pre-combustion phase

% Fit the mass function with a fourier fit function

m12 fit = fit(time tz,m12,'fourier8');

% Collect the parameters from the fit

m a1 = m12 fit.a1;

m a2 = m12 fit.a2;

m a3 = m12 fit.a3;

m a4 = m12 fit.a4;

m a5 = m12 fit.a5;

m a6 = m12 fit.a6;

m a7 = m12 fit.a7;

m a8 = m12 fit.a8;

m b1 = m12 fit.b1;

m b2 = m12 fit.b2;

m b3 = m12 fit.b3;

m b4 = m12 fit.b4;

m b5 = m12 fit.b5;

m b6 = m12 fit.b6;

m b7 = m12 fit.b7;

m b8 = m12 fit.b8;

m w = m12 fit.w;

% Calculate the rate of mass change form zone 1 to zone 2 with the fitted



Appendix D. Matlab scripts 85

% funtion to get a smoot curve

dm12 fit = m w*(-m a1*sin(m w.*time tz) - 2*m a2*sin(2*m w.*time tz) ...

- 3*m a3*sin(3*m w.*time tz) - 4*m a4*sin(4*m w.*time tz) ...

- 5*m a5*sin(5*m w.*time tz) - 6*m a6*sin(6*m w.*time tz) ...

- 7*m a7*sin(7*m w.*time tz) - 8*m a8*sin(8*m w.*time tz) ...

+ m b1*cos(m w.*time tz) + 2*m b2*cos(2*m w.*time tz) ...

+ 3*m b3*cos(3*m w.*time tz) + 4*m b4*cos(4*m w.*time tz) ...

+ 5*m b5*cos(5*m w.*time tz) + 6*m b6*cos(6*m w.*time tz)...

+ 7*m b7*cos(7*m w.*time tz) + 8*m b8*cos(8*m w.*time tz));

% Numerical differentiation of the mass curve

dm12 = zeros(1,length(m12));

for i = 3:(length(m12)-2)

y = time tz(i+1)-time tz(i);

dm12(i) = 1/y * (2/3*(m12(i+1)-m12(i-1)) ...

- 1/12*(m12(i+2)-m12(i-2)));

end

% Assume liniarity in the three first and three last points

dm12(1) = dm12(3);

dm12(2) = dm12(3);

dm12(end) = dm12(end-2);

dm12(end-1) = dm12(end-2);

% Calculate the ROHR for the pre-combustion phase both numerical

% and fitted with furier 8

ROHR pre combustion numeric = hn .* dm12;

ROHR pre combustion = hn .* dm12 fit;

% Calculates the total heat release in the pre-combustion phase

Q pre fit = trapz(time tz,ROHR pre combustion);

% Rate of heat release for the injection experiment, closed system analysis

% Set injection start to start of calculation

time injection = time - Global.time(Global.injection start);

% Create array to increase numerical differential calculation

dp injection = zeros(1,length(p));



Appendix D. Matlab scripts 86

% Time between measurements

h = time(2)-time(1);

for j = 3:(length(p)-2)

dp injection(j) = 1/h * (2/3*(p(j+1)-p(j-1)) ...

- 1/12*(p(j+2)-p(j-2)));

end

% Assume liniarity in the three first and three last points

dp injection(1) = dp injection(3);

dp injection(2) = dp injection(3);

dp injection(end) = dp injection(end-2);

dp injection(end-1) = dp injection(end-2);

% Find a smooth pressure differential curve

dp smooth = smooth(dp injection');

% Calculate kappa for the injection experiment

[ kappa ] = KAPPA( Global, T injection);

% Set arrays to increase calculation speed

ROHR injection = zeros(1,length(p));

ROHR injection smooth = zeros(1,length(p));

Q numeric = zeros(1,length(p));

Q smooth = zeros(1,length(p));

% Calculate the ROHR for the injection experiment, and the total fuel

% energy released for both the numerically fitted pressure differential

% and the smooth curve

for l = 1:length(dp injection)

ROHR injection(l) = 1/(kappa-1)*dp injection(l)*V; %[J/s]

ROHR injection smooth(l) = 1/(kappa-1)*dp smooth(l)*V; %[J/s]

Q numeric(l) = h * trapz(ROHR injection(1:l));

Q smooth(l) = h * trapz(ROHR injection smooth(1:l));

end

% Numerically fitted



Appendix D. Matlab scripts 87

% Find the maximum value

Q numeric 100 = max(Q numeric);

% Set values for three points of mass of fuel burned

Q1 = Q numeric 100*Global.MFB1;

Q2 = Q numeric 100*Global.MFB2;

Q3 = Q numeric 100*Global.MFB3;

% Find the index where the set mass of fuel is burned

ind 1 = find(Q numeric/Q numeric 100>=Global.MFB1,1,'first');

ind 2 = find(Q numeric/Q numeric 100>=Global.MFB2,1,'first');

ind 3 = find(Q numeric/Q numeric 100>=Global.MFB3,1,'first');

% Use linear interpolation to find a better estimate of the time

if ind 1>=1

Global.MFB time 1 = (time injection(ind 1-1) + (Q1-Q numeric(ind 1-1))...

* ((time injection(ind 1)-time injection(ind 1-1))...

/(Q numeric(ind 1)-Q numeric(ind 1-1))))*1000;

Global.MFB time 2 = (time injection(ind 2-1) + (Q2-Q numeric(ind 2-1))...

* ((time injection(ind 2)-time injection(ind 2-1))...

/(Q numeric(ind 2)-Q numeric(ind 2-1))))*1000;

Global.MFB time 3 = (time injection(ind 3-1) + (Q3-Q numeric(ind 3-1))...

* ((time injection(ind 3)-time injection(ind 3-1))...

/(Q numeric(ind 3)-Q numeric(ind 3-1))))*1000;

else

% If the calculation fails, set all values to zero

Global.MFB time 1 = 0;

Global.MFB time 2 = 0;

Global.MFB time 3 = 0;

end

% Smooth curve

% Find the maximum value

Q smooth 100 = max(Q smooth);

% Set values for three points of mass of fuel burned



Appendix D. Matlab scripts 88

Q1 smooth = Q smooth 100*Global.MFB1;

Q2 smooth = Q smooth 100*Global.MFB2;

Q3 smooth = Q smooth 100*Global.MFB3;

% Find the index where the set mass of fuel is burned

ind 1 s = find(Q smooth/Q smooth 100>=Global.MFB1,1,'first');

ind 2 s = find(Q smooth/Q smooth 100>=Global.MFB2,1,'first');

ind 3 s = find(Q smooth/Q smooth 100>=Global.MFB3,1,'first');

% Use linear interpolation to find a better estimate of the time

if ind 1 s>=1

Global.MFB time 1 smooth = (time injection(ind 1 s-1)...

+ (Q1 smooth-Q smooth(ind 1 s-1))...

* ((time injection(ind 1 s)-time injection(ind 1 s-1))...

/(Q smooth(ind 1 s)-Q smooth(ind 1 s-1))))*1000;

Global.MFB time 2 smooth = (time injection(ind 2 s-1)...

+ (Q2 smooth-Q smooth(ind 2 s-1))...

* ((time injection(ind 2 s)-time injection(ind 2 s-1))...

/(Q smooth(ind 2 s)-Q smooth(ind 2 s-1))))*1000;

Global.MFB time 3 smooth = (time injection(ind 3 s-1)...

+ (Q3 smooth-Q smooth(ind 3 s-1))...

* ((time injection(ind 3 s)-time injection(ind 3 s-1))...

/(Q smooth(ind 3 s)-Q smooth(ind 3 s-1))))*1000;

else

% If the calculation fails, set all values to zero

Global.MFB time 1 smooth = 0;

Global.MFB time 2 smooth = 0;

Global.MFB time 3 smooth = 0;

end

% Set global parameters to display results in the GUI

Global.time injection = time - Global.time(Global.injection start);

Global.ROHR injection numeric = ROHR injection;

Global.ROHR injection smooth = ROHR injection smooth;

Global.ROHR pre combustion = ROHR pre combustion;

Global.ROHR pre combustion numeric = ROHR pre combustion numeric;

Global.Q pre combustion = Q pre fit;

Global.Q injection = trapz(time,ROHR injection smooth);

end



Appendix D. Matlab scripts 89

D.14 Function to calculate kappa for ROHR of injection

experiment

function [ kappa ] = KAPPA( Global, temp)

%Termo properties Calculates the termodynamic properties of the combustion

%gases

% Uses the NASA GLENN DATABASE to do the calculations for finding Cp, Cv,

% and kappa = Cp/Cv for CO, CO2, H2, N2, O2, H2O

% Set matrixes for increased calculation speed

CpR CO = zeros(1,length(temp));

CpR CO2 = zeros(1,length(temp));

CpR H2 = zeros(1,length(temp));

CpR N2 = zeros(1,length(temp));

CpR O2 = zeros(1,length(temp));

CpR H2O = zeros(1,length(temp));

% Defines the gas constants for use in this function

RCO = Global.RCO/1000; % [kJ/kgK]

RCO2 = Global.RCO2/1000; % [kJ/kgK]

RH2 = Global.RH2/1000; % [kJ/kgK]

RN2 = Global.RN2/1000; % [kJ/kgK]

RO2 = Global.RO2/1000; % [kJ/kgK]

RH2O = Global.RH2O/1000; % [kJ/kgK]

% Calculates Cpˆ0(T)/R and Hˆ0(T)/RT using NASA GLENN DATABASE polynom

for i = 1:length(temp)

[CO, CO2, H2, N2, O2, H2O] = COEFFICIENTS(temp(i));

CpR CO(i) = (CO(1)*temp(i)ˆ-2 + CO(2)*temp(i)ˆ-1 + ...

CO(3) + CO(4)*temp(i) + CO(5)*temp(i)ˆ2 + ...

CO(6)*temp(i)ˆ3 + CO(7)*temp(i)ˆ4);

CpR CO2(i) = (CO2(1)*temp(i)ˆ-2 + CO2(2)*temp(i)ˆ-1 + ...

CO2(3) + CO2(4)*temp(i) + CO2(5)*temp(i)ˆ2 + ...

CO2(6)*temp(i)ˆ3 + CO2(7)*temp(i)ˆ4);



Appendix D. Matlab scripts 90

CpR H2(i) = (H2(1)*temp(i)ˆ-2 + H2(2)*temp(i)ˆ-1 + ...

H2(3) + H2(4)*temp(i) + H2(5)*temp(i)ˆ2 + ...

H2(6)*temp(i)ˆ3 + H2(7)*temp(i)ˆ4);

CpR N2(i) = (N2(1) * temp(i)ˆ-2 + N2(2) * temp(i)ˆ-1 + ...

N2(3) + N2(4)*temp(i) + N2(5)*temp(i)ˆ2 + ...

N2(6)*temp(i)ˆ3 + N2(7)*temp(i)ˆ4);

CpR O2(i) = (O2(1) * temp(i)ˆ-2 + O2(2) * temp(i)ˆ-1 + ...

O2(3) + O2(4)*temp(i) + O2(5)*temp(i)ˆ2 + ...

O2(6)*temp(i)ˆ3 + O2(7)*temp(i)ˆ4);

CpR H2O(i) = (H2O(1)*temp(i)ˆ-2 + H2O(2)*temp(i)ˆ-1 + ...

H2O(3) + H2O(4)*temp(i) + H2O(5)*temp(i)ˆ2 + ...

H2O(6)*temp(i)ˆ3 + H2O(7)*temp(i)ˆ4);

end

% Calculates Cp(T) [J/kgK] with Cp(T) = [Cpˆ0(T)/R]*R for each gas

Cp.CO = CpR CO .* RCO;

Cp.CO2 = CpR CO2 .* RCO2;

Cp.H2 = CpR H2 .* RH2;

Cp.N2 = CpR N2 .* RN2;

Cp.O2 = CpR O2 .* RO2;

Cp.H2O = CpR H2O .* RH2O;

% Calculates Cv(T) [J/kgK] with Cv(T) = Cp(T) - R for each gas

Cv.CO = Cp.CO - RCO;

Cv.CO2 = Cp.CO2 - RCO2;

Cv.H2 = Cp.H2 - RH2;

Cv.N2 = Cp.N2 - RN2;

Cv.O2 = Cp.O2 - RO2;

Cv.H2O = Cp.H2O - RH2O;

% Calculates kappa [-] with kappa = Cp/Cv for each gas

kappa CO = Cp.CO./Cv.CO;

kappa CO2 = Cp.CO2./Cv.CO2;

kappa H2 = Cp.H2./Cv.H2;

kappa N2 = Cp.N2./Cv.N2;

kappa O2 = Cp.O2./Cv.O2;

kappa H2O = Cp.H2O./Cv.H2O;



Appendix D. Matlab scripts 91

% Calculates kappa for the total mixture

kappa = kappa CO*Global.xCOp + kappa CO2*Global.xCO2p ...

+ kappa H2*Global.xH2p + kappa N2*Global.xN2p ...

+ kappa O2*Global.xO2p + kappa H2O*Global.xH2Op;

end

D.15 Output generated on user request

function [ ] = OUTPUT( Global )

%OUTPUT Function to write all calculated values to a textfile

% Takes all calculated values from TDAT and save them with the name

% stated by the user.

fileID = fopen(Global.Output,'w');

fprintf(fileID,'%20s %30s \n',['Ouput file for ',Global.file name]);

fprintf(fileID,'\n');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.3f %8s \n','Rig radius = ',Global.r,'[m]');

fprintf(fileID,'%20s %12.3f %8s \n','Rig height = ',Global.h,'[m]');

fprintf(fileID,'%20s %12.4f %8s \n','Rig volume = ',Global.V,'[mˆ3]');

fprintf(fileID,'%20s %12.4f %8s \n','Rig area = ',Global.A,'[mˆ2]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.4f %8s \n','x CO = ',Global.xCOgas,'[-]');

fprintf(fileID,'%20s %12.4f %8s \n','x H2 = ',Global.xH2gas,'[-]');

fprintf(fileID,'%20s %12.4f %8s \n','x N2 = ',Global.xN2gas,'[-]');

fprintf(fileID,'%20s %12.4f %8s \n','x O2 = ',Global.xO2gas,'[-]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.2f %8s \n','R gas = ',Global.Rgas,'[J/kgK]');

fprintf(fileID,'%20s %12.3f %8s \n','p rig = ',Global.p0/1e5,'[bar]');

fprintf(fileID,'\n');

fprintf(fileID,'%19s %12.4f %7s \n','m gas = ',Global.mgas, '[kg]');

fprintf(fileID,'%19s %12.4f %7s \n','m CO = ',Global.mCOmix, '[kg]');

fprintf(fileID,'%19s %12.4f %7s \n','m H2 = ',Global.mH2mix, '[kg]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.4f %8s \n','Hn CO = ',...



Appendix D. Matlab scripts 92

Global.hn CO/1e6, '[MJ/kg]');

fprintf(fileID,'%20s %12.4f %8s \n','Hn H2 = ',...

Global.hn H2/1e6, '[MJ/kg]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.1f %8s \n','Q CO = ',Global.Q CO/1000, '[kJ]');

fprintf(fileID,'%20s %12.1f %8s \n','Q H2 = ',Global.Q H2/1000, '[kJ]');

fprintf(fileID,'%20s %12.1f %8s \n','Q tot = ',Global.Q tot/1000, '[kJ]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.1f %8s \n','Q pre-comb = ',...

Global.Q pre combustion/1000, '[kJ]');

fprintf(fileID,'%20s %12.1f %8s \n','Q fuel = ',...

Global.Q injection/1000, '[kJ]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.4f %8s \n','m air = ',Global.mair, '[kg]');

fprintf(fileID,'%20s %12.4f %8s \n','m O2 air = ',Global.mO2air, '[kg]');

fprintf(fileID,'%20s %12.4f %8s \n','m N2 air = ',Global.mN2air, '[kg]');

fprintf(fileID,'%20s %12.4f %8s \n','m rig = ',Global.mrig, '[kg]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.4f %8s \n','m O2 mix = ',Global.mO2mix, '[kg]');

fprintf(fileID,'%20s %12.4f %8s \n','m N2 mix = ',Global.mN2mix, '[kg]');

fprintf(fileID,'%20s %12.4f %8s \n','m CO mix = ',Global.mCOmix, '[kg]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.4f %8s \n','xCO mix = ',Global.xCOmix, '[-]');

fprintf(fileID,'%20s %12.4f %8s \n','xN2 mix = ',Global.xN2mix, '[-]');

fprintf(fileID,'%20s %12.4f %8s \n','xO2 mix = ',Global.xO2mix, '[-]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.2f %8s \n','R mix = ',Global.Rmix, '[J/kgK]');

fprintf(fileID,'%20s %12.2f %8s \n','M mix = ',Global.Mmix, '[g/mol]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.4f %8s \n','eta comb = ',...

Global.eta comb(end)*100, '[%]');

fprintf(fileID,'%20s %12.4f %8s \n','T diff = ',...

Global.T diff(end), '[K]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.4f %8s \n','xCO burned = ',Global.xCOp, '[-]');

fprintf(fileID,'%20s %12.4f %8s \n','xCO2 burned = ',Global.xCO2p, '[-]');

fprintf(fileID,'%20s %12.4f %8s \n','xO2 burned = ',Global.xO2p, '[-]');

fprintf(fileID,'%20s %12.4f %8s \n','xN2 burned = ',Global.xN2p, '[-]');

fprintf(fileID,'\n');

fprintf(fileID,'%20s %12.2f %8s \n','R burned = ',...

Global.Rburned, '[J/kgK]');



Appendix D. Matlab scripts 93

fprintf(fileID,'%20s %12.1f %8s \n','Injection time = ',...

Global.injection time, '[s]');

fclose(fileID);

end



Bibliography

Atkins, P. W. and Jones, L. (2008). Chemical principles: the quest for insight. (4th

ed.).

Balchen, J. G., Andresen, T., and Foss, B. A. (2003). Reguleringsteknikk. Institutt for

teknisk kybernetikk, NTNU.

Chase, M. W. (1986). JANAF thermochemical tables. Number 3rd ed. Published by the

American Chemical Society and the American Institute of Physics for the National

Bureau of Standards, New York, NY.

Heywood, J. B. (1988). Internal combustion engine fundamentals. McGraw-Hill series

in mechanical engineering. New York : McGraw-Hill.

Kistler (2011). High-Temperature Pressure Sensor for Combustion Engine Measure-

ments. Kistler Group, 6045a 000 618e-03.11 edition.

McBride, B. J., Zehe, M. J., and Gordon, S. (2002). NASA Glenn Coefficients for

Calculating Thermodynamic Properties of Individual Species. Glenn Research Center.

Moran, M. J. and Shapiro, H. N. (2010). Fundamentals of Engineering Thermodynamics.

John Wiley & Sons, Inc, 6th edition.

Stapersma, D. (2010). Turbocharging, Lecture Notes, volume 2 of Diesel Engines. TU

Delft Faculty of Mechanical, Maritime and Materials Engineering.

Sun, H., Yang, S., Jomaas, G., and Law, C. (2007). High-pressure laminar flame speeds

and kinetic modeling of carbon monoxide/hydrogen combustion. Proceedings of the

Combustion Institute, 31(1):439 – 446.

Tipler, P. A. and Mosca, G. (2008). Physics For Scientists and Engineers. Sixth edition.

94


	Abstract
	Abstract - Norwegian
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Physical Constants
	Symbols
	1 Introduction
	1.1 Background and motivation
	1.2 Problem description

	2 Theoretical Background
	2.1 Analysis of the pre-combustion phase
	2.1.1 Ideal gas properties
	2.1.2 Conservation of energy
	2.1.3 Resulting equations
	2.1.4 Fractions of each gas
	2.1.5 Calculation of the thermodynamic properties
	2.1.6 Specifications for the two-zone model
	2.1.7 Mixing of the gases in the two zones
	2.1.8 Heat losses

	2.2 Rate of heat release (ROHR)
	2.2.1 Pre-mixed combustion
	2.2.2 Diesel injection experiment

	2.3 Control theory

	3 Implementation of theoretical background to develop the MATLAB algorithm
	3.1 Creating structure and import of data
	3.2 Loading of constants and import of measurements
	3.3 Thermodynamic properties
	3.4 Heat losses
	3.4.1 Chemical reaction
	3.4.2 Fit of pressure curve and Eichelbergs coefficient

	3.5 Differential equations in the two-zone model
	3.6 Rate of heat release
	3.6.1 Pre-combustion phase

	3.7 Injection experiment
	3.8 Graphical User Interface (GUI)

	4 Discussions regarding accuracy of calculations and future work to improve estimation
	4.1 Assumtions
	4.1.1 Perfect mixed gases
	4.1.2 Relative combustion rate of H2 and CO

	4.2 Constant temperature of the rig Twall
	4.3 Unaccuracies in measured pressure
	4.4 Precisicion of the algorithm
	4.5 Future work
	4.5.1 Verification of gas mixture composition
	4.5.2 Heat losses
	4.5.3 ROHR in injection experiment


	A Thermodynamic Coefficents from NASA GLENN DATABASE
	B Thermochemical Data
	C Numerical differential
	D Matlab scripts
	D.1 GUI function and figure
	D.2 Function to initiate calculations
	D.3 Import measurements and calculate gas composition based on user input
	D.4 Gas composition after pre-combustion
	D.5 Heat loss coefficient calcualtion
	D.6 Heat capacites calulated
	D.7 NASA GLENN COEFFICIENTS
	D.8 Two-zone model execution
	D.9 Function to update variables in two-zone model
	D.10 Function to calculate the mass fraction in zone 1 and zone 2
	D.11 Function to calculate the thermodynamic properties of zone 1 and zone 2
	D.12 Function to calculate the specific entalphy in zone 1 and zone 2
	D.13 Rate of heat release calculations
	D.14 Function to calculate kappa for ROHR of injection experiment 
	D.15 Output generated on user request

	Bibliography

