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Abstract: A bulk viscosity is introduced in the formalism of modified gravity. It is shown
that, based on a natural scaling law for the viscosity, a simple solution can be found for
quantities such as the Hubble parameter and the energy density. These solutions may
incorporate a viscosity-induced Big Rip singularity. By introducing a phase transition in
the cosmic fluid, the future singularity can nevertheless in principle be avoided.
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1. Introduction

Modified gravity has become an active branch of modern cosmology, attempting to give a unified
description of the early (inflationary) epoch of the universe and at the same time intending to account for
the accelerated expansion at the later stages. Useful reviews on modified gravity theories can be found
in [1–3].

Most treatises on modified gravity, as well as on standard gravity, assume the cosmic fluid to be ideal,
i.e., non-viscous. From a hydrodynamicist’s point of view this is somewhat surprising, since there are
several situations in fluid mechanics, even in homogeneous space without boundaries, where the two
viscosity coefficients, the shear coefficient η and the bulk coefficient, ζ come into play. This means a
deviation from thermal equilibrium to the first order. Such a theory in effect means acceptance of the
Eckart 1940 theory [4]. An important property of the Eckart assumption is that the theory becomes
non-causal. By taking into account second order deviations from thermal equilibrium, one can obtain
a causal theory respecting special relativity. Pioneering articles on causal fluid mechanics are those of
Müller [5], Israel [6], and Israel and Stewart [7]. A recent review can be found in [8]. Because of the
assumption about spatial isotropy, the shear coefficient is usually omitted.
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Our purpose in the following will be to include the bulk viscosity ζ in the modified gravity formalism.
We consider the case when ζ is satisfying a scaling law, reducing in the Einstein case to a form
proportional to the Hubble parameter. It turns out that this scaling law is quite useful. We survey
first earlier developments along this line, extracting material largely from our earlier papers [9–11].
Thereafter, as a novel development, we investigate how the occurrence of a phase transition can change
the development of the universe, especially in the later stages approaching the future singularity. (It may
here appear natural to relate such a phase transition with the onset of a turbulent state of motion.) It is
shown that such a transition may in principle be enough to prevent the singularity to occur at all. This
part of the paper, covered in Section 4, is a generalization of the viscous/turbulent theory for standard
cosmology recently given in [12,13].

2. Fundamental Formalism

The action in modified gravity is conventionally written in the general form

S =

∫
d4x
√
−g
[
F (R)

2κ2
+ Lmatter

]
(1)

where κ2 = 8πG, and where Lmatter is the matter Lagrangian. The equations of motion are

−1

2
gµνF (R) +RµνF

′(R)−∇µ∇νF
′(R) + gµν�F

′(R) = κ2Tmatter
µν (2)

where Tmatter
µν is the energy-momentum tensor corresponding to Lmatter.

We shall however in the following not consider the general case, but limit ourselves to the special
form where

F (R) = f0R
α (3)

with f0 and α being constants. This model has been used before, by Abdalla et al. [14] and others. The
case of Einstein gravity corresponds to f0 = 1 and α = 1. This choice appears to be natural from a
mathematical viewpoint, and in our case it will play an important role in connection with the scaling law
for the bulk viscosity; cf. Equation (25) below.

We assume the spatially flat FRW metric

ds2 = −dt2 + a2(t)dx2 (4)

and put the cosmological constant Λ = 0. In comoving coordinates, the components of the four-velocity
Uµ are U0 = 1, U i = 0. Introducing the projection tensor hµν = gµν + UµUν , we have for the
energy-momentum tensor

Tµν = ρUµUν + p̃hµν (5)

where p̃ is the effective pressure
p̃ = p− 3Hζ (6)

The scalar expansion is θ = 3ȧ/a = 3H , with H the Hubble parameter. The shear viscosity is
here omitted.
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The equations of motion following from the above action are

−1

2
f0gµνR

α + αf0RµνR
α−1 − αf0∇µ∇νR

α−1 + αf0gµν�R
α−1 = κ2Tmatter

µν (7)

The equation of state for the fluid is written as

p = wρ ≡ (γ − 1)ρ (8)

If w = −1 or p = −ρ, the fluid is a vacuum fluid with strange thermodynamical properties such as
negative entropies (cf., for instance, [15]). Recent observations indicate that w = −1.04+0.09

−0.10 [16,17]. It
has been conjectured that w is a function varying with time, perhaps even oscillatory, and that w might
have been around 0 at redshift z of order unity [18]. The quintessence region −1 < w < −1/3 and
the phantom region region w < −1 are both of physical interest. Both quintessence and phantom fluids
imply the inequality ρ+ 3p ≤ 0, thus breaking the strong energy condition.

We now consider the (00) component of Equation (7), observing that R00 = −3ä/a and R = 6(Ḣ +

2H2). With Tmatter
00 = ρ we obtain

1

2
f0R

α − 3αf0(Ḣ +H2)Rα−1 + 3α(α− 1)f0HR
α−2Ṙ = κ2ρ (9)

An important property of (9) is that the four-divergence of the LHS is equal to zero,∇νTmatter
µν = 0 [19].

This is as in Einstein’s gravity, meaning that conservation of energy-momentum follows from the field
equations. The energy conservation equation becomes

ρ̇+ (ρ+ p)3H = 9ζH2 (10)

Differentiating Equation (9) with respect to t and inserting ρ̇ from Equation (10), we get

3

2
γf0R

α + 3αf0[2Ḣ − 3γ(Ḣ +H2)]Rα−1 + 3α(α− 1)f0[(3γ − 1)HṘ + R̈]Rα−2

+3α(α− 1)(α− 2)f0Ṙ
2Rα−3 = 9κ2ζH (11)

InsertingR = 6(Ḣ+2H2), we see that this equation forH(t) is quite complicated. We shall be interested
in solutions related to the future singularity, and make therefore the ansatz

H =
H0

X
, where X = 1−BH0t (12)

where H0 is the Hubble parameter at present time, and B a non-dimensional constant. If a future
singularity is to happen, B must be positive.

Before closing this section, it is desirable to comment on stability issues for our ansatz Equation (3)
for the modified Lagrangian. A theory of modified gravity should admit an asymptotically flat, static
spherically symmetric solution. Now, we expect that the expression (2) for the complete action, with
Equation (3) inserted, will not be the full solution. It is reasonable to expect that the modified part will
contain also other terms so that Equation (2) makes up only a part of the complete action. Nevertheless,
it is of interest to ask to what extent Equation (3), when take separately, will behave with respect to
the stability requirements. In the Solar system, far from the sources, it is known that R ≈ 10−61 eV2;
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it corresponds to one hydrogen atom per cubic centimeter. [Note that 1 eV= 5.068 × 104 cm−1.] On
a planet, R = Rb ≈ 10−38 eV2, whereas the average curvature in the universe is R ≈ 10−66 eV2.
According to the stability analysis of Elizalde et al. [20], the stability condition for matter is

F ′′(Rb) > 0, where Rb ≈ 10−38 eV2 (13)

In our case, this means merely that the exponent α in the expression (3) has to be greater than one. The
stability condition on α is quite modest.

3. Special Cases

It is now mathematically simplifying, and physically instructive, to focus on special cases.

3.1. Einstein Action

As mentioned above, Einstein’s gravity corresponds to f0 = 1 and α = 1. It means that the
Lagrangian is linear in R. It is natural to consider this case as a reference case before embarking on
the nonlinear general situation.

We first have to adopt a definite form for the bulk viscosity. The simplest choice would be to put
ζ = constant. There are however reasons to assume a slightly more complicated form, namely to put ζ
proportional to the Hubble parameter H . This is physically natural, in view of the large fluid velocities
expected near the future singularity. Such violent conditions should correspond to an increased value of
ζ . We shall take ζ to be proportional to the scalar expansion, θ = 3H ,

ζ = 3τEH (14)

with τE being the proportionality constant in the Einstein theory. An important property of this particular
form, shown in [21], is that if τE is sufficiently large to satisfy the condition

χ ≡ −γ + 3κ2τE > 0 (15)

then a Big Rip singularity is encountered after a finite time t. Even if the universe starts out from
the quintessence region (−1 < w < −1/3) or (0 < γ < 2/3), the presence of a sufficiently large
bulk viscosity will drive it into the phantom region (w < −1) and thereafter inevitably into the Big
Rip singularity.

From the governing equations we get

B =
3

2
χ, H0 =

√
1

3
κ2ρ0 (16)

where ρ0 is the present (t = 0) value of the energy density. The time dependent value ρE for the energy
density according to the Einstein theory becomes

ρE =
ρ0
X2

(17)

Here we ought to mention that other forms for the bulk viscosity, more complicated than the form
Equation (14) above, have been suggested. One possibility is that ζ , in addition to the term proportional
to H , contains also a term proportional to ä/a. See further discussions on this topic in [22,23].
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3.2. Modified Gravity Action

Consider now the modified gravity fluid for which f0 and α are arbitrary constants. As before, we
look for solutions satisfying the ansatz Equation (12). It turns out that such solutions exist, if we model
the bulk viscosity ζα according to the following scaling law [10,24],

ζα = ταθ
2α−1 = τα(3H)2α−1 (18)

We see that this scaling fits nicely with our results from the preceding subsection: if α = 1, our previous
form Equation (14) follows. The time-dependent factors in Equation (11) drop out, and we get the
following equation determining B,

(B + 2)α−1
{

9(2− α)γ + 3[α + 3γ + α(2α− 3)(3γ − 1)]B + 6α(α− 1)(2α− 1)B2
}

=
18κ2

f0

(
3

2

)α
τα (19)

This equation is in general complicated. Let us consider α = 2, γ = 0 as a typical example (recall that
γ = 0 corresponds to a vacuum fluid). Then we obtain from Equation (19) (τα → τ2),

B3 + 2B2 − 9κ2τ2
8f0

= 0 (20)

If the LHS is drawn as a function of B, it is seen that there is a local maximum at B = −4/3 and a local
negative minimum at B = 0, irrespective of the value of τ2. For all positive τ2 there is thus one single
positive root. This root is viscosity-induced and leads to the Big Rip singularity. When τ2 increases from
zero, there is a parameter region in which there are three real roots. Assume this region, and introduce
an angle φ ∈ [0, 1800] such that

cosφ = −
(

1− 243

128

κ2τ2
f0

)
(21)

then the actual value of the root can be expressed as

B = −2

3
+

4

3
cos

(
φ

3
+ 2400

)
(22)

For instance, if we choose φ = 1200, the positive solution becomes B = 0.3547. According to
Equation (12), this gives the following Big Rip time

tBR =
1

B

1

H0

=
2.819

H0

(23)

We may also note the general relation for B following from the energy conservation Equation (10),
when ρ→ ρα, p→ pα, ζ → ζα,

B = −3γ

2α
+

3τα
2α

(3H0)
2α

ρ0
(24)

Here we used

ζα = τα

(
3H0

X

)2α−1

, ρα =
ρ0
X2α

(25)

and for simplicity we used the same initial conditions at t = 0 for the modified fluid as for the Einstein
fluid, ρ0α = ρ0E ≡ ρ0, and H0α = H0E ≡ H0.
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4. On the Possibility of a Phase Transition in the Late Universe

In the preceding, we have surveyed bulk viscosity-induced generalizations of modified gravity,
following essentially the earlier treatments in [10,11,24]. Our intention in the following, as a new
contribution, will be to discuss the flexibility that the above model possesses with respect to sudden
changes in the time development (we will refer to it as phase transitions) in the late universe. The main
point is the different solutions for B in the governing Equation (11) that are possible when the scaling
ansatz Equation (18) is inserted. We obtain the following algebraic equation for B, for definiteness still
assuming α = 2,

B3 + (2 +
3

4
γ)B2 +

3

2
γB − 9

8

κ2τ2
f0

= 0 (26)

This equation generalizes Equation (20) to the case of non-vanishing γ.
Consider the following scenario: the universe starts out from present time t = 0 and follows the

equations of modified gravity, with a τ2-induced bulk viscosity corresponding to a positive value of B.
That means the universe develops according to

H =
H0

X
, ζ2 = τ2

(
3H0

X

)3

, ρ2 =
ρ0
X4

(27)

with X = 1 − BH0t. The universe thus enfaces a future singularity at large times. Let now, at a fixed
time that we shall call t∗, there be a phase transition in the cosmic fluid implying that the effect from
τ2 goes away. It means that the further development of the fluid will be determined by the γ-dependent
roots of Equation (26) when τ2 = 0. There are three roots:
(1) The first is B = 0. This is the de Sitter case, corresponding to

H = H∗, ρ2 = ρ∗ (28)

where H∗ and ρ∗ follow from Equation (27) when t = t∗. By assuming that |γ| � 1, which is of main
physical interest, we see that it is easy to determine the remaining two roots. One of them is
(2) B = −2. This means

H =
H∗

1 + 2H∗(t− t∗)
, ρ =

ρ∗
[1 + 2H∗(t− t∗)]2

(29)

The accelerated expansion is accordingly reversed at t = t∗, and the density goes smoothly to zero at
large times.
(3) The third root is B = −3γ/4, which yields

H =
H∗

1 + 3
4
γH∗(t− t∗)

, ρ =
ρ∗

[1 + 3
4
γH∗(t− t∗)]2

(30)

The sign of γ is important here. If the equation-of-state parameter w lies in the quintessence region,
w > −1 (γ > 0), then the density of the universe will go to zero for large times, like for the case (2)
above. By contrast, in the phantom region w < −1 (γ < 0), the universe will actually move towards a
Big Rip again, although very weakly so.

Finally, it is of interest to compare the above results with those obtained in ordinary viscous
cosmology when the universe, similarly as above, is thought to undergo a phase transition at a definite
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time t∗. Such an investigation was recently carried out in [13] (the one-component case treated in Section
VI). Consider the following model: the universe starts from t = 0 as an ordinary viscous fluid with a
constant bulk viscosity,

ζ = constant ≡ ζ0 (31)

and develops according to the Friedmann equations. Assume that the universe is in the phantom region,
γ < 0. It follows that in the initial period 0 < t < t∗,

H =
H0e

t/tc

1− 3
2
|γ|H0tc(et/tc − 1)

(32)

ρ =
ρ0e

2t/tc

[1− 3
2
|γ|H0tc(et/tc − 1)]2

(33)

where tc means the “viscosity time”,

tc =

(
3

2
κ2ζ0

)−1
(34)

According to these equations, the universe develops towards a Big Rip. Now, after t = t∗ we imagine an
era for which γturb = 1 + wturb > 0 and an equation of state of the form

pturb = wturbρturb (35)

Here the subscript “turb” refers to our association in [13] of the transition at t = t∗ into an era dominated
by turbulence.

Then, for t > t∗,

H =
H∗

1 + 3
2
γturbH∗(t− t∗)

(36)

ρ =
ρ∗

[1 + 3
2
γturbH∗(t− t∗)]2

(37)

This means a dilution of the density again, at large times. The Big Rip may thus be avoided, as a result
of a phase transition in the cosmic fluid. We see that in this sense the behavior is similar in the two cases,
modified or ordinary, gravity.

It ought to be made clear that we do not at present have a specific model of the phase transition
suggested at t = t∗. Our association with a turbulent state of motion is however quite natural, on
the basis of the following consideration: In states of violent local motions of the cosmic fluid near
a future singularity, the transition into a turbulent kind of motion seems physically inevitable, as the
local Reynolds number becomes then very high. That brings the shear viscosity concept back into
consideration, now not in a macroscopic but in a microscopic (local) sense. We expect that there is an
established distribution of eddies over the wave number spectrum. Most likely this distribution can be
taken to be approximately isotropic, implying the existence of an inertial subrange in which the energy
density is E(k) = αKε

2/3k−5/3, where αK is the Kolmogorov constant, ε is the mean energy dissipation,
and k is the wave number. Ultimately, when the magnitude of k reaches the inverse Kolmogorov length
1/ηK = (ε/ν3)1/4 with ν being the kinematic viscosity, the local Reynolds number becomes of order
unity and heat dissipation occurs. What we have done above is to denote the post-transition period t > t∗
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conceptually as a turbulent region, where the influence from the bulk viscosity has essentially gone away
and where γturb has become positive, without going into further detail regarding the underlying physical
transition process.

5. Conclusions

Starting from the modified gravity action integral Equation (5), we solved the (00) component of the
governing Equation (7) inserting the scaling relation in Equation (12), H = H0/X . The bulk viscosity
ζ was assumed in the form Equation (18), generalizing the Einstein-case value Equation (14) frequently
used in the literature. It turned out that the mentioned ansatz Equation (18) permitted solutions in the
form of Equation (25), corresponding to future Big Rip singularities. This is thus a Big Rip scenario
induced by the bulk viscosity.

In Section 4 it was discussed how the future singularity can nevertheless in principle be avoided, if
one allows for a future phase transition in the cosmic fluid where the influence from viscosity goes to
zero. Modified or conventional cosmology behaves in this sense essentially in the same way.

Finally, one may ask to what extent the above theory can be generalized to more complicated forms
of the modified Lagrangian term than the simple power-law form given in Equation (3). Such a general
expression for F (R) would then have to be inserted into the field Equation (2), and thereafter to be
combined with the energy conservation Equation (10). The general case seems difficult to handle,
but there may be special cases that are mathematically tractable and of physical interest. Such an
investigation is however outside the scope of the present paper. At present, the scaling laws like
Equation (25) appears to be closely linked to our basic ansatz Equation (3).
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