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Abstract

We propose a novel regime-switching approach for electricity prices in which
simulated and forecasted prices are consistent with currently observed for-
ward prices. Additionally, the model is able to reproduce spikes and negative
prices. We distinguish between a base regime as well as upper and lower spike
regimes. We derive hourly price forward curves for EEX Phelix, and together
with historical hourly spot prices, historical hourly price forward curves are
the basis for model calibration. The model can be used for simulation and
forecasting of electricity spot prices over short- and medium-term horizons.
Tests imply that it shows a better performance than classical time series
approaches.
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1. Introduction1

The deregulation of electricity markets has shifted much risk onto produc-2

ers and retailers. Extreme price movements force producers and wholesale3

buyers to hedge against price risk. Electricity is non-storable and faces a4

volatile demand from end-users depending on weather conditions and busi-5

ness cycles. Furthermore, factors like the use of renewable energy sources,6

power plant outages or transmission grid unreliability enhance complexity7
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and reduce price predictability. Finding realistic models to describe electric-8

ity prices is essential for the valuation of power contracts, for risk managers9

for the estimation of risk measures as well as for portfolio managers for the10

identification of worst-case scenarios in very turbulent markets.11

Dependent on the research question and planning task different models12

for electricity prices are proposed in the literature. Fundamental models13

take into account the components of the whole electricity system and serve14

for long-term planning (see [14]). Game theoretic approaches analyse the15

strategic behavior of different market participants ([11, 17]) and account16

for market design options. Financial mathematical models deal with the17

volatility of electricity prices and are often used for the evaluation of energy18

derivatives ([22]). Econometric time-series models like ARMA and GARCH19

processes are applied to simulate and forecast electricity prices for a short-20

term planning period and reflect specific patterns such as autocorrelation21

(see [7, 18, 27]).22

The models discussed earlier describe in general typical characteristics of23

electricity prices like seasonality patterns, mean reversion or volatility clus-24

tering. However, beside these aspects, an important characteristic to be25

considered is the extreme price changes that are reflected by the so-called26

“spiking” behavior of power prices. These spikes occur mainly because elec-27

tricity is non-storable which causes demand and supply to be balanced on28

a “knife-edge” (see [25]). Relatively small changes in the load or genera-29

tion can cause extreme price changes between consecutive hours. The spik-30

ing behavior is often described in the literature by regime-switching models31

([2, 12, 13, 25, 26, 27]). The authors conclude in general that regime switch-32

ing models lead to a better modeling performance than the other models33

mentioned before. They additionally allow electricity prices to switch be-34

tween a “base” regime and a “jump” regime. Jumps are modeled by a jump35

diffusion process, or the regimes are governed by an unobservable, stochastic36

process (Markov regime-switching models).37

We propose a novel regime-switching approach for electricity prices in38

which simulated and forecasted spot prices are consistent with currently ob-39

served forward prices. Every day, futures prices are observed in the market40

and an hourly price forward curve (HPFC) is derived. The typical seasonality41

pattern of electricity prices is additionally used to model the curve. The for-42

ward price of a particular day and hour provides information on the expected43

spot price of that day/hour. This is used to generate simulations or forecasts44

of future spot prices. Since the HPFC extends to the longest available ma-45
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turity of the instruments considered in its derivation, the price simulations46

or forecasts can range over longer time horizons with hourly resolution.47

Our model distinguishes further between a base and two spike regimes48

and allows for spike clustering and for negative prices. This is important49

since prices jump into another spike regime and can remain there for some50

hours (see the discussion in [12] or [13]). Furthermore, negative prices occur51

at EEX since 1 September 2008 due to the special characteristics of electricity52

markets, e.g., limited storage capacities, limited load change flexibility and53

combined production of heat and power.54

Most spot price simulation models cited earlier lack consistency with the55

market because the information about the expected future spot prices re-56

flected in the forward curve is not taken into account. For risk management57

applications in particular, such as hedging of price risk or valuation of power58

contracts, consistency with the observed forward prices is essential. This59

means that forecasted and simulated spot prices are adjusted for risk, allow-60

ing for straightforward valuation procedures. Compared to classical time-61

series models, our regime-switching model also leads to a significantly better62

in- and out-of-sample fit and can be used for long-term simulations of spot63

prices with the current HPFC as input.64

The idea of using information from the HPFC in a regime-switching model65

was also used in [16] in the context of scenario generation within a stochastic66

optimization model for medium-term power production planning. However,67

there deviations from the forward curve and spikes were modeled as indepen-68

dent events. We extend this approach by introducing also serial dependencies69

and a transition probability matrix to model spike clusters. Additionally, the70

variation of spot prices and spikes may now be season-dependent. For the71

generation of the input HPFC we use here a more suitable methodology to72

reflect the intra-day seasonality pattern.73

This paper is organized as follows: In Section 2 we summarize charac-74

teristics of electricity spot prices and consequences for the model structure.75

Based on these considerations, Section 3 outlines the derivation of HPFCs76

and introduces the formal specification of the regime switching model. The77

corresponding estimation procedure is described in Section 4 and the ob-78

tained results are discussed in Section 5. In Section 6 we show the compar-79

ative performance of the regime-switching model versus classical time-series80

models and results of simulation runs. Section 7 discusses the use of the81

model for short- and medium-term forecasts. Finally, Section 8 concludes.82
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Figure 1: Occurrence of negative prices at EEX.

2. Characteristics of electricity prices and modeling assumptions83

2.1. Preliminaries84

Electricity prices have properties that differ considerably from those of85

other financial assets or even of other commodities (see [4, 13]). The yearly,86

weekly, and daily seasonal behavior of the electricity prices is one of the most87

complicated ones among commodities. This is due to the inelastic short-term88

demand for electricity, caused by economic and business activities. Combined89

with the lack of efficient storage opportunities, which prevents intertemporal90

smoothing of the demand, extremely large price movements (spikes) as well91

as various cyclical patterns of behavior occur. Besides, it is expensive or even92

damaging to change the production of big generating units abruptly, which93

are further causes for spikes and even negative electricity prices.94

From an economic perspective, negative prices can be rational, e.g., if the95

costs of shutting down and ramping up a power plant unit exceed the loss96

for accepting negative prices (see [13]). Since 1 September 2008, negative97

price bids are allowed at the German power exchange EEX. Historical spot98

market data over the period from 1 September 2008 to 14 March 2013 show99

a total amount of about 174 hours with negative prices. As shown in Figure100

1, negative prices occur mostly during the night and early morning hours101

(11 pm to 8 am). The distribution of negative prices over the week has a102

maximum on Sundays (including public holidays), the remaining observations103

are concentrated on Mondays.104

2.2. Model architecture105

2.2.1. Market view and seasonality106

The prices on the futures market provide valuable information about the107

expected evolution of electricity prices. However, futures are only traded for108
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Figure 2: Hourly and daily day-ahead price patterns for EEX Phelix.

standard periods, e.g., for delivery over one month, quarter or year. Infor-109

mation about expected prices for individual hours must therefore be derived110

from the prices of traded instruments using the historically observed seasonal111

patterns. We can distinguish between yearly, weekly, and intra-day season-112

ality: The average price levels differ between summer and winter as well as113

between weekdays and weekend days. The load as a main driver for elec-114

tricity prices shows a noticeable peak at midday during the summer months,115

or two peaks around noon and early evening in winter. As a consequence,116

prices at these hours are higher than, for example, during the night when117

demand is low (see Figure 2). Hence, we estimate a seasonality shape from118

historical spot prices that incorporates these aspects. From this we derive a119

HPFC in such a way that the hourly prices reflect the seasonal pattern and120

are consistent with the last observed prices of the traded instruments (see121

Appendix A for details). In this way, the current market view on the future122

spot price evolution is taken into account in our modeling approach.123

To obtain forecast or simulations of future spot prices, we exploit the124

information contained in the HPFC, together with the day-ahead prices that125

are revealed every day at EEX around 2 pm. As shown in Figure 3, the day-126

ahead prices published in day 0 for day 1, together with the last generated127

HPFC that starts at midnight in day 2, can be used to forecast the spot128

prices for day 2. The spot prices are the result of the day-ahead auction in129

day 1 and, thus, such a prediction is meaningful up to the price publication130
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Figure 3: Availability of price information at EEX.

at 2 pm. In principle, this forecast can be extended beyond day 2 since the131

HPFC provides also forward prices for the subsequent period.132

2.2.2. Stochastic component with three regimes133

Besides the deterministic impact factors, electricity spot prices are also134

influenced by uncertainties like power plant outages and fluctuant renewable135

electricity generation. These uncertain factors are drivers of the stochastic136

component of the spot prices. An important characteristic of electricity prices137

is their spiking behavior: Prices may jump to an extremely high or low price138

level, stay there for some hours, and afterwards they jump back again to139

the original price level. Therefore, the stochastic fluctuation around the140

hourly price forward curve is described by a regime switching model where141

a base regime is distinguished from two spike regimes that reflect large price142

movements down- or upwards. A price is considered to be in one of the spike143

regimes if it is below or above some limit values which will be estimated144

simultaneously with the other model parameters. This allows for a more145

realistic fit to the data than the common approach in the literature where146

regime limits are set to three standard deviations (see [13]).147

In the base regime, differences between spot and forward prices result from148

(not anticipated) deviations between the realized supply of and demand for149

electricity. Since the causes for this, e.g., weather conditions or power plant150

outages, may persist for some hours, prices of consecutive hours are in general151

highly correlated. Therefore, the differences in the logarithms of spot and152

forward prices are modeled by an autoregressive process. In comparison with153
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[12] or [13], who introduce also regime-switching models where prices in a base154

regime are driven by mean-reverting processes (e.g., Ornstein-Uhlenbeck),155

the choice of an autoregressive process with several lags is more flexible to156

reproduce the “spillover effects” of a change in the price level in a specific157

hour to the prices of subsequent hours. This is important since the electricity158

prices can change significantly over time.159

On the other hand, in the two spike regimes deviations from the lower160

and upper limits that separate them from the base regime are by assumption161

exponentially distributed. In particular, this allows to model negative prices.162

The extreme price levels of spikes are seen as “isolated” events and do not163

carry over to later observations in the base regime. Therefore, we model164

them as independent events and, in particular, not dependent on exogenous165

variables like supply from renewable energies that are difficult to forecast.166

2.2.3. Seasonal characteristics of price volatility and spikes167

It can be observed empirically that electricity prices show different volatil-168

ities and jump behavior in different seasons (summer/winter), different days169

of the week (weekdays/weekend) and hours of the day (see [12, 13]). There-170

fore, the regime-switching model estimates different parameter sets for days171

in summer (1 April to 30 September) than in winter (1 October to 31 March).172

Likewise, parameters may differ for distinct times of the day as price volatility173

increases around noon in summer or in the early evening in winter.174

2.2.4. Transition matrixes175

A transition matrix is used to describe the probabilities of transitions176

between the three regimes. In this way, a “clustering” of extreme prices may177

be taken into account, i.e., a spike occurs with higher probability if already178

one was observed in the hour before. The importance of modeling spike179

clusters with transition matrixes is discussed, e.g., in [2, 12, 13]. For the180

derivation of transition matrix we distinguish also between seasons, days of181

the week, and times of the day. A similar approach can be found in [13],182

where transition probabilities between regimes are separately obtained for183

summer and winter.184

3. Model specification185

3.1. Derivation of the HPFC186

We derive hourly price forward curves (HPFC) by application of the187

methodology described in [3], extended to hourly steps. The derived curves188
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will serve as input for the spot-forward model. In the sequel we drop the189

times of the observations in the notation for simplicity. Let ft be the price190

of the forward contract with delivery at time t, where time is measured in191

hours. The constructed hourly price forward curve ft replicates the currently192

observed market prices F (T S, TE) perfectly, where T S and TE are the start193

and end dates for different settlement periods:194

F (T S, TE) =
1

TE − T S

∫ TE

TS
ft dt, (1)

This considers the case that contracts are settled in TE only. It is assumed195

that the HPFC can be decomposed into a seasonal component st and a196

residual or correction term εt. The seasonality shape is derived here following197

the approach in [4] (see Appendix A). The correction term is modeled by a198

polynomial spline function of the form199

εt =


a1t

4 + b1t
3 + c1t

2 + d1t+ e1 t ∈ [t0, t1)
a2t

4 + b2t
3 + c2t

2 + d2t+ e2 t ∈ [t1, t2)
...

ant
4 + bnt

3 + cnt
2 + dnt+ en t ∈ [tn−1, tn]

(2)

The curvature of this spline function is minimized according to a maximum200

smoothness criterion that was suggested in [1] for fitting interest rate curves.201

The “time knots” {t0, t1, ..., tn} are defined by the sorted start and end dates202

for the settlement periods of the futures that are taken into account. Addi-203

tional constraints ensure the connectivity and smoothness at the knots (see204

[3] for details). The advantage of this approach is that the smoothness is205

calculated on the adjustment function εt and not on the forward function206

ft in order to retain the seasonality pattern better. This is relevant for our207

application since the resulting price forward curves (PFCs) should incorpo-208

rate the hourly pattern as well. Other approaches for the derivation of PFCs209

like [9] are less useful for that purpose because the “smoothing factor” intro-210

duced there eliminates the hourly seasonality pattern. This discussion can211

be followed in [3] and in [4].212

3.2. Specification of the regime-switching model213

As mentioned above, different parameters may be applied for distinct214

times of the day, days of the week, and seasons. Several successive hours215
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with similar price characteristics are combined to blocks. Let H be the216

number of different parameter sets in the base regime for distinct hourly217

blocks dependent on the day of the week and the season. Then a function218

h(t) : t→ {1, . . . , H} is defined which assigns to time t (measured in hours)219

the index h of the corresponding parameter set. For the spike regimes it is220

advisable to use a smaller numberD of different parameter sets since there are221

considerably less observations of extreme prices available for the estimation.222

We will therefore distinguish only between days and seasons, and a function223

d(t) : t → {1, . . . , D} assigns to time t the corresponding day index d. In224

the sequel, the dependency of h(t) and d(t) on time will be dropped in the225

notation for simplicity.226

Recall that differences between the logarithms of spot and forward prices
are modeled by an autoregressive process in the base regime. The latter is
separated by some limit values from the upper and the lower spike regime.
The deviations of prices from these limits in the spike regimes are exponen-
tially distributed. With the definitions

St spot price in hour t

ft forward price in hour t derived from HPFC

rt deviation of spot price in t from HPFC in the base regime

ξ+t upward spike, exponentially distributed with parameter λ+d
ξ−t downward spike, exponentially distributed with parameter λ−d

fUt upper limit of the base regime in hour t

fLt lower limit of the base regime in hour t

the complete model for the spot price (or market clearing price) reads as227

follows:228

St =


fLt − ξ−t , if the system is in the lower spike regime,
ft · exp(rt), if the system is in the base regime or
fUt + ξ+t , if the system is in the upper spike regime.

(3)

The random variables in the three regimes are modeled by229

ξ−t ∼ Exp(λ−d ), ξ+t ∼ Exp(λ+d ) (4)

for d = 1, . . . , D, where 1/λ−d and 1/λ+d represent the expectations of the230

corresponding variables, and231

rt = ah +
∑
i∈L

bi,h · r̂t−i + εt, εt ∼ N(0, σ2
h) (5)
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for h = 1, . . . , H where L is a set of lag indices and232

r̂t−i =

{
lnSt−i − ln ft−i if system is in base regime at time t− i,
E(rt−i) otherwise.

(6)

The last equation (6) implies that “missing” lagged observations of the base233

regime (which result if at time t a spike occurred) are replaced by their234

expectations. In this way, the extreme price levels of spike regimes have no235

impact on the prices in the base regime in subsequent hours.236

For storable commodities, arbitrage-based arguments imply that forward237

prices are equal to (discounted) expected spot prices. Due to the non-238

storability of electricity, this link does not exist here. Therefore, it can be239

expected that forward prices are formed as the sum of the expected spot240

price plus a risk premium that is paid by risk-averse market participants for241

the elimination of price risk. The risk premium may be positive or negative,242

depending on the average risk aversion in the market. It may vary in mag-243

nitude and sign throughout the day and between seasons (cf. [21]). In our244

context, the premium for each block h = 1, . . . , H is related to the long-term245

mean of the autoregressive process (5), given that it is stationary:246

µh =
ah

1−
∑

i∈L bi,h
(7)

The probabilities of remaining in the current regime or switching to another247

one from hour t to hour t + 1 are modeled by a transition matrix Πh, h =248

1, . . . , H, that has the structure249

Πh =

1− πLBh πLBh 0
πBLh 1− πBLh − πBUh πBUh

0 πUBh 1− πUBh

 . (8)

For example, πBUh (πBLh ) denotes the probability that in the next hour an250

upward (downward) spike occurs, given that the system is now in the base251

regime, and πUBh (πLBh ) is the probability of a transition from the upper252

(lower) spike back to the base regime. As implied by the zeros, it is impossible253

that a downward spike is directly followed by an upward spike or vice versa,254

which also cannot be observed in historical data. Individual matrices for each255

time block take into account the different probabilities for the occurrence of256

spikes at day and night hours, as well as a distinction between weekdays and257

weekend days or seasons.258
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It remains to define when a price level is considered “extreme”, i.e., the259

concrete values of the limits fLt and fUt that separate the base regime from260

the lower and the upper spike regime. They are derived from the forward261

prices ft given in terms of the HPFC by262

fLt = ft/ exp(αLδ )

fUt = ft · exp(αUδ ),
(9)

for the additional parameters αLδ > 0 and αUδ > 0. Again, the index δ allows263

a distinction between different days or seasons to take into account different264

spike characteristics.265

4. Estimation procedure266

4.1. Estimation of HPFCs267

Following the procedure outlined in Section 3.1, we derive HPFCs based268

on the information about the market prices obtained each day between 1269

January 2009 and 14 March 2013. An example for a smoothed forward curve270

is shown in Figure 4. It was generated for 3 January 2012 with market data271

from EEX Phelix observed on the day before. All in all, settlement prices272

of 30 weekly, monthly, quarterly, and yearly base contracts were used to273

construct a spline consisting of n = 32 polynomials. The HPFCs for the274

other days of the sample period are obtained analogously with updates of275

the market prices for each trading day. These curves represent the input for276

our spot model.277

4.2. Estimation of model parameters278

According to equation (9) the allocation of observations to the base, to279

the lower, or to the upper spike regime depends on the choice of the pa-280

rameters αLδ and αUδ . Preliminary model tests implied that it is sufficient to281

distinguish between Sunday (δ := 2) and the other days (δ := 1). A further282

differentiation between seasons, other weekdays, or times of the day would283

not result in significantly different estimated values for αLδ and αUδ with our284

data set (results are available on request).285

The remaining model parameters for the base and for the spike regimes286

depend now on the specific choice of αLδ and αUδ , δ ∈ {1, 2}. The identifica-287

tion of the full parameter set consists therefore of two nested steps: In an288

“outer estimation” a log-likelihood function lnL(αL1 , α
U
1 , α

L
2 , α

U
2 ), that will be289
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Figure 4: Hourly Price Forward Curve for EEX Phelix at 02/01/2012.

specified in the sequel, is maximized with respect to the parameters which290

separate the three regimes. In each step of this procedure observations are as-291

signed to regimes based on the current values of αLδ and αUδ , δ ∈ {1, 2}. Then292

the remaining model parameters are identified separately for each regime in293

an “inner estimation”. We start with a description of the latter.294

4.2.1. Estimation of expected spike magnitude and AR process parameters295

Assume that the values of the parameters αL1 , α
U
1 , α

L
2 , α

U
2 that define the

limits of the base regime have been set in the “outer estimation” step. Based
on this, the observations at (hourly) time points t = 1, . . . , T can be assigned
to the different regimes. Define for each hourly time block h′ = 1, . . . , H the
sets

DB(h′) := {t = 1, . . . , T |h(t) = h′ ∧ fLt ≤ St ≤ fUt }

of observations that belong to different time bands of the base regime and
for each daily block d′ = 1, . . . , D the sets

DL(d′) := {t = 1, . . . , T | d(t) = d′ ∧ St < fLt }
DU(d′) := {t = 1, . . . , T | d(t) = d′ ∧ St > fUt }

12



that contain the observations of the lower and upper spike regime. Note
that the dependence of these sets – and likewise of the parameter estimates
that result in this step – on the values of αLδ and αUδ , δ ∈ {1, 2}, is dropped
in the notation for simplicity. The parameter estimates for the exponential
distributions of the spike magnitudes are given by the reciprocal values of
the average deviations between spot prices and regime limits:

λ̂−d′ =
#elements in DL(d′)∑

t∈DL(d′)(f
L
t − St)

, λ̂+d′ =
#elements in DU(d′)∑

t∈DU (d′)(St − fUt )
.

To determine the parameters of the autoregressive process used to model the296

deviations rt := lnSt− ln ft in the base regime, the residuals et are calculated297

for all t = 1, . . . , T :298

et =

{
rt − ah(t) −

∑
i∈L bi,h(t) · r̂t−i, t ∈ DB(h(t))

0, otherwise
(10)

Recall that a lagged value r̂t−i equals the observation rt−i unless a spike299

occurred at time τ := t− i, then it is replaced by its expectation:300

r̂τ =

{
rτ , τ ∈ DB(h(τ))
ah(τ) +

∑
j∈L bj,h(τ) · r̂τ−j, otherwise

For all h′ = 1, . . . , H the coefficients of the autoregressive processes intro-301

duced in equation (5) are estimated by minimizing the sum of the squared302

residuals defined in (10):303

min
T∑
t=1

e2t

Then, (unbiased) estimators for the volatility parameters of block h′ =304

1, . . . , H are obtained from the variances of the residuals defined in (5), cal-305

culated as the sum of the squared errors divided by sample size minus degree306

of freedom:307

σ̂2
h′ =

∑
t∈DB(h′) e

2
t

#elements in DB(h′)−#elements in L − 1

After the above listed parameters have been estimated, the value of the log-
likelihood function

13



lnL(αL1 , α
L
2 , α

U
1 , α

U
2 ) =

H∑
h′=1

∑
t∈DB(h′)

lnφ(et | 0, σ̂h′)

+
D∑
d′=1

∑
t∈DL(d′)

lnϕ(fLt − St | λ̂−d′) +
D∑
d′=1

∑
t∈DU (d′)

lnϕ(St − fUt | λ̂+d′) (11)

can be calculated for the given assignment of observations to regimes, where308

φ(x |µ, σ) =
1√

2πσ2
e−

1
2(x−µσ )

2

, ϕ(x |λ) =

{
λe−λx, x ≥ 0
0, x < 0

are the densities of the normal and of the exponential distribution with pa-309

rameters µ = 0, σ > 0 and λ > 0, respectively.310

4.2.2. Determination of limits between base and spike regimes311

In the “outer estimation” step of the nested procedure we determine those312

values of αL1 , α
U
1 , α

L
2 and αU2 that allow for the best fit of the model to ob-313

servations by maximization of the log-likelihood function (11). The downhill314

simplex method is used for this purpose (e.g., see [23, pp. 502–506]). Af-315

ter optimal values α̂L1 , α̂
U
1 , α̂

L
2 , α̂

U
2 have been found, they are fixed and the316

log-likelihood function (11) is maximized once more with respect to the re-317

maining model parameters to update the preliminary values found in the318

previously described “inner estimation”. This provides consistent maximum319

likelihood estimates for the parameters of the three regimes, and their stan-320

dard errors can be approximated from the outer products of the gradients321

of the log-likelihood function. The optimization itself is performed with the322

BFGS-algorithm from [23, pp. 521–526].323

Finally, the elements of the transition matrix (8) are estimated from the
absolute occurrences of transitions between regimes in successive hours. De-
fine for h′ = 1, . . . , H the sets of (transition) observations

DBL(h′) := {t = 1, . . . , T − 1 |h(t) = h′ ∧ fLt ≤ St ≤ fUt ∧ St+1 < fLt+1}
DBU(h′) := {t = 1, . . . , T − 1 |h(t) = h′ ∧ fLt ≤ St ≤ fUt ∧ St+1 > fUt+1}
DB−1(h′) := {t = 1, . . . , T − 1 |h(t) = h′ ∧ fLt ≤ St ≤ fUt }.

Then,324

π̂BLh′ =
#elements in DBL(h′)

#elements in DB−1(h′)
, π̂BUh′ =

#elements in DBU(h′)

#elements in DB−1(h′)
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are the observed probabilities from moving from the base to the lower or
upper spike regime for the hourly time band h′, which takes into account
that the probability of a spike occurrence may differ between day and night
hours. For the estimation of the probabilities for transitions from a spike back
to the base regime, we do not distinguish between different times of the day.
This is again motivated by the fact that spikes, and in particular consecutive
occurrences, are rare events and we expect to obtain more reliable results if
the data are not split in too many subsamples. Therefore, we distinguish here
only between D sets of transition probabilities analogously to the estimation
of the expected spike magnitudes:

DLB(d′) := {t = 1, . . . , T − 1 | d(t) = d′ ∧ St < fLt ∧ fLt+1 ≤ St+1 ≤ fUt+1}
DUB(d′) := {t = 1, . . . , T − 1 | d(t) = d′ ∧ St > fUt ∧ fLt+1 ≤ St+1 ≤ fUt+1}
DL−1(d′) := {t = 1, . . . , T − 1 | d(t) = d′ ∧ St < fLt }
DU−1(d′) := {t = 1, . . . , T − 1 | d(t) = d′ ∧ St > fUt }

for d′ = 1, . . . , D. For the determination of the entries in the first and last325

row of the transition matrix defined in (8) for hourly blocks, we define a326

function327

d∗(h(t)) : h(t)→ {1, . . . , D}
that assigns to the indices of the hourly time bands the corresponding day328

index. Then, the probabilities of moving from the lower or upper spike regime329

back to the base regime are estimated by330

π̂LBh′ =
#elements in DLB(d∗(h′))

#elements in DL−1(d∗(h′))
, π̂UBh′ =

#elements in DUB(d∗(h′))

#elements in DU−1(d∗(h′))
.

5. Estimation results331

We calibrate our model using as input HPFCs for each day between 1332

January 2009 and 14 March 2013. From each single HPFC always the prices333

for the first day of each curve are extracted, i.e., the observations for the334

next 24 hours. This way we construct a “first-day HPFC” which contains335

updated information about the expected day-ahead prices for the next day.336

Focusing on the updated expectations is of great importance since electricity337

prices can change significantly also on short-term.338

The regime-switching model is calibrated with the procedure described339

in the previous section. Recall that hours are combined to time blocks for340
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Table 1: Definition of blocks.
season night morning high noon afternoon rush hour evening
summer 1–6 7–10 11–14 15–18 – 19–24
winter 1–6 7–10 11–14 15–16 17–20 21–24

Table 2: Parameter estimates for the limits that separate the base from the lower and the
upper spike regime for the three sample periods. Sunday has own parameters.

01/01/2009–31/12/2010 01/01/2009–31/12/2011 01/01/2009–14/03/2013

Mo–Sa (δ = 1) Sun (δ = 2) Mo–Sa (δ = 1) Sun (δ = 2) Mo–Sa (δ = 1) Sun (δ = 2)

α̂Lδ 0.50 0.99 0.50 0.85 0.69 0.91

α̂Uδ 0.78 1.15 0.78 1.11 0.80 1.05

which the same set of parameters are applicable. The definition of blocks341

that was used for our particular data set is shown in Table 1. This structure342

is motivated by the specification of some (non-overlapping) block contracts343

that are traded at the EEX/EPEX spot market and combine delivery over344

several hours (cf. [15, p. 45]).345

For example, “night” covers the first six hours of the day (12:00 mid-346

night to 5:59 a.m.), “morning” is the interval between the seventh and the347

tenth hour of the day (6:00 a.m. to 9:59 a.m.) etc. We define five blocks348

for summer while winter has one additional block to take into account the349

characteristic “evening peak” at this time of the year that becomes obvious350

in Figure 2. Furthermore, we distinguish between weekdays (Monday to Fri-351

day), Saturdays and Sundays, respectively, so that overall H = 33 different352

parameter sets must be estimated for the base regime. For the spike regimes353

we differentiate between the same days as before and between seasons, but354

not between hours. This leads to D = 6 different parameter sets for the355

distributions of spike magnitudes.356

As motivated earlier, in case of the parameters for the limits that sep-357

arate the base from the two spike regimes, it is not distinguished between358

seasons, different times of the day or weekdays, except that Sunday has its359

own parameters. The estimated values in Table 2 show a more extreme value360

for the latter since the price deviations in the base regime are more volatile361

here compared to the other days.362

Tables 3 and 4 show the obtained transition probabilities for each hourly363

time block h′ = 1, . . . , H and the expected magnitudes of downward and up-364

ward spikes 1/λ̂−d′ and 1/λ̂+d′ , respectively, for the different days d′ = 1, . . . , D.365

We observe that, as expected, the probabilities for transitions from the base366
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Table 3: Estimation results for transition probabilities (in %). The upper part of the table
shows the probabilities for transitions from the base to lower or upper spike regime for
different hourly time bands. The lower part displays the probabilities for transitions from
a spike regime back to the base regime, where no distinction is made between different
times of the day. The meaning of the abbreviations is: S–Summer, W–Winter, Mo–Fr
weekday, Sat–Saturday, Sun–Sunday.

01/01/2009–31/12/2010 01/01/2009–31/12/2011 01/01/2009–14/03/2013

seas. day hour π̂BLh π̂BUh π̂BLh π̂BUh π̂BLh π̂BUh
S Mo–Fr 1–6 5.24 0.30 3.65 0.24 2.29 0.24
S Mo–Fr 7–10 0.10 0.10 0.13 0.13 0.00 0.05
S Mo–Fr 11–14 0.00 0.00 0.00 0.00 0.10 0.00
S Mo–Fr 15–18 0.38 0.00 0.32 0.00 0.05 0.00
S Mo–Fr 19–24 0.58 0.06 0.55 0.04 0.26 0.03
S Sat 1–6 6.30 0.37 4.57 0.24 2.41 0.17
S Sat 7–10 0.00 0.00 0.00 0.00 0.00 0.00
S Sat 11–14 0.48 0.00 0.32 0.00 0.96 0.00
S Sat 15–18 0.00 0.00 0.00 0.00 0.00 0.00
S Sat 19–24 0.97 0.32 0.86 0.22 0.32 0.16
S Sun 1–6 7.84 0.00 7.09 0.00 4.79 0.18
S Sun 7–10 0.00 0.00 1.11 0.00 0.52 0.00
S Sun 11–14 0.49 0.00 1.33 0.00 0.98 0.00
S Sun 15–18 1.02 0.00 0.69 0.00 0.76 0.00
S Sun 19–24 2.95 0.00 2.61 0.00 1.61 0.00
W Mo–Fr 1–6 2.44 0.29 2.12 0.24 1.63 0.21
W Mo–Fr 7–10 0.60 0.00 0.46 0.00 0.10 0.05
W Mo–Fr 11–14 0.49 0.00 0.32 0.00 0.10 0.00
W Mo–Fr 15–16 0.39 0.00 0.26 0.13 0.10 0.10
W Mo–Fr 17–20 0.78 0.29 0.58 0.19 0.44 0.19
W Mo–Fr 21–24 0.40 0.50 0.59 0.33 0.64 0.25
W Sat 1–6 4.32 0.72 4.52 0.71 2.91 0.68
W Sat 7–10 0.00 0.00 0.00 0.00 0.00 0.00
W Sat 11–14 0.48 0.00 0.33 0.00 0.49 0.00
W Sat 15–16 0.00 0.00 0.00 0.65 0.00 0.00
W Sat 17–20 0.00 0.00 0.00 0.00 0.00 0.00
W Sat 21–24 0.98 0.00 0.64 0.00 0.72 0.00
W Sun 1–6 6.09 0.36 3.97 0.23 3.88 0.35
W Sun 7–10 0.00 0.00 0.35 0.00 0.00 0.00
W Sun 11–14 0.00 0.00 0.32 0.00 0.00 0.00
W Sun 15–16 1.96 0.00 1.32 0.00 1.48 0.00
W Sun 17–20 0.00 0.00 0.00 0.00 0.00 0.00
W Sun 21–24 2.88 0.00 3.22 0.00 2.43 0.24

seas. day hour π̂LBh π̂UBh π̂LBh π̂UBh π̂LBh π̂UBh
S Mo-Fr – 65.40 53.85 66.77 46.67 65.74 55.00
S Sat – 60.78 87.50 64.52 87.50 64.81 87.50
S Sun – 70.24 95.83 69.92 95.83 68.33 92.00
W Mo-Fr – 65.22 80.36 65.29 77.78 69.86 76.32
W Sat – 73.08 33.33 75.00 33.33 71.43 85.71
W Sun – 65.00 0.00 68.92 0.00 71.00 77.78
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Table 4: Estimation results for the expected downward and upward spike sizes 1/λ−d
and 1/λ+d of the two spike regimes for different days and seasons. No distinction is made
between hours of the day. Based on the calculation of standard errors, all model parameters
are significant at 5% confidence level.

01/01/2009–31/12/2010 01/01/2009–31/12/2011 01/01/2009–14/03/2013

seas. day 1/λ̂−d 1/λ̂+d 1/λ̂−d 1/λ̂+d 1/λ̂−d 1/λ̂+d
S Mo-Fr 9.97 4.96 9.44 4.47 9.28 5.41
S Sat 6.51 5.53 6.16 5.54 4.79 4.85
S Sun 5.11 15.98 5.10 16.24 5.22 16.53
W Mo-Fr 9.09 18.80 8.52 18.00 20.42 30.33
W Sat 31.59 2.29 21.30 1.96 25.58 10.14
W Sun 9.97 4.96 9.44 4.47 9.28 5.41

to the lower spike regime are slightly higher in summer, especially for the367

night hours and on Sundays. This is consistent with the observed occur-368

rence of negative prices in the historical data. In summer the probabilities369

of upward spikes are smaller than for downward spikes, in particular on the370

weekend and in the night hours. There is a higher probability of upward371

spikes for working days in winter than in summer. This is due to the higher372

demand in winter than in summer time which makes prices more volatile.373

The lower part of Table 3 shows the probabilities of transitions from374

a spike regime back to the base regime. The differences of these numbers375

to 100% correspond to the probabilities of remaining in the current spike376

regime. These values are considerably large compared to the probabilities of377

the spike regimes, given the system is currently in the base regime, which are378

displayed in the upper part of the table. This result reflects the “clustering”379

of extreme prices that is observable in the data. Furthermore, the expected380

spike magnitudes tend to be significantly larger in winter than in summer as381

the comparison in Table 4 implies, in particular for the last sample period.382

For the estimation of the autoregressive process in the base regime we383

tested lags up to 24. A general observation is that coefficients of lags larger384

than six are not significant, except for the lag 24. This implies that spillover385

effects of not-anticipated events usually vanish after some hours, but some386

events may affect the price of the same hour on the next day. Thus we set387

L = {1, . . . , 6, 24} for the subsequent analyses. Because of space restrictions388

not all estimates for the H = 33 parameter sets can be shown here. Figure 5389

displays the long-term means of the autoregressive processes defined in (7)390

that result from the estimated parameters for the different time blocks and391

sample periods, separated for summer and winter. Overall, the deviations392
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between spot and forward prices are close to zero for weekdays (Mo–Fr) and393

increase in absolute value on the weekend. In general, the magnitudes and394

signs vary between the blocks but are also different for the sample periods395

under consideration. This implies that the means of the modeled deviations396

are not constant over time.397

The actual risk premium, which is defined as difference between forward398

minus spot price expectation, was derived from 1000 scenarios simulated with399

our regime-switching model and is displayed in Figure 6. The magnitudes400

are higher in winter than in summer, and premiums are positive during the401

week and decrease or become negative for the weekend. Also here a variation402

over time can be seen, which is consistent with the observed risk premiums403

in [20].404

6. Simulation405

As a test for model robustness we performed in- and out-of-sample simu-406

lation analyses where we evaluated the performance of the regime-switching407

approach versus the two time-series models: Autoregressive Moving Average408

(ARMA) models and General Autoregressive Conditional Heteroscedastic-409

ity (GARCH) processes. ARMA and GARCH models are often applied to410

electricity price simulations. They describe typical patterns of the historical411

price curves like autocorrelation that are related to external impact factors412

like electrical load or temperature.413

6.1. Time series models414

The specification of the ARMA process reads:415

Xt = c+

p∑
i=1

αiXt−i +

q∑
j=1

βjεt−j + εt. (12)

The parameters αi describe the impact of the values Xt−i on the current416

value Xt for all lags i = 1, ..., p. The parameters βj define the weights of the417

error terms (innovations) εj within the moving average component. For an418

extensive discussion and applications of ARMA models for electricity prices419

see [13].420

Typically ARMA models are used in time series analysis to account for421

linear serial dependence. They provide the possibility to condition the mean422
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Figure 5: Long-term means of autoregressive process for the different blocks in summer
(above) and winter (below).
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Figure 6: Risk premium derived from 1000 scenarios for summer (above) and winter
(below).
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Table 5: Engle’s ARCH test: tested for the lags: 12, 24, 168 of the ACF. “H” is the vector
of Boolean decisions for the tests. Values of H equal to 1 indicate rejection of the null of
no ARCH effects in favor of the alternative.
H p-value statistics critical value
1 0 1430.537 21.026
1 0 1457.811 36.415
1 0 1492.965 199.244

of the process on past realizations which has often produced acceptably accu-423

rate predictions of time series in the short term. However, the assumption of424

the autoregressive model of conditional homoscedasticity is too constricting,425

as electricity prices usually display volatility clusters or spikes (see [13]).426

Within the GARCH approach the assumption of homoscedasticity is427

dropped in favor of a heteroscedastic variance. The GARCH(p, q) process428

according to [5] and [8] reads:429

σ2
t = φ0 +

m∑
z=1

φ1zσ
2
t−z +

n∑
y=1

φ2yε
2
t−y (13)

The time-variant variance σ2
t is driven by a constant component φ0, an au-430

toregressive part of order m and a moving average part of order n. The431

variance at any time t must be positive and in consequence the parameters432

φ0, φ1z and φ2y can take only nonnegative values at any time. We tested for433

ARCH and GARCH effects in the stochastic component of electricity prices434

employing Engle’s ARCH test. The test results displayed in Table 5 show435

significant evidence in support of ARCH and GARCH effects.436

We estimate ARMA(1,1), ARMA(5,1) and GARCH(1,1) models for the437

stochastic component of electricity prices. To this end, we first deseason-438

alize the electricity prices following the procedure applied in Appendix A439

and model their stochastic component. The model order is identified by440

looking at the Akaike’s Information Criteria. Similar model orders were441

tested for electricity prices by [13]. We determine the model parameters442

by maximum likelihood estimation. The stability of the model parameters443

has been checked by estimating the parameters of different model versions444

for several sample periods separately: 01/01/2009–31/12/2010, 01/01/2009–445

31/12/2011 and 01/01/2009–14/03/2013. Table 6 summarizes the estimation446

results. We observe that model parameters are not sample dependent with447

exception of the ARMA(5,1) model, where the stability is less conclusive.448
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Table 6: Estimation results.
Sample ARMA(1,1) ARMA(5,1) GARCH(1,1)
01/01/2009– c 0.035 0.035
31/12/2010 αi 0.825* 0.763*, 0.051, -0.018, 0.009*, 0.020*

βj 0.168* 0.228
φ0 -’2.167*
φ1z 0.046*
φ2y 0.900*

01/01/2009– c -0.08 -0.005
31/12/2011 αi 0.827* 1.765*, -0.903*, 0.161*, -0.062*, 0.028*

βj 0.079* -’0.877*
φ0 -’2.135*
φ1z 0.015*
φ2y 0.948*

01/01/2009– c 0.058* 0.086*
14/03/2013 αi 0.879* 0.409*, 0.394*, 0.026*, 0.021*, -0.031*

βj 0.0003 0.470*
φ0 1.657*
φ1z 0.016*
φ2y 0.892*

6.2. In- and out-of-sample simulation results449

After calibrating the models, several simulations were carried out to eval-450

uate the goodness-of-fit of each stochastic model for electricity price sim-451

ulation. In the case of the ARMA/GARCH models we first simulate the452

stochastic component of electricity prices, then we add the seasonality shape453

to get finally spot prices. With the novel regime-switching approach we454

directly simulate the electricity prices since the seasonality shape is incorpo-455

rated already in the input HPFC. 1000 simulations are carried out over the456

three different sample periods. To show the in-sample model performance457

we assess the mean average percentage error (MAPE ) over 1000 scenarios as458

well as the R2. The MAPE represents the normalized deviation of simulated459

prices from historical ones in absolute numbers:460

E(MAPE ) =
1

N

N∑
k=1

1

T

T∑
t=1

∣∣Ssimk,t − St∣∣
St

(14)

where N is the number of simulated scenarios T is the time horizon and Ssimk,t461

is the simulated price in path k = 1, . . . , N at time t = 1, . . . , T . The MAPE462

is calculated for the sorted simulated price paths and the sorted real prices,463

also called price duration curves (PDC) (see [13, p. 12])464

In Figure 7 we show a graphical comparison of in-sample simulated and465

historical prices for an arbitrary week (first week of March 2009). It can be466
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Figure 7: Historical and simulated price curves of different price models for a week.

Table 7: Expected MAPE and R2 for different stochastic models and different samples
based on 1000 in-sample simulations.
Sample ARMA(1,1) ARMA(5,1) GARCH(1,1) RS model
01/01/2009–31/12/2010 MAPE 0.135 0.136 0.095 0.079

R2 0.490 0.493 0.490 0.607
01/01/2009–31/12/2011 MAPE 0.144 0.143 0.096 0.084

R2 0.442 0.442 0.439 0.652
01/01/2009–14/03/2013 MAPE 0.150 0.15 0.086 0.083

R2 0.414 0.414 0.409 0.617

seen that the simulated electricity price curves of all price models are similar467

to the observed price curves. Simulated electricity prices possess also daily,468

weekly, and annual cycles, which is caused by the deterministic shape com-469

ponent. Other important properties such as single peak, jump groups, or470

mean-reversion are also generated within the simulated price paths. Statis-471

tics about the in-sample performance of the various models over different472

investigated sample periods can be found in Table 7. The R2 of our regime-473

switching model is 50% higher than for the other tested models while gener-474

ally the MAPE could be reduced.475

For an assessment of the out-of-sample performance, we simulated 1000476
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Table 8: Expected MAPE and R2 for different stochastic models and different samples
based on 1000 out-of-sample simulations.

ARMA(1,1) ARMA(5,1) GARCH(1,1)
Sample

shape HPFC shape HPFC shape HPFC
RS model

01/01/2011– MAPE 0.162 0.146 0.163 0.146 0.147 0.146 0.088
14/03/2013 R2 0.119 0.155 0.112 0.156 0.123 0.167 0.552
01/01/2012– MAPE 0.204 0.235 0.204 0.235 0.239 0.250 0.095
14/03/2013 R2 0.110 0.109 0.104 0.102 0.112 0.100 0.509

scenarios starting at 01/01/2011 and 01/01/2012, respectively, for the time477

horizon up to 14/03/2013, when our data set ends. The parameters were478

estimated from the sample periods that ended just before the beginning of479

the simulations, i.e., no information on the stochastic dynamics was used480

from data observed after the start of the out-of-sample period.481

In the previous in-sample simulation of the time series models the season-482

ality shape was aligned to the historic yearly average spot prices as described483

in Appendix A. For the out-of-sample test the historical price level must be484

replaced by some prediction of the future price level where we consider two485

approaches: Firstly, the (relative) seasonality shape is multiplied with the486

prices of base futures observed at the beginning of the simulation period to487

obtain the (absolute) seasonality component st. Secondly, we use the HPFC488

which is obtained after adding the correction term εt to st as outlined in Sec-489

tion 3.1. This allows us to decompose the out-of-sample performance of the490

time series models into the contributions of the pure deseasonalization (by491

the shape) and the additional correction included in the HPFC construction.492

The results in Table 8 show that including the correction term improves493

the statistics (lower MAPE , higher R2) only for the first period. In the second494

period the pure seasonality shape leads to better results, but in both cases495

the differences are small. An explanation is that the relevant information on496

the future spot price level plus seasonality pattern is already contained in the497

shape st (which is generally not consistent with all observed futures prices).498

The hourly forward prices ft deviate from it to ensure consistency of the499

HPFC with all traded futures, where the deviation is “minimized” according500

to a smoothing criterion subject to constraints regarding the shape of the501

adjustment function εt. However, this correction can worsen the prediction502

as it does not add more information about the expected price level.503

The regime-switching model shows again significantly better results than504

the benchmarks. It is by construction based on the HPFC for applications505
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where consistency with the observed prices of traded standard products is506

relevant. From the comparison of the two types of deterministic components507

for the time series models (only deseasonalization vs. deseasonalization plus508

correction), we can conclude that the improvement is not due to the addi-509

tional correction of the seasonality shape but fully explained by the regime-510

switching approach.511

7. Forecasting512

Our model may be used to forecast spot prices before the results of the513

day-ahead auctions are published (daily around 2 pm, see Figure 3). Addi-514

tionally, we can generate long-term forecasts with hourly resolution for spot515

prices. Using the latest generated HPFC as input, the forecasting horizon516

can be extended to medium or long terms. We performed price forecasts for517

one week and one month for winter and summer. The benchmarks for the518

simulation studies (ARMA and GARCH) cannot be applied here because519

the predicted values converge quickly to the long-term mean and, thus, they520

are not appropriate for medium- or long-term forecasting. In fact, they are521

generally used in the literature (see [7, 19, 10]) for day-ahead forecasts of522

electricity prices.523

Alternatively, ARMA models are justified if electricity prices are weak-
stationary. However, the expected value of electricity prices and the variance
might change over time, thus the assumption of weak-stationarity is too con-
stricting (cf. [13]). The behavior of electricity prices in different periods is
distinguished by slowly changing levels, or locally deviating trend slopes.
It is therefore required to apply integrated ARMA (ARIMA) models that
use linear filters to transform time series from not weak-stationary in weak-
stationary ones. An additional advantage of this type of models is that they
can be applied directly to the level of the prices (cf. [24]) or to log prices
(cf. [6]). The seasonality of prices is taken into account by estimating a mul-
tiplicative ARIMA model. For an assessment which polynomial coefficients
should be considered, we exploited the information of the autocorrelation
and partial autocorrelation plots. The final model specification reads:

(1− φ1B
1 − φ2B

2 − φ3B
3 − φ4B

4 − φ5B
5 − φ6B

6)(1− φ24B
24 − φ48B

48

− φ72B
72 − φ96B

96 − φ120B
120 − φ144B

144 − φ168B
168)(1−B1)

(1−B24)St = c+ (1− θ1B1 − θ2B2 − θ3B3 − θ4B4 − θ5B5 − θ6B6)

(1− θ24B24 − θ48B48)(1− θ168B168)εt
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Table 9: MAPE and R2 for forecasts of electricity spot prices over one week and one
month in January and July with the regime-switching model in comparison with ARIMA.

one week one month
Starting date

ARIMA RS model ARIMA RS model
09/01/2012 MAPE 0.374 0.133 0.476 0.134

R2 0.01 0.152 0.01 0.325
02/07/2012 MAPE 0.125 0.078 0.099 0.049

R2 0.581 0.792 0.582 0.659

The ARIMA-generated hourly price forecast depends on previous values of524

prices as a product of 4 terms: 1 to 6 hours ago, one day ago to one week ago,525

hourly differentiation, and daily differentiation. It also depends on previous526

values of errors: 1 to 6 hours ago, 1 to 2 days ago and 1 week ago. A similar527

approach can be found in [6]. We fitted the model to the level of prices,528

since we aim at forecasting as well negative prices. For consistency, the529

sample period used in the estimation is the same as for the RS model. Tests530

have shown that for horizons longer than one month, ARIMA price forecasts531

deviate too much from the observed prices. For this reason, the model is also532

not appropriate for long-term in- or out-of-sample simulations. We therefore533

restrict ourselves to apply ARIMA for weekly and monthly price forecasts.534

A comparison between the forecasting performance of the regime-switch-535

ing model versus the ARIMA model is shown in Figures 8 and 9. We distin-536

guish between a week (month) in summer and winter since the volatility of537

prices can have different patterns for these two seasons. For winter we com-538

pute price forecasts for January and for summer we forecasted the prices in539

July. Both models predict in a realistic way the typical intra-day seasonality540

of electricity prices. However, we observe that in January, when the level of541

the prices changes considerably among consecutive days, the ARIMA model542

significantly underestimates the realized price.543

By contrast, the ARIMA model forecasts in a realistic way the prices for544

one week and one month in July, where there are no high price variations.545

These results are confirmed by the statistics in Table 9. The regime-switching546

model generates weekly and monthly forecasts with consistently smaller er-547

rors. MAPEs are larger for the price forecasts in winter, but still up to three548

times lower than in the case of ARIMA. Overall, the forecasts obtained by549

the regime-switching model are more robust among different samples. The550

regime-switching model is based on the identification of price regimes and551

transition matrices with a rigorous analysis of spike characteristics, and it552
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Figure 8: Spot price forecast for one week (above) and one month (below) starting
on 09/01/2012. The quantiles in the upper graph refer to the limits of a 90%-
prediction interval obtained from the RS model.
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Figure 9: Spot price forecast for one week (above) and one month (below) starting
on 02/07/2012 (see also Figure 8).
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incorporates the market view. We therefore obtain better price forecasts553

than in the case of classical time series models.554

8. Conclusions555

In this paper, we proposed a new regime-switching approach for electricity556

prices. The expectation of the spot price is based on the market view reflected557

by price forward curves. Spot prices are allowed to vary around the hourly558

price forward curve (HPFC). The model distinguishes between a base and559

two spike regimes. Regime limits are estimated and not pre-defined. It560

is common in the literature to model the base regime by a mean-reversion561

process. Between successive hours high correlations can be observed. To take562

this into account we model the variations of spot prices around the HPFC563

in the base regime with an autoregressive process. Additionally, important564

characteristics of electricity prices like spike clusters and negative prices are565

reflected by the proposed regime-switching model.566

We calibrated the model looking at different hourly blocks and we further567

differentiate between weekdays and weekends or between summer and winter568

seasons. This is important since it can be empirically observed that electricity569

prices show different volatilities and spike behavior dependent on the time570

of the day, weekday or season. The estimated probabilities confirm this571

observation. We found clear evidence for spikes clusters, which is consistent572

with the existing literature (see [12, 13, 25, 26, 27]).573

The main advantage of the proposed spot-forward model is that it incor-574

porates the market expectation contained in the HPFC with an hourly resolu-575

tion, which is an important information for the building of spot prices. Clas-576

sical time-series models use only historical data, but no information about577

the future. We showed that the regime-switching model leads to significantly578

better in- and out-of-sample results than classical time series models when it579

is applied for simulations and forecasts of spot prices over short- and medium-580

term horizons. In addition, the model can be used for long-term simulations581

of hourly spot prices based on the current HPFC. In this way, it may be582

integrated in applications like medium- and long-term planning for thermal583

electricity production and in general for the valuation of power contracts.584

Appendix A. Derivation of the seasonality shape585

In a first step, we identify the seasonal structure during a year with daily586

prices. In a second step, the patterns during a day are analyzed using hourly587
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prices. Let us define two factors, the factor-to-year (f2y) and the factor-to-588

day (f2d). By f2y we denote the relative weight of an average daily price589

compared to the annual base of the corresponding year:590

f2yd =
Sday(d)∑

k∈year(d) S
day(k) 1

K(d)

(A.1)

Sday(d) is the daily spot price in the day d, i.e., the mean of the hourly591

electricity prices. K(d) denotes the number of days in the year when Sday(d)592

is observed. The denominator is thus the annual base of the year of the593

observation of Sday(d). We estimate a regression model where the variation594

of the f2y in the past is explained by dummy variables for the different595

months and historic temperature data.596

The f2dt, in contrast, represents the weight of the price of a particular597

hour compared to the daily base price598

f2dt =
Shour(t)∑

kεday(t) S
hour(k) 1

24

, (A.2)

where Shour(t) is the spot price at the hour t. Again, we estimate a regression599

model for the f2d with dummy variables for different day types (workdays600

are distinguished from weekend days and holidays) and seasons.601

For the HPFC construction we obtain forecasts of the two factors defined602

in (A.1) and (A.2) from the estimated regression models and an additional603

model for the variation of the temperature over the year. Then, a (relative)604

seasonality shape swt can be calculated as swt = f2yt · f2dt. In the last605

step, the forecasts for swt are multiplied with yearly average prices to align606

the shape to the price level. This yields the (absolute) seasonality shape st607

which is used for the derivation of the HPFC. It is updated each time when608

the HPFC is generated. For details on the regression models we refer to [4].609

Figure A.10 shows the autocorrelation function of the hourly prices before610

and after deseasonalizing. Although there is still some seasonality left, results611

are acceptable, given the considerable initial autocorrelation between the612

values of same hours of different days and between the same days of different613

weeks.614
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Figure A.10: Autocorrelation function before and after deseasonalization.
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