
3D visualization of autonomous
underwater robots

Christian Heimdal Sunde

Marine Technology

Supervisor: Ingrid Schjølberg, IMT

Department of Marine Technology

Submission date: June 2014

Norwegian University of Science and Technology

Project description
In most marine operations today there is a low level of autonomy (meaning auto-
matic control without human interaction). Introducing autonomy creates a num-
ber of challenges related to human-machine interaction and information gathering.
Visualisation and simulation are playing an important role in remote operation
of subsea and ocean floor equipment both as support for operators, but also as
back-up in case of reduced vision. This work will focus on 3D visualization of
underwater robot manipulator motions. The objective of the project is to develop
and demonstrate a real-time 3D visualization of a robot manipulator, and prepare
it for connection to a real manipulator system. The following points should be
conducted

• Develop a 3D model of the manipulator on the ROV SF 30K

• Identify the kinematic model of the arm

• Develop system specification and requirements

• Design and set-up system architecture

• Prepare for connection to a real robot manipulator

• Carry out simulations to verify the modelling

• Document the findings in a report

The report shall be written in English and edited as a research report including
literature survey, description of mathematical models, description of control algo-
rithms, simulation results, model test results, discussion and a conclusion including
a proposal for further work. Source code should be provided in the attachments
with code listing enclosed in appendix. It is supposed that Department of Marine
Technology, NTNU, can use the results freely in its research work, unless otherwise
agreed upon, by referring to the student’s work. The thesis should be submitted
within June 10th, 2014.

Supervisor: Professor II Ingrid Schjølberg, IMT, AMOS, NTNU

i

ii

Sammendrag
Denne oppgaven har som mål å utvikle en fungerende sanntidsvisualisering av en
undervannsrobot, samt å presentere relevant teori og steg i utviklingen av et slikt
system. Deretter skal programvaren klargjøres for tilkobling til en fysisk robot. Et
slikt system kan være et viktig bidrag for økt sikkerhet ved undervannsoperasjoner
fordi den kan bedre situasjonsforståelsen til operatørene. Roboten som skal mod-
elleres og visualiseres er en ’Raptor – Force Feedback Manipulator’ produsert av
Kraft TeleRobotics.

For utvikling av et slikt system er det viktig å velge en programvare som oppfyller
alle krav til funksjonalitet. Feil og begrensinger i programmet kan være kritisk i
en virkelig situasjon hvor operatøren stoler på informasjonen som programmet gir.
Konsekvensene av et uhell under en undervannsoperasjon kan være katastrofale
både for sikkerheten til personalet og for miljøet.

En ferdig utviklet 3D modell av manipulatoren ble tilsendt fra produsenten. Ved
hjelp av denne var det mulig å ta nødvendige målinger til utviklingen av armens
kinematikk. Programvaren som ble valgt til visualiseringen var ROS (Robot Oper-
ating System). Dette programmet har en rekke muligheter for utvikling av robot-
systemer, inkludert overvåkning og visualisering, og det ble konkludert med at det
var et godt egnet program for denne oppgaven. Det er i skrivende stund ikke mye
brukt i undervannsvisualisering, men under arbeidet med oppgaven ble det ikke
avdekket noen grunner til ikke å bruke det til slike oppgaver.

Ved å bruke grunnleggende teori om kinematikk og Denavit-Hartenberg konven-
sjonen, ble det utviklet en kinematisk modell for manipulatorarmen. Teorien bak
denne modellen var viktig å kjenne til når den skulle implementeres i program-
varen. Målinger gjort av 3D modellen ble så inkludert i programmet ved å bruke
URDF-filer (Unified Robot Description Format), som er filformatet ROS bruker
for å beskrive en robots utseende og egenskaper. Deretter ble programvaren tilpas-
set til å være enkel og intuitiv under bruk, og en beskrivelse av hvordan det brukes
og testes ble laget. En fremstilling av det fysiske manipulator-systemet og hvordan
programvaren kan kobles til denne ble også utviklet.

For å verifisere at programmet fungerte ble simulerte hendelser gjort isolert på
hver del av modellen. Disse testene bekreftet at modellen og programmet fungerte
som det skulle og at det er klart for tilkobling til den fysiske armen. Når denne er
klar til bruk, vil dette programmet være enkelt å implementere.

iii

iv

Abstract
This thesis has an objective aimed to develop a functional real-time visualization
of an underwater robot manipulator, and present the relevant theory and steps
related to this system. Then the system should be prepared for connection to
a real robot manipulator. Such a system is important for increased safety in
underwater operations and to improve the operator’s situation awareness. The
manipulator that was modeled and tested in this thesis was an ’Raptor - Force
Feedback Manipulator’ produced by Kraft TeleRobotics.

To develop the system it was important to choose the right software for use, and
verify that the end product was working properly. Errors in the system can be
critical in a real situation where an operator trusts the information that the soft-
ware provides. Also the consequences of an accident during operation can be fatal
for human safety and the environment.

With a 3D model of the manipulator received from the manufacturer, it was pos-
sible to analyze and take measurements of the manipulator for use in the visual-
ization software. The software that was chosen was the Robot Operating System
(ROS) framework. This framework has a huge amount of opportunities including
monitoring and visualization of robotic systems, which makes it a good choice both
for this thesis and in terms of further development. It has not been used much in
underwater robotics, but arguments for not using it hasn’t been revealed during
the work with this thesis.

By using basic kinematic theory and the Denavit-Hartenberg representation the
forward kinematics for the arm was derived and explained in detail. It is important
to know this theory when implementing the model into the software. Measure-
ments from the analysis of the model and CAD-files (Computer-aided design) was
applied and described in URDF-files (Unified Robot Description Format) so that
it could be imported into the software. The software solution was configured and
customized to be easy and intuitive in use, and an explanation of how to run and
test the system was included. In addition, the hardware set-up and procedures for
how to connect the software to a real manipulator was produced and documented.

To verify that the system was working properly, simulated events was conducted
for each part of the model. These simulations confirmed that the system was
acting as wished. With the real manipulator up and running, this software should
be ready for use with just a little effort put into the signal input connection.

v

vi

Acknowledgements
It is a pleasure for me to acknowledge the help and support that I have received
from my supervisor, Professor II Ingrid Schjølberg. She has been very helpful and
engaging throughout the whole semester, and her insight and knowledge in the
robotic field has been valuable for the progression and the end result of this thesis.

I will also like to thank Ph.D. candidate Lars Tingelstad at the Department of
Production and Quality Engineering for recommending and introducing me to
the software that was used in this dissertation. The work with this software has
been very educational for me. A thanks also goes to Ph.D. candidate Anastasios
Lekkas for setting up the manipulator lab at the Marine Technology Centre. It
has been very inspiring to see the arm move in real life, and it has given this thesis
a very practical approach. Thanks also to Kraft TeleRobotics for providing me
the manipulator CAD files.

During the last weeks of the semester, a jury consisting of Prof. Svein Sævik,
Prof. Ingrid Bouwer Utne and Prof. Bernt Johan Leira decided to give me the
award for Best Master Thesis Poster of the year at the yearly Master Thesis Poster
Exhibition Awards. This is a great honour, and it is very motivating to be selected
among so many good candidates.

I also would like to thank all of my fellow students in the class of 2014, and
especially my office colleagues. They have all given me five great years both
through academic and social events.

Christian Heimdal Sunde
Trondheim, June 9, 2014

vii

viii

Contents
1 Introduction 1

1.1 Motivation . 2
1.2 Remotely operated underwater vehicles 2
1.3 Manipulator systems . 3
1.4 Software . 4

2 3D Visualization 5
2.1 Visualization advantages . 5
2.2 Challenges in underwater visualization 6

2.2.1 Sensors . 6
2.2.2 Localization . 7
2.2.3 Data and communication . 7

2.3 Why use ROS for visualization? . 8

3 Modeling 9
3.1 Notation . 10
3.2 Manipulator theory . 10
3.3 Transformations . 13

3.3.1 Orientation . 13
3.3.2 Homogeneous Transformations 14

3.4 Kinematics . 17
3.4.1 Forward Kinematics . 17
3.4.2 Denavit-Hartenberg Representation 18
3.4.3 The Raptor manipulators kinematics 21

3.5 Dynamics . 23

4 Manipulator description 25
4.1 3D model . 25
4.2 Workspace and measurements . 26
4.3 Limitations . 28

5 System set-up 31
5.1 Software selection . 31

5.1.1 Robot Operation System (ROS) 31
5.1.2 3D modelling software . 32

5.2 Software set-up . 33
5.2.1 Preparing the 3D model . 33
5.2.2 Develop the kinematic chain for rviz 35
5.2.3 rviz set-up . 38
5.2.4 Navigation and use of rviz 39
5.2.5 Plotter . 41
5.2.6 Camera . 42

ix

5.3 Hardware set-up . 42
5.3.1 Manipulator set-up . 43
5.3.2 Signals . 45
5.3.3 Programming for state publisher 46

6 Results 47
6.1 Shoulder azimuth . 47
6.2 Shoulder elevation . 48
6.3 Elbow Pivot . 49
6.4 Wrist Pitch . 50
6.5 Wrist Yaw . 51
6.6 Rotation in all joints . 52

7 Conclusion and further work 53
7.1 Conclusion . 53
7.2 Further work . 54

Bibliography 55

A Attachments 57

x

List of Figures
1.1 ROV Minerva . 3

2.1 ROS - Robot Operating System logo [21] 8

3.1 Parts of the Raptor manipulator [11] 9
3.2 Different types of joints [14] . 11
3.3 Different robot arm geometries [8] 12
3.4 Workspace of a spherical geometry [1] 13
3.5 Two coordinate systems with same origin, but different orientation . 14
3.6 Homogeneous transformations in two dimensions 15
3.7 Example of reference frame attachment [9] 18
3.8 Right hand rule - positive rotation directions for αi and θi [26]. . . . 20
3.9 Raptor model with frames chosen according to D-H convention [9] . 21

4.1 3D model of the Raptor manipulator from Kraft Telerobotics 25
4.2 Raptor data sheet - workspace [13] 26
4.3 Raptor data sheet - Measurements [13] 27
4.4 Siemens software NX 8 that was used for measurements 27
4.5 Rotation properties for Raptor [11] 29

5.1 The rviz ROS package. Here with the Raport Force Feedback Ma-
nipulator visualized . 32

5.2 FreeCAD 3D modeling software . 33
5.3 Left: the whole model. Right: a separated piece of the manipulator 34
5.4 Connection chart from Raptors URDF-file 37
5.5 The rqt user interface with rviz and plotter 39
5.6 The joint state publisher . 40
5.7 rviz - Settings and displays . 40
5.8 Stored views in rviz . 41
5.9 Tool-line in rviz . 41
5.10 Camera used in the set-up . 42
5.11 Lab-set-up overview at the Marine Technology Centre 42
5.12 Raptor manipulator with control system [11] 43
5.13 The manipulator mounted on the support structure 44
5.14 Overview of the software and manipulator 45
5.15 pySerial API logo [18] . 45

6.1 Test of shoulder azimuth . 47
6.2 Test of shoulder elevation . 48
6.3 Test of Elbow Pivot . 49
6.4 Test of Wrist Pitch . 50
6.5 Test of Wrist Yaw . 51
6.6 Test of motion in all joints . 52

xi

xii

List of Tables
3.1 Denavit-Hartenberg parameters . 21

4.1 Raptor FFM measurements. All in [mm] 28
4.2 Raptor - Manipulator limits . 29

xiii

xiv

Nomenclature
Abbreviation Description

3D 3-Dimensional
AUV Autonomous Underwater Vehicle
CAD Computer-Aided-Design
D-H Denavit-Hartenberg
DOF Degrees of Freedom
FFC Force Feedback Control
FFM Force Feedback Manipulator
GPS Global Positioning System
PDF Portable Document Format
PLM Product Lifecycle Management
ROS Robot Operating System
ROV Remotely Operated Vehicle
RS- Recommended Standard
STEP Standard for the Exchange of Product model data
STL STereoLithography
URDF Unified Robot Description Format
XACRO XML Macros
XML Extensible Markup Language

Symbol Description

Ai Transformation matrix
Hi
j Homogeneous transformation matrix

Oi
j Origin Coordinate Vector

Pi Position coordinates
q Joint angles
Ri
j Rotation matrix

Ti
j Transformation matrix

xv

xvi

Chapter 1

Introduction
Utilization of the seas resources is becoming more important every day, and also
more challenging. Increased demands for fuel, food and energy is forcing the indus-
try to seek more inaccessible resources in ultra deep water and in rougher and more
fragile environments. Safe and controlled operations are more important than ever,
and the industry is putting huge efforts and money to make sure the operations is
conducted as planned with no damages on humans or the environment.

This development requires in many cases new and better technology to keep track
of the demands. Accurate and stable control systems is something that has been
in focus for many years, and it has evolved even more significantly in modern time
with the development of new technology. This technology gives the opportunity
to have systems with robust security that automatically reacts to possible threats
and insecure situations. These kinds of systems can provide safety to the operator,
but it might also give them false safety if the information provided has errors.
Therefore it is important not to remove the possibility to observe and handle
parts of the operation manually [15].

This thesis aims to develop a 3D visualization of a manipulator system that can
provide a close to reality visualization of a manipulator arm built for underwater
operations. The manipulator is an ’Raptor FFM’ (Force Feedback Manipulator)
produced by Kraft TeleRobotics. A tool like this will provide the operator with
improved situation awareness and the risk of failures such as collision, damages
or other unexpected obstacles will hopefully decrease. Also visual data sources
like cameras can be used by the system to determine the environmental status,
locate objects and determine the position of the vessel. This important field is in
a huge development process since there are many big challenges in the industry
that requires these kinds of solutions now and in the future.

In the next chapters the theory behind the Raptor’s kinematic properties will be
explained. The manipulator will be described and inspected to determine all the
necessary data for the visualization. Also each step in the development process of
the visualization system will be covered, together with the work done to prepare
it for connection to a real robot manipulator.

This first chapter will give an introduction to the motivations for developing such
tool, and an introduction to the basic concepts regarding underwater vehicles and
underwater software.

1

Chapter 1. Introduction

1.1 Motivation

Offshore and underwater operations are often much more challenging than opera-
tions onshore. The main reasons for this is because the operations will be exposed
to bigger and in many cases unforeseen forces that require more planning, more
advanced equipment and more robust safety and security systems. A huge part
of such systems is the ability to have a good overview of the operation. When
working in an underwater environment it might be impossible to have humans
presented exactly where the operations are performed due to high water depths,
harsh conditions, expenses and safety issues.

During an underwater operation it is important to have full control over the situ-
ation, meaning that the operator should have good situation awareness. This can
be obtained by having access to some visual data from the operation to achieve
overall situation awareness, and to identify errors that the instruments on the ve-
hicle cannot find. These errors can be small cracks in a structure or unwanted
objects. Bad visibility, limited space and accessibility are things that can cause
difficulties for visual sources. When working with equipment under water there is
always a risk for damages on the equipment itself and structures around due to
unexpected disturbances such as hydrodynamic forces, errors made by humans or
defects in the software. An accident can cost a lot of money in repair, replacement
and production downtime, in addition to the risk of harming the environment and
humans.

By having a reliable visualization system the risk for such accidents to happen
will most likely decrease. It can help providing important information both to the
operator and to the system itself. Such system might also form a base for a system
that can simulate and visualize a planned operation so that its feasibility can be
verified.

1.2 Remotely operated underwater vehicles

Remotely Operated Vehicles (ROV) are widely used in the offshore industry today.
They can be used to conduct difficult and detailed tasks on deep-water operations.
It is unmanned and is being controlled by a crew located on a vessel at sea surface.
The link between the ROV and the control station is by a tether, and if necessary
with an umbilical cable attached. This umbilical contains a set of different cables
that transports power, video signals and measuring data among others. In Figure
1.1 is a picture of the ROV Minerva that is a research vessel owned by Norwe-
gian University of Science and Technology. It is used in many different types of
operations such as biological research and sampling, geological operations and de-
velopment of new technology both for research and in education [16]. ROV’s in
general are used in many other types of operations as well. Military operations,
science, rescuing, salvage, education and industry is some of them [3].

2

1.3. Manipulator systems

Figure 1.1: ROV Minerva

A classical ROV is constructed with a large buoyancy tank on the top to make the
weight under water manageable. It is equipped with thrusters that is strategically
located to make it as easy to manoeuvre as possible. Normally there are cameras
and lights mounted together on the vehicle with the necessary equipment that the
task requires.

1.3 Manipulator systems

Robot manipulator systems are increasingly common in the modern world, and
most seen in the manufacturing industry. They are often referred to as robotic
arms that can perform tasks quick and precise. This makes them very important
in the industry because they can increase production, improve quality and lower
the cost. ROVs is often equipped with one or more manipulator arms. They
are designed to manipulate or handle materials without being directly in contact
with it. It makes the ROV able to perform various tasks that require precise tool
handling or gripping [2] [7].

There are many different types of manipulators. They are put together by links
and joints that can behave in the way that is necessary to perform the tasks it is
supposed to do. All these links and joints together creates a kinematic chain that
will define the manipulators properties. These characteristics will vary depending
on what tasks the manipulator is intended for, and they will be described more in
Chapter 3.

3

Chapter 1. Introduction

1.4 Software

Software tools is an important part of robotics. A good software should help the
operator during the operation and in the planning process so that the situation
awareness is good. There are many different types of software solutions. Planning
software, controlling software and visualization software is some of them. The
visualization software that this thesis will be about has a purpose of providing the
operator with all the necessary information needed to know the real-time status of
the visualized underwater manipulator. This might be useful if the visibility from
visual sources such as a camera is bad. The operator can use this information to
plan further actions or determine how safe the operation is.

The software tool chosen in this thesis is the Robot Operating System (ROS)
framework [21]. This flexible and versatile tool has many useful features that can
be used to solve the software solution problem. More discussion about ROS and
why it has been chosen will be discussed in Section 2.3 and 5.1.1.

4

Chapter 2

3D Visualization
Visualization is described as any tool or technique used for creating a visual pic-
ture, object or animation to describe data or information. It is used in many
different situations all over the world to convey any abstract or imagined informa-
tion. In engineering it is used to represent data from calculations such as graphs,
diagrams, models and product visualizations. In most of today’s engineering prob-
lems a computer graphical interface is used. This gives the opportunity to visualize
huge and complex models and calculations, and give a clearer and more intuitive
understanding of a problem, situation or a result [30].

In scientific visualization engineers presents representation, selection or transfor-
mation of data from simulations or experiments. Mostly shown by geometric
structures put together into an image that will give a better understanding of the
data that is represented.

For this thesis, a 3D visualization tool is to be developed to visualize the Raptor
FFM. This can be a first step in the development of a complete visualization
application for an ROV with a manipulator arm. To do this, sensor data from the
manipulator will be recorded and transformed into coordinates that will be used
by the 3D visualization tool. A simple way this can be done is to represent each
link as a geometrical figure and orient this figure to fit with the calculated points.
This way the visualization will give a realistic image of how the robot manipulator
is acting.

2.1 Visualization advantages

There are many advantages in having a good visualization software. A visualization
software can, if it provides enough accurate information, be a very useful tool
to increase the efficiency, accuracy, and safety of an operation. It is therefore
important to include all vital knowledge in such visualization application.

For inspection and maintenance of an underwater structure or system, an ROV is
often used with a camera or sensor attached, so that the operator can overview,
locate areas of interest and perform actions if necessary. This is an important
task both due to environmental issues and to make sure that the production or
ongoing operation is optimal and safe. If a damage or problem is detected, it is
in most cases necessary to have a complete overview of the situation so that a
plan for measures can be developed. Mistakes and missing information can be
critical in such tasks, and if something goes wrong the consequences can be severe

5

Chapter 2. 3D Visualization

and expensive. A visualization tool can therefore help by increasing the situation
awareness and by this lower the risk for accidents to happen.

During maintenance special equipment is often required depending on the damage
type that must be fixed. A manipulator arm is very common because it gives the
ability to act and perform tasks almost as if a human arm would have done it.
Since a good visualization software can provide important information about the
operation, it might be possible to complete an operation due to the good overview.
In a situation where there is not a good visualization software, it might be a higher
risk for accidents and the operations can be delayed or maybe not be possible to
complete. The software can also increase the efficiency of operations and make
them more profitable.

2.2 Challenges in underwater visualization

As mentioned earlier underwater operations involves many challenges. Underwater
visualization is also affected by these. Reliable sensors, localization and communi-
cation is some of the challenges that is involved. A visualization software will be
depending on an accurate and reliable information source so that its reproduction
of the situation also becomes reliable. Limited bandwidth, distances and unfore-
seen failures can suddenly make the information that the visualization provides less
dependable. Also what methods or techniques that is being used to solve these
challenges in underwater visualization can make a big difference on the software
reliability [34] [25].

2.2.1 Sensors

Sensors are very important when creating good robotic systems. A controlling
system is dependent on sensor data to be able to carry out the necessary actions
for completing a task, and a visualization system is dependent on accurate sensor
data to be able to give an image on how the reality looks like. Sensors are usually
divided into two types, proprioceptive sensors and exteroceptive sensors [20]. Pro-
prioceptive sensors are measuring the internal state of the unit. This is including
quantities such as joint position, joint velocity and joint torque. The exterocep-
tive sensors are providing information about the surrounding environment. They
can be force sensors, tactile sensors, proximity sensors, range sensors and vision
sensors.

The goals with such types of sensors is to give the system all the necessary in-
formation needed to conduct the desired action. If there were no sensor data it
would have been impossible to determine the errors in the system or changes in
the surroundings. Therefore, it is important to have reliable sensors. Underwater
operations can be harsh and demanding, and the quality of the sensors must be
adapted for such use.

6

2.2. Challenges in underwater visualization

2.2.2 Localization

Robot localization, also called robot mapping, is a way that a robot can localize
itself in space. This is very important because it can be very difficult to manoeuvre
an underwater vessel with only visual data. If the sight is bad there are no refer-
ences in space that can help the operator lead the vehicle to the desired position.
GPS-signals are almost impossible to use under water because its radio waves does
not propagate well in water. Therefore it is necessary to find other feasible ways
to determinate its position [4].

There are many different techniques that can be used to do this. The robot can
track its movements and use this to always know its absolute position. However,
the risk here is that it can be small errors in the sensors that will create a bigger
error over time. Another way to localize is to use acoustic tags. They are sound
emitting devices that have quite large detection ranges (up to 1 km in freshwater)
and are widely used in industries like fishing to track the fish.

In space technology it is common to use reference points to find a spacecraft’s
position. By using more than two reference points, such as a selection of stars, it
is possible to calculate the position in three dimensions. It is possible to do the
same in under water localization. By having several reference signals, i.e. acoustic
signal buoys, it is possible to calculate the position under water as well.

2.2.3 Data and communication

When working under water it is important to have a good communication link
between the operating station and the underwater vessel. This to make sure that
important data like visual images and sensor data among others is transferred
to the operating station without losses. On many ROV’s it is common to have
a tethered link with an umbilical cable between the ROV and a floating vessel.
This cable is transferring information such as video signals, sensor data, tasks and
electrical power. An umbilical cable can be as the one seen in Figure 1.1.

Wireless solutions can also be used. However, in many cases this will limit the
bandwidth of the data transfer, and there will be a higher risk of signal loss. Wire-
less communication is more common for AUVs (Autonomous underwater vehicles)
because they are working with little or no data transfer to the operating station,
which significantly decreases or eliminates the data transfer problem.

7

Chapter 2. 3D Visualization

2.3 Why use ROS for visualization?

ROS
Figure 2.1: ROS - Robot Operating System logo [21]

Design of software for robotic solutions can be a complicated task. The field is
always in progress and this makes the software requirements more advanced and
complex. Different systems requires different resources so that the software must
be customized to fit one specific system. To make this progression less challenging
for developers, ROS has been created [21] [19]. Although its name says it is an
operating system, it is not. It’s a framework designed for writing robot software.
Almost all robotic fields that is relevant is covered, and it is continuously being
developed by users from all over the world. It has not yet been used much for
underwater robotics, but this thesis has not discovered any arguments for not
using it in this field.

The framework only runs on Linux operating systems as an official release, but it
is in an experimental phase for a version that can run on Windows and Mac OS X.
It aims to simplify the development process of new and advanced robotic systems.
Also it is open source and has a huge worldwide community of developers. ROS
is not directly a real-time framework, but it has the possibility to be integrated
with real time code. This is beneficial since it opens the possibility to implement
many relevant systems such as control systems, guidance systems and monitoring
systems.

The goal with ROS is to have an open and worldwide used framework for devel-
opment in the robotic field. By having such framework available, the numbers of
new custom-made frameworks will be lower and the community will become bigger
and with broader disciplines. Developers all over the world can benefit from the
knowledge in a huge open community. Including user scenarios such as debugging,
logging, controlling and development, ROS can also be used for visualization and
monitoring. This combination of different opportunities makes this framework a
great choice for this thesis because of the possibility to expand its functionality.
Also the visualization package for ROS, rviz, is a great tool with many good fea-
tures [22]. Its intuitive and easy interface and set-up procedure is also a great
advantage. More about ROS and how it is used will be discussed and explained
in Chapter 5.1.1.

8

Chapter 3

Modeling

Figure 3.1: Parts of the Raptor manipulator [11]

The manipulator is as mentioned a Raptor - Force Feedback Manipulator pro-
duced by Kraft TeleRobotics. This manipulator has documentation available from
the product data sheet and the user manual, but the quantity of usable infor-
mation for a visualization software development was very limited. However, after
contacting TeleRobotics directly, they were able to send the CAD-files (Computer-
Aided-Design) of the manipulator. By using this, the necessary measurements and
inspections could be done. With these files available, the whole thesis can be com-
pleted with fewer assumptions, which most likely will make the final product a lot
better.

In the following chapter the theoretical manipulator kinematics will be presented.
Not all the derivations will be explained in detail, but the necessary knowledge
needed for an implementation of this in the visualization software will be described.
A few comments on the dynamics of the manipulator will also be outlined to give

9

Chapter 3. Modeling

a wider understanding of the manipulator, and to understand the possibilities for
further development. The theory is based on the content found in [26].

3.1 Notation

Robot dynamic models involves many mathematical expressions. Therefore it
might be helpful to give a brief introduction to the notation that will be used in
the process. Vectors and matrices will always be printed in bold face so that it is
easy to see the difference between these and regular variables. Vectors and points
are also marked with a superscript to denote the respective reference frame.

A manipulator variable can be represented by qi, where i refers to the joint number
it belongs to. A set of joint variables is then given as q = [q1, q2, ..., qn]T . Rotation-
and Transformation matrices will be written as Ri

j and Ti
j, where j denotes the

frame that will be rotated or transformed, and i is the resulting frame of the
rotation or transformation. Note that most of the symbols is explained in the
nomenclature on page xv.

3.2 Manipulator theory

As mentioned in Section 1.3 robot manipulators consists of a series of links that
is connected together with joints, and all this together forms a kinematic chain.
The complexity of this chain depends on what types of joints the system consists
of. Some are simpler than others.

The joints can have revolute geometry, which means that it behaves almost like a
human elbow. However, usually they can move in a bigger rotational angle than a
real human elbow. Joints can also be prismatic, which means that the joint allows
a linear relative motion between two links. The combination of these joints is
called an open kinematic chain. Based on the structure of the kinematic chain, its
geometry, its purpose, power source and how they are controlled, the manipulator
can be classified into classes or configurations. Some of the most common classes
are cartesian, articulated, spherical and cylindrical [29]. Some different types of
joints can be seen in Figure 3.2.

10

3.2. Manipulator theory

Figure 3.2: Different types of joints [14]

A manipulator where the first three joints are prismatic is a Cartesian or rect-
angular manipulator. It can operate in any position in a rectangular workspace.
This type of manipulators has of course the simplest kinematic description of all
the configurations because there are no angular motions involved. Which means
that it can be described simply by adding all the measured states together to find
the end effector.

The articulated configuration is also called a revolute configuration. Here are all
the joints revolute, which gives the manipulator the ability to work in compact
spaces and with a relatively large freedom of movements. Compared to the Carte-
sian manipulator, an articulated manipulator can reach both over and under an
object, but the kinematics is also much more complex than for the Cartesian.

If the third joint or the elbow in an articulated configuration is replaced with a
prismatic joint, it will be a spherical configuration. Its workspace will be a part of
a spherical coordinate system. However, this will also have a complex kinematic
model that makes it more difficult to compute and visualize.

In a cylindrical configuration, the first joint is revolute and the second and third is
prismatic. This first one will produce rotation around the base so that the whole
workspace will have a shape of a cylinder.

In Figure 3.3 the different types of manipulator geometries are illustrated.

11

Chapter 3. Modeling

Figure 3.3: Different robot arm geometries [8]

As a result of the total kinematic chain and its limitations, the manipulators
workspace can be defined. It is described as the space where the end-effector or
the last link can reach. The last link is normally a gripper or a tool. If assuming

12

3.3. Transformations

that the Raptor joints has no limits in its rotations, the workspace would have
been a sphere with a radius that is equal to the maximum length of the arm.
This is of course not the case. The manipulator has limits in both directions
of movement and angular displacement. Figure 3.4 shows the workspace of a
spherical manipulator with limitations. Later in this thesis it will also be seen
that the Raptor manipulator has a workspace that is similar to Figure 3.4.

Figure 3.4: Workspace of a spherical geometry [1]

3.3 Transformations

In a kinematic system it is an advantage to use several coordinate systems to
represent each systems relative position and orientation to the other coordinate
systems. To perform algebraic manipulations with such coordinate systems it is
crucial that vectors are defined with the same coordinate system as reference. This
requires mathematical operations that transforms and rotates the vectors in a given
coordinate system into vectors with respect to the desired coordinate frame. Such
transformations are very important in robot kinematics and will be described in
detail in the following sub-chapters.

3.3.1 Orientation

If a coordinate system have the same origin as a second one but with a different
orientation, one can define the rotation matrix R that describes its rotation relative
to the other coordinate system. In Figure 3.5 the blue coordinate system is rotated
an angle ψ about the z-axis. Equivalently, the rotation angle θ is defined as the
rotation about the y-axis, and φ about the x-axis.

From [6] we have the following notation for transformation between coordinate
systems. A 3 × 1 vector v0

a in the first coordinate frame can be rotated from a

13

Chapter 3. Modeling

x

y

z
x1

y1

z1 ψ

Figure 3.5: Two coordinate systems with same origin, but different orientation

vector v1
a into a second one with the following relationship.

v0
a = R0

1v1
a (3.1)

Where the rotation matrix R0
1 is given as

R0
1 = Rz,ψRy,θRx,φ

=

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφ+ sψsθsφ −cψsφ+ sψsφcθ

−sθ cθsφ cψcφ

(3.2)

Here the sine and cosine functions are shortened to s and c for convenience. The
rotation matrix is expressed in what we call Euler angles that consists of three
principal rotational matrices that rotates respectively about the z-, y- and x-axis.
It is always orthogonal which implies the following notation [33].

R−1 = RT (3.3)
RRT = RTR = I (3.4)

det(R) = I (3.5)

3.3.2 Homogeneous Transformations

On manipulators such as the Raptor manipulator, there is not just the orientation
that is important. The position of the body fixed reference frames should also be
known. When combining these two concepts the homogeneous transformation is
defined.

14

3.3. Transformations

x0

y0

x1
y1

θ

x2
y2

~v2

~v1~v3

p

Figure 3.6: Homogeneous transformations in two dimensions

In Figure 3.6 the point p is given with respect to the red frame o2x2y2. If the
orientation and position of this frame is known, it is possible to calculate the
position p with respect to the fixed frame o0x0y0. The red frame’s orientation is
represented as the blue coordinate system o1x1y1 with o1 = o0. From the figure
one can see that the point p is displaced by a vector ~v3 from the fixed origin. This
vector is also a sum of the vectors ~v1 and ~v2.

~v0
3 = ~v0

2 + ~v0
1 (3.6)

The direction and magnitude of ~v0
1 can be found by rotating the coordinates of p2

an angle θ, where the superscript 2 describes from what frame the coordinates are
described in. In this case the red coordinate system o2x2y2.

~v0
1 = R0

2p2 (3.7)

Further the vector ~v0
2 is describing the displacement of the coordinate system

o2x2y2 relative to the fixed coordinate system, for convenience renamed to d0
2. By

substituting this into the equation (3.6) the following relation is found.

p0 = R0
2p2 + d0

2 (3.8)

And therefore the following relations is also valid.

p0 = R0
1p1 + d0

1 (3.9)
p1 = R1

2p2 + d1
2 (3.10)

These two substituted together will then give

15

Chapter 3. Modeling

p0 = R0
1p1 + d0

1

= R0
1R1

2p2 + R0
1d1

2 + d0
1 (3.11)

The relations are also valid in a three dimensional system. This will naturally
result in large complex equations as the number of coordinate systems and the
DOF (Degrees of Freedom) increases. And it is therefore convenient to describe
this system in matrix form to simplify the notations. To do this a matrix H, that
describes the homogeneous transformation is introduced.

Hi
j =

Ri
j dij

0 1

 (3.12)

Where 0 is an 3 × 1 vector of zeroes, Ri
j is the rotational matrix from coordinate

system j with respect to the ith. And dij is the origin position of the jth coordinate
system with respect to the ith. Further derivations then gives the following.

P1 =

p1

1

 = H1
2

p2

1

 (3.13)

P0 =

p0

1

 = H0
1P1 (3.14)

= H0
1H1

2

p2

1

=

R0
1 d0

1

0 1

R1

2 d1
2

0 1

p2

1

=

R0
1R1

2 R0
1d1

2 + d0
1

0 1

p2

1

So that (3.11) can be written on matrix form as

P0 =

R0
2 R0

1d1
2 + d0

1

0 1

p2

1

 (3.15)

16

3.4. Kinematics

3.4 Kinematics

Now that the basic transformation equations has been derived, it is time to have
a look at the motions of the manipulator body itself. The kinematics describes
this without looking at the forces that causes the motions. Normally kinematics is
divided into two types; Forward and Inverse kinematics. The forward kinematics
is about determine the position and orientation of an object end-effector when the
joint variables are known. Since the variables in tasks like this are given, they will
only be geometrical problems. With inverse kinematics it is the opposite. Here
the joint variables must be determined based on a known end-effector.

Because the visualization of the Raptor manipulator is based on sensor data from
the physical manipulator, meaning that the joint variables are known, this task
will only consider the forward kinematics problem. In a way this theory is not
actually necessary to have when making this visualization application. However,
it is a major advantage to have this knowledge when setting up the kinematic
chain for use in a visualization software. And that is also the reason for why this
theory is so important to include in this thesis.

3.4.1 Forward Kinematics

The forward kinematics problem is as mentioned a pure geometrical problem. All
the angles are known, and the only problem is to make sure that the calculations
are done correctly when processing the sensor data from the manipulator. These
variables are given as angles between the links. To do these calculations as clean
and efficiently as possible it is a beneficial to do it systematically [26].

As a start, the joint and links are numbered to describe how the links are con-
nected through the manipulator. The joints can be simple 1-DOF joints, or more
complex joints like those seen in Figure 3.2 with more than 1-DOF. A conventional
manipulator will have one more link than joints. Mathematically this means that
if the manipulator have n joints, it will have n + 1 links, including the manipu-
lators base. This also means that link i will be fixed with respect to link i − 1.
Naturally the joint variable associated with a joint will have the notation qi and
is as mentioned the angle of rotation when the joint is a revolute joint. It can also
be in other units such as displacement if the joint is a prismatic joint. For the
Raptor manipulator in this thesis all the joints are revolute.

As shown in Figure 3.7 each link has a coordinate frame attached rigidly, noted as
oixiyizi where i is the link number. Each frame has a non-constant homogeneous
transformation matrix Ai(qi) that describes the associated frames position and
orientation with respect to the previous link oixiyizi. This matrix will only depend
on one variable, qi. By using many homogeneous transformation matrices one can
produce a transformation matrix, Ti

j. Where the matrix expresses the position
and orientation of ojxjyjzj with respect to oixiyizi. This matrix is given as

17

Chapter 3. Modeling

Ti
j =

Ai+1Ai+2 · · · Aj−1Aj, if i < j

I, if i = j

(Tj
i)−1, if i > j

(3.16)

θ1

θ2

x0

y0

x1

y1

x2
y2

Joint 1

Joint 2

Figure 3.7: Example of reference frame attachment [9]

3.4.2 Denavit-Hartenberg Representation

The transformation matrix Ai that was explained in Subsection 3.4.1 gives the
opportunity to solve the forward kinematics problem. However, it is necessary to
choose the right reference frames to fully simplify the analysis. A way to choose
these reference frames is the Denavit-Hartenberg (D-H) convention [24]. This
convention represents the homogeneous transformation matrix as a product of
four basic transformations.

18

3.4. Kinematics

Ai = Rz,θi
Tz,di

Tx,ai
Rx,αi

(3.17)

=

cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

=

cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

 (3.18)

Where

ai = distance along xi from oi to the intersection of the xi and zi−1 axes.

αi = the angle between zi−1 and zi measured about xi.

di = distance along zi−1 from oi−1 to the intersection of xi and zi−1 axes.

θi = angle between xi−1 and xi measured about zi−1.

And the different axes are as shown in Figure 3.8.

When comparing this matrix with the transformation matrix derived in Subsec-
tion 3.3.2, one can see that the D-H-representation has reduced the number of
parameters from six to four. This is valid as long as these two requirements to the
reference frame is introduced

1. The axis xi is perpendicular to the axis zi−1

2. The axis xi intersects the axis zi−1

Every homogeneous transformation matrix that is satisfying these requirements
can be represented in the form given in (3.18). D-H convention can therefore be
seen as guidelines that makes sure that these requirements are fulfilled. Note that
these guidelines does not lead to a unique set of reference frames, but the final
result T0

n will be the same.

The coordinate frames must be placed so that the z-axes is positioned in a satis-
factory location. To do this the zi is placed so that it describes the actuation of
joint i+ 1. This means that if the joint is a prismatic joint, the zi axis will be the
axis of translation. And if it is revolute it will be the axis of rotation. The base
frame can more or less be chosen to be anywhere as long as it follows the right
hand rule as described in Figure 3.8, and that the origin is located on z0.

19

Chapter 3. Modeling

Figure 3.8: Right hand rule - positive rotation directions for αi and θi [26].

Now a process of establishing the remaining reference frames must be conducted.
To do this there are three common situations that can occur when performing this
iterative process [26]. These three are

1. zi−1 and zi are not coplanar: A unique line segment exists that is per-
pendicular to both zi−1 and zi that connects the axes. This line defines xi,
and the point where this line intersects zi defines the origin oi. The y axis
is then chosen to form a right-hand rule. Using this procedure ensures that
both condition 1. and 2. is satisfied.

2. zi−1 is parallel to zi: The origin oi can be chosen anywhere along zi, but it
is often chosen to simplify the calculations. The xi axis is then chosen either
toward or away from zi−1 along the common normal. If the xi axis is chosen
as the normal that passed through oi−1, both the link offset di and the link
twist αi will be equal to zero.

3. zi−1 intersects zi: xi is here chosen to be normal to the plane made by zi
and zi−1. The direction of xi is arbitrary.

Note that the quantities ai and αi are always constant for all i regardless if the
joint is prismatic or revolute. θi is constant if the joint i is prismatic, and di is the
ith joint variable. Further di is constant if the joint i is revolute, and θi is the ith
joint variable.

20

3.4. Kinematics

3.4.3 The Raptor manipulators kinematics

The theory explained earlier must now be adapted to fit with the Raptor manip-
ulator. Figure 3.9 shows the chosen reference frames for the arm according to the
D-H convention and the right hand rule shown in Figure 3.8.

Figure 3.9: Raptor model with frames chosen according to D-H convention [9]

Further, the table below shows the chosen D-H parameters for each link in the
manipulator.

Table 3.1: Denavit-Hartenberg parameters

Link # ai αi di θi

1 a1 90° 0 θ1

2 a2 0° 0 θ2

3 a3 0° 0 θ3

4 a4 90° 0 θ4

5 0 -90° 0 θ5

6 0 0° d6 θ6

Now it is an easy task to put these parameters into (3.18) to obtain all the homo-
geneous transformation matrices. Together they form the base of all the forward
kinematic problems. Of course the size and the complexity of the manipulator
will form these into big and complex equations, but still easy to solve since the
variables are known.

21

Chapter 3. Modeling

A1 =

cθ1 0 sθ1 a1cθ1

sθ1 0 −cθ1 a1sθ1

0 1 0 0
0 0 0 1

A3 =

cθ3 0 sθ3 a3cθ3

sθ3 0 −cθ3 a3sθ3

0 1 0 0
0 0 0 1

A5 =

cθ5 0 −sθ5 0
sθ5 0 cθ5 0
0 −1 0 0
0 0 0 1

A2 =

cθ2 −sθ2 0 a2cθ2

sθ2 cθ2 0 a2sθ2

0 0 1 0
0 0 0 1

A4 =

cθ4 0 sθ4 a4cθ4

sθ4 0 −cθ4 a4sθ4

0 1 0 0
0 0 0 1

A6 =

cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 d6

0 0 0 1

This gives the transformation matrix

T6
0 = A1A2A3A4A5A6 (3.19)

=

r11 r12 r13 dx

r21 r22 r23 dx

r31 r32 r33 dx

0 0 0 1

 (3.20)

Where

r11 = c6(c5(c4(c1c2c3 − c1s2s3) + s1s4) + s5(c1c2s3 + c1c3s2))
−s6(s4(c1c2c3 − c1s2s3) − c4s1)

r21 = c6(c5(c4(c2c3s1 − s1s2s3) − c1s4) + s5(c2s1s3 + c3s1s2))
−s6(c1c4 + s4(c2c3s1 − s1s2s3))

r31 = s4s6(c2s3 + c3s2)
r12 = −c6(s4(c1c2c3 − c1s2s3) − c4s1)

−s6(c5(c4(c1c2c3 − c1s2s3) + s1s4) + s5(c1c2s3 + c1c3s2))
r22 = −c6(c1c4 + s4(c2c3s1 − s1s2s3))

−s6(c5(c4(c2c3s1 − s1s2s3) − c1s4) + s5(c2s1s3 + c3s1s2))
r32 = −c5(c2c3 − s2s3) − c4s5(c2s3 + c3s2)

22

3.5. Dynamics

r13 = c5(c1c2s3 + c1c3s2) − s5(c4(c1c2c3 − c1s2s3) + s1s4)
r23 = c5(c2s1s3 + c3s1s2) − s5(c4(c2c3s1 − s1s2s3) − c1s4)
r33 = −c5(c2c3 − s2s3) − c4s5(c2s3 + c3s2)
dx = a1c1 − d6(s5(c4(c1c2c3 − c1s2s3) + s1s4) − c5(c1c2s3 + c1c3s2))

+a4c4(c1c2c3 − c1s2s3) + a2c1c2 + a4s1s4 − a3c1s2s3 + a3c1c2c3

dy = a1s1 − d6(s5(c4(c2c3s1 − s1s2s3) − c1s4) − c5(c2s1s3 + c3s1s2)) +
a4c4(c2c3s1 − s1s2s3) + a2c2s1 − a4c1s4 − a3s1s2s3 + a3c2c3s1

dz = a2s2 − d6(c5(c2c3 − s2s3) + c4s5(c2s3 + c3s2))
+a3c2s3 + a3c3s2 + a4c4(c2s3 + c3s2)

And si and ci is a simplification of sin(θi) and cos(θi). Note that this matrix has
the same form as shown in (3.12)

T6
0 =

R6
0 O6

0

0 1

 (3.21)

Where R6
0 expresses the rotation of o0x0y0z0 with respect to o6x6y6z6. And O6

0 are
coordinate vectors that describes the origin. In the attachments is a MATLAB-
code that is doing all these calculations.

3.5 Dynamics

The kinematic equations describes the motions and positions of the manipulator.
Dynamics on the other hand, describes how these motions occur based on the forces
acting on the manipulator. These forces can be buoyancy, drag forces, added mass,
waves, loads, collisions, current among others [5]. Many of them were presented
and simulated for a dynamic model of an underwater manipulator in the project
thesis [27].

In further development of a complete manipulator system it will be natural to
have some kind of model-based control system included, like the one developed in
the project thesis. There are many different ways to derive these equations such
as the Euler-Lagranges method and the Newton-Euler method. To do this, one
must know much more about the manipulators physical properties like the mass,
inertia, drag coefficients and volume among others. A model based controller of
the Raptor FFM has been developed in the master thesis [10], and can be used as
a base if the work with this manipulator continues.

23

Chapter 3. Modeling

24

Chapter 4

Manipulator description
To be able to create a visualization of a manipulator arm as accurate as possible,
one must have all the necessary information about its geometry, measurements and
location of joints available. This chapter will present all the collected information
that is relevant for this development.

The Raptor FFC Manipulator is designed for use in hostile or harsh environments,
also under water. It consists of six revolute joints and a rotatable gripper at the
end. It has a total mass of 75 kilograms including the base in air, and the mass
under seawater due to buoyancy is 44 kilograms. The maximum lifting capacity
is 227 kilograms and the maximum capacity is 91 kilograms if the arm is fully
extracted.

See also the attached PDF data sheet and the manuals for more information.

4.1 3D model

Figure 4.1: 3D model of the Raptor manipulator from Kraft Telerobotics

25

Chapter 4. Manipulator description

As mentioned earlier, the 3D CAD file was provided from the manufacturer. The
model is the one seen in Figure 4.1. This was convenient because it now was
possible to take accurate measurements to obtain more knowledge about the ma-
nipulators geometry than what was provided in its data sheets and user manual.
It was a detailed CAD model with all the parts separated into sensible parts that
was possible to separate and analyse.

Another advantage of having this provided is that the job of developing this model
in a CAD-development software would have been a very time consuming task.
The model would most likely have ended up being very inaccurate due to lack
of important information, and because of the limited amount of time available.
A manually created model could have resulted in deviations in the visualization
compared to the real manipulator, and the goal is of course that this visualization
will be as close to reality as possible.

4.2 Workspace and measurements

In Figure 4.2 and 4.3 drawings of the manipulators workspace and measurements
are shown. They are found in the attached data sheets. The measurements are
not detailed enough to create a perfect visualization, but they give an overview
of the manipulator size. Also the drawings of the manipulators workspace gives a
good image on how it is working and how the limitations restricts it from certain
motions.

In Section 4.3 the limitations in each joint will be presented. By looking at the
drawing of the workspace it is easy to see that all the links has restricted rotations.
Compared to the spherical workspace shown in Figure 3.4 it is quite similar, which
means that the Raptor manipulator has a restricted articulated configuration.

Figure 4.2: Raptor data sheet - workspace [13]

26

4.2. Workspace and measurements

Figure 4.3: Raptor data sheet - Measurements [13]

To be able to visualize the manipulator 3D model it is necessary to have very
accurate measurements so that the kinematics that will be developed later becomes
perfect. These measurements was made i the program Siemens NX 8, which is an
advanced software package used for task like design, analysis and manufacturing
[32]. A screenshot of the interface can be seen in Figure 4.4. It has a very intuitive
and accurate measurement tool that was used. The necessary measurements was
the positions of the joints in the manipulator for each part, and the parts relative
position compared to the global coordinate system.

Figure 4.4: Siemens software NX 8 that was used for measurements

27

Chapter 4. Manipulator description

Measurements that was made is shown in Table 4.1 below. The global position is
the connection point from the parent link, and the joint position is where the joint
is located relative to the previous joint.

Table 4.1: Raptor FFM measurements. All in [mm]

Base link Link-1

Global position:
(0, 0, 0)
Joint position:
(0, 0, 0)
Note: Global position is par-
ent position

Global position:
(0, 0, 0)
Joint position:
(0, 0, 0)

Link-3 Link-8

Global position:
(152.96, 184.13, 0)
Joint position:
(152.96, 184.13, 0)

Global position:
(158.57, 847.06, 0)
Joint position:
(5.60, 662.93, 0)

Link-9 Link-10

Global position:
(298.54, 471.36, 0)
Joint position:
(139.96, -375.69, 0)

Global position:
(298.54, 350.74, 0)
Joint position:
(0.00,-120.62, 2.26)

4.3 Limitations

As mentioned in Section 4.2 the data sheets also provides more accurate limitations
for each link. This is important knowledge in a visualization software, because it
can be easier to detect errors. Many of the maximum angles will not be possible
to obtain in certain conditions due to physical limitations. For instance if the
end effector is colliding with one of the other links. In Figure 4.5 and Table 4.2

28

4.3. Limitations

the different joint limitations are shown. These will be used when testing the
visualization software to verify that the manipulator can move as it should within
its workspace.

Figure 4.5: Rotation properties for Raptor [11]

Table 4.2: Raptor - Manipulator limits

Maximum range of motion
Shoulder Azimuth 270°
Shoulder Elevation 120°
Elbow Pivot 120°
Wrist Pitch 200°
Wrist yaw 200°
Wrist Rotate (Slaved mode) 340°
Wrist rotate (Continuous) 0-40 [rpm]
Jaw Opening (parallel acting) 100 [mm]
Jaw opening (intermeshing) 220 [mm]

29

Chapter 4. Manipulator description

30

Chapter 5

System set-up
The target in this thesis is to develop a fully functional visualization system for the
Raptor Force Feedback Manipulator. This leads to a variety of different challenges.
Choice of visualization tool, software, hardware set-up and the connection between
hardware and software is some of them. There are many ways to solve challenges
like these. In this chapter the whole process all the way from the beginning of
the thesis to the final result will be documented and explained. This work can be,
and have been, very time consuming and it is therefore important to have detailed
documentation both for further work and for readers in the future. Hopefully, after
reading this report, time can be spent on understanding and further development
of the system rather than challenges regarding system set-up and software.

5.1 Software selection

5.1.1 Robot Operation System (ROS)

In the project thesis [27] it was developed a 3D visualization tool for a 2-link
manipulator from scratch using the Python Visual package, VPython. The reason
why Python was used for this was to have a solution with many opportunities
and without limitations that a pre-made software might have. It was also simpler
to develop a customized user interface designed for this specific problem. In this
thesis the problem has been extended to a more complex manipulator with more
details and functionality. As a result of this, the requirements to the software
will also be increased. It is possible to do all the software development alone,
however an open source software library aimed to develop robot applications will
most likely make the development and further work a lot easier. Based on this, it
was decided not to develop an application from scratch, but rather use an already
existing software library. The software that was found most suitable for this task
was the ROS framework [21].

The Robot Operating System is a set of software libraries, tools, and conventions
designed specifically for robot application development. It has not been used much
for underwater robotics yet. However, there are no reasons why it should not be
suited for use in underwater robotics as well. The tools varies from developer tools,
mathematical tools, drivers and visualization tools. Its main target is to provide
everything that is needed in a robotic project. Also it is open source, which means
that it is free for commercial and research use.

31

Chapter 5. System set-up

The most suitable ROS package for this thesis is the rviz package, which is a
visualization package for robots. It has many opportunities for both visualization,
monitoring and motion planning. It gives the user a huge amount of possibilities
for solving any problems that can occur in a robotic task. The rviz interface with
the Raptor model included is shown in Figure 5.1.

Figure 5.1: The rviz ROS package. Here with the Raport Force Feedback Manip-
ulator visualized

5.1.2 3D modelling software

When working with 3D-visualization it is beneficial to have a detailed 3D model.
Since today’s 3D-software solutions allows extremely good and detailed 3D models,
one is able to create visualizations that is very close to the reality. This increases
the system quality and its appearance, and can make it easier for the operator that
is manoeuvring the visualized manipulator because of its close to real appearance.
3D modelling is a lengthy process, especially if the model has many details. The
Raptor FFM has many details and it would have been very time consuming to
create a model from scratch. Since the original 3D model was provided from Kraft
TeleRobotics, there wasn’t found any reason not to use this model in the visualiza-
tion. However, the model does not work out of the box. It has to be prepared for
visualization, meaning that all the parts of the model must be separated so that
they can be assigned to their associated reference frame. To do this a combination
of the programs NX 8 by Siemens PLM Software [32], FreeCAD[31] and the ROS
package rviz [22] was used.

32

5.2. Software set-up

5.2 Software set-up

With a 3D model available and the software chosen, it is time to prepare the model
for visualization so that it is ready for connection to a real manipulator. The aim
is to have a software that is complete and ready for connection to a physical system
without any new serious issues. The first step in the process of developing this
software is to split up the existing 3D model into pieces that can be connected in
a kinematic chain for visualization.

5.2.1 Preparing the 3D model

The 3D model files that was provided from the manufacturer was formatted in a
format called STEP format (Standard for the Exchange of Product model data).
The STEP format is a widely used CAD file format. It is used to share 3D models
between users regardless of witch CAD-software that is being used. Rviz does not
support visualization of STEP-files directly. Therefore it is necessary to convert
the model into a supported mesh format, in this case a STL (STereoLithography)
file format. To do this the FreeCAD software that is shown in Figure 5.2 was used.

Figure 5.2: FreeCAD 3D modeling software

FreeCAD is a free Open Source 3D CAD modelling software. It is developed as a
tool for mechanical engineering and product design. However, it can also be used
in many other disciplines as well. The software runs on both Windows, Mac and
Linux operating systems, and is therefore very flexible to use for developers that
is running on different operating systems. Also it has a big user community so

33

Chapter 5. System set-up

that questions and challenges can be posted and discussed with a huge amount of
FreeCAD users around the world. [31]

First the parts must be separated into pieces that describes each link in the manip-
ulator arm. Fortunately the CAD-model was already separated into categories so
all that is needed is to identify the different parts of the manipulator and separate
it from the rest of the model. An example is shown in Figure 5.3 where the upper
arm is separated from the rest of the model. After this, the part can be saved in
the desired STL format so that it is ready to be imported into rviz.

Figure 5.3: Left: the whole model. Right: a separated piece of the manipulator

The separated parts was as listed in Table 4.1. Their names are Base, Azimuth,
Upper arm, Fore arm, Wrist Pitch, Wrist yaw and gripper. With these links
separated it is possible to visualize the whole manipulator since these are the main
parts that is connected through the joints. Hydraulic parts are also included in
the original model, but these are not included in the visualization model. This
is for simplification, and because including them will have little effect on the end
result.

34

5.2. Software set-up

5.2.2 Develop the kinematic chain for rviz

The next step in the process is to describe how these parts are connected in the
kinematic chain, so that rviz knows how to determine the kinematics of the arm.
To do this it is necessary to make a URDF (Unified Robot Description Format),
which is an XML (Extensible Markup Language) format for representing robot
models. In this file all the information about the parts and joints are described, so
that it can be loaded into rviz [17]. All used information about the manipulator
is what was found in Chapter 4.

To explain how a URDF-file work, a simplified excerpt of the developed Raptor
URDF is shown below. This part of the file describes the two first links in the
manipulator. It defines where they are located and how they are connected to
each other.

Code 5.1: URDF-file excerpt
1 <robot name=" raptor ">
2 <link name=" base_link ">
3 <visual>
4 <geometry>
5 <mesh f i l ename=" file://STL - files/base .stl" s c a l e=" 0.001 0.001

0.001 "/>
6 </geometry>
7 <origin xyz="0 0 0.0" rpy="0 0 -${pi/2}" />
8 <material name=" gray0 ">
9 <color rgba="${ color }"/>

10 </material>
11 </visual>
12 </link>
13

14 <link name=" link2 ">
15 <visual>
16 <geometry>
17 <mesh f i l ename=" file://STL - files/link -2. stl" s c a l e=" 0.001 0.001

0.001 "/>
18 </geometry>
19 <material name=" gray0 ">
20 <color rgba="${ color }"/>
21 </material>
22 <origin xyz="0 0 0" rpy="0 0 -${pi/2}" />
23 </visual>
24 </link>
25

26 <joint name=" joint0 " type=" revolute ">
27 <parent l i n k=" base_link "/>
28 <child l i n k=" link2 "/>
29 <origin xyz="0 0 0" rpy="0 0 0" />
30 <axis xyz="0 0 1" />
31 <limit e f f o r t="0" v e l o c i t y="1.0" lower="-$ {(135 /180)*pi}" upper="$ {(135

/180)*pi}" />
32 </joint>
33 . . .
34 </robot>

First of all the robot tag is defined, with the name of the robot typed in.

35

Chapter 5. System set-up

Code 5.2: URDF: Define robot
1 <robot name=" raptor ">

Then the links are introduced with the link-tag. In this tag all the information
about the link is provided. Its visual properties like geometry, origin and colour is
specified. Also the dynamic characteristics of the part can be specified here, but
there are no need for dynamic properties in this thesis.

Code 5.3: URDF: Base_link
1 <link name=" base_link ">
2 <visual>
3 <geometry>
4 <mesh f i l ename=" file://STL - files/base .stl" s c a l e=" 0.001 0.001

0.001 "/>
5 </geometry>
6 <origin xyz="0 0 0.0" rpy="0 0 -${pi/2}" />
7 <material name=" gray0 ">
8 <color rgba="${ color }"/>
9 </material>

10 </visual>
11 </link>

Note that some of the definitions is given as variables, like the color tag for the
base_link. The rgba color given as ${color} where this variable is defined in
the beginning of the document. This is called xacro, which is a way to construct
shorter and more readable XML files by using macros that expand to larger XML
expressions [23]. One can also see that it is possible to do math operations like
here where the orientations is defined as a fraction of π (pi).

Likewise, link2 is defined. Then to connect the two links together the first joint,
joint0, is created.

Code 5.4: URDF: Joint0
1 <joint name=" joint0 " type=" revolute ">
2 <parent l i n k=" base_link "/>
3 <child l i n k=" link2 "/>
4 <origin xyz="0 0 0" rpy="0 0 0" />
5 <axis xyz="0 0 1" />
6 <limit e f f o r t="0" v e l o c i t y="1.0" lower="-$ {(135 /180)*pi}" upper="$ {(135

/180)*pi}" />
7 </joint>

The parent link is of course the base_link, and the child link is link2. This is
because movement of the base_link will affect link2, but movement in link2
will not affect the base_link. It continues like this in the URDF-file until all the
links and joints are defined. A complete connection chart based on the URDF-file
is shown in Figure 5.4. The complete URDF is to be found in the attachments.

36

5.2. Software set-up

base_link

joint0

xyz: 0 0 0
rpy: 0 -0 0

link2

joint1

xyz: 0.152963 0 0.184131
rpy: 0 0 -1.57075

link3

joint2

xyz: 0 0.00560766 0.662933
rpy: 0 -0 0

link8

joint3

xyz: 0 0.139967 -0.3757
rpy: 0 -0 0

link9

joint4

xyz: 0.00225837 0 -0.120621
rpy: 0 -0 0

link10

tip_joint

xyz: 0 -0.0651846 -0.162134
rpy: 0 -0 0

link11-12

Figure 5.4: Connection chart from Raptors URDF-file

37

Chapter 5. System set-up

5.2.3 rviz set-up

As known rviz is, among many other things, a tool for visualization of input
data. And as long as it knows the kinematic chain of the robot it can visualize the
incoming signals. It works out of the box as long as all the inputs are correct. This
means that by loading the Raptor URDF-file it will work immediately. However,
there are some additional features that should be added when rviz is starting up.

In Code 5.5 below is the developed launch file for this thesis. It is separated
into four different parts. The first part is where the parameters are set, like the
project-file path and what model to load, before the user interfaces are starting
up with these parameters. Next is where the joint_state_publisher and top-
ics are defined. A topic is the channel where ROS is communicating with the
different applications. In this case the topic name is raptor, meaning that this
is the topic that the visualization will receive its signals from. How these states
are being published and generated will be explained in Section 5.3.3. Further
the robot_state_publisher is introduced. This publisher connects the states
received from the joint_state_publisher and applies it to the visualization.

Last part is the camera set-up and start-up procedures. It can be loaded if it is
connected to the computer. If it is not, this part should not be included in the
launch-file. The camera will be described more in Section 5.2.6.

Code 5.5: Launch-file
1 <launch>
2 <!-- Start model and gui -->
3 <arg name="path" value=" /home/uav/Desktop/Robot/ " />
4 <arg name=" model " value="$(arg path) urdf/raptor -mesh.urdf. xacro " />
5 <arg name=" xacrofile " value=" /opt/ros/hydro/share/xacro/xacro .py" />
6 <arg name="gui" default="True" />
7 <param name=" robot_description " command="$(arg xacrofile) '$(arg model)'"

/>
8 <param name=" use_gui " value="$(arg gui)"/>
9 <node name=" rqt_gui " pkg=" rqt_gui " type=" rqt_gui " />

10 <!--Load and connect correct topic -->
11 <node name=" joint_state_publisher " pkg=" joint_state_publisher " type="

joint_state_publisher ">
12 <rosparam param=" source_list "> [raptor] </rosparam>
13 </node>
14 <!--Load state publisher -->
15 <node name=" robot_state_publisher " pkg=" robot_state_publisher " type="

state_publisher " />
16 <!--Load Camera -->
17 <node name=" usb_cam " pkg=" usb_cam " type=" usb_cam_node " output=" screen " >
18 <param name=" video_device " value=" /dev/video0 " />
19 <param name=" image_width " value="800" />
20 <param name=" image_height " value="600" />
21 <param name=" pixel_format " value=" mjpeg " />
22 <param name=" camera_frame_id " value=" usb_cam " />
23 <param name=" io_method " value="mmap"/>
24 </node>
25

26 </launch>

38

5.2. Software set-up

5.2.4 Navigation and use of rviz

Now that the software has been prepared, it is time to test and explain its func-
tionality. To start up the system one must navigate to the root folder of the project
in the terminal and execute the launch file launch as shown in Code 5.6 below.

Code 5.6: Start-up command
1 roslaunch " /Robot/launch/display_raptor_mesh . launch "

In the launch file it is defined that the rqt_gui package is to be opened. This is a
package that allows the user to have multiple widgets running at the same time in
the same window. It makes it possible to customize the user interface by adding
more widgets in the program such as state plotting, and cameras. In Figure 5.5
the window that is appearing when running the launch file is shown.

Figure 5.5: The rqt user interface with rviz and plotter

In this interface more features can easily be added and adjusted as desired by the
user. As an example it has in Figure 5.5 been added a plot of all the joint states.

Since there is no real input signals at this moment it is necessary to have a man-
ual state publisher to see how the visualization is working. Fortunately, this
is an already existing feature in the ROS package. As seen in Code 5.5 the
joint_state_publisher is loaded when launching the software with gui value
set to True. This is a handy interface tool for changing link states easily just by
dragging the marker that defines the joint state to the desired state. This way it is
easy to test the visualization and search for errors in the URDF-file. The interface
of this publisher is shown in Figure 5.6.

39

Chapter 5. System set-up

Figure 5.6: The joint state publisher

The visualization window can easily be customized to fit the users needs and
wishes. Just by checking and unchecking the checkboxes that controls the different
features it can behave and look as desired. New displays and features is also simple
to add, and some of these can be seen in Figure 5.7.

Figure 5.7: rviz - Settings and displays

40

5.2. Software set-up

Different views can be defined and stored for use later as shown in Figure 5.8.
Navigation is also very easy with a 3-button mouse; left-, right- and scroll-button
[22]. The mouse-buttons have the following functions

• Right mouse button: Click and drag to zoom

• Left mouse button: Click and drag to rotate

• Scrollwheel: Zoom in and out

• Scroll-button: Click to move focal point

Figure 5.8: Stored views in rviz

A very simple tool-line shown in Figure 5.9 makes it easy to change between modes
and do measurements among others.

Figure 5.9: Tool-line in rviz

5.2.5 Plotter

As seen in Figure 5.5 a plotter window is added to the interface. It plots the
/joint_states/position topic where the joint states are published. With this
tool it is easy to keep control of the current states and to detect errors in the
publisher. If one of the states suddenly freezes, it can be that one of the sensors
has lost its signal, or that it is broken. And this should be possible to see in
the graphs. It is also possible to go back in the log and see what has happened
earlier. The window can be zoomed in and out using the mouse and the axes can
be modified individually.

41

Chapter 5. System set-up

5.2.6 Camera

Figure 5.10: Camera used in the set-up

Even though this visualization software is made to help the operator during oper-
ations where the visibility is bad, a camera is of course a necessary equipment in
the visualization. With this, it is easy to compare the visualization with what is
seen on the camera. Also a camera gives opportunities that can increase the func-
tionality of the visualization. For example to create a collision avoidance system.
A calibrated camera can be used to detect objects that endangers the operation.
In this task the camera is only included for practical reasons during testing.

5.3 Hardware set-up

A lab located at the Marine Technology Centre has been created for testing and
development of the manipulator. Hydraulics, electrical transformers, control units
and computers is located here. An overview of the lab is shown in Figure 5.11
below. It is a great advantage to have this lab available for implementation of the
visualization system in the future. In this section, all the work done to prepare
the software for connection to the real manipulator is described.

Figure 5.11: Lab-set-up overview at the Marine Technology Centre

42

5.3. Hardware set-up

5.3.1 Manipulator set-up

As seen in Figure 5.12 below, the simplified version of the system consists of a
Control Unit that sends signals to a KMC 9100F Control Chassis. Further the
orders are given to the servo driver module and the manipulator should perform
the desired tasks. There are of course more components represented like hydraulics
and electrical components. Some of them can be seen in Figure 5.11.

Figure 5.12: Raptor manipulator with control system [11]

43

Chapter 5. System set-up

The arm is mounted on a support structure so that it can work in the entire
manipulator workspace. For safety reasons is the whole manipulator area fenced,
and security procedures has been developed for the lab.

Figure 5.13: The manipulator mounted on the support structure

44

5.3. Hardware set-up

Since the manipulator was not up and running when the visualization software
was developed, it was not possible to test the simulation with real signals from the
manipulator. However, it is easy to test the visualization with simulated signals.
This way we know that the software works as long as it gets the right input. Below
is a staged scenario of how the manipulator together with the visualization will
look like.

Figure 5.14: Overview of the software and manipulator

5.3.2 Signals

Now that the physical system is described, it is time to explain how the signals is
planned to be fed into the software. Signals that is returning from the manipulator
while it is controlled, is being transferred to the computer with the visualization
software running. This is to be done with serial communication. The Raptor
manipulator is using an architecture called RS-485, which is an updated version of
RS-232. They are both widely used in robot solutions. For example, RS-485 is used
in many devices on ROV SF 30K and ROV Minerva that is owned and operated
by NTNU. The RS-485 standard is forwarding signals differentially, which gives
the opportunity to send signals over longer distances. It is also experiencing less
noise due to its balanced line structure [28].

Serial communication is preferred because it is easy to read serial data into Python
which easily can publish the data to the visualization. The Python package used
for this is called pySerial [18], and allows communication through the serial port
directly in the Python code. It can be implemented simply by importing the
serial package in the code.

Figure 5.15: pySerial API logo [18]

45

Chapter 5. System set-up

5.3.3 Programming for state publisher

The pySerial module should be imported into a python script so that the signals
can be published. How this would look like will depend on the final connection,
and this is therefore not discussed here. However, how data is being fed into to
the visualization is important to explain because this is also how the simulations
are carried out.

Below is a simple python code that is publishing states to the visualization.

Code 5.7: Joint-state publisher
1 #!/usr/bin/ python
2

3 from sensor_msgs . msg import JointState
4 import rospy
5 import math
6 pi = 3.1415
7 rospy . init_node ('raptor ' , anonymous=True)
8 publisher = rospy . Publisher (" raptor " , JointState)
9 count = 0

10 count2 = count
11 whi le not rospy . is_shutdown () :
12 raptor = JointState ()
13 raptor . name . insert (0 , " joint0 ")
14 raptor . name . insert (1 , " joint1 ")
15 raptor . name . insert (2 , " joint2 ")
16 raptor . name . insert (3 , " joint3 ")
17 raptor . name . insert (4 , " joint4 ")
18 raptor . header . stamp = rospy . Time . now ()
19

20 sine = math . sin (count)
21 cosine = math . cos (count2)
22 val1 = sine∗pi ∗0 .75
23 val2 = - (0 . 5 + 0.5∗ sine) ∗0 .5∗ pi
24 val3 = (0 . 5 + 0.5∗ sine) ∗0 .5∗ pi
25 val4 = (0 . 5 + 0.5∗ cosine) ∗0 .5∗ pi
26 val5 = 0.5∗ cosine ∗pi ;
27

28 raptor . position . insert (0 , val1) #range : 270 deg
29 raptor . position . insert (1 , val2) #range : 120 deg
30 raptor . position . insert (2 , val3) #(-(0.5+0.5∗ sine) ∗(120/180) ∗pi)
31 raptor . position . insert (3 , val4)
32 raptor . position . insert (4 , val5)
33

34 publisher . publish (raptor)
35

36 count = count +0.01
37 count2 = count2 +0.02
38

39 rospy . sleep (0 . 0 1)

What this code does is to publish time varying states into the raptor-topic, where
each joint is updated every 0.01 second. This topic is set to the main topic in the
visualization through the launch file in Code 5.5, and this gives a real-time update
of the 3D model as long as the publisher is running. The publisher is everything
that is needed to carry out simulations of the visualization in rviz.

46

Chapter 6

Results
The software must be tested to verify that the visualization works as it is supposed
to do. And the procedures for doing this is as mentioned in Section 5.3.3. Each
joint is to be tested separately with a varying input within its limits shown in
Table 4.2. As a last test, all joints are changed at the same time just as in a real
situation. A tracer is added to the end of the wrist to see what line the end-effector
is covering. This will determine if the end effector is moving in the desired pattern
or not. It is important to make sure that there is no errors in the kinematics, so
that the rotations propagate correctly through the whole arm.

6.1 Shoulder azimuth

Maximum range of motion is 270°. This will correspond to a rotation in the range
(−135°,+135°), or (−3

4π,
3
4π)[rad], around the initial position 0°. All other joints

are set to 0°. A varying rotation with one cycle every third second is applied.

Figure 6.1: Test of shoulder azimuth

The result is as expected. There are no deviations or distortions during movement.
Since this joint is located at the global centre (0, 0, 0) this is no surprise.

47

Chapter 6. Results

6.2 Shoulder elevation

Maximum range of motion in this joint is 120°. This corresponds to a rotation in
the range (−120°, 0°) or (−2

3π[rad], 0[rad]), where 0° is the initial condition. The
Elbow Pivot is set to an angle 90° since the Shoulder Elevation then can rotate
within its whole range without any collisions with its own body. All other joints
are set to 0°.

Figure 6.2: Test of shoulder elevation

Also here is the rotation conducted without deviations or distortions. Note that
already in this joint the limitations in the manipulators theoretical workspace
becomes visible. In theory, this manipulator could have moved within itself. This is
obviously impossible in reality, and a detection procedure for this can be considered
in further development.

48

6.3. Elbow Pivot

6.3 Elbow Pivot

The maximum rotation for this joint is 120°. This corresponds to a rotation in
the range (0°, 120°) or (0[rad], 2

3π[rad]), where 0° is the initial condition. All other
joints are set to 0°.

Figure 6.3: Test of Elbow Pivot

Again, everything works properly. This joint is important because it is the joint
that gives the arm its biggest extent and therefore also fully extract the manipu-
lator. The maximal horizontal distance this manipulator can reach is 1.64 meters
according to Figure 4.2, and this is obtained when Elbow Pivot is rotated 120°.

49

Chapter 6. Results

6.4 Wrist Pitch

Maximum rotation is 200°. This corresponds to a rotation in the range (−100°, 100°)
or (−5

9π[rad], 5
9π[rad]), where 0° is the initial condition. The Elbow Pivot is set

to an angle 90° for the same reason as mentioned earlier. All other joints are set
to 0°.

Figure 6.4: Test of Wrist Pitch

No errors was found in this joint either. If the forearm is too close to the upper
arm this link can collide with the upper arm. Its range of motion is therefore
depending on how the Elbow Pivot is rotated.

50

6.5. Wrist Yaw

6.5 Wrist Yaw

For this joint the rotation range is just like the Wrist Pitch, (−100°, 100°) or
(−5

9π[rad], 5
9π[rad]). It rotates about the opposite axis from the previous joints.

The gripper is also attached to this link. It can rotate in its whole range when all
the other joints is in the initial position, but for convenience the Elbow Pivot is
set to an angle 90° when running the simulation.

Figure 6.5: Test of Wrist Yaw

Also here is the joint rotating with no deviations or distortions. This means
that the kinematic model implemented into rviz is correct, and the end-effector is
correct as long as the state input is correct.

51

Chapter 6. Results

6.6 Rotation in all joints

To test that a situation with movement in all joints are working, a more complex
simulation was done. This was done also to test that the software could handle
changes in more than just one link at the time. To make sure that the movement
was conducted with no collisions, all the joints except the Shoulder Azimuth, the
Shoulder Elevation and the Wrist Yaw was varying with positive state angles.

Figure 6.6: Test of motion in all joints

The tracer at the last link shows how the end-effector is changing through time.
Simulations was executed with no errors whatsoever. This means that the system
most likely is ready for real visualization connection. Even when the states where
changed fast and in a big range, the software had no problem to run on a lightly
equipped laptop. This is exactly what the software is supposed to do, and the
results are therefore satisfying.

52

Chapter 7

Conclusion and further work
7.1 Conclusion

The objective with this thesis has been to develop and demonstrate a 3D visual-
ization of a underwater robot manipulator arm. The arm was the Raptor Force
Feedback Manipulator that is constructed for use in harsh environments such as
underwater operations. This leads to a number of challenges regarding the software
layout and the hardware robustness.

The first step was to develop and analyse the 3D model, and prepare it for use in a
visualization application. Further, the kinematics of this arm had to be derived and
implemented into the chosen visualization software. Also a full start-up structure
and launch-procedure had to be developed. Procedures for start-up, connection
and use also had to be produced. Explanation on how the physical system would
work and look like also had to be included. In the end simulations had to be
conducted to verify that the software was fully functioning.

A visualization software has been developed in the Robot Operating System frame-
work which is a widely used software in robotic development, but not yet exten-
sively used in underwater robotics. The ROS package used for this is called rviz.
The manipulator has been inspected, the theory behind the kinematics has been
explained, and a kinematic model has been developed. Further, the manipulator
theory has been imported into the visualization software, together with its 3D
model. A complete system for visualization including start-up and set-up proce-
dures has been created, and the physical system design has been described and
explained to prepare for the process of testing the system on a real manipulator.

Simulations have been executed and this verifies that the visualization works prop-
erly and that it is ready for connection to the manipulator-lab that has been es-
tablished at the Marine Technology Centre. A camera located in the lab has also
been implemented into the software to improve the visualization performance and
to simplify the development process in the future.

The work with this thesis did not reveal any reasons not to use ROS for visual-
ization of underwater robotics. The software is solid, stable and well equipped.
It can be combined with other software solutions, customized by including appro-
priate packages, and be expanded by creating tailor made extensions for specific
problems. Hopefully this thesis will help readers in the future to see the potential
in the use of ROS for underwater robotic projects.

53

Chapter 7. Conclusion and further work

7.2 Further work

The visualization software developed in this thesis is designed for monitoring and
visualization only. It has no controlling or security functionality whatsoever, and
its only task is to provide the operator with necessary and important information
that can help to improve and streamline the operation. The model itself should
be good enough to be used in a real operation. However, there is room for im-
provement in the software solution. Firstly a "plug and play" functionality should
be developed. This means that the software is fully up and running immediately
after it has been started up. Now the visualization software and the state reader
and publisher is separated, and must be started manually.

A system that detects obvious errors in the signals should also be implemented.
This will help to determine whether the input is reliable or not. For example the
limits of the rotations in each links are known. If these limits is being exceeded
the operator should get a warning telling that something must be wrong.

The dynamics of the manipulator is not implemented in the software. This limits
the possibility to use the software as a control system. However, this is possible to
implement by using one of the many extensions available, and it is a natural next
step in the process of developing an operation centre.

For further work there should also be a goal to have a fully functional controlling
and monitoring system that can use the visual data provided from visual sensors to
improve the operation itself. Such functions can be systems designed for collision
avoidance, path planning, and feasibility analysis. The system should give the
operator a full overview of the operation, the possibility to plan and test steps in
the operation and act smart if unforeseen events should occur. A system that can
read and analyse visual data and provide this information to the controlling system
and the operator can be a great solution to many of the existing and upcoming
challenges that the offshore industry is facing.

54

Bibliography
[1] Karim Abdel-Malek and Harn-Jou Yeh. Atlases of orientability for robotic

manipulator arms. INTERNATIONAL JOURNAL OF ROBOTICS AND
AUTOMATION, 15(4):189–205, 2000.

[2] Gianluca Antonelli. Underwater robots. Cham: Springer International Pub-
lishing, 2013. ISBN: 3319028766.

[3] Robert D. Christ and Robert L. Wernli Sr. The ROV manual: a user guide for
observation class remotely operated vehicles. Butterworth-Heinemann, 2007.
ISBN: 0750681489.

[4] Mari Carmen Domingo. An overview of the internet of underwater things.
Journal of Network and Computer Applications, 2012.

[5] Odd Faltinsen. Sea loads on ships and offshore structures, volume 1. Cam-
bridge university press, 1993. ISBN: 0521458706.

[6] Thor Inge Fossen. Handbook of marine craft hydrodynamics and motion con-
trol. John Wiley & Sons, 2011. ISBN: 1119991498.

[7] Pål Johan From, Jan Tommy Gravdahl, and Kristin Ytterstad Pettersen.
Vehicle-Manipulator Systems. Springer, 2013. ISBN: 1447154622.

[8] Tony Hargreaves. Robot working envelopes. http://thnet.co.uk/thnet/
robots/25.htm, 2013. Visited 09.06.2014.

[9] Morten Haugen. Modeling and control of rov manipulator, 2011. Project
Thesis.

[10] Morten Haugen. Modeling and control of rov manipulator, 2012. Master
Thesis.

[11] Kraft TeleRobotics Inc. Raptor Manipulator System Manual, Part 1. Kraft
TeleRobotics, 2012.

[12] Kraft TeleRobotics Inc. Raptor Manipulator System Manual,Part 2. Kraft
TeleRobotics, 2012.

[13] Kraft TeleRobotics Inc. Raptor remotely operated force feedback manipulator
arm system. http://krafttelerobotics.com/products/raptor.htm, 2014.
Visited 07.06.2014.

[14] Steven Michael LaValle. Planning algorithms. Cambridge university press,
2006. ISBN: 0521862051.

[15] NTNU. Introduksjon til undervannsteknikk. http://ivt.ntnu.no/imt/
systemer/emner/uvtek/, 2014. Visited 22.01.2014.

55

http://thnet.co.uk/thnet/robots/25.htm
http://thnet.co.uk/thnet/robots/25.htm
http://krafttelerobotics.com/products/raptor.htm
http://ivt.ntnu.no/imt/systemer/emner/uvtek/
http://ivt.ntnu.no/imt/systemer/emner/uvtek/

BIBLIOGRAPHY

[16] NTNU. Rov minerva - research vessel - ntnu. http://www.ntnu.edu/marine/
minerva, 2014. Visited 01.03.2014.

[17] Jason M. O’Kane. A Gentle Introduction to ROS. CreateSpace Independent
Publishing Platform, 10 2013. ISBN: 9781492143239.

[18] pySerial. http://pyserial.sourceforge.net/pyserial_api.html, 2014.
Visited 25.05.2014.

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, 2009.

[20] RobotWorx. Robotic sensors. http://www.robots.com/education/sensors,
2014. Visited 09.06.2014.

[21] ROS. Robot operating system webpage. http://ros.org, 2014. Visited
07.02.2014.

[22] ROS. rviz - ros wiki. http://wiki.ros.org/rviz, 2014. Visited 07.02.2014.

[23] ROS. xacro - ros wiki. http://wiki.ros.org/xacro, 2014. Visited 09.02.2014.

[24] Lorenzo Sciavicco and Luigi Villani. Robotics: modelling, planning and con-
trol. Springer, 2010. ISBN: 1846286417.

[25] Mae L. Seto. Marine Robot Autonomy. Springer, 2012. ISBN: 1461456584.

[26] Mark W. Spong and Mathukumalli Vidyasagar. Robot dynamics and control.
John Wiley & Sons, 2005. ISBN: 0471649902.

[27] Christian H. Sunde. 3d visualization of autonomus marine underwater oper-
ations, 2013. Project Thesis.

[28] Linear Technology. Rs485 quick guide. www.linear.com/docs/29238, 2014.
Visited 07.06.2014.

[29] UCSB. Lecture notes, cs290. http://excelsior.cs.ucsb.edu/courses/
cs290n_cg_modeling/notes/lecture.html, 2014. Visited 24.04.2014.

[30] Wikipedia. Visualization (computer graphics) — wikipedia, the free encyclo-
pedia, 2013. Visited 02.02.2014.

[31] Wikipedia. Freecad — wikipedia, the free encyclopedia, 2014. Visited
15.03.2014.

[32] Wikipedia. Nx (unigraphics) — wikipedia, the free encyclopedia, 2014. Vis-
ited 16.03.2014.

[33] Wikipedia. Orthogonal matrix — wikipedia, the free encyclopedia, 2014.
Visited 05.04.2014.

[34] Junku Yuh and Michael West. Underwater robotics. Advanced Robotics,
15(5):609–639, 2001.

56

http://www.ntnu.edu/marine/minerva
http://www.ntnu.edu/marine/minerva
http://pyserial.sourceforge.net/pyserial_api.html
http://www.robots.com/education/sensors
http://ros.org
http://wiki.ros.org/rviz
http://wiki.ros.org/xacro
www.linear.com/docs/29238
http://excelsior.cs.ucsb.edu/courses/cs290n_cg_modeling/notes/lecture.html
http://excelsior.cs.ucsb.edu/courses/cs290n_cg_modeling/notes/lecture.html

Appendix A

Attachments
Folder: MATLAB

• Kinematics.m: Calculations of kinematic transformation matrices for Rap-
tor FFM using Denavit-Hartenberg representation.

Folder: Movie

• Raptor-movie.mp4 : Movie of navigation in the user interface of rviz

Folder: Poster

• Poster.pdf : Poster presentation of project for the Master Thesis Poster
Exhibition 2014

Folder: Raptor info

• Raptor_PDF.pdf : Product description of Raptor FFM

• Raptor_manual_part_1.pdf : Raptor manual part 1

• Raptor_manual_part_2.pdf : Raptor manual part 2

Folder: Robot

• /launch/display_raptor_mesh.launch: Software start-up launch file

• /publisher/Publisher.py: State publisher for visualization

• Folder: STL-files: Manipulator CAD-files

– base.stl

– link-2.stl

– link-3.stl

– link-8.stl

– link-9.stl

– link-10.stl

– link-11-12.stl

• /urdf/raptor-mesh.urdf.xacro: URDF-description of Raptor FFM

• Raptor.perspective: Perspective configuration for rqt

• raptorconfig-mesh.rviz: rviz configuration for Raptor

57

	Introduction
	Motivation
	Remotely operated underwater vehicles
	Manipulator systems
	Software

	3D Visualization
	Visualization advantages
	Challenges in underwater visualization
	Sensors
	Localization
	Data and communication

	Why use ROS for visualization?

	Modeling
	Notation
	Manipulator theory
	Transformations
	Orientation
	Homogeneous Transformations

	Kinematics
	Forward Kinematics
	Denavit-Hartenberg Representation
	The Raptor manipulators kinematics

	Dynamics

	Manipulator description
	3D model
	Workspace and measurements
	Limitations

	System set-up
	Software selection
	Robot Operation System (ROS)
	3D modelling software

	Software set-up
	Preparing the 3D model
	Develop the kinematic chain for rviz
	rviz set-up
	Navigation and use of rviz
	Plotter
	Camera

	Hardware set-up
	Manipulator set-up
	Signals
	Programming for state publisher

	Results
	Shoulder azimuth
	Shoulder elevation
	Elbow Pivot
	Wrist Pitch
	Wrist Yaw
	Rotation in all joints

	Conclusion and further work
	Conclusion
	Further work

	Bibliography
	Attachments

