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Summary

Prospect is an identifiable possible trap potentially containing petroleum. Chance of geologic

success, i.e, probability of mobile hydrocarbon for a prospect is one key input for further eval-

uations of prospects. Chance of geologic success is commonly obtained by multiplying prob-

ability of essential geologic factors. In order for the subsurface hydrocarbon accumulation to

exist, essential geologic factors must coincide. One example of essential geologic factors in-

cludes a reservoir rock, a trap, a source rock and a migration route. The probability of geologic

factors are usually estimated by a group of experts and are largely subjective. Tools as risk ta-

ble for evaluating probability of geologic factor provides correspondence between probability

value and qualitative description, which helps to make consistent assessment. Experts are still

susceptible to individual bias and group bias which influence the probabilities they generate.

Different elicitation methods that helps to formulate a person’s knowledge and beliefs about

uncertain events into probabilities are shortly presented. Elicitations mitigates the effects of

bias, but estimating reliable probabilities remains to be difficult.

Meteorologists, on the other hand makes comparatively reliable predictions. One reason is

that forecast verification is extensively used in meteorology, so that their forecast is systemati-

cally studied along with actual observations. Post-drill analysis is increasingly used to improve

the quality of predictions and estimations made by explorers, however statistical methods being

used are very limited. Extensive forecast verification measures can provides multi-facets evalu-

ation of probability prediction performance, leading to a more reliable probability prediction in

the end.

Summary measures provides single scores for the overall quality of prediction performance.

Distribution- oriented measures, based on joint, marginal and conditional distributions of pre-

dictions and results, provide detailed information about prediction quality from different angles

in terms of various verification measures/attributes. Graphical measures including sharpness

histogram, reliability diagram and discrimination diagram together provide a more complete

picture of the forecast quality. ROC analysis remains exploratory for chance of geologic suc-

cess and has the potential to support decision-making in exploration. Statistical methods as

logistic regression and kernel density method which helps to improve estimates for verification
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measures for small sized data is utilized and presented. All these measures are applied to real

dataset of chance of geologic success and results. The strength and weakness of those prob-

ability assessment in specific probability interval are demonstrated and discussed for the real

datasets.
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Chapter 1

Introduction

1.1 Background

A prospect is an individual geological unit, which potentially contains accumulation of hydro-

carbons. Prospect is also the basic unit where exploration and production decisions are made. A

definition of prospect connecting exploration and operation activities is given by Harbaugh et al.

(1995): “a specific locality within an area where we possess or may acquire a lease or concession

and which we interpret to have geological or economic characteristic that may warrant testing

by drilling”. There are many stages in the life of an oil or gas field, from assessment of prospect,

to development and production of the field. Prospect evaluation is the first stage in this pro-

cess and is the one where the least amount of information is available and therefore the greatest

uncertainty exists, and great financial and development decisions will be based on probability

of occurrence of movable hydrocarbons (geologic success) and the volumes of hydrocarbons in

a prospect are two of the most important tasks in prospect evaluation. The existence of mov-

able hydrocarbon in a prospect is the base for all other analysis and decisions. How chance of

geologic success is obtained will be discussed in this paper.

Poor performances such as high dry hole rate and over-optimism in high risk-explorations

result from poor prediction performance are pointed out by Rose (2001). Humans are suscep-

tible to bias caused by external factors and internal cognition and motivations. Explorers are

non-exceptions. The pre-drill probability predictions based on geologists knowledge or belief

are normally deemed as subjective where biases exist. How bias are diffused from explorers to

2
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numerical probabilities will also be shortly discussed.

However, subjective probability assessment can be consistent and be improved. One com-

mon practice of post drill analysis is comparing outcomes and predictions of prospect.. But

often only basic measures as simple statistical average are used in the analysis. Thus, very lim-

ited information and possible wrong interpretation is produced by the analysis, leading to no

improvement in probability calibration. On the other hand, useful statistical procedures has

been extensively explored and developed in forecast verification discipline, which can provide

detailed information about strength and weakness of the forecasts, leading to an improved ge-

ologic success in the end. Verification measures will be applied to 3 sets of data of chance of

geologic and result, to see what kind of problems can be detected.

Task of improving probability assessment in exploration can be tackled from different an-

gles, such as setting up detailed and consistent protocols and standards, or applying elicitation

methods, which is not a focus of this paper. Even for verification measures, the measures pre-

sented in this paper may not fit well the geologic probability assessments, due to my personal

very limited knowledge and experiences of exploration process. These measures, nevertheless,

provide statistically fit methods and exploratory suggestions to study the prognoses probabili-

ties and their correspondence with the observations.

1.2 Objectives

The main objectives of this Master’s project are:

• General review of probability prognosis of geologic success and of inconsistency/bias lead-

ing to unsatisfactory performance

• Introduce suitable verification measures for chance of geologic success prognosis

• Demonstrate verification measures’ usefulness in assessing the quality of chance of geo-

logic success assessment and in improving the calibration in the end.

• More objectives

The ultimate goal for introducing verification measures is to help explores to make improved

probability assessments.
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1.3 Datasets

The prognosis of chance of geologic success data and corresponding results data are not easily

available, not only because E&P companies like to keep them private, but also because likely

many E&P companies don’t have well documented data of them. Three sets of data are found

and are applied by verification measures.

Figure 1.1: 184 pairs of probability of discovery and result (1998-2000) on NCS (Kari Ofstad and
Helliksen, 2015)

1. Probability of discovery before drilling and observation data after drilling of 184 prospects

on Norwegian continental shelf(NCS) from 1998 to 2007 from the Norwegian Petroleum

Directorate (NPD). According to the Resource Management Regulations, the operators of

wildcat wells are required to submit both the prognoses and results of wildcat wells to

NPD. The data are extracted from graph 1.1 from NPDs presentation Prognoses and re-

sults of wildcat wells drilled between 1998 and 2007 on the Norwegian Continental Shelf

(Kari Ofstad and Helliksen, 2015). The probability of discovery data are manually read

from the graph, so there may be some small errors. 184 paris of prediction and observa-

tion data are obtained from the graph.
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Figure 1.2: Discovery probability and result of 118 prospects (1990-1997) on NCS from NPD
project (Ofstad et al., 2000)

2. Binned data of predicted discovery probability and observation of 118 prospects on Nor-

wegian continental shelf (1990-1997) from NPD’s evaluation of the 8th-14th licensing rounds.

The data are extracted from the graph 1.2 from Evaluation of Norwegian Wildcat Wells (Of-

stad et al., 2000). For each well one or several prospects are reported. so there could be

several prognoses for one well, but only one result. As seen in the graph, original data are

not available; but only categorized/binned prediction data are obtained.

3. Binned data of prediction and result of BP’s 805 drilling targets drawn from over 40 coun-

tries from 1983 to 1997. The predicted chance of success are in 6 categories as shown in

the graph 1.3a, The number of success targets and dry targets are acquired by calculat-

ing data read from the graph 1.3b. The graphs are from Prediction accuracy in petroleum

prospect assessment: A 15 year retrospective in BP (Harper, 2000).
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(a) Number of targets by predicted chance factor

(b) Predicted discoveries and accuracy ratio by chance factor

Figure 1.3: Graph for data of BP’s 805 drilling targets (1983-1997) (Harper, 2000)

1.4 Structure of the Report

The rest of the report is organized as follows. Chapter 2 is a literature review of current evalu-

ations of chance of geologic success. Chapter 3 discusses how bias influence explorers’ proba-

bility assignments; then a short review of of elicitation theories which help to reduce and avoid

bias; verification is introduced lastly and the benefits of verification is also presented. Chapter

4 are scalar measures which are also key attributes and concepts for forecast verification. Chap-

ter 5 presents graphical verification measures by which users can acquire more direct informa-

tion of the probability prediction performance and ROC analysis which is a more exploratory

and experimental method for probability of geologic success. All these measures are applied to

datasets, and the problems shown by these measures are discussed. Chapter 6 presents statisti-
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cal methods that handle small size data. Conclution and disccusion is in chapter 7.



Chapter 2

Evaluating Chance of Geologic Success

2.1 Geologics Success

Chance of detectable hydrocarbon of a prospect is one of the basic inputs for further decision

making of prospects. After drilling, the result would be either a failure or a success, which are

complementary to each other. The conventional success definition refers to that the well was

completed and did produce some hydrocarbons . This success term includes several differ-

ent “success” in prospect assessment: economic, commercial, completion and geologic corre-

sponding to different level of hydrocarbon volumes. Geologic success, defined by Rose (1992),

is: “a well that encounters mobile hydrocarbons”. Another version by Rose (2001) is: “a reser-

voired accumulation was found that was at least large enough to support a flowing test”.

Zero hydrocarbon encountered means failure and geologic success are a concept normally

complementary to the failure. However, geologic success normally involves some volume of

hydrocarbon. Rose (1992) mentioned that investors are more interested in whether the well will

contain enough petroleum that would cover the cost of completion of the well, rather than the

presence of hydrocarbon from the geologic view. And the conventional reporting standard for

exploratory success in most petroleum-producing nations is whether the exploratory well was

completed for production, which can become unequivocal record (Rose, 2001). So the success

data of discovering enough petroleum to complete the well would be more accessible and not

depend on various economic requirements.

In order to have consistent record for pre-drill chance of geologic success and post-drill ge-

8
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ologic success observation, introducing requirement of minimum volumetric into the defini-

tion of geologic success would be necessary. In case of onshore mature petroleum province, a

geologic chance system should be consistent with the chance of finding enough petroleum to

complete the well (Rose, 1992).

For offshore case, the cost of completing a well is much higher. The Geologic success is of-

ten defined as the discovery of movable hydrocarbons, which is also called technical discovery

(CCOP, 2000). One example is in Evaluation of Norwegian wildcat wells (Ofstad et al., 2000), post

drill technical discovery data was compared with pre-drill discovery probability, where technical

discovery was defined as discovery larger than 2 mill Sm3 o.e. and pre-drill discovery probability

was evaluated the same way as to the chance of geologic success. So the technical discovery is

used as equivalent as geologic success here.

In short, generally no universal hydrocarbon volume is associated with the geologic success,

as long as consistency is kept between defining geologic success and estimating probability of

geologic success. The probability of geologic success is obtained near the end of the exploration

process.

Petroleum exploration generally proceeds in a sequential manner (Harbaugh et al., 1995),

from sedimentary basins, petroleum systems, plays to prospects, which can be regarded as

different levels of hydrocarbon investigations suggested by Magoon and Dow (1994): investiga-

tion of sedimentary basins describe the stratigraphic sequence and structural style of sedimen-

tary rocks; petroleum system studies describe the genetic relationship between a particular pod

of generating source rock and the resulting oil and gas accumulations; investigation of plays

describe the present-day geological similarity of a series of present-day traps; and prospect in-

vestigates the individual present-day trap.

In Milkov’s 2015 paper, segment is the smallest assessment unit; segments can include in-

dividual reservoir units and compartments. As prospect represents potential petroleum accu-

mulations. Prospects can be ”combinations of several segments that occur within one common

structure” (Milkov, 2015). So when the prospect has only one segment ,then the geologic suc-

cess for the prospect is the same as the for the segment. Milkov (2015) mentioned that chance

of geologic success for multi-segment prospects is aggregated from the estimates for segments

using stochastic calculators (GeoX, REP etc.) taking the dependencies between risk factors for
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different segments into account. So a failure for a segment does not necessarily lead to a failure

for the multi-segment prospects containing the segment.

2.2 Obtaining Chance of Geologic Success

Common method

The most common way of estimating the probability of geologic success (Pg ) is by multiply-

ing the probability of the essential geologic factor of a prospect/segment. The geologic factors

can be also called risk factors - independent factors that could cause the segment to fail. The

prospect/segment fails so long as one of the risk factor fails. In order for the subsurface hydro-

carbon accumulation to exist, essential geologic factors must coincide. According Norwegian

petroleum directorate (NPD (2010)), four factors must coincide for the petroleum to be formed

and accumulated:

1. A reservoir rock where the petroleum can accumulate

2. A trap so that petroleum is retained in a reservoir

3. A source rock containing organic material, which can convert to petroleum at sufficient

temperature and pressure

4. A migration route that allows the petroleum to move from source to reservoir rock.

The expression for the chance of geological success is then:

Pg = P1 ∗P2 ∗P3 ∗P4.

However, there is disagreement between the numbers of essential geologic factors determining

the Pg . 4 to 7 essential geologic factors are most commonly seen. The number of independent

geologic factors can influence the probability of the succeess. As multiplication of more factors

can lead to lower probability. Those geologic factors should be independent of each other. If

dependency exists, the influence needs to be evaluated. Milkov (2015) summarized different
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geologic factors used by different authors and how the probability of geologic success is ob-

tained from probability of geologic factors in a table?? presented in appendix. some alternaive

methods are also listed the table. One distinct method involving historical success rate which is

also in the tabel, is explained in the following section.

Alternative method

The historical success rate (number of discoveries /total number of prospects) has been directly

used as a substitute or in combination of geologic chance factors in some cases. The following

method suggested by Snow et al. (1996) is another way of estimating chance of success by com-

bining success rate and estimation of geologic factors.This method of estimating the probability

of finding any testable hydrocarbons before a well is drilled is illustrated in the figure 2.1. The

probability is the product of the historical success rate or plan chance and four geologic compar-

ison coefficients. As long as the hydrocarbon could be tested or flowed to surface, or the amount

is larger than zero, the testable hydrocarbon is claimed.

Figure 2.1: Method of determining chance of success by combining historical success rate and
comparison coefficients from geologic chance factors (Snow et al., 1996)

The historical success rate is derived from the play by comparing the prospect to the play

component by component. The success rate will be updated as the play matures. When his-

torical data for the play is absent, success rate for the basin or the nearest analogue can be

employed.
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Each of the prospect’s characteristic: reservoir, source, seal, and trap are compared with

prospects from the historical play. The results of the comparison to the historical play are cate-

gorized into “better”, ”same”, and ”worse”. Then the quality of information used for comparison

is also evaluated and categorized into ”direct data-high certainty”, “intermediate date - mod-

erate certainty” and “indirect data - low certainty”. Then, numerical values to the comparison

coefficients are assigned after considering both comparison results.

Method of using historical success rate has drawbacks. Rose (2001) pointed out that ob-

served success rate as a proxy are a poor substitute for prospect-specific chance of success, be-

cause the characteristics of each individual prospect are unique; and the quality of the data

may not be consistent with ones current estimation, and the success rate changes as the field

matures.

2.3 Probability of Geologic Factor

Several elements determine a geologic factor. Probability of each geologic factor may also be

determined by multiplying relevant probability of subfactors. But too many subfactors would

lead to hopeless small chance of success, because of multiplication. In CCOP’s guidelines for risk

assessment of petroleum prospects (CCOP, 2000), each factor is determined by 2 subfactors, for

example, presence of reservoir facies and effective pore volume determine the reservoir factor.

Probabilities of the geologic factor or subfactor are produced by the exploration team. The

most common way is that an exploration team assign probability to each individual geologic

factor after discussion. Then this probability may be reviewed or modified by another technical

review team or management. Usually one explorer announces the probability first; others will

modify it later (Milkov, 2015).

Those assigning are largely based on the explorers’ subjective opinions. Some tools are help-

ful for explorers to assign probabilities by providing probability scale as reference. A “chance ad-

equacy matrix” suggested by Rose (2001) in figure 2.2 shows probability scale corresponding to 4

dimensions: risk, confidence level, (less likely to more likely), data quality and conclusion from

data. A more detailed qualitative description for the relative probability scale by textit CCOPs

guidelines (CCOP, 2000) including dimensions: certainty level analogue model and geologic
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model are established shown in figure in appendix.

Figure 2.2: Chance adequacy matrix (Rose, 2001)

Milkov (2015) suggested that risk table is a more effective solution for introducing objectiv-

ity and consistency in the assigning process. A risk table shows numerical probabilities corre-

sponding to detailed different criteria sets for individual geological factor or subfactors. Milkov

(2015) has also argued that risk table is an advantageous method, making the Pg evaluation

more transparent and audible, and presented such risk tables for different goleogic factors in-

cluding: presence of structure, reservoir facies, reservoir deliverability, seal, mature source rocks,

and migration. Such tables are also suggested by CCOP (2000): two to three dimensions of cri-

teria are applied to evaluate the subfactors, often including data reliability and geologic proper-

ties, then numerical probabilities corresponding to different criteria sets are established in the

table. One example of risk table for one geologic factor is shown in apendix.



Chapter 3

Subjectivity, Inconsistency, Eliciation and

Verification

3.1 Subjective Probability

The process of estimating each geologic factor is largely subjective, although tools such as risk

table improve the consistency. Subjectivity can not be avoided in the evaluation process. Since

our knowledge about the subsurface world is incomplete and imperfect. The probability is best

tool available which could properly reflect our lack of knowledge or information about a certain

geologic parameter and provide a quantitative description of the likely occurrence of an event.

Considering probability as either the relative frequency with which a specific outcome is

observed within a larger number of similar circumstances (that is, the past history of an event),

or the strength of belief that some outcome will occur in the future (Harbaugh et al., 1995),

is practical to understand it. People commonly believe that subjective probability assessment

without precise computation is inaccurate and inconsistent, and thus should be avoided, but

rather prefer a more objective procedure, involving using data in form of frequency distribution,

to be employed. However, With incomplete knowledge, experts must rely on their subjective

assessment of prior information, subjective beliefs are necessary for the subsurface world full of

uncertainty.

In exploration assessment literatures, the subjective probability refers to personal under-

standing of outcome of an event; and the objective probability refers to an observed relative

14
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frequency. According to Bratvold and Begg (2010), “a probability reflects a person’s knowledge

about the outcomes of an uncertain event. Probability is a state of mind, not a state of things".

So probability could only be assigned by person and thus probability are subjective. Explo-

rations can subjectively provide probability predictions to geologic success or geologic factors

by considering information acquired by geotechnical investigations, past experience and knowl-

edge, or results from statistical calculations based on empirical data, or a combinations of them.

The probability can describe rational expectations of a future event.

3.2 Inconsistency in Assigning Probability

Extensive psychological research has shown that people, even experts, tend to find it difficult to

assess probabilities; to simplify this task they use heuristics, most often leading to poorly cali-

brated and biased assessments (Kahneman and Tversky, 1982). Especially our knowledge and

data are limited compared to the complexity of the subsurface world. It is difficult facing com-

plex problems with multiple determine factors. Experts are susceptible to bias and heuristics

(rules of thumb or mental shortcuts), both on an individual basis and group basis.

Inconsistency

Individual bias

motivational bias

cognitive bias

availability
anchoring and adjustment

representativeness

conjunction fallacy
gambler’s fallacy
base-rate neglect
probability matching

control
overconfidence
good/bad mood

Group bias
paradigm anchoring
path dependency, `thought contagion`
herding

Figure 3.1: Typical bias and errors

Individual bias can be categorized into motivational bias and cognitive bias. Motivational

bias reflects the interests and environments of explorers, including, such as, career/performance
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targets pressure, need to influence decisions and etc. Cognitive biases are caused by using

heuristics. Several biases are particularly common in oil and gas industry, such as, availabil-

ity, anchoring, overconfidence and etc (Bratvold and Begg, 2010). Fig. 3.1 summarizes typical

human bias and errors presented by Baddeley et al. (2004) who explore cognitive issues sur-

rounding prior information baseed on probailistic judgment in their paper. As discussed in

previous chapter, explorers produce the probability in a group. The group interactions generate

and perpetuate more complex form of bias. Three approaches to explain group bias are also

listed in fig. 3.1.

Rose (2001) has summarized characteristics patterns of predictive bias in estimating chance

of success. For those high risk new field wildcat (NFW) prospects, companies and explorers

tend to be seriously overoptimistic in predicting chance of success: for NFWs having a predicted

chance of success of 10% or less, less than 1% resulted in discoveries. For intermediate-risk (20-

35% range) ventures, actual success rates were generally matched predictions. For low-risk (35-

60% range) ventures, more of those ventures were successful, so the predictions were conserva-

tive. For high-confidence (60-90%) ventures, actual results were notably lower. The predicted

probabilities were biased. One of the reasons is that they are tempered by subjective appraisals

of reviewers and managers.

3.3 Elicitation

Some of those bias can be handled and partly reduced by elicitation method. Elicitation is the

process of formulating a person’s knowledge and beliefs about one or more uncertain quantities

into a (joint)probability distribution for those quantities (Garthwaite et al., 2005). There are

several probabilitiy elicitation protocols: the Stanford Research Institute (SRI) assessment has

been the most influential in shaping structured probability elicitation. The expert is engaged in

a five-stage process including:

motivating the experts with the aims of the elicitation process; structuring the un-

certain quantities in an unambiguous way; conditioning the expert’s judgement

to avoid cognitive biases; encoding the probability distributions; and verifying the

consistency of the elicited distributions.
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Curtis and Wood (2004)

the main aim of the SRI protolcal is to help explorers to avoid psychological biases(Hora, 2007).

SRI protocol was designed for single experts, Hora (2007)mentioned Sandia protocol which

was deigned to bring multiple experts. The sandia protocol consists of two meetings. After some

period individual study period, first meeting is hold including presentation of the issues, discus-

sion by the experts ,and a training session and feedback. Second meeting includes discussion

about methods and data sources used and individual elicitation.

More or less elicitation (MOLE) proposed by Welsh et al. (2008) shows a benefit in both the

precision and the accuracy of elicited ranges. MOLE is a heuristic-based elicitation method en-

courages people to consider more values by asking them to make repeated relative judgments.

Many literatures handle elictaitoin methods to tekle and reduce bias, though few elictations

have been used in the geoscience, and Curtis and Wood (2004) has presented pertinent elic-

itation mtheods for geoscience. Elicitation theory mitigates the effects of bias, but a method

to estimate reliable uncertainties on expert judgements remains elusive (Baddeley et al., 2004).

Forecast verification provides multi-facets quality evaluation of probability prognosis, which

may improve the calibration of probability.

3.4 Forecast Verification

An elicitation is done well if the probability distribution represents the expert’s knowledge, re-

gardless of how good that knowledge is, which corresponds to normative goodness. Two stan-

dards of goodness of the assessors are identified by Winkler and Murphy (1968): Normative

goodness and Substantive goodness. Normative goodness concerns expertise in probability as-

sessment and requires probabilities correspond to experts’ judgment. Substantive goodness

concerns expertise in the geotechnical or geology domain in which assessments are made and

requires probabilities correspond to reality.Thus, Goodness of the probabilities produced by ex-

plorers comes from firstly the quality of explorer’s exploration related knowledge, and secondly

the accuracy with which that knowledge is transformed into probability. Measuring the good-

ness would encourage explorations to make “honest” judgment, provide means to evaluate ex-

plorers’ prediction performance, and improve their predictions in the end. Varying statistical
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measures can determine the goodness of the assessor or the assessment.

Though there are lots of inconsistencies in geologic subjective evaluations, there is potential

for improvement of those probability predictions, as appropriate procedures and framework

accompanies the evaluations. Meteorologist, for example, make comparatively accurate pre-

dictions, one reason is that forecast verification is extensively developed in meteorology, so that

their forecast is systematically studied along with actual observations.

A verification measure is any function of the forecasts, the observations, or their re-

lationship, and includes for example the probability of the event being observed

(the base rate), even though this is not concerned with the correspondence between

forecasts and observations.

Jolliffe and Stephenson (2012)

Forecast verification measures concern not only the relationship between observations and

forecasts, but also the forecast itself or observation itself being subject of the study. There is

extensive number of verification measures.

Post-drill analysis is increasingly used to improve the quality of predictions and estimations

made by explorationists, however statistical methods being used are very limited. Verification

can be part of elicitation process that helps to make calibrate probability and has many other

benefits. Forecast verification has been developed quite extensively in weather and climate fore-

cast area and is also popularly used in medical diagnostic tests and economic forecasts. The

benefits identified by Jolliffe and Stephenson (2012) using verification measures in different dis-

ciplines would be also great incentives for exploration ventures: A numerical measure of how

well are those geologic assessments would be very helpful from a administrative point of view,

which can be used for management or strategy development purpose; a greater understanding

of the problems under assessing; possibility of improved understanding of the underlying geo-

logical or geophysical processes by use of more detailed verification measures. A detailed un-

derstanding of strengths and weakness of their forecasts; and more concrete information about

the quality of the forecasts supporting rational decision makings.



Chapter 4

Scalar Verification Measures

Measures in this chapter give scalar value or score for the forecast’s quality. These measures

are also fundamental concepts that describe attributes of forecast verification. Except common

forecast verification measures, most of the following measures and formulations are presented

by Bradley et al. (2003a) in their Distributions-oriented verification of probability forecasts for

small data samples. These measures are applied to the first dataset, 184 pairs of chance of suc-

cess and results of prospects on NCS from NPD in the end. The results of scaler measures may

be hard to understand at first, reader may read graphical measures in chapter 5 firstly, and come

back to chapter 4 for relevant forecast verification attributes.

4.1 Summary Measures

Summary measures or measure-oriented measures concern some overall quality of forecast,

including common statistical indicator such as mean and mean error, and different scores

Mean Error /Bias

The mean error or the unconditional bias measures the average difference between a set of fore-

cast and corresponding observations.

ME( f , x) = 1

n

n∑
i=1

( fi −xi ) (4.1)

19
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n represents the sample size; This measure is simple and often seen. But the pitfall is obvious

that the score does not measure the correspondence between forecasts and observations. It is

possible to get a perfect score when there is actually bad correspondence between forecasts and

observations. Range −∞ to ∞. Perfect score: 0.

Mean Squared Error /Brier Score

MSE gives a numerical result to a single forecast or to a set of forecast. Specifically, the brier

score measures the mean squared difference between the predicted probability to the possible

outcomes and the actual outcomes. Thus, the lower the brier score is for a set of predictions, the

better the predictions are calibrated.

MSE( f , x) = 1

n

n∑
i=1

( fi −xi )2 (4.2)

Range 0 to 1. Perfect score: 0.

Skill Score(SS)

Skill score(SS) or Brier skill score measures the performance of one forecasting system relative

to a reference forecast in terms of the Brier score (BS).

SS = BS −BSr e f er ence

0−BSr e f er ence
(4.3)

So, a skill score of 0 indicates no skill and a skill score closer to 1 is preferred. It should be noted

that this score is not stable on small data sets, and for larger the number of sample needed for

more rare events (CAWCR, 2014). As the base rate prediction is commonly used as the “unskilful”

reference, the equation is equivalent to:

SS = σ2
x −MSE( f , x)

σ2
x

(4.4)

Range −∞ to 1. Perfect score: 1.
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4.2 Distributoin-Oriented (DO) Measures

In the late 1980s, Murphy and Winkler (1987) proposed a general framework of forecast verifica-

tion called the Distributions-Oriented (DO) approach. The DO approach is based on the joint

distribution of forecasts and observations, indicating various facets of the forecasts quality and

allows the user to evaluate forecast performance on specific situations.

4.2.1 Joint Distribution and Factorization

The Joint distribution of forecasts and observations can be represented as p( f , x), where f rep-

resents the probability forecasts and x represents the observation, and p( f , x) is the joint prob-

ability of f and x. p( f , x) contains information about the forecasts, the observation, and the

relationship between the forecasts and observation. For verification purpose, p( f , x) can be in-

terpreted as an empirical relative frequency distribution based on a sample of past forecasts

and observations. Any joint distribution can be factored into a conditional distribution and a

marginal distribution in two ways.

Calibration-Refinement Factorization (CR)

p( f , x) = q(x| f )s( f ) (4.5)

p( f |x) is the conditional distribution of observation given each forecast value (called "calibra-

tion/reliability") and p( f ) is the marginal distribution of the forecasts (called “sharpness/refinement”).

Likelihood-Base Rate Factorization (LBR)

p( f , x) = r ( f |x)t (x) (4.6)

p(x| f ) is the conditional distribution of forecasts given each possible observation (called “like-

lihood”) and p(x) is the marginal distribution of the observations (called “base rate”).

4.2.2 Calibration Refinement Measures

The calibration-refinement factorization conditions on forecasts. Given a forecast, certain as-

pects of the distribution of the Observation x can describe some quality of the forecast perfor-
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mance.

Reliability or calibration (also called Type 1 conditional bias) measures the degree to which

the forecast probabilities correspond to the conditional frequency of occurrence of the event.

For example, if the event occurs on 30% of the occasions when 30% has been the forecast, this

forecast is said to be reliable. Reliability can be described as the bias of the observation given a

forecast f:

REL = E f (µx| f − f )2 (4.7)

where E f is the expected value with respect to the distribution for the forecasts and µx| f is the

expected value of observations conditioned on the forecasts. So the smaller the relabiity value,

the better quality of the forecast is made.

Resolution: The ability of the forecast to distinguish situations with distinctly different fre-

quencies of occurrence, E.g., the observed frequency of occurrences when predictions are 60%

is compared with observed frequency of occurrences when predictions are 30%, there should

be difference when there is resolution. Resolution describes the degree to which the mean ob-

servation for a specific forecast f is different from the unconditional mean of observatoin (base

rate):

RES = E f (µx| f −µx)2 (4.8)

Forecasts with larger differences,i.e., higher resolution are more desirable. Even if the forecasts

are wrong, the forecast system has resolution if it can successfully separate one type of outcome

from another.

CR Decomposition of MSE: MSE can be decomposed into components containing both re-

liability and resolution. The so-called calibration refinement decomposition:

MSEC R ( f , x) =σ2
x +REL−RES (4.9)

σ2
x is the variance of observation, measuring the inherent uncertainty of the observation.

Relative measures: substituting the CR decomposition of MSE into the skill score:

SS = RES

σ2
x

− REL

σ2
x

(4.10)
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Then, dividing the RES and REL terms with variance of observation gives us the relative reso-

lution and relative reliability. Then the two terms on left side of equaton 4.10 are normalised

reliability and resolution against the uncertainty of event .

4.2.3 Likelihood-Base Rate Measures

The likelihood-base rate (LBR) factorization conditions on the observation. Given a specific

observation (occurrence x = 1 or non-occurrence x = 0), certain aspects of the distribution of

the forecast f can describe some quality of the forecast performance.

Discrimination: a measure of how well the forecasts discriminate between events or non-

events, or ability of the forecast to discriminate among observations, that is, to have a higher

prediction frequency for an outcome whenever that outcome occurs. Discrimination is evalu-

ated by measuring the difference between the two conditional distributions of forecast proba-

bilities, p( f |x = 1) and p( f |x = 0) for binary event.

D I S = Ex(µ f |x −x)2 (4.11)

Discrimination is evaluated by measuring the difference between the two conditional distribu-

tions of forecast probabilities, p( f |x = 1) and p( f |x = 0) for binary event. For dichotomous

event:

D I S = (1−µx)(µ f |x −µ f )2 +µx(µ f |x=1 −µ f )2 (4.12)

Forecasts with large differences, i.e., high discrimination are more desirable.

Type 2 conditional bias describes the bias of the forecast given the observation. One mea-

sure of this bias is:

B2 = Ex(µ f |x −x)2 (4.13)

For dichotomous event:

B2 = (1−µx)µ2
f |x=0 +µF )2 +µx(µ f |x=1 −1)2 (4.14)

LB Decomposition of MSE: MSE can be decomposed conditioning on the observation. The
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so-called likelihood - base rate decomposition:

MSELBR ( f , x) =σ2
f +B2 −D I S (4.15)

Relative measures: substituting the LBG decomposition of MSE into the skill score:

SS = RES

σ2
x

− REL

σ2
x

(4.16)

Then, dividing the D I S and B2 terms with variance of observation gives us the relative Discrim-

ination and relative B2.

4.3 Estimation of Measures- Continuous Approach

Measures as mean, variance can be directly estimated from the sample datasets. The condi-

tional mean µ f |x=1 and µ f |x=0 in Discrimination and Type 2 conditional bias can be estimated

by equation 4.17 and 4.18. Let the sample dataset be partitioned into two sets, let f 0
j , j = 1, . . . , N0

be the cases when observation x = 1 and let f 1
k ,k = 1, . . . , Nk be the cases when observation x = 0:

µ f |x=0 =
1

N0

N0∑
j

f 0
j (4.17)

µ f |x=1 =
1

N1

N1∑
k

f 1
k (4.18)

The µx| f term in Reliability 4.7 and Resolution 4.8 can not be directly estimated from the

sample datasets. However for large datasets, it is okay to use approximate value of µx| f calcu-

lated from Contingency table method. For the contingency table method: firstly prognosis data

are binned into several categories; then a contingency table can be built to acquire joint dis-

tribution , marginal distribution and conditional distributions of observations and prognosis.

The distribution of mean observation given a certain forecast category p(x = 1| f ) are obtained

from contingency table. The P (x = 1| f ) can be used as a approximation value for the µx| f , Then

corresponding value for Reliably and and resolution can be obtained. For small datasets, contin-

gency table method my distort or hide the original information of prediction quality. Statistical
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methods can be applied to handle small dataset which are specifically discussed and presented

in chapter 6.

Table 4.1 summarizes the definitions of attribute (scalar measures) of verification and corre-

sponding forecast or observation distributions and relevant masseuses.

4.4 Verifcation for Prognoses of 184 Prospects on NCS (1998-

2007)

184 Prospects on NCS
µ f 0.2994
µ f 0.4022
ME -0.1028

MSE 0.2238
X_variance 0.2417
f_variance 0.0314
Skill score 0.0743

Discrimanation 0.0035
Type 2 bias 0.1961
Reliability 0.0108
Resolution 0.0275

Table 4.1: Summary of meausres for the entire 184 pairs of probabilities of discovery and resutl
(1998-2007) on NCS

There are 184 pairs of prognoses and results of prospects drilled between 1998 and 2007

on the Norwegian Continental Shelf in the first dataset presented in chapter 1. Among three

datasets, only this first one provides complete original predictions and corresponding data, so

that all the scalar measures can be directly applied. Prognosis are probabilities, and results are

either discovery (x = 1) or failure(x = 0).

The summary scores of the entire 184 pairs of data are shown in table 4.1.

The scores and measures for the entire data range give an general overview of the proba-

bility of discovery evaluation performance, such as the mean obersvation is 10% higher than

the mean pre-drill prediction. However, it would be very dangerous to make judgements about
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Figure 4.1: Attributes of forecast quality for probabilistic forecasts (Gofa(HNMS), 2010)

the prognosis performance. After binning the prognosis data into several categories, more de-

tailed information of prognosis performance can be obtained by applying verification measures.
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Thus, the prediction probabilities are binned into 6 categories (0.10%] (10%, 20%], (20%, 30%],

(30%, 40%], (40%, 50%], and (50%,90%]. Since there are not many prognoses larger than 50%,

all prognosis larger than 50% are put into one bin, the following section shows results of scalar

measures for each prediction category.

Absolute Scalar Measures
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Figure 4.2: Mean error and MSE for 184 prospects on NCS

Mean error measures the bias and MSE measure the accuracy. As shown fig. 4.2a, ME -the

differences between predicted probability and the actual discovery rate are negative for five bins

and positive for one bin, and has greatest negative value for the bin (30%,40%). So the prognoses

are generally pessimistic and are mostly conservative around 35%. MSE shows the accuracy is

best for predicted probability less than 10%, and worst around 35% in fig. 4.2b.

The uncertainty,i.e., the variance of the observation indicates the inherent variance of the
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Figure 4.3: Absolute scalar measures for 184 pairs of probabilities of discovery and results

problem are shown in fig. 4.3a. The analytical uncertainty comes from the formula µx(1−µx),

wherep indicates the mean observation,that is, base rate. The value of the uncertainty ranges

from 0 to 0.25. If the mean observation is 0.5, there is more uncertainty inherent in the forecast-

ing situation and uncertainty will be closer to 0.25.
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Figure 4.4: Relative scalar measures normalised by uncertainty and skill score for 184 prospects
on NCS

The absolutes measures depend on mean observation µx of each forecast bin. So when eval-

uating the probability performance, relative meaesures should be considered together with ab-

solute measures normalized by the uncertainty term. Smaller reliability values are preferred, so

it is mostly unreliable for probabilities less than 10% and also unreliable in category(40%, 50%)

among the 6 categories, shown in 4.3b and fig. 4.4a. Resolution are worst on the two ends and

the predictions are best resolved for predictions around (30%,40%], shown in fig. 4.3d and fig.

4.4a , as larger resolution value is desired. Larger dsicrimination indicates better ability of the

prediction to discriminate between dry and success, so better discrimination ability for predic-

tions over 50%, shown in 4.3e and fig. 4.4b, but this high resolution may be caused by the wide

range of predictions values included in this forecast bin ,which remains to be investigated. Type

2 conditional bias is not normally explained in forecast verification, which will not be discussed
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more here as well. In fig. 4.4, The skill score shows that the forecast has lowest score around 35%

,and has most skill for probabilities over 50%.

These scaler measures provides exact scaler values ,but may not be easy to understand. The

graphical measures in the next chapter can provide more intuitive and direct information. Fore-

cast verification terms as reliability, resolution, discirimation and etc can be better understood

accompanied by graphical measures.



Chapter 5

Graphical Verification Measures and ROC

Analysis

Graphical diagrams based on marginal and conditional distributions of predictions and obser-

vations provide more details of the forecast performance. Sharpness histogram, reliability di-

agram and discrimination diagram together provides a more complete picture of the forecast

quality. ROC analysis can potentially be useful for providing information for further decision-

makings. All these measures are based on joint, marginal, and conditional distribution of obser-

vations and forecasts, which can be acquired by binning prediction data and using contingency

table method mentioned in chapter 4.3. Measures in this chapter can be applied to data gener-

ated from contingency tables, so no oringinal pairs of data are required. These measures will be

applied to all 3 sets of data presented in chapter 1 after explaining each measure.

5.1 Attributes Diagram & Sharpness Histogram

Sharpness (refinement): sharpness depends only on the forecast and is a characteristic, which

reflects the degree of forecast definiteness. A forecaster of perfect sharpness would only give 0

and 1. If the same forecast is always given, then the forecasts are said not to be sharp (Murphy

and Winkler, 1987). So unvarying forecasts have zero sharpness.

The frequency of forecasts or the number of forecasts in each probability bin of a histogram

is called sharpness histogram. The histogram is often in the attributes diagram and shows the

31
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sharpness of the forecast. Forecast system that is capable of predicting probabilities different

from the observed frequency of the event are said to exhibit sharpness.

Figure 5.1: Attributes diagram and sharpness histogram (CAWCR, 2014)

Attributes diagram (sometimes called “reliability” diagram) graphically assess reliability,

resolution of probability forecasts for dichotomous outcomes, and plots the observed frequency

against the probability forecast. Firstly the forecast probability is divided into several bins, then

the curve is determined by the average forecast of each bin on X-axis and the corresponding

relative observed frequency within each forecast bin, i.e., p(x = 1| f ) on Y-axis. One example is

shown in fig. 5.1

In a perfect reliable system the forecast probability is equal to the observed frequency, so

the graph is the 45-degree diagonal line (reliability is zero). So the diagonal line is the perfect

reliability line. If the curve below the diagonal line, the probabilities are overestimated, and

if the curve above the diagonal line, the probabilities are underestimated. The horizontal line

refers to no resolution line. A forecast of mean observation does not discriminate between

observed and non-observed, and has no resolution. The no resolution line is constructed by

plotting the base rate (mean observation). The flatter the curve, the lesser resolution it has.

The no skill line is halfway between no resolution line and perfect reliability (diagonal) line

and is where reliability and resolution are equal. Typical cases of the sharpness histogram and



CHAPTER 5. GRAPHICAL VERIFICATION MEASURES AND ROC ANALYSIS 33

attributes diagram are presented and explained in appendix.!!!!Which helps one to understand.

(a) Reliability term (b) Resolution term

Figure 5.2: Reliability and resolution in attributes diagram (CAWCR, 2014)

The realibility mesaures the difference between the forecast and the mean obersvation as-

sociated with that forecast value, over all of the forecasts. Graphically, it measures the mean

square distance of the curve in the attributes diagram to the diagonal line as shown in fig. 5.2a.

The more reliable the forecast system, the reliability value or the shaded area is closer to 0.

The resolution term measures the mean square distance of the graph line to the no resolu-

tion line shown in fig. 5.2. The resolution term is large if there is enough resolution to produce

very high and very low probability forecasts. Resolution is independent of reliability and is only

a measure of how the different forecasts are classified or resolved by a forecast system.

Applied to 3 sets of data

Predicions of all 3 sets of data are categorized into 6 bins. Attributes diagram and sharpness

histogram are built from contingency table made from theses 3 sets of data.

As u-shaped distribution of forecasts is deemed as good sharpness, so all three sets have

poor sharpness. Also by reading the sharpness histogram, one learns distribution of the number

of prospects being predicted in each probability category. As shwon in fig. 5.3, 5.4, and 5.5,

probabilities larger than 50% take very small proportion of the total forecasts: with around 6%

for BP’s 805 targets, 11% for NPD 184 prospects on NCS, and 17% for NPD 118 prospects on NCS

which is a bit more than the other two. The number of ’risky prospects’, i.e., probabilities smaller



CHAPTER 5. GRAPHICAL VERIFICATION MEASURES AND ROC ANALYSIS 34

0	

20	

40	

60	

(0,0.1] (0.1,0.2] (0.2,.0.3] (0,3.0.4] (0.4,.0.5] (0,5.0.9] 

N
o.

 o
f p

ro
sp

ec
ts

   

Forecast probability 

Sharpness -184 Prospects (1998-2007) on 
NCS 

  

0.0		

0.1		

0.2		

0.3		

0.4		

0.5		

0.6		

0.7		

0.8		

0.9		

1.0		

0.00		 0.20		 0.40		 0.60		 0.80		 1.00		

O
bs

er
ve

d 
re

la
tiv

e 
fre

qu
en

cy
 

Forecast probability 

Attributes diagram -184 Prospects 
(1998-2007) on NCS 

Figure 5.3: Attributes Diagram & Sharpness Histogram for 184 prospects (1998-2007) on NCS

10%, takes around 10%, 10% and 24% for the 184 on NCS, 118 on NCS, and BP 805 respectively.

The number of risky prospects for BPs 805 are significantly more than the other two.

A lot of information can be read from attributes diagram. For 184 wells (1998-2007) on NCS

in fig. 5.3, Probabilities are generally underforecasts, except in the last categorry (predctions

larger than 50%). For 118 prospects (1990-1997) on NCS in fig. 5.4, for probabilities between 15%

and 35%, a bit underforecast is observed or in another word, the forecast is a bit pessimistic; and

for forecasts larger than 40%, apparent overforecast or overconfidence is observed. For forecasts

(40%, 50%) and forecast lager than 50%, the forecast are almost on the no skill line, indicating

not much skills in the forecasts. It can be summarized that probabilities below the base rate
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Figure 5.4: Attributes Diagram & Sharpness Histogram for 118 prospects (1990-1997) on NCS

(mean observation) are underforecast and probabilities above the mean observation are over-

forecast. This kind of forecasts that tend towards to the mean observation is typcial: by only

comparing the mean obsertion with mean forecast, forecast may match well with observation.

However, differences between diffrernt forecast categories can not be detected by simply com-

paring the mean. BP’S 805 well(1983-1997) are bestly calibrated among the 3 datasets shown in

fig. 5.5, as the curve are mostly close to the perfectly reliability (calibration) line. The predictions

are a bit under-forecast.

For the NPD 118, the cure in fig. 5.4 alomost lies on the no skill line for probabilites larger

than 40%, idicating no skills in the chance of success pronoses.
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Figure 5.5: Attributes Diagram & Sharpness Histogram for BP’s 805 targets (1983-1997) on NCS

For all three sets, overconfidence or over-forecast exists for forecasts larger than 50%. Com-

bined with sharpness histogram, probabilities of BP’s 805 wells are also least centered on the

mean observation among the three sets while probabilities of 118 on NCS are mostly centered

around the mean observation 34% which reveals potential ’anchoring’ bias. For the NPD 118,

the cure in fig. 5.4 almost lies on the no skill line for probabilities larger than 40%, indicating no

skills in the chance of success proposes. The curve are mostly smooth For BP 805 as most data

are contained.
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5.2 Sharpness and attributes diagram estimated by continuous

approach

(a) Marginal distribution of predictions (Sharpness)

(b) Conditional distribution µx| f (Attributes Diagram)

Figure 5.6: Attributes Diagram & Sharpness for 184 prospects (1998-2007) on NCS by continu-
mous method
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Either the measures are estimated directly from complete original pairs of data, so-called

continuous approach described in chapter 4 section 4.3; or the contigency table method, also

called discrete approach, where the data are firstly binned into contigency table ,measures are

then based on distribution acquired from the contingency table.

For the 184 prospects on NCS, original pairs of data are available, thus continuous approach

can be applied. To visualize one-dimensional conditional distribution of prediction, histogram

of sharpness is one way; the distribution of forecast can also be estimated by the Kernel density

estimation (KDE) method described in next chapter. In fig. 5.6a, the curve is relative frequency

of 90 probability data points showing the sharpness of predictions. Conditional distributionµx| f

obtained by logistic regression (LR) method described in next chapter, can become an attributes

diagram by adding no skill line, no resolution line and perfect reliability line, in fig. 5.6. some

differences can be observed compared with fig. 5.3 acquired from contingency table method.

5.3 Discrimination diagram
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Figure 5.7: Discirimination diagram for BP’s 805 targets,with likelihood ratio

For a specified observation category, the distribution of forecast is shown in discrimination

diagram. Conditional probabilities p( f |x = 1) and p( f |x = 0) are called the likelihoods associ-

ated with the forecast. Discrimination diagram is constructed by plotting the likelihood of each

forecast probability when the outcome is observed and when the outcome is not observed. If

p( f |x) is very similar for different x, the forecast is not very discriminatory; if the likelihoods are

very different for different x, the forecast is much more discriminatory (Murphy and Winkler,
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Figure 5.8: Discrimination diagrams

1987). Perfect discrimination is when there is no overlap between the distributions of proba-

bilities for observed and not observed, so it is poor discrimination when the two distributions

overlap much.

When there is much data, likelihood is a good representation, for example for the BP’s 805
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targets in fig. 5.7. For our problem, there are mostly not much data points, so number of

prospects is an equivalent replacement for the likelihood. Given each forecast category, the

number of prospects when the result is dry, is plotted against the number of prospects when

the result is a discovery. The discrimination diagram is constructed by plotting the number of

prospects for the dichotomous results for all the forecasting categories.

The discrimination diagram for 3 sets are in fig. 5.8. There are little overlaps for forecasts less

than 20%, for all three sets, so good discrimination for forecasts less than 20%.Much overlap for

forecast probabilities larger than 30%, so poor discrimination for forecasts larger than 30% that

the forecasts does not discriminate discovery well from dry.

5.4 ROC analysis

introduction

Receiver operating characteristic (ROC) analysis was originally developed in signal detection

theory as a model for how to separate the signal from the Gaussian noise. Now ROC analysis has

been widely used in medical diagnosis tests and has been increasingly used in other fields such

as data mining and atmospheric science. ROC framework is a bit different from the Murphy &

Winkler framework which discourages the reduction of the forecasts into categories (Marzban,

2003). The ROC analysis is based on contingency table, which categorize the probability fore-

casts into bins. ROC analysis is still within the Murphy & Winkler framework.

ROC curve is a two dimensional measure of classification performance, i.e., measuring the

decision threshold introduced to produce binary classifications. It has potential value as it can

indicate weather to drill based on the chance of geologic success. The area under the ROC curve

(AUC) is a scalar measure of one facet of the forecast performance. ROC graphs are a very useful

tool for visualizing and evaluating classifiers- the threshold to make binary descion. They are

able to provide a richer measure of classification performance (Fawcett, 2006).
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Figure 5.9: contigency table for binary forecasts (CAWCR, 2014)

Binary Classification

ROC Curve is based on hitrates and false alarm ratio calculated from contingency table for bi-

nary forecasts as fig. 5.9. By introducing decision threshold, probability forecasts can be trans-

formed to binary classification, "A classifier need not produce accurate, calibrated probability

estimates; it need only produce relative accurate scores that serve to discriminate positive and

negative instances" (Fawcett, 2006).

• Hit rate (H): H = hi t s
hi t s+mi sses

Range: 0 to1 , Perfect score: 1.

H is sensitive to hits, but ignores false alarms. Estimate of p( f = 1|x = 1)

• False alarm ratio (F): F = f al sea l ar ms
hi t s+ f al sea l ar ms

Range: 0 to1, Perfect score: 0

Sensitive to false alarms, but ignores misses. Estimate of p( f = 1|x = 0)

• Peirce skill score (PSS): PSS = H −F

Range -1 to1, Perfect score: 1

PSS is a measure of skill obtained by the difference between the hit rate and the false alarm

rate. If the PSS is greater than zero, then the number of hits exceeds the false alarms and

the forecast has some skill.
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Decision threshold

For probability predictions, suppose there is a decision variable W , W exceeding a probability

forecast threshold w can be interpreted as signal for occurrence; the non-occurrence is other-

wise. The decision threshold variable can function as a binary classifier. In our case, the thresh-

old(w) is the chance of geologic success that decision would be made to whether to predict the

prospect at eitehr success or fail. So the probability are transformed into binary forecasts. Then

the hit rate and false alarm ratio are defined:

H(w) = Pr (W ≥ w)|X = 1) (5.1)

F (w) = Pr (W ≤ w)|X = o) (5.2)

ROC curve

The ROC curve is then obtained by plotting the calculated hit rate and false alarm rate for all

probability categories.

Figure 5.10: ROC Curve (CAWCR, 2014)
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Figure 5.11: Interpreation of ROC curve (CAWCR, 2014)

An ROC curve is a two-dimensional depiction of classifier performance including H and F.

The ROC is conditioned on the observations (i.e., given the outcome, what was the correspond-

ing forecast. ROC would be good company to the reliability diagram, which is conditioned on

the forecasts. The diagonal line is no skill line on ROC curve, show in fig. 5.10. Perfect ROC curve

travel from top right of diagram, to top left, then across to bottom left of diagram, as probability

thresholds increases. Low thresholds lead to both high H and F towards the upper right hand

corner; High thresholds make the ROC points move towards the lower left corner. An interpre-

tation of the ROC curve is in fig. 5.11.

Area under ROC (AUC) is often used as a score measuring skill of forecast. AUC gives one

single-number measurement of performance. AUC aggregates performance across the entire

range of probabilities.

Range: 0 to 1; 0.5 indicates no skill.

Perfect score: 1
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Applied to 3 sets of data
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Figure 5.12: PSS for 3 sets of data
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Figure 5.13: ROC curve for 3 sets of data

PSS measures the difference between hit rate and false alarm rate. PSS thus indicate how well

a specific chance of geologic success, as a threshold for binary prediction, separates Hits/success

from false alarm ratio/failure. In fig. 5.12, for example, the PSS value is highest at probability

around 30% for NPD 184 dataset. When using 30% chance of geologic success as the thresh-
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Decision Threshold w F(f>=w|x=0) H (f>=w|x=1) PSS
NPD 184 from 1998 to 2007
0 1 1 0
0.1 0.855 0.973 0.118
0.2 0.518 0.784 0.266
0.3 0.300 0.608 0.308
0.4 0.155 0.351 0.197
0.5 0.064 0.176 0.112
NPD 118 from1990 to 1997
0 1 1 0
0.1 0.846 1.000 0.154
0.2 0.615 0.900 0.285
0.3 0.372 0.625 0.253
0.4 0.218 0.400 0.182
0.5 0.115 0.275 0.160
BP 805 from 1983 to 1997
0 1 1 0.000
0.1 0.686 0.926 0.240
0.2 0.380 0.721 0.340
0.3 0.156 0.419 0.263
0.4 0.059 0.227 0.168
0.5 0.031 0.153 0.122

Table 5.1: PSS, Hit rate and False alarm rate results for 3 datasets

old to decide whether the prospect is dry or success, most skill are reached since this threshold

mostly separates a success from dry.

In ROC fig. 5.13, BPs 805 has largest area under the ROC curve and thus best classification

performance. In other words, the forecast of BP are best in discriminating discovery from dry

among the three sets of data.

I



Chapter 6

Handling Small Size Data

One limiting factor for chance of geologic success verification is that the number of pairs of

prognosis and observation data available is ususally small compared to data size in climatology.

For instance, it would be very likely that less than 100 pairs of data is available, when an oil

company want to evaluate its geologic success prognosis performance in a region for a 5 year

period. The DO approach outlined by Murphy and Winkler (1987) is based on joint, marginal

and conditional distribution of forecasts and observations, which requires binning the discrete

probabilistic forecasts into several categories. When the data is limited, the data in some bin

would be very few ,leading to distorted estimation.

The difference betweenn meassure acquired by continuous

Dimensionality(D) is the number of degrees of freedom in order to estimate the joint dis-

tribution of forecasts and observations. For instance, there are n f categories of prognosis, and

nx cases of observations, the dimensionality is defined as (Hashino et al., 2002) D = n f ∗nx −1.

For example, when geologic success probability are categorized into 6 bins and observations are

binary: discovery and dry/small. D = 6∗2−1 = 11, which means that at least 11 pairs of data are

necessary to estimate the relevant measures for contigeny talbe method. One would expect that

very few data less than 11 in some forecast categories if the total datasets are around 50 or less

than 100.

There are differecnces between verification measures aquired from continuous approach

described in chapter 4 section 4.3 and contigency table method. The smaller size of the data, the

more diffrence would be observed. The contigency table method woould distort much for small

46
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size data, as Dimensinoalty is too high. In continuous approach, though Most scalar measrues

for verifcation can be direcetly estimated from original sample data by analytical expressions,

µx| f in calibration refinement factorization measures needs to be estimated by alternative ap-

proaches. Statistical modeling techniques suggested by Bradley et al. (2003b) can be useful to

estimate CR measures when data size is small. Bradley et al. (2003b) did Monte Carlo experi-

ments for forecasting examples, and the results show that use of statisctical modeling approach

significantly improve the estimated of the CR measures for pairs of data of 500 or less. Recom-

mended statistical methods are applied to the data of 184 prospects on NCS. Logistic regression

method is used to estimate the mean conditional distribution. And Kernel density estimation is

used to estimate the distribution of the probability of discovery. The two methods are presented

below.

6.1 Logistic Regression (LR)

Logistic regression is a regression model where the dependant variable is categorical. The binary

logistic model is used to estimate the probability of a binary response. The logistic regression

model could estimate the mean µx| f .

Log i t (P ) = log
P

1−P
=β0 +β1 ∗ f (6.1)

The logistic regression of mean P for probability forecast f, is expressed with two parameters

β0 and β1 as in equatoin 6.1. After we get the two paramters. The estimator of the conditional

mean could be calculated from equation 6.2:

µx| fi = Pr (Xi = 1) = exp(β0 +β1 ∗ fi )

1+exp(β0 +β1 ∗ fi )
(6.2)

The two paremeters β0 and β1 can be estimated by method of maximum likelihood or by gen-

eralized linear model (GLM).

The LR is realized by Generalized linear model here, since GLM is simpler to implement.

Logistic regression can be seen as a special case of Generalized linear model and thus are anal-

gous to a linear model. A Link function allow the GLM to fit the logistic regression model. For



CHAPTER 6. HANDLING SMALL SIZE DATA 48

binomial data, a logit link, as equation 6.3, is mostly used.

Log i t (P ) = ln
P

1−P
(6.3)

The linear function of the predictor variables is calculated and the result of this calculation

is run through the link function 6.3. The glmfit function in Matlab is applied to model the re-

gression. it returns -1.69 and 4.26 for the value of β0 and β1 in matlab. Continuous µx| fi can be

obtained now and is plotted in fig 6.1.

Figure 6.1: µx| fi obtained by logsitic regression method

6.2 Kernel Density Estimation (KDE)

To visualize this one dimensional distribution of prediction, histogram in the sharpness dia-

gram is one way, and KDE is another way that can represent the continuous distribution of the

forecasts. KDE is a non-parametric method to estimate the probability density function. a ker-
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nel function is a non-negative function that integrates to one and has mean zero. Basically, KDE

is usieng a kernel fucntion to smooth (making inferences) aournd given observed data points.

The baisc kerndel denstiy estimator is 6.4:

f̂ (x) = 1

nh

n∑
i=1

k(
x −xi

h
) (6.4)

h denotes the bandwidth; n is the number of samples, and k() is the kernel funciton. The big-

weight kernel 6.5 is utilized:

k(t ) = 15

16
(1− t 2)2 (6.5)

The larger the bandwidth, the more influences the observed datappoints have on the KDE

curve. “The bandwitdth is often estimated from sample data by cross validation or other ap-

proaches that attempt to find the best fit to the data” (Bradley et al., 2003b). An optimum band-

width deterimed through the normal referecne rule 6.6 described by Bradley et al. (2003b). The

default bandwith in Matlab for optimal normal density returns 0.0609, higher than the band-

wdith,0.0307 calcluated by the noraml referecne rule 6.6. Distributions for both bandwith are

plotted in fig. 6.2.

h = 2.623(4/3)1/5σN−1/5 (6.6)
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Figure 6.2: Distribution of the probability of success for 184 prospects on NCS by KDE



Chapter 7

Summary and Discussion

7.1 Chance of Geologic Success and Inconsistency

Literatures show that there is inconsistency in comparing post-drill result with pre-drill fore-

cast; for example, geologic success was compared with discovery, where discrepancy can exist

between the two concepts. The definition of geologic success has been explicitly given by Rose

(2001), but still needs adaptations in different cases, as there may not be corresponding post-

drill record that completely matches the exact geologic success. Usually, the definition of geo-

logic success is adapted to involve some minimum volumetric of hydrocarbons, which would

then correspond to documented records. The probability of discovery is commonly obtained by

multiplying probability of geologic chance factors. There is also alternative way where historical

success rate is taken into account. Either way, the evaluation comes down to evaluating geologic

chance factors, or geologic sub-factors where explorers place their judgement in probabilistic

form utilizing their experience, knowledge, information acquired from geotechnical and geo-

logic measures. To ensure consistency and accuracy, tools as chance adequacy matrix and risk

table for specific geologic factor by which probability values or intervals are corresponded to de-

tailed qualitative description of different dimensions including geologic knowledge, confidence

or certainty level, and data quality.

It is still hard to overcome bias and heuristics when making subjective judgment. Subjec-

tive probability are being criticized for its inconsistency. Geoscientists are also susceptible to

common individual bias. Chance of geologic success is usually assigned by a group of experts.
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Thus, more complicated group bias caused by group interactions further influences the prob-

ability assessment. Elicitation methods are available to handle both individual and group bias,

but elicitation usually involves several steps and takes a long time span, and verification can be

part of the elicitation process.

7.2 Verification

By assigning subjective probabilities, however, experts’ knowledge and experiences are being

utilized, and uncertainty or lack of information are properly conveyed to others. Extensive sta-

tistical verification measures have been extensively developed in atmospheric science for sev-

eral purposes including improving the forecast performance. To improve probability assigning

performance, verification measures to study post-drill result and pre-drill predictions should be

explored.

The verification measures employed in exploration ventures found on literatures are mostly

rudimentary and even erroneous. Extensive verification measure are available and thus per-

tinent measures for probability predictions are presented and applied to data. Summary mea-

sures provides a single valur or score for evaluating the overall prognosis quality or performance.

Distribution-oriented approaches provides more detailed information in terms of measures as

reliability, discrimination, and resolution on each prediction interval. Thus performance can be

compared between different probability interval for the same dataset. Different characteristics

in different interval of the dataset applied are clearly demonstrated through these DO verifi-

cation measures Measures calculated by continuous approaches also provides exact numerical

values.

It is not easy to grasp useful information from these scalar measure in the beginning. These

graphical measures provides more direct information. prediction qualities as reliability, sharp-

ness, discrimination and resolution are demonstrated in graphs. One can read these qualities

in specific probability interval directly from the graph and compare them with other datasets

graphically as measures are applied to 3 datasets.

ROC is an excellent tool for assessing the binary classification. the Area under the ROC curve

is used as a performance score, considering forecasts’ ability to discriminate between Yes and
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No events while calibration is not considered by. ROC analysis including Hit rate, false alarm

rate and PSS give performance measurement to individual decision thresholds, which may be

helpful for decision-makings based on chance of geological success. The presentation of PSS is

more exploratory. The realistic value of PSS to chance of geologic success remains to be further

studied. Though ROC is commonly used, it is more suitable for rare events and the usefulness

in helping drilling decision needs to be further studied.

When there are enough data, graphical measures are good as the curves are more smooth.

For smaller size data, the curve looks zigzag and measures calculated from contingency ta-

ble methods could provide distorted information about the forecast quality. statistical meth-

ods as logistic regression and kernel density method can significantly improve the estimates of

calibration-refinement measures which can not be directly obtained from oringinal datasets.

Not all measures may be of interests to the assessors. On the other hand, not a single at-

tribute or measure would provide a whole picture of the forecast situations. It remains to be

further studied to whether some measures are pertinent to chance of geologic success. Many

measures may seem to be comprehensive at first hand. As long as you have a understanding

of verification measures, they provide intuitive information about strength and weakness of the

predictions in specific situations. The verification measures provide more formalized and useful

feedback, so that explorers are more encouraged to give more ”true” probability corresponding

to their judgement. Their performance has a more ”tangible” record. And ultimately, their prob-

ability calibration performance can be improved.



Appendix A

Appendix

Figure A.1: Risk factors considered in different methodologies of estimating the total geological
probability of success (Milkov, 2015)

Table for sets of general qualitative descriptions for the relative probability scale from The

CCOP Guidelines for Risk Assessment of Petroleum Prospects (CCOP, 2000).

Risk table for estimating probability of structure (closure, geometry, container) being present
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(Milkov, 2015)
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Figure A.2: Qualitative descriptions for the relative probability scale (CCOP, 2000)
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Figure A.3: Qualitative descriptions for the relative probability scale (Milkov, 2015)
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