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Abstract—Offshore bottom-fixed structures, such as jackets,
are typically designed with a natural period of 3 seconds or
less. This means that there is limited dynamic excitation from
wave loads at design sea-states. The benefit of this is reduced
uncertainties from the dynamic effects in the design phase.
However, some jacket structures in deep water or soft soil-
conditions may have natural periods exceeding 4 seconds, which
implies large dynamic effects. For a jack-up, industry guidelines
are developed to account for the dynamic structural response in
both ULS and FLS conditions. Although advanced methods are
available to determine the dynamic amplification factors (DAF),
they are unsuitable to estimate the dynamic response in the
concept design phase. The current simplified method is based on a
single-degree-of-freedom (SDOF) system. However, the estimator
is not very accurate for the DAF of a structure in irregular seas,
and must be used with caution. The most correct method for
estimating the extreme static and dynamic responses is stochastic
time-domain simulation. In this paper, it is investigated whether
an analytical formulation is appropriate for DAF in irregular seas,
as a function of natural period. The models used are a slender
cylinder and a dynamically sensitive jacket, in an extreme sea-
state. Non-linear quasi-static and dynamic time-domain analysis
are carried out with USFOS, a computer program especially
designed for space frame offshore structures, using linear wave
theory and the Morison equation.

I. INTRODUCTION

Subjecting the structure to a design wave can be an ade-
quate approach to find the design loads at a certain probability
level. This is usually done by stepping a Stoke 5th wave
through the structure. However, this is only recommended for
structures with a low natural period (i.e. < 2[s]), where the
dynamic effects are limited. Then, a DAF from an equivalent
SDOF system can be multiplied with the quasi-static response.
As the structures move to deeper water, the natural periods
increase and more sophisticated methods are needed to account
for dynamics. This has been done extensively in e.g. [1] for a
dynamically sensitive jacket structure. For an increased natural
period, non-linear effects causing a resonant response will be
more prominent and thus causing large dynamic contributions
to the DAF. For drag dominated structures the non-linear nature
of the wave load will result in harmonic excitations at multiples
of the load frequency, thus causing large dynamic responses
for natural periods coinciding with these multiples. In [2], it

is suggested to account for these super-harmonic excitations
in the DAF estimator for SDOF systems subjected to multi-
harmonic loads such as irregular waves. As we shall see, the
wave elevation itself is a non-linearity that contributes to this
behavior. The aim of this work is to get a better understanding
of how the dynamic amplification varies with respect to the
natural period.

However, when performing stochastic analysis, it is not
expected that the extreme dynamic and quasi-static response
will occur for the same incident wave. It is therefore more
convenient to use an equivalent DAF (EDAF), which is used in
[3]. This value is estimated based on the responses for a given
probability of exceedance, which introduces some statistical
uncertainties that will be addressed. All simulations in the
time-domain have been performed using USFOS [4] computer
software.

II. SIMULATION MODELS AND PARAMETERS

The time-domain analyses and statistical work have been
performed on a slender cylinder and a jacket structure. The
slender cylinder has a diameter of 1[m] and is located at
100[m] water depth. Its purpose is to demonstrate the response
of a computationally efficient, drag dominated structure. The
jacket is similar to the one used in [1] and [3]. The main

Fig. 1. Jacket computer model



specifications are given in Table I, and an illustration is
shown in Fig. 1. The topside is replaced with a node mass
at the topside center of gravity. Long crested waves are used,
propagating with a heading of 45◦, meaning that all braces are
exposed to the wave kinematics.

TABLE I. JACKET

Legs 2.0-2.9 m
Braces 0.9-1.6 m
Depth 190 m

The structural damping is applied as Rayleigh damping
with 1.3% at the first natural frequency and 1.5% at the
third natural frequency. This is to assure a sufficiently low
damping at the applied load period and natural period. Relative
velocity is not used in calculation of drag forces, since it could
overestimate the actual damping for small responses [5]. A
time-step of 0.1[s] is applied in all simulations, and regarded
as sufficient to capture dynamics in this case.

To find an appropriate ULS sea-state with an annual
probability of 10−2, the contourline method described in detail
in [6] has been used. The assumption is that the long term
extremes can be well estimated by a few short term extremes
[7]. For conditions in the northern North Sea, a sea-state with
TP=16.3[s] and HS=14.9[m], is identified as appropriate and
will be used throughout the study. A JONSWAP spectrum
is then applied with a cut-off frequency of ωcut = 4ωP , a
peak shape parameter of 2.45 [8] and Rayleigh distributed
random amplitudes [9]. For the hydrodynamic loading, USFOS
uses the Morison equation with Wheeler stretching to the
instantaneous water surface. Drag and mass coefficients are
chosen according to [5], and are reproduced in Table II. They
are larger than the standard coefficients in order to account
for the underestimation made with Wheeler stretching in a
Gaussian sea. Current is not accounted for in these analyses.

TABLE II. DRAG AND INERTIA COEFFICIENTS FOR FIRST ORDER
SIMULATION

z < 2 m z ≥ 2 m
CD 1.15 1.15
CM 1.2 1.6

III. BASIC PRINCIPLES

A. DAF

The analytical DAF for the SDOF system in Fig. 2 sub-
jected to a harmonic force f(t) = f0 exp(iωt), can be found
by the dynamic and quasi-static equations of motion. These
are given in eq. (1) and (2), respectively. Further, by assuming
x = x0 exp(iωt), we can solve for xd and xs and find the DAF
in eq. (3). This equation is found in guidelines for assessment
of jack-ups regarding dynamic amplification (see e.g. [10] and
[11]).

ẍd + 2ζωnẋd + ω2
nxd =

1

m
f(t) (1)

ω2
nxs =

1

m
f(t) (2)

where ωn =
√
k/m is the undamped natural frequency.

k

c

m
f(t) x(t)

Fig. 2. SDOF system for small rotational displacements

DAF =
xd
xs

=
1√

(1− Ω2)2 + (2ζΩ)2
(3)

where Ω = ω
ωn

= Tn
T , Tn = 2π

ωn
is the natural period and

T is the load period. To sum up, DAF, also referred to as
dynamic load factor (DLF), can be interpreted as a transfer
function from quasi-static to dynamic response.

B. EDAF

EDAF is defined as the q-probable dynamic response
divided by the q-probable quasi-static response. That is, the
response corresponding to an annual probability, q, of ex-
ceedance.

EDAF =
Xq,d

Xq,s
(4)

If the long term response can be divided into short term
stationary response records, each of a duration of 3 hours, the
response can be found by solving

FX3h
(Xq) = 1− q

365 · 8
(5)

requiring that the long term extreme response value is well
approximated by FX3h

. Here, the EDAF is estimated using
a single design sea-state along the contourline corresponding
to q = 10−2. Meaning an assumption is made that this sea-
state will provide the characteristic extremes for all sea-states
satisfying HS = HS,q and TP = TP,q. We can then obtain
a distribution, FX3h|HS,qTP,q (x|hs,qtp,q), from a number of
sample extremes from simulated response time series of length
3 hours. Finally, the approximate long term response, Xq , is
found by

FX3h|HS,qTP,q (Xq|hs,qtp,q) = α (6)

where α = 0.9 is a suitable fractile level given in [5].



C. Multi-harmonic DAF function

The multi-harmonic DAF function in eq. (7) given by [2],
is simply a summation of frequency response functions for
multiples of the non-dimensional eigenperiod, Ω.

DAFMH(Ω) =

N∑
n=1

DAFn(Ω)

=

N∑
n=1

kn√
(1− (nΩ)2)

2
+ (2(ζn)nΩ)

2

(7)

The weight parameters kn should satisfy
∑
kn = 1 and

are decided based on the wave load spectrum. Larger weight
factors means a broader peak. The individual damping parame-
ters, ζn, represent total damping to match the extreme response
for a given natural period. In other words, the damping ratios
determine the height of the peaks. An example is given in
Fig. 3, comparing the classical SDOF DAF analogy with the
proposed function for some arbitrary parameters.
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Fig. 3. Multi-harmonic DAF. k̄ = [0.8, 0.1, 0.1], ζ̄ = [0.10, 0.03, 0.03].

IV. DAF IN REGULAR SEAS

A short study of the response in regular waves have been
carried out to set a baseline before simulating random seas. For
regular waves, a very short simulation time is needed after the
transient phase (for dynamic analysis) to determine the steady-
state harmonic peak responses.

A. Wave load

The wave load in regular seas can be obtained analytically
with the Morison equation, also when multi-harmonic loading
is accounted for. The drag term per unit length in the Morison
equation reads:

f(t, z) =
1

2
ρCDDu(t, z)|u(t, z)| (8)

where u(t, z) is the normal particle velocity in x-direction.
The equation is integrated over the element length, which
depends on t and z. An analytical expression for the total
load on a cylinder at water depth h[m] in sinusoidal waves
with instantaneous elevation ζ(t)[m] and Wheeler stretching
can be expressed as:

F (t) =

∫ ζ(t)

−h
f(t, z)dz = c1f(t) [h+ ζ(t)]

= ĉ1h sin(ωt)| sin(ωt)|+ ĉ1ζa sin2(ωt)| sin(ωt)|
(9)

where c1 is an integration constant dependent on the wave
number, k, and the depth. It can be shown that setting c1=1
gives less than 10% error in eq. (9) when 2π

ω > 18[s] and
h=100[m]. However, the constant is not of any importance as
it does not change the relative values between the coefficients
in eq. (10), where the expression is written as a Fourier series.

FN (t) =ĉ1

[
C1 sin(ωt) + C2 cos(2ωt) + C3 sin(3ωt)

+ C4 cos(4ωt) + C5 sin(5ωt) + ...
] (10)

where the coefficients are given in Table III. The procedure
is similar to what is done in [12].

TABLE III. FOURIER COEFFICIENTS

C1 C2 C3 C4 C5

8
3πh − 8

5π ζa − 8
15πh

8
35π ζa − 8

105πh

From the Fourier series, it is obvious that the load will
excite with frequencies nω for n = 1, 2, 3.... The relative
contribution from each term will depend on the wave amplitude
and water depth. In short, C1, C3 and C5 are due to the non-
linear drag loading which has several harmonics, while C2 and
C4 are due to the integration to the instantaneous surface. The
spectral density of the wave load is presented in Fig. 4 for the
present case, where ζa

h = 0.075. Note that the inertia force has
small peaks at ω

ωR
= 2, 3, ... which are due to wave elevation

and non-uniform CM (ref. Table II).
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Fig. 4. Morison load on slender cylinder in regular waves with frequency
ωR. D=1[m]. Note logarithmic scale on y-axis.

B. Response

The wave load spectrum for the cylinder in Fig. 4 is
reflected well in the resulting DAF for the base shear shown
in Fig. 5. A multi-harmonic DAF function is fitted to the
results using weight factors obtained analytically from eq. (10)
with eq. (11). Note that

∑N
n=1 kn should be pre-defined. The

damping ratios are adjusted to represent the peaks accurately.

kn =
|Cn|
|C1|

·
∑N
n=1 kn∑N
n=1 |Cn|

(11)

It is interesting to observe that the response at Ω = 0.33 is
larger than at Ω = 0.5. This is partly due to an added damping
from the harmonic terms in the drag load. To illustrate, a
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Fig. 5. Reaction moment DAF for slender cylinder in regular seas as a
function of natural period. k̄ = [0.87, 0.04, 0.09], ζ̄ = [0.021, 0.010, 0.011].
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Fig. 6. Reaction moment DAF for slender cylinder in regular seas with and
without drag force.

simulation is carried out with CD = 0 meaning that only the
inertia load is applied. Results are seen in Fig. 6, where a set-
down of the DAF is observed at Ω = 1 and 0.5. The inertia
load is also somewhat non-linear due to wave elevation, as
seen in Fig. 4, so a response peak is also observed at Ω = 0.5.

C. Damping

The total damping can be expressed as a sum of several
contributions. Here, ζs is used for the structural damping and
there is no hydrodynamic damping. The additional damping,
ζa, is then partly due to the multi-harmonic forcing on the
cylinder.

ζn = ζs + ζh + ζa,n (12)

If the responses at the resonant peaks are known, the additional
damping can be found as approximately:

ζa,n =
kn

2
(
DAFn −

∑n−1
j=1 DAFj,n

) − ζs (13)

which is a simplified rearrangement of eq. (7) with respect to
damping, where DAFj,n is the DAF at Ω = 1/n due to the
harmonic load at Ω = 1/j.

V. EFFICIENT EDAF ESTIMATION

For regular waves, and hence regular response, there is
no need for a collection of samples for statistical evaluation
of DAF. EDAF on the other hand, requires several time-
series, or seeds, to confidently evaluate a response level. The
following subsection will address the topic of required amount
of simulated data to accurately determine EDAF.

A. Method

Several methods to predict the q-probable response are
presented in [13] and re-evaluated in [14]. In the latter, and in
recent studies by the author, it is concluded that the Gumbel
extreme value distribution, described in detail in [15], is the
most stable and reliable. Therefore, it is the most widely used
method in similar studies ([3], [7] and [16]). The Gumbel
distribution is given in eq. (14),

FY (y) = exp[− exp[−α(y − u)]] (14)

where y represents the maximum value from each time-series.
The parameters can be estimated from data, where σ is the
standard deviation of the data, and µ is the mean.

α =
π√
6σ

(15a)

u = µ− 0.57722

α
(15b)

However, there is a variation in the required number of 3
hour long simulations. At least 10 samples is recommended
in [13], while 99 and 20 samples are used in [1] and [7],
respectively. This is investigated in the next subsection.

Another promising method is the average upcrossing rate
(AUR) used in e.g. [17] and [18]. In [16], it was shown that
is gives a smaller confidence interval (CI) than the Gumbel
method on a similar case. It is based on the assumption that
the upcrossing events in the time-series are independent and
Poisson distributed. This assumption is good for the largest
responses in the time-series, which is verified in [19] for
extreme wind speeds. The expression for the empirical AUR
is given in eq. (16) for n number of upcrossings at level x,
averaged over N time-series of length τ [s].

ν̂+x =
1

Nτ

N∑
i=1

n+i (x) (16)

The results can be fitted to eq. (17) by the Levenberg-
Marquardt least-squares algorithm.

ν+x = q(x) exp(−a(x− b)c) (17)

Details can be found in [12] on weighting and estimation of
empirical CI. It can be mentioned that the factor q(x) can be
approximated as a constant in the tail, and c = 1 corresponds
to a Gumbel distribution.

B. Ensemble

A thorough investigation on the required number of sam-
ples in the ensemble is presented in Fig. 7 for extreme dynamic
response. It is obtained with bootstrapping [20] at each seed
to find the CI. Each vertical line represent 10 000 bootstrap
samples. It is clear that 10 seeds is not sufficient, but 30
should be reasonable with the Gumbel method. The empirical
CI using the AUR method is plotted alongside, indicating that
it converges slightly faster.

VI. RESPONSE IN IRREGULAR SEAS

The purpose of this section is to get an understanding of
the response series that are dealt with in irregular seas for a
dynamically sensitive structure.



Fig. 7. Extreme dynamic response with Gumbel distribution at α = 0.9, for
the base shear of the slender cylinder. Black lines show the 95% CI. Dashed
lines for AUR method.

A. Non-stationary, resonant response

The dynamic response for a structure can consist of several
contributions. Fig. 8 shows an example where the jacket is
subjected to irregular waves, and a resonant non-stationary
response occurs after being subjected to several large waves.
The response spectrum for this jacket with eigenperiod of 5[s]
is shown in Fig. 9. For this eigenperiod, the resonant response

8600 8650 8700 8750 8800 8850 8900

×10
7

-4

-2

0

2

4

(a)

8600 8650 8700 8750 8800 8850 8900

×10
7

-2

-1

0

1

2

Dynamic
Quasi-static

(b)

Time [s]
8600 8650 8700 8750 8800 8850 8900

B
as

e 
S

he
ar

 X
-d

ir 
[N

] ×10
7

-2

-1

0

1

2

(c)

Fig. 8. Non-stationary response for jacket with Tn = 5[s]. Total response
in (a), low-pass filtered in (b) and high-pass filtered in (c).

frequency is coinciding with the 3ω term from the drag load,
resulting in large excitations. By evaluating the response series,
it has been found that the dynamic extremes occur if 2 or
more large waves follow each other. By contrast, the quasi-
static response is only dependent on the single incident wave.
From the response spectrum we can also observe that the peak
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Fig. 9. Dynamic and quasi-static response spectrum in base shear for jacket
with Tn = 5[s]. Averaged over 40 seeds and low-pass filtered.

loading period is T = 0.97TP in irregular seas, for the present
case. This is due to a very narrow JONSWAP spectrum.

B. Correlation between dynamic and static extremes

As mentioned earlier, there is no guarantee that the extreme
dynamic and quasi-static response will occur for the same wave
incident. To illustrate this, the time-stamp of the extremes for
40 samples for the jacket with a natural period of 5 seconds are
shown in Fig. 10 for reaction overturn moment. The correlation
coefficient between the time-stamps is found to be in the
range 0.22-0.28 for the reaction moment and 0.40-0.60 for
the reaction base shear. This is explained by the fact that the
base shear is directly related to the total wave load, in contrast
to the reaction moment.
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Fig. 10. Correlation between the time-stamp for occurrences of extreme
reaction moment for jacket.

Also, there is some deviation in the relative magnitude of
the responses. That is, a large dynamic response in a sample
does not necessarily mean a large quasi-static response. This
is illustrated in Fig. 11 for the same case as the figure above.

C. Uncertainty estimation

A confidence interval for EDAF can be obtained if the
dependence between dynamic and static extremes is described.
By investigating Fig. 11, we can find that there is a large
probability that the quasi-static extreme is larger than the mean
quasi-static extreme whenever the dynamic extreme is larger
than the mean dynamic extreme (and vice versa). Therefore,
one could say that always taking the mean static value is
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expected to be a conservative choice with respect to DAF.
This method is adopted when the Gumbel and AUR fittings are
used. The Gumbel values are bootstrapped to find a marginal
distribution of the response at each fractile as shown in Fig.
12. Fig. 13 illustrates how the CI is obtained for the AUR
method.

Fig. 12. Gumbel plot in with PDF of bootstrapped values for cylinder with
40 seeds. XY plane is the Gumbel probability paper. The 0.9 fractile level is
marked with a dashed line.
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Fig. 13. AUR with CI for dynamic response of cylinder.

A second method is to find EDAF for each individual pair
of dynamic and quasi-static seed. Then, a 3-parameter Weibull
distribution (eq. (18)) is fitted to the local maxima in each
time-series to obtain the q-probable extreme. This is done by
a least-squares fitting with a weight towards the right tail to
predict extremes more accurately. An example fit is shown in
Fig. 14. And since only 30-40 seeds are used, the Weibull
fittings are bootstrapped to obtain an accurate 95% CI.

F (x) = 1− exp

[
−
(
x− γ
σ

)β]
; σ, β, (x− γ) > 0 (18)

The extreme values are found at a fractile of α =0.9 in the
Gumbel plot for 3 hour simulations. This corresponds to the
30 hour characteristic extreme, and the percentile in a Weibull
plot can be found with eq. (19), where τ is the simulation time
and Nm is the number of local maxima (positive and negative).
In this case α̂ = 0.99994 since τ

Nm
≈ 6.1[s] (≈ T

2 ).

α̂ = 1− τ

Nm

1

30h
(19)
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Fig. 14. 3-parameter Weibull distribution fitted to the tail of base shear
response for cylinder.

VII. RESULTS

A. Cylinder

The EDAF in irregular sea for the slender cylinder in shown
in Fig. 15. The eigenperiod in the estimator is modified to
account for damping and average load period, while added
damping is deduced from the five visible peaks. Further, a MH
DAF function with

∑
kn = 1.1 seems to fit reasonably well,

since the curve is lifted to larger DAF values. It is also seen,
that the harmonics at Ω = 0.25 and 0.20 has to be accounted
for to get a good fit. For the cylinder in Fig. 15, the Young’s
modulus (E [GPa]) is varied to obtain different natural periods.
However, this leads to very large, unphysical displacements
when Ω > 0.5. It was observed a horizontal displacement of
up to 0.3h.

To avoid large displacements, a top-mass varied cylinder
has been used instead. The DAF in irregular seas in shown in
Fig. 16, and the results are similar for Ω < 0.5. Note that the
MH DAF function is not quite able to represent the response
around Ω = 0.6 in Fig. 16 for the stiff cylinder.
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Fig. 15. DAF in base shear for cylinder with Gumbel distribution at α =
0.9. Stiffness varied eigenperiod. k̄ = [0.76, 0.14, 0.10, 0.05, 0.03], ζ̄ =
[0.16, 0.14, 0.09, 0.08, 0.14]
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Fig. 16. DAF in base shear for cylinder with Gumbel distribution at
α = 0.9. Mass varied eigenperiod. k̄ = [0.76, 0.14, 0.10, 0.05, 0.03],
ζ̄ = [0.18, 0.16, 0.16, 0.22, 0.10]

B. Jacket

The results for the jacket base shear and reaction moment
are shown in Fig. 17 and 18, respectively. Fewer, but more
realistic eigenperiods are simulated, with jackets and jack-ups
in mind, but also due to large computational efforts compared
to a single cylinder. As a guidance, Ω = 0.3 corresponds to
an eigenperiod of 4.6 [s], since Tn ≈ Ω · TZ .
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Fig. 17. DAF in base shear for jacket with Gumbel distribution at α =
0.9. 32 seeds at each eigenperiod. k̄ = [0.76, 0.14, 0.06, 0.03, 0.02], ζ̄ =
[0.19, 0.16, 0.15, 0.20, 0.13]

Results show that DAF for the jacket is in general slightly
smaller than for the cylinder. This is most likely due to larger
added damping as a result of cancellation of wave loading on
many surface piercing braces and legs.

EDAF for the jacket reaction moment has been found using
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Fig. 18. DAF in reaction moment for jacket with Gumbel distribution
at α = 0.9. 32 seeds at each eigenperiod. k̄ = [0.88, 0.15, 0.07], ζ̄ =
[0.14, 0.11, 0.09]

both the Gumbel and AUR method. A comparison is shown in
Fig. 19, where is it clear that there are some differences around
Ω = 0.33. This is explained by the increased occurrence
of resonant responses when the eigenperiod of the jacket is
close to three times the load frequency. The AUR method
will then extrapolate these responses, predicting up to 10%
larger response than what is actually occurring in the tail.
The Gumbel method on the other hand, does not recognize
this behavior since it is only evaluating the absolute extreme
response. Sticking to the definition of EDAF, the AUR method
is too conservative when Ω is between 0.3 and 0.4.
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Fig. 19. Reaction moment EDAF for jacket in irregular waves.

C. Uncertainty estimation

With the three mentioned methods for finding a confidence
interval, we obtain the CI in Fig. 20. Here, EDAF is plotted
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Fig. 20. EDAF with CI for cylinder with Tn = 5.0[s]. 40 seeds are used
for each simulation time.



against continuous simulation time, which indicates that a large
amount of data needs to be available for the Weibull method
to approach the Gumbel and AUR results, which seems to be
fairly stable when longer simulation time is accounted for.

The AUR and Gumbel estimated CI is shown in Fig. 21
for eigenperiod varied reaction moment for the jacket. The size
of the CI is comparable to the CI for the cylinder in Fig. 20.
It also seems that the empirical AUR CI estimates the upper
bound for the CI closer to the expected EDAF.
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Fig. 21. Reaction moment EDAF with CI for AUR in (a) and Gumbel method
in (b).

D. Damping coefficients

In Fig. 22, the weight factors and total damping coefficients
for the cylinder and the jacket are plotted. Despite two very
different structures, the fit is quite good. To verify this rela-
tionship, more drag dominated structures should be simulated
in a similar manner. Also, different relations based on structure
type would be preferable, but not done in this case. These curve
fittings will form the basis for the case in the next subsection.
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Fig. 22. Relation between weight factors (k) and damping ratios (ζ) for mass
varied cylinder and jacket.

E. CASE

A small case study has been performed in order to de-
termine if the multi-harmonic DAF function can be used to
predict the dynamic response of a jack-up before full time-
domain simulations are carried out. The jack-up in this case is
an example jack-up located at a water depth of 110[m] and an
air gap of 40[m]. The natural period is 7-8[s] during operation.
It is subjected to full 3 hour simulations with the chosen sea-
state and linear wave theory. The structural damping is the
same as for the cylinder and jacket, about 1.5%. An illustration
of the relatively complex model is shown in Fig. 23.

Fig. 23. Jack-up model in USFOS.
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Fig. 24. DAF for jack-up case, with base shear in (a) and reaction moment
in (b). 32 seeds for each case.

First, weight factors (kn) are found after a wave
load spectrum analysis. They were found to be: k̄ =
[0.73, 0.16, 0.06, 0.03, 0.01]. The equations in Fig. 22 is then



used to find the total damping coefficients (ζ). The MH DAF
line is then plotted, as seen in Fig. 24. Second, analysis are
performed. Even though only linear wave theory are used, the
detailed structure requires almost 12 CPU hours per 3 hour
real-time simulation. For dynamic and quasi-static analysis
with 30 seeds, this means 720 CPU hours, or nearly 4 days
on a PC with 8 cores. In other words, a lot of computational
efforts can be saved if an analytical formulation is available.

The final results are shown in Fig. 24 for five different
eigenperiods. It is seen that the MH DAF function corresponds
surprisingly well to the simulated results for base shear. The
reaction moment deviates more for Ω > 0.6, but the proposed
DAF function is closer than the classical SDOF analogy. As
seen in Fig. 24 (b), it is necessary to adjust the sum of the
weight factors to get a more accurate result.

VIII. CONCLUSION

For full time-domain simulations, it has been shown that a
large amount of data is required to estimate dynamic effects
for a drag dominated structure in extreme, irregular seas. More
specific, a minimum of 30 seeds for 3 hour analyses are needed
if the Gumbel method is used. Slightly fewer seeds can be used
for the AUR method. Both the Gumbel and AUR method are
appropriate to estimate EDAF, but if the results seem to be well
behaved in the tail, a Gumbel analysis is easier to implement
and requires less post-processing. The Weibull method is too
unstable to predict EDAF confidently.

The method of finding weight factors for the MH DAF
function from the wave load spectrum is verified. The factors
are quite similar for both the cylinder and the jacket, and
close to what is used in [2]. The added damping coefficients
however, are depending more on the response mode, reflecting
excitation and cancellation frequencies. It is also confirmed
that a drag dominated structure may experience a significant
dynamic amplification at the 3ω load frequency. This is the
most important effect for the investigated extreme sea-state.
Results also show that the response at 2ω, 4ω and 5ω should
be accounted for to approximate the simulated response. It is
also interesting to see that good curves can be found without
detailed knowledge of the damping at Ω = 1 for a structure
with Ω < 0.6.

A conclusion is made that if reasonable damping coeffi-
cients are chosen, the multi-harmonic DAF function will give a
good estimate for the actual DAF, both in regular and irregular
waves. In regular waves, the total damping coefficients are
fairly close to the structural damping when Ω ≤ 0.5, but
much larger for irregular waves. Using an example jack-up,
results from the fitted MH DAF function for the cylinder
and jacket are put to the test. It does indeed show that an
analytical formulation capturing multi-harmonic effects for a
drag dominated structure is applicable. Taking into account
the uncertainty in the EDAF estimate when simulating in
irregular waves, the MH DAF function may give just as reliable
results as full time-domain simulations. Also, further use of the
classical SDOF DAF function should be discontinued for drag
dominated structures.

Future analyses should include second order wave theory
as the DAF is expected to increase due to ringing events
caused by large, steep waves [3]. In addition, less severe

sea-states could be simulated to investigate whether the same
characteristics are present.
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