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Abstract
In this thesis a hydraulic low pressure winch system has been modeled using bond graph the-
ory. The hydraulic winch system is assumed to be installed on an offshore vessel affected by
environmental forces and disturbances such as waves and currents. The hydraulic system pow-
ering the winch consists mainly of two pilot operated 3/3-directional valves controlled by two
4/3-directional valves and a hydraulic motor. The system also includes a pressure relief valve,
check valves, pump systems, piping and filters, see figure 1.4. The 3/3-directional valves are the
main focus in the model and are therefore modeled with less simplifications compared to the
other subsystems.

A thorough model study has been initiated to figure out the model limitations, sensitivity
of model parameters and the ability to simplify the derived model without loosing essential
dynamics and characteristics. The effects of variable bulk modulus and fluid inertia in the
3/3-directional valves have been studied by comparing different step responses and motor load
characteristics. The observations and results from this model analysis laid the groundwork for
control of the hydraulic motor. A clear relation between the main valve displacements and the
motor velocity and torque in 4/3 valve configuration gave reasons to believe that manual motor
control done by the winch operator through control of the valve displacements was possible.
Adaptive PID controllers were used as inner controllers to control the control slides in the main
valves. These controllers were later on replaced with PD-controllers when outer control was
derived because the adaptive controllers tended to be a bit slow.

Simplified state equations describing the motor dynamics were derived for control design pur-
poses. The state equations extracted from the bond graph model showed high complexity,
containing logic and discrete quantities, and were not suitable for control design. Model based
speed- and torque controllers, based on sliding mode and backstepping control theory, were
derived based on the simplified equations and implemented in the model. Different load cases
were initiated to test the two controllers. A lumped wire-load model containing hydrodynamics,
wire- and reel dynamics and environmental disturbances such as current and heave motions of
the vessel were added in the total winch model to test the controllers in different operations
with varying conditions and environments. The results from these controller tests gave reason
to believe that a combination of these two controllers would be favourable in certain operations
and would give increased safety in extreme cases such as stuck load and loss of load.

The derived speed and torque controller were put into a hybrid controller framework and a
switching algorithm was designed with focus on switching stability and wanted functionalities
for the winch system. It was observed that switching stability and winch functionality were
closely connected and different winch operations were essential in the design of the switching
algorithm. Dwell time and tracking error switching were used as the main controller switching
restrictions together with functionality based switching conditions. Different simulations were
initiated to test the hybrid controller such as stuck load, loss of load and landing of a load at the
sea floor. A Luenberger observer was derived to estimate the motor load and the motor velocity
by using the simplified state equations and the differential pressure across the hydraulic motor
as measurement in order to ensure redundancy in the control system and be able to control the
hydraulic winch even though the decoder measuring the hydraulic motor velocity fails.

Keywords: Hydraulic winch system, bond graph theory, sensitivity analysis, sliding mode,
backstepping, lumped wire-load model, Luneberger observer, winch operations, load landing,
stuck load, loss of load, hybrid controller, switching algorithm, dwell time, Bessel filter.
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Structure of the Thesis

A short description of each chapter is given below together with additional notes and references
in order to help the reader navigate through this document.

Chapter 1. Introduction to the thesis and includes a system description, a section with related
work done by other authors and a short introduction to bond graph theory. For more information
about bond graph theory see Karnopp et al. (2006).

Chapter 2. Modeling of the hydraulic system driving the winch. This chapter is based on
Skjong (2013) and includes all equations necessary to model the hydraulic system using bond
graph theory. Model simplifications are argued for and verified in later chapters. Implementation
issues are not discussed, but relates to the complexity and magnitude of the model and since
the tolerances are set high in the solver, some logic must be implemented to ensure that the
system is solvable. This is done mainly in C-elements and if the results from the integrator get
below a predefined limit it is set to zero.

Chapter 3. Model study of the bond graph model derived for the hydraulic system in chapter
2. Includes comparisons of different step responses of the two 3/3-directional valve models with
different complexity for various load cases. The chapter also includes two model parameter
sensitivity analysis and more are given in Appendix D. A summary of all sensitivity cases are
given in table 3.4.

Chapter 4. First hand control of the hydraulic motor. Contains studies of the relations between
the main valve displacements and the motor velocity and motor torque. The operator is assumed
to do the outer control job, setting the reference positions for the main valves based on velocity
and torque measurements. For inner controller, controlling the control slide positions in the
main valves, adaptive controllers are used (Iwai et al., 2006).

Chapter 5. Precise control of the hydraulic motor. Includes a summary of the simplified state
equations and the resulting control laws derived in Skjong and Pedersen (2014a), see Appendix
B.1. Both the speed controller and the torque controller are tested in two different simulations,
one with constant load and one with varying load.

Chapter 6. Controller testing with lumped wire-load model. The speed- and torque controller
are tested with a more realistic load model. This load model is a lumped wire-load model
containing hydrodynamics, wire dynamics, reel dynamics and environmental disturbances, and
is given in Skjong and Pedersen (2014c) in Appendix B.3. In addition to the given controller
tests, two more are given in Skjong and Pedersen (2014a), see Appendix B.1.

Chapter 7. Hybrid control design. A short introduction to the hybrid controller design given
in Skjong and Pedersen (2014b), see Appendix B.2, is given and one simple controller test is
initiated in addition to the ones already given in the paper. Cases such as landing of load, stuck
load and loss of load are discussed. A Luenberger observer is designed to estimate the motor
velocity and load (Chen, 1998).

Chapter 8. Conclusion and proposed further work. The main results in the thesis are summa-
rized and discussed and suggestions for further studies and work are given.

Appendix A. Work description.
Appendix B. Includes two papers made in this thesis and a paper regarding wire-load model.
Appendix C. Table of parameters used in this thesis.
Appendix D. Additional model parameter sensitivity studies.
Appendix E. Additional plots and case studies.
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𝑥𝑚2 Hydraulic motor velocity, first used in eq. (5.2), page 54 𝑟𝑎𝑑
𝑠

𝑦 General symbol for output signal , first used in eq. (2.20), page 14 −
𝑦𝑠 Valve opening , first used in eq. (1.1), page 2 𝑚2

𝑦ℎ𝑒𝑎𝑣𝑒 Heave position relative to surface , first used in eq. (6.0), page 78 𝑚

𝑧𝑠1 Virtual control, first used in eq. (5.10), page 55 𝑟𝑎𝑑
𝑠

𝑧𝑠2 Virtual control, first used in eq. (5.10), page 55 𝑃𝑎

𝑥̂1 Observed motor velocity , first used in eq. (7.6), page 90 𝑟𝑎𝑑
𝑠

𝑥̂2 Observed differential pressure , first used in eq. (7.6), page 90 𝑃𝑎

𝑥̂3 Observed motor load , first used in eq. (7.6), page 90 𝑁𝑚

𝐾𝐴
𝑑 Derivative gain in adaptive law , first used in eq. (4.3), page 43 𝑉 𝑠

𝑚

𝐾𝐴
𝑖 Derivative gain in adaptive law , first used in eq. (4.3), page 43 𝑉

𝑚𝑠

𝐾𝐴
𝑝 Proportional gain in adaptive law , first used in eq. (4.3), page 43 𝑉

𝑚
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1 | Introduction
In many offshore operations executed from ships highly advanced equipment are used. One
example of such an operation is a ship performing subsea operations. The oil industry offshore
has many examples of such operations. When the offshore oil rush started in earnest in Norway
in 1969, by the finding of the oil reservoir ”Ekofisk”, the marine technological development
accelerated. Maybe too fast, which the offshore divers got to experience first hand. In the
summer in 1971 the oil production from Ekofisk started, which was a bummer for some of the
politicians in Norway who stated that they would drink all oil ever produced in the North Sea.

In addition to drilling technology, subsea operations executed from ships became a money ma-
chine for third parties. Pipelines were to be installed on the sea floor, welded together by divers
who were submerged from ships in diving bells, and high precision installations of ”christmas
trees” at the top side of the oil wells, preventing blow-outs and oil pollutions. The hard competi-
tion for the contracts drove the technological development even further. Now, the technological
development has lead to perfection of systems such as dynamic positioning, DP, and heave
compensated systems.

In every subsea operations performed by surface vessels, a winch system is more or less used. The

𝑧𝑔 𝑥𝑔
𝑦𝑔

Figure 1.1: Ship in a marine operation affected by waves.

leading winch designs are either electrical driven or hydraulic powered systems. Electric driven
winches are compact designs where an electrical motor, such as a permanent magnet motor,
drives the reel where the wire is stored. The electrical motor is directly connected to the reel,
which is placed on deck, and must be well designed in order to withstand the harsh environment
such as sea water and large changes in temperature. The electrical motor is powered through
the power management system in the vessel, PMS, and is controlled through a transformer to
enable different hoisting or lowering velocities and tensions. The PMS must be well designed in
order to handle large power peaks. It is also often necessary to have large gear ratios between
the motor and the reel which would lead to large inertia forces that gives challenges in fast and
precise winch control.

The hydraulic powered winch design is larger since pipelines, pumps and valves are part of the
design. The pumping system is often placed below deck and connected to a hydraulic motor
on deck which drives the reel with the stored wire. The reel velocity and torque are controlled
trough valves which enables the usage of constant speed hydraulic pumps powered by the PMS.
The hydraulic winch system is easier to control in lowering winch operations than the electrical
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Chapter 1. Introduction

winch system, which has to have separate brakes or an electrical system consisting of resistors
that can dissipate the power generated in such operations.

The hydraulic system is often either a high pressure system or a low pressure system. In a high
pressure system less flow is required compared to the low pressure system, but the pressure is
larger compared to a low pressure system. In this thesis a low pressure hydraulic winch system
is to be studied. The work description regarding this thesis is given in Appendix A.

1.1 Introduction to the Hydraulic System

The low pressure hydraulic system that is to be studied in this thesis is a classical and well
known hydraulic system where a hydraulic motor is controlled by one or more valves. Low
pressure is relative, but here it is meant to be below 100 bars. Usually a 4/3-directional valve
is used in such systems but here two 3/3-directional valves are used instead. The reason for
this is that it enables more control settings and by controlling the two valves opposite of each
other they will together act as one 4/3-directional valve, which will be in focus in this study.
The 3/3- and 4/3-directional valve get their names from the number of inputs and outputs, the
number of valve settings and the opening or flow characteristics. A 3/3 valve has together 3
inputs and outputs and has 3 valve settings, a 4/3 valve has in total 4 inputs and outputs and
3 valve settings. The word ”directional” may be a little vague but it refers to the ability to
direct flows in different directions. Often ”proportional” is used wrongly as a synonym for this
type of valves. The word proportional says something about the valve opening characteristics.
By moving the valve a given distance, lets say 𝑥𝑠, the valve opening area is 𝑦𝑠 and there is a
proportional relationship between 𝑥𝑠 and 𝑦𝑠. If the valve opening is rectangular the relationship
is given as

𝑦𝑠 = ℎ𝑥𝑠 (1.1)

where ℎ is the height of the rectangular opening.

Figure 1.2 shows a sketch of a 3/3-directional valve (1.2a) and a simplified 3/3-directional valve
symbol (1.2b).

𝐴

𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑇𝑃

(a) Valve sketch.

𝐴

𝑇𝑃

(b) Simplified valve symbol.

Figure 1.2: 3/3 directional valve.

Often the valve symbol has a spring and an extra arrow at one of the short sides to indicate
that it has a centring spring and is controllable respectively. For comparison figure 1.3 shows a
4/3 directional valve.

As can be seen from figure 1.3a there is five inputs and outputs in total, but since two of them
are equal, the T ports, the valve is still a 4/3-directional valve. This means that the number of
inputs and outputs must be unique in the naming convention. The port 𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙 in the figures
is the control force applied to the valve in order to control the valve displacements and thereby
the valve opening. For small valves this force can be generated through a magnetic field with
voltage as control actuation. This is referred to as a solenoid operated valve where the moving
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𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑇𝑇 𝑃

𝐵𝐴

(a) Valve sketch.

𝐴 𝐵

𝑇𝑃

(b) Simplified valve symbol.

Figure 1.3: 4/3 directional valve.

part in the valve is the plunger with wire windings wrapped around generating the magnetic
field. For larger valves the strength of the magnetic field must be large in order to generate
enough force to control the valve opening with a fast enough response. Thus large valves is
often controlled mechanically or hydraulically. For hydraulic controlled valves another valve is
required to direct the pilot flow to each side of the main valve. This pilot valve is smaller and
can therefore be solenoid operated. This also means that the main valve is controlled through
a pilot valve. The 3/3-directional valves that are studied her are of the pilot operated type and
figure 1.4 shows a schematic overview of the total system.

Figure 1.4: Model overview.

The 3/3-directional valves are given in the figure as 3/3 directional valve symbol and double
rodded pistons. These pistons, the moving parts in the valves, are often referred to as the control
slides. As the figure shows there are springs inside control slides. These symbolizes centring
springs that centres the control slides if the pilot pressure is lost. There are also two check-valves
for each main valve, one connected to the pressure line to prevent fluid flow from the motor to
the main pump if the load is large, and the other connected to the return line to prevent the
delivered pressure to be lower than the tank pressure.
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The pilot valve directs the pilot flow from the HPU, Hydraulic Power Unit, to control the main
valve. There are also check-valves on these pressure pipelines.
In the lower left corner in the figure there is a 3/2-directional valve and a pressure relief valve.
The 3/2-directional valve directs the highest pressure of the two motor sides to the pressure
relief valve. The relief valve makes sure that the pressure in the main system doesn’t get too
large, only a few bars higher than the motor loading pressure.

1.2 Related Work

Hydraulic systems have been studied in academia since its origin and there exist many references
for related work containing directional valves. Hydraulic systems for controlling a winch is only
one area of usage, but all systems including valves are based on the same dynamics and the
goal is often to control the system through these valves. However the main focus is often either
modeling for control purposes or precise modeling for benchmarking.

In Yang et al. (2012) a solenoid operated directional valve is modeled using bond graph the-
ory and includes a thoroughly model parameter sensitivity analysis using simple voltage step
responses. The results show that the valve response is really fast and is expected to be much
faster than the main valve responses in the hydraulic winch power system given in figure 1.4.
This gives reason to believe that the solenoid operated pilot valves in the hydraulic system can
be assumed ideal and the dynamics may be modeled as a second order transfer function, as a
simplification.

The flow and pressure through the valves are the main contributors for changing the valve
dynamics. That is why it is important to model the losses in valves properly. In Borutzky et al.
(2002) an orifice flow model for laminar and turbulent conditions are studied. This was also
done in Skjong (2013) and in this thesis only turbulent flows are assumed since the error by
excluding laminar flow from the model showed to be negligible. However CFD analysis should
be performed in order to determine the flow coefficients and flow force coefficients as functions of
valve displacement. In this thesis these coefficients included in the model are assumed constant.
Later on it is easy to include variable coefficients if such data are available.

The directional valves are used in various systems. Many related studies show the use of a direc-
tional valve in positioning a piston, a servo, a load or in pressure compensation systems. In Kim
et al. (2010) a high gain observer based nonlinear position control for electro-hydraulic servo sys-
tems are studied and in Lei et al. (2013) sliding mode control in piston control for asymmetrical
hydraulic cylinder with connected chambers are studied. In these papers the models are derived
for control purposes and show that linear control theory does not give satisfying performance.
That is why model based control laws such as sliding mode control, observer based control and
backstepping control often are used. This is also elaborated in Çetin and Akkaya (2010) and
the conclusion is that the PID-controller used is working around its set-point, but the accuracy
decreases outside this region and there is no guarantee that the system remains stable.

When it comes to control of hydraulic winches there are many related studies that look at
specific winch operations such as lowering a load from air into water. In Küchler and Sawodny
(2010) a control algorithm for lowering or hoisting a load in the water entry phase is studied.
Two controllers are used, one for trajectory tracking and stabilization and one for compensation
of the environmental disturbance given from measurements. The measurements are affected by
time delays and a feed forward is used to minimize this effect. In Küchler et al. (2011) active
control for an offshore crane using prediction of the vessel’s motion is studied. The vessel’s
motion is measured and wave spectrum analysis including wave frequency peak detection is
initiated to predict the vessels motion. These two studies are closely related to the scope of this
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thesis. On the contrary, this thesis should focus more on the modeling of the winch system and
how simple model based controllers can act together to minimize the environmental disturbances
using only simple measurements.

As a summary, related work show that valve dynamics are complex and dependent on flows and
pressures in the system. These dynamics are nonlinear and must be included in the model to
get realistic responses. If the system is to be controlled through valves, nonlinear control theory
should be considered to obtain a satisfying system performance.

1.3 Introduction to Bond Graph Theory

To model the hydraulic system bond graph theory is used. In Karnopp et al. (2006) a bond
graph is said to simply consists of subsystems linked together by lines representing power bonds.
Since power is the product of flow and effort in a system the power bonds relate subsystems to
each other with efforts and flows. The definition of effort and flow may vary from system to
system, but the product, the power, is always the same. In a hydraulic system the effort is given
as pressure and the flow is given as the fluid flow. In a mechanical system however the effort is
given as force and the flow is given as velocity. By multiplying the effort and the flow,

𝑃 = 𝑝𝑄̇ = [𝑃𝑎] ·
[︃

𝑚3

𝑠

]︃
=
[︂
𝑁

𝑚

𝑠

]︂
(1.2a)

𝑃 = 𝐹𝑣 = [𝑁 ] ·
[︂

𝑚

𝑠

]︂
=
[︂
𝑁

𝑚

𝑠

]︂
(1.2b)

we see that the power is the same. The effort and flow are shortened to e and f respectively.
By describing the efforts and the flows between subsystems one can determine the interaction
between the subsystems. Figure 1.5 shows a principal sketch of how subsystems are connected
through power bonds. The direction of the half-arrow gives the direction for the effort, and

Figure 1.5: Power bond connecting subsystem A and B.

the flow goes in the opposite direction. If subsystem A and B were mechanical systems a force
from subsystem A is applied to subsystem B and as a counteraction a velocity is given back to
subsystem A from B. Or, subsystem B gives a velocity to subsystem A and gets a responsive
force in return.

In bond graph theory different building blocks are used. These are summarized in table 1.1.
Both the 𝑆𝑒 and 𝑆𝑓 elements are sources, effort and flow respectively. If hydraulics are modeled
then 𝑆𝑒 is a pressure source and 𝑆𝑓 is a fluid flow source. The 𝑅 element is describing energy
dissipation like friction forces or viscous forces. It can also be used to model valves as seen later
on. The 𝐶 element describes the stored energy in the system, like a spring in a mechanical
system or an accumulator in a hydraulic system. Inertia in a mechanical system or an inductor
in an electrical circuit is given as a 𝐼 element. Transformation of efforts and flows between
subsystems is usually done by using a 𝑇 𝐹 element. To sum different contributions of effort the
1-junction is used and to sum different contributions of flow the 0-junction is used. There is
also one more basic element that is not included in the table. This is the gyrator element, 𝐺𝑌
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that transforms flows to efforts and vice versa. This element can be associated with a generator
that gets a rotational velocity, a flow, and transforms it to voltage, an effort.

Table 1.1: Some basic bond graph elements used.

Symbol Relation

𝑆𝑒 𝑒 = 𝑒(𝑡), given
𝑆𝑓 𝑓 = 𝑓(𝑡), given

R 𝑒 = Φ𝑅(𝑓)
R 𝑓 = Φ−1

𝑅 (𝑒)
C 𝑒 = Φ−1

𝐶 (
∫︀ 𝑡

0 𝑓𝑑𝑡)
C 𝑓 = 𝑑

𝑑𝑡 [Φ𝐶(𝑒)]
I 𝑓 = Φ−1

𝐼 (
∫︀ 𝑡

0 𝑒𝑑𝑡)
I 𝑒 = 𝑑

𝑑𝑡 [Φ𝐼(𝑓)]

𝑇𝐹
1 2 𝑒1 = 𝑚𝑒2

𝑓2 = 𝑚𝑓1

𝑇𝐹
1 2 𝑒2 = 1

𝑚𝑒1
𝑓1 = 1

𝑚𝑓2

1
𝑒1

𝑓1

𝑒2 𝑓2

𝑒3

𝑓3 𝑒1 − 𝑒2 − 𝑒3 = 0
𝑓1 = 𝑓2 = 𝑓3

0
𝑒1

𝑓1

𝑒2 𝑓2

𝑒3

𝑓3 𝑒1 = 𝑒2 = 𝑒3
𝑓1 − 𝑓2 − 𝑓3 = 0

In bond graph theory only two of the basic elements are candidates for state generation. A state
is a variable that is unique and can describe the dynamics in a system. The states describe
the dynamics in a system through differential equations. From physics we know that a one
dimensional mass-damper-spring system has the position and the velocity as states if only first
order differential equations are used. By modeling a mass-damper-spring system using bond
graph theory a 𝐶, 𝐼 and a 𝑅 element are used together with 0-junctions, 1-junctions, 𝑆𝑒 and/or
𝑆𝑓 elements. To get the same states from a bond graph we know that one of the elements must
describe the position and one must describe the velocity. Since the 𝑅-element only describes
dissipation of energy it can not contribute to any states. This means that the 𝐶-and 𝐼-elements
must give the system states. Then it is not surprising that the 𝐶 element gives the displacement
and the 𝐼-element gives the momentum,

𝑞 =
∫︁ 𝑡

0
𝑝.𝑓𝑑𝑡 (1.3a)

𝑝 =
∫︁ 𝑡

0
𝑝.𝑒𝑑𝑡. (1.3b)

A well known syntax in graph theory is that 𝑝.𝑒 is the effort, 𝑝.𝑓 is the flow, 𝑞 is the state from
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the 𝐶 element and 𝑝 is the state from the 𝐼 element. To finish the mass-damper spring system,
see figure 1.6, we may write the states as

𝑞 = 𝑝

𝑚
(1.4a)

𝑝̇ = −𝑘𝑞 − 𝑏
𝑝

𝑚
+ 𝑚𝑔 (1.4b)

By defining 𝑥1 = 𝑞 and 𝑥2 = 𝑝
𝑚 we can rewrite the differential equations as

𝑥̇1 = 𝑥2 (1.5a)
𝑚𝑥̇2 = −𝑘𝑥1 − 𝑏𝑥2 + 𝑚𝑔 (1.5b)

which is the well known one dimensional mass-damper-spring system of differential equations.
The mass-damper-spring system is important in dynamics since almost every physical system
can relate to it.

(a) Model sketch. (b) Bond graph.

Figure 1.6: Mass-damper-spring system.

By taking a closer look at figure 1.6b small lines orthogonal to each power bond can be seen.
This is the causality mark and gives the direction of the effort. The different causality mark and
the associated equations are also given in table 1.1. For the 𝑆𝑒- and 𝑆𝑓 -element the causality
mark is located at the half arrow tip and the opposite end of the arrow tip respectively. In other
words the causality of these elements is predetermined. For the 𝐶- and 𝐼-element the causality
mark is important and is given as integral causality, as in figure 1.6b or differential causality
which is opposite of the marks given in the figure. To get states from the 𝐶- and 𝐼-elements
integral causality is required. This is also the mode physics appears in real life, but by using
simplified models we may come in touch with differential causality. Since almost every model
is simplified it is quite usual that differential causality appears. In practise some tricks can be
applied to restore integral causality in the model. If not, the elements with differential causality
are not unique and must be described by other states. Another phenomenon is algebraic loops.
These appear when causality can’t be assigned uniquely. The 𝑅-element can have the causality
mark at both ends of the half arrow tip, only one at a time though. When an algebraic loop
appears the two elements that causes the algebraic loop must be related to each other as a
constraint.

When modeling using the software 20Sim both differential causalities and algebraic loops are
solved by the program, but when abstracting the differential equations from the bond graph
model, which is the beauty of using bond graph theory, one must solve these manually. For
more information about bond graphs the book by Karnopp et al. (2006) is recommended. A

Master Thesis Page 7



Chapter 1. Introduction

more thorough description of the hydraulic system is given in the following chapters. The next
chapter takes the aim at modeling the presented hydraulic system in order to be able to design
relevant control laws for controlling the hydraulic motor in various settings and environments
later on.
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2 | Modeling Hydraulic System
The hydraulic system that is to be modeled has been presented in figure 1.4 and a short de-
scription has been given in chapter 1. To model a system of this size it is important to have a
clear understanding of the purpose and the limits of the model that is to be developed. This
is important not only because of the workload but also the complexity and the time it takes
to solve the model in simulations. A model developer usually wants the model to converge to
the physical system with high accuracy, but also that the model is fast to solve. These wishes
are often contradictions since an accurate model often has a high level of complexity and thus
is slow in simulations and a fast model often has a low level of complexity and thus is not that
accurate. To be able to develop a model that is fast enough and has an accuracy within a certain
required limit, the purpose with the model must be reviewed. The purpose of the model for the
hydraulic system is to be able to reproduce the main dynamics as fast as possible and be able to
make control laws for controlling the system. This means that the model must at least catch the
slower dynamics in the system with high accuracy. This gives room for assumptions and simpli-
fications when modeling. These assumptions and simplifications will be stated and argued for as
they come. The bond graph model is based on the results from previous work, see Skjong (2013).

As a modeling strategy the line of control is followed, starting with the pilot valve, then the
main valve and so on.

2.1 Pilot Valve

The pilot valve is assumed to be solenoid operated and receives voltage as input. The dynamics
of such a valve are relative fast compared to other dynamics in the system and therefore it is
reasonable to do simplifications to save simulation time without loosing too much accuracy. In
Yang et al. (2012) a bond graph model of a solenoid operated 4/3 directional valve was developed
where all reasonable effects were taken into account. As seen the response of such a valve is fast
but also complex. For the system given in figure 1.4 it is assumed that the dynamics of the pilot
valve can be given as a mass-damper-spring system, as given in (1.5), except that 𝑚𝑔 is changed
to 𝑢, where 𝑢 is a control input. This simplification is reasonable since the pilot valve has fast
dynamics and the contribution to the total model error should be small. This set of first order
differential equations can be written as a transfer function,

𝐻𝑝(𝑠) = 𝑥(𝑠)
𝑢(𝑠) = 1

𝑚𝑠2 + 𝑏𝑠 + 𝑘
(2.1)

or
𝐻𝑝(𝑠) = 𝐾𝜔2

𝑠2 + 2𝜁𝜔𝑠 + 𝜔2 (2.2)

where 𝜔2 = 𝑘
𝑚 = 𝑓24𝜋2, 𝐾 = 1

𝑘 and 𝜁 = 𝑏
2

√︁
1

𝑚𝑘 . For a solenoid operated valve the input is
transformed from voltage to magnetic force which moves the valve spool. In the simplified model
we may assume that the valve input is limited between ±10 V. This means that the pilot valve
is fully open in positive direction when the input is 10 V and fully open in negative direction
when the input is -10 V after a short period of time due to the pilot dynamics. In bond graphs
the pilot valve is given as in figure 2.1. As the figure shows the pilot valve dynamics are added
to the input signal to the valve. Port P and T is the HPU pressure, tank pressure or return
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Figure 2.1: Bond graph model of pilot valve.

pressure respectively. Port A and B are the two outputs from the valve. The settings are the
same as shown in figure 1.3. Each MR-element is programmed to open in a certain range within
the input signal. The flow through each MR element is given as

𝑄 = sign(Δ𝑝)𝐶𝑑(𝑟)𝐴𝑖(𝑟)
√︃

2
𝜌

|Δ𝑝| (2.3)

where 𝑟 is the output signal from the transfer function, 𝐶𝑑(𝑟) is the flow coefficient that may be
dependent on the valve position, 𝐴𝑖(𝑟) is the opening area, 𝜌 is the pilot fluid density, 𝑄 is the
flow of hydraulic fluid and Δ𝑝 is the differential pressure across the valve. This equation can be
derived from Bernoulli’s equation. 𝐴𝑖(𝑟) is given as

𝐴𝑖(𝑟) = limit(𝑎𝑟

10𝐴𝑚𝑎𝑥, 0, 𝐴𝑚𝑎𝑥) (2.4)

where 𝑎 = 1 for the MR-elements PA and BT, 𝑎 = −1 for PB and AT and 𝐴𝑚𝑎𝑥 is the maximal
valve opening area. There are also flow forces acting on the valve, both static and transient flow
forces. These are assumed small and negligible since the pilot valve dynamics are simplified. It
is also assumed that there is no leakage, or at least that it is negligible. In 20Sim the pilot valve
model is implemented as a submodel with its own symbol as given in figure 2.2.

Figure 2.2: Symbol for pilot valve in bond graph model.
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The next system to model is the main valve, the 3/3 directional valve.

2.2 3/3-Directional Valve

To model the 3/3-directional valve the same approach as used when modeling the pilot valve can
be applied. However instead of using a transfer function to describe the valve dynamics bond
graph elements should be used. The reason for this is because this gives more options and gives
the ability to include more complexity in the model. As for the pilot valve the main valve can
be divided into two submodels, one describing the valve dynamics and the other describing the
flow through the valve. These two submodels are not connected by power bonds but by signals.
To elaborate this, it is known that the control slide position determines the opening area in the
valve and thus the flow through it can be determined if the pressures are known. This gives a
signal from the submodel describing the valve dynamics to the submodel describing the flow.
However there should also be signals from the flow model to the valve dynamics giving the flow
forces acting on the control slide.

2.2.1 Valve Dynamics

Starting with the model describing the valve dynamics there should be a connection between
the pilot valve and the main valve delivering the pilot flow through pipes. These pipes have
some viscous losses that should be included in the model. These viscous losses are given as

𝑝𝑙𝑜𝑠𝑠 = 1
2𝑓𝑝𝑙𝜌

𝐿𝑝

𝐷𝑝𝑖
|𝑄|𝑄 (2.5)

where 𝑓𝑝𝑙 is the loss factor, 𝐿𝑝 is the length of the pipes and 𝐷𝑝𝑖 is the inside diameter of the
pipes. Also control cylinder accumulation and fluid inertia in the pipes could be included, but
these contributions are also assumed small. For the sake of it, the fluid inertia in the pipes
connecting the pilot valve and the main valve and the cylinder accumulation are included in
the model to check the validity of the assumption to be able to exclude them. The cylinder
accumulations are modeled as C-elements where

𝑝 = 𝛽𝑣𝑄

𝑉0 ± 𝐴𝑠𝑥𝑠
+ 𝑝0 (2.6)

and where 𝑝 is the pressure in the volume, 𝛽𝑣 is the pressure dependant bulk modulus of the
hydraulic fluid, 𝑉0 is the initial volume, 𝐴𝑠 is the area of the control slide and 𝑝0 is the initial
pressure.

The variable bulk modulus (McCloy and Martin, 1980) used in the model is given as

1
𝛽𝑣

= 1
𝛽ℎ

+ 1
𝛽𝑓

+ 𝑛

1.4𝑝
(2.7)

where 𝛽ℎ is the bulk modulus for the pipeline, or the valve housing, 𝛽𝑓 is the constant bulk
modulus for the hydraulic fluid and 𝑛 = 𝑉𝑔

𝑉𝑓
is the volume ratio of gas (air) and fluid. As can be

seen from (2.6) and (2.7) they are both dependent on each other, so iterations must take place
which will cause the solving time in simulations to increase. The fluid inertia is modeled as an
I-element,

𝑄 =
∫︀ 𝑡

0 Δ𝑝

𝐼𝑓
𝑑𝑡 (2.8)
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where 𝐼𝑓 = 4𝜌𝐿𝑝

𝐷2
𝑝𝑖𝜋

. Also some fluid volumes are necessary to include in the model to obtain
integral causalities. These volumes are also modeled as C-elements,

𝑝 = 𝛽𝑣
∫︀ 𝑡

0 𝑄𝑑𝑡

𝑉0
+ 𝑝0. (2.9)

The pilot pressure gives forces on both sides of the control slide which means that the effort is
changed from pressure to force before interacting with the main valve dynamics. This transfor-
mation is done by using a TF-element in bond graph theory with equations given as in table
1.1 where 𝑚 = 𝐴𝑠 and where 𝐴𝑠 is the control slide Area. The main valve also has a centring
spring, centring the control slide to the zero position if pilot pressure is lost. In the zero position
there is no flow through the valve. The spring is also pre-compressed, which means that there
is a discontinuity at zero position. This can be solved by modeling the spring forces as

𝐹 = 𝑘𝑠𝑥𝑠 + 2𝑘𝑠𝑥𝑠0
𝜋

arctan(𝑥𝑠𝑠) (2.10)

where 𝑘𝑠 is the spring stiffness, 𝑥𝑠 is the control slide position, as before, and 𝑠 is a parameter
describing the slope in the arctan(·) function. Also some viscous and friction losses are present
acting on the control slide. These are assumed to be given as a second order function and by
using an R-element the dissipative force can be expressed as

𝐹 = 𝑝𝐿1|𝑥̇𝑠|𝑥̇𝑠 + 𝑝𝐿2𝑥̇𝑠 (2.11)

where 𝑝𝐿1 and 𝑝𝐿2 are loss constants. Another phenomenon called hydraulic cylinder stiction
can in some cases be relevant to include in the model. If the seals in the valve are tight and
stiff and the hydraulic fluid is thick the stiction would be relevant and could be included as a
coulomb friction. However this is not included in this model because the stiction contribution is
assumed small and negligible. It is assumed that there always is an oil film between the control
cylinder and the valve housing that never gets broken. To finish the valve model control slide
inertia is included as an I-element and flow forces acting on the control slide as an MSe-element
where a static flow force is given as

𝐹 = 𝑘𝑓 (𝑥𝑠)𝑄2𝜌

𝜋𝐷𝑠𝑥𝑠
(2.12)

where 𝑘𝑓 (𝑥𝑠) is a flow force coefficient, that could be dependent on the control slide displacement,
describing the magnitude of the flow force and can be found from CFD analysis, 𝐷𝑠 is the control
slide diameter and is the height of the valve opening and 𝑄 is the flow through the valve. This
equation can also be written as an ordinary equation describing the drag force,

𝐹 = 1
2𝜌

𝑄2

𝜋𝐷𝑠𝑥𝑠
𝐶𝑑 (2.13)

where
𝑘𝑓 (𝑥𝑠) = 1

2𝐶𝑑 (2.14)

and where 𝐶𝑑 is a flow coefficient that may be dependent on the control slide position. There
are also transient flow forces acting on the control slide but these are assumed small compared
to the inertia forces and is therefore neglected.
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2.2.2 Flow Model

The flow forces acting on the control cylinder have already been discussed but the flow through
the valve has to be included in the model. When the flow opens from P to A, see figure 1.2, then
𝑥𝑠 is positive. Since there is a check valve between the valve and the pump pressure line the
flow can be assumed to only go from P to A and never from A to P. This simplifies the model
because the check valve doesn’t need to be included further when modeling. One important
assumption when neglecting the check valve is that the dynamics are fast and the valve closes
almost instantaneously if the pump pressure drops below the pressure at port A.

There can also be an overlap in the valve, a dead band. This means that the flow through the
valve can be written as

𝑄 =
{︃

𝑄(𝑥𝑠) for 𝑥𝑠 > 𝑥𝑜𝑙𝑎𝑝

0 else

}︃
(2.15)

where 𝑥𝑜𝑙𝑎𝑝 ≥ 0 is the overlap and

𝑄(𝑥𝑠) =
{︃

𝛼(𝑥𝑠)(𝑥𝑠 − 𝑥𝑜𝑙𝑎𝑝)𝜋𝐷𝑠

√︁
2
𝜌Δ𝑝 for Δ𝑝 > 0

0 else

}︃
(2.16)

where 𝛼(𝑥𝑠) is a flow coefficient that may be dependent on the control slide position. For the
flow between port A and port T there is no check valve so it may flow both ways. This gives

𝑄 =
{︃

−𝛼(𝑥𝑠)sign(Δ𝑝)(𝑥𝑠 + 𝑥𝑜𝑙𝑎𝑝)𝜋𝐷𝑠

√︁
2
𝜌 |Δ𝑝| for 𝑥𝑠 < −𝑥𝑜𝑙𝑎𝑝

0 else.

}︃
(2.17)

Also for the main valve it is assumed no leakage, both exterior and interior.

There are also two more check valves, one for the HPU pressure line and one to prevent the
pressure at port A to be below the tank pressure. Since these check valves have fast dynamics
they are only considered as open or closed. The flow through them are given as

𝑄 =
{︃ √︁

Δ𝑝
𝑘𝑐

for Δ𝑝 ≥ Δ𝑝𝑠𝑒𝑡

0 else

}︃
(2.18)

where 𝑘𝑐 is a design parameter. If the valve settings (closed/open) causes simulation problems
then a first order transfer function can be used to give the valve some dynamics. Then

𝑄𝐹 =
∫︁ 𝑡

0

𝑄 − 𝑄𝐹

𝜏
𝑑𝑡 (2.19)

where 𝜏 is a time constant and 𝑄𝐹 is the flow after filtered through the first order transfer
function and 𝑄 is as given in (2.18).

2.2.3 Bond Graph Model

The bond graph model of the pilot valve and the main valve is given in figure 2.3, both with
and without cylinder accumulation and fluid inertia.

As an addition to what already mentioned, a position controller for the main valve, a velocity
limitation function for the reference signal, sampling blocks and a ZOH-block (Zero-Order-Hold),
are implemented. The velocity limitation function is just a first order transfer function,

𝑦(𝑠) = 𝑉𝑚𝑎𝑥

𝑠 + 𝑉𝑚𝑎𝑥
𝑟(𝑠). (2.20)

Master Thesis Page 13



Chapter 2. Modeling Hydraulic System

Figure 2.3: Bond graph model of 3/3-directional valve.

Since the transfer function may add a bias to the tracking error a PI-controller is implemented.
This gives

𝑒𝑝 = 𝑟𝑘−1 − 𝑦𝑘−1 (2.21a)

𝑒𝑖 =
∫︁ 𝑡

0
𝑒𝑝𝑑𝑡 (2.21b)

𝑦(𝑘) =
∫︁ 𝑡

0
(𝐾𝑝𝑒𝑝 + 𝐾𝑖𝑒𝑖 − 𝑦𝑘−1)𝑉𝑚𝑎𝑥𝑑𝑡 (2.21c)

where 𝑒𝑝 and 𝑒𝑖 are errors, 𝐾𝑝 is the proportional gain, 𝐾𝑖 is the integral gain, 𝑟 is the input
and 𝑦 is the output from the velocity limitation function respectively and 𝑉𝑚𝑎𝑥 is the maximal
slope of the reference signal allowed.

The sampling block turns analogue signals into digital signals with a sampling time 𝑇𝑠. The
sampling boxes may also have a fixed sampling delay, 𝑇𝑑. The zero-order-hold block turns the
digital signals into analogue signals.

The position controller controls the position of the control slide according to given reference
signals. For simplicity this inner controller is set as a P-controller for now. To simplify the
global bond graph model, the bond graph given in figure 2.3 is put into a submodel with its own
icon given in figure 2.4.

Master Thesis Page 14



Chapter 2. Modeling Hydraulic System

Figure 2.4: Main valve icon.

The next system to model is the hydraulic motor.

2.3 Hydraulic Motor Model

The hydraulic motor used here is a one cambered hydraulic motor with fixed displacement. The
motor is driven by the differential pressure, the difference in pressure between the pressures
delivered by the main valves. Such a motor almost always has an internal leakage that needs to
be included in the model and a variable gear ratio given by the characteristics of the hydraulic
fluid. Friction and viscous losses should also be included.

Starting with the inertia of the motor the rotating parts of the motor as well as the rotating
fluid should be considered. Since the bulk modulus is variable the mass of the fluid inside the
motor is varying, but this variation is considered small and negligible.

The friction losses include two parts, static friction and lubricated friction. The static friction
is only present when the motor speed is zero and the lubricated friction is only present when
the motor rotates. These effects is in Pedersen and Engja (2010) expressed as

𝐹 = 𝐹𝑠

(︂
𝜇𝑠 tanh(𝜔𝑚𝑠) − 1

2(𝜇𝑠 − 𝜇𝑐) tanh
(︂

𝑠

(︂
𝜔𝑚 − 𝑐

𝑠

)︂)︂
+ 1

2(𝜇𝑐 − 𝜇𝑠) tanh
(︂

𝑠

(︂
𝜔𝑚 + 𝑐

𝑠

)︂)︂)︂
+ 𝐹𝑠𝜇𝑣𝜔𝑚

(2.22)

where 𝜔𝑚 is the hydraulic motor velocity, 𝐹𝑠 is the static friction, 𝜇𝑠, 𝜇𝑐 and 𝜇𝑣 is the static,
coulomb and viscous friction coefficient respectively and 𝑠 is a slope parameter in the friction
function. The internal leakage is proportional to the differential pressure,

𝑄 = 𝐺Δ𝑝, (2.23)

where 𝐺 is the leakage parameter, also called conductance of laminar resistance, and Δ𝑝 is the
differential pressure.

To finish the hydraulic motor model transformations between pressure and torque and fluid flow
and angular rate are needed. These transformations are given as

𝑄 = 𝑖 · 𝜔𝑚 (2.24a)
𝑇𝑚 = 𝑖 · 𝑝 (2.24b)

where 𝑇𝑚 is the hydraulic motor torque and 𝑖 is the transformer modulus and is given as

𝑖 = 𝑓𝑚
𝐷𝑚

2𝜋
(2.25)

where 𝐷𝑚 is the displacement of the motor and 𝑓𝑚 is a factor describing a simplified fluid
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characteristic, 0 ≤ 𝑓𝑚 ≤ 1, and is given by algorithm 1 (Controllab, 2014). 𝑝𝐴 is the pressure
at side A of the motor (hoisting side), 𝑝𝐵 is the pressure at side B of the motor (lowering side,
Δ𝑝 = 𝑝𝐴 −𝑝𝐵), 𝑝𝑣𝑎𝑝 is the vapour pressure for the hydraulic fluid and 𝑝𝐴,𝑠 and 𝑝𝐵,𝑠 are variables
used in the algorithm. This fluid characteristics describes the gear ratio which is dependent on
the pressure. For pressures equal to or lower than the vapour pressure, 𝑝𝑣𝑎𝑝, the motor will
experience cavitation and will not generate any torque.

Algorithm 1 Calculating 𝑓𝑚 (Controllab, 2014)
𝑝𝐴,𝑠 = 1 − 𝑝𝐴

𝑝𝑣𝑎𝑝

𝑝𝐵,𝑠 = 1 − 𝑝𝐵
𝑝𝑣𝑎𝑝

if 𝜔𝑚 > 0 and 𝑝𝐴,𝑠 < 0 then
𝑓𝑚 = 0

else
if 𝜔𝑚 > 0 and 𝑝𝐴,𝑠 < 1 then

if 𝑝𝐴,𝑠 < 0.5 then
𝑓𝑚 = 2𝑝2

𝐴,𝑠

else
𝑓𝑚 = 4𝑝𝐴,𝑠 − 2𝑝2

𝐴,𝑠 − 1
end if

else
if 𝜔𝑚 < 0 and 𝑝𝐵,𝑠 < 0 then

𝑓𝑚 = 0
else

if 𝜔𝑚 < 0 and 𝑝𝐵,𝑠 < 1 then
if 𝑝𝐵,𝑠 < 0.5 then

𝑓𝑚 = 2𝑝2
𝐵,𝑠

else
𝑓𝑚 = 4𝑝𝐵,𝑠 − 2𝑝2

𝐵,𝑠 − 1
end if

else
𝑓𝑚 = 1

end if
end if

end if
end if

The finished bond graph model for the hydraulic motor is given in figure 2.5. The port Load in
the bond graph gives the motor loading. The bond graph model is put into a submodel with its
own icon shown in figure 2.6. As the figure shows two volumes have been added, one on each
side of the motor. The reason for adding these volumes is to obtain integral causality in the
model. These volumes also have variable bulk modulus, which are given as before in (2.7) and
(2.9). The figure also shows that an effort source has been added to the submodel describing
the motor loading. For more thorough controller testing later on a more realistic model of the
motor loading should be implemented than an effort source, describing the wire, reel and loading
dynamics.

The next part to include in the model is the pressure compensator.
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Figure 2.5: Bond graph model of hydraulic motor.

Figure 2.6: Icon for the hydraulic motor submodel.

2.4 Pressure Compensator

The pressure compensator, or the pressure relief valve which often called, has the purpose of
limiting the pressure in the main system to only a few bars higher than needed. This is due to
safety as well as minimizing wear and tear of the system. The pressure relief valve is assumed
to be self controlled by the highest pressure in the hydraulic motor as pilot pressure. It should
have a spring, so it closes itself and a nozzle to give extra damping to the pilot pressure. It is
not that important for the total model that the pressure compensator is precisely modeled, but
it should be able to restrict the pressure without causing problems for the main valve control. If
the nozzle is not well-designed it can create oscillations in the pressure which causes problems
for the controller.

As described, the pressure compensator has three ports, the pump pressure, the highest pressure
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of 𝑝𝐴 and 𝑝𝐵 (the pressures on each side of the motor) and the return pressure. A sketch of the
pressure compensator is given in figure 2.7.

Nozzle
𝑝𝑝𝑢𝑚𝑝

max(𝑝𝐴, 𝑝𝐵)

𝑝𝑟𝑒𝑡𝑢𝑟𝑛

Figure 2.7: Sketch of pressure compensator.

To model the pressure compensator both mechanical and hydraulic dynamics and interactions
in between must be taken care of. The pilot pressure flows through a nozzle, which dissipates
energy, and is expressed as

𝑄 = 𝐶𝑑sign(Δ𝑝)𝐴𝑛(𝑥𝑐)
√︃

2
𝜌

|Δ𝑝| (2.26)

where 𝐶𝑑 is a flow coefficient and 𝐴𝑛(𝑥𝑐) is the opening area in the nozzle which may vary with
the stroke 𝑥𝑐. The pilot pressure acts on the piston, giving a closing force. This is modeled with
a TF-element with the transformer modulus given as the area of the piston, 𝐴𝑐𝑝.

The moving piston has a mass given as 𝑚𝑐 and a spring, which may be pre-compressed a
distance 𝑥𝑐0, with a spring stiffness given by 𝑘𝑐𝑠. The friction is given by (2.22). Also a stopping
element should be implemented so that the piston displacement is restricted. This is done by
implementing a stiff spring, 𝑘𝑐𝑠𝑡𝑜𝑝, and a powerful damper, 𝑏𝑐𝑠𝑡𝑜𝑝, that are initiated if the piston
tries to go outside its limits, 0 ≤ 𝑥𝑐 ≤ 𝑥𝑐𝑙𝑖𝑚. The last force acting on the piston is the flow force
from the flow through the valve. This flow is given as

𝑄 = 𝛼𝑐(𝑥𝑐)𝐴𝑐𝑜(𝑥𝑐)sign(Δ𝑝)
√︃

2
𝜌

|Δ𝑝| (2.27)

where 𝛼𝑐(𝑥𝑐) is a flow coefficient that may be dependent on the piston displacement and 𝐴𝑐𝑜(𝑥𝑐)
is the opening area. The flow force is given as

𝐹 = 𝑘𝑐𝑓 (𝑥𝑐)𝜌𝑄2

𝐴𝑐𝑜(𝑥𝑐)
(2.28)

where 𝑘𝑐𝑓 (𝑥𝑐) is a flow force parameter that also may vary with the piston displacement.

The finished bond graph model of the pressure compensator is given in figure 2.8. In the model
there is also added a volume, including the same equations for volume accumulation and variable
bulk modulus as given in (2.7) and (2.9). The bond graph model is put into a submodel with
its own icon given in figure 2.9.

The next part to model is the 3/2-directional valve feeding the pressure compensator with pilot
pressure.
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Figure 2.8: Bond graph model of pressure compensator.

Figure 2.9: Icon for pressure compensator model.

2.5 3/2-Directional Valve

The 3/2-directional valve can be modeled the same way as the pilot valve only with less valve
options. By assuming the same dynamics as the pilot valve, the transfer function given in (2.2)
can be used, the flow through the valve is given by (2.3) and the area is given as

𝐴𝑖(𝑟) = limit(𝑎𝑟𝐴𝑚𝑎𝑥, 0, 𝐴𝑚𝑎𝑥) (2.29)

where 𝑎 = ±1, 𝑟 is the reference signal (±1) and 𝐴𝑚𝑎𝑥 is the maximal opening area. Figure 2.10
shows the bond graph model of the valve.

Figure 2.10: Bond graph model of 3/2-directional valve.

As seen in the figure there is also a volume, added to obtain integral causality, and is modeled
the same way as before. This bond graph model is also implemented in a submodel with its own
icon given in figure 2.11.

Figure 2.11: Icon for 3/2-directional valve model.
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The next to model is the pipeline connecting all submodels together, filters, pump, HPU and
other contributors to the total model.

2.6 Finishing Total Model

To finish the total bond graph model described in figure 1.4 the submodels need to be connected
by power bonds. These power bonds represent all the piping connecting the system together.
Also pipe resistance, volumes, pump, HPU and other resistances must be included.

The pump is modeled as a MSf-element where a signal gives the pump flow. Also internal
leakage is included and is given as in (2.23). Pipe resistances are given as in (2.5) and the
volumes are modeled as before, (2.7) and (2.9). It is also reasonable to assume that a filter and
a cooler is present in the return line causing pressure drops. The contributions from such parts
are gathered in one bond graph element and the flow through this element is given as

𝑄 = 1
4sign(Δ𝑝)𝐷2

ℎ𝜋

√︃
2|Δ𝑝|
𝐶𝑑𝜌

(2.30)

where 𝐷ℎ is the hydraulic diameter. When it comes to the HPU, it is assumed that the pump
in the HPU is pressure compensated and is able to deliver the amount of flow needed. This
simplifies the HPU model to only a set of Se elements for each main valve, one for pilot pressure
and the other for return pressure. A more realistic HPU model was tested in Skjong (2013) and
the results showed that the simplified HPU model used here is good enough for the purpose of
the model.

The total bond graph model is given in figure 2.12. As can be seen from the figure a box named
LOGIC has been implemented between the 3/2-directional valve and the control signal. This
is only a box that determines which of the pressures 𝑝𝐴 and 𝑝𝐵 is highest and feeds it to the
directional valve if the given signal is |𝑟| > 1 (outside the limit). So if the user sets the control
signal to 2, the LOGIC-box control the 3/2-directional valve on its own.

Now, when the bond graph model is finished, the model should be tested in order to find its
limits, the effect of the fluid inertia and variable bulk modulus in the main valves, to find
parameter and variable dependencies and the possibility to simplify the model even more.
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Figure 2.12: Total bond graph model of the system presented in figure 1.4.
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3 | Model Study
To be able to design suitable control laws for controlling the hydraulic motor a model study is
necessary in order to get an understanding of all connections, the model limits and weaknesses,
and to find possibilities to simplify the model even more. This is important since there is a lot
of logics implemented in the bond graph model. Logics are not that desirable in control laws
since they may cause discontinuities, ”jumps”, in the output control signals. Also abstracting
only the essential dynamics describing the main characteristics in the total system is desirable
when designing control laws, and if the control laws based on simplified equations work in the
process model, it will give reason to believe that the control laws are robust and will work if
implemented in a real system.

Before the system is studied more thoroughly through simulations, all parameters and coefficients
must be accounted for. The total parameter list is given in table C.1 in Appendix C. The pump
flow, motor load and the reference signals are not given in the table but given in each simulation
case.

3.1 Main Valve Study

The main valves, the 3/3-directional valves, are the most important elements in the model since
the motor is controlled through these. That is also why the bond graph models for the main
valves contain less simplifications compared to all the other models. However it is of interest to
study the effect of simplifying the model and to study the valve dynamics when parameters are
changed.

3.1.1 Simple Step Response

The first simulation that is to be performed is a simple valve step response. The model including
fluid inertia effects, variable bulk modulus and cylinder accumulations used. The P-controller,
controlling the control slides through the pilot valve has a proportional gain set to 6000 V/m.
The reference signals used in this simulation is given in table 3.1.

Table 3.1: Reference signals in simple step response simulation.

Description Value

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴, Reference signal for main valve A
(a step starting at t=5 s with a magnitude of 0.04 m

and a step back to zero at t=10 s)

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴 = 0.04step(5)
−0.04step(10)
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𝑟𝑉 𝑎𝑙𝑣𝑒𝐵, Reference signal for main valve B
(a step starting at t=5 s with a magnitude of -0.04 m

and a step back to zero at t=10 s)

𝑟𝑉 𝑎𝑙𝑣𝑒𝐵 = −0.04step(5)
+0.04step(10)
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]

𝑇𝑚, Hydraulic motor load
(a ramp starting at t=1 s with a magnitude of 2000 Nm

and stopping at t=2 s)

𝑇𝑚 = 2000ramp(1)
−2000ramp(2)
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𝑄̇𝑝, Pump flow
(a ramp starting at t=0 s with a slope of 0.05 𝑚3/𝑠2

and stopping at t=3 s)

𝑄̇𝑝 = 0.05ramp(0)
−0.05ramp(3)
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𝑟3/2, Reference signal for 3/2-directional valve
(𝑟3/2 =2 - means that the LOGIC-box controls the valve) 𝑟3/2 =2 -

The simulation time is set to 15 s and it is expected that the calculation time is high. The slide
positions are shown in figure 3.1. As can be seen in the figure, there is a small delay between
the signals. A part of this delay has to do with the sampling delay that was set to 𝑇𝑑 =0.002 s.
Other contributions come from the velocity limitation transfer function, which adds an extra
phase to the signal. Small oscillations can also be seen which is expected since the controller
used has no damping. What can not be seen in the figure is a small bias between the references
and the positions. This comes from the velocity limitation and means that also an integral effect
should be included in the process model controller design when the velocity limitation function
is present. The simulation results shown in the figure only shows a small part of the whole
model and say nothing about variable bulk modulus, flow through the pressure compensator or
the motor velocity. These are shown in figure 3.2.

The motor velocity seems to be almost proportional to the control slide that opens for pressure.
This means that for a manual motor control the operator can set the reference position to the
control slides to obtain wanted motor velocity. This is however not a precise motor velocity
control. Also the internal leakage in the motor gives a small negative velocity when the slide
positions are zero and the load is positive, but this can not be seen in the figure. The small
oscillations shown in the lower right corner in figure 3.1 is almost invisible at the hydraulic motor
velocity. This means that later on when a motor speed controller is to be designed the inner
main valve control can be fast and allowed some oscillation as long as it is stable.

The flow through the pressure compensator is negative, which from the sign convention used
when modeling means that hydraulic fluid flows from the pressurized pipeline to the return
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Figure 3.1: Reference, velocity limitation and control slide positions for the advanced model.
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Figure 3.2: Motor velocity, flow through pressure compensator and variable bulk modulus.

tank. The pressure compensator opens when the pump starts and the control slide positions are
zero, but closes when the control slides start moving. In general the flow through the pressure
compensator should never be zero because this means that the main pumps are not able to
deliver the pressure needed in the system.
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The last plot shows the variable bulk modulus in volume A (see figure 2.12). The bulk modulus
drops when the motor starts rotating and increases again when the motor stops. This is as
expected since the bulk modulus is proportional to the fluid volume pressure.

From this simulation it looks like everything in the model works fine. However this simple
simulation of 15 seconds took almost 130 seconds to be solved in 20Sim. Therefore it is important
to study the effects that makes the simulation slow and simplify if possible. It is expected that
the variable bulk modulus and the fluid inertia in the main valves slow down the solver. By
removing the variable bulk modulus for the HPU system, the cylinder accumulation and the
fluid inertia in the main valves the same simulation can be solved in 19 s. The results from
this simulation seems to coincide with the previous simulation and it is almost impossible to
see the difference when comparing them side by side. Thus the difference between control slide
positions are calculated and shown in figure 3.3.
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Figure 3.3: Difference between control slide positions 𝑥𝐴, 𝑥𝐴 − 𝑥𝐴,𝑠𝑖𝑚𝑝.

As seen in the figure the difference is not large and the largest deflections between the to
simulations appear when the control slides are accelerated. This is expected since removing the
fluid inertia, cylinder accumulations and variable bulk modulus the time constants for the main
valves are changed. This affects the response time of the main valves. The largest difference
is almost 8e-5 m, 0.08 mm. This is not much and if the difference does not propagate much
in the other systems, then the simplification done is argued for. At 𝑡 =5 s the difference is
negative. The difference was given as 𝑥𝐴 − 𝑥𝐴,𝑠𝑖𝑚𝑝 (advanced model - simplified model) and
since the control slides have positive acceleration it means that the simplified control slide is
faster than the advanced control slide. At 𝑡 =10 s the difference is positive. The control slides
have negative acceleration, which also means that the simplified control slide is faster than the
advanced one. When designing control laws for controlling the hydraulic motor it is important
that the controllers are faster than the system to be controlled. Since the simplified model has
a faster response compared to the advanced model it is reasonable to assume that a controller
that works in the simplified model also works in the advanced model. Figure 3.4 shows the
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difference in motor velocity.
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Figure 3.4: Difference between motor velocities 𝑣, 𝑣 − 𝑣𝑠𝑖𝑚𝑝.

As seen in the figure the largest difference is the peak at 𝑡=5 s with an absolute magnitude of
0.033 rad/s= 0.315 rpm, which is relatively small. At 𝑡 =5 s the difference is also negative, which
also here means that the simplified model is faster than the advanced one. At 𝑡 =10 s the peak
is also negative but positive oscillations are present as seen in the plot in the lower right corner.
The magnitude of this peak is really small and it is difficult to determine whether the difference
comes from simulation errors or the difference between the models.

These differences given in figure 3.3 and 3.4 are calculated from simulations with a motor loading
of 𝑇𝑚 =2000 Nm. It is of great interest to see how these differences changes when the motor
load changes. A parameter sweep of the load is done in 10 steps, starting at 𝑇𝑚 =2000 Nm and
stops at 𝑇𝑚 =20000 Nm with the same references and simulation settings as before. Figure 3.5
shows the differences between the control slide positions.

As seen in the figure the results from the first simulation with 𝑇𝑚 =2000 Nm are almost repro-
duced. The characteristic peaks at 𝑡 =5 s and 𝑡 =10 s seams to be global results. It is important
to mention the calculation errors since the absolute and relative error limits are set to 0.0001 -
in 20Sim (Controllab, 2014). The reason for such a high limit is because both models are cal-
culated together and lack of computing power forces the tolerances to be high. However the
results seams clear, the differences seams to be limited and small.

Figure 3.6 shows the difference in motor velocity between the two models. Also the difference
between the two motor velocities seems to be limited and the results in figure 3.4 are almost
reproduced globally as for the difference between the control slide positions. The difference
also seems to decrease when the load gets higher. This is not surprising since a higher load
gives higher inertia and the difference in control slide positions have less influence on the motor
velocity.
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Figure 3.5: Difference in control slide position, load sweep.

Figure 3.6: Difference in motor velocity, load sweep.

Until now only responses from positive control slide references for main valve A has been studied.
The reason for this is because the load is set positive and the delivered pressure therefore works
against the motor load. For negative references the motor would get a high negative velocity
since the pressure and the load works together, accelerating the hydraulic motor. In the next
simulation the responses from a sine reference is studied.
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3.1.2 Sine Reference

When sine reference signals for the control slides are used it is expected that the differences
studied in 3.1.1 would be different. Assuming that the motor loading is positive there would
be situations where the load and the differential pressure, driving the motor, have the same
direction. This will give the hydraulic motor a seriously acceleration and the velocity is expected
to be high. When this happens small changes in control slide positions would contribute to
changing the motor speed and thus the difference between the motor velocity in the advanced
model and the simplified model is expected to increase.

Table 3.2 gives the reference signals and the motor load used in this simulation.

Table 3.2: Reference signals and motor load for the sine response simulation

Description Value

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴, Reference signal for main valve A
(a sine function starting at t=5 s with an amplitude of 0.04 m

and a frequency of 𝜔 = 5
2𝜋 )

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴 =
0.04step(5)sin(5(𝑡 − 5)
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𝑟𝑉 𝑎𝑙𝑣𝑒𝐵, Reference signal for main valve B
(a sine function starting at t=5 s with an amplitude of -0.04 m

and a frequency of 𝜔 = 5
2𝜋 )

𝑟𝑉 𝑎𝑙𝑣𝑒𝐵 =
−0.04step(5)sin(5(𝑡 − 5)
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𝑇𝑚, Hydraulic motor load
(a ramp starting at t=1 s with a magnitude of 𝑇𝑚𝑠

and stopping at t=2 s, 𝑇𝑚𝑠 varies.)

𝑇𝑚 = 𝑇𝑚𝑠ramp(1)
−𝑇𝑚𝑠ramp(2)
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𝑄̇𝑝, Pump flow
(a ramp starting at t=0 s with a slope of 0.07 𝑚3/𝑠2

and stopping at t=3 s)

𝑄̇𝑝 = 0.07ramp(0)
−0.07ramp(3)
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𝑟3/2, Reference signal for 3/2-directional valve
(𝑟3/2 =2 - means that the LOGIC-box controls the valve) 𝑟3/2 =2 -
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The simulation time is set to 15 s, the sampling delay is 0.002 s and 𝑇𝑚𝑠 =2000 Nm. The slide
positions for the advanced model are shown in figure 3.7. As can be seen in the figure the
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Figure 3.7: Reference, velocity limitation and control slide positions for the advanced model.

velocity limitation function coincide with the reference signal and the valve positions seems to
follow the reference with great precision when neglecting the sampling delay and the transfer
function phase. The plot in the lower left corner shows that the control slides use a small amount
of time to get accelerated, as expected since the fluid inertia is present in the model. This effect
is easier to see in this simulation compared to the previous one since the phase from the velocity
limitation function is smaller. Figure 3.8 shows the hydraulic motor velocity, the flow through
the pressure compensator and the variable bulk modulus in volume A.

The hydraulic motor velocity seems to oscillate around the zero line with a constant amplitude
which means that the motor load is not large enough to make the hydraulic motor speed. The
pressure compensator oscillates in phase with the motor velocity which means its dynamics
are fast enough to follow the pressure changes in the main pressure line. The last plot shows
the variable bulk modulus in volume A which also seems to oscillate in phase with the other
dynamics.

Since the hydraulic motor does not speed it would be reasonable to assume that the difference
in control slide positions and motor velocities between the advanced and the simplified model
would be similar to the differences studied in 3.1.1. Figure 3.9 shows the differences.

Except for the peaks at 𝑡 =5 s the figure shows that the differences are small. The peaks are
caused by the acceleration of the control slides as discussed before. As can be seen the differences
are comparable to the differences in section 3.1.1 due to the effects already discussed. However
when setting 𝑇𝑚𝑠 =20000 Nm the results are quite changed. Figure 3.10 compares the hydraulic
motor velocities for 𝑇𝑚𝑠 =2000 Nm and 𝑇𝑚𝑠 =20000 Nm by using the advanced model.
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Figure 3.8: Motor velocity, flow through pressure compensator and variable bulk modulus.
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Figure 3.9: Difference between control slide positions 𝑥𝐴, 𝑥𝐴 − 𝑥𝐴,𝑠𝑖𝑚𝑝, and motor velocities 𝑣,
𝑣 − 𝑣𝑠𝑖𝑚𝑝.

As seen in the figure the hydraulic motor starts speeding when the position of control slide A is
negative. The plot in the lower left corner shows the difference between the two simulations when
the hydraulic motor reaches the highest velocity. The simulation with higher motor loading has
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Figure 3.10: Hydraulic motor velocities.

a lower maximal velocity than the other, which is reasonable since the pressure is higher which
gives larger losses in the main valves and larger internal leakage in the hydraulic motor. The plot
in the lower right corner in the figure shows the motor velocity when the motor changes direction
of rotation. The characteristics given in the plot come from the dead bands in the main valves
and forces the safety valve to open to prevent cavitation. The flow through the safety valve is
lower than through the main valves and the motor is forced to slow down. When the valves
have passed the dead bands the motor is accelerated again. This effect must be included in
motor controller designs later on. The plot also shows that the simulation with 𝑇𝑚𝑠 =20000 Nm
is slower than the other. This may seems to be a contradiction when comparing with the plot
in the lower left corner, but the simulation with the highest motor loading uses longer time to
slow down than the other. This can also be seen when looking at the first crossing between the
two lines, where the motor velocity with the lowest motor loading has a faster response in the
beginning and is slowed down much quicker than the other simulation.

By comparing the difference between the control slide positions for the advanced and the sim-
plified model for 𝑇𝑚𝑠 =2000 Nm and 𝑇𝑚𝑠 =20000 Nm there is not much of a difference. However
by comparing the hydraulic motor velocities the differences are much larger than before. This
is shown in figure 3.11.

The peaks are much larger in the speeding area and affects the rest of the simulations with larger
peaks all over, as expected. The differences in the control slide positions affects the hydraulic
motor much more when the motor is speeding. However the difference is not that large, the
difference is only 0.317 rad/s

18.874 rad/s 100 % = 1.68 % of the maximal velocity.

As for the single step analysis in section 3.1.1 a sweep of the motor loading is applied. Figure
3.12 shows the difference in control slide positions.

The figure shows that the difference between the control slide positions are limited and seem
to be almost independent of the motor loading as for the single step responce in section 3.1.1.
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Figure 3.11: Differences between motor velocities.

Figure 3.12: Difference in control slide position, load sweep.

There is a peak at 𝑡 =5 s for all motor loading cases. This is due to the valve dynamics, the
simplified main valve has faster dynamics than the advanced one and therefore it starts moving
before the advanced main valve. Figure 3.13 shows the difference between the motor velocities.

As the figure shows the difference between the motor velocities increases with the loading and
is expected since the difference between the control slide positions have a larger impact on the
motor velocity when the motor speeds.

3.1.3 Conclusion

The simulations done show that the simplified model has faster dynamics than the advanced
model. This means that when designing control laws for the hydraulic motor the simplified
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Figure 3.13: Difference in hydraulic motor velocities, load sweep.

model can be used without concerns because the control algorithm must be faster than the
model dynamics. For the ”sine-referenced” simulation it was shown that the difference in motor
velocities was affected by the difference in control slide position mainly when the motor was
speeding. However the difference was not alarming and since the motor is to be controlled we
may neglect the differences between the advanced and the simplified model. This means that
the simplified model is good enough for further studies and motor control designs. This also
affects the solving time in simulations, which decreases.

3.2 Model Parameter Sensitivity

Some of the parameters in the model are hard to determine precisely in reality. Therefore a
model parameter sensitivity analysis for some of the model parameters is initiated. In Appendix
D more studies are given. The parameter sensitivities are studied by comparing the motor
velocities when the simulation settings are held constant. The reason for choosing the motor
velocity as the reference is because the hydraulic motor velocity is to be controlled later on. Some
of the parameters may not give a large change in motor velocity but an increase in simulation
solving time.

The reference signals for the model parameter sensitivity simulations are given in given in table
3.3.

𝑇𝑚𝑠 is set to 2000 Nm and the simulation time is set to 6 s. Only two parameter sensitivity
studies are given in this section. See Appendix D for more cases.
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Table 3.3: Reference signals for parameter sensitivity analysis.

Description Value

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴, Reference signal for main valve A
(a step function starting at t=3 s with a magnitude of

0.04 m, a step of -0.08 m at t=4 s
and a step back to zero at t=5 s)

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴 = 0.04step(3)
−0.08step(4) + 0.04step(5)
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𝑟𝑉 𝑎𝑙𝑣𝑒𝐵, Reference signal for main valve B
(a step function starting at t=3 s with a magnitude of

-0.04 m, a step of 0.08 m at t=4 s
and a step back to zero at t=5 s)

𝑟𝑉 𝑎𝑙𝑣𝑒𝐵 = −0.04step(3)
+0.08step(4) − 0.04step(5)
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𝑇𝑚, Hydraulic motor load
(a ramp starting at t=1 s with a magnitude of 𝑇𝑚𝑠

and stopping at t=2 s, 𝑇𝑚𝑠 varies.)

𝑇𝑚 = 𝑇𝑚𝑠ramp(1)
−𝑇𝑚𝑠ramp(2)
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𝑄̇𝑝, Pump flow
(a ramp starting at t=0 s with a slope of 0.07 𝑚3/𝑠2

and stopping at t=3 s)

𝑄̇𝑝 = 0.07ramp(0)
−0.07ramp(3)
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𝑟3/2, Reference signal for 3/2-directional valve
(𝑟3/2 =2 - means that the LOGIC-box controls the valve) 𝑟3/2 =2 -

3.2.1 Flow Force Coefficient in Pressure Compensator

The flow force coefficient in the pressure compensator is in table C.1 given as 0.6 -. The flow
force coefficient is changed with ±50% and the simulation results are shown in figure 3.14.

The figure shows that the oscillations in the start of the simulation are not affected by the
changes in the flow force parameter. However the motor dynamics in the steps are changed
significantly. For an increasing flow force coefficient the motor seems to respond faster than
a decreased flow force coefficient. This, without affecting the damping of the hydraulic motor.
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Figure 3.14: Sensitivity of flow force coefficient in pressure compensator.

Also the solving time is reduced by over 0.5 s for the increased flow force coefficient and increased
by almost 0.3 s for the decreased flow force coefficient.

3.2.2 Inertia of Hydraulic Motor

The inertia of the hydraulic motor, including both hydraulic fluid in motion and the rotating
parts is set to 50 𝑘𝑔𝑚2 in table C.1. The inertia is changed with ±50% and the results are given
in figure 3.15.
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Figure 3.15: Sensitivity of inertia in the hydraulic motor.
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The increase in hydraulic motor inertia gives a slower response of the hydraulic motor. This
is the same effect as discussed earlier, the motor is slow to respond and uses some time to be
accelerated. The increase also adds more oscillations to the motor velocity in the step. The
decreased motor inertia gives a faster motor response and less oscillations in the step response,
even though it seems to have less damping in the start of the simulation. This is due to the
motor’s ability to rotate much quicker and is affected more by the force applied at 𝑡 =1 s. These
results is comparable to increasing or decreasing the load of the hydraulic motor, which would
give almost the same effect.

3.2.3 Results from Parameter Sensitivity Study

The results from the parameter sensitivity studies, including those given in Appendix D, are
briefly summarized in table 3.15.

Table 3.4: Results from parameter sensitivity studies

Parameter Increase Decrease Figure
Flow force coefficient

in pressure compensator Faster response Slower response 3.14

Inertia of
hydraulic motor

Faster response
Higher overshoot in step

Slower response
Lower overshoot in step 3.15

Volume ratio
in bulk modulus

Slower response
Lower overshoot in step

Faster response
Higher overshoot in step D.1

Nozzle area in
pressure compensator

Faster response
Higher overshoot in step

Slower response
Lower overshoot in step D.2

Nozzle flow coefficient
in pressure compensator

Faster response
Higher overshoot in step

Slower response
Lower overshoot in step D.3

Plunger diameter in
pressure compensator

Faster total response
Slower start response

Slower total response
Faster start response D.4

Flow coefficient in
pressure compensator

Faster total response
Slower start response

Slower total response
Faster start response D.5

Inertia in
pressure compensator Negligible changes Negligible changes D.6

Spring stiffness in
pressure compensator Negligible changes Negligible changes D.7

Slope in friction function
in pressure compensator

Faster response
Higher overshoot in step

Slower response
Lower overshoot in step D.8

Static friction
in pressure compensator

Slower response
Lower overshoot in step

Faster response
Higher overshoot in step D.9

Initial volume
in pressure compensator Faster response Slower response D.10

Gain in 3/2-directional
valve dynamics Faster response Negligible changes D.11

Natural frequency in 3/2-
directional valve dynamics Negligible changes Negligible changes D.12

Damping in 3/2-
directional valve dynamics Negligible changes Negligible changes D.13

Flow coefficient in 3/2-
directional valve dynamics Lower overshoot in step Lower overshoot in step

Slower response in step D.14
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Initial volume in 3/2-
directional valve dynamics Negligible changes More damping in step D.15

Internal leakage in
hydraulic motor

Slower response in step
Decreased max velocity

Faster response in step
Increased max velocity D.16

Static in
hydraulic motor

Faster response in step
Decreased max velocity

Slower response in step
Increased max velocity D.17

Slope in friction function
in hydraulic motor Negligible changes negligible changes D.18

Loss factor in
pressure line Negligible changes negligible changes D.19

Initial volume in
volume P

Slower response in step
Higher overshoot in step

Faster response in step
Lower overshoot in step D.20

Inertia in control
slide, main valve Negligible changes Negligible changes D.21

Initial volume 1 and 2
in main valve Negligible changes Negligible changes D.22

Natural frequency
in pilot valve Negligible changes Negligible changes D.23

Gain in
pilot valve dynamics Negligible changes Slower response in step

Lower overshoot in step D.24

Damping ratio in
pilot valve dynamics Slower response in step Negligible changes D.25

3.3 Chapter Summary and Conclusion

The proposed advanced and simplified main valve models have been simulated and compared
with different reference signals and motor loads. The main results were that the simplified
main valve model had a faster response than the advanced and the decrease in solving time in
the simulations was significant. For negative motor velocities and higher loads the hydraulic
motor started speeding and the difference between the two models increased. However since the
simplified model is faster than the advanced one, the control algorithms that is to be designed
are for controlling the motor and since the controller dynamics must be faster than the motor
dynamics, the proposed simplifications for the main valve are argued for.

The parameter study shows that some of the parameters affect both the hydraulic motor response
and the solving time for the simulations. From now on the same values presented in table C.1
are used as long as no conflicts in the simulations appear.

For fluid flows that give a low Reynolds number the flow coefficients tend to give linear con-
tributions in reality. This effect was studied in (Skjong, 2013) and neglected here since the
contributions were moderate.
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4 | First Hand Control
In the previous chapters the presented hydraulic winch system in figure 1.4 has been modeled
and studied thoroughly. Simplifications were done and argued for through simulations and the
finished model is now ready to be controlled. In this chapter first hand control for motor velocity
and torque are to be studied. With first hand control it is meant a general control that does
not necessary needs to be that precise. Both motor velocity control and motor torque control,
through an operator, are in the scope of this chapter.

4.1 Manual Speed Control

In chapter 3 an observation regarding the relation between the control slide position and motor
velocity was made. By comparing the control slide position for main valve A and the motor
velocity one might approximate the motor speed by commanding a reference for the control
slide.

4.1.1 Control Slide Position and Motor Velocity

Figure 4.1 shows the control slide position together with the motor velocity for the same simu-
lation that was done in section 3.1.2.
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y = − 4.3e−07*x5 + 1.9e−07*x4 + 6.6e−05*x3 − 2.7e−05*x2 + 0.0011*x +
      4.9e−05

Figure 4.1: Relation between motor velocity and control slide position, main valve A.
𝑇𝑚𝑠 =2000 Nm.

As can be seen when comparing the two first plots the motor speed is not quite a symmetric
graph, but has the characteristics of a geometric function. That is why the last plot looks like a
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rotated bow tie. If the motor speed was symmetric then the last plot would only be in one line.
Also a 5th order polynomial is drawn in the last plot, giving the relation

𝑥𝐴 = −4.3 · 10−7𝜔5
𝑚 + 1.9 · 10−7𝜔4

𝑚 + 6.6 · 10−5𝜔3
𝑚 − 2.7 · 10−5𝜔2

𝑚 + 0.0011𝜔𝑚 + 4.9 · 10−5 (4.1)

where 𝜔𝑚 is the motor velocity and 𝑥𝐴 is the control slide position for main valve A. If the
load shifted sign, 𝑥𝐴 should be replaced with 𝑥𝐵. The motor velocity is also dependent on the
pump flow and the motor load. By assuming the pump flow is held constant and the motor
load is kept as 𝑇𝑚𝑠 =2000 Nm, a test of this relation can be done. Note that the relation only
holds when the two main valves are in 4/3-operation mode since the data is collected from such
a valve setting. If the preferred motor velocity is 5 rad/s then 𝑥𝐴 is given by (4.1) as 0.0119 m.
If the preferred motor velocity is -5 rad/s then 𝑥𝐴 =-0.0129 m. Of course this would never give
exactly the preferred motor velocity, but the error should not be that large.

The reference signals for the control slides are given in table 4.1.

Table 4.1: Reference signals in relation study.

Description Value

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴,
Reference signal for main valve A

𝑟𝑉 𝑎𝑙𝑣𝑒𝐴 = 0.0119ramp(3) − 0.0119ramp(4)
−0.0124ramp(6) + 0.0124ramp(8)

+0.0129ramp(10) − 0.0129ramp(11)
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𝑟𝑉 𝑎𝑙𝑣𝑒𝐵,
Reference signal for main valve A

𝑟𝑉 𝑎𝑙𝑣𝑒𝐵 = −0.0112ramp(3) + 0.0112ramp(4)
+0.0124ramp(6) − 0.0124ramp(8)

−0.0129ramp(10) + 0.0129ramp(11)
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The results from the simulation are shown in figure 4.2.

As the figure shows the maximal positive motor velocity obtained is 5.283 rad/s and the maximal
negative motor velocity obtained is 5.650 rad/s. It is not surprising that the negative motor
velocity is larger in absolute value than the positive due to the effects discussed earlier, containing
motor speeding, internal motor leakages and due to the accuracy of the regression line and (4.1).
The errors are given as −0.283

5 100% = −5.66% and −0.650
5 100% = −13% for the maximal positive

and negative motor velocity respectively. Another source of error is that only two decimals in
the regression is used. However such a mapping in full scale, containing different motor loads,
pump flows and different valve operation settings would be tremendous and less accurate. Also
notice the flat region in the motor velocity around 𝑡 =7 s, which is due to the dead bands in the
main valves.
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Figure 4.2: Results from the motor velocity mapping, 𝑇𝑚𝑠=2000 Nm.

For completeness the same simulations are done for 𝑇𝑚𝑠 =20000 Nm. Figure 4.3 shows the
relation between the control slide position and the motor velocity.
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Figure 4.3: Relation between motor velocity and control slide position, main valve A.
𝑇𝑚𝑠 =20000 Nm.
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The relation is expressed as

𝑥𝐴 = −2.2 · 10−9𝜔5
𝑚 + 2.5 · 10−7𝜔4

𝑚 + 1 · 10−5𝜔3
𝑚 + 6.4 · 10−5𝜔2

𝑚 + 0.0016𝜔𝑚 + 0.00029 (4.2)

and for 𝜔𝑚 =5 rad/s, 𝑥𝐴 =0.0112 m and for 𝜔𝑚 =-5 rad/s, 𝑥𝐴 =-0.0071 m. The reference signals
for control slide A and B are changed respectively and have the same form as given in table 4.1.
The results are given in figure 4.4.
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Figure 4.4: Results from the motor velocity mapping, 𝑇𝑚𝑠=20000 Nm.

As seen in the figure the results are better than in the first simulation, given in figure 4.2, where
𝑇𝑚𝑠 =2000 Nm. The errors are now −0.025

5 100% = −0.5% and −0.301
5 100% = −6.02% for the

maximal positive and negative motor velocity respectively. This has to do with the regression
line which seems to fit the data set better in this load case. Figure 4.5 shows a closer look at
the control slide position for main valve A and the motor velocity at some interesting points.
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Figure 4.5: Control slide position and motor velocity with P-controller.

As can be seen there is a small delay between the reference and the control slide position, as
expected, and the vertical line in the plot to the right shows the effect from the dead bands in
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the main valves.

4.1.2 First Hand Manual Speed Controller

As seen in the previous subsection there is a relation between the control slide positions and
motor velocity. However the first hand controller, or the normal speed controller, is intended
manual motor control, where an operator manually sets the control slide references using a
joystick to obtain the preferred motor velocity, assuming the motor velocity is observable for the
operator. This would also give the operator the opportunity to change valve settings, not only
do 4/3 valve control.

In such a control mode it is important that the inner controller, the control slide position
controller, is stable, accurate and fast. The controller should also have the ability to adapt to
the dynamics is such a way that the response of the control slide feels the same in different cases
for the operator. The changes in the dynamics could come from unmodeled quantities, changes
in system parameters or wear of the hydraulic system. In that way the winch operator would
get a stronger feeling of proportionality between the control slide displacement and the motor
velocity. Such a controller could be model based, in which it would require larger computing
power compared to an ordinary PID-controller. The intermediate would be an adaptive PID-
controller, which is used here.

The adaptive parameters in the adaptive PID controller are the controller gains and have their
own dynamics. In Iwai et al. (2006) the adaptive controller gains are given as

𝐾̇𝐴
𝑝 (𝑡) = 𝛾1𝑒𝑠(𝑡)2 − 𝜎𝐾𝐴

𝑝 (𝑡) (4.3a)
𝐾̇𝐴

𝑑 (𝑡) = 𝛾2𝑒𝑠(𝑡)𝑒̇𝑠(𝑡) − 𝜎𝐾𝐴
𝑑 (𝑡) (4.3b)

𝐾̇𝐴
𝑖 (𝑡) = 𝛾3𝑒𝑠(𝑡)

∫︁ 𝑇

0
𝑒𝑠(𝑡)𝑑𝑡 − 𝜎𝐾𝐴

𝑖 (𝑡) (4.3c)

where 𝐾𝐴
𝑝 , 𝐾𝐴

𝑑 and 𝐾𝐴
𝑖 are the proportional gain, derivative gain and integral gain respectively,

𝛾1, 𝛾2 and 𝛾3 are positive constants describing the magnitude of the gains, 𝑒𝑠 is the control error
given as 𝑒𝑠 = 𝑥𝑠 − 𝑟𝑠 and 𝜎, 0 < 𝜎 < 1, is a modification term making the gain tuning laws
more robust for unmodeled dynamics.

Looking at the motor velocity in figure 4.2 and 4.4 a small flattening can be seen around 𝑡 =7 s.
This has to do with the overlap, the dead band, in the main valves as mentioned before. It would
be desired for the operator that the controller would cross the dead band as fast as possible
automatically by the controller. By assuming that the operator feeds the control algorithm with
the actual length of valve opening, not the control slide displacement as before, the ”jump” over
the dead band can be expressed as

𝑟𝑠 = 𝑟𝑜 + 2𝑥𝑜𝑙𝑎𝑝

𝜋
arctan(𝑠 · 𝑟𝑜) (4.4)

where 𝑟𝑜 is the reference given by the operator and 𝑠 is related to the slope of the jump and is
a design parameter. By setting 𝑠 =1000 , assuming 𝑟𝑜 = 0.5 sin(𝑡) and 𝑥𝑜𝑙𝑎𝑝 =0.1 m then 𝑟𝑠 is
given as in figure 4.6.
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Figure 4.6: 𝑟𝑠 v.s. 𝑟𝑜

Table 4.2 shows the parameters that have been tuned for the inner controller.

Table 4.2: Adaptive control law parameters.

Part Description Value
Inner Controller 𝜎, Modification term 0.5 -

𝛾1, Proportional gain parameter 1e11 -
𝛾2, Derivative gain parameter 1e5 -
𝛾3, Integral gain parameter 1 -
𝑠, Slope in arctan()-function 1e6 -

The same simulation as given in figure 4.4, with 𝑇𝑚𝑠 =20000 Nm, is redone, but now with the
new adaptive inner controller. The results are shown in figure 4.7.
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Figure 4.7: Reference and actual position of control slide A.
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By comparing the plot given in the lower left corner with the first plot in figure 4.5 it can be
seen that the oscillations are gone, but the delay between the reference and the actual control
slide position seems to be increased. However this is not a big deal since the controller does
not have to be extremely fast since the operator is controlling the motor velocity, but later on,
when more precise controllers are to be studied, the adaptive law may be too slow. The plot in
the lower right corner shows that the controller jumps over the dead band as fast as possible,
generating a small overshoot after the jump. The motor velocity is shown in figure 4.8.
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Figure 4.8: Motor velocity.

As seen in the figure the characteristic flattening in motor velocity shown in figure 4.4 at 𝑡 ≈7 s
seems to be gone. It is replaced by a small oscillation, which cannot be avoided due to the dead
bands in the main valves. The adaptive control law also includes integral effect. This is not
necessary for the simplified bond graph model, but may be appreciated in real life implementa-
tion, and if the velocity limitation function given in 2.20 is used which generated a small bias
between the reference given by the operator and the limited reference.

The adaptive controller gains are shown in figure E.1 in Appendix E, together with a random
reference simulation testing the adaptive controller.

4.2 Manual Torque Control

Hydraulic motor torque control can be done through controlling the differential pressure across
the motor, since

𝑇𝑚 := 𝐷𝑚

2𝜋
Δ𝑝 (4.5)

where 𝑇𝑚 is the motor torque, 𝐷𝑚 is the volume of the motor per revolution, and Δ𝑝 is the
differential pressure. The differential pressure is controlled indirectly by control slide position
control, just as the motor velocity, but is much more sensitive to other effects like the pressure
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compensator, load disturbances and variable bulk modulus than the motor velocity. Figure 4.9
shows the control slide position, differential pressure and the relation between them for the same
simulation as done in 3.1.2 with 𝑇𝑚𝑠 =2000 Nm and by using the P-controller as inner controller.

0 5 10 15
−0.05

0

0.05

P
os

iti
on

 [m
]

Time [s]

0 5 10 15
−1

0

1
x 10

6

D
iff

er
en

tia
l p

re
ss

ur
e 

[P
a]

Time [s]

−6 −4 −2 0 2 4 6 8

x 10
5

−0.05

0

0.05

Differential pressure [Pa]

P
os

iti
on

 [m
]

Figure 4.9: Relation between differential pressure and control slide position, main valve A.
𝑇𝑚𝑠 =2000 Nm.

As can be seen in the second plot the differential pressure is not clean, it has a lot of noise.
This noise comes mainly from when the main valves cross the dead bands. As seen in the last
plot the noise reduces the possibility to find a good relation between the two quantities. The
differential pressure measurements must be filtered through a low pass filter in order to get a
better understanding of the relation, because the differential pressure also seems to have the
geometric characteristics as the control slide position.

using a first order transfer function,

𝐻𝐿𝑃 𝐹 (𝑠) = 𝑘

𝜏𝑠 + 1 (4.6)

where 𝑘 =1 - is the gain and 𝜏 =0.05 s/rad is the time constant, as a low pass filter, the differential
pressure measurements are cleaned up as figure 4.10 shows.

The danger with filtering is that one may loose important data. The figure shows that the
differential pressure measurements are much nicer and cleaner, but looks rather edged at the
maximal absolute values. This may imply loss of important data. However the last plot shows
that it is now possible to find a mathematical expression relating the differential pressure to the
control slide position,

𝑥𝐴 = −9.7·10−31Δ𝑝5−6.2·10−26Δ𝑝4+2.5·10−18Δ𝑝3−6.9·10−13Δ𝑝2+5·10−8Δ𝑝−0.00035 (4.7)

If the differential pressure was set to Δ𝑝 =3 bar, giving a motor torque of about 𝑇𝑚 =6210 Nm,
the control slide position would be given as 𝑥𝐴 =0.0172 m. For Δ𝑝 =-1 bar, giving a motor
torque of about 𝑇𝑚 =-2070 Nm, the control slide position is given as 𝑥𝐴 =-0.0147 m. By using
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Figure 4.10: Relation between differential pressure and control slide position, main valve A.
𝑇𝑚𝑠 =2000 Nm, low pass filtered differential pressure.

the same control slide reference geometry as previous (see table 4.1), a test of the relation may
be performed. The results from the simulation, using the P-controller, are shown in figure 4.11.
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Figure 4.11: Control slide position, 𝑥𝐴, and differential pressure, Δ𝑝.

As seen in the figure the maximal differential pressure is 2.806 bar, giving an error of 0.1940
3 100% =

6.47%. The lowest differential pressure is -0.647 bar, giving an error of 0.353
1 100% = 35.3%. These
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results are not that bad taking the filtering and the sensitivity into account.

The same simulation is done with the adaptive controller designed in section 4.1.2. The filtered
relation is shown in figure 4.12.
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Figure 4.12: Control slide position, 𝑥𝐴, and differential pressure, Δ𝑝.

As seen in the figure the pressure peaks are larger when passing the dead band compared to
figure 4.11, but the filtered signal is smoother. Since the operator observes the filtered signal,
the simulation with adaptive control would give him better results. Also the motor speed would
be cleaner as seen in section 4.1.2.

For completeness the same simulation is done for 𝑇𝑚𝑠 =20000 Nm. Figure 4.13 shows the
relation between the control slide position and the differential pressure. The relation is expressed
mathematically as

𝑥𝐴 = 2 ·10−30Δ𝑝5 −6.2 ·10−24Δ𝑝4 +6.8 ·10−18Δ𝑝3 −2.9 ·10−12Δ𝑝2 +3.5 ·10−7Δ𝑝−0.001 (4.8)

Since Δ𝑝 =-1 bar is not present in the figure, the pressure that is to be tested is Δ𝑝 =12 bar,
which gives approximately 𝑇𝑚𝑠 =24840 Nm and 𝑥𝐴 =0.0219 m, and Δ𝑝 =5 bar, which gives
𝑇𝑚𝑠 =10350 Nm and 𝑥𝐴 =-0.0334 m. Note that more than two decimals in the polynomial is
used to find these numbers, since 𝑥𝐴 =0.1137 m for Δ𝑝 =12 bar when using only two decimals.

The simulation results using the P-controller are shown in figure 4.14. Using the numbers given
by the figure the errors are given as 0.15

12 100% = 1.25% and −0.321
5 100% = −6.42% respectively.

It seems like the error decreases as the pressure increases. The results from the same simulation
but with the adaptive controller are shown in figure 4.15.
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Figure 4.13: Relation between differential pressure and control slide position, main valve A.
𝑇𝑚𝑠 =2000 Nm, low pass filtered differential pressure.
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Figure 4.14: Control slide position, 𝑥𝐴, and differential pressure, Δ𝑝.

The error seems to be in the same range as when using the P-controller. The characteristic peak
is present when the control slides pass the dead bands in the main valve. However the filtered
differential pressure are smooth and clean.
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Figure 4.15: Control slide position, 𝑥𝐴, and differential pressure, Δ𝑝.

4.3 Chapter Summary and Conclusion

In this chapter manual speed- and torque control of the hydraulic motor have been studied
under ideal conditions. An adaptive PID-controller for inner control was designed and tested,
giving good results. The analysis relating the control slide positions to the motor velocity and
the differential pressure could be extended to give more data. Figure 4.16 shows a parameter
sweep of the motor load, from 2000 Nm to 20000 Nm through 10 steps.

As seen in the figure the relation between the motor velocity and the control slide position seems
to flatten out when the motor load increases, giving a almost linear relation when 𝑇𝑚 =20000 Nm.
It also shows that the load has a large influence on negative motor velocity. This means that
if a PID-controller was to be used as the outer controller, setting the reference for the inner
controller, the gains would be dependent on the motor load. This would change the control
problem to a hybrid control problem, since the gains would have to be updated with an update
law through motor load measurements. When the update law is initiated a filter should be used
to smooth out the transition of the gains. This gives a new problem; stability when switching
gains. If the outer controller is fast and the load changes rapidly the update law would be
initiated often, which again would affect the stability. In Hespanha (2002) these effects are
discussed and switching restrictions are given to prevent instability like dwell-time switching
and hysteresis switching. Another approach is to interpolate between the controller gains, but
this would be quite a work, without knowing how good the results are going to be.

Since the relation is non-linear and seems to become more linear with the increase of motor load,
a PID-controller is not ideal as outer control, especially since the relation changes that much.
Note that if the controlled system was linear, a PID-controller would be the same as a model
based controller, where the gains in the controller would be determined by the system parameters
in a stability analysis. However if a PID-controller was to be used as an outer controller, different
load cases should be studied in order to tune the gains in the controller for the different load
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Figure 4.16: Control slide position, 𝑥𝐴, motor velocity, 𝑣 and motor load, 𝑇𝑚.

cases. Then an update law, with restrictions to assure stability in the switching, or a algorithm
interpolating the gains must be designed surrounded by a well-designed safety algorithm that
assures safety in every conceivable cases.

Figure 4.17 shows the relation between the differential pressure, hydraulic motor load and control
slide position for main valve A with parameter sweep of the motor loading. The figure shows
different peaks for large control slide positions. This is due to the lack of data from the analysis.
The steps in the sweep should be made smaller to get more data. It can also be seen that the
non-linear relation between the differential pressure and the control slide position does not get
linearised with the increase of motor load as the motor velocity relation in the previous figure.
This supports the assumption about sensitivity of the differential pressure. If a table based
controller, a PID-controller with varying controller gains, is to be used as an outer control even
more load cases should be studied. And different main pump flows must also be included in the
study.

However it is nearly impossible to account for all different cases and variations of variables that
affect both the motor velocity and the differential pressure so the outer controller must be robust
and most likely slow to assure stability. This will affect the precision of the controller.

Hybrid PID-based outer controllers, or table based controllers, are not studied further. The
outer controllers are assumed to be highly dependent of system states and variables and therefore
model based controllers should be in the scope of study.

Master Thesis Page 51



Chapter 4. First Hand Control

Figure 4.17: Control slide position, 𝑥𝐴, differential pressure, Δ𝑝 and motor load, 𝑇𝑚.
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5 | Precise Control
In chapter 4 first hand control of the hydraulic motor was studied. It was concluded that a
model based speed controller and a model based torque controller should be derived and used as
outer controllers, giving control slide references to the inner controllers. In this chapter precise
model based outer controllers are presented and studied. The state equations describing the
relevant dynamics used in the control designs are presented. The state equations abstracted
from the bond graph model are complex, containing logics and discrete quantities, and are not
suitable for control design. Therefore simplified state equations are derived and used.

5.1 State Equations

As mentioned in chapter 1, one of the many benefits with using bond graph models is that the
state equations can easily be abstracted from the model. The state equations for the angular
motor momentum and the accumulated volumes in volume A and B are given as

𝑝̇𝑚 = 𝐷𝑚𝛽

2𝜋

(︂
𝑥𝐴

𝑉𝐴
− 𝑥𝐵

𝑉𝐵

)︂
− 𝑇𝑙𝑜𝑎𝑑 − 𝐹𝑠𝜇𝑣

𝑝𝑚

𝐼𝑚
(5.1a)

− 𝐹𝑠

(︂
𝜇𝑠 tanh(𝑠 · 𝑝𝑚

𝐼𝑚
) − 1

2(𝜇𝑠 − 𝜇𝑐) tanh
(︂

𝑠

(︂
𝑝𝑚

𝐼𝑚
− 𝑐

𝑠

)︂)︂
+ 1

2(𝜇𝑐 − 𝜇𝑠) tanh
(︂

𝑠

(︂
𝑝𝑚

𝐼𝑚
+ 𝑐

𝑠

)︂)︂)︂

𝑥̇𝐴 =

⎧⎪⎨⎪⎩ 𝛼𝑝𝜋𝐷𝑠(𝑥𝐻 − 𝑥𝑜𝑙𝑎𝑝)

√︃
2
(︁

𝑃𝑝𝑢𝑚𝑝− 𝛽𝑥𝐴
𝑉𝐴

)︁
𝜌 for (𝑥𝐻 − 𝑥𝑜𝑙𝑎𝑝) ≥ 0 and

(︁
𝑃𝑝𝑢𝑚𝑝 − 𝛽𝑥𝐴

𝑉𝐴

)︁
≥ 0

0 else

⎫⎪⎬⎪⎭
(5.1b)

+

⎧⎪⎨⎪⎩ 𝛼𝑟𝜋𝐷𝑠(𝑥𝑜𝑙𝑎𝑝 − 𝑥𝐻)sign
(︁

𝛽𝑥𝐴
𝑉𝐴

− 𝑇𝑝𝑢𝑚𝑝

)︁√︃2
⃒⃒⃒

𝛽𝑥𝐴
𝑉𝐴

−𝑇𝑝𝑢𝑚𝑝

⃒⃒⃒
𝜌 for (𝑥𝑜𝑙𝑎𝑝 − 𝑥𝐻) ≥ 0

0 else

⎫⎪⎬⎪⎭
+ 𝐺𝛽

(︂
𝑥𝐵

𝑉𝐵
− 𝑥𝐴

𝑉𝐴

)︂
− 𝐷𝑚𝑝𝑚

2𝜋𝐼𝑚

𝑥̇𝐵 =

⎧⎪⎨⎪⎩ 𝛼𝑝𝜋𝐷𝑠(𝑥𝐿 − 𝑥𝑜𝑙𝑎𝑝)

√︃
2
(︁

𝑃𝑝𝑢𝑚𝑝− 𝛽𝑥𝐵
𝑉𝐵

)︁
𝜌 for (𝑥𝐿 − 𝑥𝑜𝑙𝑎𝑝) ≥ 0 and

(︁
𝑃𝑝𝑢𝑚𝑝 − 𝛽𝑥𝐵

𝑉𝐵
≥ 0

)︁
0 else

⎫⎪⎬⎪⎭
(5.1c)

+

⎧⎪⎨⎪⎩ 𝛼𝑟𝜋𝐷𝑠(𝑥𝑜𝑙𝑎𝑝 − 𝑥𝐿)sign
(︁

𝛽𝑥𝐵
𝑉𝐵

− 𝑇𝑝𝑢𝑚𝑝

)︁√︃2
⃒⃒⃒

𝛽𝑥𝐵
𝑉𝐵

−𝑇𝑝𝑢𝑚𝑝

⃒⃒⃒
𝜌 for (𝑥𝑜𝑙𝑎𝑝 − 𝑥𝐿) ≥ 0

0 else

⎫⎪⎬⎪⎭
− 𝐺𝛽

(︂
𝑥𝐵

𝑉𝐵
− 𝑥𝐴

𝑉𝐴

)︂
+ 𝐷𝑚𝑝𝑚

2𝜋𝐼𝑚
.

In the equations above 𝑥𝐻 and 𝑥𝐿 are treated as control inputs where 𝑥𝐻 is the control slide
position for the main valve on the hoisting side of the motor (main valve A in this case) and 𝑥𝐿

is the control slide position for the main valve on the lowering side of the motor (main valve B).
The states, variables and parameters are explained in table 5.1. Note that the bulk modulus is
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assumed constant in the control designs, even though it is highly variable.

Table 5.1: States, variables and parameters for hydraulic motor.

Variables Description
𝑝𝑚 − Angular momentum
𝑥𝐴 − Volume state
𝑥𝐵 − Volume state
𝑥𝐻 − Control slide displacement
𝑥𝐿 − Control slide displacement
𝑇𝑙𝑜𝑎𝑑 − Motor load
𝑃𝑝𝑢𝑚𝑝 − Pump pressure
𝑇𝑝𝑢𝑚𝑝 − Return pressure
𝛼𝑝 − Flow parameter, pump
𝛼𝑟 − Flow parameter, return

Parameters Description
𝐷𝑚 − Motor displacement
𝛽 − Bulk modulus
𝑉𝐴 − Volume
𝑉𝐵 − Volume
𝐹𝑠 − Friction parameter
𝑐 − Coulomb coefficient
𝑠 − Slope for coulomb friction
𝐼𝑚 − Hydraulic motor inertia
𝑑 − Angular friction
𝐷𝑠 − Hydraulic diameter
𝑥𝑜𝑙𝑎𝑝 − Overlap in control slide
𝐺 − Leakage parameter

The equations given in (5.1) are complicated and should be simplified and transformed into
motor velocity and differential pressure across the hydraulic motor. Some of the dynamics given
in the equations can be neglected without loosing the main characteristics of the system. In
Skjong and Pedersen (2014a), which is given in Appendix B.1, simplified state equations are
derived for 4/3 valve control and given as

𝑥̇𝑚1 = 𝑥𝑚2 (5.2a)

𝑥̇𝑚2 = 1
𝐼𝑚

[︂
𝐷𝑚

2𝜋
Δ𝑝 − 𝐹𝑠𝜇𝑣𝑥𝑚2 − 𝑇𝑙𝑜𝑎𝑑

]︂
(5.2b)

Δ̇𝑝 = 𝛽𝛼𝜋𝐷𝑠

𝑉
√

𝜌
𝑢
√︁

Δ𝑝𝑢𝑚𝑝 − sign(𝑢)Δ𝑝 − 𝛽𝐷𝑚

2𝜋𝑉
𝑥𝑚2 − 𝛽𝐺

𝑉
Δ𝑝. (5.2c)

where 𝑥𝑚1 is the hydraulic motor angle, 𝑥𝑚2 is the angular rate, Δ𝑝 is the differential pressure
across the hydraulic motor and 𝑢 is the controller output from the outer controller without
dead band compensation. In addition to these simplified state equations, control laws for speed
control and torque control are derived in Skjong and Pedersen (2014a).

5.2 Model Based Speed Controller

The model base speed controller is a sliding mode based backstepping controller and is elaborated
in Skjong and Pedersen (2014a) in Appendix B.1. The resulting control law is given as

𝑥𝐻 = limit
(︂

𝑢 + 2𝑥𝑜𝑙𝑎𝑝

𝜋
arctan(𝑠 · 𝑢), −𝑥𝑚𝑎𝑥, 𝑥𝑚𝑎𝑥

)︂
(5.3)

and is the dead band compensation where 𝑥𝑜𝑙𝑎𝑝 is the overlap, the dead band, in the main valves,
𝑠 is a parameter related to the slope in the arctan(·)-function, 𝑥𝑚𝑎𝑥 is the maximal control slide
displacement and 𝑢 is the ideal output from the speed controller for main valves without dead
bands and is given as
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𝑢 =
𝑉

√
𝜌

𝛽𝛼𝜋𝐷𝑠

√︁
𝑝𝐿(𝑢𝑝𝑟𝑒)

(−𝑘1𝑧𝑠1 + 𝐷2𝑠1 + 𝑘2sign(𝑠1)

− 𝐷𝑚

2𝜋𝐼𝑚
𝑠1 + 𝑣̇1 + 𝛽𝐷𝑚

2𝜋𝑉
𝑥𝑚2

−𝐷3𝑠2 − 𝑘3sign(𝑠2) + 𝛽𝐺

𝑉
Δ𝑝

)︂ (5.4)

where
𝑝𝐿(𝑢𝑝𝑟𝑒) := Δ𝑝𝑢𝑚𝑝 − sign(𝑢𝑝𝑟𝑒)Δ𝑝 (5.5)

and 𝑢𝑝𝑟𝑒 is the previous value of 𝑢. 𝑘1, 𝑘2, 𝑘3, 𝐷2 and 𝐷3 are controller gains, 𝑧𝑠1 is the tracking
error defined as

𝑧𝑠1 := 𝑥𝑚2 − 𝑥𝑑2 (5.6)

where 𝑥𝑑2 is the reference motor velocity, 𝑠1 is the first sliding surface defined as

𝑠1 := 𝑧𝑠1 + 𝑘1

∫︁ 𝑡

0
𝑧𝑠1𝑑𝑡 (5.7)

𝑣1 is a virtual control variable given as

𝑣1 = 2𝜋𝐼𝑚

𝐷𝑚

(︂
𝐹𝑠𝜇𝑣

𝐼𝑚
𝑥𝑚2 + 𝑇𝑙𝑜𝑎𝑑

𝐼𝑚
+ 𝑥̇𝑑2 − 𝐷2𝑠1 − 𝑘2sign(𝑠2)

)︂
(5.8)

and 𝑠2 is the second sliding surface defined as

𝑠2 := 𝑠1 + 𝑧𝑠2 (5.9)

where
𝑧𝑠2 := Δ𝑝 − 𝑣1 (5.10)

Note that 𝑇𝑙𝑜𝑎𝑑 is the motor loading and must be estimated if used in the control law. For now
𝑇𝑙𝑜𝑎𝑑 is assumed measurable.

The given control law ensures GAS, Globally Asymptotically Stability, of the system under
the assumptions given in Skjong and Pedersen (2014a). The controller parameters are set to
𝑘1 =900 1/s, 𝑘2 =0.01 rad/𝑠2, 𝑘3 =1000 Pa/s, 𝐷2 =200 1/s, 𝐷3 =20 Pa/rad and 𝑠 =200000 -. Two
tests of the controller with the model derived in chapter 2 are to be initiated, one with constant
motor loading and one with random motor loading.

5.2.1 Controller Test using Constant Load

A frequency sweep of the motor velocity reference is to be tested. For inner controller the
adaptive PID-controller derived in section 4.1.2 is used with the same parameters as before.
The reference signals are given in table 5.2.
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Table 5.2: Reference signals for test of speed controller

Description Value

𝑥2𝑑, Reference signal for
hydraulic motor velocity (a sin(·)-sweep starting at 𝑡=5 s

with a magnitude of 5 rad/s
and a frequency of 𝜔 =0 rad/s

and ending at 𝑡=30 s with a frequency of 𝜔 =8 rad/s,
𝑓 = 4

𝜋 Hz)
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𝑇𝑚, Hydraulic motor load
(a ramp starting at 𝑡=1 s with a magnitude of 𝑇𝑚𝑠

and stopping at 𝑡=2 s, 𝑇𝑚𝑠 is specified in the simulation.)

𝑇𝑚 = 𝑇𝑚𝑠ramp(1)
−𝑇𝑚𝑠ramp(2)
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𝑄̇𝑝, Pump flow
(a ramp starting at 𝑡=0 s with a slope of 0.07 𝑚3/𝑠2

and stopping at 𝑡=3 s)

𝑄̇𝑝 = 0.07ramp(0)
−0.07ramp(3)
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3 /s
]

𝑟3/2, Reference signal for 3/2-directional valve
(𝑟3/2 =2 - means that the LOGIC-box controls the valve) 𝑟3/2 =2 -

𝑇𝑚𝑠 is set to 2000 Nm. Figure 5.1 shows the motor velocity and the reference velocity.

As seen in the figure the motor velocity seems to coincide with the reference. At the first
maxima, seen in the plot in the lower left corner of the figure, the motor velocity is a bit higher
than the reference. This is due to the inertia of the motor. However it is small and the tracking
is low. When the frequency of the reference signal increases, this overshoot gets larger but it is
so small that it cannot be seen in the first plot. Also it looks like the motor velocity is faster
than the reference signal when looking at the plot in the lower left corner. This is however not
the case, the motor reacts slower than the reference signal and uses little more time to slow
down. The plot in the lower right corner shows the motor speed when the main valves cross
the dead bands and shows that the dead band compensation removes the vertical line as seen in
figure 4.5. Figure 5.2 shows the difference between the reference velocity and the actual motor
velocity, 𝑥𝑑2 − 𝑥𝑚2.

The error looks to increase with increasing frequency of the reference velocity, which is expected.
By excluding the error peaks the error is small. The error peaks come from each crossing of
the dead bands in the two main valves and can not be removed except trying to cross the dead
bands as fast as possible, as already done. Another reason for this error is the dynamics of
the pressure compensator. When the main valves cross the dead bands the pressure peaks acts
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Figure 5.1: Hydraulic motor velocity and reference.
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Figure 5.2: Difference between velocity reference and actual motor velocity.

on the pressure compensator and if the pressure compensator is not well-designed it will not
damp out the peaks but regenerate them in the pump pressure making it harder for the speed
controller to stabilize the motor velocity. The parameters for the pressure compensator given in
C.1 are not optimal since crossings of the dead bands generate large pressure peaks in the pump
pressure. This also sets a limit for how fast the speed controller can be tuned. These peaks in
the differential pressure, Δ𝑝, can be seen in figure 5.4. This is also why the pump flow is set
large so that the pressure compensator always is open, making it easier for the speed controller.

Figure 5.3 shows the control slide displacements and the reference positions generated by the
speed controller.

As seen in the figure the control slide positions are good compared to the commanded reference
except for a little delay. The delay seems to be larger than only the sample delay, meaning that
the adaptive controller is littlebit slow. Note that the velocity limitation function is removed
now when an outer controller is implemented. The delay generated by the adaptive controller
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Figure 5.3: Control slide positions and speed controller output.

was also given as a comment in section 4.1.2, and most likely the error would be slightly lower
if the simple P-controller was used as inner controller instead since it showed faster responses.
However the adaptive PID-controller gets the job done and there is almost no oscillations in
the control slide positions. The crossings of the dead bands are fast and the positions looks
stable. Figure 5.4 shows the differential pressure across the hydraulic motor and the variable
bulk modulus in some of the many volumes in the system.

5.2.2 Controller Test using Random Motor Loading

To complete the controller testing for now, the same test is initiated but with different motor
loading characteristics. Now 𝑇𝑚𝑠 =10000 Nm and a random load with amplitude 1000 Nm and a
maximal frequency of 𝑓 =10 Hz is added. The motor loading characteristics are shown in figure
5.5.

The maximal frequency of the variable load is much higher than what is to be expected in
reallity but is initiated to see how the controller operates under extreme conditions. Figure 5.6
shows the motor velocity compared to the reference.

As can be seen in the first plot the motor velocity seems to follow the reference with good
precision. However the plot in the lower left corner in the figure shows that there are small
oscillations around the reference. This is to expect when a high frequency noise is added to the
motor load. Because of the sampling delay it will be impossible to remove the tracking error
completely. The plot in the lower left corner shows that the crossings of the dead bands are
still good, generating only some small oscillations just as in the previous controller test. The
difference between the reference and the actual motor velocity is shown in figure 5.7.

The error looks to be almost as in the previous controller test except some extra noise between
𝑡 =5 s and 𝑡 =10 s and some around 𝑡 =13 s. It also looks like the effect of the noise is reduced
when the frequency of the reference signal increases. This is expected since the motor acceler-

Master Thesis Page 58



Chapter 5. Precise Control

0 5 10 15 20 25 30
−5

0

5

10
x 10

5

Time [s]

P
re

ss
ur

e 
[P

a]

Differential pressure

0 5 10 15 20 25 30
0

2

4

6

8
x 10

8

Time [s]

Variable bulk modulus

P
re

ss
ur

e 
[P

a]

 

 

β
A

β
B

β
P

β
R

Figure 5.4: Differential pressure across the hydraulic motor and variable bulk modulus in volume
A, B, P and R.
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Figure 5.5: Motor loading characteristics.

ation is larger and more power in controlling the motor velocity is applied through the main
valves. Figure 5.8 shows the control slide positions and the commanded reference from the speed
controller.

The results are quite similar to the previous controller test, the inner controller works good and
controls the control slides to the commanded position with the same delay as seen before. The
plot in the lower left corner shows that there are some oscillations in the commanded control
slide references which is expected because of the loading characteristics. The plot in the lower
right corner shows that the crossings of the dead bands in the main valves seem to be as good as
in the previous test. Figure 5.9 shows the differential pressure across the motor and the variable
bulk modulus in some volumes in the model.

As can be seen in the figure the noise in the motor loading can also be found in the differential
pressure across the motor and the variable bulk modulus.
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Figure 5.7: Difference between velocity reference and actual motor velocity.

5.3 Model Based Torque Controller

The model based torque controller is derived as a sliding mode controller and is also elaborated
in Skjong and Pedersen (2014a), see Appendix B.1. To summary, the control law is given as

𝑢 :=
2𝑉

√
𝜌

𝛽𝛼𝐷𝑠𝐷𝑚

√︁
𝑝𝐿(𝑢𝑝𝑟𝑒)

(︃
𝛽𝐷2

𝑚

4𝜋2𝑉
𝑥𝑚2 + 𝛽𝐺𝐷𝑚

2𝜋𝑉
Δ𝑝 + 𝑇̇𝑑𝑚 − 𝑘1𝑒𝑇 − 𝐷2𝑠1 − 𝑘2sign(𝑠1)

)︃
(5.11)

where 𝑇𝑑𝑚 is the reference torque, 𝑘1, 𝑘2 and 𝐷2 are controller gains and 𝑒𝑇 is the tracking error
defined as

𝑒𝑇 := 𝐷𝑚

2𝜋
Δ𝑝 − 𝑇𝑑𝑚 (5.12)
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Figure 5.8: Control slide positions and speed controller output.
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Figure 5.9: Differential pressure across the motor and variable bulk modulus in volume A, B, P
and R.

and 𝑠1 is the sliding surface defined as

𝑠1 := 𝑒𝑇 + 𝑘1

∫︁ 𝑡

0
𝑒𝑇 𝑑𝑡 (5.13)
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𝑢 is fed through the dead band compensation given in (5.3) and 𝑥𝐻 is given as the control slide
reference to the main valve on the hoisting side of the hydraulic motor and 𝑥𝐿 = −𝑥𝐻 is given to
the main valve on the lowering side. The controller ensures GES, Global Exponentially Stability
in the controlled system, and is proven by Lyapunov analysis in Skjong and Pedersen (2014a).

Some expectations and concerns regarding torque control should be given. The differential
pressure is expected to change rapidly due to small volumes. This, not only because of the motor
load, but also because of the interaction with the pressure compensator, the 3/2-directional valve
and the valve flow characteristics. It is expected that in some cases the changes in differential
pressure are faster than the main valve dynamics and it will be impossible to track the reference
torque with high accuracy, especially when the main valves crosses the dead bands. It is also
expected that the reference torque is assumed nearly constant over a short period of time. This
is because torque control is often used in heave compensation operations, which is not as precise
as AHC-, active heave compensation, operations using the speed controller, in winches on ships
where the reference torque is equal to the motor loading. Torque control is also used for safety
reasons to avoid loss of load if the load gets stuck or the torque exceeds the torque limit.

The controller parameters are set to 𝑘1 =5 1/s, 𝑘2 =1000 Nm/s, 𝐷2 =8000 1/s, 𝛾2 =1e7 -, 𝜏 =0.1 s
and the slope in the dead band compensation is set to 𝑠 =50000 -. 𝛾2 is the gain in the derivative
adaptive law and 𝜏 is the time constant in the low pass filter used to filter the differential pressure.
Note that 𝑠 is set lower in this controller compared to the speed controller. This is to reduce
the large pressure peaks generated when passing the dead bands in the main valves with high
speed. The pressure peaks are large and the controller should not be so fast that it tries to
control these peaks. If so the controller would become unstable because of all the noise in the
differential pressure that have not been filtered out. It is also expected that the tuning of the
outer controller is affected by the inner controller.

5.3.1 Controller Test using Constant load and Reference

A simple torque controller test is to be initiated. The controller gains and model parameters
are as specified and the reference signals are given in table 5.3.

Table 5.3: Reference signals for test of speed controller.

Description Value

𝑇𝑑𝑚, Reference torque (assumed constant)
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𝑇𝑚, Hydraulic motor load, assumed constant
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𝑄̇𝑝, Pump flow
(a ramp starting at 𝑡=0 s with a slope of 0.07 𝑚3/𝑠2

and stopping at 𝑡=3 s)

𝑄̇𝑝 = 0.07ramp(0)
−0.07ramp(3)
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𝑟3/2, Reference signal for 3/2-directional valve
(𝑟3/2 =2 - means that the LOGIC-box controls the valve) 𝑟3/2 =2 -

The values for 𝑇𝑑𝑚 and 𝑇𝑚 are set to 𝑇𝑑𝑚 =30000 Nm (Δ𝑝 =14.5 bar) and 𝑇𝑚 =30000 Nm. The
controller is initiated at 𝑡=2 s. Figure 5.10 shows the torque compared to the reference.
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Figure 5.10: Torque and reference.

As seen in the figure the controller seems to control the torque to the desired trajectory with high
accuracy. From the initiation of the controller to the desired reference it takes about 3.5 s. It
also seems like the torque does not converge to the reference before after 𝑡 =2 s. This is because
the controller is not activated before 𝑡 =2 s. If the controller was tuned harder it would have
been more sensitive to noise from Δ𝑝. Figure 5.11 shows the tracking error given in percentage
of the reference torque,

𝑒𝑇 % = 𝑇𝑑𝑚 − 𝑇𝑚

𝑇𝑑𝑚
· 100% (5.14)

The error seems to be really small after the initiation phase in the simulation and converges to
zero, which it should since both the reference torque and the motor load are constant. Note that
the first plot shows the error in the range [-100%,100%] and the second plot shows the error in
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Figure 5.11: Tracking error.

the range [-1%,1%]. Figure 5.12 shows the control slide positions and the references given by
the torque controller.
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Figure 5.12: Control slide positions and references.
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The control slide positions seems to coincide with the references as seen in previous simulations
using the adaptive PID controller as inner controller. The derivative gain parameter, 𝛾2, was
increased for the torque controller to give additional damping since small oscillations in the
control slide positions would have a huge impact on the differential pressure and thus the torque.
Figure 5.13 shows the hydraulic motor velocity.
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Figure 5.13: Hydraulic motor velocity.

After the initiation phase the motor velocity seems to converge to a constant value. This is
because the reference torque, 𝑇𝑑𝑚, was chosen on beforehand so that the motor speed was held
as constant as possible in the simulation. The last figure, figure 5.14, shows the differential
pressure across the motor and the variable bulk modulus for some interesting fluid volumes in
the model.
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Figure 5.14: Differential pressure across the motor, Δ𝑝, and variable bulk modulus.

As the figure shows the differential pressure and the bulk modulus seems to be nearly constant
after the initiation phase. This is because the bulk modulus is dependent on the pressure and
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when the pressure is constant then also the bulk modulus.

This controller test was simple and the results shows that it was not very challenging for the
torque controller. The next test is harder and gives an idea of the limitations in the controller.

5.3.2 Varying Load, Varying Reference

The controller- and model parameters are as before except for the motor load and the reference
torque. Also in this case the adaptive PID-controller is used as the inner controller, controlling
the main valves. Table 5.4 gives a description of these variables.

Table 5.4: Reference signals for test of speed controller.

Description Value

𝑇𝑑𝑚, Reference torque
(starting at 60000 Nm, decreases to 57000 Nm

in 3 s starting at 𝑡 =10 s and increasing back to
60000 Nm in 3 s starting at 𝑡 =20 s)

𝑇𝑑𝑚 = 60000 − 1000ramp(10)
+1000ramp(13) + 1000ramp(20)

−1000ramp(23)
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𝑇𝑚, Hydraulic motor load
(a constant load from 𝑡 =0 s to 𝑡=5 s with

a magnitude of 60000 Nm and an added sin() signal
at 𝑡=5 s, with an amplitude of 1000 Nm and a

frequency of 2 rad/s, 2
𝜋 Hz)

𝑇𝑚 = 60000
+1000step(5) sin(2(𝑡 − 5))
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The controller is activated at 𝑡 =1.5 s. Figure 5.15 shows the torque compared to the reference.
As seen in the figure the torque does not coincide with the reference as good as in the previous
simulation. This is as expected since this simulation has varying load and varying reference,
making it harder for the outer controller. One can also see the small peaks in the first plot
generated by crossings of the dead bands in the main valves. These peaks are the main reason
for the tracking error and the controller integrates these peaks giving small deflections in the
torque compared to the reference. The plot in the lower left corner shows the initiation phase
of the controller. It is initiated at 𝑡 =5 s and it takes about 1 s to reach the desired torque.
The plot in the lower right corner shows the change in reference. As seen the controller follows
the changes in the reference but tracking errors are still present. The controller could of course
be tuned harder, which should decrease the tracking error, but the inner controller is not fast
enough and would begin to oscillate. The inner controller is also in this case the adaptive PID-
controller which was designed for manual control of the control slides. By using an ordinary
PD-controller as inner controller the outer controller could perhaps be tuned faster. The next
figure, figure 5.16, shows the tracking error as defined in (5.14). Note that the first plot shows
the error in the range [-100%,100%] and the second plot [-1%,1%].
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Figure 5.15: Torque and reference.
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Figure 5.16: Tracking error.

The first plot does not give much information of the tracking error because of the high scale,
which indicates low errors, but the second plot reviles more information. As can be seen the
absolute value of the error after initiation of the controller does not exceed 0.5 %. The largest
errors appear as peaks in the plot and is due to the crossings of the dead bands in the main
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valves and can not be reduced much. However the oscillations in-between could be decreased
by changing the inner controller and tuning the outer controller harder. The maximal absolute
error is calculated to be 𝑒𝑇 %𝑇𝑑𝑚

100% = 0.5%60000 Nm
100% =300 Nm. Note that this error is due to a

pressure peak from a crossing of the dead bands. Figure 5.17 shows the control slide positions
together with the references given by the torque controller.
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Figure 5.17: Control slide positions and references.

The first plot shows that the control slide positions coincides with the references given by the
torque controller as in previous simulations. The plot in the lower left corner shows one of the
maximal displacements of the control slide position in main valve A. It is not easy to see but
the sampling delay can be seen by noticing that Ref𝐴 is a bit faster than 𝑥𝐴. The plot in the
lower right corner shows one of the many crossings of the dead bands in the main valves. Small
oscillations can be seen in the dead band crossing and emphasizes for the increase in 𝛾2 in the
adaptive control law. Figure 5.18 shows the hydraulic motor velocity.
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Figure 5.18: Hydraulic motor velocity.
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As expected both the changes in motor load and reference torque are reflected in the motor
velocity. The "sine-noise" is present and one can see the characteristics of the reference torque,
which decreases at 𝑡 =10 s and increases again at 𝑡 =20 s. Also the small disturbances from
when the control slides cross the dead bands can be seen just around zero motor velocity. The
last figure, figure 5.19 shows the differential pressure across the motor, Δ𝑝, and the variable
bulk modulus for some interesting fluid volumes in the system.
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Figure 5.19: Differential pressure across the motor, Δ𝑝, and variable bulk modulus.

The figure shows that the peaks in the differential pressure are significant (about 1 bar in av-
erage), which is expected since the load is high and due to the crossings of the dead bands as
mentioned. The differential pressure shown in the first plot has not been filtered and by multi-
plying by 𝐷𝑚

2𝜋 one can find the unfiltered torque. This indicates that the filtering significantly
reduces the large peaks since the peaks in figure 5.15 should have been about 2070 Nm, not
300 Nm as calculated. The second plot shows the variable bulk modulus in volume A, B, P and
R, as before. As seen the bulk modulus varies with the pressures in the volumes as expected
since the bulk modulus is a function of pressure, see (2.7).

5.4 Chapter Summary and Conclusion

In this chapter two controllers have been studied, a speed controller and a torque controller.
These controllers are model based and mainly based on sliding mode control theory. The speed
controller is also backstepping based since there are two differential equations in the control
design enabling feedback of unwanted physical effects. The adaptive PID-controller derived in
section 4.1.2 was used as inner controller, controlling the main valves, in all simulations. However
this is a slow controller and for future purposes a faster inner controller should be considered.
This can also be argued for based on the small oscillations shown in the control slide positions
in figure 5.17 and the fact that the controller gains are self deleting due to 𝜎 in the adaptive
control laws which makes the controller slower, see (4.3).

The results from the test cases that were run to test the two controllers were good even though

Master Thesis Page 69



Chapter 5. Precise Control

the differential equations used in the controller designs were significantly simplified. Also the
tuning of these controllers have been done once and it seems like the controllers perform just as
well for other test cases with the same tuning. This is one of the strengths by using a model
based controller instead of an ordinary PID-controller for a non-linear system. Also if a PID-
controller was to be used it may have been necessary to tune the controller between the test
cases. As for the inner controller it looks like a PID-controller would work fine.

The speed controller gives the best results compared to the torque controller. This is not sur-
prising since the hydraulic motor has inertia and friction that gives damping to the system. The
differential pressure has no damping of importance and varies quite a lot, which sets restrictions
to controller tuning in order to assure stability and robustness all over for every load cases using
the same controller parameters. Also restrictions to the reference torque should be implemented.
A reference that is not physical possible, such as too low or too high values, should be avoided
by the use of logics.

It is also of importance to mention that every measurement used, except the differential pressure,
have not been filtered. In reality these measurements would be affected by noise and filtering
would be necessary. To filter the differential pressure a low pass filter has been used but other
filters should be considered such as Kalman based filters. One of the benefits by using such
filters is that they do predictions which would be of interest since the sensors have sampling
delays.

The next step would be to test the controllers more thoroughly using a more relevant load model.
This load model is derived in Skjong and Pedersen (2014c), which is given in Appendix B.3.
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6 | Controller Testing with
Wire Model

In chapter 5 model based controllers were derived to control the hydraulic motor. The controllers
were tested in simulations having predefined load characteristics. In this chapter a lumped load
model including hydrodynamics, current, wire dynamics and reel dynamics is added to the
hydraulic winch system for a more realistic controller testing. The wire is divided into five
equal lengths of submerged wire and each element are assumed to be a mass-spring-damper
system. The elements are connected through power bonds and the inertia and diameter of the
reel changes with the length of the submerged wire. This load model is elaborated in Skjong
and Pedersen (2014c), given in Appendix B.3.

To test the outer speed- and torque controller with the lumped load model an ordinary PD-
controller is used as inner controller as suggested in section 5.4. The gains in the controller are
set to 𝐾𝑝 =6000 V/m and 𝐾𝑑 =20 Vs/m, proportional- and derivative gain respectively. Different
load cases are tested with the two controllers. It is expected that the two controllers work quite
well also in these simulation cases. The model parameters used in the tests are as before if not
specified. The parameters in the load model are given in B.3, except for the initial length of
submerged wire and the load, which are specified in the simulations.

6.1 Speed Controller

To test the speed controller two different load cases are to be studied. As previously mentioned
the tuning of the controllers are dependent on the inner controllers and since the inner controllers
have been changed to faster ones, the outer controllers can be tuned harder. Only one controller
parameter is changed, 𝐷2 =800 1/s, the rest are as given in section 5.2. These two tests do not
include MRU-, Motion Reference Unit, measurements measuring heave motion of the top wire
position, but rather just a fast sweep of motor velocity in order to induce variations in the wire
tension causing changes in the wire dynamics such as damping and spring stiffness. Later on
cases including MRU measurements in AHC operations are to be initiated. In such cases the
top wire position is assumed to have a heave motion. The reference signals and load parameters
for these two speed controller tests are given in figure 6.1.

Table 6.1: Reference signals for testing of speed controller

Description Value

𝑥2𝑑, Reference signal for
hydraulic motor velocity (a sine()-sweep starting at 𝑡=5 s

with a magnitude of 5 rad/s
with a frequency of 𝜔 =0 rad/s

and ending at 𝑡=30 s with a frequency of 𝜔 =8 rad/s,
𝑓 = 4

𝜋 Hz)
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𝑄̇𝑝, Pump flow
(a ramp starting at 𝑡=0 s with a slope of 0.1 𝑚3/𝑠2

and stopping at 𝑡=3 s)

𝑄̇𝑝 = 0.1ramp(0)
−0.1ramp(3)
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𝑚𝐿𝑜𝑎𝑑, Weight of mass that is lifted. 𝑚𝐿𝑜𝑎𝑑 does not include
the mass of the wire.

Specified in simulations

𝑟3/2, Reference signal for 3/2-directional valve(𝑟3/2 =2 -
means that the

LOGIC-box controls the valve)
𝑟3/2 =2 -

In addition to the signals and parameters described in the table low pass filtering of the dif-
ferential pressure and the motor load measurements are done in the speed controller. This is
not just to reduce the peaks in the measurements but also to ensure more stability since the
error tolerances in the simulation is set high in order to get a short solving time. The filtering
parameters are set equal, 𝑘 =1 - and 𝜏 =0.01 s. It is expected that the speed controller would
perform well also with the wire model included. However the tracking error is assumed to be
a bit larger since the load the hydraulic motor experiences is varying due to inertial forces and
hydrodynamic forces acting on the wire and the load, together with the wire dynamics. The
error is also expected to increase with the frequency in the reference signal and load.

6.1.1 Load Case 1

The load connected in the end of the wire is set to 𝑚𝑙𝑜𝑎𝑑 =3000 kg, the horizontal current
𝑉𝑐,𝑥 =0 m/s and the initial length of submerged wire to 100 m. Figure 6.1 shows the motor
velocity compared to the reference.

As the figure shows it seems like the motor velocity coincides with the reference. The figure
in the lower left corner shows one of the many maximal velocity peaks and it shows that the
controller tracks the reference quite well. The crossing of the dead bands in the main valves are
shown in the plot in the lower right corner. The deflections from the reference in the crossings
are as expected and the tracking error is small when having in mind what actually happens
with the pressures in the crossings. By comparing these results with figure 5.1 the results look
quite promising for the controller. The oscillations caused by the dead band crossings in figure
5.1 seem to have a higher frequency compared to the results in figure 6.1. This tells that the
new load model seems to acts in the favour of the hydraulic motor when dead bands are crossed
using the speed controller, causing a higher oscillation period which is easier to control and it
seems like more damping is present. Figure 6.2 shows the tracking error.

The figure shows that the error grows with the frequency of the reference signal which is expected
due to all inertias and time constants in the model. Also the sampling delay plays a role when
the frequency increases. Compared to figure 5.2 the results looks quite good. The largest errors
are mostly due to the pressure peaks from the crossings of the dead bands. By taking the highest
error, that is not due to a crossing, the error is approximately 0.2 rad/s, 1.91 rpm. This gives a
maximal error of about 4 % relative to the reference signal. Figure 6.3 shows the control slide
positions compared to the references given by the outer speed controller.
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Figure 6.1: Hydraulic motor velocity and reference.
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Figure 6.2: Difference between velocity reference and actual motor velocity.

The first plot shows that the control slide positions seems to coincide with the references. This
is emphasized in the two plots below in the figure. The plot in the lower left corner shows one
of the highest displacements of the control slide in valve A. The plot in the lower right corner
shows a magnified area of a crossing of the dead bands. As expected the control slide positions
are more difficult to control when passing the dead bands, but as soon as the control slides have
passed, the tracking error converges to zero when neglecting the sample delay. Compared to
figure 5.3 the control slide positions seems to converge faster to the reference when using the
PD-controller. This is expected since the reason for changing the adaptive PID-controller was
because it seemed to be a bit slow. Figure 6.4 shows the differential pressure across the motor,
Δ𝑝, and the variable bulk modulus in volume A, B, P and R.

The first plot shows the differential pressure and it varies quite a lot and increases with the
frequency of the motor velocity, as expected. The maximal differential pressure is about 100 bar
at the end of the simulation. Since this is a low pressure system the differential pressure is
closing in on the maximal design pressure which is assumed to be close to 100 bar. This also
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Figure 6.3: Control slide positions and speed controller output.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5
x 10

7

Time [s]

P
re

ss
ur

e 
[P

a]

Differential pressure

0 5 10 15 20 25 30
0

5

10

15
x 10

8

Time [s]

Variable bulk modulus

P
re

ss
ur

e 
[P

a]

 

 

β
A

β
B

β
P

β
R

Figure 6.4: Differential pressure across the motor and variable bulk modulus in volume A, B, P
and R.

means that when using a heavier load with the same motor velocity reference signal the tracking
error of the motor velocity is expected to increase dramatically. The second plot shows the
variable bulk modulus in volume A, B, P and R which vary with the same frequencies as the
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differential pressure.

6.1.2 Load Case 2

The load is now set to 𝑚𝐿𝑜𝑎𝑑 =6000 kg, two times as large as in the previous load case. This will
result in a much higher differential pressure which would exceed the maximal design pressure.
However this test is only performed to test the speed controller. As a result of the high pressures
the tracking error is expected to become larger compared to the previous load case, especially
when crossing the dead bands in the main valves. The other model parameters are as in the
previous simulations. Figure 6.5 shows the hydraulic motor velocity compared to the reference.
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Figure 6.5: Hydraulic motor velocity and reference.

As seen in the figure the motor velocity seems to converge to the reference velocity. When the
frequency gets high it is harder to track the desired motor velocity. This is expected since both
the differential pressure and the frequency of the reference velocity are high. However the results
are still quite good and the speed controller seems to be robust. The plot in the lower left corner
shows that the motor velocity coincides with the reference when the frequency of the reference
is low. The plot in the lower right corner shows that the crossings of the dead bands affect the
motor velocity the same way as before. The next figure, figure 6.6 shows the tracking error.

As expected the tracking error is larger in this load case compared to the first one. However
the peaks are the main contributors to the largest errors and when neglecting these the error
at the end of the simulation seems to be about 0.36 rad/s, 3.44 rpm, which is about 7.2 % of
the reference velocity at that point. This is also a good result when having in mind that the
differential pressure and the frequency in the reference are way too high for the system to handle
perfectly. The differential pressure is shown in figure 6.8. Figure 6.7 shows the control slide
positions compared to the references given by the outer speed controller.

As before the inner controller works quite good forcing the tracking error to converge to zero.
Note that the oscillations in the start of the simulation is due to the initiation phase of the
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Figure 6.6: Difference between velocity reference and actual motor velocity.
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Figure 6.7: Control slide positions and speed controller output.

controller which is initiated at 𝑡 =0.1 s. This initiation phase seems to be larger than in the
previous load case, which is reasonable since the load is two times as heavy in this case. The
plot in the lower left corner emphasize the convergence of the tracking error where only the
sampling delay seems to be the difference. The plot in the lower right corner shows one of the
crossings of the dead bands and is almost identical to the dead band crossing in the previous
simulation, see figure 6.3. Figure 6.8 shows the differential pressure across the motor, Δ𝑝, and
the variable bulk modulus.

As seen in the figure the differential pressure exceeds 200 bar which is about two times as large as
what the hydraulic system is designed for, since it is characterized as a low pressure system. This
also means that the load of 𝑚𝐿𝑜𝑎𝑑 =6000 kg is too high with such a motor velocity reference and
should be reduced when such high frequencies in the motor velocity reference are to be tested.
However waves generating heave motions in ships have a much lower frequency than what is
tested here. The second plot shows the variable bulk modulus, having in general higher mean
values compared to the results in the previous load case.
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Figure 6.8: Differential pressure across the motor and variable bulk modulus in volume A, B, P
and R.

6.2 Torque Controller

Also two controller tests are to be initiated for testing the torque controller. Since the inner con-
troller is changed to a PD-controller instead of the adaptive PID-controller the torque controller
may be tuned harder to perform better. The new gains are given as 𝑘1 =5 1/s, 𝑘2 =1000 Nm/s
and 𝐷2 =9000 1/s. In addition the time constant in the low pass filter is changed to 𝜏 =0.2 s.
In these two tests a heave motion in the top of the wire is set, generating tension in the wire.
This heave motion is intended to represent waves acting on a ship making it move up and down,
and this movement is set as a sin(·)-sweep. The derivative of this movement is fed to the port
boatxy in the wire model and the torque controller is supposed to feel the changes in the wire
tension and try keeping the motor torque converge to its reference. The reference signals are
given in table 6.2.

Table 6.2: Reference signals for test of torque controller

Description Value

𝑦̇ℎ𝑒𝑎𝑣𝑒, Motion of wire at the surface in vertical direction
(given as the derivative of a sin(·)-sweep starting at 𝑡=5 s

with a magnitude of 2 m
with a frequency of 𝜔 =0 rad/s

and ending at 𝑡=30 s with a frequency of 𝜔 =8 rad/s,
𝑓 = 4

𝜋 Hz)
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𝑄̇𝑝, Pump flow
(a ramp starting at 𝑡=0 s with a slope of 0.4 𝑚3/𝑠2

and stopping at 𝑡=3 s)

𝑄̇𝑝 = 0.4ramp(0)
−0.4ramp(3)
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𝑇𝑑𝑚, Reference Torque Specified in simulations

𝑚𝐿𝑜𝑎𝑑, Weight of mass that is lifted. 𝑚𝐿𝑜𝑎𝑑 does not include
the mass of the wire

Specified in simulations

𝑟3/2, Reference signal for 3/2-directional valve(𝑟3/2 =2 -
means that the

LOGIC-box controls the valve)
𝑟3/2 =2 -

Note that the pump flow is set higher in these tests compared to the speed controller tests.
This is because much higher motor velocities are expected which would require a larger flow of
hydraulic liquid. The reference torques are chosen so that the motor velocity is as close to zero
as possible in the start of the simulations. This will prevent any hoisting or lowering of the load
and it is easier to see the influence the torque controller has on the load position. However it
is hard to set the reference torque to a value that only holds the load. The horizontal current
velocity is also in these tests set to zero.

6.2.1 Load Case 1

In this test case 𝑚𝐿𝑜𝑎𝑑 =3000 kg, 𝑇𝑑𝑚 =26910 Nm and the initial length of submerged wire is set
to 100 m. Note that 𝑚𝐿𝑜𝑎𝑑 does not include the 100 m of wire holding the load. It is expected
that the tracking error will grow larger than in the previous simulations because the hydraulic
motor velocity becomes large due to the high frequencies in the heave motion of the ship. These
frequencies are not realistic in real life scenarios but are used only to test the controller under
rough conditions. Figure 6.9 shows the motor torque compared to the reference torque.

As can be seen in the first plot both the peaks, coming from crossings of the dead bands in
the main valves, and the torque oscillations at the end of the simulation are larger than before.
This is expected since the motor velocity is high in this region. The plot in the lower left corner
shows that the controller stabilizes fast in the beginning of the simulation and has a small peak
at 𝑡 =5 s due to the initiation of the heave motion. The plot in the lower right corner shows the
torque oscillation with the maximal amplitude in the end of the simulation. To get a clearer
understanding of the difference between the reference torque and the actual motor torque the
tracking error is shown as a percentage of the reference torque in figure 6.10.

The figure shows that the tracking error is larger in this simulation compared to the previous
simulation, see section 5.3. However when neglecting the error peaks generated by the dead
band crossings the maximal error is still below 5 %, and that is for a simulation containing
heave motion with unrealistic high frequencies. The outer controller is still stable under these
conditions which indicates that the torque controller works fine for its purpose.

Figure E.6 in Appendix E.2 shows the results of the inner controller, comparing the reference
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Figure 6.9: Torque and reference.
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Figure 6.10: Tracking error.

positions given by the outer controller with the actual control slide positions. The results shown
in the figure are almost equal to previous results, the inner controller manages to control the
control slide positions according to the references. Only small oscillations are present when
crossing the dead bands in the main valves. The next figure, figure 6.11 shows the hydraulic
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motor velocity.
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Figure 6.11: Hydraulic motor velocity.

The motor velocity is quite high, about 15 rad/s, 143.3 rpm, at the end of the simulation which is
higher than what is expected of the hydraulic motor. It can also be seen that the motor velocity
has the same form as the derivative of the heave motion that was added to the top of the wire.
If the torque controller had zero tracking error then the motor velocity would be proportional
to the heave velocity with the inverse of the radius of the reel as parameter. This is however not
completely the case. Since there are tracking errors present in the simulation there will be some
load motions as well. Figure 6.12 compares the top wire position and the bottom wire position
in vertical direction.
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Figure 6.12: Top and bottom vertical wire position.

The first plot shows the heave position in the top position of the wire. As can be seen it is
a perfect sine()-sweep as it was supposed to be. The second plot shows the bottom vertical
position of the wire, the vertical load position. If the torque controller had no tracking error
there would be no oscillations present. However these oscillations are small, about 0.25 m in
amplitude at most. It can also be seen that the load is lowered. This is due to 𝑇𝑑𝑚 which was
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set a bit to low to hold the load.

Figure E.7 in Appendix E.2 shows the differential pressure across the motor and the variable
bulk modulus. The peaks shown in the measured torque are also present in the differential
pressure as expected and both the differential pressure and the bulk modulus oscillate with the
frequency of the heave motion.

6.2.2 Load Case 2

In this test case 𝑚𝐿𝑜𝑎𝑑 =9000 kg and the reference torque is set to

𝑇𝑚𝑑 = 84600 + 5000ramp(𝑡 = 8) − 5000ramp(𝑡 = 10) − 5000ramp(𝑡 = 14)
+ 5000ramp(𝑡 = 18) + 5000ramp(𝑡 = 22) − 5000ramp(𝑡 = 24)

(6.1)

The initial length of submerged wire is still 100 m and the horizontal current is assumed to be
zero. Figure 6.13 shows the motor torque compared to the reference.
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Figure 6.13: Torque and reference.

As the figure shows the torque peaks are still present in the first plot but the controller seems
to follow the reference torque with good precision. It also seems like the maximal tracking error
is lower in this case since the oscillations looks smaller compared to the previous case. This is
as expected since the load is three times as large as in the previous case which will generate
more tension in the wire that the torque controller experiences. The plot in the lower left corner
shows that the controller stabilizes as before and the characteristic torque peak when the heave
motion is initiated is present. The plot in the lower right corner shows the maximal torque
oscillation in the end of the simulation, when neglecting the torque peaks, indicating that the
tracking error is lower in this case. The tracking error is shown in the next figure, figure 6.14.

The figure confirms the suspecting. When neglecting the torque peaks the error seems to be
below 2 %, which is a good result. This also indicates that the motion of the load should be
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Figure 6.14: Tracking error.

lower than in the previous case. Figure 6.15 shows the top vertical wire position compared to
the vertical load position.
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Figure 6.15: Top and bottom vertical wire position.

As can be seen in the figure the oscillations from the heave motion seems to be almost gone and
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the amplitude of the oscillations in the end of the simulation is approximately 0.03 m, 3 cm. The
small changes in the reference torque lifts the load about 5 m in the end of the simulation. This
may be little strange since the reference torque was both increased and decreased and the sum
of these changes should be zero. This has to do with the complexity of the model, taking the
inertia of the load, the wire and the hydrodynamics into account. If the changes in the reference
torque were shifted, first decreased and then increased, the load would be lowered below the
start position. Also the mean reference torque was set so that the motor velocity was as close to
zero as possible, but as in the previous case this is difficult to do by hand. Also hydrodynamic
loads affects the load and the wire and tries to prevent any movement. This means that the
load position is affected by many factors giving a complex picture of the quantities that affect
the load position.

The motor velocity is comparable to the velocity in the previous case and is given in figure E.8
in Appendix E.2. The control slide positions, the differential pressure across the motor and
variable bulk modulus are shown in figure E.9 and E.10, respectively, in Appendix E.2. The
results are similar to the cases already discussed.

For the test cases presented in this chapter the horizontal current was set to zero. Therefore
two extra cases are studied to also include current acting on the wire and the load.

6.3 Additional Controller Tests

Two more controller tests are given in Skjong and Pedersen (2014a), see Appendix B.1, which
test the two controllers in AHC operations.

The first simulation tests the speed controller in an AHC case where the MRU gives the reference
velocity to the speed controller. The heave position of the vessel is assumed to be a sine wave
with an amplitude of 2 m and with an increasing frequency, starting at 𝜔 =0 rad/s and ending
with 8 rad/s. The initial length of the submerged wire is set to 100 m, the load is set to 3000 kg
and the horizontal current is set to 2 m/s. The results from the simulation show that the speed
controller gets a maximal tracking error in the end of the simulation of about 0.2 rad/s when
neglecting the error peaks generated by crossings of the dead bands in the main valves. The
heave induced changes in the vertical load position are ±2 cm in the end of the simulation,
showing that the speed controller works well in AHC operations.

The second simulation tests the torque controller in AHC operation with the same simula-
tion settings as in the previous test. The torque controller has a constant torque reference of
𝑇𝑑𝑚 =26910 Nm. The maximal tracking error given in % compared to the reference is about
5 % in the end of the simulation, when neglecting the peaks generated by crossings of the dead
bands in the main valves. The heave induced changes in the vertical load position are in this
case about 25 cm, which shows that the torque controller is not as good as the speed controller
in AHC operations, as expected.

6.4 Chapter Summary and Conclusion

In this chapter the two controllers derived in chapter 5 have been tested more thoroughly by
using the lumped loading model derived in Skjong and Pedersen (2014c), see Appendix B.3. The
inner controllers were changed from adaptive PID-controllers to constant gained PD-controllers.
This was done in order to improve the speed of the inner controllers, controlling the control slides
to the desired positions. The adaptive controller had a ”self-deleting” term 𝜎 in the control laws
which is shown in (4.3). This term made the controller stable but also slow. When changing the
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inner controllers the outer controllers could be tuned harder which reduced the tracking errors
giving better results.

The speed controller was first tested using a sin(·)-sweep reference, having an amplitude of 5 rad/s
with increasing frequencies starting at 𝑓 =0 Hz and ending in 𝑓 = 4

𝜋 Hz, and with two different
load cases, 𝑚𝐿𝑜𝑎𝑑 =3000 kg and 𝑚𝐿𝑜𝑎𝑑 =6000 kg. It was also assumed no current and no heave
motions in the simulations and the purpose was to induce oscillations in the wire model trying
to make the speed controller unstable. The results from both tests indicated that the speed
controller seemed to be robust having a low tracking error in the highlight of the two load cases.
The frequency at the end of the simulations was set larger than what would be expected for such
a hydraulic system to experience in reality. It would never be desired to generate such oscillations
when doing a winch operation. The high frequencies generated high differential pressures and
the load case 𝑚𝐿𝑜𝑎𝑑 =6000 kg exceeded the maximal design pressure of the hydraulic system.
However the speed controller performed well also in this case.

The torque controller was also devoted two controller tests. The reference torque was set constant
to a value as close to the torque necessary for holding the load in the first case and a heave
motion at the top of the wire was added. The heave motion gave a sin(·)-sweep of the vertical
top wire position with an amplitude of 2 m with the same range of frequency as for the speed
controller tests. The load was set to 𝑚𝐿𝑜𝑎𝑑 =3000 kg and the results showed that also the torque
controller performed well emphasized by a global tracking error below 5 % when neglecting the
peaks due to crossings of the dead bands in the main valves. Also the torque controller was
tested with unrealistic frequencies. For waves generating a heave motion of ±2 m would normally
have a wave period of at least a few seconds, giving a wave frequency lower than 1 Hz. For heave
motions with amplitudes of about 2 m and frequencies larger than 1 Hz a precise winch operation
would never be initiated in the first place due to safety issues.

The same test was initiated for a load 𝑚𝐿𝑜𝑎𝑑 =9000 kg and a change of reference torque were
added between 𝑡 =8 s and 𝑡 =24 s, as specified in (6.1). Also in this test the torque controller
performed well, giving a maximal global tracking error below 2 %. The results showed that the
torque controller perform better when the load is large and also when the hydrodynamics have
large influence. This generates larger tensions in the wire and thereby larger changes in the
motor torque. Since the torque controller is assumed slower an less precise compared to the
speed controller it is less sensitive and hence larger variations and higher values of the torque
will result in better performance for the torque controller.

In addition to these tests two more tests were initiated in Skjong and Pedersen (2014a), see
Appendix B.1. Both tests were AHC tests, including horizontal current and heave motions of the
vessel. The results from these tests were also good showing that the speed controller minimized
the effect the heave motion had on the load, giving a change in vertical load position of about
2 cm in amplitude. In this case the load was also lifted about 5 cm because of the horizontal
current. The test for the torque controller showed that the controller started lowering the load
because the current acting on the wire and the load generated higher tensions in the wire. This
resulted in higher horizontal displacement of the load but with the right torque reference the
torque controller should be able to keep the load at the same depth.

Now when the two controllers have been tuned and tested thoroughly it would be of interest to
see how they act together, performing in situations where anti-spin and torque limitations are
desirable.
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As seen in chapter 6 the two controllers that were derived in Skjong and Pedersen (2014a),
see Appendix B.1, worked well also when a more realistic hydraulic motor loading model was
included in the simulations. In this chapter a combination of these two controllers in a hybrid
control system is to be studied. The motivation for this is to be able to give the hydraulic winch
functionalities such as anti-spin, load landing, loss of load detection or generally detection of
load variations and to detect when the load gets stuck and be able to control the winch in such
cases without danger.

7.1 Hybrid Control Design

The hybrid controller design is elaborated in Skjong and Pedersen (2014b), see Appendix , and
will only be briefly presented here.

The speed controller and the torque controller, that have been derived previously, are connected
to the hybrid controller output through a switching algorithm, which in general is what a hybrid
controller consists of except controllers. The switching algorithm, or the switching logics, bases
its choices on measurements from the hydraulic system, switching restrictions and conditions,
as well as operator choices. The most important property in the hybrid controller design is
to ensure stability in the controlled system when controllers are interchanged. In this hybrid
controller design dwell time switching is chosen as a switching restriction in addition to controller
tracking error limits and system restrictions.

Dwell time switching ensures that the switching algorithm does not change controller whenever
it wants, which can lead to a phenomenon called chattering. When a controller switching
has been initiated the hybrid controller must wait a given period of time before allowed to
switch controller again. Chattering is when the switching algorithm changes controller with a
high frequency which leads to instability in the controlled system. Together with dwell time
restriction the tracking error must be within a given region before the switching algorithm is
allowed to change controller. These two restrictions ensures that the active controller is stable,
and thus the controlled system is stabilized, before a controller switching is initiated.

In addition to the mentioned restrictions, the controlled system also sets restrictions to the
hybrid controller, ranging from maximal torque and speed to situations that make the system
unstable if not observed and handled right. One such situation is whenever the torque controller
is active, the torque limit is reached and the load is too heavy for the winch to hold. Then the
load is lowered and if the speed in the lowering exceeds the speed limit the hybrid controller
should not be able to switch controller. If it does, the speed controller is activated and tries to
force the winch to give a higher torque than allowed. This will either initiate a new controller
switching, reactivating the torque controller and the hybrid controller is back to where it started,
or the winch generates a higher torque than allowed causing wire rupture or damages in the
hydraulic system. This situation, among others, shows that the hybrid controller design with
its restrictions also is dependent on system properties and must be included in order to obtain
a safe hybrid controller design.

In general the speed- and torque limits are seldom reached in normal winch operations and is
often triggered by special cases such as landing a load on the sea floor, wire snapping and stuck
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load. These cases are taken into account when designing the hybrid controller and are also
studied carefully in Skjong and Pedersen (2014b).

Together with the switching algorithm a torque reference estimator are included. This estimator
is a second order Bessel filter, a notch filter, that tries to filter out the heave generated torque
variations from the calculated motor torque whenever the operator allows it and when the speed
controller is active doing an AHC operation where the load is kept at a constant depth. When
the estimate satisfies the restrictions that are set, the torque controller is reactivated and fed
the torque estimate as a new reference.

All measurements are filtered which is important for the performance of the hybrid controller.
If too much is filtered out the performance would be poor and if too little is filtered out the
hybrid controller may try to switch controller when a peak in the measurements appear. As seen
previously pressure peaks appear when the control slides in the main valves cross the dead bands,
and the hybrid controller should not initiate a controller switching each time this happens.

7.2 Hybrid Controller Testing

The hybrid controller derived in Skjong and Pedersen (2014b) should be tested in various sim-
ulation cases to ensure stability of the hybrid controller numerically. The first test is an AHC-
operation, using the speed controller as the main active controller, where the load changes
rapidly generating a torque that exceeds the torque limit. The three next simulations, that are
given in Skjong and Pedersen (2014b), tests the hybrid controller in load landing-, loss of load-
and stuck load situations.

7.2.1 AHC with Changing Load

To test the hybrid control system a simple AHC test is considered. The operator has set the
speed controller to be the main active controller, the controller the operator wants to use,
trying to keep the load at a constant depth using MRU measurements as reference to the speed
controller. The speed limits are set to ±6 rad/s, the torque limit is set to 50 kNm and the load
is set to 3000 kg. At 𝑡 =10 s the load is doubled in a step and the torque controller should be
activated by the switching algorithm since the torque will exceed the torque limit. At 𝑡 =20 s
the load is changed back to its initial value and the switching algorithm should observe this and
reactivate the speed controller. The heave position of the vessel is assumed to be a sum of six
sine waves with frequencies 𝜔 ∈[0.5 rad/s,2 rad/s] and with amplitudes 𝐴 ∈[0.2 m,2 m].

Figure 7.1 shows the motor velocity compared to the reference velocity, magnified areas around
the controller switching areas and which controller is active.

The first plot shows the hydraulic motor velocity compared to the reference and shows that the
motor velocity coincides with the reference when the speed controller is active. In the range
𝑡 ∈[10.7 s,20.5 s] the torque controller is active and the motor velocity decreases. This is because
the torque is too low to hold the load and when it got doubled the load is lowered. The two
plots on the second row in the figure show a closer view of the motor velocity and the reference
when a controller switching is initiated. When the speed controller is reactivated it uses about
0.4 s to stabilize fixed at the reference. The last plot shows which controller is active during the
simulation. Figure 7.2 shows the torque compared to the torque limit, magnified areas around
the controller switching and which controller is active during the simulation.

The first plot shows the torque compared to the torque limit, and shows that the torque converges
to the torque limit when the torque controller is active. The torque controller is activated at
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Figure 7.1: Hydraulic motor velocity, reference, magnified areas around controller switching and
active controller.
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Figure 7.2: Torque, reference, magnified areas around controller switching and active controller.

𝑡 =10.7 s and uses about 0.6 s to stabilize fixed at the torque limit. This can be seen in the first
plot on the second row in the figure. The last plot on the second row shows a magnified area
around the torque when the speed controller is reactivated. The last plot shows witch controller
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is active during the simulation.

This test shows that when the speed controller is chosen to be the main active controller, the
hybrid controller activates the torque controller when the torque exceeds the torque limit and the
torque controller keeps the torque at this limit. When the load decreases the hybrid controller
observes this and reactivates the speed controller.

7.2.2 Controller Tests given in Skjong and Pedersen (2014b)

Additional three hybrid controller tests are given in Skjong and Pedersen (2014b), see Appendix
B.2. These tests are briefly explained below.

Landing of Load using Torque Controller

The first simulation presented tests the hybrid controller in an operation where a landing of the
load at the sea floor is to be initiated. The torque controller is chosen to be the main active
controller by the operator and the torque reference is set lower than the torque required to hold
the load in order to lower the load. The upper speed limit is set to zero in order to observe
when the load makes contact with the sea floor. The simulation results show that when the
load touches the sea floor the speed controller is activated, having only MRU-measurements as
reference in order to perform AHC. After a while both the upper speed limit and the reference
torque is increased and the torque controller is reactivated and starts hoisting the load. In the
end of the simulation the operator manually activates the speed controller in order to perform
AHC, keeping the load at a nearly constant depth.

The controller test shows that the hybrid controller is able to land a load at the sea floor with a
tensioned wire, having about constant submerged length, by having the torque controller active
performing the lowering and by setting the upper speed limit to zero.

Loss of Load and Variations using Torque Controller

In this test the torque controller is chosen to be the main active controller, having a constant
reference that is about the required torque for holding the load. The load is changed four times
during the simulation; the load is lost, regained, doubled and set to its initial value at the end.
The operator has chosen that the hybrid controller may try to estimate a new torque reference
when the speed controller is active performing AHC keeping the load at a nearly constant depth.

The simulation results show that when the load changes the speed controller is activated and
the hybrid controller starts to estimate a new torque reference. The estimated torque references
have varying accuracy and the results shows that it is hard to find the right torque reference to
just hold the load. This problem is related to the control problem of the inverted pendulum,
where the equilibrium point is a saddle point and only a small disturbance is enough to push
the system out of its equilibrium point. However the estimated torque reference is only meant
as a guide for the winch operator, and the lack of accuracy is therefore relaxed. The results
also show that the switching algorithm in the hybrid controller works fine and the controllers
stabilize fast when activated.

Stuck Load using Speed Controller

In this simulation the speed controller is chosen as the main active controller, having only the
MRU-measurements as reference performing an AHC that keeps the load at a nearly constant
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depth. In the region 𝑡 ∈[10 s,30 s] the load is stuck and at 𝑡 =15 s the load is to be hoisted.

The simulation results shows that the speed controller is active until the load is to be hoisted.
Then the torque controller is activated due to exceedance of the torque limit. This means that
the speed controller performs so good that the hybrid controller does not observe that the load
is stuck until the load is to be hoisted. The torque controller is active in the rest of the time
region the load is stuck and the speed controller is reactivated when the load is released.

This shows that the hybrid controller works good in cases where the speed controller is active
and the load gets stuck. This is an important functionality in the hybrid controller and would
lead to damages in the hydraulic system or loss of load if not included in the hybrid control
design.

All tests presented show that the hybrid controller works good, and emphasizes that the wanted
functionalities in the hybrid controller must be studied and included in the switching algorithm.
In Skjong and Pedersen (2014b) 𝑇𝑙𝑜𝑎𝑑 was set to zero because it was assumed not measurable. In
reality 𝑇𝑙𝑜𝑎𝑑 is hard to measure and must be estimated or observed through other measurements.
It would also be favourable to have estimates of the motor velocity if the decoder that measures
the velocity fails. The differential pressure is always assumed measured and if the velocity and
𝑇𝑙𝑜𝑎𝑑 could be observed through the differential pressure measurements, it would be of great
interests to design an observer.

7.3 Observer Design

By using the simplified differential equations for the motor velocity and the differential pressure,
the motor velocity can be related to the differential pressure. However there is no equation
describing 𝑇𝑙𝑜𝑎𝑑. By simply assuming that 𝑇𝑙𝑜𝑎𝑑 can be modelled a function of itself, the three
differential equations that lies the groundwork for the observer can be expressed as

𝑥̇𝑚2 = 1
𝐼𝑚

[︂
𝐷𝑚

2𝜋
Δ𝑝 − 𝐹𝑠𝜇𝑣𝑥𝑚2 − 𝑇𝑙𝑜𝑎𝑑

]︂
(7.1a)

Δ̇𝑝 = 𝛽𝛼𝜋𝐷𝑠

𝑉
√

𝜌
𝑥𝐻

√︁
Δ𝑝𝑢𝑚𝑝 − sign(𝑥𝐻)Δ𝑝 − 𝛽𝐷𝑚

2𝜋𝑉
𝑥𝑚2 − 𝛽𝐺

𝑉
Δ𝑝 (7.1b)

𝑇̇𝑙𝑜𝑎𝑑 = −1
𝜏

𝑇𝑙𝑜𝑎𝑑 (7.1c)

where 𝜏 is a time constant. The three differential equations can be set in a system and by
assuming that a high gain state observer, a Luenberger observer design (Chen, 1998), is a
sufficient observer for this purpose, the observer can be given as

˙̂𝑥 = 𝐴𝑥̂ + 𝐵(𝑦, 𝑢)𝑢 + 𝐾(𝑦 − 𝐶𝑥̂) (7.2)

where 𝑦 := Δ𝑝 is the measured differential pressure across the hydraulic motor, 𝑥̂ = [𝑥̂1, 𝑥̂2, 𝑥̂3]𝑇
are the states where 𝑥̂1 is the hydraulic motor velocity, 𝑥̂2 is the differential pressure and 𝑥̂3 is
the load generated torque acting on the hydraulic motor, 𝐶 = [0, 1, 0], 𝐾 = [𝑘1, 𝑘2, 𝑘3]𝑇 is the
observer gain vector,

𝐴 =

⎡⎢⎣ −𝐹𝑠𝜇𝑣

𝐼𝑚

𝐷𝑚
2𝜋𝐼𝑚

− 1
𝐼𝑚

−𝛽𝐷𝑚

2𝜋𝑉 −𝛽𝐺
𝑉 0

0 0 − 1
𝜏

⎤⎥⎦ and 𝐵(𝑦, 𝑢) =

⎡⎢⎣ 0
𝛼𝛽𝜋𝐷𝑠

𝑉
√

𝜌

√︁
Δ𝑝𝑢𝑚𝑝 − sign(𝑢)𝑦

0

⎤⎥⎦ (7.3)
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To be able to observe the motor velocity and 𝑇𝑙𝑜𝑎𝑑 through the differential pressure measure-
ments, Δ𝑝, then

𝒪 =

⎡⎢⎣ 𝐶
𝐶𝐴
𝐶𝐴2

⎤⎥⎦ (7.4)

must have full rank. In this case rank(𝒪) = 3 and the motor velocity and 𝑇𝑙𝑜𝑎𝑑 are therefore
observable. To be able to choose 𝐾 to stabilize the observer, the error dynamics in the observer
must be studied. The error dynamics are given as

𝑒̇ = (𝐴 − 𝐾𝐶)𝑒 + 𝐵(𝑦, 𝑢)𝑢 + 𝐾𝑦 (7.5)

𝐾 must be chosen such that
𝐴𝑒 = 𝐴 − 𝐾𝐶 (7.6)

is Hurwitch. It is also important that the error dynamics are faster than the dynamics in the
system that is to be observed. In this observer, the gains are tuned through simulations and set
to 𝐾 = [−0.001, 2400, 15]𝑇 . The time constant in the differential equation giving 𝑇𝑙𝑜𝑎𝑑 is set to
𝜏 =4000 s.

Now, when the observer is derived, it should be tested through simulations. It is expected that
the performance of the speed controller decreases when using the observed motor velocity in the
control law. Also it is expected that including the observed 𝑇𝑙𝑜𝑎𝑑 in the speed controller would
give negligible changes in performance for the speed controller, which emphasizes the robustness
of the controller.

7.4 Simulations using Observer

The observer is to be tested with the same simulation settings as used in section 7.2.1. This gives
the opportunity to compare different cases and see the effects from using the observed motor
velocity and the observed motor load in the speed controller. Each case study is compared to
the simulation done in 7.2.1.

7.4.1 Observer out of the Loop

In this case the observer is connected out of the loop, meaning that the speed controller gets the
measured motor velocity and 𝑇𝑙𝑜𝑎𝑑 = 0. This is done in order to see how accurate the observer
is before included in the closed loop.

Figure 7.3 shows the estimated motor velocity compared to the measured motor velocity. The
figure shows that the difference between the measured motor velocity and the estimated motor
velocity is small. There is a small delay separating them, which comes from a combination of
sampling delay and filtering of the differential pressure. The largest differences between them
are when the controllers are switched, which are seen in the two plots on the second row in the
figure. However the differences decrease after about 0.6 s after the controller switchings. Even
though the estimate is good, the estimation error could be large enough to generate a significant
decrease in performance in AHC operations.

Figure 7.4 shows the estimated motor load, 𝑇𝑙𝑜𝑎𝑑, compared to the actual motor load. As can
be seen in the figure, the motor load oscillates a bit in the start of the simulation. This is due
to the initiation phase in the simulation. In the time region after initiation and to 𝑡 =10.7 s, the
estimated 𝑇𝑙𝑜𝑎𝑑 seems to coincide with the measured motor load except for a delay as already
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Figure 7.3: Observed motor velocity compared to the measured motor velocity.
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Figure 7.4: Observed motor velocity compared to the measured motor velocity.

mentioned. At 𝑡 =10.7 s the estimate starts to oscillate, but stabilizes after a short period of
time. This has to do with the change of active controller, and since the observer is out of the
loop such oscillations are to expect.
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The results from this simulation shows that the observer works quite well when having in mind
that the differential equations used are simplified and that the motor load is assumed to be a
Markov process with no noise. This also emphasizes the assumptions done when deriving the
simplified state equations.

7.4.2 𝑇𝑙𝑜𝑎𝑑 in Feed Forward

The objective in this simulation is to verify the assumption of setting 𝑇𝑙𝑜𝑎𝑑 = 0 in the speed
controller. The hydraulic motor velocity is measured and 𝑇𝑙𝑜𝑎𝑑 is estimated and given in feed
forward in the control law in the speed controller. Figure 7.5 shows the tracking error in the
speed controller in the simulation done in 7.2.1 compared to the simulation with estimated 𝑇𝑙𝑜𝑎𝑑

given in feed forward. The plots given on the first row in the figure are the tracking error with
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Figure 7.5: Comparison of simulations with and without 𝑇𝑙𝑜𝑎𝑑 in feed forward.

𝑇𝑙𝑜𝑎𝑑 = 0 for the two time regions where the speed controller is active. The plots in the second
row shows the tracking error in the simulation with estimated 𝑇𝑙𝑜𝑎𝑑 given in feed forward in the
control law for the same two time regions. As the figure shows the difference between them are
negligible, which emphasizes the assumption about setting 𝑇𝑙𝑜𝑎𝑑 = 0. It also emphasizes the
robustness of the speed controller, which was based on simplified state equations.

7.4.3 Closed Loop with Observed Motor Velocity in Feedback

In this case study the speed controller is fed to the estimated motor velocity as feedback, meaning
that the observer is part of the closed loop. Since the controller worked fine with 𝑇𝑙𝑜𝑎𝑑 = 0, as
shown in section 7.4.2, it is also used in this simulation. It is expected that the speed controller
doing an AHC operation with the estimated motor velocity in feedback performs poorer than
compared to the simulation done in section 7.2.1. To compare the two simulations the vertical
load position is used. Figure 7.6 shows this comparison.
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Figure 7.6: Comparison of vertical load positions between simulations with measured velocity
and estimated velocity.

As can be seen in the figure the performance of the speed controller in the AHC operation, in
the time regions the speed controller is active, has decreased when comparing to the case where
the speed controller gets the measured motor velocity in feedback. The two plots in the first row
in the figure shows the simulation results with measured motor velocity in feedback, and shows
that the maximal changes in the vertical load position is about ±1 cm. The plots in the last
row in the figure shows the simulation results with estimated motor velocity in feedback and
the maximal changes in vertical load position in this case are about ±20 cm, 20 times larger.
This supports the assumption about poorer speed controller performance, but the results are
still good, giving a total error in vertical load position of 3.33 % compared to the maximal heave
position of the vessel, which is about 6 m. It also shows that the estimated motor velocity can
be implemented in the system for safety purposes so that the winch would still be controllable
even when the decoder that measures the motor velocity fails.

7.5 Chapter Summary and Conclusion

In this chapter the hybrid control design derived in Skjong and Pedersen (2014b), see Appendix
B.2, was presented and tested. The functionalities that were implemented in the hybrid controller
showed to be related to the switching stability and the switching algorithm was designed to take
care of this and ensure stability in the hybrid controller.

The finished hybrid controller was tested in a simulation where the speed controller was set
to be the main active controller performing an AHC operation trying to keep the load at a
constant depth. The torque limit was set to a low value and when the load was doubled the
torque approached this limit forcing a controller switching in the hybrid controller. The torque
controller was activated with the torque limit as reference. When the load decreased back to
its initial value the speed controller was reactivated. This simulation showed that the hybrid
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controller switched controller when the torque limit was reached which tells that the hybrid
controller manages such cases.

In Skjong and Pedersen (2014b) three more test cases were initiated. Landing of load, loss
of load and load variation with estimated torque reference, and stuck load. These three tests
were initiated to test the functionalities implemented in the hybrid controller and showed that
the hybrid controller was stable performing well in all these cases. A Bessel filter was used to
estimate the torque reference when the load changed in the ”loss of load”- test. The estimates
showed varying accuracies and none of the new estimated torque references managed to keep the
load perfectly still in AHC using the torque controller. This problem is related to the inverted
pendulum control problem, where the torque reference for holding the load must be perfect and
no disturbances can be present in order to perform AHC by using the torque controller. This
is of course impossible since current effects, wave effects and wire dynamics, that are seen as
disturbances in this case, are present in the simulation. If the length of submerged wire, tension
or the load changes slightly the load would either be hoisted or lowered, which by itself would
change the torque reference. This emphasizes the fact that the torque controller is not ideal in
AHC operations, but has its strengths in other operations such as towing.

Also an observer was designed in order to estimate 𝑇𝑙𝑜𝑎𝑑 and the motor velocity. A Luenberger
observer, a high gain state observer, was chosen and tuned. 𝑇𝑙𝑜𝑎𝑑 was in this chapter assumed
not measurable and therefore it was set to zero in the speed controller law. Simulations done
with this assumption showed that the speed controller performed well also in this case and the
differences were negligible. This also emphasizes the robustness of the speed controller. The
observer has the differential pressure, Δ𝑝, as measurement, 𝑦, and uses this to estimated 𝑇𝑙𝑜𝑎𝑑

and the motor velocity based upon the simplified state equations derived in Skjong and Pedersen
(2014a) and a Markov process representing 𝑇𝑙𝑜𝑎𝑑. It was assumed that the observer would give
some errors, and this was confirmed in simulations. However the observer in the closed loop,
feeding the speed controller with the estimated motor velocity, showed that the performance
decreased a bit, but the system were still stable and controllable. This gives redundancy in
the controller design, and the winch would still be operable if the decoder measuring the motor
velocity fails.
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8 | Conclusion and Further Work
In this thesis a hydraulic winch system has been modeled using bond graph theory and controlled
using sliding mode-, backstepping- and hybrid control theory. The total bond graph model
consists mainly of clean power bonds and well known bond graph building blocks such as C-, R-
and I-elements, with a few exceptions. Some transfer functions are used to model the velocity
limitation function and the fast dynamics in the pilot valve and the 3/2-directional valve. Also
signal bonds are used in the main valves to connect the hydraulic flow with the valve dynamics.
The same can be seen in the lumped wire-load model where the reel is connected to the wire
elements through signal bonds. This is not the desirable way of modeling using bond graph
theory where clean power bonds connecting submodels are preferable. However in these two
cases clean power bond connections can not be used. In general in every modeling cases where
the flow and the effort are interchanged asymmetrically, meaning the effort has to be handled
different than the flow between submodels, clean power bonds can not be used. Then a hybrid
modeling approach, including both bond graph theory and block theory, must be used.

The derived bond graph model for the hydraulic winch system shows reasonable responses in
the simulations performed, which is expected since the main dynamics describing the system are
present. Fluid inertia and variable bulk modulus in the main valves were removed to cut down
the simulation time and by comparing simulations these simplifications were argued for since
the differences were negligible. To verify the total model full scale tests should be performed. As
a guide to tune the model against benchmark tests, model parameter sensitivity analysis have
been initiated. This also gives a deeper understanding of how the model parameters affect the
model response.

A thorough relation study, relating the control slide positions in the main valves to the motor
velocity and the torque, was performed for control purposes. A clear relation between the main
valve on the load side of the motor and the motor velocity and the torque was found and it
showed to be possible to calculate the control slide positions from a desired velocity or torque
in order to reproduce it in simulations. The results were not accurate but emphasized that
the winch operator could act as an outer controller by observing the motor velocity and the
torque and manually set the references for the control slides in the main valves. An adaptive
PID-controller was used as inner controller and seemed to work good except for being a bit
slow. However the adaptive controller is faster than the operator and is therefore argued for
in such operations. Moreover the results showed that the relations were dependent on other
quantities as well, such as pump flow and motor loading. This gives rise to believe an ordinary
PID-controller would not work as an outer controller since the system is highly nonlinear, and
stability of the system using the PID-controller can not be guaranteed except for a small region
around the point the controller is tuned. That is why model based nonlinear controllers were
derived.

The derivation of the speed controller and the torque controller were given in Skjong and Ped-
ersen (2014a), see Appendix B.1. The two control laws are based on simplified state equations
describing the controlled states in the hydraulic system. The state equations extracted from the
bond graph model showed to be difficult to use in the control designs since they included lots
of logic. Even though the control laws were based on simplified state equations they worked
well which the controller tests and the simulations have shown. The controllers showed to be
easy to tune and not very sensitive for small changes in the controller parameters and model
parameters. This is expected since the control theory used to derive the two controllers tend
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to give controllers with such preferences. In general the speed controller showed better perfor-
mance than the torque controller, which is favourable since the speed controller is expected to
be more in used compared to the torque controller. In simulations where the torque controller
was used in AHC operations it was seen that the load was either lowered or hoisted. This was
not unexpected since a small shortening or elongation of the submerged wire would change the
torque reference needed to hold the load. Disturbances like current and vessel motions con-
tribute to the tracking error in the torque controller and the load is automatically lowered or
hoisted. This problem was said to be related to the inverted pendulum control problem, where
the equilibrium point is a saddle point and only a small disturbance would cause the pendulum
to change equilibrium point. However it is not an impossible task to control such systems, and
should be studied more thoroughly in order to design a suitable control algorithm for using the
torque controller in AHC operations where the load is kept at a constant depth.

The two controllers were put together to form a hybrid controller and a switching algorithm
was designed to ensure stability in both the hybrid controller and the controlled system. The
stability showed to be dependent on different functionalities and load cases, which was not
unexpected. That is why operations such as landing a load on the sea floor and cases where
the load gets stuck were studied for switching algorithm design purposes. More cases and
operations should be investigated and included in the switching algorithm to ensure stability in
every offshore operations. However in the studied operations the hybrid controller showed to be
stable, robust and well suited for its purpose. To ensure redundancy in the control system an
Luenberger observer was designed based on the simplified state equations, giving estimates of the
motor velocity and the motor loading based on differential pressure measurements. Simulations
where the estimates were included in the closed loop showed to be poorer than the results from
simulations where measurements were used. This was expected but the winch would still be
operational if the decoder measuring the motor velocity fails. For further work more advanced
estimators should be investigated such as an Extended Kalman Filter, EKF. The beauty of this
filter is that it does predicting of the estimates and would be a huge help for minimizing the
effects from the time delays in the sensors. An estimator for estimating the reel diameter should
also be included. Also measurement noise should be studied and more advanced filters should
be investigated than the first order low pass filters used to filter the measurements in the control
laws.
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Abstract: A speed controller and a torque controller are derived to control a hydraulic
power system via proportional valves using backstepping and sliding mode control theory. The
hydraulic motor is driving a winch designed for heavy lift operations on sub-sea installations
in rough environments. A lumped wire-load model is used to generate a realistic load case
for the hydraulic system including hydrodynamic forces acting on the wire and the load,
horizontal current and heave motions of the vessel. The hydraulic system includes many different
components and they are only briefly elaborated in this paper. The control system consists of
several inner control loops to control the valves, and an outer system control loop controlling the
overall system. For inner controller, controlling the 3/3-directional valves, a simple PD controller
is used. The speed controller and torque controller, characterised as outer controllers, feed the
inner controllers with control slide reference positions. Both controllers are tested in simulations
with realistic load characteristics.

Keywords: Hydraulic offshore winch control systems · Sliding mode · Backstepping · Bond
graph theory · Lyapunov stability · Simplified state equations · Tracking error ·Lumped
wire-load model

1. INTRODUCTION

In this paper the objective is to derive suitable control
laws for controlling the hydraulic motor velocity and the
hydraulic motor torque for the hydraulic winch system
shown in figure 1 by controlling the two proportional
valves in a 4/3-valve configuration. The hydraulic winch
is assumed to be designed for winch operations from an
offshore vessel and the test cases presented in this paper
will be characterized thereby. As seen in the figure the
hydraulic system consists of a hydraulic motor driven by
two servo operated proportional valves, pilot operated by
two 4/3-directional valves, a pressure relief valve, pilot
operated by a 3/2-directional valve feeding the pressure
relief valve with the highest hydraulic motor pressure.
The pressure relief valve ensures that the highest pressure
in the system is a few bars higher than the loading
pressure across the hydraulic motor. In addition there is a
HPU, hydraulic power unit, that drives the 3/3-directional
valves, a fixed flow main pump system that generates
pressure to control the hydraulic motor and some check-
valves that set restrictions to the flow directions through
the valves and avoid vacuum pressure at each sides of
the hydraulic motor. As for motor loading the lumped
wire-load model derived in Skjong and Pedersen (2014a) is
used. This model includes wire dynamics, reel dynamics,
hydrodynamic forces acting on the wire and the load as

? Based on the master thesis by Stian Skjong (Skjong, 2014).

well as the ability to include heave motions, drifting and
horizontal current. In this wire-load model the wire is
divided into five equal wire lengths and modeled as mass-
damper-spring systems in series.

The 4/3-directional valves, which hereafter are referred
to as pilot valves, are assumed to be solenoid operated
valves that are controlled with a voltage limited in the
range [−10 V, 10 V], generating electromagnetic forces that
moves the slides in the valves. This voltage source is fed
to the solenoid from a PD-controller which hereafter is
referred to as a inner controller. The gains in these inner
controllers are set to Kp =6000 V/m and Kd =20 Vs/m.
Both the pilot valve dynamics and the 3/2-directional
valve dynamics are assumed represented by a second order
transfer function.

The 3/3-directional valves, which hereafter are referred
to as main valves, are assumed to have varying flow
characteristics which are dependent on the displacements
of the control slides in the valves. These flow characteristics
are modelled but assumed to be unknown from a control
point of view. The main valves are self centred by a
pre-tensioned centring spring and are allowed to have a
maximal displacement of ±0.05 m. The HPU driving the
main valves is assumed to be a pressure compensated
pump that keeps a nearly constant HPU pressure of
200 bar. The main valves are also assumed to have dead



Fig. 1. Sketch of hydraulic system.

bands in the range [−xolap, xolap] of the control slide
displacements.

The pressure relief valve is assumed to have a nozzle with
a variable opening area, dependent on the displacement
of the valve, connecting the valve to the 3/2 directional
valve. Like the main valves the pressure relief valve is
assumed to experience characteristic flow forces acting on
the moving control slide in addition to flow characteristics.
The pressure relief valve has also a spring that forces the
maximal pressure in the pressurised main pipelines to be
about 3 bar higher than pressure generated by the motor
loading. The frictions in the main valves, caused by the
moving slides, are assumed to consist of static friction,
coulomb friction and linear friction.

The hydraulic motor is assumed to be a one chambered
motor that experiences both friction and internal leakages.
The friction is as for the pressure relief valve assumed to
contain static friction, coulomb friction and linear friction.
The internal leakages are assumed proportional to the
differential pressure over the hydraulic motor with G, con-
ductance of laminar resistance, as proportionality param-
eter. The motor can also experience vapour pressures that
gives cavitation. This is modeled as a coefficient multiplied
with the gear ratio n and is in the range, 0 ≤ n ≤ 1.
The coefficient is zero whenever the pressure is below the
vapour pressure of the hydraulic fluid. The equation for
determining the magnitude of the coefficient is a second
order polynomial which is a function of pressure ratios.

Volumes on each side of the hydraulic motor, in the
3/2-directional valves, the pressure relief valve, the main
pressure line and the main return line are assumed to have
variable bulk modulus, or equivalent bulk modulus, that is
pressure dependent, given in McCloy and Martin (1980)
as

1

β(p)
=

1

βh
+

1

βf
+

n

1.4p
(1)

where βh is the constant bulk modulus for the pipeline or
the valve housing, βf is the constant bulk modulus for the

hydraulic fluid and n =
Vg

Vl
is the volume ratio of gas and

liquid in the hydraulic fluid.

The total model shown in figure 1 has been modeled
using bond graph theory and is thoroughly described in
Skjong (2014), with the same model parameters as used
here. Because of all the check-valves, the friction in the
hydraulic motor and the variable bulk modulus, the state
equations derived from the bond graph model are way
to advanced for control design purposes, containing too
much logics. Therefore simplified state equations must be
derived containing only the essential dynamics in order to
proceed with controller designs.

2. SIMPLIFIED STATE EQUATIONS

Starting with the hydraulic motor dynamics the differen-
tial equation can by using Newton’s 2nd law for rotations
be expressed as



ẍm =
1

Im

[
Dm

2π
∆p− Ff (ẋm)− Tload

]
(2)

where xm is the hydraulic motor angle, Im is the inertia
of rotation, Dm is the motor displacement, β is the bulk
modulus which is assumed constant, ∆p is the differential
pressure across the motor, Ff (ẋm) is the motor friction
and Tload is the motor loading, assumed measurable. This
is not completely true because the motor loading is hard
to measure and must be estimated, but as for now it is
assumed measurable. The motor friction containing static
friction, coulomb friction and linear friction is hard to
express accurately in reality and feedback of uncertain
values are never recommended.

Proposition 1. Since the coulomb friction for the hydraulic
motor is hard to quantify in reality, assumed small and
since feedback of uncertain values are not recommended,
the coulomb friction is neglected, accepting the errors this
leads to, and the total motor friction is assumed to consist
of only linear friction.

Hypothesis 2. The contributions from the coulomb friction
are assumed small and last only for a short period of time.
Thus the coulomb friction can be neglected in the control
state equations causing negligible errors.

By using Proposition 1 and Hypothesis 2 the motor friction
can be expressed as

Ff (ẋm) = Fsµvẋm (3)

where Fs is the static friction and µv is a linear friction
coefficient. In reality the friction would be dependent
on the load of the motor, causing the surfaces in the
hydraulic motor to be pushed closer to each other giving a
higher friction. However this effect are assumed small and
neglected. By defining

ẋm1 := xm2

ẋm2 := ẍm
(4)

the second order differential equation describing the hy-
draulic motor dynamics can be equated as

ẋm1 = xm2

ẋm2 =
1

Im

[
Dm

2π
∆p− Fsµvxm2 − Tload

]
(5)

In (5) ∆p is treated as the control input to the differential
equation and has its own dynamics described by the flow
characteristics through the main valves, the hydraulic
motor velocity, the internal motor leakages, the volumes
on each side of the motor and the control slide positions
in the main valves.

Hypothesis 3. Since the two main valves are controlled in
4/3-mode, having the opposite displacement of each other,
the flow through the two valves are assumed to be equal.
From a control design point of view the pressure losses
through the valves are also assumed equal.

Starting with the volumes on each side of the hydraulic
motor and Bernoulli’s equation the accumulated volume
can be expressed as

ẋa =




απDsu

√
2pL
ρ

for pL ≥ 0

0 else
(6)

where α is a flow coefficient describing the flow through
the valve opening, u is the ideal control input to the inner

controller giving the reference position to an ideal main
valve without dead band on the hoisting side of the motor,
Ds is the hydraulic diameter in the main valves, A = πDsu
is the approximated opening area in the control slide, pL is
the pressure losses due to flow through the main valve and
ρ is the density of the hydraulic fluid. Note that ẋa = 0
when pL < 0. This is only true for u ≥ 0 because of
the check-valves between the pressure line and the main
valves. However this is relaxed by adjusting the expression
for pL to also be valid in this case. Also note that the
motor velocity and the internal leakages have not yet been
included.

By using Hypotesis 3 the pressure losses through the two
main valves may be expressed as

2pL = Ppump − Tpump − sign(u)∆p (7)

where Ppump is the main pump system pressure and Tpump
is the return pressure in the main return pipeline. By
rearranging (7) and defining ∆pump := Ppump − Tpump
the pressure losses through one of the main valves can be
expressed as

pL =
1

2
(∆pump − sign(u)∆p) (8)

By inserting (8) in (6) the accumulated volume can be
expressed as

ẋa =




απDsu

√
∆pump − sign(u)∆p

ρ
for pL ≥ 0

0 else

(9)

Hypothesis 4. The pressure relief valve is fast and the
flow from the main pump system is high, ensuring that
∆pump > ∆p.

By using Hypothesis 4, (9) can be reduced to

ẋa = απDsu

√
∆pump − sign(u)∆p

ρ
(10)

The pressure in the volume is defined as

pa :=
βxa
Va

(11)

where β is the bulk modulus which is assumed constant
and Va is the initial volume.

Hypothesis 5. The differential pressure, ∆p, can be ap-
proximated as the mean value of the accumulated volumes
on each side of the hydraulic motor.

By defining the positive hydraulic motor velocity as clock-
wise in figure 1, main valve A as the main valve on the left
side of the motor and main valve B as the main valve on
the right side of the motor, the derivative of the differential
pressure, ∆ṗ, can be approximated by using Hypothesis 5
and (11),

xM =
xA + xB

2
(12)

which gives

∆ṗ =
βẋM
VM

=
αβπDsu

VM
√
ρ

√
∆pump − sign(u)∆p−H(xm2,∆p)

(13)



where H(xm2,∆p) includes the effect of motor pumping
when the motor rotates and the internal leakages in the
motor,

H(xm2,∆p) =
βDm

2πVM
xm2 +

βG

VM
∆p (14)

By setting VM = V and inserting (14) into (13) the
differential equation describing the differential pressure
can be expressed as

∆ṗ =
αβπDsu

V
√
ρ

√
∆pump − sign(u)∆p

− βDm

2πV
xm2 −

βG

V
∆p

(15)

The simplified state equations describing the hydraulic
motor dynamics and the differential pressure across the
motor have now been derived. The hypothesises used must
be verified in the end by simulations using the derived
control laws.

3. SPEED CONTROLLER

To design a suitable speed control law, controlling the
hydraulic motor velocity, a sliding mode controller with
backstepping is to be derived. Sliding mode controller de-
signs are robust controller designs that forces trajectories
to reach a sliding manifold in finite time and stay on the
manifold for all future time according to Khalil (2002).
A sliding mode controller is also designed to achieve the
control objective even though a lower order control model
is used to describe the process. Backstepping is added to
the controller design because more than one state equation
is used to describe the motor velocity. Backstepping also
gives the ability to give undesired dynamics in feedback
and cancel them out.

First, (5) must be rewritten to describe the error defined as
the difference between the motor velocity and the reference
velocity. By defining

e2 := xm2 − xd2 (16)

the error dynamics can be written as

ė1 = e2

ė2 =
1

Im

[
Dm

2π
∆p− Fsµvxm2 − Tload

]
− ẋd2

(17)

Defining
zs1 := e2 (18)

as virtual control in the first differential equation and

s1 := zs1 + k1

∫ t

0

zs1dt (19)

as the first sliding surface where k1 is a gain and a tuning
parameter. The derivative of the first sliding surface is

ṡ1 = żs1 + k1zs1

=
Dm

2π
∆p− Fsµv

Im
xm2 −

Tload
Im

− ẋd2 + k1zs1
(20)

Using the lyapunov function

Vs1 =
1

2
s21 (21)

gives

V̇s1 = s1ṡ1

= s1

(
Dm

2πIm
∆p− Fsµv

Im
xm2 −

Tload
Im

− ẋd2 + k1zs1

)

(22)

The next step is to define

∆p : = v1

=
2πIm
Dm

(
Fsµv
Im

xm2 +
Tload
Im

+ ẋd2

)

− 2πIm
Dm

(D2s1 + k2sign(s1))

(23)

where D2 and k2 are tuning parameters and v1 is a virtual
control variable. This gives

V̇s1 = s1 (k1zs1 −D2s1 − k2sign(s1))

≤ −D2(1− θ)||s1||22 −D2θ||s1||22
− k2s1sign(s1) + k1||zs1||2||s1||2
≤ −D2(1− θ)||s1||22 − k2s1sign(s1)

(24)

for ||s1||2 ≥ k1||zs1||2
D2θ

, which means that the solutions
are globally uniformly ultimately bounded according to
Theorem 4.18 in Khalil (2002) (given in Theorem 6 in
Appendix), under the assumption that zs1 is bounded. θ
is a parameter chosen to be 0 < θ < 1. Next, the second
sliding surface is defined as

s2 := s1 + zs2 (25)

where

zs2 := ∆p− v1 = s2 − s1 (26)

This changes (24) to

V̇s1 = −D2s
2
1 − k2s1sign(s1) + k1zs1s1

− Dm

2π
s21 +

Dm

2π
s1s2

≤ −D2(1− θ)||s1||22 − k2s1sign(s1)

− Dm

2π
||s1||22 +

Dm

2π
s1s2

(27)

for ||s1||2 ≥ k1||zs1||2
D2θ

.

The last term in (27) must be included in the derivative
of the second sliding surface which is given as

ṡ2 = ṡ1 + żs2

= k1zs1 −D2s1 − k2sign(s1) +
Dm

2πIm
s1 − v̇1

+
βαπDs

V
√
ρ
u
√

∆pump − sign(u)∆p

− βDm

2πV
xm2 −

βG

V
∆p

(28)

Note that s1s2 is replaced with s1 because of the lyapunov
function (s2ṡ2). The second lyapunov function is given as

Vs2 =
1

2
s22 (29)

Differentiating gives



V̇s2 = s2ṡ2

= s2

(
k1zs1 −D2s1 − k2sign(s1) +

Dm

2πIm
s1

−v̇1 +
βαπDs

V
√
ρ
uH
√

∆pump − sign(u)∆p

−βDm

2πV
xm2 −

βG

V
∆p

)

(30)

By choosing

u =
V
√
ρ

βαπDs

√
pL(upre)

(
− k1zs1 +D2s1 + k2sign(s1)

− Dm

2πIm
s1 + v̇1 +

βDm

2πV
xm2

−D3s2 − k3sign(s2) +
βG

V
∆p

)

(31)

where
pL(upre) = ∆pump − sign(upre)∆p (32)

the derivative of the second lyapunov function is reduced
to

V̇s2 = −D3s
2
2 − k3s2sign(s2)

< 0
(33)

where D3 and k3 are controller gains and tuning param-
eters. Note that upre, which is the previous controller
output, is used in the square root in the control law instead
of u.

Since the last sliding surface includes the first sliding
surface, stability of the given control law is guaranteed
by Vs2. By using LaSalle’s Theorem (given in Theorem 7
in Appendix), globally asymptotically stability, GAS, can
be concluded for the system using Vs2 because

s2 = 0 =⇒ s1 + zs2 = 0 (34)

which means that the solution is on the second sliding
surface and will converge to (s1, zs2) = (0, 0) in finite time.
This is shown graphically in figure 2.

zs2

s1s2 = 0

Fig. 2. Graphically representation of the second sliding
surface.

In addition to the control law (31), some logics preventing
division by zero in the control law must be included in
the controller design. Also numerically derivation of v1
should be considered. To overcome the dead bands in the
main valves a step over the dead bands is added using
an arctan(·) function, and to prevent too high controller
outputs the controller output is saturated. The controller
output is now given as

xH = limit

(
u+

2xolap
π

arctan(s · u),−xmax, xmax
)

(35)
where xmax is the maximal displacement of the control
slide and s is a design parameter describing the slope of
the arctan(·)-function. Note that xH is fed to main valve
A and xL = −xH is fed to main valve B.

The controller parameters are set to k1 =900 1/s,D2 =800 1/s,
k2 =0.01 rad/s2, D3 =20 Pa/rad, k3 =1000 Pa/s, s =200000 -,
τ1 =0.01 s and τ2 =0.01 s. τ1 and τ2 are time constants in
the low pass filters, filtering the differential pressure and
the measured motor torque respectively.

4. TORQUE CONTROLLER

Also to design a suitable torque control law, controlling the
hydraulic motor torque, a sliding mode controller is to be
derived. Now backstepping is not included since only one
state equation is used in the controller design. As for the
speed controller the tracking error in the torque controller
is defined as

eT = Tm − Tdm (36)

where Tm is the measured torque and Tdm is the desired
torque. By using the fact that

Tm :=
Dm

2π
∆p (37)

and (15) the error dynamics may be expressed as

ėT =
βαπDsDm

2πV
√
ρ

u
√

∆pump − sign(u)∆p

− βD2
m

4π2V
xm2 −

βGDm

2πV
∆p− Ṫdm

(38)

The sliding surface is defined as

s := eT + k1

∫ t

0

eT dt (39)

Differentiating gives

ṡ = ėT + k1eT

=
βαπDsDm

2πV
√
ρ

u
√

∆pump − sign(u)∆p

− βD2
m

4π2V
xm2 −

βGDm

2πV
∆p− Ṫdm + k1eT

(40)

and by using

Vs =
1

2
s2 (41)

as lyapunov function the derivative of the lyapunov func-
tion is given as

V̇s = sṡ

= s

(
βαπDsDm

2πV
√
ρ

u
√

∆pump − sign(u)∆p

− βD
2
m

4π2V
xm2 −

βGDm

2πV
∆p− Ṫdm + k1eT

) (42)

By choosing

u =
2V
√
ρ

βαDsDm

√
pL(upre)

(
βD2

m

4π2V
xm2 +

βGDm

2πV
∆p+ Ṫdm

−k1eT −D2s− k2sign(s)
)

(43)



where k2 and D2 are controller gains, the derivative of the
lyapunov function is reduced to

V̇s = −Ds2 − k2sign(s)s (44)

which means that globally exponential stability, GES, is
achieved according to Theorem 4.10 in Khalil (2002) (given
in Theorem 8 in Appendix). The same logics as for the
speed control must be implemented in the torque controller
to avoid dividing by zero or taking the square root of
a negative number. The controller outputs are given as
before,

xH = limit

(
u+

2xolap
π

arctan(s · u),−xmax, xmax
)

xL = −xH
(45)

The controller parameters are set to k1 =5 1/s, k2 =1000 Nm/s,
D2 =9000 1/s, τ =0.2 s and s =50000 -. τ is the time
constant in a low pass filter used to filter the differential
pressure across the hydraulic motor. Note that s is set
lower in this controller compared to the speed controller.
This is to reduce the large pressure peaks generated when
passing the dead bands in the main valves. The pressure
peaks are high and the controller should not be so fast that
it tries to control these peaks. If so the controller would
become unstable because of all the peaks and variations
in the differential pressure that has not been filtered out.
It is also expected that the tuning of the outer controller
is affected by the inner controller.

5. IMPLEMENTATION AND TESTING

As mentioned before, there must be some logics imple-
mented to ensure that dividing by zero and squaring neg-
ative numbers in the control laws does not happen. This
is avoided by implementing an IF-ELSE logic, given by
Algorithm 1,

Algorithm 1. Algorithm for avoiding dividing by zero and squaring
negative values.

pL(upre) = ∆pump − sign(upre)∆p
if pL(upre) ≤ 0 then
û = 0

else
û = u

end if

where û is the controller output and used instead of u in
(35) and (45), and u is given by (31) and (43). The differ-
entiations in the controllers are calculated numerically,

ẋ =
x− xpre
Ts

(46)

where xpre is the value of the variable in the previous
step and Ts is the sample time. Also integrations are done
numerically, ∫ t

0

xdt =

∫ t

0

xpredt+ Tsx (47)

This is the simplest way of differentiating and integrating
a variable and would bring errors into the control laws.

Both controllers are tested in a rough environment. It is
assumed that all variables needed in the control laws are
available and measurable. All measurements are assumed
to be influenced by a sampling delay of Tdelay =0.002 s.

5.1 Simulation with Speed Controller

The speed controller is tested in an AHC-, Active Heave
Compensation, case where a MRU, Motion Reference
Unit, gives the reference velocity to the speed controller.
It is assumed that data from the MRU gives the heave
velocity of the vessel and the hydraulic motor velocity
reference is then calculated as

xd2 = − 2η̇n

Dr(Lw)
(48)

where η̇ is the heave velocity, n is the gear ratio between
the hydraulic motor and the reel and Dr(Lw) is the
diameter of the reel. This diameter is varying with the
length of wire stored, Lw, and must be estimated or
measured.

The heave motion is assumed to be equal to a sin(·)-wave,

η = −step(ψ)ηA sin(ωt− ε) (49)

propagating with an amplitude of ηA =2 m and a vari-
able frequency, starting with ω =0 rad/s and ending with
ω =8 rad/s. Note that these frequencies are not expected
to appear in reality, but are only used here to test the
controller. This heave motion is initiated at t = ε =5 s in
the simulation. The heave velocity is then given as

η̇ = −ωstep(ψ)ηA cos(ωt− ε) (50)

The horizontal top wire position is assumed to be zero.
The initial length of submerged wire is set to Lws =100 m,
the load in the end of the wire is set to mLoad =3000 kg,
assumed having a spherical volume with a diameter of 1 m
and the horizontal current velocity is set to Vx,c =2 m/s.
The speed controller is initiated at t =0.1 s and the total
simulation time is set to 30 s.

Figure 3 shows the hydraulic motor velocity compared to
the reference.
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Fig. 3. Hydraulic motor velocity.

As can be seen in the figure the hydraulic motor veloc-
ity coincides with the reference velocity, even when the
frequency and the amplitude are high at the end of the
simulation. It may look like the motor velocity is unstable,
but since the frequency of the heave motion of the vessel
increases, so does the amplitude and the frequency in the



heave velocity. The maximal motor velocity at the end
of the simulation is about 16 rad/s, ≈153 rpm and may be
higher than what is expected for such a motor. The plot in
the lower right corner in the figure shows a magnified area
of the motor velocity compared to the reference when the
control slides in the main valves cross the dead bands. The
motor velocity oscillates a bit before stabilized fixed at the
reference. These oscillations can not be compensated for
since they appear when the main valves are closed. How-
ever the oscillations are small showing that the arctan(·)-
function given in (35), that was added to the controller
output, helps the control slides in the main valves to
cross the dead bands as fast as possible to minimize the
crossing effects. The figure in the lower left corner shows
a magnified area of the maximal motor velocity compared
to the reference in the first oscillation in order to show
the tracking performance of the controller. The plot shows
that the tracking error is small and except for some inertia
effects and sampling delays the motor velocity seems to
coincide with the reference. This is emphasized in figure 4.
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Fig. 4. Tracking error in speed controller.

As expected the tracking error increases during the simula-
tion with the increase of ω. The plot also shows some peaks
of tracking error that have a magnitude of about 0.4 rad/s
in the end of the simulation. These peaks are generated
when the control slides cross the dead bands in the main
valves and can not be compensated for except for what is
already done. When neglecting these peaks the tracking
error at the end of the simulation has a maximal absolute
value of about 0.2 rad/s, ≈ 1.91 rpm. This is low compared
to the rough test the speed controller experiences.

Figure 5 shows the positions of the control slides in the
main valves compared to the references given by the speed
controller.

The first plot compares the two control slide positions
with the reference positions and shows that the positions
seem to coincide with the references. This suggests that
the inner PD-controllers used to control the control slide
positions seem to be stable, robust and fast enough follow
the references given by the outer speed controller. This
is emphasized in the plot in the lower left corner in the
figure which shows that the control slide position for main
valve A coincides with the reference when neglecting the
sample delays. The plot in the lower right corner shows a
crossing of the dead bands in the main valves. Also the
crossings seem to be stable and done in about 0.03 s. The
control slide positions compared to the references seem to
deviate a bit but follow through and are stabilized after
the crossing.
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Fig. 5. Control slide positions in main valves and refer-
ences.

The top vertical wire position and the load position are
shown in figure 6.
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Fig. 6. Top vertical wire position and load position.

The first plot in the figure shows the heave position at
the top end of the wire. It has the same form as the
heave position given in (49) with increasing ω. The second
plot shows the horizontal load position, starting at a
submerged position of 100 m below the sea surface. The
load is stabilized at 100.05 m below the surface, because
the load stretches the wire a bit, before it is lifted about
10 cm due to the horizontal current forces. After a while
some oscillations with a maximal amplitude of about 2 cm
can be seen at the end of the simulation. This comes as a
result of the tracking error in the controller caused by the



high frequencies in the reference velocity. The last plot in
the figure shows the horizontal load displacement of the
load which is induced by the current. The displacement
seems to stabilize around 4 m and causes the lift of the
load which seems to have the same characteristics as the
horizontal displacement. To get a better understanding
of the submerged wire displacement the wire is plotted
through the simulation for time steps with an increment of
0.5 s in figure 7. Darker color shows the wire displacement
with increasing simulation time.
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Fig. 7. Submerged wire displacement at time steps of
t =0.5 s where darker color denotes higher simulation
time.

The influence of the high current velocity on the wire and
the load is significant and the speed controller does not
have the ability to keep the load at the initial depth since
no measurements of this are available. One can also see an
overshoot of the horizontal displacement of the wire. This
is due to high current forces and inertia of the load. The
hydrodynamic damping is small since the load geometry
is assumed spherical and the horizontal wire displacement
gets an overshoot before stabilized.

5.2 Simulation with Torque Controller

The same controller test as described in section 5.1 is used
to test the torque controller, but no MRU measurements
are used. The reference torque is set to a constant value,
Tdm =26910 Nm, close to the torque that is required to
hold the load. The torque controller is initiated at 0.5 s.
Figure 8 compares the motor torque and the reference
torque. Note that the motor torque is calculated from the
differential pressure across the motor, ∆p.

The first plot shows the motor torque compared to the
reference torque. As for the speed controller simulation
the error seems to grow through the simulation with
the increase of ω. The torque controller is not tuned as
hard as the speed controller due to stability reasons. The
differential pressure varies much more than the motor
velocity and is filtered more to avoid compensating too
much for the pressure peaks generated when crossing the
dead bands in the main valves. The largest deviations
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Fig. 8. Hydraulic motor torque and reference torque.

from the reference torque seem to be generated by such
peaks and when neglecting these the difference between
the motor torque and the reference torque is not that large
when having in mind the rough test the torque controller
experiences. The plot in the lower left corner shows the
stabilization of the controller after initiation and it takes
about 0.5 s to reach the reference torque. There is also a
torque peak at t =5 s that comes from the initiation of the
heave motion. The plot in the lower right corner shows
the maximal deviation between the motor torque and the
reference torque when neglecting the pressure peaks.

Figure 9 shows the tracking error, given as a percentage
of the reference torque, and the hydraulic motor velocity.
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Fig. 9. Tracking error in torque controller and hydraulic
motor velocity.

The first plot shows that the tracking error is below 5 %
when neglecting the peaks. Since the differential pressure
is filtered more for the torque controller than for the speed
controller, less is compensated for when a pressure peak
appears. The motor torque used to calculate the tracking



error is not filtered and is not the same tracking error
as the torque controller uses. The second plot shows the
hydraulic motor velocity which compared to figure 3 seems
to be equal. However the maximal motor velocity at the
end of the simulation is a bit lower in this case, about
14 rad/s, ≈ 133.8 rpm, which is about 12.5 % lower than for
the simulation testing the speed controller, see figure 3.

Figure 10 shows the control slide positions in the main
valves compared to the references given by the outer torque
controller. For reference the valve dynamics are elaborated
in Skjong (2014).
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Fig. 10. Control slide positions in main valves and refer-
ences.

The first plot shows that the control slide positions seem
to coincide with the references, which is emphasized in the
two next plots. This suggest that the inner PD-controller
works good for its purpose. One can also see that the valve
dynamics are really fast. This is due to high pressures
and high capacity in the pump system. The plot in the
lower left corner shows a magnified area around the control
slide position in main valve A and its reference. The
position seems to coincide with the reference also in this
simulation. The last plot given in the lower right corner
shows a crossing of the dead bands in the main valves.
Compared to figure 5 the control slide positions seem to
contain more oscillations in the crossing. These come from
the pressures in the fluid volume on the load side of the
hydraulic motor that increases because the motor also
rotates a bit when the main valves are closed. This is felt
in the differential pressure measurements that are fed to
the torque controller. Figure 11 shows the top end vertical
wire position and the load position.

The first plot shows the heave position of the top end of
the wire which is equal to (49). The second plot shows the
vertical load position and shows that the load is lowered.
This can be explained by the fact that the reference torque
was set a bit too low to hold the load by itself and
when the current forces are added the load is lowered.
The velocity of the lowering increases as the length of
the submerged wire grows larger due to increased load.
Also in this simulation small oscillations with a maximal
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Fig. 11. Top vertical wire position and load position.

amplitude of about 0.25 m can be seen due to the tracking
error. The last plot shows the horizontal load position
that seems to increase without stabilizing through the
simulation. This is as expected since the load is lowered
and the total current forces grow with increasing length
of submerged wire. To get a better understanding of the
submerged wire displacement the wire is plotted through
the simulation for time steps with an increment of 0.5 s
in figure 12. Also in this case darker color shows the wire
displacement with increasing simulation time.
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Fig. 12. Submerged wire displacement at time steps of
t =0.5 s where darker color denotes higher simulation
time.

The horizontal wire displacement has not an overshoot
like in figure 7 but keeps growing due to the increase of



submerged wire length. By assuming that the reference
torque could be set accurately to hold the load and
updated due to the increase in length of submerged wire
it would be reasonable to assume that the horizontal wire
displacement would stabilize and the vertical load position
would be almost constant except for the oscillations.

6. CONCLUSION

A speed controller and a torque controller have been
derived using sliding mode control theory, backstepping
control theory and simplified state equations for the hy-
draulic system presented in figure 1. The controllers have
been tested using the lumped wire-load model derived
in Skjong and Pedersen (2014a), enabling heave motions,
hydrodynamic loads and horizontal current acting on the
wire and the load. The heave position in the top end
of the wire was set as a sin(·)-sweep starting at t =5 s
with an amplitude of 2 m and an increasing frequency ω,
starting at 0 rad/s and ending in 8 rad/s. As inner controller,
controlling the control slide positions in the main valves,
PD-controllers were used.

The speed controller got the top end vertical wire velocity,
only affected by sampling delays, transformed to angular
rate as control input to perform AHC. Both the inner
and outer controller showed good responses, minimizing
their respective tracking errors. They were both stable
and seemed to be robust. The current lifted the load
about 10 cm due to a horizontal load displacement of about
4 m. The tracking error in the speed controller was about
0.2 rad/s at the end of the simulation, giving an error of
approximately 1.25 % compared to the reference velocity.
Some oscillations were spotted at the vertical load position
having a maximal amplitude of about 2 cm, about 0.02 %
of the total length of the submerged wire. These results
show that the speed controller is well suited for AHC, even
in harsh environment including high current velocities and
large heave motions having high frequencies.

The torque controller had a constant torque reference
which was set a bit too low to hold the load and as a result
the load was slowly lowered. However the motor velocity
induced through torque control is comparable to the motor
velocity in the speed control test. The torque controller
was tuned to be slower compared to the speed controller
due to large variations in the differential pressure but
managed to force the tracking error below 5 % compared
to the reference torque. The current forces forced the
torque controller to lower the load even more but the
heave induced vertical load position oscillations had only
a maximal amplitude of about 0.25 m, about 0.25 % of the
total length of the submerged wire. The torque controller
may not be as good in AHC operations as the speed
controller, but the results show that the torque controller
together with the inner PD-controllers were stable and
seemed robust. The torque controller has its strengths in
feeling the transient loads acting on the wire and the load,
and when the load has a large volume the hydrodynamic
forces will be larger making it possible for the torque
controller to perform even better.

Both controllers were influenced by sampling delays and
low pass filtering generating tracking errors. When the
frequency of the heave motion was increased these effects

had larger influence and played a significant role in the
controller tracking errors together with the dead band
crossings in the main valves. As seen in figure 7 and figure
12 the load is lifted in the speed controller simulation but
lowered in the torque controller simulation. A mean of
these results would be desired, but the two controllers can
not be initiated at the same time. However by choosing the
right references for the two controllers the heave motion
of the load can be minimized, giving good results.

In an offshore winch operation a hybrid control system
containing both controllers would be preferred. Controller
functionalities like anti-spin, load loss control and torque
limitations should be considered. This gives new challenges
in assuring stability in control switching. In Hespanha
(2002) such topics are discussed and methods for assuring
stability are presented. In Skjong and Pedersen (2014b)
the two controllers derived in this paper are put together
in a hybrid controller and tested.
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APPENDIX

The control theorems used when deriving the control laws
are presented below.



Theorem 6. Theorem 4.18, p.172 in Khalil (2002):

ẋ = f(x) (51)

Let D ⊂ Rn be a domain that contains the origin and
V : [0,∞] × D → R be a continuously differentiable
function such that

α1(||x||) ≤ V (t, x) ≤ α2(||x||) (52)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x), ∀||x|| ≥ µ > 0 (53)

∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class K functions
and W3(x) is a continuous positive definite function. Take
r > 0 such that Br ⊂ D and suppose that

µ < α−12 (α1(r)) (54)

Then, there exists a class KL function β and for every
initial state x(t0), satisfying ||x(t0)|| ≤ α−12 (α1(r)), there
is T ≥ 0 (dependent on x(t0) and µ) such that the solution
of (51) satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀t0 ≤ t ≤ t0 + T (55)

||x(t0)|| ≤ α−11 (α2(µ)), ∀t ≥ t0 + T (56)

Moreover, if D = Rn and α1 belongs to class K∞, then
(55) and (56) holds for any initial state x(t0), with no
restriction on how large µ is.

Theorem 7. LaSalle’s Theorem, p. 128 in Khalil (2002):

Let Ω ⊂ D be a compact set that is positively invariant
with respect to (51). Let V : D → R be a continuously

differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be

the set of all points in Ω where V̇ (x) = 0. Let M be the
largest invariant set in E. Then every solution starting in
Ω approaches M as t→∞.

Theorem 8. Theorem 4.10, p. 154 in Khalil (2002):

ẋ = f(t, x) (57)

Let x = 0 be an equilibrium point for (57) and D ⊂ Rn

be a domain containing x = 0. Let V : [0,∞)×D → R be
a continuously differentiable function such that

k1||x||a ≤ V (t, x) ≤ k2||x||a (58)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3||x||a (59)

∀t ≥ 0 and ∀x ∈ D, where k1, k2, k3 and a are
positive constants. Then, x = 0 is exponentially stable.
If the assumptions hold globally, then x = 0 is globally
exponentially stable.
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Abstract: A hybrid control system containing a speed controller and a torque controller,
that were derived in Skjong and Pedersen (2014a), is designed for the hydraulic winch system
elaborated in Skjong (2014). The backstepping based sliding mode speed controller and the
sliding mode torque controller are implemented in a hybrid control system, containing switching
restrictions and conditions. Stability and switching logics in the hybrid controller are studied
with focus on hybrid control theory used in practice. Dwell-time switching and error restriction
based switching are used to obtain switching stability and for avoiding chattering. Different
functionalities for the hybrid controller are looked into, giving both the winch operator
opportunities to configure the hybrid controller and functionalities to the hydraulic winch
system. The hybrid controller is tested in case studies such as load landing on the sea floor, loss
of load and stuck load.

Keywords: Hydraulic offshore winch control systems · Load landing · Stuck load · Loss of load
·Bond graph theory · Dwell time · Switching logics · Operator configurations · AHC · Hybrid
control design

1. INTRODUCTION

In this paper the objective is to combine the speed con-
troller and the torque controller, the outer controllers,
derived and tested in Skjong and Pedersen (2014a), in a hy-
brid control system to control a hydraulic motor driving a
winch installed on an offshore vessel. The hydraulic winch
system is elaborated in Skjong (2014) and is not described
further here other than mentioning that the hydraulic
motor is controlled through two 3/3-directional pilot oper-
ated valves, the main valves, affected by dead bands, in a
4/3-valve configuration driven by 4/3-directional solenoid
valves that are controlled by PD-controllers, the inner
controllers. Bond graph theory is used to model a control
plant model of the total hydraulic system for controller
testing. This model is thoroughly elaborated in Skjong
(2014). The speed- and torque controller are model based
controllers derived using sliding mode and backstepping
control theory and lyapunov stability analysis. Simplified
state equations were used in the controller designs because
the actual state equations extracted from the bond graph
model contained much logics which would have increased
the complexity of the controller designs. The simplified
state equations are given as

ẋm1 = xm2 (1a)

ẋm2 =
1

Im

[
Dm

2π
∆p− Fsµvxm2 − Tload

]
(1b)

? Based on the master thesis by Stian Skjong (Skjong, 2014).

∆ṗ =
αβπDsu

V
√
ρ

√
∆pump − sign(u)∆p (1c)

− βDm

2πV
xm2 −

βG

V
∆p

where xm2 is the hydraulic motor velocity, Im is the rota-
tional inertia, Dm is the motor displacement per revolu-
tion, ∆p is the differential pressure across the hydraulic
motor, Fs and µv are friction parameters, Tload is the
loading of the hydraulic motor, α is a flow coefficient for
the 3/3-directional valves that may vary, β is the bulk
modulus that is assumed constant, Ds is the diameter of
the control slides (pistons) in the 3/3-directional valves, V
is the fluid volume between the valves and the motor, ρ is
the fluid density, ∆pump is the pressure difference between
the pump pressure and the pressure in the return pipeline,
u is the control output before dead band compensation and
G is the conductance of laminar resistance, describing the
internal leakages in the hydraulic motor. Tload is seldom
measured in such systems and should be estimated or
simply neglected. The controllers have been tested without
including Tload with equally results in simulations. As for
now Tload = 0, ∆p and xm2 are assumed measured. The
controller outputs are given as

xH = limit

(
u+

2xolap
π

arctan(s · u),−xmax, xmax
)

(2)

where xH is the control slide position reference given as
input to the inner controller for the main valve on the
hoisting side of the motor, xL = −xH is the control slide



position reference given as input to the inner controller for
the main valve on the lowering side of the motor.

The speed controller is a backstepping based sliding mode
controller. (2) is the equation for the dead band compensa-
tion, where xolap is half the dead band in the main valves,
s is a slope parameter that gives the speed of the jump
over the dead bands, xmax is the maximal displacement in
the main valves and u is the control output for the main
valve on the hoisting side of the motor for an ideal main
valve without dead band and is given as

u =
V
√
ρ

βαπDs

√
pL(upre)

(−k1zs1 +D2s1 + k2sign(s1)

− Dm

2πIm
s1 + v̇1 +

βDm

2πV
xm2

−D3s2 − k3sign(s2) +
βG

V
∆p

)

(3)

where
pL(upre) := ∆pump − sign(upre)∆p (4)

and upre is the previous value for u. k1, k2, k3, D2 and D3

are controller gains, zs1 is the tracking error defined as

zs1 := xm2 − xd2 (5)

where xd2 is the reference motor velocity, s1 is the first
sliding surface defined as

s1 := zs1 + k1

∫ t

0

zs1dt (6)

v1 is a virtual control variable given as

v1 =
2πIm
Dm

(
Fsµv
Im

xm2 +
Tload
Im

+ ẋd2

−D2s1 − k2sign(s2)
) (7)

and s2 is the second sliding surface defined as

s2 := s1 + zs2 (8)

where
zs2 := ∆p− v1 (9)

The controller was tuned hard and tested in rough envi-
ronments in AHC-, Active Heave Compensation, mode in
Skjong and Pedersen (2014a) giving good results.

The torque controller is a sliding mode controller where
xH is given as in (2), xL = −xH and

u :=
2V
√
ρ

βαDsDm

√
pL(upre)

(
βD2

m

4π2V
xm2 +

βGDm

2πV
∆p+ Ṫdm

−k1eT −D2s− k2sign(s)
)

(10)

where Tdm is the reference torque, k1, k2 and D2 are
controller gains and eT is the tracking error defined as

eT :=
Dm

2π
∆p− Tdm (11)

and s is the sliding surface defined as

s := eT + k1

∫ t

0

eT dt (12)

The torque controller was tuned softer than the speed
controller, giving larger tracking error, but through simula-
tions the controller performance showed good results. The
torque controller used a little longer time to stabilize after

initiation which means that the torque controller would
set most of the restrictions related to dwell time switching
stability in the hybrid controller that is to be designed.
For reference, both the speed controller and the torque
controller are elaborated in Skjong and Pedersen (2014a).

In addition to the switching algorithm and the switching
restrictions, different functionalities are to be included.
This is because some of the functionalities themselves
set restrictions to the switching logics and should be
included in the switching framework. An example of such a
functionality is the switching to the torque controller if the
upper torque limit is reached when the torque controller
is set as the main active controller. Then an emergency
program should be initiated to prevent, by all means, an
increase in the torque to avoid loss of load due to wire
rupture.

2. SWITCHING THEORY

Switching stability is a huge issue in hybrid control and
may be one of the main reasons for failure or success. The
controllers included in a hybrid control system should be
fast and as accurate as possible but it would not help if
the switching stability in the hybrid control system fails.
One of the most common switching stability failure is that
the switching algorithm has the opportunity to switch
controller whenever it wants and as often it wants. In
other words the hybrid controller switching algorithm has
low restrictions and may switch controllers in such high
frequencies that the controllers have no time to stabilize.
This phenomenon is called chattering and is avoided by
designing the restrictions so that high controller switching
frequencies are avoided.

Two well known switching restrictions are hysteresis
switching and dwell time switching. Hysteresis switching
can be scale dependent or scale independent and moves
the switching point up and down generating a switch-
ing point region. If the switching variable increases up
to the switching point the switching variable must pass
the upper switching region to switch controllers. If the
switching variable decreases down to the switching point
the switching variable must pass the lower switching region
to switch controllers. A graphical representation of the
hysteresis switching is shown in figure 1. When the lower

Switching
variable

Switching
point

Lower
region

Upper
region

Switching
controller

Switching
controller

Fig. 1. Hysteresis switching.

and upper regions in the hysteresis switching are hard to
determine or should be scale dependent and changes in a
nonlinear way, dwell time switching is often used instead.
Dwell time switching sets an upper limit for the switching
frequency and keeps the active controller active until the



dwell time is reached. If the switching algorithm still wants
to switch controller the switching is initiated. Both dwell
time switching and hysteresis switching are elaborated in
Hespanha (2002).

In this hybrid controller dwell time switching is used. The
reason for choosing dwell time switching over hysteresis
switching is because the switching points in the hydraulic
system are crucial for the performance of the winch. If a
torque limit is set and the speed controller is active it is
important that the hybrid controller switches to the torque
controller when reaching the torque limit, not exceeding
the limit to an upper region as in the hysteresis switching.
The torque limit may be equal to the maximal tension the
wire can withstand before snapping. Another example is
if the torque controller is active trying to do AHC. If the
speed limit is reached the hybrid controller should switch
to speed controller at that point, not waiting to reach an
upper region. If so the AHC performance would be bad and
unnecessary movements of the load generates unwanted
pressure peaks in the hydraulic system. Of course a small
region could be chosen in a hysteresis switching logic, but
then chattering would become a larger concern.

Together with switching restrictions a smooth switching
between controllers are necessary to maintain stability in
the system. If the switching is done in a step, oscillations
will be generated and may destabilize the controlled sys-
tem. To make a smooth switching a smooth continuous
function must be used. By naming the output of the active
controller that is to be deactivated as uA→D, and the
output of the inactive controller that is to be activated
as uD→A the total output of the hybrid controller, uH , at
the switching time t0 can be defined as

uH := DuA→D +AuD→A (13)

where

A := 1− e−γ(t−t0)

D := e−γ(t−t0)
(14)

where t is the time and γ is a tuning parameter, γ > 0.
Note that uH is the output given to the ideal main valve
without dead band on the hoisting side and uL = −uH is
the output given to the ideal main valve on the lowering
side. It is often common to filter the hybrid controller
output when controller switching is initiated. This is not
done here because the measured differential pressure is
filtered and because a filtering presents a phase lag and
poorer control of the hydraulic system in the transition
phase. The hybrid controller and the controlled process
are sketched in figure 2.

Speed
controller

Torque
controller

Switching
logic

uS

uT

Hydraulic
System

Env.

uH

y

y

SS

ST

Ref.

Operator
input

Fig. 2. Sketch of hybrid controller.

In the figure ”Ref.” is the abbreviation for Reference and
”Env.” for Environmental disturbances such as current.
Starting in the left in the figure the measured states are
given in feedback to the two controllers in addition to other
needed measurements in the control laws. The controller
references are fed to the controllers through SS and ST .
The references goes through the switching logic box before
fed to the controllers because the reference for the inactive
controller may be set as a limit by the switching logic, not
the reference set by the user. Moving on, the outputs from
the two controllers, uS and uT are fed to the switching logic
box and the output uH is equal to the active controller if no
controller switching is initiated. If controller switching is
initiated the output is given as in (13). The switching logic
box also has an operator input, giving the operator the
opportunity to choose which controller to use as the main
active controller, the active controller within the limits
of the inactive controller. The output from the switching
logic box uH goes through the dead band compensation
and is fed to the inner controller for the main valve on the
hoisting side of the motor. Since 4/3 valve configuration
are studied xL = −xH is fed to the inner controller for the
main valve on the lowering side of the motor.

The switching logic box in figure 2 has also measurements
from the hydraulic system as input. These measurements
are used to determine when to switch between the con-
trollers. The switching logics used are not general and are
often customized for every hybrid controller.

Stability of the hybrid controller is proven numerically
through case studies presented later in this paper.

3. SWITCHING LOGICS

The logics used to switch between the speed controller
and the torque controller are dependent on many different
things such as control slide positions, which controller is
chosen as the main active controller by the operator, which
controller is active and which is inactive, controller limits
and hybrid controller settings. Before even checking the
measurements to determine about switching, the control
slide positions are checked. As an addition to the switching
restrictions already presented the hybrid controller can not
switch between controllers when the control slides in the
main valves are within the region of the dead bands. A
switching when the control slides are in the dead band
zones is not appropriate since the main valves are closed.

To present the different switching logics the hybrid con-
troller with its settings are divided into cases and pre-
sented. For convenience some abbreviations are used. The
speed controller is given as controller 0 and the torque con-
troller is given as controller 1. The operator chosen main
active controller are given as O:”controller” and the active
controller is given as A:”controller”, where ”controller” is
either 0 or 1.

3.1 O:1 and A:1

The operator has chosen the torque controller as the main
active controller and the active controller ”now running”
is the torque controller. The following inequalities must be
satisfied to switch from the torque controller to the speed
controller:



|xm2 − xd2| ≥ xm2,lim

or (15a)

(xm2 ≥ xm2,UL or xm2 ≤ xm2,LL)

n ≥ N (15b)

|Tm − Tdm| < TdmT% (15c)

Em = 0 (15d)

(15a) tells something about the the hydraulic motor veloc-
ity and if it would be safe to switch to the speed controller.
For conventional torque control xd2 = 0 and the speed
controller is activated if xm2 ≥ xm2,UL or xm2 ≤ xm2,LL

where xm2,LL is the lower velocity limit and xm2,UL is the
upper velocity limit. Note that when the upper velocity
limit and the lower velocity limit is equal in absolute
value the second inequality is equal to the first one for
conventional torque control. For convenience the MRU-
measurements are used as xd2 in the simulations when the
torque controller is set by the operator to be the main
active controller in an AHC operation mode and then
the first inequality in (15a) is used. This is because when
the torque controller is deactivated, the speed controller
is activated and has xm2,lim as reference, a lowering or
hoisting of the load is initiated. This will change the
torque reference required to hold the load and since the
simulations are not solved in real time it is difficult to
change the torque reference by hand, without an estima-
tor estimating the new torque reference. When the speed
controller reference is set to be the MRU-measurements
the length of the wire would be almost the same as before
the controller switching and when switching back to the
torque controller the torque reference would still be usable.
In real life situations the operator changes the reference
torque in real time and this problem would not be an issue.
When other operations than AHC is initiated xd2 is set to
zero when the torque controller is chosen to be the main
active controller. Note that this restriction is related to
the tracking error of the speed controller. The reference
for the speed controller when the torque controller is
the main active controller can be the speed limit or the
MRU-measurements. This choice is implemented to be an
operator input.

Also a second order Bessel filter is implemented trying to
extract the torque required to hold the load by filtering out
the heave induced torque variations. This is implemented
as a controller setting, giving the operator the opportunity
to choose whether to estimate a new torque reference
or not. This is elaborated in the next subsection. Note
that the speed reference must be chosen to be the MRU-
measurements in order to estimate a new torque reference.

The second restriction is the dwell time restriction pre-
sented in section 2. N is the minimum number of sim-
ulation steps required before switching controller. The
third switching criteria is the tracking error in the torque
controller. The speed controller is not activated before the
tracking error is below a percentage, T%, of the torque ref-
erence. This restriction ensures that the torque controller
is stable, and thereby the hydraulic system is stabilized,
before switching to the speed controller.

The last restriction, where Em is an abbreviation for
”Emergency”, tells if an emergency program is initiated.
Em = 0 means that the emergency program is inactive.

This program is initiated when the speed controller is
active and the torque reaches the maximal torque limit
the system can handle. Then the emergency program
is activated ensuring that the torque does not increase
any further. When this program is active no controller
switching is initiated before the motor velocity increases
which tells that the torque can be decreased.

When the torque controller is deactivated and the speed
controller activated the motor velocity is checked and if it
is below the negative limit, T2low = 1, then the torque
reference is too low to hold the load and the torque
controller is not activated again before the torque reference
is high enough to hold the load.

3.2 O:1 and A:0

The operator has chosen the torque controller as the main
active controller and the active controller ”now running”
is the speed controller. The following inequalities must be
satisfied to switch from the speed controller to the torque
controller:

|xm2 − xd2| < |xd2|x% (16a)

|Ṫdm| < Ṫmax or TmF ≥ Tdm (16b)

n ≥ N (16c)

T2low = 0 (16d)

The first inequality ensures that the speed controller is sta-
ble, and thereby the hydraulic system is stabilized, before
switching to the torque controller. x% is a percentage and
multiplied with the absolute value of the reference speed
it creates a region which must include the tracking error
in order to switch controller.

(16b) is dependent on the operator choice, and if the
operator wants the hybrid controller to estimate a new
reference for the torque controller in AHC mode, the
torque required to hold the load, then the first inequality
yields. Then the slope of the estimated reference must
be below a given value in order to switch back to the
torque controller. If the operator does not want a new
estimated reference torque the second inequality yields.
This inequality tells that if the filtered torque is higher
than the reference torque then the torque controller should
be activated.

The third inequality is the dwell time restriction, forcing
the hybrid controller to wait N simulation steps before a
controller switching can be initiated.

The last inequality ensures that the torque controller is
not activated before the reference torque is high enough to
hold the load. This is not the same as the last inequality
in (16b) because when the speed controller is activated
the torque oscillates a bit in AHC mode and the reference
torque must at some point be higher than the torque in
the system before even checking the other conditions to
switch back to the torque controller.

If a controller switching is initiated the torque is compared
to the maximal allowed torque in the system in order to
determine whether to initiate the emergency program or
not. If the program is initiated the torque controller is
activated and Em = 1.



When the speed controller is activated, the operator has
chosen the torque controller to be the main active con-
troller and the hybrid controller is permitted to try to
estimate a new reference torque, some other restrictions
for estimating a new reference is required. First, a new
torque reference is not estimated if the torque is close to
the maximal allowed torque. This has to do with safety
issues and a slight oscillation in the estimated reference
torque may give a reference that is higher than the max-
imal allowed torque. If this condition is satisfied the new
reference torque is estimated through a small control law
given as

Tdm = Tdm + limit((TBes − Tdm)Kp,−Tmax,h, Tmax,h)
(17)

TBes is the torque given as output from the Bessel filter,
which tries to neglect the heave induced torque changes
in the system, Kp is a small proportional gain and Tmax,h
is the maximal allowed change in the reference update in
each simulation step. In addition to this update law the
dwell time variable, n, is reset if the difference between the
torque given by the Bessel filter and the updated reference
torque is larger than a given value,

|Tbes − Tdm| > TB%|TBes| (18)

where TB% is a percentage creating a region around the
filtered torque for the reference torque to be inside.

3.3 O:0 and A:1

The operator has chosen the speed controller as the main
active controller and the active controller ”now running”
is the torque controller. The following inequalities must be
satisfied to switch from the torque controller to the speed
controller:

|xm2| ≥ |xd2|
or (19a)

[(xm2 ≥ xm2,lim) or (xm2 ≥ xm2,UL or xm2 ≤ xm2,LL)]

|TmF − Tdm| < |Tdm|T% (19b)

n ≥ N (19c)

In (19a) one of the two condition sets inside [ ] is active at
once and together with the first condition (above) it forms
the first two sets of inequality conditions where at least
one of them must be satisfied in order to switch controller.
The first inequality says something about the torque in
the system. Since the torque controller is active the torque
would accelerate the hydraulic motor if it is too high or
too low and a controller switching is initiated due to the
velocity limit.

In the inequality set below, the first inequality tells that if
the hydraulic motor velocity is equal to or higher than the
maximal allowed motor velocity then the speed controller
should be activated. This condition is chosen when the
operator wants the MRU-data to set the speed limit.
The second condition in the inequality set is when the
operator wants specific limits for the motor velocity. Note
that the motor velocity may decrease dramatically if the
load increases significantly, but if the maximal limit for
the torque is reached the speed controller should not
be activated because the motor starts lowering the load
with a high speed. This has to do with the hydraulic
system. It is better to drop the load than destroying the

hydraulic system or waiting for the wire to snap. This
condition is also related to the emergency program that is
present when the torque controller is chosen as the main
active controller. Often brakes on the reel is a part of
the hydraulic system and in that case this condition is
not necessary. Then the controller output should be zero
driving the control slides to closing positions in the main
valves. However in this system no brakes are present.

The second condition ensures that the torque controller
is stable and thereby the hydraulic system is stabilized, as
before, and the third condition is the dwell time condition.

3.4 O:0 and A:0

The operator has chosen the speed controller as the main
active controller and the active controller ”now running”
is the speed controller. The following inequality must be
satisfied to switch from the speed controller to the torque
controller:

TmF ≥ Tlim (20)

As can be seen there is only one condition in this case.
Even the dwell time restriction is removed. This is because
when the torque is equal to or higher than the maximal
allowed torque then the torque controller must be initiated
to avoid loss of load caused by wire snapping or destroying
the hydraulic system.

4. IMPLEMENTATION AND REFERENCES

First of, the torque measurements used in the switching
logics are filtered more than the torque used in the control
laws in the two controllers. This is because the controllers
should have the opportunity to try compensate for some
of the pressure peaks in the hydraulic system, except
the pressure peaks generated by dead band crossings in
the main valves. The filters used to filter the differential
pressure and the torque measurements are low pass filters,

HF (s) =
x(s)

y(s)
=

k

Ts+ 1
(21)

and the second order Bessel filter, which acts as a notch
filter, is given as a forth order transfer function,

HB(s) =
x(s)

y(s)
=

as4 + bs2 + c

ds4 + es3 + fs2 + gs+ h
(22)

where a, b, c, d, e, f , g and h are filter constants. This filter
filters out frequencies in the range of the heave motions,
the wave frequency region, in order to determine the
torque that is required to hold the load. When estimating
this torque the speed controller must be active in an AHC
operation. This is because the vertical load position is
almost constant in this case and held in place by the speed
controller. The torque used in this operation is related to
the torque needed to hold the load. Instead of using a filter,
an estimator based on the model equations may be used.

As mentioned before, the controller references set by the
operator is fed through the switching logic box in figure
2 before entering the controllers. If the speed controller is
chosen as the main active controller the reference to the
torque controller should be the torque limit and controller
switching is initiated if the torque increases to this limit.
However torque peaks generated by dead band crossings in
the main valves may exceed this torque limit because they



are filtered out in the torque used to determine controller
switching.

Starting with the torque controller, if the emergency
program is initiated the torque reference should be set to
the torque limit. This happens when the speed controller is
active and the torque exceeds the torque limitation. If the
torque controller is active and the torque reference exceeds
the torque limit the reference signal is limited to the torque
limit and fed to the torque controller. When the torque
controller is the active controller and the hydraulic motor
velocity exceeds the speed limit a controller switching is
initiated and the speed reference is set as speed limit.
In other words, the main active controller chosen by the
operator has the limited reference set by the operator as
input and the inactive controller gets the limit the system
approaches to as reference.

The last implementation issue is the hybrid controller
output. The output of the controller, the reference posi-
tions for the control slides in the main valves, are limited
between -0.05 m and 0.05 m. When this happens the inte-
grators in the control laws must be reset. The integrators
must also be reset for every controller switching.

5. CASE STUDIES

Under normal circumstances controller switching is not
initiated as often. This is because the load that is lifted
would be lower than the maximal allowed torque in the
system and the operator will not allow high hydraulic mo-
tor velocities in an operation. This will prevent controller
switching in normal operations and switching would only
be an issue in special cases such as landing the load at
the sea floor and loosing the load. Both these cases will
cause an acceleration of the hydraulic motor if the torque
controller is active. Cases where the load gets stuck in the
sea bottom will increase the torque significantly when the
speed controller is active. If the torque limit is reached a
controller switching should be initiated.

For every simulation in this section the heave position
of the ship is assumed to be a sum of six sine waves
with frequencies ω ∈ [0.5 rad/s, 2 rad/s] and with amplitudes
A ∈ [0.2 m, 2 m]. The current is set to 0.5 m/s and the
horizontal ship movement is assumed to be zero, perfect
dynamic positioning. The load, excluding the weight of the
wire, is set to 3000 kg. The initial length of the submerged
wire is assumed to be 100 m.

5.1 Landing of Load using Torque Controller

The torque required to hold the load is approximately
27000 Nm and to lower the load the torque reference
is set to 25000 Nm in the start of the simulation. The
upper speed limit is set to 0 rad/s and the lower speed
limit is set to -5 rad/s. To simulate the sea floor a spring-
damper system is initiated when the load reaches a depth
of 150 m, which is the depth of the assumed sea floor.
After a while a hoist is initiated, the upper speed limit
is changed to 5 rad/s in 1 s, starting at t =35 s, forcing a
hoist of the load and the reference torque is changed to
30000 Nm in a step at t =35 s. When the torque starts
increasing the torque controller is then reactivated due
to the switching condition presented earlier. At t =50 s

the speed controller starts holding the load at a constant
depth in an AHC operation, assumed to be initiated by the
operator. Note that when the load reaches the sea floor the
speed controller is supposed to be activated, keeping the
load at the sea floor in an AHC operation, by the switching
logics.

Figure 3 shows the hydraulic motor velocity compared to
the reference, magnified areas in motor velocity around
controller switching regions and which controller is active.
Note that the speed reference is the speed needed in
reference to keep the vertical load position nearly constant
in an AHC operation.

0 10 20 30 40 50 60 70
−5

0

5

A
ng

ul
ar

 r
at

e 
[r

ad
/s

]

Time [s]

 

 

Motor Velocity Reference

24.8 25 25.2
−3

−2

−1

0

1

2

A
ng

ul
ar

 r
at

e 
[r

ad
/s

]

Time [s]
35 35.5 36

1

2

3

4

Time [s]
49.8 50 50.2 50.4

0

1

2

3

Time [s]

0 10 20 30 40 50 60 70
−1

0

1

2
Controller Switching

Time [s]

C
on

tr
ol

le
r

 

 
0:Speed, 1:Torque

Fig. 3. Hydraulic motor velocity, magnified areas and
active controller.

The first plot shows the hydraulic motor velocity compared
to the reference velocity. The torque controller is chosen
to be the main active controller by the operator and is
the active one in the start of the simulation initiating a
lowering of the load. It can be seen in the first plot that
the motor velocity has the same form as the reference in
the start of the simulation but is lower due to lowering of
the load. This is one of the strengths of the torque con-
troller, keeping a smooth lowering of the load by holding a
constant torque. At approximately t =24.9 s the switching
algorithm switches to the speed controller, because the mo-
tor velocity gets positive, and the hydraulic motor velocity
coincides with the reference velocity. A magnified area of
the motor velocity when the first controller switching is
initiated can be seen in the first plot in the second row in
the figure. The motor velocity in the switching seems to be
smooth and the speed controller uses about 0.2 s to reach
the reference velocity.

At t =35 s the upper speed limit and the reference torque
are changed and a new controller switching is initiated,
setting the torque controller as the active controller. Now
the torque is higher than what is needed to hold the load



and initiates a hoist of the load. The second plot in the
second row in the figure shows a magnified area around the
controller switching. The motor velocity oscillates a bit be-
fore stabilized due to an overshoot in the torque controller.
The torque controller takes about 0.4 s to stabilize and the
motor velocity is comparable to the reference velocity, only
higher due to the hoist.

The last controller switching is manually activated by the
the operator at t =50 s which initiates an AHC operation
at the depth the load is hoisted to. The motor velocity
around the last controller switching is shown in the last
plot on the second row in the figure. The speed controller
uses about 0.4 s to stabilize at the reference velocity and
from this point on the motor velocity coincides with the
reference velocity for the rest of the simulation. The last
plot in the figure shows which controller is active during
the simulation.

Figure 4 shows the torque, the reference fed to the torque
controller and which controller is active.
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Fig. 4. Torque, reference and active controller.

The first plot in the figure shows the torque compared to
the torque reference and from the start of the simulation to
the first controller switching the torque seems to coincide
with the reference. The first plot on the second row in the
figure shows the torque in a magnified area around the
controller switching. The torque drops to about 14000 Nm
due to landing of the load and the speed controller initiates
an AHC operation to keep the length of the submerged
wire as constant as possible. Due to current, hydrodynamic
effects, the weight of the wire and the tension in the wire
before controller switching, the torque is still relatively
high.

At t =35 s the torque controller is reactivated and the
torque reference is changed to 30000 Nm. The torque
controller has an overshoot causing a small oscillation and
the controller uses approximately 0.5 s to coincide with the

new reference. The load is now hoisted and the hydraulic
motor has a small acceleration since the weight of the
submerged wire decreases with its length.

The last controller switching, which is initiated at t =50 s
by the operator, is shown in the last plot in the second
row in the figure. The torque decreases rapidly below zero
due to inertia effects and the speed controller but increases
and stabilizes in about 1 s. The load is in motion when the
speed controller is activated and the speed controller has
an overshoot of the reference causing the rapid drop in
torque. For the rest of the simulation the torque varies a
bit due to the heave motion of the ship.

The next figure, figure 5, shows the vertical position of
the ship, caused by waves, and the vertical and horizontal
position of the load.
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Fig. 5. Vertical ship position and load position.

The first plot in the figure shows the vertical ship position
over the sea surface. Note that the heave motion seems to
oscillate about 3 m above the surface. This is due to the
choice of the vertical ship velocity that was set and the
vertical ship position, that is the integral of this velocity,
gets a bias of about 3 m due to a not so well defined vertical
ship velocity. However the velocity was set only to test the
controllers and is therefore justified.

The second plot in the figure shows the vertical position of
the load. Note that negative values for the vertical position
means below the sea surface due to the sign convention
used when modeling the lumped wire-load model. In the
start of the simulation the load is lowered until it reaches
a depth of 150 m, which was assumed to be the sea floor.
The vertical load position is kept constant by the spring-
damper system that was added to simulate the sea floor. At
t =35 s the load is hoisted and is stabilized around 120 m
below the sea surface at t =50 s when the AHC operation is
initiated by the speed controller that is manually activated



by the operator. For the rest of the simulation the vertical
load position seems to be constant which tells that the
speed controller works fine in AHC operations.

The last plot in the figure shows the horizontal load
position which seems to always be above 0 m. This is
due to the positive current that was set to 0.5 m/s. At
t =24.9 s the horizontal load position is kept constant
due to the assumption that the static friction between
the load and the sea floor is high enough to overcome the
current forces acting on the load and the wire. At t =35 s
the load is hoisted and the horizontal load position starts
to increase. This is due to the fact that the wire gets a
characteristic displacement due to the current before the
hoist is initiated which causes the load to swing out in
horizontal direction when leaving the sea floor. The load
oscillates in horizontal direction but seems to stabilize
after a while when reactivating the speed controller at
t =50 s.

The last figure, figure 6 shows the wire displacement at
time steps of 0.5 s. Note that the figure is divied into three
plots showing different situations in the simulation. Darker
color of the graphs shows increased time in the simulation.
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Fig. 6. Wire displacement in time steps of 0.5 s.

The first plot shows the lowering of the load until it
reaches the sea floor. As the plot shows the horizontal
wire displacement increases in the start of the simulation
due to the current and gets an overshoot in horizontal
direction before stabilizing. The second plot shows the
wire displacement when the load is in contact with the sea
floor. As can be seen the wire displacement is largest at the
middle of the wire when drawing a straight line between
the two ends of the wire. This is as expected due to the
horizontal current. The last plot shows the hoisting of the
load and the AHC operation in the end of the simulation.
The horizontal load position oscillates, as was seen in figure
5 and the wire displacement seems to stabilize a while after
the initiation of the AHC operation.

5.2 Loss of Load and Variations using Torque Controller

In this simulation the hybrid controller is tested when the
torque controller is set by the operator to be the main

active controller with a constant reference and varying
loading. The load is first set to 3000 kg but is changed to
0 kg at t =10 s in a step to simulate a load loss. At t =40 s
the load is regained, 3000 kg, before changed to 6000 kg
at t =70 s. At last the load is changed back to 3000 kg at
t =100 s.

The operator has given permission for the hybrid controller
to try to estimate a new torque reference using the Bessel
filter and to change back to the main active controller with
the new reference. It is expected that the new reference
torque would either lower or hoist the load because it
is nearly impossible to find the right torque reference to
keep the torque at a constant depth using the torque
controller. Also, the tracking error in the torque controller
is larger than in the speed controller and with a small
hoisting or lowering the load would change the weight
of the submerged wire and load, and thereby the torque
reference. However an estimate of the new torque reference
would be of help for the operator, who sets the torque
reference manually. The initial torque reference is set
to 27000 Nm which is about the torque needed to hold
the load. Note that this test is not intended for testing
the torque controller in AHC operations but to test the
sensitivity of the hybrid controller in cases where the load
is varying.

The speed limits are set to be a region of ± 1.5 rad/s around
the speed reference which is set to be the feedback from the
MRU, the reference needed in AHC operations when using
the speed controller. This means that the speed controller
is activated if the hydraulic motor velocity deflects more
than 1.5 rad/s, 14.3 rpm, from the speed reference.

Figure 7 shows the hydraulic motor velocity compared to
the MRU feedback, magnified areas of the motor velocity
around the controller switching regions and the active
controller.

The first plot in the figure compares the motor velocity to
the speed reference. In the time range [0 s,10 s) the torque
controller is active. The load is constant in this area and
the torque reference is good enough to keep the motor
velocity within the tolerance which was set to 1.5 rad/s.
However it can be seen that the motor speed is in general
higher than the reference which means that the torque
reference is set littlebit high causing a hoist of the load.
This is one of the main problems with using the torque
controller in AHC operations. The torque must be well
defined in order to just hold the load, and a constant
torque would never do the job. This has to do with tracking
errors, changes in torque due to changing reel diameter
and change in weight of submerged wire, among other
contributions.

At t =10 s the load is changed to 0 kg in a step simulating
a loss of load due to wire rupture. The first plot on the
second row in the figure shows a magnified area of the
motor velocity when this happens. The motor velocity
starts increasing due to high torque reference compared to
the new motor loading. The motor velocity reaches about
2 rad/s at t =10.3 s before a change of controller is initiated.
It takes about 0.5 s before the speed controller stabilizes
and the controller seems to force the tracking error to zero
making the motor velocity coincide with the reference.
While the speed controller is active a new torque reference
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Fig. 7. Hydraulic motor velocity compared to reference and
active controller.

is estimated and the torque controller is reactivated at
approximately t =21.1 s. As can be seen in the figure the
new torque reference is littlebit too low to hold the load
and the load is therefore lowered. However the lowering is
within the tolerances and is accepted. A magnified area
of the motor velocity around reactivation of the torque
controller is shown in the second plot on the second row
in the figure. The torque controller uses about 0.5 s to
stabilize the system around the new torque reference.

The load is regained, 3000 kg, at t =40 s and the torque
reference is now too low to hold the load resulting in a
lowering of the load. At t =40.2 s the motor speed is about
-2.25 rad/s and the speed controller is activated due to the
speed tolerance in the switching logics. Again, the speed
controller forces the tracking error to zero in about 0.3 s
making the motor velocity converge to the reference. A
magnified area of the motor velocity around the activation
of the speed controller is shown in the third plot in the
second row in the figure. A new estimate of the reference
torque starts being calculated and the torque controller is
again reactivated at t =49.65 s. The torque controller uses
about 0.4 s to stabilize and the new estimated reference
torque seems to be much better than the previous estimate
since the motor velocity is closer to the reference velocity
than compared to the previous estimate.

At t =70 s the load is doubled, 6000 kg, in a step and the
motor velocity starts to drop to about -0.2 rad/s before the
speed controller is activated by the switching algorithm.
A closer view of the motor velocity around the controller
switching is shown in the first plot in the third row in the
figure. The speed controller is stabilized in about 0.7 s and
the motor velocity converges to the reference velocity. A
new torque reference starts being estimated and the torque
controller is reactivated at t =79.9 s. The magnified area
of the motor velocity around the controller switching is
shown in the second plot on the third row in the figure. The
torque converges to the torque reference in about 0.3 s and
as for the previous torque reference estimate, the estimate
seems to be good forcing the motor velocity to be close to
the reference velocity as shown in the first plot.

The load is changed back to its initial value, 3000 kg at
t =100 s causing an increase in the motor velocity. The
speed controller is activated at t =100.35 s caused by an
exceedance of the velocity tolerance. The motor velocity
converges to the reference velocity in about 0.4 s which the
third plot on the third row in the figure shows. After about
8.2 s a new estimate of the reference torque is ready and
the torque controller is reactivated. The torque converges
to the reference torque in about 0.4 s. However this new
torque estimate is not as good as the previous estimates,
being too high causing a hoist of the load, but since the
velocity tolerance is high the estimate is accepted.

Figure 8 shows the torque compared to the reference
and the estimate, magnified areas of the torque for every
controller switching and which controller is active.

In the first plot, showing the torque compared to the
reference and the estimate, it is easy to see when the load
is changed. One can also see the high torque peaks when
the speed controller is activated. In general the Bessel
filter uses about 10 s to estimate a new torque reference
for each change in load during this simulation. This is
because each load step is equal in absolute value. The plots
in row two and three show the magnified area of torque
for every controller switching. It can also be seen that the
torque reference starts being estimated whenever the speed
controller is activated. The last plot in the figure shows
which controller is active. By comparing the last plot on
row two with the last plot on row three in the figure one
can see that the estimated torque references are not equal.
About 500 Nm separates them from each other. Of course
the length of the submerged wire in the two cases are not
equal since the torque controller has changed the depth of
the load, but the changes in the length of the submerged
wire is not more than about 2 m. The wire used is assumed
to have a diameter of 0.025 m and by using a density of
steel of 7800 kg/m3 gives a total weight of about 7.65 kg
for two meters of wire. The reel diameter is assumed to
be about 1 m giving a torque increase of about 75 Nm for
an increase in submerged wire length of 2 m. This is also
the torque generated by the weight of the wire in air, not
in water where buoyancy also is presents. This tells that
the estimation of the new torque reference is not perfect.
However by having in mind that the torque reference is
estimated based upon filtering out the torque variations
generated by the heave motion the results are quite good.
The wire has its own dynamics that is not included in
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Fig. 8. Torque, reference, estimate and active controller.

this estimation process. Nor is the hydrodynamics and the
current forces.

Figure 9 shows the vertical position of the ship and the
load positions during the simulation.

The first plot is the same vertical heave position as used in
the first case study and the second plot shows the vertical
load position. As can be seen every straight horizontal
position in the plot is when the speed controller is active. It
is easier to see in this plot how good the torque estimate is.
The initial torque reference causes a small hoisting of the
load, the first estimate causes a lowering of the load, the
second causes a slight hoisting, the third a slight lowering
and the last estimate hoists the load. It is also easy to see
that the last estimate is the poorest one. However through
the simulation the vertical load position is within ± 7 m
of the initial vertical load position.

The last plot in the figure shows the horizontal load
position. When t ∈[0 s,40 s] the horizontal load position
increases to the largest fluctuation in the simulation. for
t <10 s this swing out is due to the current. After t =10 s
the load is lost and the current forces becomes more
significant and forces the horizontal wire displacement to
increase. The horizontal wire displacement does not reach
equilibrium before the load is regained and the horizontal
load displacement decreases rapidly. For t ∈[40 s,70 s] the
horizontal load position oscillates around the equilibrium
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Fig. 9. Vertical ship position and load position.

point and when the load is doubled the oscillations does
not increase in magnitude, but the average horizontal
position seems to decrease a bit, which is expected since
the load is heavier. The oscillations also seems to be
damped out and when the load decreases to its initial value
at t =100 s and the horizontal position seems to increase
again but without new oscillations.

To get a clearer understanding of the total wire- and load
displacement the wire is plotted for time increments of 0.5 s
in figure 10. Note that darker color gives higher simulation
time.
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Fig. 10. Wire displacement in time steps of 0.5 s.

As the figure shows the simulation is divided into three
cases, t ∈[0 s,40 s], t ∈(40 s,70 s] and t ∈(70 s,130 s]. The
first plot shows the largest fluctuation of the wire dis-
placement and it is easy to recognize the vertical and



horizontal load positions shown in figure 9 in the plot.
The same yields for the second plot, showing the wire
displacement when the load increases back to 3000 kg.
The last plot shows the doubling and halving of the load,
showing that the horizontal displacement oscillates a bit
but seems to converge to an equilibrium point in the end
of the simulation.

5.3 Stuck Load using Speed Controller

In this simulation the hybrid controller is tested when the
speed controller is set by the operator to be the main active
controller with MRU- and operator defined reference. The
torque limit is set to 80000 Nm and the load is stuck
when t ∈[10 s,30 s]. To simulate this a stiff and powerful
spring-damper system is added to the load model and is
activated in this time period. At t =15 s a hoist of the load
is initiated,

rs = MRU + 0.5ramp(15)− 0.5ramp(20)

− 0.5ramp(40) + 0.5ramp(45)
(23)

and the load is supposed to come to rest after t =45 s. The
lower speed limit is set to -6 rad/s and the upper speed limit
to 6 rad/s, about ±57.3 rpm.

Figure 11 shows the motor velocity compared to the
reference, magnified areas of the motor velocity when
changing controllers and which controller is active during
the simulation.
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Fig. 11. Hydraulic motor velocity compared to reference
and active controller.

The first plot in the figure shows the motor velocity
compared to the velocity reference. At t =10 s the load gets
stuck but switching of controller is not initiated before the
hoisting of the load is started at t =15 s. This is due to the
performance of the speed controller which manages to keep
the load at a constant depth and is therefore almost not

affected by the fact that the load is jammed. For reference
Skjong and Pedersen (2014a) gives a more elaborated
study of the performances of the two controllers. When
the hoist is initiated it takes about 0.6 s before a controller
switching is initiated due to the significant increase of
torque that in the end overshoots the torque limit. A closer
view of the motor velocity when the switching is initiated
is shown in the first plot on the second row in the figure.
The torque converges to the torque limit in about 0.3 s
and the motor velocity coincides with the MRU reference
when the torque controller is active. This can be seen in the
first plot where the motor velocity is equal to the velocity
reference, except for the fact that the motor velocity is
2.5 rad/s lower than the reference after t =20 s.

At t =30 s the load is released and the speed controller
is reactivated by the switching logics. The motor velocity
converges to the reference in about 0.4 s and the load is
hoisted. The second plot on the second row in the figure
shows a magnified area of the motor velocity around the
controller switching. The hoisting stops when t =45 s and
the vertical load position is kept as constant as possible
through AHC using the speed controller.

Figure 12 shows the torque compared to the torque limit,
magnified areas of the torque for the two controller switch-
ings and which controller is active.
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Fig. 12. Torque, reference, estimate and active controller.

In the first plot it can be seen that when the speed
controller is active the torque varies a bit even though
the vertical load position is kept nearly constant. This
emphasizes the discussion about the reference torque esti-
mates. It is hard to find one constant torque reference for a
constant load case that keeps the vertical load position as
constant as the speed controller in AHC operations. When
the torque varies that much, as the figure shows, the torque
controller will hoist or lower the load at some point which
decreases or increases the motor loading respectively due



to the length of the submerged wire. If the load is lowered
the torque reference needed for holding the load increases,
and opposite if the load is hoisted the torque needed to
hold the load decreases.

At t =15 s the torque increases significantly and overshoots
the torque limit before converging to it. This is shown
in the first plot on the second row in the figure. When
t =30 s the speed controller is reactivated and the torque
decreases significantly back to the initial torque region,
which is shown in the second plot on the second row in
the figure. The last plot shows which controller is active
throughout the simulation.

Figure 13 shows the vertical heave position of the ship and
the load positions.
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Fig. 13. Vertical ship position and load position.

The first plot, showing the vertical ship position, is as in
the two previous simulation cases. The second plot shows
the vertical load position. As can be seen the depth of the
load seems to be constant when t ∈[0 s,30 s). In Skjong and
Pedersen (2014a) the deflections between the initial depth
and the load depth in such AHC operations were about
±2 cm. The jamming of the load at t =10 s can not be
seen in the plot. When the load is released the length of
the submerged wire decreases and at t =45 s the vertical
load position comes to rest at an approximate depth of
70 m. The vertical load position is smooth and shows that
the speed controller does a good job in AHC operations,
as is expected.

The last plot shows the horizontal load position and as in
the previous simulation cases the horizontal load position
increases when t ∈[0 s,10 s). The slope of the horizontal
load position in this time region shows that the vertical
load displacement does not reach any equilibrium before
the load gets stuck. The horizontal load position is kept
constant, like the vertical load position, when t ∈[10 s,30 s]

by the stiff and powerful spring-damper system that holds
the load position constant.

When the load is released the horizontal load displacement
decreases and starts oscillating around the equilibrium.
Note that the horizontal load displacement is in general
larger, with current present, when the load is hoisted
compared to lowering or constant depth AHC operations.
Also note that the weight of the load and the hydrody-
namics acting on the load are related to the damping of
the horizontal load oscillations.

To get a clearer understanding of the complex wire dis-
placement the wire is plotted trough the simulations with
time increments of t =0.5 s. As before, darker color means
increase in simulation time.
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Fig. 14. Wire displacement in time steps of 0.5 s.

The first plot in the figure shows the wire displacement for
t ∈[0 s,15 s]. This is the first region the speed controller is
active. The initial wire displacement is a straight vertical
displacement and when the current forces starts acting on
the wire and the load the horizontal wire displacement
increases. The wire displacement converges to an equilib-
rium when the load is jammed, which can be seen by the
graphs with the darker color.

The second plot shows the wire displacement when the
load is stuck. The displacement is nearly constant, only
small changes in the wire displacement are present due to
the heave motion of the ship.

The last plot shows that the load is hoisted and the
horizontal wire displacement decreases. In the end of the
simulation the wire displacement seems to converge to
an equilibrium since the horizontal load position and the
vertical load position seem to converge.

6. SUMMARY AND CONCLUSION

Hybrid switching logics, determining when the hybrid con-
trol system should switch controller, based on measure-
ments and operator choices, were proposed in the start
of this paper. The switching restrictions and conditions
showed to be system- and functionality dependent and



simple functionalities such as torque reference estimation,
loss of load and stuck load contributed to the final hybrid
controller design.

The first case study, landing of load using the torque
controller as the main active controller, showed how to
combine the torque controller and the speed controller
with references and limits to perform such an operation.
The torque controller was chosen as the main active
controller with a constant reference torque lower than the
torque necessary to hold the load, initiating a lowering
of the load. When the load reached the sea floor the
motor velocity changed sign and the speed controller
was activated with MRU reference initiating an AHC
operation of the load at the sea floor. The upper speed
limit and the torque reference were increased and the
torque controller was reactivated, starting to hoist the
load. After a while the speed controller was manually
activated by the operator to perform an AHC operation,
keeping the load at a constant depth. The results from
this test showed that landing a load on the sea floor
by combining the two controllers as specified gave good
results.

The second case study, loss of load and load variations
using the torque controller as the main active controller,
was initiated to test the response of the hybrid controller in
cases with varying load. The operator allowed the hybrid
controller to try to estimate a new torque reference in
order to reactivate the torque controller when the speed
controller was active. This case, except for the torque
reference estimation, is similar to the load landing case.
It was expected that the torque reference estimate would
not be perfect because cases doing nearly perfect AHC
operations keeping the load at a constant depth using the
speed controller show that the torque varies significantly.
This torque variation is a sum of many contributors such
as hydrodynamics, time constants in the system, wire
dynamics and tracking errors. By assuming the torque
reference can be chosen perfect and set constant it would
only take a small tracking error in the torque controller
to change the torque reference for keeping the load at a
constant depth. This is similar to the inverted pendulum
problem, where only a small disturbance would change the
equilibrium point. In control theory such an equilibrium
point is called a saddle point and is not characterized as
a stable equilibria. However, the velocity error tolerance
was set high in the simulation resulting in only one
torque reference estimate for each change in load. The
velocity error tolerance, giving switching restrictions to
the hybrid controller, is closely related to the chattering
phenomenon in the hybrid controller. If the tolerance is
low the hybrid controller would switch between the two
controllers as often as possible in order to try finding
a better torque reference estimate. Since the reference
torque is comparable to a saddle point it would be nearly
impossible to estimate the right reference.

In the simulation two of the torque reference estimates
gave good results, keeping a lowering or hoisting at a
minimum. To estimate the torque reference only a second
order Bessel filter was used, filtering out the torque varia-
tions from torque measurements when the speed controller
was active in an AHC operation keeping the load at a
constant depth. To make a better estimate a model based

filter or estimator should be studied, but the inverted
pendulum problem would never disappear. However the
torque reference estimate would be a good aid for the
operator that is to set the torque reference manually. It
can also be used in safety systems, setting restrictions for
the upper and lower limit for the torque reference that is
set by the operator.

The last case study, stuck load using the speed controller
as the main active controller, was initiated to test the
reaction of the hybrid controller when the load got stuck.
Functionalities for handling such cases are crucial for
saving both the load and the hydraulic winch system. An
upper limit for the torque was set in the hybrid controller
and the simulation started with the speed controller active
performing an AHC operation keeping the load at a
constant depth. Even though the load got stuck the
performance of the AHC operation was good enough to
keep the pressure in the system in the same region as
before the load got stuck. When the hoist of the load
was initiated the torque increased quickly and when the
torque reached the torque limit the torque controller was
activated. A small overshoot of the torque limit before the
activation of the torque controller was allowed telling that
a safety factor in the torque limit should be present, if the
torque limit is the highest torque the system can handle, in
order to prevent damages on the system. After a while the
load was released and after a short period with hoisting
the load came to rest due to initiation of AHC, keeping
the load at a constant depth. This simulation showed that
the hybrid controller works good also in such cases.
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Abstract
In sub-sea operations winches and cranes are used in almost
every task performed from a surface vessel. Heavy payloads
are lifted and installed at the sea floor such as ”christmas
trees”, anchors, pipelines and various constructions with high
precision in rough environments. These operations set criteri-
ons to the vessel’s equipment.

Winches used in such operations are multidisciplinary sys-
tems including mechanical, electrical, hydraulic and cyber-
netic systems that act together in a well defined way so that
the performance comply with the criterions. To verify the sys-
tems HIL-, Hardware In the Loop, tests or sea-tries are nec-
essary. In this paper a lumped wire-load model affected by
environmental forces are derived with the purpose of test-
ing winching systems. The wire is divided into five equal
wire elements and are modeled as series of mass-damper-
spring systems connected to the payload. Both the elasticity
of the wire and the damping characteristics are dependent of
the wire length and modeled using bond graph theory. This
gives variable natural frequencies which is desirable for test-
ing winch control systems. The model also includes current,
vessel motions and hydrodynamics acting on both the wire
and the payload. The wire is packed on a reel giving variable
inertia and reel diameter that also affect the powering system
of the winch.

The lumped wire model are tested in both a hoist and a
lowering operation of the payload with horizontal current
present using a hydraulic powering system that includes two
directional valves in a 4/3 valve configuration connected to
a hydraulic motor. The powering system also includes safety
valves to ensure that vapour pressures do not appear in the
system. The simulation results shows that the powering sys-
tem are highly affected by the wire-load model, giving a vari-
able loading of the hydraulic motor, and winch control sys-
tems, such as speed and torque controllers, must be designed
in such a way the natural frequencies are not amplified giving
resonance.

1Based on the specialization project by Stian Skjong (Skjong, 2013).

1. INTRODUCTION
In this study the objective is to derive a reasonable winch

model for a winch operating in a marine environment with
realistic load characteristics. A sketch of the winch with wire
and payload is given in figure 1.

Vc,x

Figure 1. Sketch of winch in operation.

As the figure shows the wire is connected to the reel on the
vessel and the submerged wire is suspected to get a horizontal
displacement due to current effects. The figure also shows a
closer view of the wire represented as mass-spring-damper
systems in series. This is how the wire is to be modeled.

The hydraulic powering system for the winch is not in the
scope of this paper, but is modeled as a hydraulic motor con-
trolled by two servo operated proportional valves in a 4/3
valve configuration in addition to filters, pipelines, volumes,
a pressure relief valve and a HPU, Hydraulic Power Unit, for
pilot control of the proportional valves. Figure 2 shows a gen-
eral schematic of the valve system connected to the hydraulic
motor.

Here pP is the pump pressure, pT is the return pressure, uH
and uL are the control references for the inner controllers con-
trolling the valve displacements for the valve on the hoisting
side and lowering side respectively. This hydraulic powering
system is more elaborated in Skjong (2013), but detailed info
can’t be given because of confidentiality. It is important to
note that there is a check valve at each side of the hydraulic
motor to prevent vacuum. The pilot pressure is set to 200 bar
and the main flow in the system is given from two pumps,
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Figure 2. Sketch of hydraulic motor and valve configura-
tion.

giving a total flow of 7000 L/min. The pressure relief valve is
set to open when the pump pressure is a bit higher than the
largest pressure in the motor. The motor is also affected by
internal leakage.

2. WINCH MODEL
The winch model consists of a flexible coupling, reel, wire

and a payload. The reel is connected to the hydraulic mo-
tor via the flexible coupling and the wire is rolled onto the
reel causing a varying rotational inertia. The wire is modeled
as a lumped mass-damper-spring system in series as figure
1 shows. In this paper y is the distance in vertical direction,
positive above surface, and x is the distance in horizontal di-
rection.

2.1. Wire
The wire affected by current should be modeled as series

of elements in order to get a realistic deflection form and
FEM, Finite Element Methods, are often used in such prob-
lems. Another way of modeling the wire is to approximate
it as mass-damper-spring systems in series. This was done in
T. Pedersen and E. Pedersen (2007) where marine seismic ca-
bles were modeled as lumped mass-damper-spring systems in
series and compared to FEM. The same idea of a lumped sys-
tem is used here to model the wire. In this case it is sufficient
with a 2D model of the wire2. Figure 3 shows a sketch of one
wire element. In the figure Lwe is the length of one wire el-
ement, rwe is the elongation of one wire element, θwe is the
angle between the vertical axis and the wire element, mwe is
the mass of the wire element, y0 and x0 are the coordinates

2By assuming only horizontal current, as the only environmental distur-
bance, the coordinate system can be located in such a way that the forces and
displacements of the wire only forms a 2D system.

θwe

y0

x0

kwire

cwire

mwe

y1

x1

Lwe + rwe

Vc,x

Figure 3. Sketch of a wire element.

for the top position of the element, x1 and y1 are the coordi-
nates for the bottom position of the wire element, kwire is the
spring stiffness, cwire is the damping coefficient and Vc,x is the
current velocity in horizontal direction.

2.1.1. Wire Dynamics
The spring stiffness is given as

kwire =
EAw

Lwe
=

ED2
wπ

4Lwe
(1)

where E =200 GPa is the Elasticity modulus for steel, Aw is
the area of the wire cross section and Dw is the diameter of
the wire. The spring force is then given as

Fws = kwirerwe (2)

The damping is given from a constant damping ratio assumed
to be 5 -3,

ζ =
cwire

ccr
= 5 (3)

where

ccr = 2mwe

√
kwire

mwe
= 2
√

kwiremwe (4)

This gives
cwire = 2ζ

√
kwiremwe (5)

The damping force is then given as

Fwd = cṙwe (6)

The elongation of the wire element is expressed as

rwe =
√

(x1− x0)2 +(y1− y0)2−Lwe (7)

3Assuming the damping ratio to be 5 - gives a over-damped system which
is true for a wire.



and the derivative is

ṙwe =
(x1− x0)ẋ1 +(y1− y0)ẏ1√
(x1− x0)2 +(y1− y0)2

− (x1− x0)ẋ0 +(y1− y0)ẏ0√
(x1− x0)2 +(y1− y0)2

− L̇we

= rt1(ẋ1− ẋ0)+ rt2(ẏ1− ẏ0)− L̇we

(8)

where

rt1 =
(x1− x0)√

(x1− x0)2 +(y1− y0)2

rt2 =
(y1− y0)√

(x1− x0)2 +(y1− y0)2

(9)

The mass of the wire in air is given as

mwe,Air = AwLweρsteel = ρwireLwe (10)

where ρwire = ρsteelAw = ρsteel
D2

wπ
4

kg/m and ρsteel=7800 kg/m3.
By including added mass from Morrison’s equation a mass
matrix is obtained. Morrison’s equation is given by

FM =
[

FM,x
FM,y

]
= ρwaterAwLwe

[
CI,xẍ
CI,yÿ

]

+
1
2

ρwaterDwLwe

[
Cd,x cosθwe(ẋ−Vc,x)|ẋ−Vc,x|
Cd,y sinθwe(ẏ−Vc,y)|ẏ−Vc,y|

]
(11)

By including the first part of Morrison’s equation in the
mass matrix, it can be written as

M =

[
ρwireLwe 0

0 ρwireLwe

]

+

[
Ca,x

ρwater
2 AwLwe 0
0 Ca,y

ρwater
2 AwLwe

]
,

(12)

where Ca,x and Ca,y are the added mass coefficients. By as-
suming the mass as a sphere, one may set Ca,x = Ca,y =1 -.
Note that CI = 1+Ca, see Faltinsen (1993). The assumption
about the mass is not completely true, but for this purpose
it is a sufficient assumption. In (5) mwe is set to ρwireLwe +
ca,x

ρwater
2 AwLwe.

The last part of Morrison’s equation is the drag force4. For
now Cd,x = Cd,y =0.45 -, Vc,y =0 m/s and Vc,x =5 m/s. A hori-
zontal current of 5 m/s is perhaps too high, but is used only
to verify the model. One can also use a time and depth de-
pendant current later on. The gravity and buoyancy forces are
given as

FBG = [0,(ρwireLwe−ρwaterAwLw)g]T (13)

Note that the last wire element also should include the load.
4See T. Pedersen and E. Pedersen (2007) and (Faltinsen, 1993). In (Faltin-

sen, 1993) the drag coefficients for a sphere is said to lie between 0.23 and
0.5, depending on the Reynold’s number. In T. Pedersen and E. Pedersen
(2007) 0.45 was suggested.

2.1.2. Implementation
By implementing this in 20Sim a bond graph model for a

wire element as shown in figure 4 can be obtained. The MTF-
elements shown in the figure use rt1 and rt2 as transformer
modulus and the MSf-element is the change of the length of
the wire element, given by the winch speed. For a reel with
diameter D and a wire with n elements, L̇ = Dω

n where ω is
the winch speed. Inside the box Pos_angle_deltapos

Figure 4. Bond-graph model of a wire element.

the length of the wire element, the angle and the transformer
variables are calculated. The angle is given as

θwe =−arctan(
x1− x0

y1− y0
) (14)

and the length of the wire element is calculated from the po-
sitions. This is not completely true since that gives Lwe + rwe,
but since r << Lwe and rwe ≈ 0 when Lwe is small it is a
reasonably assumption. Because most of the elements have
variables as parameters, connections need to take place in the
model as shown in the figure. Note that for the first element
the position of the boat in xy-direction is added to the top po-
sition of the model through the Boatxy port. This is done
only in the first wire element, giving the motion of the boat
to the lumped system. Also an effort sensor is added only in
the first wire element to connect the tension of the wire with
the reel. The total wire model contains five wire elements,
and in the last element the payload effects are added to the I-
element, MSe-element and the MR-element (drag). The pay-
load is assumed to be a sphere with diameter of 1 m and a
mass of 6000 kg. This gives the same added mass coefficients
and drag force coefficients as the wire. The elements are con-
nected to each other in the top and bottom 1-junctions as seen
in the figure.



2.2. Reel
The wire is connected to the reel, and the reel is influenced

by the wire and its dynamics.

2.2.1. Reel Dynamics
The reel dynamics are dependent on the amount of wire

stored onto it and the amount of wire in the water. Figure
5 shows the geometry of the reel. A full reel has a storage

Dr(Lw,r(t))
x Dr,0

wr

Dr
2

x

Figure 5. Reel sketch.

volume given by

Vr, f ull =
D2

r, f ull−D2
r,0

4
wrπ (15)

where Vr, f ull is the maximal storage volume on the reel, Dr, f ull
is the diameter of a full reel, Dr,0 is the diameter of an empty
reel and wr is the width of the reel. The volume of the wire is
give by

Vw =
D2

w

4
πLw (16)

By setting Vw = Vr, f ull we obtain the maximal length of wire
stored on a full reel,

Lw,r, f ull,ideal =
D2

r, f ull−D2
r,0

D2
w

wr (17)

This is only an ideal length of wire, since no air is trapped in
between. Therefore a correction factor, fw, 0< fw < 1, should
be included.

Then the actual maximal length of wire stored on the reel
is given by

Lw,r, f ull =
D2

r, f ull−D2
r,0

D2
w

wr fw (18)

The value of fw is found by looking at how the wire can be
stored. There are at least two ways the wire could be stored
and one is given in figure 6. From the geometry in the figure
fw is given as

fw =
D2

w
4 π
D2

w
=

π
4
≈ 0.7854 (19)

This is not the most effective way of storing the wire. Figure
7 shows a more compact packing of the wire and is the most

Dw

Figure 6. Wire packing on reel.

Dw

Figure 7. Compact wire packing on reel.

effective storing when the wire has a circular cross-section.
Since the parallelogram has a sum of the angles equal to 360◦

and there is a circle center in each corner, there is in total one
wire cross-section inside it. fw is now given as

fw =
D2

wπ
4

1

D2
w

√
1− 1

4

=
π

2
√

3
≈ 0.9069 (20)

By solving for Dr, f ull in (18) the diameter of the reel with a
given length of wire stored onto it is given as

D(Lw,r(t)) =

√
Lw,r(t)D2

w

wr fw
+D2

r,0 (21)

Then the inertia of the reel can be calculated as

J(Lw,r(t)) = Jreel +2J f lange + Jwire(t)

=
1
2

mreel
D2

r,0

4

+2
1
2

m f lange
D2

r, f ull

4

+
1
2

ρwireLw,r(t)

(
D(Lw,r(t))2−D2

r,0

4

)

=
1
8

mreelD2
r,0 +

1
4

m f langeD2
r, f ull

+
1
8

ρwireLw,r

(
D2

w
Lw,r(t)
wr fw

+2Dr,0Dw

√
Lw,r(t)
wr fw

+D2
0

)

(22)

2.2.2. Implementation
By implementing the reel in 20Sim a bond-graph model

as shown in figure 8 can be retrieved. The IC-element cal-
culates the total length of the wire with given Dr, f ull and
Dr,0 and from an initial length submerged wire it calculates
the wire left on the reel. From this and a flow measurement
Lw,r(t), D(Lw,r(t)) and J(Lw,r(t)) are calculated. For now
Dr, f ull = 1 m, Dr,0 = 0.5 m, mreel =200 kg, m f lange =50 kg
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Figure 8. Bond-graph model of the reel.

and Dw =0.025 m. The transformer modulus for the MTF-
element is D(Lw,r(t))n

2 , where n =2 - is a gear ratio between the
hydraulic motor and the reel, the spring and damping coeffi-
cient in the flexible coupling are set to k f lex =1e7 Nm/rad and
c f lex =1e5 Nms/rad respectively. The MSe-element gets the ten-
sion from the wire.

By connecting the reel model to one wire element we get
the total bond graph model shown in figure 9.
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Figure 9. Total model of one wire element connected to the
reel.

3. RESULTS AND DISCUSSION
The input signals used in the simulations are given in fig-

ure 10. The first two plots show the reference signals that are
fed to the two inner controllers controlling the proportional
valves. The last plot shows the flow delivered from the pump.

In these simulations simple P-controllers are used as inner
controllers controlling the proportional valves.
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Figure 10. Reference signals for valve and flow delivered
from the pump.

3.1. Hoisting
The initial length of submerged wire is set to Lw =100 m.

Reference signal (1) is fed to the proportional valve on the
hoisting side of the motor, and reference signal (2) to the pro-
portional valve on the lowering side. It can seen from figure
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Figure 11. Reference signal, valve position, hydraulic motor
velocity and length of submerged wire during hoisting opera-
tion.



11 that the position of the proportional valve and the motor
velocity are reasonable. It looks like the actual position of
the valves coincide with the references, but by looking at the
magnified area in the plot it can be seen that there are small
oscillations and a small bias present. This is because the ref-
erence signal is filtered through a first order transfer func-
tion acting as a velocity limitation function. A PI-controller
should be implemented inside the velocity limiting transfer
function to avoid bias on the reference signal. In addition
there is also delay on the valve position sensors in the hy-
draulic model. It can also be seen that the maximal motor
velocity is reached before maximal valve displacement. This
means that the flow from the pump system sets the motor ve-
locity. In the last plot, showing the length of submerged wire,
it is illustrated the effect of internal leakage inside the motor.
When the reference signal is zero it is possible to see that the
wire slowly gets lowered. This can also be seen in the second
plot where the motor velocity is slightly below zero when the
reference signal is zero.
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Figure 12. Wire displacement in water.

In figure 12 it is possible to see the wire in water in different
time frames. Note that negative values mean below the sur-
face. At t =0 s the wire is 100 m long in a completely vertical
displacement. At t =5 s the hoist has started and the current
displaces the wire horizontally. When the wire has a horizon-
tal displacement the hoist operation gives an added horizon-
tal displacement to the wire as it is possible to see in t =10 s
and t =15 s. When the motor stops the horizontal displace-
ment becomes smaller and an equilibrium between the forces
acting on the wire is obtained. The equilibrium displacement
after hoist is shown in t =30 s.

3.2. Lowering
The initial length of submerged wire is set to Lw =10 m.

Reference signal (2) is fed to the proportional valve on the
hoisting side of the motor and reference signal (1) to pro-
portional valve on the lowering side. It can be seen in figure
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Figure 13. Reference signal, valve position, hydraulic mo-
tor velocity and length of submerged wire during lowering
operation.

13 that the position of the proportional valve is as good con-
trolled as in the hoisting simulation, but the motor velocity is
relatively high. This is because a check valve opens to return
pressure on the unloaded side of the motor, to prevent cav-
itation in the motor, which results in high motor velocities.
When outer controllers, such as a speed controller, are to be
designed, restrictions should be implemented to avoid such
high motor velocities. In the last plot it is possible to see the
length of submerged wire, which is approximately 193 m at
the end of the simulation.

Figure 14 shows the displacement of the wire in sea in dif-
ferent time frames. As can be seen the horizontal displace-
ment is largest when the motor velocity is zero. This has to
do with the velocity of the wire with respect to the current
is largest when the motor speed is zero, or positive as in the
hoisting operation. This gives larger drag forces and hence
the displacement in x-direction is larger.

4. CONCLUSION
It has been shown that even a simplified lumped wire model

has a huge impact on the winch powering system. Without the
winch model, simple P-controllers were enough to control the
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Figure 14. Wire displacement in water.

valve positions, but, with the wire model included an integral
effect should also be included. In the hoisting case, the hori-
zontal displacement of the wire was increased by the opera-
tion. This is because the sum of the current velocity and the
horizontal wire velocity gets higher and therefore larger drag
forces are acting on the wire. In the lowering case the oppo-
site effect was seen. This is because the sum of the velocities
gets lower in this case.

Since the length of the wire changes, the natural frequen-
cies in the winch system also change. The undamped natural
frequency of a wire element is given as

fn =
1

2π

√
k
m

=
1

2π

√
EAw

Lwem
. (23)

These natural frequencies are important in the winch model,
also for control design purposes. The responses from the
winch model are also important if active heave compensa-
tion is to be designed. Then a MRU, Motion Reference Unit,
should be used to measure the heave motion and give the mea-
surements as input to outer controllers.

Figure 15 shows the loading of the hydraulic motor for the
two simulations. It is possible to see that there are large forces
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Figure 15. Loading of hydraulic motor.

in the beginning of the hoisting simulation but small in the
end. This is because it requires more power to start hoisting
than to stop hoisting. In the lowering simulation it is the op-
posite. The large forces are due to stopping the lowering op-
eration, which requires more power than starting it. More dis-
cussions and results regarding forces, pressures, check valves
and fluid flows are elaborated in Skjong (2013).

In general the major results and findings can be summa-
rized as

(a) Even a model with few wire elements modeled as
lumped mass-damper-spring systems in series tend to
describe more accurately the main dynamics of a sub-
merged wire influenced by environmental forces and by
the operation performed.

(b) Using position control of the directional valve system in
lowering operations give large forces on the winch pow-
ering system when a stop is performed. This would re-
sult in wear and tear of the system and should be avoided
by using a speed controller to control the hydraulic mo-
tor.

(c) P-controllers were sufficient to control the valve dis-
placements when neglecting the bias caused by the ve-
locity limitation function. Controller including integral
effects should be implemented in the velocity limitation
functions to deal with the bias caused by it. Also deriva-
tive effect should be included in the valve controllers to
damp out oscillations.

In the simulations performed the current was set as a constant,
independent of time and depth. This is not the case in reality
where the current slowly changes both direction and magni-
tude. This effect is easy to implement in the model and should
be considered. Also a study of how many wire elements are
necessary to include in the model to obtain good results com-
pared to other modeling methods could be of interest. This is
elaborated in T. Pedersen and E. Pedersen (2007).
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C | Parameters

Table C.1: Parameters and coefficients used in the bond graph model.

Part Description Value
Global 𝜌, Fluid density 889 kg/𝑚3

𝛽𝑓 , Bulk modulus, hydraulic fluid 1.6e9 Pa
𝛽ℎ, Bulk modulus, pipes 60e9 Pa
𝑠, Gas-fluid ratio in bulk modulus

equation (2.7) 0.002 -

𝑇𝑠, Sampling time 0.001 s
𝑇𝑑, Sampling delay 0.002 s
𝑝𝑣𝑎𝑝, Vapour pressure for hydraulic fluid -99900 Pa

Pilot valve 𝑓 , Natural frequency in valve dynamics 120 Hz
𝐾, Gain in valve dynamics 1 m/N
𝜁, Relative damping in valve dynamics 0.9 -
𝐶𝑑, Flow coefficient in pilot valve given by

third order polynomial,
if 𝑝.𝑓 > 7,

𝐶𝑑 = 𝑝1𝑝.𝑓3 + ... + 𝑝4
else

𝐶𝑑 = 0.92

𝑝1 = 0.001979 𝑠3/𝑚9

𝑝2 = −0.060833 𝑠2/𝑚6

𝑝3 = 0.560729 𝑠/𝑚3

𝑝4 = −0.703125 -

𝐴𝑚𝑎𝑥, Maximal opening
area 6.6406e-6 𝑚2

3/3-Directional valve 𝑉0, Initial volume in Vol1, see figure 2.3 0.01 𝑚3

(with fluid inertia and 𝑉0, Initial volume in Vol2, see figure 2.3 1e-5 𝑚3

cylinder accumulation) 𝑉0, Initial volume in Vol3, see figure 2.3 1e-5 𝑚3

𝑝0, Initial pressure 1.5e5 Pa
𝑘𝑐, Design parameter in check-valve

located between HPU and pilot valve 4e11 𝑚6/𝑃 𝑎𝑠2

𝜏 , Time constant in check-valve, loacted
between HPU and pilot valve 0.005 𝑠

𝑓𝑝𝑙, Loss factor in pipe A 2 -
𝐷𝑝𝑖, Internal diameter in pipe A 0.008 m
𝐿𝑝, Length of pipe A 0.16 m
𝑓𝑝𝑙, Loss factor in pipe , 2 -
𝐷𝑝𝑖, Internal diameter in pipe B, 0.008 m
𝐿𝑝, Length of pipe B 0.1 m
𝐴𝑠, Area of control slide 0.001583 𝑚2

𝑉0, Initial volume in cylinder
accumulation (A and B) 1e-4 𝑚3

𝑘𝑠, Spring stiffness in centring spring 11700 N/m
𝑥𝑠0, Pre-compression of centring spring 0.03 m
𝑠, Slope in arctan(·)-function,

centring spring 10000 -

𝑝𝐿1, Parameter in loss function 32389 𝑁𝑠2/𝑚2

𝑝𝐿2, Parameter in loss function 37333 𝑁𝑠/𝑚
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𝑚𝑠, Weight of control slide 35 kg
𝑉𝑚𝑎𝑥, Maximal velocity in
velocity limitation function 0.315 m/s

𝐾𝑝, Proportional controller gain in
velocity limitation function 5000 -

𝐾𝑖, Integral controller gain in
velocity limitation function 15 -

𝐾𝑝, Proportional controller gain in
control slide position controller 6000 -

𝑘𝑐, Design parameter in check-valve
located between delivering and return

line in main valve
40 𝑚6/𝑃 𝑎𝑠2

𝜏 , Time constant in check-valve,
loacted between delivering and return

line in main valve
0.05 𝑠

𝑘𝑓 , Flow force parameter for the
bond graph element MR, PA and AT 0.5 -

𝛼𝑥𝑠 , Flow parameter for the
bond graph element MR, PA and AT,

assumed constant
0.7 𝑚

𝑠

√︁
𝑘𝑔

𝑁𝑚

𝐷𝑠, Diameter of control slide 0.14 m
Hydraulic motor 𝐺, Conductance of laminar resistance 4.8e-9 𝑚3/𝑃 𝑎𝑠

𝐷𝑚, Motor displacement 0.13 𝑚3/𝑟𝑒𝑣

𝐹𝑠, Static friction in (2.22) 105 Nm
𝑠, Coefficient in (2.22) 10 -
𝑐, Coefficient in (2.22) 5 -
𝜇𝑠, Coefficient in (2.22) 1 -
𝜇𝑐, Coefficient in (2.22) 0.2 -
𝜇𝑣, Coefficient in (2.22) 2 -
𝐽 , Rotational inertia 50 𝑘𝑔𝑚2

𝑉0, Initial volume, VolumeA and VolumeB 0.04 𝑚3

Pressure compensator 𝐶𝑑, Flow coefficient in nozzle 0.3 -
𝐴𝑛(𝑥𝑐), Area in nozzle, assumed to be

given as
𝐴𝑛(𝑥𝑐) = 𝑝1𝑥𝑐 + 𝑝2

𝑝1 =6e-4 m
𝑝2 =1e-4 𝑚2

𝑉0, Initial volume, Vol 0.001 𝑚3

𝐴𝑐𝑝, Piston area in pressure compensator 0.01131 𝑚2

𝑚, Weight of moving parts in
pressure compensator 20 kg

𝑥𝑐𝑙𝑖𝑚, Maximal stroke of piston in
pressure compensator 0.04 m

𝑘𝑐𝑠𝑡𝑜𝑝, Spring stiffness in stopping element 1e8 N/m
𝑏𝑐𝑠𝑡𝑜𝑝, Damping parameter in

stopping element 1e6 Ns/m

𝑘𝑐𝑠, Spring stiffness in plunger spring 16250 N/m
𝑥𝑐0, Pre-compression in plunger spring 0.21 m
𝐹𝑠, Static friction in (2.22) 1000 N
𝑠, Coefficient in (2.22) 100 -
𝑐, Coefficient in (2.22) 5 -
𝜇𝑠, Coefficient in (2.22) 1 -
𝜇𝑐, Coefficient in (2.22) 0.1 -

Master Thesis Page XLIV



Chapter C. Parameters

𝜇𝑣, Coefficient in (2.22) 3 -
𝐷ℎ, Hydraulic diameter 0.1 m

𝐴𝑐𝑜(𝑥𝑐), Opening area in pressure
compensator, assumed to be given as

𝐴𝑐𝑜(𝑥𝑐) = 𝜋𝐷ℎ𝑥𝑐

-

𝑘𝑐𝑓 , Flow force coefficient 0.6 -
𝛼𝑥𝑐 , Flow parameter assumed constant 0.7 𝑚

𝑠

√︁
𝑘𝑔

𝑁𝑚

3/2-directional valve 𝑓 , Natural frequency in valve dynamics 120 Hz
𝜁, Damping ratio in valve dynamics 0.9 -
𝐾, Gain in transfer function, valve

dynamics 1 m/N

𝑉0, Initial volume 0.001 𝑚3

𝐴𝑚𝑎𝑥, Maximal opening area 1.9643e-4 𝑚2

𝐶𝑑, Flow coefficient 0.8 -
HPU 𝑝𝑃 , Pilot pressure 193e5 Pa

𝑝𝑇 , Tank pressure 1.5e5 Pa
Total model 𝐷𝑖, Internal diameter in pressure line 0.25 𝑚2

𝑓𝑝𝑙, Loss factor in pressure line 16 -
𝐿𝑝, Length of pressure line 40 m
𝐷𝑖, Internal diameter in return line 0.20 𝑚2

𝑓𝑝𝑙, Loss factor in return line 10 -
𝐿𝑝, Length of return line 40 m
𝑉0, Initial volume, VolumeP 0.343 𝑚3

𝑉0, Initial volume, VolumeR 1.037 𝑚3

𝑝𝑇 , Tank pressure 1.5e5 Pa
𝐺, Conductance of laminar resistance 1.04166e-9 𝑚3/𝑃 𝑎𝑠

𝐷ℎ, Hydraulic diameter in loss function 0.15 m
𝐶𝑑, Flow coefficient in loss function 0.2218 -
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D | Additional Sensitivity Studies
This chapter includes additional parameter sensitivity studies to those given in section 3.2.

D.1 Volume Ratio in Bulk Modulus

The volume ratio between the air and the fluid in the bulk modulus is set to 0.002 - in tabel C.1.
It is changed with ±50% and the results are given in figure D.1.
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Figure D.1: Sensitivity of volume rate in bulk modulus.

As the results show an increase in the volume rate gives a slower response for the hydraulic
motor and an increase gives a faster response. Also the decrease of the volume rate gives more
damping than an increase. The solving time for the simulation is reduced by about 1.8 s, which
is significant.

D.2 Pressure Compensator

D.2.1 Nozzle Area in Pressure Compensator

The opening area in the nozzle in the pressure compensator is given in table C.1 as 𝐴𝑛(𝑥𝑐) =
𝑝2𝑥𝑐 +𝑝1 = 1e-4+6e-4𝑥𝑐 𝑚2. This means that the nozzle always is littlebit open. The parameter
𝑝1 is changed with ±50%. The results are shown in figure D.2.

By reducing the nozzle area more oscillations occur at 𝑡 =1 s, but the amplitude of these os-
cillations are lower. By making the area larger, fewer oscillations occur but the amplitudes of
these are higher. Looking at the plot in the lower right corner of the figure it can be seen that
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Figure D.2: Sensitivity of nozzle area in pressure compensator.

the motor gets slower with a reduced area than with an increased. This is because the reduced
area gives more damping than an increased nozzle area, but the solving time gets higher. The
nozzle area should be treated carefully and not changed too much in order to retain the same
motor dynamics. If to be changed it should be increased.

D.2.2 Nozzle Flow Coefficient

The flow coefficient for the nozzle in the pressure compensator is given as 𝐶𝑑 =0.3 - in table C.1.
The flow coefficient is changed with ±50% and the result is shown in figure D.3.

The figure shows that a reduction in flow coefficient gives a higher solving time and slower motor
dynamics than an increase.

D.2.3 Plunger Diameter

The diameter of the plunger, the moving piston in the pressure compensator, is given as 0.1 m
in table C.1. The diameter is changed with ±50% and the results are shown in figure D.4.

The results given in the figure are almost identical to the results in D.2.1 except that reduced
diameter gives larger oscillation amplitudes and increased diameter gives lower oscillation am-
plitudes. The duration of the oscillations are the same and the solving time is almost the same
for the three simulations.

D.2.4 Flow Coefficient

The flow coefficient in the pressure compensator determines the flow through the valve and is
in table C.1 given as 0.7 -. The coefficient is changed with ±50% and the results are given in
figure D.5.
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Figure D.3: Sensitivity of nozzle flow coefficient in pressure compensator.
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Figure D.4: Sensitivity of plunger diameter in pressure compensator.

As can be seen from the figure the results are almost the same as in D.2.3.

D.2.5 Inertia

The weight of the moving parts in the pressure compensator is set to 20 kg. The inertia is
changed with ±50% and the results are shown in figure D.6. The change in the inertia for the
moving parts in the pressure compensator has less implications for the total model than the
other parameters studied before, both in motor velocity and solving time.
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Figure D.5: Sensitivity of flow coefficient, 𝛼 in pressure compensator.
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Figure D.6: Sensitivity of inertia in pressure compensator.

D.2.6 Spring Stiffness

The spring stiffness in the pressure compensator is in table C.1 given as 16250 N/m. The spring
stiffness is changed with ±50% and the pre-compression is also changed so that the difference
between the pump pressure and the highest pressure of the sides of the hydraulic motor is
retained. The results are shown in figure D.7.

Also for this parameter the changes have less implications on the hydraulic motor response, both
for the angular rate and for the solving time.
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Figure D.7: Sensitivity of spring stiffness in pressure compensator.

D.2.7 Slope in Friction Function

The slope in the friction function in the pressure compensator is given as 100 - in table C.1. The
slope is changed with ±50% and the results are given in figure D.8.
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Figure D.8: Sensitivity of slope in friction function in pressure compensator.

As can be seen in the figure the changes in the slope do not affect the oscillations in the start of
the simulation but the response of the hydraulic motor. A decreased slope gives both decreased
solving time and faster motor response. An increased slope gives a slower motor response.
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D.2.8 Static Friction

The static friction in the pressure compensator is given as 1000 N in table C.1. The static friction
is changed with ±50% and the results are given in figure D.9.
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Figure D.9: Sensitivity of static friction in pressure compensator.

The results show that an increase in the static friction both gives more damping to the system
and slows the hydraulic motor response down as well as reducing the solving time. A decrease in
the static friction gives less damping to the system, increases the response time of the hydraulic
motor as well as reducing the solving time. However reducing the damping and increasing the
static friction is not ideal, since decreased damping gives more oscillations and increased static
friction gives more wear and tear of the pressure compensator.

D.2.9 Volume in Pressure Compensator

The oil volume in the pressure compensator is small and acts as a non-linear spring due to the
variable bulk modulus. The initial volume is in table C.1 given as 𝑉0 =0.001 𝑚3/s. The initial
volume is changed with ±50%. The results are shown in figure D.10.

As can be seen in the figure at 𝑡 =1 s, when the load is initiated, the changes in the volume
gives a change of phase for the motor velocity oscillations. Also the results show that the motor
acceleration is lower for a higher volume. The change in solving time is not large, but if a more
complex simulation was to be studied the change in volume could make the solving time lower
without changing the results too much.

Master Thesis Page LII



Chapter D. Additional Sensitivity Studies

0 1 2 3 4 5 6
−20

−10

0

10

20

Time [s]

A
ng

ul
ar

 r
at

e 
[r

ad
/s

]

 

 
Original, 7.075 s +50%, 7.331 −50%, 8.636

1 1.02 1.04 1.06
−0.5

0

0.5

Time [s]

A
ng

ul
ar

 r
at

e 
[r

ad
/s

]

3.25 3.3 3.35 3.4
8.5

9

9.5

10

10.5

Time [s]

Figure D.10: Sensitivity of initial volume in pressure compensator.

D.3 3/2-Directional Valve

D.3.1 Gain in 3/2-Directional Valve Dynamics

The gain in the 3/2-directional valve dynamics is given in table C.1 as 1 m/N. The gain is changed
with ±50% and the results are given in figure D.11.
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Figure D.11: Sensitivity of gain in the 3/2-directional valve dynamics.

As can be seen in the figure a decrease in the gain gives not large changes in the motor ve-
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locity response and solving time. However an increase gives less oscillation in the start of the
simulation, a faster response of the hydraulic motor and an increase in solving time.

D.3.2 Natural Frequency

The natural frequency in the 3/2-directional valve is set to 120 Hz. The natural frequency is
changed with ±50% and the results are given in figure D.12.
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Figure D.12: Sensitivity of natural frequency in the 3/2-directional valve dynamics.

As can be seen in the figure the difference in both motor velocity response and solving time is
not large.

D.3.3 Damping Ratio

The damping ratio, 𝜁, is in table C.1 given as 0.9 -. The damping ratio is changed with ±50%
and the results are given in figure D.13.

As can be seen from the figure the changes in the damping ratio do not affect the motor velocity
or the solving time of the simulation that much.

D.3.4 Flow Coefficient

The flow coefficient for the 3/2-directional valve is set to 0.8 - in table C.1. The flow coefficient
is changed with ±50% and the results are given in figure D.14.

A decrease in the flow coefficient seems to give a faster motor response and an increase seams
to have no effect. Also a decrease in the flow coefficient gives additional damping, but the effect
is moderate.
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Figure D.13: Sensitivity of damping ratio, 𝜁, in the 3/2-directional valve dynamics.
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Figure D.14: Sensitivity of the flow coefficient in the 3/2-directional valve.

D.3.5 Initial Volume in 3/2-Directional Valve

The initial volume in the 3/2-directional valve is in table C.1 given as 0.001 𝑚3. The initial
volume is changed with ±50% and the results are given in figure D.15.

As shown in the figure the changes in the hydraulic motor response are moderate but a decrease
in initial volume gives an increase in solving time in the simulation. This means that the initial
volume should not be decreased.
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Figure D.15: Sensitivity of initial volume in the 3/2-directional valve dynamics.

D.4 Hydraulic Motor

D.4.1 Internal Leakage in Hydraulic Motor

The conductance of linear resistance is given as 4.8e-9 𝑚3/Pas in table C.1. The conductance is
changed with ±50% and the results are given in figure D.16.
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Figure D.16: Sensitivity of internal leakage in the hydraulic motor.

The results show that increased conductance gives more damping, but the maximal motor
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velocity is lowered. A decrease in conductance gives an increase in maximal motor velocity but
also more oscillations. The figure also shows that the increase or decrease in maximal motor
velocity is not linear with the conductance.

D.4.2 Static Friction in Hydraulic Motor

The static friction in the hydraulic motor is given as 105 Nms/rad in table C.1. The static friction
is changed with ±50% and the results are given in figure D.17.
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Figure D.17: Sensitivity of static friction for the hydraulic motor.

As expected the maximal motor velocity goes down by increasing the static friction, but the
motor response seems to be littlebit faster. By decreasing the static friction the maximal motor
velocity goes up, but the motor response seems to be slower. The difference between the increase
and decrease shows that linear changes in the static friction gives non-linear changes in the
maximal motor velocity, as it was for the internal motor leakage in the hydraulic motor, see
figure D.16.

D.4.3 Friction Slope in Hydraulic Motor

The slope in the friction function for the hydraulic motor is set to 10 - in table C.1. The slope
is changed with ±50% and the results are given in figure D.18.

Both a decrease and an increase in the slope in the friction function for the hydraulic motor
do not affect the motor response. It also reduces the solving time for the simulation. However
it does not give any additional damping and the solving time is only reduced by almost 0.25 s.
The solving time in the simulations vary even though all parameters are the same, so it is not
certain that there is a reduction in solving time at all.
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Figure D.18: Sensitivity of slope in friction function for the hydraulic motor.

D.5 Outer System

D.5.1 Loss Factor in Pressure Line

The loss factor in the pressure line connecting the pump to the two main valves has a loss factor
given as 8 - in table C.1. The loss factor is changed with ±50% and the results are given in
figure D.19.
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Figure D.19: Sensitivity of loss factor in pressure line.
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The results show the changes in the loss factor do not affect the motor response significantly
and can be neglected.

D.5.2 Initial Volume in Volume P

The initial volume in volume P is given as 0.343 𝑚3 in table C.1. The initial volume is changed
with ±50% and the results are given in figure D.20.
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Figure D.20: Sensitivity of initial volume in volume P.

As the figure shows an increase in the initial volume gives less damping and a decrease in the
initial volume gives more damping to the motor velocity.

D.6 3/3-Directional Valve

D.6.1 Control Slide Inertia

The control slide inertia is given as 35 kg in table C.1. The inertia is changed with ±50% and
the results are given in figure D.21.

The results show that the motor response is not significantly affected by the changes in the
inertia. This is due to the position controller that manages to track the reference signal even
though the inertia is changed.

D.6.2 Initial Volume, Volume 1 and 2

The volumes 1 and 2 in the main valves have initial volumes of 1e-5 𝑚3. The initial volumes are
changed with ±50% and the results are given in figure D.22.

As the results show the changes in the initial volumes 1 and 2 do not affect the motor response
significantly.
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Figure D.21: Sensitivity of inertia in control slide, main valves.
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Figure D.22: Sensitivity of initial volumes 1 and 2 in control slide, main valves.

D.6.3 Natural Frequency in 4/3-Directional Valve Dynamics

The natural frequency in the pilot valve is set to 120 Hz in table C.1. The natural frequency is
changed with ±50% and the results are given in figure D.23.

As the figure shows the motor response is not affected by the changes in natural frequency for the
pilot valve dynamics. However the solving time seems to increase when decreasing the natural
frequency.
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Figure D.23: Sensitivity of natural frequency in pilot valve dynamics.

D.6.4 Gain in 4/3-Directional Valve Dynamics

The gain in pilot valve dynamics is given in table C.1 as 1 m/N. The gain is changed with ±50%
and the results are given in figure D.24.
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Figure D.24: Sensitivity of gain in the pilot valve dynamics.

As can be seen in the figure a decrease in the gain gives not large changes in the motor velocity
response and solving time. However an increase gives a faster response of the hydraulic motor,
especially when the motor speed is decreasing and negative.
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D.6.5 Damping Ratio in 4/3-Directional Valve Dynamics

The damping ratio, 𝜁, is in table C.1 given as 0.9 -. The damping ratio is changed with ±50%
and the results are given in figure D.25.
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Figure D.25: Sensitivity of damping ratio, 𝜁, in the pilot valve dynamics.

As can be seen from the figure the changes in the damping ratio do not affect the motor re-
sponse or the solving time in the simulation significantly, but more than the changes in natural
frequency, see figure D.23.
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E.1 Adaptive Controller

E.1.1 Adaptive Controller Gains
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Figure E.1: Adaptive gains for controller given in section 4.1.2. 𝑇𝑚𝑠 =20000 Nm, control slide
references as given in figure 4.7.

E.1.2 Random Reference Response

In this simulation a random reference signal with a maximal frequency of 𝑓 =5 Hz and an
amplitude of 0.04 is applied to test the adaptive controller. Only one main valve is used in this
simulation, connected to constant pressures. Figure E.2 shows the slide position, the reference
signal and the output from the velocity limitation.

As can be seen in the figure the slide position follows the reference signal with high accuracy,
except when the absolute value of the slope of the reference signal gets too large. Then the
velocity limitation generates a new reference which is fed to the controller. This is shown in the
two last magnified subplots. The adaptive gains are shown in figure E.3, the controller output
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Figure E.2: Slide position, reference signal and velocity limitation.

before saturation and its components are shown in figure E.4 and the volume states are shown
in figure E.5.
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Figure E.3: Adaptive gains.
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Figure E.4: Controller output and its components before saturation.
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Figure E.5: Volume states.
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E.2 Aditional Plots from 6.2

In this section some additional plots from section 6.2 are given.

E.2.1 Control Slide Positions and References, 6.2.1
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Figure E.6: Control slide positions and references.

E.2.2 Differential Pressure and Variable Bulk Modulus, 6.2.1
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Figure E.7: Differential pressure across the motor, Δ𝑝, and variable bulk modulus.
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E.2.3 Hydraulic Motor Velocity, 6.2.2
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Figure E.8: Hydraulic Motor Velocity.

E.2.4 Control Slide Positions and References, 6.2.2

0 5 10 15 20 25 30
−0.02

−0.01

0

0.01

0.02

Time [s]

P
os

iti
on

 [m
]

 

 
Ref

A
Ref

B
x

A
x

B

12.2 12.4 12.6 12.8 13
4

5

6

7

8
x 10

−3

Time [s]

P
os

iti
on

 [m
]

10.6 10.7 10.8 10.9
−2

−1

0

1

2
x 10

−3

Time [s]

Figure E.9: Control slide positions and references.

E.2.5 Differential Pressure and Variable Bulk Modulus, 6.2.2
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Figure E.10: Differential pressure across the motor, Δ𝑝, and variable bulk modulus.
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