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Abstract. A device and system for physically guiding a manipulator 

through its task is described. The device consists of inductive, 

contact-free positional deviation sensors, enabling the rcbot to 

track a motion marker. Factors limiting the tracking performance 

are the kinematics of the sensor device and the bartdwidth of the 

servo system. Means for improving it includes the use of optimal 

motion coordination and force and velocity feedback. This enables 

real-time manual training of high-performance manipUlators. Multi­

dimensional, non-linear measurement equations for the sensor sys­

tem are developed, and their inversion described. 
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PREFACE 

This work presents a new device and method for direct teaching of 

robots such that the programmer is not hampered by the friction 

and the dynamics of the manipulator. The idea of using a short­

range contact-free positional deviation sensor for this purpose 

was suggested by Prof. J.G. Balchen in 1984 (ref.). The same year, 

the author became engaged in outlining a system, and predicting 

its performance. Results from this work are mainly retained in 

Sections 4 and 5 below. Since then, a prototype deviation sensor 

has been designed and built, and the principle has been proven 

possible by several experiments. The compiling of this text has 

been going on since September 1987, starting with a brief 

presentation at the NATO Advanced Research Workshop "Sensor 

Devices and Systems for Robotics" in October the same year. 

Objective. The main purpose of this dissertation is to outline a 

system for direct teaching, with special emphasis on the tracking 

controller. Thus, the complementary (learning and repeating) role 

of the robot is given less attention. The design of the positio­

nal deviation sensor is described in detail, however complying to 

the above objective, no formal discussion is made concerning the 

accuracy needed to obtain sufficiently exact motion recordings. 

Arrangement. The present text falls into three parts which can be 

denoted 

I. Extended introduction, Sections 1 through 5. 

II. Advanced control, Sections 6 through 8. 

III. Physics of the sensor, Sections 9 and 10. 

In order to make the first part a self-contained system descrip­

tion, Sections 3 and 5 are included which, logically, as well 

belongs to Parts III and II respectively. The complete descrip­

tion of the control problem is thus found in Sections 5 through 8 

whereas the positional deviation sensor is described in Sections 

3 ,  9 and 10. These parts can be read separately if so desired. 



iv 

Acknowledgements. I wish to thank Trallfa Robot A.S. for support­

ing this project, Dir. Dag Kjosavik and Jan Inge Tj�lsen in 

special for their interest and assistance. I also appreciate the 

advice and support given to me by my supervisor Prof. J.G. Balchen 

and the technical assistance given by Stefano Bertelli �nd Arvid 

Lervold, as well as the careful typing of this manuscript by Mrs. 

Eva Amdahl. 

Trondheim, july 1988 

Fredrik Dessen 



V 

CONTENTS 

1. ROBOT PROGRAMMING METHODS................................ 1 

1.1 Motion specification................................ 1 

1.2 Off-line programming................................ 5 

1. 3 Paint spraying robots............................... 6 

2. OUTLINE OF THE SYSTEM ................................... . 

2.1 

2.2 

2. 3 

Homogeneous transformations ........................ . 

Tool tracking and motion recording ................. . 

Motion playback .................................... . 

3 .  KINEMATIC DESCRIPTION OF THE SENSOR ..................... . 

3 .  1 Sensor design ...................................... . 

3 .2 Internal kinematics . . . . . . . . . . . .  r • • • • · · · · · · · · · · · · · · · ·  

9 

9 

14 

16 

17 

17 

20 

4. TRAINING CONFIGURATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

4.1 Discussion of two configurations.................... 25 

4.2 Kinematic structures............... ................. 31 

4. 3 Paint spraying...................................... 34 

5. TRACKING SYSTEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9 

5.1 Serve coordination.................................. . 39 

5. 2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

5. 3 First experiments................................... 47 

5.4 Force sensing handles............................... 50 



vi 

6. 

7. 

8. 

9. 

OPTIMAL COORDINATION . • . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . .  

6.1 

6.2 

6.3 

Linear quadratic 

stability ...... . 

Example ........ . 

optimization. 

DYNAMIC MODEL OF THE MANIPULATOR ........................ . 

7.1 

7.2 

7.3 

Equations of 

Actuators • • . .  

Measurements. 

motion. 

INFIMAL CONTROL • . . • . • • . . • . • . • • . . . . . . . . . . • . . . • . . • • . . . • . . • .  

8.1 

8.2 

8.3 

A first approach .. 

Internal feedback. 

Experiments ...... . 

SENSOR MODEL • • • . • • • • . • . . . . • . . • . • . • • . . • . • • • • • . • . . • . . . . . . • •  

9.1 

9.2 

9.3 

9.4 

Magnetic fields .................................... . 

Two parallel cylinders ......................... . 

Radial measurments . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . .  

Axial measurements. 

10. INVERSE SENSOR MODEL .................................... . 

10.1 

10.2 

Separate 

Coupling 

subsystems. 

terms ..... . 

11. CONCLUSION AND RECOMMENDATIONS .......................... . 

REFERENCES • • . • • • • • • • . . . . . • . • . • • • . • • • • • • . . . • . . . . • • . • • . • . . . • . • .  

53 

53 

57 

60 

69 

69 

76 

79 

83 

83 

87 

90 

93 

93 

94 

98 

1 03 

107 

107 

109 

11 7 

1 21 



vii 

Al. KINEMATICS OF THE TR 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 25 

Al.l The manipulator Jacobian.......................... 125 

A1.2 Sensor coordinates................................ 130 

Al . 3 Constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 2 

A2. INERTIA AND STIFFNESS COEFFICIENTS...................... 133 

A 2 . 1 Link 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 3 

A2. 2 Constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 7 

A2.3 Inertia matrix.................................... 138 

A3. HYDRAULIC ACTUATOR...................................... 143 

A3.1 Translational actuator . . . . . . . . . . . . . . . . . . . •  � · · · · · · ·  143 

A3. 2 Control valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 5 

A3. 3 Constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

A4. EXPERIMENTAL CONTROL SYSTEM............................. 151 

A4. 1 System design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 51 

A4. 2 Some results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 54 

A5. EXPERIMENTAL DEVIATION SENSOR. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 1  

A5.1 

A5. 2 

A5.3 

A5.4 

Mechanical outline ............................... . 

Electrical characteristics ....................... . 

Calibrations ..................................... . 

Appolonius· theorem .............................. . 

1 6 1  

16 3 

16 4 

177 





1. ROBOT PROGRAMMING METHODS 

In the years following the introduction of the industrial robot, 

nearly all programming was done by direct training. This is a 

process where the robot is physically led through its task, and 

a sequence of points is recorded for playback at a later time. An 

alternative to direct training is numerical motion specifica­

tion, which may be quite cumbersome unless combined with some 

other method. In this section, refinements of these basic methods 

will be discussed. A new device, which is the topic of this 

dissertation, will also be introduced. At the end of the section, 

some notes are made on the programming of paint spraying robots, 

which will be of major interest throughout this work. 

1.1. Motion specification 

The methods of direct training are still popular. This is due to 

the natural feedback given to the programmer when watching the 

manipulator move through space. The robot manipulator may be led 

remotely, by means of a teach-pendant. This is often associated 

with point-to-point control systems (Engelberger, 1980), in which 

the task is described by indicating to the system a relatively 

short sequence of positions. This combination was introduced 

together with the first Unimate systems. The presence of 

feedback is most clear in the case of manual lead-through, where 

the operator not only receives close up visual feedback, but also 

wields direct control. Power to the motor system is usually shut 

off and the programmer moves the manipulator with his hands. The 

method may be used for the programming of point-to-point control 

systems, but is more frequently used in continuous path systems. 

Here, the motion of the manipulator during programming is recorded 

automatically at a fixed frequency in order to create an almost 

continuous reference trajectory. During playback the 
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manipulator echoes the motion of the programmer, who often is a 

skilled craftsman rather than a trained programmer. The success of 

this approach depends on careful design of the manipulator. The 

arm should be lightweight, preferably gravitational effects 

should be compensated, and joint friction during training must be 

low. These considerations need not be taken to implement remote 

control by teach-pendant. However, even when considering the 

advantage of visual feedback, this method may be quite cumbersome 

in practice. After the introduction of real-time coordinate 

conversion and multi-dimensional joy-stick controls, the process 

has become somewhat easier. It has also become possible to program 

forces. Nevertheless, the information lag due to the dynamics of 

the human system of vision and brain makes a teach pendant 

inconvenient for trajectory recording in real time (Hirzinger, 

1982; 1983). 

The alternative to direct training seems to be the use of computer 

language. This may include program flow control, manipulator move 

statements and a number of additional commands, such as gripper 

control. In the most extreme case, the motion coordinates are 

specified numerically by the programmer. This is an environment 

in which computer scientists and specialists in numerical control 

may feel comfortable. On the other hand; a craftsman, who may be 

an expert on the production process itself, may not be able to 

describe a task in this way. In addition, the natural feedback 

which led to the success of direct training disappears. Or at 

best is available in batches. 

Recent robot programming languages are high-level and block­

structured in the same way as general computer languages. Some 

also have real-time capabilities. Usually means for manipulating 

coordinate systems are provided. In some cases, even contact 

forces and compliance may be programmed (Blume, 1986; Hayward, 

1986). It is said that languages develop from being arm oriented 

into being object oriented, which means that object motion rather 

than arm motion is specified in the program. Considering the 

complexity and the abstract structures of such a language, it 

should be thought of as a design tool rather than the means for 
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application oriented programming. In fact, once installed in an 

industrial robot system, this tool may be used to structure and 

simplify the development of highly specialized user interfaces. As 

an example, the development of a system for direct programming may 

thus be carried out in no time. A well designed language may also 

be the base for more advanced applications, such as task oriented 

systems with the capability of problem solving and interfaces to 

factory management systems and CAD databases (Fu, 1987; Blume, 

1986; Alexander, 1986; Parent, 1984). 

For an operator who is properly trained, the use of a fairly 

general programming language will increase the versatility of the 

industrial robot. However, it is often desirable to indicate 

positions by means of direct programming. These features are often 

combined. Then, the motion is usually specified on a point to 

point basis. In principle, once a set of positions is indicated, 

it is possible to simply edit motion using the stored positional 

data. This may be convenient, for instance when editing is done 

on a standard computer terminal, as in the Robtalk/TSM-system 

(Trallfa, 1986). In other systems, such as ASEA stage 2 IRb­

system, point and flow programming is usually done concurrently. 

This is convenient because of the handy teach-unit, which includes 

a menu-based terminal as well as a joy-stick for remote control 

(ASEA, 1984). 

Compared to the use of programming languages and remote control by 

joy-stick, the main advantage of manual lead-through programming 

is the close interaction between the robot and the operator. A 

disadvantage is that physical force must be applied, and that 

special care must be taken in the design of the manipulator. 

Several approaches have recently been made to include the 

possibility of manual control in arbitrary industrial robot 

systems. Usually, this has been done by mounting a force-sensing 

handle onto, or near, the manipulator end effector. The force 

applied is then used to indicate the desired motion of the 

manipulator. In principle, the method is easy to apply. Its main 

advantages over remote control by joy-stick are that the operator 

interacts directly with the manipulator, and that there is no 
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confusion as to how the manipulator reacts when the handle is 

operated. In addition to reducing the time needed for training, 

this may improve personnel safety. This statement may seem 

paradoxical, but is based on the fact that the operator 

frequently works within the range of the manipulator even when 

using a remote control device. 

Unfortunately, the close interaction between the operator and the 

manipulator leads to a stability problem (Hirzinger, 1982) which 

is due to the stiffness of the force sensor. Because of this, the 

bandwidth of this assisted manual control system may be low, and 

it may still be necessary to apply considerable force in order to 

make the manipulator move. The ideal approach to manual lead­

through programming seems to be a system where the operator can 

hold the tool freely in his own hands, and complete the task 

without being hampered by the manipulator. This is possible when 

the tool motion is recorded by means of a remote positional 

sensing device. One such device is a lightweight, low friction 

dummy arm equipped with joint displacement sensors. A second 

possibility is the use of sensors based on optical, magnetic, 

soundwave or electromagnetic wave measurements (Ishii, 1987; 

Foley, 1987; Parent, 1984). Using this method, there will be a 

good deal of freedom with respect to the manipulator design. 

Positional sensing devices may also be used for remote control. In 

this case the manipulator may be set up to echo the detected 

motion. Since visual feedback is available, the sensor does not 

need to be very accurate. If a force-servoed dummy arm is used, 

force feedback may be available as well (Vertut, 1985). 

This dissertation presents a new system for contact-free 

positional sensing of a tool or teach-handle moved freely by the 

operator (Balchen, 1984). It consists of a small-range positional 

deviation sensor mounted at the tip of the manipulator. If used 

with a teach-handle, the device resembles the force-sensing handle 

mentioned earlier, except that there is no contact between the 

programmer and the manipulator. Because of this, the stability 

conditions are altered. A second interesting application is to 

configure the unit to sense the motion of a tool, and make the 
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manipulator track it. This allows the operator to hold the tool 

freely in his own hands, and carry out the task the way he is used 

to. The robot senses the tool motion in close proximity, and 

records it in order to create a robot program. Compared to the 

use of long-range positional sensors, tool motion is now 

restricted by the dynamic capabilities of the manipulator. On the 

other hand, close-range sensing may be more accurate than sensing 

at a distance. These issues will be covered in later sections. 

1.2. Off-line programming 

Today, much research effort seems to be concentrated on robot 

programming languages. The off-line nature of this approach 

enables robot reprogramming without interrupting the production 

process. It also opens the way towards full automation of robot 

program generation. Training by means of remote positional 

sensors may also be considered to be off-line, in the sense that 

the manipulator is not involved during the training session. 

However, to avoid interrupting production, a copy of the 

environment must be available for the purpose of programming. This 

may in turn occupy valuable space. Similar abstract computer 

models may be used to check the execution of any robot program. 

In some cases they may even provide on-line feedback to the 

programmer, who can then perform direct training in a simulated 

environment (Foley, 1987). 

With off-line programming, no feedback from the real manipulator 

is available. Feedback may exist, but it is taken from a model of 

the real situation. Success consequently 

exactness of the model, or the existance of 

depends upon the 

means to correct 

modelling errors. Model correction may in turn require a sensory 

controlled robot. Future off-line programming systems seem 

promising, however their complexity and anticipated cost may 

discourage potential users. 
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1.3. Paint spraying robots 

The task of paint spraying requires robots which are capable of 

following complex trajectories accurately at high speed. Hence, a 

robot program for paint spraying will consist of a detailed 

sequence of recorded positions. Because of this, real-time manual 

lead-through programming is very popular for this application. 

The simplicity of the method makes it possible for a skilled 

paint-sprayer to describe the task by doing it himself. 

A well-known manufacturer of paint-spraying robots is the 

Norwegian company Trallfa Robot AS. It is believed that their 

success is the result of their main line of products being 

dedicated to this one application (Engelberger, 1980). Details of 

the manipulator designs, the programming systems and storage media 

reflect their dedication to paint-spraying applications. Their 

first commercial success, the TR-2000, consisted of a 

lightweight spring-balanced manipulator and a control system with 

a magnetic tape cartridge unit for program storage and playback. 

Program selection was done by inserting different cartridges. 

The sequential nature of the storage medium makes it difficult to 

include any kind of program flow control. However, this seems to 

be of little importance in paint spraying, as in many other 

applications. The sampling rate was fixed at 80 Hz both for 

program recording and playback, unless the system had to be 

synchronized to a conveyor or other. With such dedicated 

continuous path systems, the only means of programming was by 

manual lead through. This was still the case when point-to-point 

control was enabled by the introduction of a microprocessor based 

control unit. 

The standard unit today is the TR-4000, which is fully computer 

controlled. More means for program editing and structuring are 

available, however the programming system still reflects the 

nature of industrial paint-spraying. For example, means for 

branching and looping are restricted, and only available at the 

program selection level (Trallfa, 1982a; 1982b). At this level, 

the system design is focused on common situations, such as 
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batch production, conveyor systems, and the repetition of single 

programs. The way of managing this structure is very simple. Like 

its predecessors, the manipulator is lightweight and spring 

balanced. Low friction during manual lead-through programming 

is secured by the introduction of a split-piston arrangement for 

removing oil from the hydraulic actuators. 

From here, two trends seem to develop. One is to design cheaper 

robots which retain the basic concept of the Trallfa Robot 

systems. This is the case for the TR-400. The other approach is 

to design complete, Advanced Coating Systems, such as TRACS. In 

both cases it seems to be difficult to preserve the basic method 

of real-time manual lead-through programming. In the first case, 

because such considerations will increase the price of the 

monipulator. In the second case, complex manipulator designs make 

it more difficult to retain the prerequisites for this basic 

method. It is also evident that the demand for continuous path 

programming is decreasing among large-scale manufacturers, who 

usually prefer off-line or at least point-to-point programming 

systems. This turns paint spraying into a science rather than an 

art. The process becomes more predictable, and subsequent 

modification of points, speed and the flow of paint becomes 

simpler. 

On the other hand, it seems that many small or medium-scale 

manufacturers still may benefit from the use of manual lead­

through programming. In order to apply the method on arbitrary 

robot manipulators, assisted lead-through may be used. Such a 

system may be implemented using a positional deviation sensor. 

Problems will of course arise, due to the extreme performance 

requirements in paint spraying. However, when these are solved, a 

conceptually simple system will be provided for easy programming 

by means of manual lead-through. 





2. OUTLINE OF THE SYSTEM 

A motivation for employing the positional deviation sensor, which 

is the subject of this dissertation, will be given by considering 

the programming of a paint spraying robot. During the training 

session, the operator holds the spray-gun in his own hands, and 

carries out the task in his usual manner. At the same time, the 

robot manipulator follows the tool slavishly, without any contact. 

The situation is shown in Fig. 2.1. The manipulator is able to 

track the tool because of feedback from the positional deviation 

sensor. This consists of two complementary parts; one fixed to the 

tool, and the other to the wrist of the manipulator. The sensor 

measures the displacement between the two parts, Fig. 2.2. 

2.1. Homogeneous transformations 

The situation may be formalized in terms of homogeneous transfor­

mation matrices (Paul, 1981; Fu, 1987). A homogeneous transforma­

tion, H, as used to describe the position and orientation of some 

object, is a 4 by 4 matrix construction with the structure 

0 �] (2.1) R 
0 

Here R denotes a 3 by 3 orthonormal directional cosine matrix for 

the description of orientation, and 2 a 3-dimensional transla­

tional displacement vector. The elements of row 4 are usually 

fixed, their main function being to simplify the writing of 

transformation equations. In this context, a point in space may 

be described by a 4-dimensional vector 
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(2.2) 

where £ is 3-dimensional, and describes position in the usual 

sense. 

If vector Hv describes a position in space relative to a coordi­

nate frame described by H, the position may be described in base 

coordinates by 

(2.3) 

In the same way, if 
HT describes a coordinate frame in terms of H­

coordinates, it may be described in base coordinates by 

The inverse of a 

computed by 

-1 [0 H = 

where -1 H is the 

(2.4) 

homogeneous transformation matrix is easily 

RT T 

] -R £ (2.5) 0 0 1 

inverse of H in (2.1), and post superscript T 
denotes matrix transposition. This is due to the orthonormality 

of R. 

If matrix D describes a small positional and rotational deviation 

between two objects, such as the two complementary parts of the 

positional deviation sensor, it will be close to unity. In this 

case it may be approximated by a first order expansion about the 

unity matrix I. 
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1 -o 3 02 dl 

03 1 -o d2 
D I 1 (2.6) = + tJ. = 

-o 2 01 1 d3 
0 0 0 1 

Based on the elements of tJ., a 6-dimensional deviation vector may 

be constructed. 

(2.7) 

Here the first three elements express the translational and the 

others the rotational deviation. 

In Fig. 2.1 the position of the manipulator wrist relative to its 

base is described by the positional .transformation matrix T. In 

the same way, the position of the tool is described by C. Using 

the notation of (2.4), T and C may be related by 

(2.8) 

T 
Here C expresses tool 

2.2 matrix Tc is split 

position relative to the wrist. In Fig. 

into two fixed transformations, M and F, 

and three alternative displacement matrices,
T

D, 
M

D or en. Here M 

defines the sensor frame, F is a tool description matrix and 
M

D 

expresses the tool displacement as seen from the sensor frame. 
T

D and 
C

D are related to 
M

D by 

T
D = M M

D M-l (2.9) 

(2.10) 

Here the relationship between tJ.-matrices (2.6) is included as 

well. 

Using the displacement matrix 
M

D, (2.8) may be expressed in more 

detail as 
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C = T M M
D F (2.11) 

Since T may be computed when knowing the position of the manipula-
H tor, and D is given by the sensor output, tool position relative 

to the base may be found at any time using (2.11). The computed 

tool motion is recorded in order to create a robot program. 

2.2. Tool tracking and motion recording 

Because of the limited 

manipulator must track 

range of the deviation sensor, the 

the tool closely in order to keep 
M

D as 

close to unity as possible. Hence, an approximate tracking error 
M M 

may be expressed by � (2.6) or Q (2.7). Appropriate action to 

make the manipulator follow the tool is computed by a coordinating 

controller. The tracking control system is outlined in Fig. 2.3, 
together with the motion recording system. Here 

M
d is given as 

input to the controller, u is the control action, and g expresses 

the manipulator motion in terms of a set of generalized 

coordinates. For the purpose of motion recording, matrices 
M

D and 

T are computed. 

obtained by (2.11) 
controllers and 

in later sections. 

From this, a sequence of tool positions C is 

and stored in memory. The design of tracking 

expressions for computing 
M

D and 
M

d are treated 

The two uses which are made of the deviation sensor output, have 

different requirements for accuracy and computational speed. For 

tool tracking, fresh control error values must be present at a 

sufficiently high rate. Due to the feedback, there is no need for 

precise values. This implies that approximations may be made in 

order to reduce the time needed for computations. In later 

sections, it appears that the computations of manipulator 

kinematics, sensor kinematics and the measurement functions may be 

simplified for this purpose. Motion recording however, requires 
M 

that D and T are computed as exactly as possible. On the other 

hand, since there are no inherent real-time requirements, the work 

may either be done on a separate computer, or later when the 
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Manipulator 
� kinematics 

Md q 0 Coordinating u Manipulator Sensor .. controller . dynamics 
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c =™
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DF 
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Figure 2.3. Tool tracking and motion recording. The tool motion c0 is 
reproduced and stored in memory. 

M F B 
• � • 

T' c 
T. = B 1 C F-1 

M-1 To Dynamic Memory 0 
0 modification 

Td Error Coordinating u Manipulator q .. _.. computation . controller . dynamics 
l 

T Computed 
� kinematics 

Figure 2.4. Motion playback. 
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training session is over. The last alternative is not 

recommended, since 

time after training. 

2.3. Motion playback 

it makes the robot system inoperable for some 

Figure 2.4 shows the structure of a motion playback system. In 

essence the task of the manipulator is to make a tool repeat the 

motion described by C,  which is stored in memory. However, this 

motion sequence may be modified in several ways before it is used 

as a reference trajectory. In the simplest case, the same 

manipulator and tool are used for both the programming and 

playback. The deviation sensor may have been replaced by a dummy 

with the same kinematic description, M. 

In general however, M and F may have been altered, and it may be 

desirable to refer the motion to a new coordinate system B. These 

modifications enter as shown in the figure. In addition, a dynamic 

modification block may be inserted in front of the positional 

controller. This may for instance be a filter which represents 

the inverse of the manipulator dynamics. As the present work is 

concerned with the design of the tool tracking system and the 

positional deviation sensor, the playback system is only 

considered in passing. 



3. KINEMATIC DESCRIPTION OF THE SENSOR 

So far, very little has been said about the displacement sensor 
itself. It has been pointed out that it consists of two parts, 
and it may have a limited range. In this section, the 
measurement principle and the design of the sensor are outlined. 
Based on this, the internal kinematics of the sensor is described. 

3.1. Sensor design 

The sensor consists of two cylindrical parts made of ferromagnetic 
material, Fig. 3.1. The two cylinders are magnetized in opposite 
axial directions by means 
hollow part. This creates 
which varies according 
the magnetic field at 
monitored. 

of a solenoid mounted inside the larger, 
a radial magnetic field between them 
to their relative position. By measuring 
selected points, relative motion is 

A section of the sensor is shown in Fig. 3.2. Here, 4 pick-up 
solenoids (M2, M4, M6 and M8) are used to measure translation 
along the p2 and p4-axes (Fig. 3.3). From this, translation along 
the My-axis and rotation about the Mx-axis (Fig. 3.1) may be 
computed. Similarly, 4 solenoids are used to monitor the p1 and 
p3-motion. Axial translation, p5, is measured by M9 and M10. It 
is seen that displacements p1 through p5 each are measured by two 
opposite solenoids. The relative difference may be computed for 
each pair. The results form a vector of 
y5, where y. largely corresponds to p .. 

� � 

measurements, y1 through 
A detailed mathematical 

description of these measurements is given in Section 9. Means 

for measuring p6-motion are not shown in the figures. Depending 
on the application, this will either be omitted or consist of a 
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4-solenoid, resolver-like configuration. 

Given the 6-dimensional internal deviation vector 

(3.1) 

the displacement transformation MD, and the deviation vector Md of 
Section 2 can be computed. This is the subject of the next 
section. 

3.2. Internal kinematics 

Vector Md will be needed for tracking purposes. As seen from 
(2.6) and (2.7), this vector may be extracted from a first order 

M M expansion of D. However, � is more easily found directly. 
In this way, a further understanding of the internal kinematics of 
the sensor will be gained before starting the development of the 
of the exact transformation MD. 

First, imagine that the two parts of the sensor in Fig. 3.1 are 
centered, so that their coordinate frames coincide. Then 
MD = I, M�= 0 and £ = Q, (3.1). From this position, the tool 
marker may be given a translational displacement along the Mx, M

Y 
or Mz-axis, or it may be rotated about one of the same axes. By 
observing the corresponding change in £, the following relations 
appear 

dl 
1 1 d2 

1 1 d3 
= 

2 pl + 2 p3 
= 

2 p2 + 

2 p4 = Ps 

01 
1 1 . 02 

1 1 . 03 = 
b p4 - b p2 , = 

b pl - b p3 , = p6 
(3.2) 

If desired, this may be given in matrix notation. 

Md = J pM£ (3.3) 

M The development of D as a function of £ will be carried out in 
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steps. First, an intermediate homogeneous transformation B1 will 
be found, which is a function of p1 through p4 only. This will be 

M equal to D as long as p5 and p6 are zero: 

<= > 

Then a second transformation, a2, will be found such that 

<= > = 0 

and 

(3.4) 

M These two steps may be divided into substeps, so that D eventu-
ally may be obtained by applying a sequence of rotations and 
translations in the form of homogeneous transformations. 

First, radial displacement is expressed, i.e. translation along 
M M the x and y-axes of Fig. 3.1. This motion is described by the 

transformation 

dl 
I d2 

sl = (3.5) 
0 

OT 1 

where d1 and d2 are defined by (3.2). The use of d rather than 2 
simplifies the writing. 

Next, the rotation about the Mx and My-axes is described. This 

will be done by means of a single rotation about an imaginary 
vector �, which may be obtained from the rotational quantities o1 
and o2 of d (3.2). 

(3.6) 
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This vector is normalized, and it is seen that the vector is not 
defined if 61 and 62 are both zero. In this case, there is no 
radial rotation, and the complete step may be omitted. 

If � is defined, a transformation matrix describing a rotation 
about this vector may be found (Paul, 1981). 

2 
k1verse+cose k1k2verse k2sine 

k1k2verse 
2 

-k1sine 0 k2verse+cose 
s2 = (3.7) 

-k2sine k1sine case 

OT 1 

where e is the angle of rotation, and verse = 1-cose. As well as 
vector �' trigonometric functions of e may be expressed in terms 
of 61 and 62: 

sin e (3.8) 

cos e (3.9) 

1 1 
vers e = [(1+6�+6�)2 -1](1+6�+6�)

-
2 (3.10) 

s2 is obtained by inserting this, and (3.6), into (3.7). This 
completes the development of a1 (3.4), which may be computed by 

(3.11) 

The two last transformations express the translation along and 
the rotation about the z-axis of the intermediate coordinate 
system MB1. The translational transformation matrix is given by 



0 
I 0 

d3 
1 

and the rotational matrix by 

coso3 -sino3 
sino3 coso3 

s4 = 0 0 

OT 
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(3.12) 

0 
0 0 
1 (3.13) 

1 

Now, the second intermediate transformation may be obtained by 

(3.14) 

and the complete positional deviation transformation by 

(3.15) 

Obviously, the exact computation of MD is complicated. However, 
as pointed out in Section 2.2, it need not be done in real time as 
long as Md is sufficiently accurate for tool tracking. 





4. TRAINING CONFIGURATIONS 

An example of the use of the positional deviation sensor was given 

in Section 2. As mentioned, the operator holds the tool and the 

robot follows in order to learn the task. However, a second 

configuration is possible, where the tool is fixed to the manipu­

lator in its normal manner. In this case, the operator leads the 

manipulator by means of a handle, as outlined in Fig. 4.1. This 

approach closely resembles the use of a force sensing handle, as 

described in Section 1, except that in the present case there is 

no mechanical contact between the handle and the manipulator. 

Characteristics of the two approaches will be discussed in 

Section 4.1. The other item to be discussed, concerns the 

kinematic structure of the sensor. This may be compared to the 

structure of the robot task, the tool or the manipulator at hand. 

A general discussion of this is presented in Section 4.2. Some 

special remarks on the training of paint spraying robots are given 

in Section 4.3. 

4.1. Discussion of two configurations 

The first approach, where the tool is held by the operator, can be 

considered as a special case of programming by means of remote 

positional sensing. By mounting the sensor to the manipulator, 

its short range is increased to include the manipulator's work­

space. Since a short-range remote positional sensor clearly picks 

up less disturbance than a full-range device, its use may lead to 

a more accurate recording of the tool motion. However, by (2.11) 

this also depends on the accuracy of the manipulator at hand. In 

any case, the presence of the manipulator gives the operator more 

feedback. It guarantees that the tool stays within the feasible 

workspace, and that obstacles are avoided. The 

between this approach and the use of remote 

similarities 

sensing are 
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illustrated in Fig. 4.2. The second approach, where the tool is 

fixed to the manipulator, clearly resembles the use of a force 

sensing handle. It is more correct, however, to consider it as a 

''close up" case of remote control lead-through programming. This 

may be realized by comparing Fig. 4.3 to Fig. 4.1. The close 

distance to the manipulator enables the operator to do more 

precise programming. 

The differences between programming by hand-operated tool and 

assisted tool operation are mainly due to the different types of 

interaction present. Using the first approach, the operator 

wields direct control of the tool. This enables the programming 

of swift, complex motion. Furthermore, if physical contact is 

made between the tool and the environment, this is felt by the 

operator, and appropriate action may be taken. By assisted tool 

operation, where the tool is fixed to the manipulator, any desired 

compliant action must be programmed in advance and carried out by 

the manipulator. However, the missing contact between the tool 

and the operator is an advantage whenever contact forces or gravi­

tational forces will wear out the operator. During the programming 

of point-to-point motion, it may also be convenient to be able to 

lock the tool in a certain position. This may only be done when 

the tool is fixed to the manipulator. In this case, even a mode 

for fine motion may be included. This may enhance a point-to­

point programming system considerably, but does not rule out the 

use of a hand-operated tool for this application. The swift and 

precise motion which becomes available in this case may speed up 

the programming of complex motion, which usually is described by a 

large sequence of closely spaced positions. 

The tracking and recording system for the case of a hand-operated 

tool is outlined in Section 2.2, Fig. 2.3, where the need for 

sensor accuracy is discussed as well. Assisted tool operation 

requires a somewhat different recording system, since the true 

tool motion in this case is given by the homogeneous 

transformation equation 

C = TE (4.1) 
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where transformation E carries the tool description. Obviously, 

when comparing (4.1) to (2.8), 

except that in the present case, E (and 
T

C) is fixed. Because of 

this, the recorded program does not depend on the positional 

deviation sensor at all. The modified recording system is shown 

in Fig. 4.4. Since in this case the only purpose of the sensor is 

to guide the manipulator, it does not need to be as accurate as 

when using a hand-operated tool. Hence, less computational effort 

will be necessary. 

4.2. Kinematic structures 

Some of the kinematic properties of the sensor are summed up by 

describing the device as cylindrical. Referring to Figs. 3.1 and 

3.3, a more rigid formulation of properties may be given. The 

radial deviation, represented by the intermediate deviation 

quantities p
1 

through p
4

, is firmly restricted such that 

i=1 or 3 (4.3) 

where a
1 

denotes the inner radius of the outer cylinder and a
2 

the 

radius of the marker. In theory, axial translation and rotation, 

p5 and p6 are not restricted. These properties define 

"cylindrical" in the present context. In practice, axial motion 

may also be restricted, however not as firmly as is the case for 

radial motion. Restrictions may be due to the finite length of 

the marker, or the layout of electrical cables. Even if free 

motion is allowed, the quality of the measurements must be taken 

into account. The measurement quantity y5, corresponding to p5, 

gradually saturates as IPsl increases. However, the quality is 

acceptable as long as 
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-b/2 < p5 < b/2 (4.4) 

where b is defined in Fig. 3.3. When it comes to the sixth 

measurement, three possibilities exist. Since there is no 

inherent restriction on p6, no corrective action by the 

manipulator needs to be taken in this direction. Then, y6 must be 

distinct for all possible values of p6. At least for 

(4.5) 

In some cases y6 is of sufficient quality only for small values of 

p6, such as 

(4.5b) 

In this case, corrective action must be taken in order to keep p6 
within these limits. The cylindrical shape makes the sensor 

suitable for some common 5 d.o.f. applications, such as arc 

welding, deburring and paint spraying. In such cases, the tool 

may have the same cylindrical nature as the deviation sensor 

{Figs. 2.1, 2.2, 4.1, 4.2 and 4.3). The sixth measurement will be 

unnecessary if the 5 d.o.f. manipulator is incapable of tracking 

the corresponding motion. A prerequisite for this simplified 

configuration is that the symmetry axes of the tool and the sensor 

coincide when using a hand-operated tool. Assisted tool operation 

requires that the axes are at least parallel. 

A fully equipped sensor may be used for 6 d.o.f. applications, 

either using the hand-operated tool approach or assisted tool 

motion. In addition, a few hybrid approaches may occasionally be 

useful. These take advantage of the cylindrical shape of the 

sensor. In Fig. 4.5, the sensor replaces the sixth servo of the 

manipulator. Here, the first 5 serves are programmed by a 

positional deviation sensor in the usual sense, whereas the 6th 

servo is in principle programmed by a remote positional sensor. 

The configuration in Fig. 4.6 is a special case of programming by 

remote control. The sensor is still fixed to link no. 5 of the 
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manipulator, and the first 5 serves track the teach-handle marker. 

The 6th serve reflects p6- motion, usually 1 to 1. 

Special problems arise during the teaching of manipulators with 

redundant degrees of freedom. This may in some cases be solved by 

adding some automatic accomodation scheme using a manipulability 

index (Yoshikawa, 1985), perhaps combined with an obstacle 

avoidance scheme (Khatib, 1985). In any case, some means for 

manual accomodation, such as an additional teach pendant, should 

be provided. A simple case of redundancy is presented below. 

4.3. Paint spraying 

For many paint spraying applications, a 5 d.o.f. manipulator will 

be sufficiently general. This is due to the usual rotational 

symmetry of the spray gun and the fan of paint, which gives it a 

5 d.o.f. nature. Since the y6 -measurement may be omitted in this 

case, p6 -motion has no direct influence on the recorded program. 

The motion may thus simply be used to increase the comfort of the 

programmer. 

Even if paint spraying often is a 5 d.o.f. application, one may 

use manipulators with more degrees of freedom in order to access 

otherwise unreachable areas of the object to be painted. It is 

quite common to use standard 6 d.o.f. manipulators with the spray 

gun mounted so that the extra orientational serve simply extends 

the range of the other wrist serves, Fig. 4.7. The same configu­

ration also gives the system some capability for obstacle avoi­

dance. Such systems may be trained either by using a fully 

equipped sensor, or by a 5-measurements sensor with an additional 

1 d.o.f. teach pendant. 

Paint spraying is not always a 5 d.o.f. task. In some cases the 

fan is given a noncircular shape, and an extra orientational serve 

is needed to rotate its impact image, Fig. 4.8. Including this, 

three possible uses of additional d.o.f. have been mentioned: 
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Figure 4.7. Extended wrist motion. 6th serve used to bend the tool backwards. 

Figure 4.8. Noncircular fan. 
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- programmer's accomodation 

- extended wrist motion 

- fan orientation 

If all uses are desired, an 8 d.o.f. system will result which 

cannot be controlled only by the motion of the marker. Fig. 4.9 

indicates a solution to the problem which requires the support of 

the operator's second hand. This is by no means the only solution, 

considering the number of communication channels wielded by a 

human being. Research on interfacing these to computers seems to 

be growing (Foley, 1987; Bolt, 1984), and some of the results may 

be applicable in the present case. 
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5. TRACKING SYSTEM 

The success of the complete training system relies on the presence 

of a control system which makes the manipulator follow the tool 

closely at all times. Especially, real-time training of paint­

spraying robots requires outstanding velocity and accelerational 

capabilities. The purpose of this section is to outline a coordi­

nating control structure and to point out factors that may limit 

its performance. 

5.1. Servo coordination 

Very often, playback control systems work in servo coordinates. 

This means that any motion reference is converted into a vector of 

servo references. A corresponding vector of control errors is 

used to compute the required action. With the previously 

described positional deviation sensor, no serve reference is 

available. The reference may of course be computed by first find­

ing the corresponding homogeneous transformation matrix for the 

manipulator, 

(5.1) 

where TD is given by (2.9). The required servo motion may be 

obtained from T
0

. However, a computationally more efficient 

approach is to produce the control error in servo coordinates 

directly from the positional deviation sensor data. The relation­

ship may be represented by the first order approximation 

(5.2) 

where JeM is the Jacobian matrix a
M

�/a�. If it is nonsingular, 
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the control error may be computed by 

e = where (5.3) 

The existence of an inverse Jacobian depends on the manipulator 

configuration. Usually, JMe will not be computed explicitely. In­

stead 
M

d will go through a sequence of intermediate differential 

tranformations until finally e is obtained. The coordination 

algorithm which has been implemented on the TR 400 S manipulator 

is based on wrist partitioned kinematics (Hollerbach, 1983; 

Dessen, 1985). The scheme, which is described in Appendix Al, 

first transforms the error into wrist coordinates 

cf. (A1.22) 

Then, errors in the first three joints are found by considering 

the translational elements of 
T

d. Taking into account the change 

in orientation which is due to the computed change in the first 

three serves, errors in the wrist serves are found from the 

orientational elements of Td. Further notes on partitioning are 

found in Section 10.2. 

Once e is given, controllers working in joint coordinates may be 

applied. The usual approach at this level is to employ separate 

controllers for each serve, neglecting possible coupling between 

the actuators. In many cases, this assumption is reasonable 

though not completely true. In the present case, coupling will 

be neglected by assuming it to be taken care of by internal 

control. More precisely, internal speed control of N serves is 

assumed with a resulting transfer matrix 

which relates actual speed and speed reference by 

v. (s) = g . (s)v.
0 (s) 

� � � 

(5.4) 
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Seen from an added positional controller, the process transfer 

matrix is 

H (s) = i G (s) = diag[i g1
(s), ( 5. 5) 

The process is illustrated in Fig. 5.1. In practice H (s) will in­

clude several off-diagonal coupling terms. However, these are 

assumed to be small as coupling is taken care of by the speed con­

troller. 

The outlined structure may be considered as a hierarchical control 

system (Mesarovic, 1970; Findeisen, 1980) where the supremal 

(higher) level is a coordinating positional controller whereas the 

infimal (lower) level performs decoupling speed control. This 

partitioning Nill be retained throughout since it is believed to 

give a better understanding of the control problem at hand. 

5.2. Performance 

It is of interest to have a rough idea of the expected tracking 

performance. For this purpose, a simple 1 d.o.f. positional 

control system will be considered. Conforming to (5.5), the 

process transfer function is written 

h (s) = i g (s) ( 5. 6) 

The control system is shown in Fig. 5.2, and will be analyzed in 

terms of its open-loop transfer function, which is assumed to be 

stable. At first, a proportional controller with gain kp 
will be 

applied. The closed-loop system will be stable whenever 

k < aw = w 
p cp X 

where w is the -180° phase shift frequency for h (jw), and cp 

a =  l g (jw > 1 -1 
cp 

(5.7) 

(5.8) 
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Bode plots of the open-loop system are given in Fig. 5.3, and 

(5.7) follows from the Bode-Nyquist stability criterion. 

In order to obtain a few simple expressions describing perform­

ance, controllers are assumed to be designed using the Ziegler­

Nichols method where control parameters are based on the values of 

w and � . For a proportional (P) controller, the method yields 
X � 

w 
X 

The resulting open-loop transfer function becomes 

(5.9) 

(5.10) 

Tracking performance will be studied in terms of the closed-loop 

error transfer function 

N (s) = e (s)/q0 (s) (5.11) 

From Fig. 5.2, the relationship between reference and control 

error is obtained as 

(5.12) 

so that 

(5.13) 

This transfer function is of major interest since it in the 

context of Section 2 relates the important quantities D (positio­

nal deviation) and C (tool motion). Assuming that the control 

error amplitude is restricted by 

l e (jw) l < E (5.14) 

for all real w, the reference is restricted by 

(5.15) 
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w = w shows that the stability limit has been reached. cp 
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Figure 5.4. Amplitudes of typical closed-loop error transfer functions for P 

and PI type servos. The lower amplitude, the better performance. 
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Hence, the allowed tool motion amplitude at any fixed, single 

frequency w may be read almost directly from Fig. 5.4. 

By studying the asymptotical behaviour of N (s) as s approaches 

zero, it is seen that 

sE 
lim N (s) = 

s-+0 
E k = 0.5 E w 

p X 

This implies a maximum steady state velocity 

vp = 0.5 E w = 0.5 E a w 
X cp 

Applying the numerical values E = 1 cm 

are typical, vp = 10 cm/s is obtained. 

and w = 20 
X 

Thus it is 

(5.16) 

(5.17) 

rad/s, which 

seen that the 

mere use of proportional control may yield low performance. 

A proportional + integral (PI) controller, where 

k p 

1 + T . s  
l. 

T.s 
l. 

will by the Ziegler-Nichols method be assigned 

k = 0.45 w p X 
T1• = 5/w = 5a/w cp X 

This time, the asymptotical behaviour of N (s) gives 

k 
= E ___E 

T. 
l. 

0.45 
= 

5a 

2 
E w 

X 

which implies a maximum steady state acceleration 

= 
0.45 Ew 2 
sa-- X 

= 
2 0.09 E a w cp 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

Letting a = 1, aPI = 36 cm;s
2 

is obtained. Compared to the use of 

a proportional controller, this is an improvement. However, the 

results are still not satisfactory. Performance measures vp and 
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aPI are used several places in this text in place of function N (s) 

since they give an immediate understanding of important properties 

of the system in question. Whenever vp is used, it is understood 

that the underlying closed-loop error transfer function has the 

slope +20 dB/decade at low frequencies. Whenever aPI is used, this 

slope is understood to be +40 dB/decade. 

For both P and PI control, Bode plots of the resulting error 

transfer functions are shown in Fig. 5.4. As seen from (5.17) and 

(5.21), the performance depends on the deviation sensor by E and 

on g (s) by a and w • Because of this, attempts will be made to � 
increase these factors. Trivially, E may be increased by 

enlarging the positional deviation sensor. A second, related 

approach is to coordinate the serves so that maximum use is made 

of the sensor workspace. This is considered in Section 6. Due to 

the second order dependence on w in (5.20), means for improving 
� 

the infimal control system are of special interest. Such means 

are discussed in Sections 7 and 8. 

5.3. First experiments 

The control structure outlined in Section 5.1 has been implemented 

on the 5 d.o.f. TR 400 paint spraying manipulator. Experiments 

were carried out at Trallfa Robot AS, Bryne, Norway and were part 

of the initial feasibility study. The manipulator is described in 

Appendix Al, and the 5-measurement positional deviation sensor in 

Appendix AS. The control system hardware, Fig. 5.5, consisted of 

two almost separate units, one of which contained the original 

playback, control and administration system. 

The second unit, a Trallfa TSM (Trallfa, 1986) contained the 

experimental control system. The TSM-unit consists of a TMS 99105 

microprocessor board and an adjoint input-output board with a 

fixed cycle time of 10 ms. The hardware allows skewed sampling of 

the 10 measurement solenoids, output of 5 servo control values and 

reception of the joint displacement values needed to compute the 

manipulator Jacobian. Conversion from solenoid measurement values 
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Figure 5.5. First experimental system. The experimental controller is run on 

the TSM-unit. 
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into an equivalent vector of serve control errors was done by the 

sequential scheme 

m -------+ � 
Appendix A3 

� -------+ £ 

£ -------+ 
M

d (3.2) and (3.3) 

M
d -------+ e Appendix Al 

The subsequent controllers were of the proportional (P) or 

proportional + integral (PI) type. The complete scheme, which is 

written in integer assembly code, finishes in less than 1 ms. 

This is well within the limit given by the 10 ms I/0 cyclus. 

Simplifications were made in all parts of the error conversion 

scheme. However, the accuracy was still reasonably good. This 

was verified by fixing the tool marker in an arbitrary position, 

and perturbing the manipulator manually around it. Actual and 

computed perturbations in serve coordinates were then compared. 

It is believed that most of the detected error was due to 

simplifications in the computation of the intermediate deviation 

vector £· This will be discussed in Sections 9 and 10. 

The first tests showed a tracking performance corresponding to the 

simple theoretical results of Section 5.2. This indicates that 

tool tracking is possible, at least at low speeds. Attempts to 

increase the performance by increasing the controller gain 

resulted in instable or oscillating behaviour. This was expected, 

however the nature of the oscillations suggested that the structu­

ral elasticities of the manipulator are of importance and should 

be investigated. In addition, the interaction between serves 2 

and 3 seemed significant. These effects are considered theoreti­

cally in Section 7. 
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5.4. Force sensing handles 

During the experiments described in the previous section, it was 

of interest to compare the described positional deviation sensor 

with a force sensing device. For a moment, the space between the 

two parts of the sensor was packed with rubber foam in order to 

obtain mechanical contact with a reasonable stiffness. The result 

was a more stable system, however the sensor workspace was reduced 

because of the foam, and now considerable force had to be applied 

in order to make the manipulator move. 

Consider now the possibility of making use of the improved 

stability to increase the controller gains. This again will 

stability 

ks between 

represents 

a certain stiffness kh. Defining the position of the operator and 

the manipulator as q0 and q respectively, the position of the tool 

marker will be found as 

increase the performance of the system. A quick 

analysis can be made by assuming a certain stiffness 

the two parts of the sensor, and that the human operator 

The control error is defined as 

e = 

whereas the measured control error is 

q - q = m 

(5.22) 

( 5. 23) 

This effect results in a corresponding damping of the original 

feedback gain, which may now be increased to 

k 
p = 0.5 (5.24) 
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according to (5.9) or a similar value corresponding to (5.19). 

The problem is that the stiffness of the human muscular system 

varies according to the type of motion required, and will often 

increase during swift and precise motion. In that case the 

damping given by (5.23) will decrease, and if kp is designed for a 

a lower kh than the actual value, the system may become instable. 

Safe design requires a large kh 
to be inserted into (5.24), and as 

k
h 

increases, kp approaches the value given by (5.9), which is the 

only one that is perfectly safe. 

A more detailed analysis of the situation is presented in 

(Hirzinger, 1982). However, the above considerations provide a 

simple link between the stability problems encountered with a 

positional deviation sensor and with a force sensing handle. More­

over, simple stability criterions have been obtained for both 

cases. 





6. OPTIMAL COORDINATION 

In the 1 d.o.f. system treated in Section 5.2, the control error 
magnitude was restricted by a positive constant E. When several 
degrees of freedom are to be coordinated, the situation becomes 
more complicated. Maximum control error may then be restricted by 
expressions such as (4.3), (4.4) and (4.5). In order to make full 
use of the resulting 6-dimensional volume, a taylored coordi­
nating controller may be required. 

6.1. Linear quadratic optimization 

To simplify the design of the supremal control system, a 
quadratic performance index will be used to reflect the 
limitations given by the sensor. In terms of the intermediate 
deviation vector £, this index may for instance be 

2 2 2 2 2 
Ll 

pl + p2 
+ p3 + p4 P5 = + 

( al 
2 (b/2) 2 - a2) 

which may be compared to (4.3), (4.4) 
given in general matrix notation by 

or, M using (3.3), in terms of vector �by 

2 p6 +� (6.1) 
Jt 

and (4.5). This may be 

( 6.2) 

(6.3) 

However, since the controllers in Section 5.1 work in serve coor­
dinates, it is convenient to express L1 in terms of � using (5.3). 
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(6.4) 

A similar performance index may be used to express the effort made 
by the serves. This will be in terms of the control vector, u. 

T L2 = u P u 

A controller is now sought for the multivariable process 

g( s) = H(s) �(s) 

which minimizes the performance index 

t2 
L = E(J (�TQ e + uTP �) dt) 

tl 

(6.5) 

( 6 • 6 ) 

(6.7) 

Here e = g0 - g and E( ) denotes stochastic expectation. H(s) is 
given by (5.5). The solution to this problem is readily obtained 
obtained from the theory of linear-quadratic optimal control which 
requires feedback from the complete underlying state vector of 
(6.6). However, it is desirable at present to retain the assump­
tion of hierarchical control made in Section 5, and thus only take 
feedback from the output vector g. 

A first approach to the solution of this problem is to assume 
perfect internal velocity control and take g as the state vector. 
The process is then simplified to 

1 n(s) = - u(s) � s -

for which the state-space model is 

x = u -1 
. , n = x � -1 

(6.8) 

(6.9) 

It is further assumed that the reference vector g0 is generated 
by the Wiener process 
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. ' = X -2 ( 6.10) 

where v is white noise with E(�) = 0 . By subtracting (6.9) from 
(6.10) , the system 

X = V - u . ' e = x 

appears. The optimal controller is then 

; 

or if the substitution P- 1R = S is made, 

u = s e 

; 

(6.11) 

(6.12) 

( 6. 13) 

-1 Assuming t2 - t >> norm(S ) the stationary equation is valid: 

(6.14) 

Subject to standard conditions, this may be solved for S by 
diagonalization since then, 

S = MJ\M-l <=> SS = MJ\J\M-l ( 6.15) 

where J\ is diagonal. An alternative approach is to apply an iter­
ational scheme based on (6.12) or (6.13) . In this case, 
variations in S due to the always changing manipulator Jacobian 
are easily updated. Applying (5.3) and (6.4) , (6.13) turns into 

-1 M u = S JMe d ( 6.16) 

S = SS - P JT Q' J Me Me 
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Controller (6.12) is optimal and guarantees stability when applied 
to process (6.8) . Applied on (6.6) however, stability is not 
guaranteed and must be checked. This problem is discussed in 
Section 6.2. If instability results, this may sometimes be mended 
by slight adjustments of P in (6.5) . From the discussion in 
Section 5.2 it follows that the tracking performance is limited by 
the process bandwidth rather than restrictions on the control 
effort. This implies that controller (6.12) may not turn out to 
be satisfactory at all. 

Still assuming the structure of the supremal controller to be 

u = Se (6.17) 

optimal values for the elements of S when applied to (6.8) can be 
found by parametric optimization. Several methods exist for the 
solution of this problem, some of which are outlined below. For 
convenience, the performance index will be modified slightly 
compared to (6.7) . 

L = E(�TQ� + T � P�) (6.18) 

The value of L can be found by first inserting (6.17) , resulting 
in 

' 

L = E(�T[Q+STPS]�) (6.19) 

Lap lace transformation, and the insertion of e(s) = N(s) q0(s) 
results in 

L - 1-
(g�(s) N*(s) [Q+STPS]N(s) g0(s) ) ds 

-J-

where * denotes the conjugate transpose. 

(6.20) 

Once a scheme is 
avialable for the computation of L, iteration may be applied to 
obtain the optimal S. It is characteristic that the solution not 
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only depends on the performance index and the process itself, 
but also on the motion reference g0 applied. 

Instead of applying (6.20) to obtain L, an estimate may be found 
from measurements of the true �(t) and �(t) . This results in an 
experimenting, adaptive controller where the same iterational 
scheme as above can be used for real-time adjustments of S. 

6.2. Stability 

If the state-space representation of (5.5) is known, closed-loop 
stability may be checked by eigenvalue computation. For instance, 
if 

gi(s) 1 = 
(�) 2 1 + 2Z:. � + l. w. w. l. l. 

the state-space representation of 

where 

x = Ax + Bu . 
' 

0 

A = [:2 -2ZQ 

D = [0 

Q = diag {w.} l. 

I 

0 

. 
' 

g = Dx 

-:2] 
; 

I] 

for each 

H(s) may be 

B = [:] 
The controller corresponding to (6.17) is 

G = [0 0 -S] 

i 

The resulting closed-loop system matrix will be 

(6.21) 

(6.22) 
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controller process 

.9:o e u .9: - -
_... s H ( s) 

'"'-

---· 

Figure 6.1. Coordinated positional servos. Non-diagonal S provides a better 

performance distribution. 

ql q2 

-
--

l a3 a4 

, ... -�1-- .,_ Yo 

Figure 6.2. Simple optimization problem. A good controller will make servo 2 
assist servo 1 in the compensation of translational errors. 
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I -s l -Q2 

0 

(6.23) 

0 

-2ZQ 

and the system is stable if all its 3N eigenvalues are located in 
the left half of the complex plane. 

Often, H(s) is more complicated than (6.21) suggests. For this 
reason, it may be convenient to be able to check stability by 
other means. This may be done by applying the generalized Nyquist 
stability criterion (MacFarlane, 1977) . As with the standard 
Nyquist criterion, this is based on studying open-loop system 
transfer functions as complex frequency s traverses the standard 
Nyquist D-contour (clockwise encirclement of the right half of the 
complex plane) . 

The system shown in Fig. 6.1 has the open-loop transfer matrix 

H0(s) = H(s) S (6.21) 

It is assumed to be open-loop stable. Letting s traverse the 
Nyquist contour D, the system is closed-loop stable if and only 
if the net sum of encirclements of the critical point (-l+jO) by 
the loci of the N eigenvalues {k1(s) } of H0(s) is zero. 

The problem of solving for the eigenvalues of H0 is simpler than 
for the complete state-space system matrix A + BG. On the other 
hand, the eigenvalues of H0 (s) must in principle be found for 
every s e D. At least, their magnitudes at each crossing of the 
real axis must be known. In any case, due to the complexity of 
the eigenvalue problem, it is difficult to sort out the set of 
coordinating matrices S which result in a stable system. 

Such results may however be found for the special case where 

H(s) = I h(s) (6.25) 
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which presently means that all gi(s) in (5.5) are indentical. Then 
the open-loop transfer matrix is 

H0(s) = s h(s) 

so that, if {o.} are the eigenvalues of S, 1 

(6.26) 

are the eigenvalues of H0(s) . Since the stability criterion is in 
terms of encirclements of the critical point (-1+j0) by each 
o.h(s) , it may alternatively be stated in terms of the 1 
points {-Qi} and h(s) , where Qi is the reciprocal of 
following corollary is thus obtained: 

critical 
o . •  The 

1 

Coordination of identical serves: If H(s) = I h(s) , the system in 
Fig. 6.1 is stable if and only if the net sum of encirclements of 
the critical points {-Qi} by h(s) as s traverses D is zero. 

An example is given in Fig. 6.3. Here h(s) is taken from Fig. 5.3. 
As can be seen, stability requires that all -Qi are placed left of 
the curve traced out by the transfer function. In the reciprocal 
plane, Fig. 6.4, corresponding restrictions on the eigenvalues of 
-s are obtained. Note that these results are due to the simplicity 
of (6.27) , and may not be extended to the general case. The above 
results may however be used to give some idea of what can be 
gained by optimal motion coordination. 

6.3. Example 

As an illustration, a 2 d.o.f. system corresponding to serves 3 
and 4 of the TR 400 manipulator will be made to track translatio­
nal and rotational motion as shown in Fig. 6.2. Following Section 
6.1, the corresponding simplified performance index L1 can be 
written 



{ -p 0} 1 

X 

Region of f 
stability jw 

I m 

Re 

Figure 6. 3. Graphical interpretation of the corollary in Section 6. 2. The 

figure shows plots of h(jw) and all -g. in the left half of the complex 1 
plane. In the present case, stability is ensured since all -g. are left 1 

of the curve traced out by h(jw) . 

61 



62 

1/h( jw) 

I m 

)( { -a. } 
l 

J( 

Region of 
stability 

Re 

Figure 6. 4. The reciprocal of the plot in Fig. 6. 3. The system is stable 

since all eigenvalues of -S ar·e within the indicated region of stability. 

The region can be considered as a narrowing of the left half plane, which 

would have been the region of stability if h(s) = 1/s. 



Transformed into serve coordinates, the index is written 

T Ll = � Q� 
T T T = e J MJM (ki) JM J Me - e p p e -

where by (3.2) and Fig. 6.2 

[1 
J -Mp - 1 

b/2] 
-b/2 

; 

For the computations, parameter values 

. , 

b = 66'10-3 m 

a4 = 0.25 m 
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(6.28) 

(6.29) 

(6.30) 

are taken, and it is assumed that the dynamics of the two serves 
may be represented by matrix A in (6.22) , with parameters 

2Z = I 

w0 = 30 rad/s 

This results in the process transfer matrix 

H(s) = I h(s) h( s) = 1 (6.31) 

The system is to be controlled through the coordinating feedback 
matrix S, working in joint coordinates. 

The scope is now to investigate how matrix S, as compared to the 
diagonal feedback described in Section 5.1, may alter the tracking 
performance. This will be visualized in terms of the two-by-two 
error transfer matrix 
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N(s) 
e. 

= {.2:. } 
Yjo 

where e1, e2, y10 and y20 respectively denotes 
orientational deviation and tool-marker motion. 
space notation, the controlled system becomes 

x = 

e = -
where 

A = 

D = 

Ax + Byo 

Dx + Eyo 

[�2 
0 

-Q 
0 

[0 0 

-s ] 
-02 

0 

-J ] eM 

and N(s) may be obtained by 

[ 
SJ-1 ] eM 

. B = 0 , 
0 

. E = [ I ] , 

(6.32) 

translational and 
In matrix state-

(6.30) 

N(s) = D(si-A)-lB + E (6.34) 

Rather than computing matrix S as described in Section 6.1, the 
feedback is established by heuristic minimization, c.f. (6.28) , of 
the magnitude of the elements of 

p. 
JMpN(s) = {�} (6.35) 

Yjo 

subject to parameters c0 and c1 of 

s = [c: :4 
(6.36) 

The reason for prescribing this specific feedback structure is, 
apart from the fact that it will give good results, that the 



65 

necessary and sufficient conditions for stability simply are 

This follows from the corollary obtained in Section 6.2 by noting 
that both critical points corresponding to matrix S are 

- a . = 

l. 
1 

and that no encirclements of these are made by h(s) as long as 

-- < - a . l. < - 1 
WO 

The result of the heuristic minimization of (6.35) is 

[
10 

s -
1 -

60 

0
] sec 1; c0 = � 

10 
(6.37) 

To compare, application of the Ziegler-Nichols method as in Sec­
tion 5.2 results in 

0
] sec -l; 

15 
(6.38) 

Amplitude-frequency plots of (6.34) with S given by (6.37) and 
(6.38) are shown in Fig. 6.5. It is seen that the use of (6.37) 
rather than (6.38) can be considered to result in a trade-off 
between translational and rotational 
Considering the asyrnptotical behaviour 
frequencies, it is seen that for 

tracking 
of the 

el e2 -1 (s) = (s) = s/15 sec 
Y1o Y2o 

performance. 
plots at low 
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-20 dB 

e2/Y2 0 ' s = 
�1 

I 
e/yo ' s = so 

I 
el/ylO  ' s = sl 

-40 dB 

� 
10 

Figure 6.5. Amplitudes of the closed-loop transfer functions given by (6. 37) 

and (6.38). It is seen that the use of s1 implies better compensation of 

translational errors. The price to pay is a not-so-good compensation of 

rotational errors. 



s/160 -1 sec ; s/5 -1 sec 

The design of the positional deviation sensor restricts the 
maximum translational and rotational deviation to 

E2 � 0.3 rad 

which results in the maximum allowed steady-state velocities 

s = s 1 

v0 = 15 cm/s w0 = 4.5 rad/s 

v1 = 160 cm/s ; w1 = 1.5 rad/s 
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Thus, feedback matrix s1 results in a better performance distribu­
tion than is the case when applying matrix s0. 

In the given example, a non-zero displacement a4 between the 
sensor and the manipulator wrist was assumed, which enables the 
wrist servo to assist in the compensation of translational 
deviation. The experimental systems described in Sections 5.3 and 
A4.1 do not however provide this displacement, so no attempt has 
been made to obtain practical results. Nevertheless, the 
principle of optimal coordination seems promising, and is believed 
to be of interest in connection with many applications in addition 
to direct teaching. 





7. DYNAM I C  MODEL O F  THE MAN IPULATOR 

As Section 5.2 concluded, it is of major importance to increase 

the bandwidth of the serve controllers. The design of these will 

be based on the dynamic model developed in this section. Since 

the complete model of a hydraulically driven manipulator is 

extremely complicated, simplifications will be necessary. Based on 

the qualitative results from the preliminary experiments, each 

hydraulic actuator is treated separately, except for actuators 2 

and 3 for which coupling will be considered. The structural 

elasticity of manipulator link 3 is believed to be significant and 

is included in the model. For simplicity, only the subsystem 

consisting of serves 2 and 3 will be considered. The resulting 

model may easily be modified to fit the other subsystems. 

7.1. Equations of motion 

The structure to be considered is shown in Fig. 7.1. This is a 

two-link system where the outer link is nonrigid. Considering 

only one elastic mode, a 3 d.o.f. structure results. The 

generalized coordinates to be used are: 

q1: joint 2 displacement 

q2: angular displacement of a neutral axis which will be 

defined in (7.6). 

q3: joint 3 displacement relative to q2 

This means that joint 3 displacement is found by adding q2 and q3. 

The deflection of link 3 is defined by function u (r,q3) such that 



z 

Figure 7.1. Structure and notation for two-link two-joint elastic manipulator. 

ql - q2 

-..] 
0 
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(7.1) 

The Lagrange equations (Meriam, 1975) for this system will now be 

developed. 

The velocity at every point on link 3 is given by 

where v1 and v2 respectively denote velocity perpendicular to and 

along the r-axis defined in Fig. 7.1. From this, speed magnitude 

squared becomes 

+ 2a2� (r)sin� q1q3 

+ r2q� + 2r � (r)q2q3 + �2 (r)q� 

Assuming link 3 mass m3, with distribution 

; 

a3 
I i (r)dr = 1 
0 

the kinetic energy of the link is 

By defining coordinate q2 such that 

a3 

I i (r)r � (r)dr = 0 
0 

this may be written 

(7.3) 

(7.4) 

( 7 . 5 ) 

( 7 • 6 ) 



72 

T3 
= 

where 

b = 

R2 
= 

The kinetic 

T2 
= 

1 2 2 
+ 2a2b 2 m3 (a2q1 

+ 2a2D sinq> 

a3 
I i (r)r dr 
0 

a3 
i (r)r2dr I 

0 

energy of link 2 

.!. J' q2 
2 1 1 

sinq> q1q2 

q1q3 + R2q� + B2q�) (7.7) 

a3 
D = I i (r)j3 (r)dr 

0 

B2 
a3 

i (r)j32 (r)dr = I 
0 

is simply 

( 7. 8) 

where Ji is its moment of inertia about the axis of joint 2. The 

total kinetic energy is T = T2 + T3. 

Neglecting gravitational effects, the potential energy of the 

system is given by link 3 deflection only. Considering the link 

as a slender beam, it may be written 

(7.9) 

where x (r) and k denote distributed and total bending stiffness. s 
By (7.1) and (7.9), 

k s 

a 3 n 2 
= I x ( r ) ( 2 ) dr 

0 or 

For each generalized coordinate in the system, the Lagrange equa­

tion has the form 
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= 
o <aT 

) at oq. 
J.. 

(7.10) 

where Li is the generalized force corresponding to qi. By Fig. 

7.1, both L2 and L3 denote the torque in joint 3, so a new vector 

T 
L = [L

1
, L

2
, L

3
] is introduced where 

L. = L: - oV /oq . 
J.. l. J.. 

which by (7.9) gives 

L = L -
3 2 

Applying this, (7.7), (7.8) and (7.10), 

(7.11) 

(7.12) 

(7.13) 

which together with (7.12) constitute the equations of motion. 

Note that Coriolis and sentrifugal terms are omitted by assuming 

� � 0. Matrix notation for (7.13) is 

.. 

L = M (  cp )g (7.14) 

where, by defining 

. , 

(7.15) 

the inertia matrix may be written 



74 

M (rp) = 

Jl 

J12sinrp 

J13sinrp 

In general, the corresponding inverse equation will be 

.. 
g = N (  rp ) "( 

-

where 
nl n12 n13 

N (  rp ) = n12 n2 n23 
= M-l (rp) 

n13 n23 n3 

Considering (7.12), a fourth order state space model 

x = A (rp)� + B (rp)� 

is obtained, where 

[ql q2 q3 
T 

["t 1 
T 

X q3] "( = "(2] - -

0 0 0 -n13ks nl n12 + 
n13 

0 0 0 -n23ks n12 n2 
+ n23 

A = ; B = 

0 0 0 -n k 3 s 
n13 n23 

+ n3 

0 0 1 0 0 0 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

When rp = 0, the coupling terms n
12, n

13 and n23 vanish since M (O) 

is diagonal. In this case the control of link 3 may be considered 

separately. From the calculations of stiffness and inertia terms 

made in Appendix A2, it is found that the pinned -free frequency of 

link 3, 

k 
w (0) = (n (O)k )

112 
= (� )

112 
pf 3 s J3 

exceeds the clamped -free frequency 

(7.21) 



k 1/2 
wcf = <J;) 
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(7.22) 

by a factor of 10 approx. Inspired by this, an attempt will be 

made to simplify (7.19) and (7.20) by reducing the order of the 

system. This may be done by a singular perturbation method 

(Kokotovic, 1976). In the present case, this is simple since only 

the dynamic equation for q3 needs to be considered. By (7.19) and 

(7.20) with (7.21) inserted, 

(7.23) 

From the corresponding static 

expression for q3 is found. 

equation (q3 = 0), a static 

This may be inserted into the dynamic equations for q1 
leaving 

2 
n13 (n23 + (n1 

n13 
(n12 + 

n13 q1 
-

-) -

n3 n3 

= 

(n12 -

n13n23 
(n2 + 

n23 -
n23 (n23 + q2 n ) n3 3 

and the static equation 

1 n13 n23 + 
n3 q3 

= k [ - ] "t n3 n3 
-

s 

(7.24) 

n3) 

"t 
-

n3) 

(7.25) 

(7.26) 

These may be simplified further by noting the order of magnitude 

of each element in N (�). By assuming 

and (7.27) 
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which follows from the discussion in Appendix A2, (7.25) and 

(7.26) may be approximated by 

[0 
1 

-] 't 
k s 

(7.28) 

(7.29) 

By the same results, this 2x2 N -matrix may be approximated by 

inverting the upper left 2x2 block of M (�) in (7.16). 

This simple model closely resembles what would have been obtained 

if link 3 in Fig. 7.1 had been considered rigid. The main 

difference lies in the presence of (7.29), which will influence 

both the dynamics of the corresponding hydraulic serve and the 

measurements. Hence its influence on the dynamics of the control 

system is significant. 

7.2. Actuators 

The arrangement for driving either joint 2 or 3 of the TR 400 is 

outlined in Fig. 7.2. It consists of a linear hydraulic cylinder 

controlled by a 4 -way spool valve. Motion is transfered to the 

corresponding joint through a simple lever and, for joint 3, a 

parallelogram structure. The joint displacement sensor measures 

the lever angle e. 

In Appendix A3 a first order linear dynamic model is developed. 

This takes into account leakage, and deflection of the hydraulic 

fluid. The dynamics and the nonlinear load dependence of the 

serve valve is not included however. Summing up, the actuator 

model may be linearized about a workpoint e0 and written 

(7.30) 
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Figure 7.2. Translational hydraulic actuator. The motion is transferred to 

the manipulator joint through a lever. 
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Here u, � and e respectively denote control action, joint 

and joint displacement perturbation. As pointed out in 

torque 

Appendix 

A3, the coefficients are difficult to determine exactly. Because 

of this, special care must be taken during the design of the 

control system. 

Sticking to the notation of Section 7.1, (7.30) for joint 2 

becomes 

(7.31) 

and for joint 3 

(7.32) 

Inserting the time derivative of (7.29) and rearranging, 

where 

kst2 

kskt2 
= 

k s + 
kh2 

k k 2 k s u 
= 

su2 k s + 
kh2 

Eqs. (7.31) and (7.33) 

result being the 6-state 

7.3. This will be used 

in Section 8. 

7.3. Measurements 

(7.33) 

(7.34) 

may again be inserted into (7.28), the 

linearized dynamic model shown in Fig. 

in the investigation of controllers made 

The complete system includes several measurements. In addition to 

the positional deviation sensor located at the tip of the 

manipulator, joint displacements and torques may be measured. 

Available in the second experimental system, Section 5.4, are 
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- Hydraulic pressure, servos 1, 2 and 3 

- Joint displacement, all 5 servos 

- 5-measurements positional deviation sensor 

The 2 d.o.f. subsystem discussed so far influences 

- Hydraulic pressure, servos 2 and 3 

- Joint displacement, servos 2 and 3 

- 2 translational and 1 rotational deviation measurement. 

By (A3.9) and (A3.14) in Appendix A3, pressure difference results 

from torque by 

f1 1 
p1 = A = "t1 A a cos q1 

(7.35) 

f2 1 p2 
= A "t2 Aacos q2 

(7.36) 

Accordingly, joint torque estimates are 

(7.37) 

Assuming for the moment that these computations are part of the 

process, measurements 

= "t 2 (7.38) 

are obtained. Figure 7.1 relates joint displacements to the 

generalized coordinates by 

1 = q2 + k 1:2 
s 

(7.39) 

(7.40) 



81 

The positional measurements at the tip of the manipulator are 

found by considering a part of the manipulator Jacobian. It is 

assumed that the current position of the tool marker corresponds 

to the generalized coordinate values q10 and q20. Then, 
6q1 

= q1 - q10 and 6q2 
= q2 - q20 denote perturbations of the 

manipulator around these values. Affected deviational quantities 

in Cartesian 3 3 
coordinate system 3, cf. Section Al.3, are d2, d3 3 

and o1. For small perturbations, 

3d a2sincp 6ql + a3
6q2 + 

(3 (a3) 
= "[

2 2 k (7.41) 
s 

3
d 3 

= -a2coscp 6ql (7.42) 

30 -6q2 

13' ( a3) 
= - "[

2 1 k (7.43) 
s 

approximate the measurement functions. Here cp = q1 - q2, function 

(3 (r) is defined in (7.1) and 

(7.44) 

As seen, (7.29) was applied in (7.41) and (7.43), so the elasticity 

of link 3 enters here as well. For the TR 400 manipulator, cf. 

Section A2.2, 

(7.45) 

This is due to the choice of generalized coordinates and the link 

3 mass distribution of the manipulator at hand. In this case, 

3d 2 
= a2sincp 6ql + a3

6q2 (7.46) 

3
d 3 

= -a2coscp 6ql (7.47) 

30 = -6q2 - kr
't2 (7.48) 1 

Of these, the first two equations will enter in the infimal 

control system for serves 2 and 3. The last equation represents 
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coupling which will be passed on to the orientational serves if 

not nulled out by the coordination scheme. 

Application of (Al.5) in Appendix Al with v2 = 
3d2, v3 = 

3
d3, 

e2 = �e2 and e3 = �e3 results in the control error estimates 

. , (7.49) 

in joint coordinates. This one-to-one correspondence between 

error estimates and generalized coordinates is very convenient, 

since in that case no special means are required to compensate for 

structural elasticities. However, since (7.45) is an approxima­

tion only, a slight coupling from �2 must be expected. 



8. INFIMAL CONTROL 

In Section 5.2, simple ex pressions were developed which relate 

tracking performance and process bandwidth. Assumed controllers 

were of the P and the PI type, subject to a process with internal 

speed control. What remains is to investigate how different 

infimal (internal) controllers affect the performance. Below, 

this is done theoretically in terms of pole-zero-placements and, 

to some extent, experimentally. 

8.1. A first approach 

Based on the model developed in Section 7, a simple way to obtain 

approximate, internal speed control is by non-feedback input 

scaling. Inserting t = 0 and � = 0 in (7.30) results in the 

static relationship 

u = (8.1) 

which may be modified to form the constant, non-feedback 

controller 

u = (k
h

(O) /k (O) ) a  
f u re 

Combination of (8.1) and (8.2) 

e � 0 and (8.1) holds, i.e. for 

(8.2) 

will result in a � a 
f 

whenever 
re 

low frequencies. Ratio a/a 
f re 

increases slightly for nonzero e
0

. This effect is of little 

significance however. 

As in Section 5.2, supremal positional controllers are tuned using 

the Ziegler-Nichols method, the first step of which is to 

apply a proportional (P) controller and adjust its gains until the 
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Figure 8.1. Plots of the left half of the complex plane showing pole-zero 

placements for P-type servos. Internal speed control is given by (8.2}. 
Arrows indicate pole-zero motion when increasing k . 

p 
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stability limit is reached. The vector of critical gains is 

denoted by w whereas w denotes the frequencies of the obtained -x -q> 
oscillating behaviour. In the present case, these are found to be 

[127] -1 w = s 
-cp 87 

Controllers are now designed using (5.9) and (5.19). The plots 

in Fig. 8.1 show the locations of poles and zeros of the closed 

loop transfer functions 

under positional P-type control. Plots are given for the three 

proportional gain combinations 

k = w 
-p -x ; k = 0.5 w 

-p -x 

subject to the two configurations 

and 

k = 0 
-p 

As seen, the bandwidth of each serve is firmly restricted by w • 

-cp 
It is also seen that the system is robust with respect to changes 

in the manipulator configuration. Fig. 8.2 shows the pole-zero 

placement of the same process under Ziegler-Nichols PI-control. 

The system is still robust even though the coupling between the 

two serves seems more noteable. 

Application of (5.17) and (5.20) with E = 1 cm inserted, results 

in the performance measures 

�P = 0.5 E � = 
[0. 60] 

X 0.39 m/s 
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[13. 8] 
2 m/s 

6.1 

respectively for proportional and proportional 

control. The ex actness of these numbers, and of 

87 

(8.3) 

plus integral 

the presented 

plots, rely on the ex actness of the several, and sometimes 

diffuse, constants computed in Appendices A2 and A3. In fact, 

compared to the experimental results, they are too good to be 

true. This is not so important however, since the scope at the 

moment is to show that the obtained performance may still be 

improved. 

8.2. Internal feedback 

The bandwidth of the infimal speed controller can be increased by 

introducing feedback from torque and angular velocity. These 

quantities may be obtained either by measurements or by state 

estimation. The controller can take the form 

u = -G ,; ,; - + Gv<.go-9.> (8.4) 

The bandwidth is more than tripled by applying the values 

G [:52 0] 10-6 
/Nm 

k
t

(O) [: :. 6] = ::::: 
k ( 0) ,; 634 u 

(8.5) 

G 
[: .1 

10.:] 9 

k
h

(O) [1: :o] = ::::: 
k ( 0) V 

u 

and may be extended further if so desired. In the same way as in 

Section 8.1, a supremal positional controller is applied as well, 

and the resulting poles and zeros are plotted in Figs. 8.3 and 

8.4. The new values for w and w are found to be -x -q> 
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internal speed control is given by (8.5). Note that the scale differs from 
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(J) 
-x 

= 
[400] 

s -1 

345 

. 
I (J) = 

[421] 
s 

-1 
-rp 384 

Apart from the increase in bandwidth, it is seen that the coupling 

between the two serves may be more noteable than before. However, 

the system is still robust with respect to changes in the 

manipulator configuration. 

Applying (5.17) and (5.20) as in Section 8.1, the following is 

obtained, which is an improvement compared to (8.3): 

[2. 0] 
�P = m/s 

1.7 

. 
I �PI 

= [152] 
m/s

2 

119 
( 8. 6) 

By applying the internal controller (8.3) to the model developed 

in Section 7, arbitrarily fast responses may be obtained. However, 

this will not be the case when applied to the real system. A rough 

estimate of what can be obtained in practice is found by looking 

at some of the dynamic effects which were neglected while 

developing the model. The characteristic frequencies for three of 

these are 

- Link 3 resonance (J) ::::: 10
3 

rad/s 
pf 

10
3 - Spool valve dynamics (J) ::::: rad/s V 

10
3 

10
4 

- Finite system sample rate: (J) ::::: - rad/s 
s 

These were considered when inferring (8.5). However, unexpected 

effects may appear which will reduce the obtainable performance. 

8.3. E xperiments 

The considerations above can be checked against the experimental 

results described in Appendix A4. Here, controllers 1 and 2 



correspond to the controllers described in Section 8.1. 

(A4.3) and (A4.4) , it is found that in controller 1, 

k = 3.3 rad/s 
p 

9 1  

Applying 

The same value applies to controller 2 as well, which has the 

additional 

T
i 

= 250 ms 

Applying (5.16) and (5.19) directly, the corresponding performance 

measures 

are found for controllers 1 and 2 respectively. 

The controllers described in Section 8.2 correspond to controllers 

5 and 6 of Appendix A4. Application of (A4.3) through (A4.7) 

yields 

k = 41 rad/s 
p 

g = 0.72 s V 

for controller 5. In addition for controller 6 comes 

T. = 30 ms l. 

In these cases, the application of (5.16) and (5.19) results in 

vp "" 0.41 m/s . , 2 
a

PI "" 13.7 m/s 
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respectively for controllers 5 and 6. These results show that the 

performance of the tool tracking system is greatly improved by the 

use of internal feedback. 

Having proven this agreement between the theoretical and the 

practical results, it is in place to highlight a few disagreements 

as well. The most eye-catching in this respect is the difference 

in potential performance. As noted in Section 8.1, the dynamic 

model is literally far too good to be true. It is believed that 

this results from errors in the model parameters rather than any 

of the structural simplifications. The two least reliable para­

meters in the system are 

� oil bulk modulus 

kk: leakage constant 

which both may be a decade away from the true values. A second, 

related disagreement is seen from the internal feedback constants 

g and g . The ex perimentally obtained torque feedback is far � V 
stronger than its theoretical counterpart. At the same time, the 

ex perimentally obtained velocity feedback is less than the 

theoretical one. This disagreement may result from errors in � 
and kk, but can also be the result of insufficient noise protec­

tion in the experimental system. 

It is also interesting to see the difference in the integration 

constant T. between a PI-controller designed using the Ziegler­� 
Nichols method and one tuned by trial and error. The first 

approach will result in a larger T. than would result from the � 
second method. This indicates that the accelerational capability 

of the tracking system is more important than is the damping of 

oscillations. 



9. SENSOR MODEL 

In this section, a model of a 5-measurements magnetic positional 

deviation sensor is developed. From the preliminary description 

in Section 3.1, it follows that the sensor may be divided into 3 

subsystems: 

1: Solenoids Ml through M4 for the measurment of intermediate 

deviations p1 and p2. 

2: Solenoids M5 through MS corresponding to p3 and p4. 

3: Solenoids M9 and M10 corresponding to p5. 

For a 6-measurements sensor, a fourth subsystem would be 

considered which corresponds to deviation p6. 

9.1. Magnetic fields 

Some general properties of magnetic fields will be stated. The 

first concerns the induction field, B, and states that its net 

flow through a closed surface s is zero. 

II s·il ds = o 
s 

or div B = 0 ( 9.1) 

-

Here n denotes the normal vector of surface S. Magnetic field 

rotation in a point equals electric current density. 

curl H = J or I i1·d1 = IN 
L 

( 9. 2) 

where L is a closed loop and IN the net electrical current through 

it. In vacuum 

.. 
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where �O = 4rr'l0
- 7 

Wb/Am (9.3) 

and the current density j may be assumed zero. In this case, H 
will be a gradient field, 

H = grad (in) (9.4) 

where "in" denotes magnetic potential. This, and (9.1 ) results in 

L aplaces equation 

divgrad (in) = 0 ( 9 . 5 ) 

Generally, due to the boundary value problem, this equation is 

difficult to solve. However, a nonambiguous solution always 

exists. In some cases it is possible to design a simpler problem 

such that it includes the original boundary conditions. In this 

way, the original problem is solved as well. 

9.2. Two parallel cylinders 

The induced voltages in solenoids Ml through MS are found by 

considering the magnetic fields in the two planes p1 
- p2 

and 

p
3 

- p4, defined in Fig. 3.3. Approximations to these fields can 

be obtained by looking at an ideal configuration of two infi­

nitely long, parallel cylinders with a high magnetic conductivity. 

Cross sections are shown in Figs. 9.1 and 9.2. Each cylinder is 

then an equipotential surface. 

As a start, the magnetic field between two thin, magnetic conduc­

tors will be considered. These are marked Pl and P2 in Fig. 9.1 . 

The potential along a line with distance h1 
from Pl and h

2 from P2 

is given by 

where k is a yet undetermined constant. The magnetic field may be 
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Figure 9.1. Cross section of two parallel cylinders. 
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Figure 9.2. Solenoid placement in plane pl - p
2. 
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considered as the sum of two radial fields set up around Pl and P2 

respectively. Their magnitudes are given by 

lit. I = k/h. 
l. l. 

i = 1 or 2 ( 9. 7) 

From (9.6) it follows that the equipotential surfaces in this 

situation are described by h1 /h2 constant, which happens to mean 

circular cylinders. The original problem involves a cylinder of 

radius a2 inside a cylinder of radius a1 . Then, in Fig. 9.1 , 

letting 

and 

will by Apollonius' theorem imply that 

and 

This is proven in Section A5.4. 

b2 = b2 
- e, (9.8b) may be written 

Combining and rearranging yields 

Noting that b' = b - e 1 1 

and the same for b2. The solution may be written 

bl 
= u + V . b2 

= u - V , 

where 

2 2 2 [ a
2 

_ 
2 2 

- a�] 1 
al 

- a + e a2 + e 
)

2 
2 

2 . ( 
1 

u = 

2e , V = 2e 

( 9. 8) 

( 9. 9) 

and 

(9.1 0) 

(9.1 1 )  

(9.1 2) 

This expresses the positions of the imaginary conductors Pl and P2 

which result in a magnetic field dependning on e. When these are 

known, the field is given by (9.7) . However, coordinates h1 
and 
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h2 are not convenient in the present case. Since the measurement 

solenoids are located on the outer cylinder, the field will be 

evaluated on this surface only, and with an angle e as parameter. 

Furthermore, since the field by (9.4) is perpendicular to this 

equipotential cylinder, tangential contributions from (9.7) need 

not be considered. 

By Fig. 9.1 and (9.7) , the perpendicular contribution from Pl is 

2 
+ h -

1 
(9.1 3) 

where cos� was eliminated using the cosine (Extended Pythagorean) 

equation. Applying the same with respect to e gives 

(9.1 4) 

which inserted into (9.1 3) gives 

= - k (9.1 5) 

In the same way, the contribution from P2 is found to be 

(9.1 6) 

The magnitude of the resulting field is the sum of (9.1 5) and 

( 9.1 6) . Signs have been chosen so that the field is positive when 

directed inwards. The field expression may be simplified by 

replacing bl and b2 by (9.1 2) , the result being 

(9.1 7) 

For completeness, constant k must be found. Initially, a poten­

tial difference �IN between the cylinders was assumed. By (9.4) , 
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(9.18) 

Applying (9.9) and (9.1 0) , h2
hi /h1 h2 may be expressed in terms of 

a
1 , a2 

and e. If � IN is known, (9.1 8) may be solved for k. This 

will be done at a later stage. Magnetic field resistance is 

defined by R
c = �IN/m, where the magnetic flux may be determined 

by a closed surface integral around Pl. 

Substitution of k by (9.1 8) and rearrangement gives 

R 
c 

�IN 
= a- = 

(9.19) 

This is of importance when for instance investigating the 

inductance of the magnetizing solenoid. 

9.3. Radial measurements 

Sensor subsystems 1 and 2 each consist of 4 measurement solenoids 

evenly distributed inside the outer cylinder. Subsystem 1 is 

shown in Fig. 9.2, which is a drawing of plane p1 - p
2

. Fig. 3.3. 

The position of the tool marker is described by eccentricity e and 

angle �, alternatively displacements p1 and p2. The relationship 

between these descriptions is 

p1 = e cos � p
2 = e sin � (9.20) 

To tie this together with the results from Section 9.2, four 

angles e. corresponding to e are defined. 
1 

el = -� (9.21 ) 

Substitution of � in (9.20) gives 
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p1 
= e cose1 

= e sine
2 

= -e cose
3 

= -e sine4 

(9.22) 

p2 = - e  sine1 
= e cose2 

= e sine
3 

= - e  cose4 

Each angle e1 represents the position of solenoid Mi relative to 

the axis defined by angle �· Thus, if H. denotes the magnetic 
l. 

field at Mi, four equations 

(9.23) 

result from (9.1 7) . Substitution of cos e. by (9.22) results in 
l. 

Hl 

H2 

H
3 

k V (u 
al - 1  

= - - pl) al 
e 

k V (u 
al - 1  

= - - P2
> 

al e 

k V 
(u 

al - 1  
= + - pl) al e 

v 
al - 1  

= k (u + - p2) a
1 

e 

(9.24) 

Now, four measurements for the estimation of two deviational 

quantities are available. However, the computations involved seem 

complicated. Because of this, the number of measurements will be 

reduced to two by defining 

and (9.25) 

A similar reduction is made for sensor subsystem 2, resulting in y
3 

and y4. Inserting (9.24) into (9.25) gives 

and P2 
(9.26) 
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These are computationally more handy than (9.24) , however it must 

be noted that they are not linear since by (9.1 2) , 

a
1 

2a 
= 

2 2 2 
ue a1 

- a2 
+ e 

(9.27) 

where again 
2 2 

+ 
2 

e = p1 p2
. 

The idealized system considered in Section 9.1 represents 

the real situation very well. However, one important effect is 

neglected. The real sensor does not consist of infinite cylinders, 

but of two closely spaced sets of short cylinders. It is likely 

that some flux lines pass through the measurement solenoids 

without being led through the tool marker (see Figs 3.2 or 9.5) . 

This leakage is easily determined by removing the tool marker and 

observing the remaining magnetic field. It may also be estimated 

from the calibrational results in Appendix A5.3. Due to symmetry, 

leakage through all solenoids are considered equal and denoted by 

the constant H0. To take this effect into account, H0 is added to 

each expression in (9.24) . If reductions (9.25) are used, the 

result will be 

a1 a1 ue a1 2 - 1 
y1 

= p1
{1 + 

h0ve [1 - <ue pl) ] } ue 

(9.28) 

a1 a
1

ue a1 2 - 1 
y2 

= p
2

{1 + -
h-

[1 - <ue p2) ] } ue ove 

where h0 
= k/H0. 

be avoided in 

Since now even k must be computed, these should 

practice. An easier approach is to modify the 

measurement reduction formula (9.25) to 

and 

which once again results in Eqs. 

function is shown in Fig. 9.3. 

(9.29) 

(9.26) . This measurement 

This, and reduction (9.29) , is 
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used in the experiments. However, the calibrational results 

presented in Appendix A5.3 are based on (9.25) , which results in 

(9.28) . For this reason, a further discussion of this equation is 

necessary. 

All elements of (9.28) are easily obtained, except for denominator 

h0. As mentioned, 

(9.30) 

or by applying (9.19) , 

(9.31 ) 

where � is the total flux of the sensor. The characteristics 

described in Appendix A5.1 only show small variations in � with 

respect to eccentricity e. Due to this, h0 will be assumed con­

stant in (9.28) . Experimental adjustment of the relative leakage 

factor a1 ;h0 yields the plots in Figs. 9.4 and A5.4. These match 

the calibrational data very well. Because of this, it will be 

assumed that (9.26) subject to (9.29) is equally correct. 

9.4. Axial measurements 

Axial displacement is measured by solenoids M9 and MlO, Figs. 3.2 

and 9.5. The magnetic field distribution in this direction is 

more complicated to obtain than was the case radially. This is 

due to the complexity of the border value problem. Because of 

this, an approximation will be given which may be adjusted by 

calibration. 

Axial flux through the tool marker may be considered to be piece­

wise linear. This follows if the magnetic field between the tool 

marker and the sensor housing is limited to, and evenly 

distributed along, lengths L in Fig. 9.5. Accumulated flux in the 

tool marker is given in M- coordinates (fixed to the housing) as 
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) 
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0 
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C < l z l 

1 05 

(9.32) 

Measurement solenoids M9 and MlO are wound around the tool marker. 

In each single winding the electromagnetic force 

£' (z) = rra�w'l' (z) (9.33) 

is induced. Here w denotes flux frequency. The total emf induced 

in solenoid M9 is then 

(9.34) 

The density of the solenoid windings, on/oz, may be considered as 

an integrational window which is fixed to the tool marker. 

Considering Fig. 9.5, 

(9.35) 

In the same way 

(9.36) 

The measurement reduction formula 

(9.37) 

finally results in 

(9.38) 

where, by Fig. 9.5, S denotes the length of each measurement 
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solenoid. Note that strictly, this function is only valid for 

1 1 
- - (S-L) < p < - (S-L) 2 - 5 - 2 

(9.39) 

which may be compared to restriction (4.4) in Section 4.2. 

Using the value for S given in Appendix A5.1 and comparing to the 

results in A5.3, it is seen that (9.37) represents a good, linear 

approximation. However, higher order polynomials give even better 

approximations and are recommended for motion recording purposes. 



10. INVERSE SENSOR MODEL· 

As the name suggests, the purpose of the positional deviation 

sensor is to obtain estimates of relative position. For this 

reason, inverse measurement functions are desired. In general, 

given an arbitrary number of measurement solenoids Ml through MN 

and their outputs as functions of positional deviation, a non­

linear multi-dimensional state estimation problem appears. An 

iterative solution procedure which also consideres the dynamics of 

the manipulator may thus be given in terms of an extended Kalman 

filter. However, even if the result is a minimum variance 

estimate of the state vector, the computational load may imply low 

data rates. For this reason, simpler schemes are sought which 

supply estimates at higher rates. 

10.1 Separate subsystems 

Assuming reduction formula (9.29), the measurement function for 

subsystem 1 is 

[::] = [::] 
A similar function is obtained for subsystem 2. 

2 2 2 . T 
e = p1 + p2, th�s may be solved for [p1, p2] .The 

what complicated, and numerical problems arize near 

Due to this, other means will be sought for solving 

Eq. (10.1) can be written 

(10.1) 

Noting that 

result is some­
T [yl, y2] 

= o. 
(10.1). 
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E = cr(E)Y 

2 c = (a1 -r where 

or 1 2 c = [a1 r a1 

2 2 2 a2 + p1 + p2)/a1 

2 
- a2 

2 2 + cr(y1 
2 + y2)] 

By manipulation this results in 

(10.2) 

(10.3) 

(10.4) 

This may be used 

problems stated 

to solve for er symbolically, resulting in the 

above. Alternatively, (10.4) may be solved by 

Newton's method. The iteration 

c(k+1) 

2 2 
- a1c(k) + IYI c (k) 

2 -a1 + 2lyl c(k) 

results in an error of relative magnitude 10-3 after two 

iterations. To achieve this, a carefully chosen fixed initial 

value c0 is used. 

The structure of the TMS 32020 signal processor, which is used for 

the experiments in Section 8, implies that fairly large 

polynomials may be evaluated within the time needed for a single 

division. Because of this, the denominator in (10.5) should be 

replaced by a polynomial approximation. However, an even better 

approach may be to represent factor er directly by a symmetric 

polynomial function of IYI. 

(10.6) 

The number of terms depend on the need for accuracy, which is 

discussed in Section 10.3. As an example, a single constant c0 was 

used in the preliminary experiments described in Section 5.3. 

Indicative computational errors, compared to (10.3), for a few 

polynomials of different order are for 
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order 0: max 0.3 mm absolute error 

order 2: max 0.04 mm " 

order 4: max 0.012 mm " 

The two latter are presented in Fig. 10.1. Note that these 

curves, and those in Fig. 10.2, are least-squares curve fits. 

Better results may be obtained by L--approximations. 

The measurement function for subsystem 3, which represents axial 

deviation, is given by Tables A5.3 and A5.4 (Appendix AS). 

Neglection of the coupling from radial displacement results in the 

inverse measurement function 

where factor c a 

(10.7) 

may be represented by a polynomial expansion 

similar to (10.6). The computational error for two of these are 

shown in Fig. 10.2. The plots have been subject to extensive 

''wild point editing" which was necessary since the polynomials are 

compared to experimental data. The figure indicates that as long 

as y5 stays within <-20 mm, 20 mm>, the results are 

order 2: max 0.25 mm absolute error 

order 4: max 0.1 mm " 

Studying Fig. A5.7, it is seen that errors of 2 mm approx. may be 

the result of approximation by a constant. 

10.2 Coupling terms 

From the calibrational results in Appendix A5.3, it is seen that 

radial rotation affects measurements y1 and y2. It also appears 

that radial translation affects y5. Due to the symmetry of the 

sensor, coupling will be assumed symmetric in its arguments. 
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The extension to coupling from all elements in £ is in each case 

fairly obvious, and will not be emphasized. 

Coupling effects on y5 may be estimated from Tables A5.3 and A5.4. 

An approximation of y5 which seems to hold for p5 within 

<-15 mm, 15 mm> is 

1 -3 -2 2 [1 + (0.93 10 mm )d ]p5 ea 
(10.8) 

where ea is given by (10.7) and d2 = d� + d� is defined by (3.2). 

Neglecting this coupling may lead to errors of up to 10% within 

the given range, while inclusion reduces this to approximately 2%. 

At full scale, this corresponds to measurement errors of 2 mm and 

0.4 mm respectively. 

Turning to measurements and the influence from radial 

rotation is determined by considering Tables A5.1, A5.2 and 

A5.6. At 0.1 rad rotational deviation, the coupling is of the 

same order of magnitude as the modeling error, Table A5.2, and 

could thus have been neglected. However, following the discussion 

in Appendix A5.3, it may increase by a factor of 10. The sparse 

data in Table A5.6 is not sufficient to deduce good approximations 

of the coupling terms. As an indication, (9.26) may be augmented 

to 

1 - 2 02 0 y1 01 + 2 p1 a1 (10.9) = 
ue 

y2 0 1 + 02 
1 - 02 

2 p2 

which is an elliptical modification of the decoupled measurement 

equation. 

The introduction of coupling makes the inversion of the 

measurement equation more complicated. It is now necessary to 

consider the complete 5-by-5 or 6-by-6 system. The following 

discussion will be based on an arbitrarily complex and exact 

theoretical measurement function 
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(10.10) 

which may be based on electromagnetical field theory, polynomial 

expansions or look-up tables. Examples will be given in terms of 

the previous results. In general, symbolic expressions for the 

inverse of (10.10) are difficult to obtain, and may be extremely 

complex. Presently, methods for obtaining approximate solutions 

will be discussed. Simplifications in the schemes will be based 

on the assumption of weak coupling and on partitioning. 

In the same way as for the inverse kinematics discussed in Section 

5.1 and Appendix A1.1, partitioning reflects one-way dependence. 

In the present case it is obvious that measurements 

y1 through y4 do not depend on p5 or p6 

y5 does not depend on p6 

This can be seen from Fig. 3.2. A linear or linearized transfor­

mation of this type may be represented by the matrix 

q11 q12 q13 q14 0 0 

q21 q22 q23 q24 0 0 0 0 

q31 q32 q33 q34 0 0 
Q = = 

q41 q42 q43 q44 0 0 

q51 q52 q53 q54 q55 0 

q61 q62 q63 q64 q65 q66 

(10.11) 

--1 Q 0 0 

-1 (10.12) Q = 

-1 T--1 -1 0 -qss9.s0 q55 
-1 T -1 T --1 -1 -1 -1 

-q66(g6-q6sqss9.s>0 -q66 q65 q55 q66 
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Inversion is in this case simplified since only a 4-by-4 matrix 

inversion takes place. Q( ) in (10.10) is nonlinear however, and 

the result may not be used directly. Instead, a sequential scheme 

is applied which 

2: Obtains p5 from y5 and p1 ... p4 

At present, the 3rd step is omitted since only 5 measurements are 

available. 

Considering the second step first, and assuming that (10.8) is 

correct, p5 is obtained by 

(10.13) 

(10.14) 

In general a nonlinear scalar function is inverted, which in the 

present context is a fairly trivial problem. 

Equation (10.13) depends on results from the inversion of 

y = o<£> (10.15) 

where y = [y1 ... y4]
T, £ = [p1 ... p4]

T and Q: R4
--- R4. As an 

approximate example, 
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[::]· 
(10.16) 

[::]· 
is obtained from (10.9) and (10.1). Here, by (3.2) 

'( = cS� (10.17) 

The equations serve as indications only. As mentioned, arbitrary 

functions Q are considered. Two approaches for solving (10.15) 

are now outlined. 

Iterative solution: The equation may be solved by Newton's method. 

Considering the equation 

�y 
-

Q(E_) = "';[_ - (10.18) 

where �y = 0 is desired, the interation 

E_(k+l) E_(k) -1 
= + J �"';[_ py 

(10.19) 

is obtained, where J is the Jacobian of Q( ) . Determination and py 
inversion of this matrix is generally time consuming, and should 

be avoided. This may be done by considering the approximate 

inverse function given by (10.2) with (10.6) inserted. 

Approximation of er by the constant c0 gives 

(10.20) 

Higher order approximations may result in faster convergence. By 

considering polynomial expansions of the inverse measurement 

equation, differentiation is simplified and matrix inversion 
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avoided. 

Approximate, symbolic solution: Since weak coupling is assumed, a 

natural approach is to consider (10.16) first with y = 0. This 

was done in Section 10.1. Inversion results in two 2-by-2 systems 

of the form 

(10.21) 

When these are obtained, approximate coupling may be inserted by 

assuming for instance 

where 11 may 

by using an 

chosen to 

(10.22) 

-

be a polynomial function of �' This may be obtained 

offline curve fitting scheme. The shape of (10.22) is 

resemble (10.16), but may take other forms as well. 

This approach is based on trial and error, and arbitrarily precise 

results may be obtained. 

-

Once 2 is found, it may be inserted into (10.13). In (10.14), p5 
is obtained by an approximate, symbolic solution, however 

iteration could have been used here as well. 





11. CONCLUSION AND RECOMMENDATIONS 

The basic 

Section 5. 

control principles and problems were described in 

From this it became evident that the tracking perform-

ance in terms of steady state velocity or acceleration depends on 

the sensor range and on the servo bandwidth. Hence, means for 

improving the performance were sought along two different direc­

tions: 

1. Optimizing the use of the sensor·s "workspace". 

/.. Improving the control system. bandiwidth. 

Attempts in direction 1 were described in Section 6, where it is 

shown by an example that significant improvements are possible 

however depending on the kinematic properties of the manipulator, 

and the mounting of the sensor. 

Prior to the investigations in the second direction, a detailed 

dynamic model was developed in Section 7 for serves 2 and 3 of the 

manipulator at hand. This included the first elastic mode of link 

3, which is shown to reduce the bandwidth of servo 3 by a factor 

of 2 approx. if not compensated for. In Section B it is proved 

both theoretically and experimentally that a considerable increase 

in the servo bandwidth can be obtained by introducing feedback 

from force (pressure) and velocity. The first is believed to have 

a positive influence on factor a, whereas the velocity feedback 

will enable increases in w • Both factors appear in (5.17) and 
� 

(5.20). The experiments have shown that a system for real-time 

manual training of high-speed paint-spraying robots is well within 

reach. 

Investigations concerning the measurement equations of the 

positional deviation sensor are presented in Sections 8, 9 and A5. 

These prove a nice correspondence between the theoretical and the 
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experimental results. It is shown that the inversion of the 

measurements (computation of positional deviation) can be carried 

out by simple yet reasonably accurate means. No investigation of 

dynamic performance vs sensor exactness has been made, since the 

accuracy is believed to be a problem only in connection with 

precise motion recording. 

The success of the presented manual training system relies on the 

quality of a large number of elements. This dissertation has been 

dealing with control problems and the development of the sensor in 

addition to giving the outlines of the system. Apart from this, 

items of practical importance include 

1. System cost 

2. Syst8m safety 

The first item comes up since it is essencial from the point of 

view of marketing. Cost reduction is largely a technical problem, 

but involves control theory when considering economical computer 

systems and interfaces. Key components in the improved tracking 

system in Section 8 are the pressure sensors, which are expensive 

both to purchase and to install. These can be avoided however, if 

a sufficiently precise state estimator is made available. Thus, 

research in this area should be intensified. A second, cost 

optimization, problem concerns the sampling rates and the extent 

of multiplexing used to simplify the control system hardware. 

This as well can be analyzed using the theory of state estimation. 

The question of safety is brought forward since the presented 

concept necessitates that a human being is present in the 

workspace of an activated manipulator. It was stated in Section 1 

that the use of a tool marker is safer than the use of a joy-stick 

or similar since the operator in the first case wields better 

control. However, considering the possibility of system mal­

function, it is necessary to take adequate precautions. Means for 

improving the safety can include 
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1. Exhaustive system surveillance with automatic notification 

and shut-down capabilities. 

2. Duplication of vital components in order to enable grace­

ful shut-downs. 

3. Collision predictors and dampers. 

This outlines a large area for research and development even 

though the principles are well known. The above means are not 

common in today's robotics where instead negative precautions 

such as speed limitations and fences have been made the rule. It 

is the author's belief that the above described non-killer will 

function under lesser restrictions, enabling true interaction 

between man and machine. 
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Al. KINEMATICS OF THE TR 400 

The manipulator 

cally driven TR 

necessary for a 

used in the experiments is a 5 d.o.f. hydrauli -

400 from Trallfa Robot AS. The quantities 

kinematic description are shown in Fig. Al.l. 

Angle 91 defines base rotational displacement, 92 the angle 

bet ween link 2 and the vertical axis, 9
3 

the angle bet ween link 

3 and the horisontal plane. Angles 94 and 95 are wrist 

rotations and defined relative to the preceeding link. Mechanical 

constants are a2, a
3

, which denote the length of link 2 and link 3 

respectively, and D which is the offset bet ween the neutral axis 

of link 3 and the axis of joint 5. 

Al.l The manipulator Jacobian 

Coordinate system 5 is defined fixed to link 5 and with origo in 

the intersection point bet ween axes 4 and 5. System 3 is defined 

fixed to link 3, but with the same origo as system 5. The 

homogeneous transformation matrix from base coordinates to system 

3 is then given by 

(Al.l) 

1 

where 
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Figure A1.1. Structure and notation for the TR 400 kinematics. 

+ 

D 

Figure A1.2. Placement of the positional deviation sensor. 
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l 
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c
l 
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l 
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= 0 1 0 a2c2 - a

3
s

3 
(Al. 3) 

-s
l 

0 c
l 

a2s2 + a
3

c
3 

A virtual displacement 
3 

�3 of system 3, in system 3 coordinates, 
T 

is then related to joint displacements Ll�3 
= [e

l
, e2, e

3
] by 

(Al. 4) 

where s23 
= sin (e2 - e

3
) and c23 

= cos (e2 - e
3

). Solving for joint 

displacements, 

t�e2 
1 (Al. 5) = v

3 a2c23 

t�e
3 

1 s23 
a

3 
v2 

-
a

3
c23 

v
3 

Equations (Al. 4) and (Al. 5) may of course be given in matrix 

notation by 

3 
J

e3 
- 1  3 

�3 
= Ll�3 Ll�3 

= J
e3 �3 

Note that, for simplicity, offset D has been neglected in these 
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expressions. Since D << a
3

, the resulting error is small. 

3 
The computed change in �3 

leads to a change �
3 

in the orientation 

of system 3. This is given by 

(Al. 6) 

The homogeneous transformation matrix from system 3 to system 5 is 

3
H = 

5 

where 

1 
3

R 
5 

= 0 

0 

This means that 

3 coordinates by 

3
R 

0 
5 

O
T 1 

0 0 c
5 

0 s
5 

c4 -s 4 0 1 0 

s4 c4 
-s 

5 
0 c

5 

a vector in system 5, 

5 
V 

(A1.7) 

c
5 

0 s
5 

= s4s
5 

c4 
-s4c

5 
(Al. 8) 

-c4s
5 

s4 c4c
5 

5 
is represented in system y_, 

(Al. 9) 

Given the deviation vector 
T

d = 
5

Q, which represents data from the 

positional deviation sensor in manipulator (system 5) coordinates, 



T 
V 

T 
w 

cf. ( 2. 7) 

its representation in system 3 is found by 

3 
V . , 

3 
w = 

129 

(Al.lO) 

3 
Joint displacements corresponding to the positional deviation v 

are then found by (Al.5) . Going back, the resulting change in 

orientation, �3, is given by (Al.6) . This is further transformed 

into system 5 coordinates by 

5 
�3 = 

5R 3 
3 �3 

where 
5R is the inverse, 3 

5- 5 
w = w - 5 �3 

(Al.ll) 

3 
and hence the transpose of R5. Defining 

(A1.12) 

angular displacements in joints 4 and 5, corresponding to the 

deviation vector 
T

�, are given by 

(A1.13) 

The calculation of joint displacements from the deviation vector 
T

d may be summarized by 

t::..e = J 
T

d 
Te -

where J
Te 

often is called the inverse manipulator Jacobian. 

(A1.14) 
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Al.2 Sensor coordinates 

The positional deviation sensor is fixed to link 5 as shown in 

Fig. Al.2. Its position in system 5 is generally described by the 

constant transformation matrix 

M = (A1.15) 

1 

In Section 2, the relationship between displacement in sensor 

coordinates and manipulator coordinates is given in (2.9) in terms 

of !:.- matrices by 

(A1.16) 

where the deltas may be decomposed into 

TQ T MQ 
T

t:. 
V M

t. 
23 

= ; = (A1.17) 

OT 0 OT 0 

Note that the diagonal elements of the !:.- matrices are zero and 
that the Q sub-matrices are skew symmetric. 

Inserting (Al.l5) in (A1.16), 

TQ = RM 
MQ RT (Al.l8) M 

T -R MQ RT 
2M + RM 

M ( A1.19) V = V M M 



In the present case, by Fig. A1.2, matrix M is given by 

. , T .Q
M 

= [0, -B, 0] 

so (A1.18) and (A1.19) are reduced to 

1 3 1 

(Al. 20) 

(A1.21) 

(Al. 22) 

Noting the relationship between Q matrix notation and the rotatio­
nal deviation vector �, 

0 

Q = 

-c5 3 

0 

(A1.21) and (A1.22) finally yields 

where 

(Al. 23) 

(Al. 24) 

The complete transformation of sensor data, M
Q, into equivalent 

joint displacements, �, is now obtained by applying (A1.24) and 

then the procedure corresponding to (A1.14) . 
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Al.3 Constants 

For the manipulator at hand, the kinematic constants in Figs. Al.l 

and Al.2 have the values 

a2 = 0.8 m 

a3 = 1.6 m 

D = 0.17 m 

B = 0.11 m 

The accuracy of these is sufficient for use in differential 
transformations. For the computation of absolute position however, 

more accurate values are needed. 



A2. INERTIA AND STIFFNESS COEFFICIENTS 

As stated in Section 7.1, the parameters of the equations of 

motion depend on the mass and stiffness distribution of links 2 

and 3. Since link 2 in Section 7.1 is considered rigid, the 

corresponding parameters are easily obtained, Section A2.3. For 

link 3 however, more detailed computations are needed. These are 

carried out below. Afterwards, calculation of the inertia matrix 

(7.16) is carried out, and some notes on its inversion are given. 

A2.1 Link 3 

Refering to Fig. A2.1, link 3 is assumed to consist of lumped 

masses m
i 

and m
t 

respectively at the inner end and the tip of the 

beam. The remaining mass is distributed. The total mass distribu­

tion function is assumed to be 

ll (r) 
110 - 11 

= m.o (O) + [ll -
a

] + m
t 

o (a3) 
� 0 a3 

(A2.1) 

+ 
where o (  ) is the unit impulse function, whereas llo = ll (O ) and 

ll
a 

= ll (a;). Introducing Q = r;a
3 

and 11' = ll
a

lllo, this may be 

(A2.2) 

which implies, cf. (7.4), 

i (  r) = (A2.3) 

Beam deflection depends on the stiffness distribution, which again 

depends on the area moment of inertia, I (r), of the link. The 

beam cross section is assumed rectangular with measures B and H, 

formed by sheet metal of thickness �. Considering up- down bending 
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only, 

I(r) 
1 2 

= 

2 
H (r)B(r)t. (A2.4) 

where, since H and B by Fig. A2.1 may be assumed linear in r, 

H(r) = H
0

[1-(1- h)Jg B(Q) = a
0

[1-(1-b)]Q 

where again H
0 

= H(O), h = H(a
3

)/H(O) and Q = r;a
3

. Similarly, 

B
0 

= B(O) and b = B(a)/B(O). Expansion of (A2.4) yields 

I(r) = 

2 2 2 3 
+ [(1-h) + 2(1-h)(l-b)]Q - (1-h) (1-b)Q } 

(A2.5) 

With proper values for b and h inserted, (A2.5) is in Fig. A2.2 

compared with the approximation 

I( r) � (A2.6) 

Adopting this, and assuming moment distribution 

(A2.7) 

where L
2 

is the torque at joint 3, beam deflection is given by 

2 
o u M(r) 2L

2 
= = 

2 2 
or EI(r) E H

0
a

0
t. 

By integration, 

(A2.8) 
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Figure A2.1. Link 3 of the TR 400. Mechanical outline including cross 

sections at both ends. 
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Figure A2.2. Ratio between Eqs. (A2.6) and (A2.5). This is close to unity 

for large parts of the link. Hence, (A2.6) will be used instead of (A2.5) 
in order to avoid complicated results. 
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where, 

ou 

or 
= 

u( r) = 

knowing 

r + c 
1 

2 
r 

that u(O) = 0, 
CO 

= 0. Constant 

(7.6). Due to the mass distribution ( A2. 2) I 

large lumped mass m
t 

at r = a
3 

it is seen 

is satisfied, 

By (A2.10), this implies 

c = 

1 

Inserting this into ( A2. 9) I and recalling 

generalized coordinate q
3

, 

ou 
(0) 

a
3 1 

q
3 

= - - = - c  = 't
2 

= 

k 't
2 or 1 2 

EH
0

B6 s 

(A2.9) 

(A2.10) 

c
l 

is found by 

which includes a 

that when ( 7. 6) is 

(A2.11) 

(A2.12) 

the definition of 

(A2.13) 

Here k denotes the stiffness of link 3. The orientational change 
s 

at the link tip results by setting r = a
3

. 



A2.2 Constants 

Beam length: 

Center of gravity: 

Moment of inertia: 

Total mass: 

LINK 2 

a
2 

= 

r = 

J- = 

r 

1 

k 
't

2 
s 

0.8 m 

0.34 m 

2 kgm 

m
2 

= 13 kg 

(from 

2 

From this, the moment of inertia about joint 2 is 

Beam 

Total 

Inner 

Outer 

Mass 

J' = 

1 

length: 

mass: 

J­
r 

-2 
+ m r 

2 

lumped mass: 

lumped mass: 

distribution: 

= 3.5 kg 
2 

m 

LINK 3 

a
3 

m
3 

m .  
l. 

m
t 

�
0 

= 

= 

= 

= 

= 

1.6 m 

28.5 kg 

13 kg 

10 kg 

5 kg/m � 

137 

(A2.14) 

joint 2) 

= 0.4 
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Link cross section height: 

Link cross section width: 

Sheet thickness: 

Youngs modulus (aluminium): 

Total stiffness by (A2.13): 

A2.3 Inertia matrix 

= 0.14 m h = 0.464 

= 0.235 m ; b = 0.383 

= 2.5 10
-3 

m 

3 
k = 500 10 Nm/rad 

s 

By (7.15), the inertia terms depend on the integrals 

a
3 

a
3 

B = I i(r)r dr . D = I i(r)�(r)dr , 

0 0 

2 

a
3 

i(r)r
2

dr 
2 

a
3 

i(r)�
2

(r)dr R = I B = I 
0 0 

Inserting the values given in Section A2.3 into (A2.3) results in 

i(r) = 0.456 o(O) + 0.175[1-0.6 E-] + 0.351 o(a
3

) 
a

3 

Multiplication by r and 
2 

r and integration yields the link 2 

center of mass and squared inertial radius respectively, 

2 
b = 0.52 a

3 
+ 0.351 a

3 
= 0.696 m 



R
2 3 2 

= 0.32 a
3 

+ 0.351 a
3 

= 

2 
1.03 m 

3 

Equation (7.1) defines �(r) = u(r)/q
3 

which by (A2.10) and 

(A2.13) implies 

1 2 
� ( r) = r + r 

2 1 4 
� (r) = 

2 
r 

a
3 

2 3 2 
r + r 

Multiplication by i(r) and integration yields 

D = 0.020 
2 

a
3 

= 0.052 m 

2 
0.004 

3 
0.017 

2 
B = a

3 
= m 

Inertias are now found by (7.15): 

2 
J' 21.7 

2 
J

l 
= m

3 
a

2 
+ = kg m 

1 

2 
J

2 
= m

3
R = 29.4 

2 
kg m 

J
3 

= m
3

B 
2 

= 0.485 kg 
2 

m 

J
l2 

= m
3

a
1

b = 15.9 kg 
2 

m 

J
l3 

= m
3

a
1

D = 1.19 kg 
2 

m 
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Considering
· 

the different orders of magnitude of these elements, 

simplifications can be made when inverting (7.25). The inverse of 

the matrix 
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A = 0 

0 

is given symbolically by 

a
2

a
3 

-a
12

a
3 

-a
13

a
2 

* 
2 

(A2.16) -a
12

a
3 

a
l

a
3

-a
13 

a
12

a
13 

2 
-a

13
a

2 
a

12
a

13 
a

l
a

2
-a

12 

Considering the order of magnitude of its elements, the inverse of 

M(�) can be approximated by 

N 

J
2

J
3 

- J
12

J
3

sin� - J
13

J
2

sin� 

* 
2 

(A2.17) - J
12

J
3

sin� J
1

J
3 

J
12

J
13

sin � 

- J
13

J
2

sin� 
. 2 

J
12

J
13

s1.n � 
2 . 2 

J
1

J
2

- J
12

Sl.n � 

It is seen that element n
3 

of N is much larger than the others, 

which gives rise to the simplifications resulting in (7.25) and 

(7.26). Since also assumption (7.27) seems to hold, (7.28) and 

(7.29) are applicable as well. The 2x2 matrix of (7.28) can 



by (A2.17) be approximated by 

2 2 -1 
= (J J - J  sin �) 

which is the inverse of the upper left 2x2 block of M(�). 

1 4 1  

(A2.18) 





A3. HYDRAULIC ACTUATOR 

The joints of the TR400 are driven hydraulically. Joints 1, 4 and 
5 by single vane, limited rotational actuators and joints 2 and 3 
by translational cylinders. 
restricted to the latter 
this appendix as well. 

Since, in Section 7, the analysis is 
two joints, this will be the case in 

A3.1 Translational actuator 

Separate mass balances for the hydraulic cylinder in Fig. 7.2 are, 
for chamber 1 

(A3.1) 

and for chamber 2 

(A3.2) 

Here p1 . denotes pressure, V .  chamber volume, q .  valve port flow 
l. l. 

and q� leakage. Bulk modulus (inverse compressibility) is denoted 
by�· Chamber volumes as functions of linear translation are 

where A denotes the cylinder cross section area, and LA = v1 + v2. 
The time derivatives are 

= Ad c 
. , V2 = -Ad = -V c 1 (A3.4) 

Turning to the right sides of (A3.1) and (A3.2) , leakage is equal 
for both chambers and considered proportional to the pressure 
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difference. 

(A3.5) 

Assuming equal valve port flows as well, 

(A3.6) 

At the moment, q may be considered as a preliminary system 
control value. Inserting (A3.3) through (A3.6) into (A3.1) and 
( A3. 2) I 

A(� + de) 
pl 

2 Ad q - k;__(Pl - p ) + = 

� c 2 (A3.7) 

and 
1 d c> A(2 -

p2 - Ad = -q + k;__(Pl - p ) � c 2 (A3.8) 

are obtained. Since the mechanical friction of the TR400 serves 
is very low, it may be neglected. Thus, the piston force is given 
by 

(A3.9) 

subtraction of (A3.8) from (A3.7) and division by two yields 

Adding the same equations yields 

which inserted into (A2.10) results in 

L d 2 
c (4� - �L ) f = 

(A3.10) 

(A3.11) 
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Finally, linearization about the fixed displacement d0 yields 

f 
kA.kc f Akcd + k q = - -A c 

where d = d - do and c 

L d2 - 1 4� 0 k = (- - -) = (1 -c 4� �L L 

Variables f and d of (A3.12) will 
space variables � and e. By 
do = asin eo yields 

d = e a coseo 

� = f a cose0 

(A3.12) 

d2 -1 

_Q_) 4 
L2 (A3.13) 

now be replaced by the joint­
Fig. 7.2, linearization about 

(A3.14) 

Assuming e0 = 0, and inserting into (A3.12) , 

(A3.15) 
t = 

Plots of all coefficients as functions of e0 are shown in Fig. 
A3.1. The fact that the underlying leakage and bulk modulus 
constants are difficult to determine exactly, diffuses the model. 
Usually the e0-dependence in (A3.15) is neglected as well. Due to 
this, the control system must be made robust with respect to these 
parameters. 

A3.2 Control valve 

Except for assumption (A3.6) ,  the characteristics of the control 
valve has not yet been considered. The flow depends on the valve 
opening and on the pressures. The valve in Fig. A3.2 has a 
positive valued spool position, and 
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Figure A3.1. Plots of coefficients k
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Figure A3.2. 4-way spool valve. 



. 
I 

A negative valued position will give 

( ) 1/2 q2 
= c Ps - P2 
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(A3.16) 

(A3.17) 

Here c is proportional to the spool position and ps denotes the 
supply pressure. Linearization about p1 = p2 = ps/2 yields 

ql 
= 

q2 = 

Ps 1/2 
c(2) 

p 1/2 s c(2) 

I c l 
- --r 

I c l 
+ --r 

2 1/2 
(-) Ps 

p1 (A3.18) 

2 1/2 
(-) Ps 

p2 (A3.19) 

for the positive and negative values of c. It is seen that (A3.6) 
results if the load dependent terms of (A3.18) and (A3.19) are 
neglected. By adding the equations and dividing by two, 

q = 
l c l 2 1/2 
2A (-) Ps 

(A3.20) 

A glance at (A3.12) and (A3.15) shows that if (A3.20) is inserted, 
the load dependent term will add to the load dependent terms of 
these equations. Hence coefficient kt of (A3.15) becomes even more 
difficult to determine. Neglecting load dependence, q is 
proportional to c, which in turn is controlled electrically. 
Valve flow may now be written 

q = k u V 

or, considering the dynamics of the valve in question, 

q(s) = kv(s) u(s) = 

k v 
2u(s) 

1 + (�) c.> V 

Transfer function k (s) is factory designed. Since V 
c.>v - 1000 rad/sec, the dynamics will be neglected. 

(A3.21) 

(A3.22) 
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A3.3 Constants 

In the present case, the values of the relevant constants are 

From 

13 = 1 GPa 

L 
= 0.33 m 

k = 1 ml/s 
= 10-11 m3;s 

� bar Pa 

a = 0.17 m 

k = 20 V 1/min = 333 10-6 

this, the following may be 

L 

82.5 10-12 m/Pa . 
413 = , 

m3;s 

computed: 

� 12 GP a/m = 
L 

kt 
k�kc 4k�l3 

[1 a 2 . 2 -1 4(r;) s�n eo] = -A- = 

"'AL 

4(3Aa2 
where -L 

= 

-

121 -1 s 

0.35 106 

and 

Nm/rad 

1.0 

k k 4@a [l _ 4(a)2 . 2 ]-1 
q 

= ea cose0 
= L L s�n e0 cose0 

where 4@a 
= 2.05 109 Nm/m3 

L 



These coefficients are plotted in Fig. A3.1. 
(7.30) in Section 7.2 is given by 

k 
u 

k k = 

q V  

where 

4�ak V 
L 

4�ak 
--�v- = 683 103 Nm/s L 
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Coefficient k of 
u 





A4. EXPERIMENTAL CONTROL SYSTEM 

Means for improving the dynamics of the tool tracking system were 

investigated experimentally at the Norwegian Institute of 

Technology in July 1988. The experiments were carried out using a 

specially designed control system hardware. This is outlined 

below, together with the structure of the control system. 

Subsequently, some experimental results are presented, with 

special emphasis on the dynamics of the 3rd serve of the 

manipulator. 

A4.1. System design 

The control system is run on a single TMS 32020 signal processor 

board (Texas, 1986; PC,l986;1987) which fits into the extention 

bus of an IBM AT. Two adjoint input/output boards are connected 

to the I/0-bus of the TMS 32020, as shown in Fig. A4.1. The first 

board serves as an interface to the positional deviation sensor, 

and allows simultaneous sampling of the measurement vector y at a 

rate of 2 per ms. The data fusion corresponding to (9.25) or 

(9.29) is carried out by analog computation. The second input/ 

output board contains the interface to the TR400 manipulator. The 

aquisition of joint displacement values is restricted to 1 element 

per ms, which for the manipulator at hand implies a 5 ms cycle for 

updating the Jacobian matrix described in Appendix Al. However, 

the setting of the control action vector �, and sampling of the 

hydraulic pressure of serves 1, 2 and 3 can be carried out 

simultaneously. Here, a cycle time of 0.5 ms is easily obtained. 

The experiments were carried out with an effective sample time of 

5 ms. The conversion of the positional deviation measurements y 

into the equivalent joint-space control error vector e was done 

using the sequential scheme 
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Figure A4.1. Second experimental system. The controller is run on the 

Bugbust board. 
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In addition to vector �, pressure measurements for servos 1, 2 and 

3 were made available to the subsequent controllers. The 

programmed structure of each controller was 

u (k) = i (k) + c
pe (k) + cd[e (k) -e (k-1) ] + et �p (k) 

i (k) = i (k-1) + c
ie (k) (A4.1) 

for servos 1, 2 and 3, and 

(A4.2) 

for servos 4 and 5. 

Linking the constants of (A4.1) to the notation used in Sections 5 

and 8, the proportional gain is recognized as 

where k
h/ku 

is the natural velocity feedback reflected by (7.30) . 

Integration constant T. is given by 
l. 

T. = 5 ms·c /c. 
l. p l. 

( A4. 4) 

due to the 5 ms sample time. The torque and velocity feedback 

constant in (8.4) are found to be 

g = 5 ms·cd V 

(A4.5) 

(A4.6) 
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respectively, where the values of A and a are found in Section 

A3.3. In the experiments presented below, e
0 

is set to zero, 

resulting in 

The scope of the investigation was 

results for each of six different 

( A4. 1), these being 

1. c
d 

= e
t 

= c. = 0 
l. 

2. c
d 

= et 
= 0 

3. c
d 

= c. = 0 
l. 

4. c
d 

= 0 

5 .  c. = 0 
l. 

6. all constants nonzero. 

to obtain the 

sub-structures 

(A4.7) 

best possible 

of controller 

In the cases where c. = 0, variable i (k) remains constant and will 
l. 

to some extent compensate the offset of the control valves. 

The results presented below concern serve 3 of the TR400. This 

serve has appeared to be the most difficult one to control, due to 

the elasticity of link 3, cf. Sections 7 and 8. 

A4.2. Some results 

The control parameters which from the author's point of view gave 

the best performance are shown in Table A4.1. For structures 1 

trough 4, the parameters reflect a trade-off between stable 

behaviour and swift tracking. For structures 5 and 6 however, a 

ceiling was reached while adjusting parameter c
d

. This was due to 

the appearance of significant noise rather than instability. Even 
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so, the performance of the system when using all the available 

measurements was outstanding, and is believed to be sufficient for 

the real-time teaching of high-speed paint-spraying robots. 

To compare the performance of the six different controllers .in 

Table A4.1, the step response for each was recorded. The results 

are shown in Figs. A4.2 through A4.7. The figures give a good 

indication of the resulting bandwidth for each controller, but are 

in many respects unfair since the system is not designed to cope 

with such sudden changes in the tool position. It is characteri­

stic throughout that a tracking controller which is optimal from 

the point of view of the human operator turns out to be oscilla­

toric. 

Throughout the plots, an oscillatoric mode at npproximately 60 

rad/ sec is observed which is an obvious obstacle to further 

improvement. The crossing of this barrier will be the scope of 

future experiments. 



Table A4.1. Control parameters for the six sub-structures defined in 

Section A4. 1. 

sub-structure 

number 
1 2 3 4 5 

-1 
c [rad ] 

p 
1.69 1.69 22.5 22.5 50.6 

-1 
c

d 
[rad ] 0 0 0 0 144 

e
t 

[Pa-1
] 0 0 2.0·Io-6 

2.0·Io-6 
2.8·Io-6 

-1 
c. [rad ] 

l 
0 34'10-3 

0 197'10-3 
0 

6 

50.6 

144 

2.8'10-6 

8.43 

---" 

V1 

0'\ 
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Figure A4.2. Step response of system 1. 

. 4 .6 
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5 

t[sec] 

.8 

5 

t[sec] 

.8 

Figure A4.3. Step response of system 2. The oscillation continues for 2 more 

seconds. The tracking performance however is far better than for system 1. 
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Figure A4.4. Step response of system 3. 

. 4  . 6 

5 

t[sec] 

. 8  

5 

t[ sec] 

.8 

Figure A4.5. Step response of system 4. The integrator was of little use in 

this case, other than to null out the steady-state error. 
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-5 e[mm] t[ sec] 

• 2 . 4  .6 .8 

Figure A4.6. Step response of system 5. The bandwidth is greatly improved 

compared to the previous systems. 

5 

.
5 

e[mm] t[sec] 

Figure A4.7. Step response of system 6. In spite of the significant 

oscillations, this is by far the best tracking system. 





A5. EXPERIMENTAL DEVIATION SENSOR 

In the experiments, 

deviation sensor is used. 

a 5-measurements inductive positional 

Its working principle is described in 

Section 3.1, whereas the measurement functions are considered 

theoretically in Section 9. Below, mechanical measures and 

electrical characteristics are given. Also, calibrational data 

are presented and subsequently refined. 

A5.1 Mechanical outline 

The magnetically conductive parts of the sensor are made of common 

iron. These are shown in Fig. A5.1. From this, the kinematic 

quantities of the sensor are found: 

distance between planes pl 
- p2 and p3 - p4: b = 66 mm 

inner radius of outer cylinder: al 
= 17 mm 

pole length (cf. Section 9. 3) : L = 14 mm 

radius of the tool marker: a2 
= 5 mm 

The position of the magnetizing solenoid is shown in Fig. 3.2. As 

seen, it fits inside the sensor housing. Characteristic measures 

are: 

mean diameter 

number of windings: 

wire diameter 

42 mm 

6500 

0.23 mm (copper alloy) 

The measurement solenoids are placed as shown in Figs. 3.2, 9.2 

and 9.5. Two different types of solenoids are used. Solenoids Ml 
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s 

Axis, servo 5 

iO 
PVC bedding 

80 

l'i 

Iron housing 

Tool marker 

/L 

Figure A5.1. Mechanical outline of the sensor. 

t- I 



through M9 have measures: 

mean diameter 

number of windings: 

wire diameter 

3.5 mm 

300 

0.05 mm (copper alloy) 

163 

M9 and MlO, which are wound on the tool marker, are (knowing 

marker radius a2) described by: 

solenoid length 

number of windings: 

wire diameter 

S = 40 mm 

N = 137 

0.25 mm 

A5.2 Electrical characteristics 

The magnetizing solenoid 

through a 1:20 transformer. 

the current source are 

I1 
= 190 mA rms 

is exited by a 1kHz current source 

Typically, current and voltage from 

u2 
= 10 V amplitude 

On the secondary side of the transformer, corresponding values 

are 

rms 

u2 
= 156 V amplitude 

In later versions of the sensor, the number of windings of the 

magnetizing solenoid will be reduced by a factor of 20. In this 

case, no transformer will be necessary. 

Subject to the electrical values given above, the output of the 

measurement solenoids vary as stated below: 
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Ml - M8 10 - 100 mV 

M9 - MlO: 0 - 2 V 

Polarities are chosen so that all solenoids return positive 

values. Under normal conditions, the sign (phase) will never 

change. The induced voltage in solenoids M9 and MlO increase by 

5% approx. as eccentricity e is changed from value 0 to 10 mm. 

This implies similar variations in flux m through the tool 

marker, but does not affect measurement y5 since (9.34) is 

applied. 

During these tests, 

obtained by simple means. 

( 9. 34) , 

1 
yi 

:::. k p. ]_ r 

1 
Y5 

:::. k a 
P5 

approximate measurement functions 

Using reduction formulas (9.25) 

for i = 1 ... 4 

were 

and 

where k = 11 mm and k = 25 mm. These were used in the prelimi-r a 
nary experiments described in Section 5.3. 

A5.3 Calibrations 

A more thorough investigation of the sensor output was made at 

Trallfa Robot AS in November 1987. During this, the relative 

position between the two parts of the sensor was controlled by a 

3 d.o.f. positioner with a resolution of 0.01 mm. Throughout the 

presentation, the position will be given in terms of x1, x2 and 

x5. These closely correspond to p1, p2 and p5 of Figs. 3.1 and 

3.3, but slight differences exist due to misalignments. Measure­

ments investigated were y1, y2 and y5, as generated by reduction 

formulas (9.25) and (9.34) . 
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At first, the two parts of the sensor were kept parallel. 

Obtained values of y1 and y2 as functions of x1 and x2 (x5 
= 0) 

are shown in Table A5.1. From this, Fig. A5.2 results which shows 

the mapping of constant- x1 and x2-lines onto plane y1-y2. The 

figure does not show the expected symmetry which would have been 

the result if the measurement solenoids were identical and placed 

accurately. Fact is that solenoid M2 differs from the others due 

subsequent 

Synthetic 

the y1-

shown in 

to a nonidentical replacement. For this reason, the 

discussion will be based on y1-measurements only. 

y2-measurements are then obtained by transposition of 

measurements in Table A5.1. This results in the mapping 

Fig. A5.3, which still reflects a misalignment between axes x1 and 

p1 estimated to 

a = 0.06 radians 

Inserting the mechanical data from Section A5.1 into Eqs. (9.28) 

along with the relative leakage number 

results in Figs. 9.4 and A5.4. In the latter, misalignment a is 

taken into account as well. The figure may be compared to 

Fig. A5.3. In the same way, Tables A5.1 and A5.2 may be compared. 
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Table A5.1. Measurements y and y for different radial displacements x and 1 2 1 
x

2• 
Column no. i in each array represent measurements at x1 = (i-1) mm. 

In the same way x
2 

= (j-1) mm along row no. j. The two parts of the 

sensor are kept parallel. 

000 080 159 239 319 398 477 555 

-02 077 156 235 314 393 470 549 

-05 073 150 227 305 381 457 530 

-10 066 140 215 289 362 434 503 

-13 058 129 200 270 339 404 467 

-17 049 115 182 246 309 368 424 

-22 039 101 161 219 274 327 

-27 030 084 138 189 238 y . 103 
1 

000 000 -01 000 001 003 002 005 

079 077 074 070 065 062 058 053 

156 152 146 139 131 120 113 101 

234 228 219 208 193 179 163 146 

310 302 291 276 257 236 215 190 

384 375 361 341 317 290 263 230 

459 447 428 404 377 344 307 

532 517 496 466 431 391 y2 
. 103 



.6 

0 0,2 0,4 

Figure A5.2 . Actual radial measurement function. Mapping of constant-x
1 

and x
2

-lines onto plane y1
-y

2
. 
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0,6 
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Smrn 

4mrn 

3mrn 

. 2 

2mrn 

x = lmrn 
2 

2mrn 3mrn 4mrn Smrn 

0 0,2 0,4 0,6 

Figure A5.3. Synthetic radial measurement function. This is based on the 

y1-measurements only. 
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0 0,2 0,4 0,6 

Figure A5.4. Theoretical radial measurement function. Mapping (9.28) with 

relative leakage factor 0.56. Misalignment a is entered as well. This 

shows agreement with Fig. A5.3. 
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Table A5 . 2 .  The first array shows computed values of y
1 

based on (9 . 28) with 

relative leakage 0 . 56 .  Measurement y
2 

may be obtained by transposition . The 

second array shfows the difference from Table A5 . 1 .  

000 082 164 245 325 404 481 556 

-05 077 158 238 317 395 470 543 

-10 070 150 228 305 380 452 522 

-14 063 140 215 289 360 429 494 

-18 056 129 200 270 336 400 459 

-21 048 117 183 247 309 366 417 

-23 041 104 165 223 278 328 

-25 034 090 145 197 245 y . 103 
1 

0 2 5 6 6 6 4 1 

-3 0 2 3 3 2 0 -6 

-5 3 0 1 0 -1 -5 -8 

-4 3 0 0 0 -2 -5 -9 

-5 2 0 0 0 -3 -4 -8 

-4 1 2 1 1 0 -2 -7 

-1 2 3 4 4 4 1 

2 4 6 7 8 7 X 103 
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Data representing y5 as a function of x1 and 

Tables A5.3 and A5.4. The first table shows how 

x5 are shown in 

varies for 

negative x5 along 3 different 

table shows how it varies for 

values of x1, whereas the second 

positive x5 along x1 = 0 and for x5 
of y5 are shown in Figs. A5.5 and along = 10 mm. Some plots 

A5.6. In the latter, a second order curve 

I = (0.4'10-3) x
2
1 - (0.4'10-3) x1 + 0.4297 Y5 x -10 5-

fits the data in a least squares sense. Using the substitution 

this may be written 

Y5 1 P _10 = (0.4 10-3
) p� + 0.4296 

5-

Due to symmetry, the same dependence will be found in the 

p2-direction. 

Based on Tables A5.3 and A5.4, for x1 
= 0 and -20 mm � x5 � 20 mm, 

least-squares second-order approximations of ratios y5;x5 and 

x5;y5 as functions of x5 and y5 respectively are 

x5
1 � (11.8) y

2
5 - (26.9'10-3

) y5 
+ (21.4) y X =0 5 1 

Since the first order terms in these polynomials are small, they 

can be neglected, resulting in estimates 

�-1 2 
ka = (11.8) y5 

+ (21.4) 
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Table A5. 3. Measurement y for different values of x and x . No rotational 
5 1 5 

-x = 

5 

[mm] 

0 

1 
2 

3 
4 
5 
6 

7 
8 
9 

10 

11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
22 

24 
26 
28 
30 

34 
38 

42 
46 

X = 0  
1 

000 

045 
092 

136 
181 
226 
270 

310 
351 
390 
429 

46 5 
500 
534 
5 6 5  

594 
622 
6 49 
672 
696 
717 
7 5 5  

787 
814 
836 
856 

883 
902 

914 
920 

deviation 

x =4mm 
1 

000 

094 

270 

433 

570 

760 

859 

905 

922 

x =8mm 
1 

003 

100 

287 

456 

598 

788 

878 

915 

930 -y . 103 
5 



Table A5. 4. 

X = 
5 

[mm] 

0 

2 

6 

10 

14 

18 
22 

26 
30 

34 

38 

42 

46 
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Measurement y
5 

for different values of x
1 

and x
5

. No rotational 

deviation. 

X =0 
1 

000 

092 

270 

430 

568 

677 
762 

822 
86 4 

894 

913 

926 

933 

X = 
1 

-7 

-6 

- 5  

- 4  

-3.5 

-2 

-1 

0 

4 

8 

x =10mm 
5 

453 

447 

442 

438 

436 

432 

431 

430 

434 

452 

Table A5.5. Measurement y for different values of x at x = 0. Rotational 
5 5 1 

deviation o = 0 . 1 rad. This may be compared to Table A5.3. 
1 

-x = 
5 

0 

2 

6 

10 

14 

22 

30 

38 

46 

X = 0 
1 

000 

094 

270 

432 

568 

7 56 

856 

903 

920 -y . 103 
5 
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0.8 

0.4 

-0.4 

-0.8 

Figure A5. 5. True axial measurement function, y
5

(x
5

) for x
1 

= 0. 

becomes significant at +20 mm approx . 

Saturation 

. 46 
True values 

2nd order approximation 

.45 

.43 -8 -4 8 

Figure A5. 6. Obtained values of y
5

(x
1

} at x
5 

= 10 mm. The second order 

approximation fits the data very well. 



0 

0 

0 
100 

0 

75 

[mm] 0 

0 

1 75 

0 
True values 

2nd order approximation 
0 

0 

0 

0 

0.8 

Figure A5.7. Actual values of x
5

;y
5 

as a function of y
5 

compared to a second 

order approximation. As seen, assumption k = 25 mm made in Section A5. 2 is 
a 

reasonable. 
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Table A5. 6. Measurements y and y for different radial displacements x and 
1 2 1 

x
2• A rotational deviation 61 = 0. 1 rad is set between the two parts of the 

sensor. Values may be compared to Table A5.1 directly. 

000 158 316 462 

-06 148 301 448 

-14 127 265 394 

-21 098 214 316 

y •103 
1 

000 000 -01 010 

160 147 130 110 

316 295 258 214 

470 437 381 309 

y . 103 
2 
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for axial amplification. The latter is shown in Fig. A5. 7 together 

with the corresponding tabulated values. 

In order to investigate the sensitivity of the measurements with 

respect to rotational displacements, an orientational deviation 

81 
= 0. 1 rad 

was set, 

results 

and new values for y1, y2 and 

in Tables A5. 5 are presented 

notable difference 

Table A5. 6 however, 

appears 

differs 

in the 

slightly 

y5 were tabulated. The 

and A5. 6. As seen, no 

axial 

from 

measurement, y5. 

the corresponding 

entries in Table A5. 1. The resulting error, if this effect is not 

taken into account, is approximately 3% at the current orientatio­

nal deviation. By the mechanical data given in Section A5. 1, 

orientational differences up to 0. 3 radians may appear. Assuming 

the error to be a second order function in 81, measurement errors 

of up to 27% may thus be expected. 

A5. 4. Appolonius' theorem 

Applied directly to Fig. 9. 1, we want to prove the following 

Theorem: Considering 

blb2 
2 

= > = al 

b'b' 2 
=> = a2 1 2 

Fig. 9. 1, 

hl/h2 

h'/h' 1 2 

= bl/al 

bi/a2 

Proof: Segments a1, b1 and h1 are related by the Extended Pytha­

goran equation as 

(A5. 1) 

A similar relation including h� is 
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( A5. 2) 

Multiplication of (A5.1) by b2, (A5.2) by b1 and subsequent 

application of prerequisite 

(A5.3) 

yields 

2 2 2 3 
b2hl 

= b2al + blal - 2a1cose (A5.4) 

2 2 2 3 
blh2 

= blal 
+ b2al 

- 2a1cose (A5.5) 

\. 

subtracting (A5.5) from (A5.4) results in 

(A5.6) 

which implies 

( A5. 7) 

Since 

(A5.8) 

application of (A5.3) results in 

(A5.9) 

which implies 

This proves the first statement. The second one is proved in a 

similar manner. 
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