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Abstract 

Fatigue of welded structures is commonly assessed in three ways. These are the nominal 

stress-, the structural hot spot- and the effective notch stress approach. As the applicability of 

the approaches differs, these differences have been discussed. The effective notch stress 

approach has been validated for a cruciform fillet welded and fully penetration welded joint, 

according to DNV (2012). The same fillet welded joint was further investigated for varying 

weld sizes. The results show, that for a weld size half the length of the validation model, 

fatigue life was estimated to be 140% longer than that of the nominal approach. Further 

investigations revealed that there is a nonlinear relation between effective notch stress and 

weld sizes, while comparison of the notch stress and nominal stress approaches indicate that a 

linear relation is to be expected. Two explanations have been discussed. Firstly, the size of the 

notch may be dependent on the weld size, caused by loading mode alternations of the notch. 

And secondly, the linear relation found may be caused by simplifications made for the 

nominal stress approach. Equations describing the relation between the two approaches have 

been proposed.  Based on the established methodology for the cruciform joint, a second joint 

provided by Aker Solutions has been assessed for weld root fatigue. This joint is a knee plate 

located in a horizontal brace of a drilling vessel. The knee plate was analysed by means of a 

local finite element model subjected to a variable loading, which was defined from provided 

stress range exceedances diagrams for one boundary. For simplicity, the opposite boundary of 

the brace was fixed. All simplifications made, for both model and boundaries, have been 

discussed and concluded to be acceptable and conservative, based on comparison to weld toe 

fatigue. Weld root fatigue life was assessed by means of Miner summation, and compared to 

weld toe fatigue. Based on the proposed equations and the linear relation found between the 

nominal- and the notch stress S-N curves, a weld size providing a longer fatigue life at the 

weld root, rather than that at the toe, was proposed. 
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Sammendrag 

Utmatting av sveiste konstruksjoner vurderes ofte ved hjelp av tre forskjellige metoder: Den 

nominelle spenningsmetoden, den effektive strukturelle hot-spot spenningsmetoden og den 

effektive kjervspennings-metoden. Anvendelsesområdene for metodene er ulike, og disse 

forskjellene har blitt diskutert. Den effektive kjervspennings-metoden er blitt validert for et 

platekors, sveist med både kilsveis og fullstendig gjennombrent sveis, i henhold til 

anbefalinger fra DNV (2012). Sveiserotens utmattingslevetid for den samme kilsveiste 

konstruksjonen ble videre undersøkt for varierende sveisestørrelser. Resultatene viser at for et 

sveisemål som er halvparten så stort som i det valideringsmodellen, blir utmattingslevetiden 

beregnet til å være 140% lengre enn hva som blir anslått ved bruk av den nominelle 

spenningsmetoden. Ytterligere undersøkelser viser at det er et ikke-lineært forhold mellom 

effektiv kjervspenning og sveisestørrelser, mens en sammenligning med den nominelle 

metoden viser at man kan forvente en lineær sammenheng. To mulige årsaker til dette har blitt 

diskutert. For det første kan størrelsen av kjerv være avhengig av sveisestørrelsen, som en 

følge av endret lastmodus ved endring av sveisestørrelse.  For det andre kan det lineære 

forholdet som ble funnet være forårsaket av forenklinger innad i den nominelle 

spenningsmetoden. Ligninger som beskriver forholdet mellom de to metodene er blitt 

foreslått.  Basert på den etablerte metodikken for platekorset, ble én ytterligere modell, gitt av 

Aker Solutions, analysert for utmatting ved sveiseroten. Denne konstruksjonen er en kneplate 

fra et borefartøys horisontalstag. Kneplaten ble analysert ved hjelp av en lokal elementmodell 

som ble undersøkt for variabel belastning, definert av spenningsoverskridelsesdiagrammer gitt 

av Aker Solutions, for én grenseflate i modellen.  For enkelhets skyld ble den andre 

motstående grenseflaten fastlåst.  Alle forenklinger, for både modell og grenseflater, har blitt 

diskutert, og basert på sammenligninger med utmattingslevetid for sveisetå ble det konkludert 

med at disse var akseptable og konservative. Utmattingslevetid for sveiseroten ble vurdert ved 

hjelp av Miner-summasjon, og sammenlignet med utmattingslevetid for sveisetåen. Med 

bakgrunn i de foreslåtte ligningene, og det lineære forholdet basert på den nominelle metoden, 

foreslås det en sveisestørrelse som gir lengre utmattingslevetid ved roten, enn ved tåen av 

sveisen.  
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Abreviations 

Base- & Brace model The brace model consists of one quarter of the brace models cross section, which is used 

in analysis of the fillet welded knee plate. 

BV1 & BV2 Models of the brace outer plate, representing a simplified brace plate and the exact brace 

plate. 

DNV Det Norske Veritas. 

Elec Elements along a quarter circumference. 

FEA Finite Element Analysis. 

IIW International Institute of Welding. 
Root 1, 2 & 3 Defined positions for the fictitious weld root notch. 

SCF Stress concentration factor. 

Target values Values for stress, fatigue life or stress concentration factor that have been established 

based on the nominal stress approach. 

Toe 1 & 2 Defined positions for the fictitious weld toe notch. 

 

Nomenclature 

  Area [m2]. 

a Crack length [m]. 

 ̅ Tabulated parameter for design SN-curves. 

C Material constant.  

d Depth [m]. 

D Miner sum 

E Elasticity modulus for steel. 

  Force [N]. 

   Form factor dependent of crack geometry and loading. 

I Moment of inertia [m4] 

K Stress intensity factor [MPam1/2]. 

   Stress intensity factor based on stress range [MPam1/2]. 

k Tabulated parameter for design SN-curves. Determines magnitude of thickness effect. 

M Moment [Nm]. 

  Tabulated value for design SN-curves. Determines the slope of the curve. 

N Number of cycles to failure. 

n Number of cycles for one stress block, used for Miner summation.  

n’ Vector defining the center of each stress block, used for Miner summation. 

S Stress [MPa]. 

s Microsupport factor. 

t Thickness of member. 

     Reference thickness, thickness of the tested member. 

  Time [years]. 

  Factor used for the hotspot approach when stress is more parallel to the weld. 

  Real notch radius [m]. 

   Microsupport length[m]. 

   Fictitious notch radius [m]. 

  Stress [MPa]. 

   Stress range [MPa]. 

   Bending stress [MPa]. 

      Target effective notch stress expressed with the effective notch stress for a weld size a [MPa]. 

   Membrane stress [MPa]. 

     Maximum stress [MPa]. 

     Nominal stress [MPa]. 

  Shear stress [MPa]. 
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Introduction 

1 Introduction 

1.1 Background 

Fatigue failure of welded joints is an old and well-known issue (Schijve, 2012), and has been 

seen to develop due to cracks forming and growing under repeated or fluctuating loading 

(Maddox 1991). Fatigue cracks are found to initiate in structures, even though the applied 

stress is less than the ultimate strength of the structure. This is due to stress concentrations at-, 

and close to discontinuities in the structures. A simple way to illustrate this is to look at a 

holed plate subjected to a tensile membrane stress, as seen in Figure 1.  

 

a) b) 

  
 

 
 

The distribution of stress over the cross section at the hole is not evenly distributed, and it is 

seen that stress tends to concentrate closest to the edge of the hole as shown in Figure 2. The 

conclusion is that local changes in section causes disturbances in the flow of stress, and thus 

stress concentrations occur (Maddox, 1991). 

A typical place for stress concentrations to occur is at the transition between weld and plate, 

known as the weld toe, and also at the weld root as shown in Figure 3 (Maddox, 1991).  

 

  

  

  

Figure 1 – Illustration of stress concentrating close to discontinuities: a) holed plate (Hole 
force lines, 2013), b) Notched plate (Crack force lines, 2013) 

Figure 2 - Stress distribution in a holed 

plate over the cross section of the hole’s 

position (Stress concentration by a hole, 
2013). 

Figure 3 – Possible failure modes for a 

transversely loaded fillet weld (Fricke & Doerk, 
2006) 



 

2  

 

Introduction 

The stress concentration at the weld toe is in general the critical area, but for some structures 

stress concentrations at the weld root can be more severe than that of the weld toe. Both of the 

cases may lead to a fatigue crack and ultimately failure of the structure. 

There are several methods for assessing fatigue strength and service life of welded structures 

using local approaches. These approaches are based on structural stresses, notch stress and 

fracture mechanics, and they all have different applicability (Radaj, 1996) 

The nominal stress approach is performed by comparing well tested specimens with the detail 

in question. Each test specimen is associated to a SN-curve according to direction of loading, 

weld geometry and the technological properties of the weld.  

The hot spot stress method is a local approach for fatigue assessment of the weld toe, 

performed by a finite element analysis (FEA). The method began developing in the 1960s, 

and saw breakthroughs in the 1970s. The method is today well described by DNV (2012) and 

the international institute of welding (Hobbacher, 2009a).  

The most recent approach for fatigue assessments in welded structures is the effective notch 

stress method, which also is a method performed using FEA (Schijve, 2012). The method has 

recently been included in fatigue recommendations issued by DNV (2012) and IIW 

(Hobbacher, 2009a). This approach can be used to assess fatigue at the weld root as well as 

the weld toe.  

A former study, performed by Strande and Djavit (2013), showed that a larger weld size 

resulted in higher fatigue life for the effective notch stress approach. This study is in a 

continuation of these results. 

 

1.2 Objectives 
The objective of this study is to introduce the effective notch stress approach, and to compare 

it with other available approaches for fatigue assessments, such as the effective hot spot- and 

nominal stress approach. Applicability of the methods will be summarized and discussed. A 

fillet welded and fully penetration welded cruciform joint will be analyzed using the effective 

notch stress approach, and validated by comparing the results with the nominal stress 

approach, according to recommended practice (DNV, 2012). A mesh convergence study will 

be performed and discussed together with other parameters found to influence the results of 

the analyses. The effective notch stress approaches will be investigated for varying weld sizes, 

and performed for a welded detail provided by Aker Solutions. 

 

1.3 Limitations 
This study will not describe the basics of FEA. A basic knowledge of finite elements is thus 

assumed.  
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Approaches for assessment of weld fatigue 

2 Approaches for assessment of weld fatigue 

2.1 Stress concentration in welded structures 

For a simple structure with a uniform cross sectional area subjected to a tensile load, nominal 

stress is defined as given in equation ( 1 ). As formerly shown, stress concentrations are due to 

changes in section. A way of describing the magnitude of these concentrations is by 

introducing a stress concentration factor (SCF) according to equation ( 2 ), as given by DNV 

(2012). A SCF is thus the relation between nominal stress and the stress concentration. 

 

    
 

 
 ( 1 ) 

 

      
    

    
  ( 2 ) 

 

Producing a smoother transition between plate and weld toe will give a lower stress 

concentration (Berge, 2006). This is however difficult to achieve by welding under normal 

conditions. There are however weld improvement methods that can be applied post welding. 

Several improvement methods have been listed by Berge (2006), including amongst others: 

 Peening methods: Introducing plastic deformation at the weld by impacting the weld 

with a specially intended tool. Reduces residual stresses that arise during welding. 

 Post-weld heat treatment: Heating the weld and maintaining a high temperature over 

time, followed by slowly cooling down the weld. Reduces residual stresses in the 

weld. 

 Grinding of the weld toe by burr or disc grinding, and weld toe re-melting techniques: 

Improves the weld toe geometry such that stress concentrations at the toe are reduced.   

Although all these methods have demonstrated improved fatigue strength for the weld toe, 

they are uncertain as they rely on quality of workmanship, environment and other factors 

(Berge, 2006). They are therefore not considered in general design of welds, but rather used 

as a way of improving welds that are under dimensioned, or for weld repairs. 

The weld toe is in general the most likely site for fatigue cracking, but for partially penetrated 

welded joints under transverse loading, such as a fillet welded cruciform joint as shown in 

Figure 3, stress concentration will also occur at the root of the weld (Maddox, 1991). The 

stress concentration at the root depends on joint geometry and extent of weld penetration, and 

can be more severe than that of the weld toe. A fatigue crack may then propagate from the 

root across the weld throat, which is difficult to detect by non-destructive testing (DNV, 

2012). Seeing that a root defect is harder to detect than a toe defect, DNV (2012) recommends 

the use of a design such that weld toe failure is more likely than a root failure. 
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Approaches for assessment of weld fatigue 

2.2 Fatigue life  
Fatigue life is commonly expressed with S-N curves, also known as Wöhler curves, which 

have been determined for several types of welded joint details typically found in structures 

(DNV 2012, Hobbacher, 2009a). In order to determine the S-N curve for one detail, several 

duplicate test specimens for this detail have to be tested (Leira, Syvertsen, Amdahl, & Larsen, 

2011). Each test is normally performed by subjecting the specimen to an alternating load with 

constant mean stress and stress amplitude. By repeating the test for different stress amplitudes 

the number of cycles to failure and stress amplitude can be plotted in a scatter diagram with a 

logarithmic scale.  

The design curves issued by IIW and DNV are based on these failure curves. DNV (2012) 

determines the design curve as the mean value of fatigue life minus two standard deviation 

curves, which is associated to a 97.7% probability of survival. DNV’s design curves are 

shown in Figure 4. 

 

 

Figure 4 –Design curves issued by DNV (2012) 

 

DNV (2012) defines the basic design S-N curves according to equation ( 3 ). When designing 

a detail with greater thickness than that of the test specimen’s, one has to account for a 

thickness effect. This can be achieved by utilizing equation ( 4 ).  

 

           ̅         ( 3 ) 
 

           ̅      (  (
 

    
)

 

) ( 4 ) 
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Approaches for assessment of weld fatigue 

Here   is the predicted number of cycles to failure for a stress range   . The values     ̅,   

and   are tabulated for each design curve, and the choice of design curve is made depending 

mainly on method of fatigue assessment, environmental corrosive conditions and for the 

nominal approach also the detail class. The reference thickness (    ), which is the thickness 

of the tested specimen, is 32mm for tubular joints and 25mm for all other welded joints. 

 

2.3 Assessment of residual life by fracture mechanics 
Fracture mechanics is used to describe how defects and cracks affect materials and structures 

(Berge, 2006). It has been found that the stress and strain field around a crack can be uniquely 

defined by a stress intensity factor that in general can be expressed as shown in equation ( 5 ), 

for mode 1 loading in Figure 5.  

 

 

 

     √      ( 5 ) 

 

For the stress intensity factor  ,   is the nominal stress,   is the crack length, and    is a form 

factor that depends on crack length, crack geometry and loading configuration. Form factors 

for several cases are tabulated and/or presented in graphs in BS 7910 (BSI, 2005).  

Fatigue history can be separated into three stages as shown in Figure 6. The first stage, crack 

initiation, is at a micro level, caused by variations between the crystalized grains at the surface 

of the metal (Berge, 2006). Theory for stage 1 crack initiation has not been well established. 

The second stage of crack growth starts when the crack has grown, and changed orientation 

and shape into the mode 1 loading configuration, as shown in Figure 5. For welded joints, this 

stage is dominating due to initial defects like slag intrusions, lack of fusion between steel and 

weld, and other weld defects. The third stage is the failure stage, where the crack growth rate 

accelerates rapidly.  

 

Figure 5 -Loading modes (Berge, 2006) 
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Approaches for assessment of weld fatigue 

 

 

 

For the second stage the crack growth rate is stable, as shown in Figure 6 as region II, and the 

crack growth curve may be approximated by the Paris-Erdogan crack growth relation as 

shown in equation ( 6 ), also called the Paris-law for short (as cited in Berge, 2006). 

 

  

  
          ( 6 ) 

 

For the Paris-law,   and   are material constants that can be found for instance in BS 7910 

(BSI, 2005). K is the stress intensity factor which can be found according to equation ( 5 ), 

where the stress is inserted as stress amplitude   .  

Assuming fatigue crack growth according to the Paris law, the number of cycles may be 

calculated as an integral as shown in equation ( 7 ), where equation ( 6 ) have been rearranged 

and    is inserted as equation ( 5 ). 

 

     ∫
  

      
 

  

  

∫
  

 (  √    )
 

  

  

  

 

   
 

 (  √ )
 ∫

  

 √     

  

  

 ( 7 ) 

 

Where    and    are the initial and the final crack length at failure, respectively. In order to 

solve the integral, the form function which is dependent on crack length must be determined. 

Assuming that the initial crack growth is slow, and that most of the fatigue life is during the 

Figure 6 - Crack growth curve. Fatigue 

crack growth rate (da/dN) as a function of 
stress intensity range ΔK (Næss, 1985) 
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growth of the first millimeters of the crack, the form function may be presumed constant 

(Berge, 2006). The integral may then be solved as shown in equation ( 8 ). 

    
 

 (  √   )
 ∫   

 
 

  

  

 
 

    √     

 
 

  
 
   

 

  
 
 

  
 
 

 ( 8 ) 

 

By evaluating equation ( 8 ), it can be found that the initial crack length have major influence 

on fatigue life, while the assumed size of the failure crack length has minor influence (Berge, 

2006).  

As the initial defects are difficult to determine, crack growth rates are primarily in region I of 

Figure 6 and such small cracks are outside the validity range of linear-elastic fracture 

mechanics, it is not practical to use fracture mechanics for calculation of design life (Berge, 

2006). Fracture mechanics may be used as a conservative estimate for design life, but is more 

useful for calculation of residual life, inspection- planning and reliability assessment. In order 

to calculate residual life it must therefore be possible to determine the crack size in a reliable 

way. 

 

2.4 Influence of weld geometry on weld fatigue 
For cruciform joints, it has been found that fatigue strength can be increased by improving the 

geometry of the weld, such that fatigue strength at the root is increased to a higher strength 

than that of the toe.  

This has been implemented for fillet welds in general, in recommendations given by DNV 

(2012).  

 

 

Figure 7 - Fillet weld properties (Weld Diagram, 2013) 



 

8  

 

Approaches for assessment of weld fatigue 

Weld leg size  

It has been found that for fillet welded cruciform joints, increased fatigue strength at the weld 

root can be achieved by increasing the leg length of the weld (Petershagen, 1975). By 

increasing the weld legs sufficiently, the joint will fail at the toe rather than the root, as the 

weld toe is not affected by the increased weld leg size.  

 

Weld penetration 

For fillet welds, the root of the weld can behave crack-like, thus the fatigue life consist only of 

the second and third stage of fatigue life, respectively region II and III in Figure 6.  This will 

lead to a decrease of fatigue life (Maddox, 1991). 

By increasing the degree of weld penetration, Ouchida and Nishioka (as cited in Petershagen, 

1975) found that the weld leg size needed to avoid fatigue failure at the root is reduced. The 

fatigue strength at the weld toe is not significantly affected by the increased penetration.  

The degree of welding penetration depends on the welding method, and deeper penetration 

can be obtained by automatic welding methods (Petershagen, 1975) 

 

Recommended practice 

In order to avoid weld root fatigue failure from occurring prior to a fatigue failure at the toe, 

DNV (2012) have issued recommendations on the design of fillet welds. These 

recommendations are based on the parameters defined in Figure 8, where level of penetration 

is defined as the edge length    , and the weld leg size and plate thickness is given as   and 

  , respectively.  

Leg size relative to the plate thickness and weld penetration length relative to plate thickness, 

can then be compared in Figure 9 in order to determine the most likely fatigue failure mode. 

It is noted that for cruciform joints, an additional requirement of the edge distance     

    , is required in order to determine that weld toe fatigue is the most likely fatigue failure 

mode. 
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2.5 Fatigue analysis using the nominal stress approach 

 General 2.5.1

Nominal stress is defined as the average stress in a welded joint (Hobbacher, 2009b). 

Assessing fatigue life using the nominal stress approach is achieved by comparing the detail 

at hand with detail classes of well tested typical joints, associated to standard S-N curves 

(Fricke, 2003). Both DNV (2012) and IIW (Hobbacher, 2009a) have issued a set of S-N 

curves, with an associated set of fatigue classes for typical joint details. 

  

Detail dimensions, welding methods, and other parameters will however vary, and these 

variations are not covered by the detail classes (Hobbacher, 2009b). In order to use the 

nominal stress approach, there must therefore be a comparable well tested joint. Another issue 

is that stresses in the section considered may vary due to macro-geometrical notch effects 

close to the weld, such as large cut-outs and other sources for unequal stress distributions. 

This makes it difficult to determine the nominal stress, and determination is thus left to the 

engineering assessment of the designer. It is however common to take the averaged stress, a 

distance 1 or 1.5 times the thickness away from the weld toe.  

Another uncertainty is that a FEA calculates the geometric stress concentrations, and not the 

effective stress concentrations, which is relevant for fatigue (Hobbacher, 2009b). The former 

is however always greater than the latter, resulting in overestimated stress, but yet 

conservative design. 

 

 The nominal stress approach for a cruciform joint 2.5.2

According to DNV (2012), when plate thickness of the load carrying member is less than 

20mm, fatigue assessments at both weld root and toe are to be evaluated for the following 

joints: Partial penetration tee-butt-, effective full penetration in tee-butt- and a cruciform fillet 

welded joint as shown in Figure 10.  

Figure 8 - Weld parameters used to evaluate failure 
mode (DNV, 2012) 

Figure 9 - Graph for evaluating failure mode for 
partial and fillet penetration welds (DNV, 2012) 
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For fatigue assessment at the root of the weld, the nominal stress to be evaluated is the weld 

stress. Fatigue assessment of the weld toe is evaluated using the nominal plate stress. 

 

 

 

 

 
 

Weld stress for a cruciform joint  

As seen in Figure 11, all stresses can be assumed to be transferred through the fillet weld 

itself. A special weld stress, based on averaged stress components in the weld throat, is 

commonly applied according to equation ( 9 ) (Fricke, 2013). 

 

         √  
    

  ( 9 ) 

 

Here   
  and   

  are defined in Figure 11, as the stress normal to the throat section and shear 

stress in the weld throat section, respectively. 

The nominal stress can be determined by equilibrium conditions for simple cases, or for 

complex cases, by use of FEA using the forces or stresses in the weld (Fricke, 2013). 

Considering the cruciform joint in Figure 11, subjected to a simple nominal stress composed 

of a membrane stress component    and a bending stress component   . The nominal stress 

can be determined by comparing the stress through the weld area, to the stress through the 

plate area (Fricke, 2013). The membrane stress contribution is found by comparing the axial 

force in the plate to the axial force in the weld. Similarly, the bending moment in the plate can 

be compared to the bending moment in the weld. 

The bending moment in the plate and weld can be obtained according to equation ( 10 ) and  

( 11 ), respectively. 

 

Figure 10 - Construction detail: Cruciform 
joint (DNV, 2012). 

Figure 11 - Nominal stress in a fillet welded cruciform 
joint (Fricke, 2013). 
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 ( 10 ) 

    

         
 

 
      

 

 
      

  

 
 ( 11 ) 

 

     - Plate bending stress t - Plate thickness 

     - Weld bending stress a - Weld throat 

  - 

Force 
corresponding to 
moment in weld 

A - 
Area of which the stress is 

acting 

 

The depth  , of the joint is taken as a unit length, which for the case of the detail in Figure 10 

is equal for weld and plate. For the plate moment, the weld stress is assumed to act on the 

minimum weld throat area which is the weld’s throat size multiplied with the depth. The 

membrane stress and bending stress contributions can then be found by equilibrium according 

to equations ( 12 ) and ( 13 ), respectively. 

 

                                          

 

  
 ( 12 ) 

 

                     

   

 
         

 

 
           

 

  
 ( 13 ) 

 

The nominal weld stress is then obtained as shown in equation ( 14 ), by adding the stress 

contributions (Fricke, 2013) 

                     

 

  
     

 

  
 ( 14 ) 

 

It is mentioned that for details subjected to multi-axial loading, the weld stress may be 

calculated according to DNV (2012), by using equation ( 15 ). 

 

      √   
     

        
  ( 15 ) 
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Here, the averaged shear stress parallel to the weld     has been accounted for, as shown in 

Figure 12.  

 

 

 

Assessing fatigue life  

Analyzing fatigue at the weld root, DNV (2012) recommend comparing the nominal weld 

stress with the “W3” SN-curve. The weld toe is assessed by comparing the nominal plate 

stress with the G SN-curve. In Figure 13, it can be seen that compared to stress amplitude, the 

weld root SN-curve (W3-curve) yields shorter fatigue life than the weld toe SN-curve (G-

curve). It is noted, that the G-curve is used when the most probable failure mode, toe or root, 

has not been determined. 

 

 

Figure 13 –The W3- and G Design SN curves. 

 

2.6 The structural hot spot approach 

 General 2.6.1

The term hot spot is used as an area of geometric inhomogeneity, typically subjected to 

fatigue crack initiation (Radaj, Sonsino, & Fricke, 2009). For plate structures, typical hot 

spots are shown in Figure 14. The hot spot stress approach saw a great breakthrough in the 

1970s, when it was discovered that the local stresses should be extracted at a distance from 

the hot spot, depending on plate thickness (Fricke & Kahl, 2005). Later, investigations were 

summarized and structural stress at the hot spot was defined by Radaj (1990) as the surface 

1
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Figure 12 - Stress components used for weld stress 
calculations subjected to multiaxial loading (DNV, 2012). 
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stress, which can be derived. The structural stress is dependent on the shape, dimensions and 

the way the components are arranged, in addition to the level of loading and type of loading 

(Radaj et al., 2009). 

The stress distribution through the thickness is usually non-linear in a welded plate 

(Hobbacher, 2009b). The stress can then be separated into three parts: Membrane, shell 

bending and non-linear peak stress as shown in Figure 15. 

 

 
 

 
 

 
 

Figure 14 - Hot spots at weld toes 

for plate structures (DNV, 2012). 

Figure 15 - Non-linear stress separated 

into membrane, shell bending and 

non-linear peak stress (Hobbacher, 

2009b). 

Figure 16 - Linearization of surface 

stress (Radaj, Dieter, Sonsino, & 

Fricke, 2006). 

 

The structural stress, also known as geometrical stress, includes all the notch effects of the 

detail except for the non-linear part caused by the weld profile (Hobbacher, 2009b), which is 

generally ignored in a FEA (Radaj et al., 2009). This non-linear part is instead accounted for 

by the applied S-N curve (DNV, 2012). The structural hot spot stress at the weld toe, is found 

by linearly extrapolating the surface stresses at defined distances away from the weld toe 

(Radaj et al., 2009), as shown in Figure 16. These distances are determined differently by the 

regulation societies and agencies, but the concept is the same. 

The structural hot spot stress approach requires fine meshing, and therefore one may obtain a 

geometric stress concentration factor (SCF), according to equation ( 16 ), by introducing a 

local shell-, or solid sub model subjected to a unit load (DNV, 2012). By doing this, stresses 

at the hot spot may easily be calculated for any unit load applied to the sub model.   

 

      
        

    
 ( 16 ) 

 

 The structural hot spot approach according to DNV 2.6.2

DNV (2012) has recommended two methods, A and B, for derivation of hot spot stress. Both 

methods are applicable for both shell and solid FEA, by extracting principal stresses. For shell 

elements, the weld is not modeled, and the hot spot stress is obtained at the plate-plate 

intersection. For solid models the weld is included and the hot spot stress is obtained at the 
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weld toe, as shown in Figure 17. In the following, hot spots considered in the FEA refer to 

these locations.  

 

 

Figure 17 –Shell- and solid element model of a welded structure (DNV, 2012) 

 

Method A uses linear extrapolation to the hot spot, from the surface stresses at 
 

 
 and 

  

 
 from 

the hot spot, where   is the thickness of the plate on which the weld toe is located. Using 

method B, the stress at a distance 
 

 
 from the hot spot is evaluated. The effective hot spot stress 

for the two methods can then be calculated according to formulas given in DNV’s RP-C203 

(2012).  

For shell elements, DNV recommends using 8-noded elements, particularly for cases with 

steep stress gradient, or 4-noded elements with improved in-plane bending modes. Extracting 

stresses at 
 

 
 and 

  

 
 is convenient when using rectangular 8-noded plate or shell elements, as 

stresses may be extracted at the mid side gauss points, for an element size equal to the 

thickness of the plate. The plate thickness is hence the preferred mesh size.  

When meshing a three dimensional model, the mesh size for the first two or three elements 

should be equal to the thickness of the plate for both length and width, however, the width 

should never exceed the thickness of the attachment (including weld legs) at the hot spot. For 

hot spots termed c in Figure 14, the latter applies in regard to the thickness of the web plate 

behind the attachment.  

If using 20-noded solid elements, one element in the thickness direction is sufficient, and 

applying reduced integration with two Gauss points in the thickness direction allows for 

determining membrane and bending components of the stress. Using 8-noded elements, a 

minimum of four elements in the thickness direction is recommended. When using solid 

elements, stresses must first be extrapolated from the Gaussian points to the surface, then 

interpolated to the points at the required distance from the hotspot, before being applied 

according to method A or B, see Figure 18.  
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In order to account for the direction of the principal stresses as shown in Figure 19, the 

effective hot spot stress can be calculated according to equation ( 17 ) and ( 18 ) for method A 

and B, respectively. Here    ,     and     are respectively stresses normal to the weld, -

parallel to the weld, and shear stresses at the plane of the weld toe. The alpha factor is used 

when principal stress is more parallel to the weld, as shown in Figure 19, and depends on 

detail class (DNV, 2012). 

 

          {
√   

         
 

 |   |

 |   |

   {

                        
                        
                       

 ( 17 ) 

 

          {
    √             

 

     |   |

     |   |

 ( 18 ) 

 

Where     and     are the principal stress, calculated according to equation ( 19 ) and ( 20 ), 

respectively. 

 

      
       

 
 

 

 
√                

 
 ( 19 ) 

 

      
       

 
 

 

 
√                

 
 ( 20 ) 

 

  

Figure 18 –Obtaining hot spot stress with 
solid elements by method A (DNV, 2012). 
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a) b) 

  

 
 

For hot spots at plates subjected to significant plate bending, DNV recommends reducing the 

bending stress component by 40%, according to equation ( 21 ), for calculations of the 

effective hot spot stress. 

 

                                             ( 21 ) 

 

Where             , is the effective hot spot stress,              is the membrane- and 

              is the bending stress component at the hot spot. 

Assessment of fatigue strength is in general done by comparing the effective hot spot stress 

with the D-curve. However, for simple cruciform joints, T-joints in plated structures or simple 

butt welds welded from one side, DNV (2012) recommends using the nominal SN-curve for 

the relevant detail. 

 

2.7 The effective notch stress approach 
The effective notch stress method is a linear elastic approach for assessing fatigue life in 

welded structures by modeling the weld toe or root, with a reference radius   . This reference 

radius accounts for irregularities in the weld, as well as non-linear behavior (Sonsino et al. 

2012).  

Due to a high stress concentration factor for respectively, a sharp or pointed notch in linear 

elastic conditions, extremely high or infinitely high stresses will occur (Radaj, Lazzarin, & 

Berto, 2013). In reality, these notched parts have a considerable failure strength, which 

indicates that there must be an effect that counteracts the high stress build up. Heinz Neuber 

(as cited in Radaj et al., 2013) found that this microstructural support effect can be described 

by averaging the maximum notch stresses in a small material volume at the notch root, and 

that this average stress can be described by the maximum stress in a similar notch with a 

larger fictitious radius, as shown in Figure 20. The size of this fictitious notch radii can be 

found using equation ( 22 ). 

Figure 19 - Local stresses at welded structure with a) fatigue crack along weld toe for a principal 

stress normal to the weld and b) when principal stress direction is more parallel to weld toe (DNV, 
2012) 
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( 22 )                     

                      

                       
 

Due to irregularities of welded joints at the weld toe and root, normal determination of notch 

stress cannot be applied (Hobbacher, 2009b). However it has been shown that the irregular 

notch may be replaced by an effective notch with the radius   , equal to 1mm. This has been 

done by considering the worst case scenario: The notch is sharp, that is, with no real radius 

(   ). For welded steel structures the microsupport length and microsupport factor has been 

conservatively estimated to       mm and       (Radaj, 1990). These factors are today 

recommended by DNV (2012) and IIW (Hobbacher, 2009a), in application of the notch stress 

approach for plates with thicknesses      . For thinner plates it is mentioned that a 

fictitious radii        is commonly used (Sonsino et al., 2012), this will not be further 

addressed as such thicknesses are less common in ships and offshore structures.   

Lately it has been stated by Radaj et al. (2013) that the description of     and   is a too rough 

estimate, and that the microsupport factor should be chosen according to loading modes as 

shown in Figure 5. An improved microsupport factor was found to be       for mixed 

loading modes 1 and 2, and       for loading mode 3. This results in fictitious notch 

radiuses of 0.8mm and 0.4mm, respectively. The introduction of a loading mode dependent 

microsupport factor may however cause difficulties, as it may prove challenging to determine 

the loading mode for the detail at hand. 

The effective notch stress method is by DNV (2012) and IIW (Hobbacher, 2009a) considered 

inapplicable for joints where considerable stress components are parallel to the weld. The IIW 

also limits the method to naturally formed welds, i.e. without weld improvements. 

In a FEA, the notch may be modeled such that the cross section of the weld has a blunt 

circular notch at the weld toe, and a keyhole at the weld root, which is shown in Figure 21. 

DNV do not give details on how the notch is to be positioned, although it can be interpreted 

Figure 20 - Obtaining the average stress in the real notch by maximum stress in a 
notch with a larger fictitious radius (Radaj et al., 2013) 
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from figures given by DNV (2012) and IIW (2009a), that the notch is modeled such that the 

notch surface is touching the geometric root of the weld, and that the notch center is at the 

same plane as the continuous plate’s surface. This is also shown in Figure 23 and Figure 22d. 

The IIW describes the positioning of the notch as the following: 

“The effective notch radius is introduced such that the tip of the radius coincides with the root 

of the real notch” (Hobbacher, 2009a, p.34). 

 

   

  
 

 

In a research paper by Fricke (2013), modeling of the notch for lap joints and cover plates 

shown in Figure 24 is performed in a different way, and described as the following:  

“The keyhole notch has been placed such that the minimum distance between the rounded 

notch and the weld surface is exactly the throat thickness” (Fricke, 2013, p.781). 

 

 

 

 

For simple models one may estimate a stress concentration factor (SCF) by dividing the 

fictitious notch stress by the nominal stress, in the same manner as equation ( 2 ) was utilized 

for the hot spot method. 

Figure 21 - Illustration of keyhole 

geometry (Radaj et al., 2013). 

Figure 22- a) Part with welded joints, b), c) 

close-up of welded joints with internal 

forces, d), e) modeling of keyhole at the weld 

root and toe (Radaj et al., 2013) 

Figure 23 – Modeling of the 

fictitious notch root at fillet- and 

but welded joints (Hobacher, 

2009a) 

Figure 24 - Lap joints and cover plates 
(Fricke, 2013) 
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Due to the implementation of the relatively small notch radius compared to the structure, 

mesh density has to be even lower in order to sufficiently represent the notch. Thus, 

computational time is high in comparison with the hot spot method. DNV (2012) recommends 

the use of minimum 4 elements along a quarter of the notch circle circumference, if using 

quadratic elements. For a fictitious notch with 1mm radii, this corresponds to a mesh size of 

approximately 0.4mm at the notch surface.  

In addition to assessing the gap at the weld toe, this method also gives the opportunity of 

assessing a possibly present weld root gap as well as weld toe angle, leg lengths and undercut 

(Hobbacher, 2009b). The assessment of fatigue life may then be executed according to IIW, 

by comparison with the FAT225 SN-curve for steel welded joints, and FAT 72 for aluminum 

(Hobbacher, 2009a), or according to DNV by comparing with SN-curves given by the 

parameters in Table 1 for welded steel joints. It is noted that the notch stress is assumed to 

account for the thickness affect, and is thus not included in the SN-curve. 

 

Table 1 - The effective notch stress S-N curves (DNV, 2012). 

Notch stress SN-curves 

Environment     ̅     ̅ 

Air       cycles 

       

      cycles 

       

13.358 17.596 

Seawater with cathodic 

protection 
      cycles 

       

      cycles 

       

12.958 17.596 

Seawater with free corrosion For all N     ̅         and        

 

DNV (2012) has described a validation procedure for the effective notch stress analysis 

methodology. The procedure involves comparing results obtained from the effective notch 

stress approach to the nominal stress approach, for a cruciform joint. A SCF target value at 

the root of a fillet welded cruciform joint is given as 6.25. Based on interpretation, it is 

assumed that an unfortunate typing mistake has been made by writing root rather than toe. If 

this is the case, the SCF target value at the toe of a full penetration welded cruciform joint is 

given as 3.17. The value, and hence the former assumption should however be verified. 

 

2.8 Comparison of the approaches for assessment of fatigue life 
The nominal stress approach is a rather simple and quick way of assessing fatigue, both at the 

weld toe and at the weld root. However, the method is not always applicable due to the 

limited types of detail classes, and that for some cases nominal stress cannot be defined 

(Bruder, Stӧrzel, Baumgartner, & Hanselka, 2012).  

When the nominal stress approach is not applicable, the effective hot spot and -notch stress 

approach are good alternatives. Both methods account for the structural geometry surrounding 
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the weld. Only the notch stress approach considers the weld shape, enabling fatigue 

assessments at the root of the weld as well as the toe. That being said, the effective notch 

stress approach requires a solid FEA model, and thus computational time is dramatically 

increased. A summary of the approaches are given in Table 2. 

 

Table 2 - Comparison of the design fatigue life approaches. 

Nominal stress approach Structural hot spot 

approach 

Effective notch stress 

approach 

Nominal stress must be 

defined. 

Well described procedure 

(DNV and IIW) 

Recently included in 

recommendations by DNV 

and IIW.  

Requires a comparable detail 

class. 

Requires quite fine meshing, 

and thus sub-modeling may 

be required. 

Requires very fine mesh, thus 

computational time is high 

and a sub-model is required 

for most cases. 

Simple to apply if nominal 

stress and detail class can be 

found. 

Applicable for FEA using 

either shell or solid elements. 

Applicable only for solid 

elements with the weld 

modeled. 

Describes fatigue at both 

weld toe and weld root. 

Fatigue assessment at weld 

toe only. 

Describes fatigue at both 

weld toe and weld root. 

SN-curve is defined for each 

case dependent on detail 

class. 

Generalized SN-curve (D-

curve). 

Except for simple cruciform 

joints, T-joints in plated 

structures or simple butt 

welds welded from one side 

Generalized SN-curve. 

 

2.9 Cumulative damage  
Fatigue design of welded structures is based on constant amplitude stress, and as marine 

structures are subjected to stochastic variable amplitude loading, a way of assessing the 

damage inflicted during a time history is needed. A load history is commonly represented by 

an exceedances diagram of stress ranges, as shown in Figure 25a, where stress range has been 

plotted for number of exceedances based on different types of load histories (Næss, 1985).  
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a) b) 

  

 
 

A common method of assessing the cumulative damage is by Miner summation (Næss, 1985). 

The procedure is carried out by dividing the stress exceedances diagram into stress blocks as 

shown in Figure 25b, based on the assumption that the damage inflicted per load cycle is 

constant in each block. Then, for each stress block, a stress range      and a number of 

cycles    may be defined. By further calculating the design life   , for each stress range based 

on the SN-curve for the relevant detail, the damage sum is defined according to equation  

( 23 ). 

 

    ∑
  

  
 

 ( 23 ) 

 

If the damage sum is equal to or larger than one, the detail is expected to fail within the time 

of the load history (Næss, 1985). Further, as the damage sum is equal to one for fracture 

within the time history of the spectrum, the fatigue life (years) may be obtained from equation 

( 24 ), where    denotes the total time interval of the spectrum in years, and    represents the 

fatigue life of the detail. 

 

     
  

 
 ( 24 ) 

 

   

Figure 25 - a) Exceedances diagram of stress ranges and b) the miner summation procedure for one stress block 
(Næss, 1985). 
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3 Methodology 

3.1 Validating the effective notch stress approach 

DNV (2012) has given recommendations for validation of the effective notch stress 

methodology. The model given for assessment of weld root fatigue is the fillet welded 

cruciform joint shown in Figure 26. As the weld is considered a pure fillet weld, which is 

corresponding to a value of 1 at the x-axis of Figure 9, the failure mode for the fillet welded 

joint is clearly expected to be root failure. 

In order to verify the positioning of the fictitious notch at the weld toe, a model consisting 

only of this notch was made. This is equivalent to a full penetration welded joint as shown in 

Figure 27, with the same dimensions as for the fillet welded joint. Fatigue assessment was 

thus compared using the nominal stress approach, applying the F-curve (DNV, 2012). 

The effective notch stress analysis was performed using the FEA software Abaqus. When the 

positioning of the notch had been concluded, a third model was made where the fictitious 

notch at both the weld toe and root were included, in order to represent the weld toe of the 

fillet welded joint. This model will be referred to as the combined model. For the combined 

model, fatigue assessments using the nominal stress approach were performed using the F3-

curve for the weld toe and the W3-curve for the root (DNV, 2012). 

 

 
 

 

  
 

Target values for the effective notch stress approach were obtained by comparing to fatigue 

assessments based on the nominal stress approach. Deviation from these target values were 

calculated by equation ( 25 ) 

 

            
                      

      
  ( 25 ) 

 

When the results from the FEA were found to be satisfying compared to the target values, 

fatigue life was calculated based on the notch stress fatigue curve, and compared with fatigue 

Figure 26 – Fillet welded cruciform joint for 
evaluation of weld root fatigue (DNV, 2012) 

Figure 27 - Full penetration welded cruciform joint for 
evaluation of weld root fatigue (DNV, 2012) 
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life obtained from the nominal stress approach. Fatigue life deviation from the nominal 

approach was calculated in the same manner as for stress deviation. 

 

 Establishing target stress values 3.1.1

Target values for the effective notch stress approach were determined based on the nominal 

stress approach, and compared to the expected SCF’s given by DNV.  This was done in order 

to get an insight in the calculations, and also to sort out and verify that the assumption of the 

formerly mentioned typing mistake was justified. The target values were obtained by 

demanding the fatigue life for the nominal- and notch stress approach to be equal. An 

illustration of the process is shown in Figure 28, where the arrows represent application of 

SN-curves according to approach, the nominal stress- and the effective notch stress approach. 

 

 

Figure 28 - Procedure for obtaining target notch stress 

values, where arrows represents appliance of SN-
curve. 

 

By entering the design curve parameters for both methods into equation ( 3 ) and solving for 

        , an expression for the target value is obtained as shown in equation ( 26 ). The SN 

curve parameters can be recognized as     and      , for respectively the nominal- and the 

effective notch stress SN-curves. By further rearranging the parameters, a target notch stress 

value may be obtained using equation ( 27 ). 

 

                    
                  ( ̅     )      ̅    

        
( 26 ) 

 

                         
    
        

 ̅     

 ̅   
 

 
        ( 27 ) 
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The parameters used for the nominal stress approach are according to the design curves and 

stress parameters given in Table 3, as stated by (DNV, 2012).  

Table 3 - Design curves and stress according to the nominal approach. 

Investigation point Design 

curve 

Stress range 

Root of fillet weld W3 Weld stress 

Toe of fillet weld F3 Nominal 

stress 

Toe of fully penetrated 

weld 

F Nominal 

Stress 

 

As can be seen from the table, fatigue life assessments for the weld root is performed by 

taking the weld stress as the stress range, according to equation ( 14 ), where the nominal 

bending stress component was set to zero. 

 

 Modelling 3.1.2

In the FEA all dimensions were kept constant, except for the fictitious notches which’ 

positions were to be found. The weld root notch was modelled with a keyhole, with a height 

of 0.1mm, and all notches were given a radius of 1mm. 

As the positioning of the fictitious notch at the weld toe only was found illustrated in figures, 

such as Figure 23, two positioning alternatives were considered. These are shown Figure 29, 

and hereafter referred to as toe 1 and toe 2. Toe 1 is based on interpretation of figures seen in 

the literature. It was also considered that positioning of the notch at the weld toe should be 

similar to the definitions given for the root. Thus, toe 2 was defined on the basis of the two 

formerly cited definitions from Hobbacher (2009a) and Fricke (2013). 

 

a) b) 

  
 

 
 

Figure 29 - Fictitious notch at weld toe: a) "toe 1" and b) "toe 2". 
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Similarly, the positioning of the fictitious notch at the root of the weld had to be determined. 

Three positions were defined as shown in Figure 30, which will be referred to as root 1 

through 3. Root 1 and root 3 both correspond to Hobbacher’s definition of the root position, 

but only root 1 correspond to Fricke’s definition, which was applied in an analysis for cover 

plates and lap joints. As early results were somewhat lower than expected, root 2 was 

introduced in order to determine the sensitivity of the root placement. 

a) b) c) 

   
 

 
 

 

 Loads, boundary conditions and material properties 3.1.3

For the FEA, steel with elasticity modulus          was used. The material was given 

linear elastic material properties, that is, yield stress was not defined. 

The nominal stress was introduced as a negative pressure on the upper surface of the load 

carrying plate, as seen in Figure 31. 

For boundary conditions, the lower surface was fixed in all translational directions. All 

rotations were kept free. 

 

 

Figure 31 - Load and boundary conditions assigned to the model. 

Figure 30 - Modelled fictitious notch at the weld root. a) root 1, b) root2, c) root 3. 
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 Meshing 3.1.4

The model was meshed using 20-noded quadrilateral elements, without reduced integration, 

that is the Abaqus’ C3D20 element. Different meshing techniques were used in order to have 

smooth transitions from the very fine mesh surrounding the notch, to the coarser mesh used in 

less significant areas. In general, this was done by dividing the part into partitions, which is 

shown in Figure 32. Partitioning the model made it possible to define a desired number of 

elements along the edges of each partition, known as mesh seeding. Mesh seeding was 

performed by assigning mesh seeds for the inner fine mesh first, and expanding towards the 

coarser mesh.  

 

Figure 32 - Partitoning and seeding of the model. 

 

Partitions were also assigned different mesh controls, which altered the mapping of the mesh. 

Three types of mesh controls were used: 

 Structured mesh 

 Medial axis 

 Advancing front 

Establishing good transitions was found to be an especially time consuming task for solid 

models, as transitions for hexagonal elements can only be altered in one plane at a time. 

A mesh convergence study was performed for the most promising weld root and toe positions, 

by adjusting the number of elements per quarter circumference at the notches.  

 

Weld root 

The weld root mesh was seeded by assigning seeds both radially and circumferentially. It was 

found that in order to have the best transition from the weld root notch, the cross section of 

the weld root partition had to be further partitioned into 4 equal parts, as shown in Figure 33. 

This gave the opportunity of meshing these partitions with a structured mesh. The radius of 

Outer plate 

partitions 

Weld and plate 

intersection 

Weld toe partitions 

Weld root 

partitions 
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the partition was initially chosen as 2.2mm, but later redefined to 4mm, which extends over 

approximately half the weld size. The radial seeds were given a bias ratio, resulting in a 

decreased element size towards the notch surface. This gave the elements a low aspect ratio, 

as the circumferential length varies linearly in the radial direction. 

 

a) b) 

  
 

 
 

Weld toe 

The weld toe mesh was performed in the same way as for the weld root, with the partition 

radius defined with the same center as the weld toe notch. However, structured mesh gave 

small element angles, and it was thus decided to use the medial axis mesh control, which gave 

the most uniform mesh. Both of these techniques are illustrated in Figure 34. 

It was also observed, that when using 4 elements along the quarter circumference, stress was 

more concentrated between the nodes. It was therefore decided to use 5 elements, which gave 

the opportunity of extracting these higher stresses at the nodes.  

The outer edge of the weld toe partition was in general seeded with a number of elements 2.5 

times the number of elements at the notch surface. 

 

  

Figure 33 - Mesh at the weld root partition: a) partition surrounding the root, b) mesh 
obtained 
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a) b) 

  
 

 
 

Globally 

In the weld and plate interaction area, advancing front controlled mesh was applied with a 

mesh seed of 1.7mm, which was seen to provide a smooth transition. Meshing with this 

controller gave the opportunity of meshing these complicated partitions with the most 

possible uniform mesh.  

In the depth direction of the model, the weld and plate interaction area were given a double 

biased seed. This was done in order to have a finer mesh at the locations found to give the 

highest stress concentrations. Similarly a double biased seed was also introduced over the 

plate thickness, resulting in a finer mesh closest to the weld toe.  

In order to minimize the number of elements, and thus the computational time, the plates were 

divided into four partitions at a distance 4mm from the weld toe. This formed the outer plate 

partitions, which were permitted the use of an advancing front controlled mesh. This gave the 

opportunity of having a coarser mesh towards the plate ends, as shown in Figure 35, by 

reducing the number of elements in the depth and longitudinal plate direction, towards the 

plate outer ends.  

 

Figure 34 - Mesh at the weld toe partition: a) using structured mesh, b) using 
medial axis control. 
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Figure 35 - Mesh for the fillet welded joint including 
both root 1 and toe 2 notches. 

 

 Extracting stresses 3.1.5

The results of the analysis were first visually inspected, in order to determine any possible 

mechanisms. The nodes containing the highest stresses were observed to follow a line in the 

depth direction. A path was thus created though these nodes in the un-deformed model, such 

that the highest stresses in the notch could be obtained at the path-node intersections. 

Maximum principal stress along this path was plotted as a function of length, and the 

maximum value of this stress was taken as the effective notch stress. The path is plotted on 

the deformed model in Figure 36. 

 

 

Figure 36 - Extracting stresses along a path. 
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 Comparing the results 3.1.6

SCF’s for both the weld toe and -root were obtained using equation ( 2 ), and compared to the 

target values by use of equation ( 25 ). Design life was assessed for both approaches, using 

their respective design curve parameters, according to equation ( 3 ). Similarly to the SCF’s, 

design life for the two approaches were compared using equation ( 25 ).  

 

3.2 Parametric weld size study 
In order to check the effects on the effective notch stress for varying weld sizes, the 

verification model was analyzed for 4 additional weld sizes. All calculations were done 

according to the validated methodology, and all dimensions and mesh attributes were kept as 

similar to the verification model as possible, although some minor alterations were required.  

In the analyses, the weld root partitions were scaled according to change in weld size. There 

was however an exception for the model containing a 4mm weld size, where the notch 

partitions were observed to become too small, forcing a decrease in the maximum number of 

elements in the radial direction to become less than three elements. This was redeemed by 

creating the notch partitions with the same radial size as the model with 6mm weld size.  

As the results were found to deviate from the target values, two types of attempts were made 

in order to find the parameters influencing this discrepancy. The first attempt investigated a 

relation between the fictitious notch size and the weld size. The second attempt investigated a 

relation between the target stress values and the obtained effective notch stress, by 

implementing weld size as a variable. The attempts will further be addressed to as the notch 

size- and the notch stress correction studies. 

 Notch size study 3.2.1

An effort was made to find an ideal fictitious notch radius, capable of representing the target 

stresses. The procedure is shown in Figure 37, and further explained. 

 

 

Figure 37 – Procedure of notch size parameter study. 



 

32  

 

Methodology 

The ideal fictitious notch radii was found by making an educated guess as to what notch radii 

would correspond to the desired stress value, followed by extrapolation of the values 

obtained. This was done in an iterative manner, until a satisfyingly low deviation was 

achieved. 

In order to find parameters giving a relation between weld size and notch radiuses, these 

values were plotted in a graph and fitted with linear and second order polynomials, which is 

shown in Figure 61. 

Verification of the parameters’ precision was found by computing new notch radiuses for the 

weld sizes. By further comparing the stress results obtained from these parameterized notch 

sizes with the iterated stress results, the precision of the parameters were quantified. 

 

 Notch stress correction study 3.2.2

In order to investigate any relation between the target values and the obtained effective notch 

stresses, notch stress relative to the target stress was plotted for the defined weld sizes in 

Figure 63. Linear and second order polynomials were then fitted to the plots, giving 

parameters to describe the relation, as shown for the second order polynomial in equation  

( 28 ). 

 

        

         
             ( 28 ) 

 

By solving the equation for         , a corrected effective notch stress is obtained from the 

fitted parameters, and equation ( 29 ) is established. The corrected notch stress is thus a 

correction of the obtained FEA results, assuming that the nominal approach is the more 

precise approach. More importantly, it describes the relation between the two approaches.  

 

          
        

        
  ( 29 ) 

 

The parameters were verified by calculating corrected notch stress for all weld sizes, and 

comparing the corrected notch stress with the target values obtained from the nominal 

approach. 

 

 Determining weld size by extrapolating notch stress 3.2.3

For an effective notch stress analysis, it might be useful to assess fatigue life for either an 

increase or a decrease of weld size, without running several analyses. From equation ( 27 ), 

used for finding target notch stresses, it can be found that for a constant membrane stress and 
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constant plate thickness, effective notch stress may be extrapolated. By inserting the weld 

stress ( 14 ), into the target notch stress equation ( 27 ), and further assuming same slopes for 

the SN-curves, target notch stress can be defined from equation ( 30 ).  

                
 

 
     

 

 
      

 

 
   

 ̅     

 ̅   
 

 
       ( 30 ) 

 

From this equation, it is clearly seen that for varying weld sizes, the other parameters can be 

assumed constant, and thus only determine the slope of the linear relation. 

For an effective notch stress analysis with a weld size    and an obtained effective notch 

stress 

        , the effective notch stress          , for a weld size    may be determined by equation 

( 31 ). The precision of the extrapolation is however affected by the relation between target 

notch stress and actual effective notch stress. That is, the extrapolation implies an assumption 

of the effective notch stress to be linearly varying for weld sizes. 

 

                    
   

  
  ( 31 ) 

 

3.3 Fillet welded knee plate 
The second joint, provided by Aker Solutions, is an extension of a brace gusset plate. This 

extension is in the form of a knee plate, welded against the brace and a ring stiffener as shown 

in Figure 38 a and –b, respectively. All drawings for the required geometry are given in 

Appendix I. 

 

a) b) 

 
 

 
 

Figure 38 – a) picture of the knee plate located inside brace H1 and b) drawing of the knee plate with 
dimensions as used in analysis. 

Ring stiffener 

Knee plate 

Gusset plate 

Weld toa a 

Brace outer plate 
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Fatigue life of the welded knee plate has been assessed by Aker Solutions for weld toe a 

shown in Figure 38a, that is the weld toe in the thickness direction of the knee plate. The 

fatigue life was assessed for variable amplitude loading using Miner summation and the 

effective hot spot method B for shell elements. In addition to assessing the cumulative 

damage, an SCF for the weld toe had been found, by subjecting a local model to a unit load of 

1MN in the brace axial direction. These results were used for verification of the solid FEA 

model. 

In order to assess weld root fatigue of the fillet welded knee plate, a solid FEA was made, 

based on the validated methodology established for the cruciform joint. As both modelling 

and FEA calculations of solids are time consuming processes, the model was limited to 

consist of the part indicated in Figure 39 only.  

 

 

 

 

Figure 39 - Model used for fatigue analysis, indicated on inspection 
drawing of column PC1 and brace H1. 



 

  35 

 

Methodology 

This part, which further will be referred to as the brace model, consists of the brace from the 

knee plates, intersecting the brace and column, and 1m past the second brace-ring stiffener. 

This allowed for a symmetrical cross section about both the horizontal- and vertical axis of 

the brace. A mesh of one fourth of the model was therefore sufficient, as mirroring attributes 

to either represent or create the entire model could be defined. The quarter model will further 

be referred to as the base model. 

As the loading conditions provided by Aker solutions were non-symmetrical, mirrored 

boundary conditions could not be applied. It was therefore seen necessary to create a mesh for 

the entire part. This was achieved by assembling four base models and merging the nodes at 

the intersecting boundaries.  Some simplifications were however necessary. Methodology 

differing from the validated methodology is further addressed. 

 

 Model simplifications 3.3.1

When modelling solids in Abaqus, the tools available are somewhat limited considering the 

complicated geometries needed to represent a fictitious weld root notch. The complex 

geometries resulted in difficulties when meshing the part, which were not seen solvable by 

further partitioning. 

 

Simplification of knee plate  

An attempt was made to model the knee plate with an outer surface having the same curvature 

as the brace. This also leads to having a curved weld, which means that the weld root notch 

also must follow this curvature. Creating such a notch was found to be quite cumbersome, and 

it was thus decided to create a part used for the cut-out, as shown in Figure 40b. Both 

approaches were found to be time consuming and resulted in partitions that could only be 

meshed using tetrahedron elements. This was seen to be caused due to a conflict between the 

notch root and the outer surface geometry of the knee plate.   

a) b) c) 

   

 
 

Due to the complications of having a curved surface surrounding the knee plate, parts of the 

brace was made flat along the entire length of the brace. This was done by creating a 1/8 -

Figure 40 - a) The knee plate, b) the part intended for cutting out a weld root notch and c.) the cut-out for the knee 
plate 
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cross section of the brace, and further make a cut out of 25mm for the knee plate as shown in 

Figure 40c. This gave the opportunity of creating a simplified knee plate without any curved 

surfaces, except for what is shown in Figure 40a. The resulting model is shown in Figure 41 

where the simplified surfaces have been highlighted. This simplification was later verified by 

comparing two models without stiffening, the first, a perfectly circular brace and the second, 

containing the simplification used in the base model. 

 

 

 

 

Knee plate ending 

The weld and knee plate is from Figure 38a seen to be ground flush. The notch stress 

approach is however limited to natural formed welds and the FEA-model was therefore 

modelled as such. Although the model was intended to be made according to Figure 42a, this 

would result in a pointed knee plate end, forcing the elements in this area to be triangular. A 

triangular mesh was seen to give bad element shapes, due to the partitioning needed for the 

notch root. The weld was therefore modelled as shown in Figure 42b, in order to allow for 

hexagonal elements. The dimensions of the knee plate were as specified in the drawings, and 

the weld size and weld leg lengths were respectively 6mm and approximately 8.5mm. 

 

a) b) 

 

 

 

Figure 41 – Half the base model where the 

highlighted surfaces have been simplified by 
making them flat. 

Figure 42 – Illustration of the simplification needed where a) illustrates the pointed knee plate and b) The 
simplified model, where the highlighted geometry allows for hex elements. 
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Other simplifications  

The intersection between the gusset plate and the ring stiffener was moved 1mm towards the 

brace outer plate. This was necessary to avoid conflicts between gusset- and knee plate mesh. 

 

 Meshing 3.3.2

A mesh was first assigned to the base model, which was further copied and assembled to the 

full brace. During meshing of the base model, tie constraints were automatically created, due 

to incompatible interfaces between partitions close to the notch root partition. The tie 

constraints were however seen to only be applied at the edges of the incompatible faces. Tie 

constraints for the entire surface were thus created manually for all the incompatible faces in 

the knee plate. 

 

The base model 

The mesh was applied to the base model according to the methodology used in the 

verification model. However, due to the complex structure of the knee plate, some element 

angles were somewhat lower in parts of the model, as indicated in Figure 43. The low element 

angles at the gusset plate were found to be a result of the fine and relatively complex mesh at 

the knee plate. Efforts made to create a coarser mesh towards the end of the gusset plate were 

seen to affect the knee plate mesh. Finding a solution to this was found to be very time 

consuming, and therefore not further explored. The low element angles at the right hand ring 

stiffener have not been further explored, as focus has been on optimizing element shapes at 

the knee plate. At the knee plate, some elements were seen to have element angles as low as 

27 degrees. 

 

 

Figure 43 – Overview of the lowest element angles and their locations. 
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Although several attempts were made at avoiding element warnings, some warnings had to be 

accepted. The quarter model consists of 60022 quadrilateral elements, of which analyses 

warnings were reported for 5968 elements. These warnings are mainly due to the high aspect 

ratio in the gusset plate and brace outer plate. Figure 44 gives an overview of the areas 

containing elements subjected to analysis warnings.  

 

 

 

 

At the corner point where the knee plate, brace and ring stiffener intersect, the root partition is 

also seen to contain element warnings, as shown in Figure 45a. These elements were early 

seen to have the lowest angles in the root partition. Although efforts were made to improve 

element angles, an improvement strategy was not found. It was also seen that some elements 

close to the root partition also contained element warnings, as illustrated in Figure 45 b.  

 

a) b) 

 
 

 
 

The final base model was divided into a total of 329 regions, which were made by 230 

operations of different kinds, in order to mesh the part satisfactorily. Despite the element 

warnings, no mechanisms were visually observed in the resulting analyses. 

Figure 44 - Analysis warnings highligted in the base model. 

Figure 45 – Analysis warnings at a) the weld root partition, and b) the knee plate 
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Assembling the brace model  

The brace model was assembled by four copies of the base model. Nodes at the boundaries, 

intersecting the four base models, were then merged to form a complete mesh of the brace 

shown in Figure 46. Only when a complete element representation of the brace was defined, 

tie constraints, loads and boundary conditions could be dealt with. 

 

Figure 46 - The assembled element representation of the brace. 

 

Tie constraints 

When meshing two partitions that share a common face, all the nodes at this face must be 

shared between the elements at both sides of the face. It was seen that when Abaqus was 

unable to merge the nodes across a common face, it prompts the user whether to use tie 

constraints to redeem the problem. Although it was made an effort to avoid tie constraints, it 

was found to be unavoidable at the faces shown in Figure 47a. Tie constraints were however 

limited to partitions surrounding the root partitions, and not the actual root partitions, as 

shown in Figure 47. In figures b and c, the partitions from both sides of the incompatible faces 

have been illustrated, which if compatible, should have been a reflection of each other. 

 

a) b) c) 

   

 
 

Figure 47 – a) Knee plate with tie constraints and surfaces subjected to these constraints at b) closest to the ring 
stiffener, c) furthest from the ring stiffener 
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Later visual checks of the analyses results showed that the tie constraints, which were 

automatically applied by Abaqus, were only tying the nodes at the edges of the partiton faces, 

as shown in Figure 48a. This was resolved by manually applying tie constraints to all element 

surfaces at the incompatible faces. The resulting element behaviour is illustrated in Figure 48b 

 

a) b) 

 

 

 
 

 Loads and boundary conditions 3.3.3

Boundary conditions  

As the stiffness of the brace and column intersection was unknown and obtaining the stiffness 

would require a larger courser model, the boundary conditions were simplified. The 

simplification was performed by considering the column to be stiff, and thus all element 

surfaces were fixed at the column side of the brace model, according to Figure 39.  

 

Unit load 

In order to obtain a SCF for the weld toe, the brace model was first subjected to a unit load. 

This was done by subjecting the brace model to a negative pressure corresponding to 1 MN 

over the cross section of the brace. Thus, the unit load was applied in the same manner as for 

the validation model, with the same magnitude as applied by Aker Solutions’ unit loaded 

FEA. 

  

Loading according to Miner summation 

In order to compare assessed fatigue life with the results obtained by Aker Solutions, the 

loading had to be defined in a similar manner.  A data set containing stress range exceedances 

diagrams from a global FEA model was thus provided by Aker Solutions. The data set consist 

of 97600 rows and 6 columns, hence only the first rows are included in appendix B as an 

Figure 48 - Elements on both sides of the incompatible faces with a) 

automated tie constraints and b) manually applied tie constraints at element 
surfaces 
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example. The data contains 61 stress ranges for 8 Gauss points, at 8 elements. That is two 

elements containing 8 nodes each, at brace clock positions 3-, 6-, 9- and 12o’clock. An 

overview of the provided data is given in Figure 49, where a stress range exceedances 

diagram has been defined for 15 stress blocks. The data also account for wave directions from 

0 to 360 degrees with 15 degrees step interval, as well as a combination of all directions. The 

latter is used in the further analyses. 

 

 

Figure 49 - Overview of the provided data for one Gauss point, resulting in one sress 
range exceedances diagram. 

 

As the data provided was quite extensive, it was decided to create a Matlab script. The 

resulting script given in Appendix C, reads and processes the provided data, as well as 

generates Abaqus input commands.  

In order to recreate the stress fields provided from the global model, expressions for the stress 

range exceedances diagrams were established for every Gauss point. As the diagrams were 

seen to be approximately linear, the Matlab script fits each diagram with a linear fitted 

equation. This equation was further used to obtain stress ranges     , corresponding to 

predefined number of cycles’ n   which were defined in a vector   . The   -vector was defined 

as a logarithmic evenly distributed vector, representing the centre of each stress block, and 

containing   number of desired analyses steps. A plot containing stress range exceedances, the 

linear fitted curve, as well as the fitted stress blocks is shown in Figure 50. The width of each 

block represents the number of cycles    for each stress block, which later was used for 

calculating the damage sum, and thus not to be confused with the   -vector. The 

corresponding stress ranges were further averaged for each clock position, resulting in   mean 

stress ranges   ̅  , for each clock position.   
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Figure 50 - Provided stress range exceedances diagram for one Gauss point, the 
linear fitted curve and the stress blocks used for the fit. 

 

Further, Abaqus input commands were exported into a text file, which could be copied 

directly into the Abaqus’ kernel command line interface. The input commands, which are 

given in Appendix D, create mapped analytical stress fields for every analysis step, based on 

the averaged stress at the four clock positions. Field mapping and a resulting field is shown in 

Figure 51, where the average stress is assumed to be located at the middle of the brace 

thickness. The input commands also create the number of analysis steps needed, and a load 

for each step, which is defined as a pressure of unity. The analytical fields are then assigned to 

the loads, and as Abaqus automatically propagate loads used in previous steps, these loads are 

disabled.  

 

a) b) 

  

 Figure 51 - a) Creating mapped field, and b) Resulting stress field. 
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 Obtaining the effective notch stresses 3.3.4

Upon completion of the analyses, 4 weld root paths were defined at the 12o’clock position, 

which was the clock position seen to have the highest stress concentrations. The weld toes and 

roots along these paths, will for simplicity further be addressed to as a, b, c and d, as shown in  

Figure 52. 

 

 

Figure 52 - Weld root paths including direction of stress 
extraction. 

 

 Obtaining the effective hot spot stresses 3.3.5

Hot spot stresses were evaluated for every clock position, for the weld at the end of the knee 

plate, corresponding to path a in Figure 53. Principal stresses were needed to calculate the 

effective hot spot stress. By plotting the maximum principal stresses’ directions in Abaqus, it 

was seen that they were acting normal to the weld toe at the read out points, as seen in Figure 

53a. 

 

a) b) 

  

 Figure 53 - Hot spot stresses with principal directions shown in a), extracted along the path shown in b) 
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As Abaqus extrapolates stresses from the Gauss points to the nodes, and the maximum 

stresses in the path shown in Figure 53b were observed to be at the same surface as the weld 

toe, maximum principal stress from this path was taken as the read-out stress for the effective 

hot spot approach. 

The read-out stress was then inserted directly into equation ( 18 ), for calculation of the 

effective hot spot stress according to method B. As principal stresses were seen to act normal 

to the weld, the alpha factor was taken as 1. The brace was not seen to be significantly 

affected by bending, and a reduction of the bending stress component by 40% could not be 

utilized. 

 

 Cumulative damage 3.3.6

Cumulative damage was calculated based on the Miner summation procedure, using both the 

effective notch stress and the effective hot spot stress, for weld roots and weld toe, 

respectively. This was done in order to compare the damage sum with results obtained from 

Aker Solutions’ fatigue assessments. The damage sum was found utilizing equation ( 21 ), 

where    was calculated based on the   -vector.    was taken as the design life according to 

equation ( 4 ) and ( 3 ) for the effective hot spot stress and effective notch stress respectively, 

calculated using their respective stresses obtained for each analysis step  .  

 

 Verification of the simplified brace plate 3.3.7

As the base model was simplified along the entire length of the brace, by flattening the brace 

at a small cross sectional area, it was decided to investigate the affects this had on the FEA 

results. This was done by making two simplified models of the brace, excluding all stiffeners. 

The first model was made similar to the full model, hereby denoted Brace validation model 1 

(BV1) . Hence BV1 was made as four quarters of the brace, with a flat partition 

corresponding to the full model, as shown in Figure 54 a. The second model shown in Figure 

54 b, was made as a full 360 degree cone/cylinder. This model will be referred to as brace 

validation model 2 (BV2). The two models were applied the same boundary conditions as the 

full model, and a negative uniform pressure of 1MPa as loading. 
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a) b) 

  

 
 

Stresses in BV1 were extracted along paths at both the edge, as shown in Figure 54 a, and at 

the centre of the flattened partition. For BV2, a random path was selected, as stress does not 

vary in the cross sections of this model. If the simplifications were justified, the difference 

between the results from the two models was expected to be minimal. 

 

3.4 Comparing the results 

Stress concentrations 

As Aker Solutions provided an SCF for weld toe a, an SCF for the same weld toe in the brace 

model was found based on an analysis of this model subjected to a unit load. The results were 

further compared to Aker Solutions’ results in order to verify the brace model, and to verify 

that loading was correctly defined.  

 

Cumulative damage 

The loading, which was based on results from Aker Solutions’ global model, is only applied 

on the cross section at one side of the brace model. The boundary on the other side of the 

brace model, towards the column, was fixed based on the assumption that the column was 

stiff. An evaluation of the boundary conditions was thus performed by comparing the 

cumulative damage obtained using the effective hot spot stress, to the fatigue life assessed by 

Aker Solutions.  

 

Summary of compared values  

An overview of the results that are compared and what they are compared to is shown in 

Table 4. 

 

Figure 54 – Boundary conditions applied at a) BV1 and b) BV2, with two out of 
three paths used for stress extractions. 
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Table 4 - Overview of which results that are compared and what they are compared to. 

Why it is compared What is compared What it is compared to 

Verify the target notch stress SCF’s 

given by DNV for the validation 

model. 

Target SCF values calculated using 

the nominal approach for a 

cruciform joint. 

Target SCF values given by DNV. 

Validate the effective notch stress 

methodology. 

SCF’s found from FEA of the 

cruciform joint, for weld root and –

toe. 

Target SCF’s given by DNV and 

calculated by the nominal 

approach. 

Investigate the nominal, and the 

effective notch stress approach for 

varying weld sizes. 

Effective notch stress at the weld 

root of the cruciform joint for 

varying weld sizes. 

Target notch stress values, 

established from the nominal 

approach. 

Validate simplifications of the 
brace outer plate. 

The simplified brace model, BV1. The BV2 model. 

Validate loading and modelling of 

the brace model. 

SCF results from brace model. Aker solutions SCF results. 

Validate boundary conditions of the 

brace model. 

Fatigue life of weld toe a, found by 

the effective hot spot approach and 

Miner summation. 

Aker solutions fatigue life results 

from a global model. 

Propose a weld size that results in a 

greater fatigue life at the weld root 

than that of the weld toe, for the 

knee plate. 

Weld root fatigue for the brace 

model, obtained by extrapolated 

effective notch stress. 

Weld toe fatigue results from both 

the brace model and Aker 

Solutions. 
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4 Results 

4.1 Cruciform joint –validation according to DNV 

 Target notch stress values  4.1.1

Using equation ( 27 ), a target SCF at the weld toe of the full penetration welded cruciform 

joint was found to be approximately 3.17. For a fillet welded cruciform joint with the same 

dimensions, a SCF for the weld toe and -root were found to be approximately 4.02 and 6.25 

respectively. This is shown in Table 5, and illustrated for the weld root of the fillet welded 

joint in Figure 55, by comparing the fatigue design curves in air for the nominal approach to 

the notch stress design curve. As can be seen in the figure, the fatigue life obtained from a 

stress amplitude using the nominal stress approach (lower SN-curve), corresponds to the same 

fatigue life for the notch stress approach (upper SN-curve) with a higher stress amplitude. 

 

 Table 5 - Target value for effective notch stress. 

  Nominal approach Notch stress approach 

  N Δσ N Δσ 
Weld root fillet 9.333E+04 100 9.340E+04 625.00 
Weld toe full pen 7.161E+05 100 7.160E+05 316.98 
Weld toe fillet 3.516E+05 100 3.516E+05 401.78 

 

 

Figure 55 - Comparing design curves for the effective notch stress and nominal stress approach for the weld root. 

 

Comparing the SCF’s obtained with the ones given by DNV (2012), it can be seen that for the 

weld root they are identical. The SCF obtained for the weld toe of the full penetration welded 

joint justifies the assumption that a typing mistake has been done in DNV (2012), and that the 

weld toe SCF of the fully penetration welded joint is 3.17. 

The SCF obtained at the weld toe of the fillet welded joint is however different from the SCF 

of 3.57 given by DNV. By further inspection, it was found that the same SCF was obtained by 

using the F1-curve parameters, although it is stated by DNV that the F3-curve has been used. 

The result using the F1 design curve parameters is given in Table 6. 
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Table 6 - Target value for the effective notch stress, obtained using the F1 curve. 

 
Nominal approach Notch stress approach 

 
N Δσ N Δσ 

Weld toe (fillet weld) 5.000E+05 100.00 5.000E+05 357.28 

 

 Effective notch stress 4.1.2

The stresses obtained from the defined paths are shown in Figure 56 and Figure 57, for 

respectively root 1 and toe 2 configurations. It is seen that for the weld root notch, stress 

seems to concentrate a small distance from the boundaries. For the weld toe notch, stresses are 

seen to concentrate at the middle of the weld depth. 

 

 

Figure 56 - Stress extracted along the depth of the weld root notch for root 3, with 4 elements along a quarter 

circumference. 

 

 

Figure 57 - Stress extracted along the depth of the weld toe notch for toe 2, with 5 elements along a quarter 

circumference. 

 

The effective notch stresses obtained from the FEA are shown and compared to the target 

notch stress in Table 7. 
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Table 7 - Effective notch stress obtained in FEA. 

  Maximum notch stress [Mpa] Deviation from target value [%] 

# of elements per quarter 
circumference 

2 4 8 10 2 4 8 12 

Root1 606.52 605.44 601.76 - -2.96 -3.13 -3.72 - 

Root2 - 668.36 - - - 6.94 - - 

Root3 609.48 609.15 605.65 602.89 -2.48 -2.54 -3.10 -3.54 

Root 3 (combined model) - 606.84 - - - -2.91 - - 

Root 3 ( root partition 
radius, r=2.2mm) 

- 608.07 - - - -2.71 - - 

# of elements per quarter 
circumference 

2 5 10 - 2 5 10 - 

Toe 1 - 278.43 - - - -12.17 - - 

Toe 2 296.47 315.46 315.50 - -6.48 -0.49 -0.47 - 

Toe 2 (comb. Model) - 479.73 - - - 19.40 - - 

 

For the root 3 configuration, the initial weld root partition of 2.2mm was seen to give a 

slightly less conservative result than that of a 4mm radius. The increase in radii did not affect 

the number of elements required for the model significantly, and was thus used for further 

analyses.  

The root 1-, root 3- and toe 2 notch configurations gave the most promising results and were 

hence chosen for the mesh convergence study shown in Figure 58 and Figure 59, respectively. 

 

 

Figure 58 - Mesh convergence study for root 1, deviation from effective notch stress target value. 

 

 

Figure 59 - Mesh convergence study for toe 2, deviation from 
effective notch stress target value. 
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It is seen that the effective notch stress for root 3 tends to converge towards a stress deviation 

of approximately -3.5%, corresponding to a SCF value equal to 6.03. The difference in stress 

deviation obtained from 2-12 elements along the quarter circumference is quite minimal, 

approximately 1%. 

For the weld toe, 4 elements along the quarter circumference gave lower stresses at the nodes 

than 5 elements. It is thus noted that if stresses are seen to concentrate in between nodes, mesh 

should be adjusted accordingly.  

The weld toe convergence study showed convergence towards a stress deviation of about -

0.5%, which correspond to an SCF equal to 3.15 for 5 or more elements along the quarter 

circumference. 

The combined model containing fictitious notches at both weld toe and root, gave a +14.6% 

deviation from the target value at the weld toe, which was relatively large compared to the 

other results. The primary objective with this model was to analyze the weld toe of the fillet 

welded joint, and very small stress variations were seen in the mesh convergence study for the 

full penetration weld toe model. A mesh convergence study for this model was therefore not 

performed. It is however noted that the effective notch stress for the weld toe of the fillet 

welded joint is on the conservative side. The effective notch stress for root 1 in the combined 

model is slightly more non-conservative than for the root 1 model, approximately 2.4%.  

 

 Undocumented observations 4.1.3

It is noted, that introducing a different mesh for the partition containing the weld and plate 

intersection area, was observed to only slightly lower the stress concentrations at the weld 

root. For an analysis containing elements with a worst element angle of 18 degrees in this 

partition, and also containing elements in the root partition with an aspect ratio of 25, the 

effective notch stress was found to be approximately 3 % lower than initially.  

For the outer plate partitions, changing mesh size over the thickness was not observed to 

affect the weld root stress. Some variations were observed to appear for the weld toe, these 

variations were however on the conservative side, as stress concentrations were only seen to 

increase for decreasing mesh sizes. 

 

 Fatigue life 4.1.4

Fatigue life obtained using the effective notch stress approach and deviation of this fatigue 

life relative to that obtained from the nominal stress approach, is given in Table 8. 
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Table 8 - Assessed fatigue life using the effective notch stress approach, comparison with fatigue life obtained from 
nominal approach. 

  
Effective notch stress fatigue life  

[cycles to failure] 
Deviation from nominal 
approach fatigue life [%] 

# of elements per 
quarter 
circumference 

2 4 8 10 2 4 8 10 

Root 1 1.02E+05 1.03E+05 1.05E+05 - 9.51 10.10 12.13 - 
Root 2 - 7.64E+04 - - - -18.16 - - 
Root 3 1.01E+05 1.01E+05 1.03E+05 1.04E+05 7.92 8.10 9.99 11.50 
Root 3 (comb. 
model) 

- 1.02E+05 - - - 9.34 - - 
# of elements per 
quarter 
circumference 

2 5 10 - 2 5 10 - 

Toe 1 - 1.06E+06 - - - 47.53 - - 
Toe 2 8.75E+05 7.26E+05 7.26E+05 - 22.22 1.45 1.41 - 
Toe 2 (comb. Model) - 2.08E+05 - - - -40.71 - - 

 

As expected, the fatigue life deviation is greater than the stress deviation for the two 

approaches. This is due to the stress inserted for fatigue life in equation ( 2 ) is raised to the 

power of three. It is seen that root 3 and toe 2 give the smallest deviations, with root 3 

somewhat overestimating the fatigue life. Assessed fatigue life at the weld toe of the fillet 

welded joint, which is given as the toe 2 combination model, is observed to be very 

conservative. The weld root fatigue life for the combination model is seen to be slightly more 

overestimated. 

 

4.2 Parametric weld size study 

 Effective notch stress for varying weld size 4.2.1

In the same manner as the validation procedure, target values for the effective notch stress 

approach were obtained using equation ( 27 ). The results are shown in Table 9, where the 

DNV validated results have been highlighted. The values are further used for comparison with 

the obtained FEA results.  

 

Table 9 - Target stress values for the notch stress approach for varying weld sizes, obtained from 
the nominal approach. 

Weld stress calculations Target notch stress [MPa] 

          t [m] a [m]                               

100 0 0.016 0.004 200 1250.34 401.79 316.95 
100 0 0.016 0.006 133.33 833.56 401.79 316.95 
100 0 0.016 0.008 100 625.17 401.79 316.95 
100 0 0.016 0.010 80 500.13 401.79 316.95 
100 0 0.016 0.012 66.67 416.78 401.79 316.95 

 The obtained notch stresses extracted from the FEA are shown in Table 10, where increasing 

absolute deviation for both decreasing and increasing weld sizes, relative to the original 8mm 

weld size, is observed for both weld root and at the toe of the full-pen weld. More 
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specifically, the stress results are lower than predicted for smaller weld sizes and higher for 

larger weld sizes. This leads to an inaccuracy when using the effective notch stress approach 

for assessing the design life, assuming the nominal approach is more accurate. For weld sizes 

larger than 8mm, design life obtained using the effective notch stress approach is 

conservative, while for weld sizes smaller than 8mm it is non-conservative. For the weld toe 

of the fully penetration welded joint, the results are seen to be far more similar to the target 

values, compared to that of the weld root. 

 

Table 10 - Notch stress results for varying weld sizes, compared with target values. 

Weld 
size [m] Extracted stress [MPa] 

Deviation from target 
stress  [%] 

Design life [cycles to 
failure] 

Deviation from target 
design life [%] 

a                    root Toe, full pen                     root Toe, full pen 

0.004 928.59 302.05 -25.71 -4.70 2.85E+04 8.27E+05 144.13 15.55 
0.006 728.40 306.56 -12.62 -3.28 5.90E+04 7.92E+05 49.87 10.52 
0.008 609.15 315.46 -2.56 -0.47 1.01E+05 7.26E+05 8.10 1.43 

0.01 530.91 323.35 6.15 2.02 1.52E+05 6.74E+05 -16.40 -5.82 
0.012 470.97 323.95 13.00 2.21 2.18E+05 6.71E+05 -30.70 -6.33 

 

By further plotting the target- and extracted notch stress for the inverse weld size, the 

difference between the target values and the obtained effective notch stress can be seen in 

Figure 60.  

 

 

Figure 60 - Target values and obtained effective notch stress plotted for inverse weld size. 

 

From Figure 60 it can be seen that the target values are linear for varying weld sizes, whereas 

the obtained effective notch stress is slightly non-linear. 
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 Notch size study 4.2.2

Ideal notch radiuses, redeeming the discrepancies between the nominal and effective notch 

stress approach, were found by iteration. The final iterated results, determining ideal notch 

radiuses for each weld size, are shown in Table 11. By comparing Table 10 and Table 11, it is 

noticed that a larger notch radii results in lower effective notch stress and vice versa. The 

ideal radiuses are further plotted for weld sizes in Figure 61, and fitted with a linear and 2.-

order polynomial. 

 

Table 11 - Ideal notch radii iteration results. 

Ideal results, Numerically est. notch size for root 

Weld 
size 

[mm] 
Notch 

radii [mm] 
Extracted ideal 

stress [MPa] 

Taget 
stress 
[MPa] Deviation 

4 0.495 1250.0 1250.3 0.029 

6 0.736 834.8 833.6 -0.148 

8 0.944 625.3 625.2 -0.020 

10 1.143 499.8 500.1 0.068 

12 1.311 417.1 416.8 -0.080 
 

 

Figure 61 – Iterated ideal notch radii fitted with linear and 2. order polynomial. 

 

As seen in Figure 61, the ideal notch radiuses have a close to linear relation with weld size. 

The fitted linear- and second order polynomial are given as equations for corrected fictitious 

notch radiuses       , in equations ( 32 ) and ( 33 ), respectively. 

  

  
     

                  ( 32 ) 

 

𝜌′(𝑓,𝑐𝑜𝑟) = 0.102a + 0.1102 

𝜌′'(𝑓,𝑐𝑜𝑟)= -0.0028a2 + 0.1462a - 0.0448 
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                                     ( 33 ) 

 

Verification 

The precision of using a corrected notch radii was quantified by computing these radiuses, 

and use the computed radiuses in a new FEA. From this FEA, the corrected notch radiuses’ 

stress results were found and compared to the former ideal stress results.  

As can be seen in Table 11, the corrected notch radiuses obtained from the linear parameters 

were seen to differ more from the iterated ideal notch sizes obtained for weld size 4 and 12. It 

was thus decided to verify the corrected fictitious notch radii for the linear parameters, for 

these weld sizes only. The results are shown in Table 12, where notch stress obtained using 

the ideal notch radii for each weld size, is compared with the notch stress obtained using the 

corrected linear notch radii. The largest deviation using the linear approximation was found to 

be approximately 2%.  

 

Table 12 - Verification of the notch size study. 

  Ideal results Verification of 'linear' relation 
Verification of 

'2.ord. poly' relation 

Weld size 
[mm] 

Notch 
radii [mm] 

Extracted 
ideal stress 

[MPa] 

Notch 
radii 
[mm] 

Extracted 
stress 
[MPa] 

Deviation 
from ideal 
stress [%] 

Notch 
radii 
[mm] 

Extracted 
stress 
[MPa] 

4 0.495 1250.0 0.518 1224.5 2.04 0.495   
6 0.736 834.8 0.722     0.732   
8 0.944 625.3 0.926     0.946   

10 1.143 499.8 1.130     1.137   
12 1.311 417.1 1.334 414.0 0.75 1.306   

 

 Notch stress correction study 4.2.3

The relation between the target- and obtained values are illustrated in Figure 62, where notch 

stress and design life has been plotted for weld size.  
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a) b) 

  
 

Figure 62 – Comparison of a) Target notch stress and obtained notch stress, and b) Design life obtained from the 

notch stress approach and target values . 

 

By further plotting the obtained notch stress relative to the target stress for the defined weld 

sizes, a close to linear relation can be observed in Figure 63. As can be seen in the figure, 

using the linearized relation for correction, notch stress will be slightly overestimated for weld 

sizes of approximately 5-11mm, while underestimating for all weld sizes above 11mm and 

below 5mm, assuming that the trend observed is continued. This would lead to non-

conservative design life for the latter. Visual inspections of the fitted second order polynomial 

shows very good potential of correcting the effective notch stress. 

 

 

Figure 63 - Relation between notch stress, relative to target stress and weld size. 

 

The fitted linear and 2.-order relation between notch stress and target stress for varying weld 

sizes, are given in equations ( 34 ) and ( 35 ), respectively. Here the equations have been 

solved for the target notch stress, resulting in corrected stress amplitudes which further will be 

addressed to as corrected notch stress (     ).  
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  ( 34 ) 

    

           
       

                        
   ( 35 ) 

 

Verification 

The results of the notch stress correction parameters are verified in Table 13, where it is 

compared to the target values. As seen from the table, the largest deviation for the linear notch 

stress is found for the smallest weld size, approximately 2.8%, which is an improvement of 

about 23%. For the 2-order correction, notch stress deviation is close to zero for all weld 

sizes. 

 

Table 13 - Verification of corrected notch stress. 

Weld size 
Target 
value 

Verification –Linear notch 
stress correction 

Verification –2. order poly 
notch stress correction 

a [m] 
        
[MPa]        [MPa] Deviation [%] 

        
[MPa] Deviation [%] 

0.004 1250.35 1215.47 -2.79 1247.80 -0.20 
0.006 833.56 846.76 1.58 837.10 0.42 
0.008 625.17 636.88 1.87 623.94 -0.20 

0.01 500.14 504.33 0.84 499.62 -0.10 
0.012 416.78 409.92 -1.65 417.11 0.08 

 

By once again plotting notch stress values for the inverse of the weld size, the second order 

notch stress correction can be seen to coincide with the target values obtained from the 

nominal stress approach.  

 

 

Figure 64 - Correction of the notch stress FEA results performed using equation ( 35 ). 
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 Undocumented observations 4.2.4

Effective notch stress at the weld root was seen to be slightly affected by the plate thickness. 

Deviation from target notch stress values was seen to be less than 3% for plate thicknesses 

between 8mm and 24mm. The deviation was however seen to be increasingly conservative for 

larger plate thicknesses, and due to the small deviation this was not further pursued.  

 

4.3 Fillet welded knee plate 
Results from variable loading and Miner summation are further given in detail for 10 stress 

blocks. The complete results for effective notch stress and Miner summation of 15 stress 

blocks are given in appendix H. 

 

 Verification of simplifications 4.3.1

Brace validation model 1 and 2 is compared in Figure 65a, where maximum principal stress 

have been extracted along the length of the brace. For BV1, the stresses were found to be 

quite similar at both the centre of the flat partition and at the edge of the flat partition. 

Deviation between BV1 and BV2 has thus been plotted in Figure 65b, using the maximum 

difference between the two models. Absolute deviation from BV2 is seen to increase towards 

the fixed boundary conditions representing the column. Stress in BV1 is also seen to be 

approximately 6% lower than that of BV2, some distance from the applied load.  Between 4.4 

and 5m from the applied boundary conditions, which is the area corresponding to the knee 

plate’s position; deviation was found to be less than 0.3%. 

 

a) b) 

 
 

 
 

The simplified knee plate ending, located opposite of the column, was visually verified. Stress 

was seen to diminish towards the tip of the knee plate, as shown in Figure 66. 
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Figure 66 – Contour plot of maximum principal 
stress at the simplified knee plate ending. 

 

 Weld toe and root SCF 4.3.2

For the unit loaded brace model, the SCF obtained for weld toe a is compared to Aker 

Solutions’ SCF in Table 14. The SCF’s are given as the effective hot spot stress when 

subjected to a unit load of 1 MN in the axial direction. As can be seen from the table, the 

result from the brace model is found to be more conservative than that of Aker Solutions’ 

results. It is however noted, that for the brace model, the weld is modelled as a fillet weld, 

according to the notch stress approach. 

 

Table 14 - Stress concentrations at the weld toe and root path a, compared to Aker Solutions 
results, for a tension load of 1MN. 

 Brace model Aker Solutions’ result 

Weld toe SCF 9.01 MPa 7.952MPa 

Weld Root SCF 26.47 MPa - 

 

 Applied loading according to Miner summation 4.3.3

Stress results in the axial direction for 10 stress blocks, based on the stress range exceedances 

diagrams provided by Aker solutions, are shown in Table 15 for all four clock positions. As 

can be seen from the table, all stresses have been determined for the same number of cycles, 

as given by the   -vector. 
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Table 15 - Applied loads for the analysis of 10 stress blocks. 

  n'-vector Stress range at clock positions [Pa] 

Step Log(n’) 12:00 03:00 06:00 09:00 
1 0.38 2.00E+08 2.09E+08 2.03E+08 2.08E+08 
2 1.14 1.80E+08 1.88E+08 1.81E+08 1.86E+08 
3 1.9 1.59E+08 1.66E+08 1.60E+08 1.65E+08 
4 2.66 1.38E+08 1.44E+08 1.39E+08 1.43E+08 
5 3.42 1.17E+08 1.22E+08 1.18E+08 1.21E+08 
6 4.18 9.62E+07 1.00E+08 9.68E+07 9.98E+07 
7 4.94 7.54E+07 7.86E+07 7.56E+07 7.81E+07 
8 5.7 5.45E+07 5.68E+07 5.45E+07 5.64E+07 
9 6.46 3.37E+07 3.50E+07 3.33E+07 3.48E+07 

10 7.22 1.29E+07 1.32E+07 1.22E+07 1.31E+07 

 

Stress ranges are seen to include a bending stress component acting over the cross section of 

the brace. The bending stress component is however minimal. 

 

 Weld toe fatigue life 4.3.4

As the maximum principal stress was seen to act approximately normal to the weld, the 

effective hot spot stress was taken as 1.12 times the read out stress, according to the effective 

hot spot approach method B. The resulting effective hot spot stress for the variable amplitude 

loading is given for 10 stress blocks in Table 16. 

 

Table 16 – Effective hot spot stress for weld toes a of the knee plate 
model, for 10 stress blocks at 4 clock positions. 

  Effective hot spot stress [Pa] 

step # hotsp_cl12 hotsp_cl03 hotsp_cl06 hotsp_cl09 

1 3.29E+08 3.29E+08 3.30E+08 3.29E+08 
2 2.95E+08 2.95E+08 2.96E+08 2.95E+08 
3 2.61E+08 2.61E+08 2.62E+08 2.60E+08 
4 2.27E+08 2.26E+08 2.27E+08 2.26E+08 
5 1.92E+08 1.92E+08 1.93E+08 1.92E+08 
6 1.58E+08 1.58E+08 1.58E+08 1.58E+08 
7 1.24E+08 1.24E+08 1.24E+08 1.23E+08 
8 8.94E+07 8.92E+07 8.94E+07 8.91E+07 
9 5.51E+07 5.49E+07 5.50E+07 5.48E+07 

10 2.09E+07 2.06E+07 2.05E+07 2.06E+07 

 

Fatigue life, corresponding to the effective hot spot stress and the D curve for air 

environment, is given in Table 17, where the thickness correction has been applied.  The 

fatigue lives calculated here are further taken as the    values used for Miner summation, and 

the final calculation of expected fatigue life given in years. 
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Table 17 - Fatigue life calculated by the hot spot approach. 

     – For the weld toe [cycles to failure] 

step # hotsp_cl12 hotsp_cl03 hotsp_cl06 hotsp_cl09 

1 3.81E+04 3.81E+04 3.78E+04 3.84E+04 
2 5.30E+04 5.31E+04 5.25E+04 5.34E+04 
3 7.67E+04 7.69E+04 7.61E+04 7.73E+04 
4 1.17E+05 1.17E+05 1.16E+05 1.18E+05 
5 1.92E+05 1.92E+05 1.90E+05 1.93E+05 
6 3.45E+05 3.47E+05 3.44E+05 3.49E+05 
7 7.20E+05 7.23E+05 7.17E+05 7.27E+05 
8 1.90E+06 1.92E+06 1.91E+06 1.93E+06 
9 8.13E+06 8.22E+06 8.21E+06 8.27E+06 

10 9.13E+08 9.66E+08 9.90E+08 9.75E+08 
 

From the defined  ’-vector, the number of cycles for every stress block were calculated, thus 

allowing for calculation of the Miner sum and resulting fatigue life. The obtained values are 

shown in Table 18, where   
  and   

  represent the number of cycles at the beginning and end 

of each stress block, respectively. 

 

Table 18 - Fatigue life for each stress block, as well as the Miner sum calculations for the weld toe according to the effective 

hot spot approach. 

 

Defining stress block cycles    
  

  

 

step # log(  
 ) log(  

 ) log    =log(  
    

 )                                    

1 0 0.76 0.68 4.75E+00 0.00 0.00 0.00 0.00 
2 0.76 1.52 1.44 2.74E+01 0.00 0.00 0.00 0.00 
3 1.52 2.28 2.20 1.57E+02 0.00 0.00 0.00 0.00 
4 2.28 3.04 2.96 9.06E+02 0.01 0.01 0.01 0.01 
5 3.04 3.8 3.72 5.21E+03 0.03 0.03 0.03 0.03 
6 3.8 4.56 4.48 3.00E+04 0.09 0.09 0.09 0.09 
7 4.56 5.32 5.24 1.73E+05 0.24 0.24 0.24 0.24 
8 5.32 6.08 6.00 9.93E+05 0.52 0.52 0.52 0.51 
9 6.08 6.84 6.76 5.72E+06 0.70 0.70 0.70 0.69 

10 6.84 7.6 7.52 3.29E+07 0.04 0.03 0.03 0.03 

  ∑
  

  
 

 

  
  

1.63 1.61 1.62 1.60 

Fatigue life [years] 

  
  12.31 12.42 12.37 12.49 

 

For comparison, Aker Solutions provided assessed fatigue life for the four clock positions, 

based on the effective hot spot approach. The Hot spot method B was applied also for this 

model, but a global model was used for FEA. Their results are compared to the results for 

both 10 and 15 stress blocks in Table 19. Comparing to Aker Solutions’ results, it can be seen 

that a significant amount of bending has affected their results. It is however observed that the 

results obtained from the solid brace model is conservative compared to the provided fatigue 

life. It is also seen that increasing the number of stress blocks used for Miner summation 

increases the assessed fatigue life. 
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Table 19 - Fatigue life assessed for the brace model, and life assessed by Aker 
Solutions global model. 

Clock position 12:00 03:00 06:00 09:00 

Fatigue life obtained 
for 10 stress blocks 
[years] 

12.31 12.42 12.37 12.49 

Fatigue life obtained 
for 15 stress blocks 
[years] 13,64 13,78 13,73 13,86 

Aker solutions fatigue 
life [years] 16.8 20.6 34.2 19.1 

 

 Weld root fatigue life 4.3.5

Weld root fatigue was evaluated for variable amplitude loading for the 12o’clock position, 

which was seen to contain the highest principal stress. As can be seen in Table 20, the results 

for 10 stress blocks show that the highest stress concentrations are found in path c. Corrected 

notch stress was calculated according to the second order notch stress correction, obtained 

from the parameter study. The resulting stress, also shown Table 20, is approximately 10% 

higher than what initially obtained in the FEA.  

 

Table 20 – Extracted stresses from the weld root paths of the knee plate, as well as corrected notch 
stress. 

  
Maximum principal stress read at root paths 

at 12o’clock [Pa] Corrected notch stress [Pa] 

Step # path a path b path c path d path a path b path c path d 
1 9.68E+08 5.73E+08 1.42E+09 3.49E+08 1.11E+09 6.59E+08 1.64E+09 4.01E+08 
2 8.68E+08 5.13E+08 1.27E+09 3.13E+08 9.97E+08 5.90E+08 1.46E+09 3.59E+08 
3 7.67E+08 4.54E+08 1.13E+09 2.76E+08 8.81E+08 5.21E+08 1.29E+09 3.18E+08 
4 6.66E+08 3.94E+08 9.79E+08 2.40E+08 7.65E+08 4.53E+08 1.12E+09 2.76E+08 
5 5.65E+08 3.34E+08 8.30E+08 2.04E+08 6.50E+08 3.84E+08 9.54E+08 2.34E+08 
6 4.64E+08 2.75E+08 6.82E+08 1.67E+08 5.34E+08 3.16E+08 7.84E+08 1.92E+08 
7 3.64E+08 2.15E+08 5.34E+08 1.31E+08 4.18E+08 2.47E+08 6.14E+08 1.51E+08 
8 2.63E+08 1.56E+08 3.86E+08 9.47E+07 3.02E+08 1.79E+08 4.44E+08 1.09E+08 
9 1.62E+08 9.59E+07 2.38E+08 5.84E+07 1.86E+08 1.10E+08 2.74E+08 6.71E+07 

10 6.13E+07 3.62E+07 9.00E+07 2.21E+07 7.04E+07 4.17E+07 1.03E+08 2.54E+07 
 

 

Analysis stress results for the first stress block, step 1, extracted from the 12o’clock position 

at the side of the knee plate seen to have the highest stress concentrations, are illustrated in 

Figure 67. As can be seen from the figure, the highest stress concentrations occur at the weld 

between the knee plate and the ring stiffener close to the brace. It is noticed, that the highest 

stress concentration was found to be located three elements away from the elements subjected 

to analysis warnings. 



 

62  

 

Results 

 

 

From the corrected notch stress results, fatigue life based on the effective notch stress SN-

curve for air was calculated for all root paths. The results are given Table 21, which are 

further used for calculating the Miner sum, and assess the number of fatigue life years.  

Table 21 - Fatigue life calculated for all root paths by the effective 

notch stress SN-curve for air. 

  Ni Root fatigue [cycles] 

Step # Path a Path b Path c Path d 

1 1.65E+04 7.99E+04 5.22E+03 3.54E+05 
2 2.30E+04 1.11E+05 7.25E+03 4.92E+05 
3 3.33E+04 1.61E+05 1.05E+04 7.12E+05 
4 5.09E+04 2.45E+05 1.60E+04 1.09E+06 
5 8.32E+04 4.02E+05 2.62E+04 1.78E+06 
6 1.50E+05 7.24E+05 4.73E+04 3.21E+06 
7 3.12E+05 1.51E+06 9.85E+04 6.68E+06 
8 8.27E+05 3.99E+06 2.61E+05 3.06E+11 
9 3.53E+06 2.95E+11 1.11E+06 1.30E+12 

10 1.13E+12 5.46E+12 3.57E+11 2.40E+13 

 

The lowest fatigue life is observed for root path c, which is consistent with the root path found 

to have the highest stress concentrations. Similarly path d is found to contain the lowest stress 

concentrations, and thus the highest fatigue life is found in path d. For miner sum 

calculations, fatigue life for path a and c were assessed, only. 

Similarly to the hot spot approach, the number of cycles for every stress block was defined 

from the  ’-vector. The Miner sum for the weld roots were then obtained as shown in Table 

22. 

 

Figure 67 – Maximum principal stress in the defined weld roots for step 1 of the analysis. 

Where points indicated in the graph represents the nodes of stress extraction. 



 

  63 

 

Results 

Table 22 - Fatigue life for each stress block, as well as the Miner sum calculations for the weld root, 
according to the effective notch stress approach. 

  
Defining stress block cycles    

  

  
 

step # log(  
 ) log(  

 ) log    =log(  
    

 )    Di path a Di path c 

1 0 0,76 0,68 4,75E+00 0.00 0.00 
2 0,76 1,52 1,44 2,74E+01 0.00 0.00 
3 1,52 2,28 2,20 1,57E+02 0.00 0.01 
4 2,28 3,04 2,96 9,06E+02 0.02 0.06 
5 3,04 3,8 3,72 5,21E+03 0.06 0.20 
6 3,8 4,56 4,48 3,00E+04 0.20 0.63 
7 4,56 5,32 5,24 1,73E+05 0.55 1.75 
8 5,32 6,08 6,00 9,93E+05 1.20 3.81 
9 6,08 6,84 6,76 5,72E+06 1.62 5.13 

10 6,84 7,6 7,52 3,29E+07 0.00 0.00 

  ∑
  

  
 

 

 
3.66 11.6 

Fatigue life [years] 
 

5.46 1.72 
 

Similarly, a miner summation for 15 stress blocks was performed. This resulted in a fatigue 

life of 1.70 years for root c. 

 Extrapolation of the notch stress results 4.3.6

As a linear relation was found for varying weld sizes, the results found for a weld size of 6mm 

may be extrapolated such that a desired fatigue life of the weld root is achieved.  

Fatigue life based on cumulative damage was determined by extrapolated notch stress results 

for two weld sizes. Firstly, a weld size of 11.2mm results in a fatigue life of 14 years, which is 

the same fatigue life as was obtained for the weld toe in the brace model analysis. Secondly, a 

weld size of 13mm is given as reference, which resulted in a fatigue life of 22 years. The 

estimated fatigue lives are based on Miner summation of 15 stress blocks.  

 

 Summary of the fillet welded knee plate results 4.3.7

All brace analyses required a large amount of physical memory, and thus computational time 

was high. For the sake of further work, analyses details are listed in Table 23. 

 

Table 23 - Analyses details. 

Analysis Brace model 

SCF 

Brace model 

10 Stress 

blocks 

Brace model 

15 Stress 

blocks 

BV1 BV2 

# Elements 241056 241056 241056 5600 4830 

# Steps 1 10 15 1 1 

Memory used 27Gb (max)  27Gb (max) 27Gb (max) 0.6Gb 0.6Gb 

Computational 

time 

30 min 5 hours 7 hours 30 sec 30 sec 
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A summary of the fatigue lives obtained, and given from Aker Solutions’ global analysis, is 

given in Figure 68, where all results based on the brace model are given for a Miner 

summation of 15 stress blocks. It is noted that weld root fatigue life was found lowest for the 

12o’clock position at path c, while weld toe fatigue was given for toe a at all clock positions.  

 

 

Figure 68 - Assessed fatigue life compared for weld toe and –root at all clock positions, for a 
miner summation of 15 stress blocks, as well as Aker Solutions fatigue results. 
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5 Discussion 
 

Loading mode dependent microsupport factor  

A loading mode dependent microsupport factor for the effective notch stress approach would 

make the procedure of assessing fatigue life more cumbersome. Taking this into account, one 

of the main advantages for this approach compared to the nominal stress approach is lost, as 

loading mode would have to be defined. It was however assumed that not accounting for the 

loading mode would yield more conservative results. This was however found arguable for 

varying weld sizes.  

 

5.1 Validation of the effective notch stress approach 

Large deviation for weld toe fatigue  

The combined model intended to assess weld toe fatigue for the fillet welded joint yielded 

quite conservative results. However, the nominal approach used to assess the target value for 

this weld toe, is intended for use when weld toe fatigue is the most probable failure mode. 

This might be an explanation to the large deviation. 

The necessity of assessing fatigue at the weld toe using the effective notch stress approach can 

however be argued, as this can be done in a simpler way by use of the effective hot spot 

approach. 

 

Mesh convergence study  

The mesh in the weld and plate intersection partition was quite fine and thus computational 

efforts were relatively high. It is recognised that the models used for these analyses are quite 

simple, and that for larger and more complex models a large amount of elements are required, 

and thus a large amount of physical computer memory is needed. 

The mesh convergence study was performed for the welds root- and toe partitions only. 

During analyses, it was observed that changing the mesh in other areas had only minor effects 

on the weld root stress. The meshing of surrounding partitions should however be performed 

such that the element sizes are corresponding to the element sizes at the outer part of the root 

partition, in order to have a smooth mesh transition. 

The outer plate mesh was seen to have little or no influence on the weld root stress 

concentration. However, the weld toe was to some extent affected. As the results for the toe 2 

configuration was seen to converge towards a 0.5% deviation from the target value, this was 

not further documented. For a different plate thickness, the mesh for the outer plate partitions 

would have to be redefined in order to maintain a similar mesh size relative to the weld toe 

partition. It was however observed that higher stresses occurred for both smaller and larger 
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mesh sizes at the plate, and thus it can be stated that the results will be conservative regardless 

of the mesh size over the thickness. 

 

5.2  Parametric weld size study 
In the weld size study it was seen that the nominal approach predicts higher effective notch 

stress for smaller weld sizes, than what is obtained in the finite element analysis. For larger 

weld sizes the tendencies were opposite, yielding larger than predicted effective notch stress. 

Two methods were used for establishing a relation between the results. Firstly, an alternation 

of the notch size, and secondly, a correction of the effective notch stress for varying weld 

sizes.  

 

The notch size study 

From the notch size study, it was seen that by reducing the notch size for smaller weld sizes, 

maximum principal stress at the root of the notch increased. This was expected, as notch 

stress is increased for smaller notch radiuses (Radaj et al., 2013). 

Altering the notch radii according to weld size was found to give promising results for 

describing the difference between the approaches. The relation found between an ideal notch 

size and weld size, was observed to be close to linear in Figure 61. However, if the tendency 

for the ideal notch radii shown in the figure is assumed to be continued, a better fit for the 

curve would be to use the second order fit. Although verifying analyses of the second order 

polynomial were not performed, comparing the ideal notch sizes to the linear and second 

order estimate shows that this is a far better approximation for the notch size. 

For the notch size study, it is noticed that the method implies altering the theoretical values 

used for calculating the fictitious radii, given in equation ( 22 ). As the microstructural support 

length    is considered to be a material parameter and the real notch radius is assumed to be 

zero (Radaj et al. 2013), it can be argued that it is the support factor    that is affected by the 

weld size. The support factor has been found to vary for different loading modes (Radaj et al. 

2013). Hence, an explanation may be that as the weld size is varied, the flow of stress varies 

with it, and therefore the loading mode is altered.  

 

Notch stress correction  

The second method, made to redeem the difference between the effective notch stress- and the 

nominal approach, is the notch stress correction method. This method is applied in order to 

correct the effective notch stress, obtained in a FEA using a 1mm notch radius, according to 

the weld size chosen. Altering the notch stress SN-curve parameters alone is not suitable for 

correcting this, as can be shown in Figure 60, where a change of SN-curve parameter would 

only change the slope of the curve, while the curve would still go through the origin. 
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Although the procedure was found to give good results, the parameters found for this method 

does not explain the underlying theory causing this phenomenon. 

 

Extrapolation of notch stress  

From Figure 60 it is observed that a direct extrapolation of the obtained notch stress, 

according to the nominal linearity, would result in non-conservative results for large weld 

sizes. This is due to the non-linear effects seen in the effective notch stress approach. Prior to 

the extrapolation, the obtained notch stress should therefore be corrected by equation ( 35 ). 

The corrected value will thus correspond to the magnitude of a corresponding target notch 

stress, which can be assumed to be as conservative as the nominal stress approach. 

 

General 

By comparing the effective notch stress found by FEA to the target notch stress in Figure 60, 

it is seen that the curve obtained for the effective notch stress approach is non-linear, 

compared to the target notch stress which is linear for inverse weld sizes. As the target notch 

stress is defined from weld stress and the nominal approach, this might be interpreted in two 

ways. One way, is that the nominal approach is a conservative approximation, and thus the 

effects seen for the notch stress approach is a more accurate assessment. Or, it might be 

interpreted that as the weld size is varied, the loading mode is varied, and thus according to 

Neuber’s theory, a different notch radius must be used in the FEA. In order to answer this, the 

actual results from fatigue testing of the cruciform joint should be compared to the results 

from the two approaches. 

 

5.3 The fillet welded knee plate 

Base model simplifications  

The simplifications made for the brace model were verified by comparing the BV1 and BV2 

models. It is however noticed that the simplified models do not include the ring stiffener. The 

ring stiffener was made in the same manner as the brace outer plate, by simplifying the 

curvature of the ring stiffener to be flat close to the knee plate. It could however be argued, 

that the effects of the simplification would be even smaller for the ring stiffener, as the height 

of the ring stiffener, which is in the radial direction, far exceeds the brace plate thickness. 

Thus the relative change in hight is far smaller than that of the outer brace plate. 

Simplification of the tip of the knee plate, shown in Figure 41, may be considered a small 

alteration of the model. From stress contour plots, the stress flow may also be considered to 

flow past the tip, thus not affecting the solution of the FEA. 
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Loading and local model  

The SCF’s found for the brace model were seen to be slightly higher than the results obtained 

by Aker Solutions. Some difference is however to be expected, as different modelling 

techniques and type of mesh has been used. Due to the small differences between SCF’s, it 

may be interpreted that the brace model is a good match. 

Cumulative damage 

The cumulative damage for the weld toe, assessed from the brace model, was seen to yield 

approximately the same fatigue life for all clock positions. This was in conflict with Aker 

Solutions’ results, which suggested that some bending effect caused a far longer fatigue life of 

the weld toe at 6o’clock than at 12o’clock. As the loading provided by Aker Solutions only 

indicated minor bending contributions, and the brace model is symmetrical, it may be 

interpreted that the bending is not caused by the applied load or the model itself. An 

explanation to the significant bending not being present may be due to the fixed boundary 

conditions representing the column. When using the sub modelling technique, it is common to 

define the response at the boundaries of the local model, using the responses obtained from a 

global model, at the region of this boundary (Moan, 2003). The simplified boundary 

conditions used in the FEA do not account for loading present in the column, nor the stiffness 

of the column.   

The fatigue life assessed from the brace model was however found to give conservative 

results for the weld toe, compared with Aker Solutions’ results. This may indicate that the 

assumption of the column being stiff is a conservative simplification. It can thus be argued, 

that for weld root fatigue assessments based on the same model, the results will be 

conservative.  

It is also noticed, that the lowest fatigue life assessed for the weld toe by Aker Solutions, is 

quite close to the lowest life obtained from the brace model. This can, to some extent, be 

interpreted as a sign of some precision for weld root fatigue life.  
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6 Conclusion 

6.1 General 

Three approaches for assessment of design life have been reviewed. These are the nominal 

stress-, the structural hot spot- and the effective notch stress approach. The approaches’ 

applicability differs, and these differences have been listed in Table 2.  

In addition to the former approaches, the fracture mechanics approach has been reviewed, 

which may be used as a very conservative estimate for design life.  

In general, the nominal stress approach is the preferred method of weld root fatigue. This 

approach does however require a defined nominal stress, and a comparable well tested detail. 

If these requirements cannot be satisfied, the effective notch stress approach may be used, 

which unlike the structural hot spot stress approach, is applicable for assessments of weld root 

fatigue. 

The effective notch stress approach is performed by introducing a fictitious notch at the weld- 

root or toe, in a solid FEA. The maximum stresses obtained in the notch is taken as the 

effective notch stress and compared to a universal SN-curve. As the approach requires a solid 

model for FEA and a mesh able to sufficiently represent the notch, computational time for this 

approach is the highest of the three approaches.  

 

6.2 Validation of the effective notch stress approach 
The validation procedure given by DNV (2012) has been executed for a cruciform fillet 

welded- and fully penetration welded joint. The procedure involves establishing target notch 

stress values, by demanding equal fatigue life for the two approaches.  The joint is identical to 

construction details given by DNV (2012), for which fatigue life provide a 97.7% probability 

of survival. Design life obtained using the nominal approach for these models are therefore 

considered to yield realistic and conservative results.  

The effective notch stress was obtained as the highest maximum principal stress in the notch, 

using the FEA software Abaqus. Based on interpretation of figures and descriptions found in 

the literature, placements of the fictitious notch has been confirmed by analyzing three 

fictitious notch roots and two notch toes. 

Results show that a fictitious notch at the weld toe should be modeled according to the model 

referred to as toe 2, which for the full penetration welded cruciform joint yielded 

approximately 1.4% longer fatigue life than that obtained from the nominal stress approach. 

Similarly, the placement of the fictitious weld root should be placed according to root 3, 

which for the fillet welded cruciform joint was seen to converge towards a fatigue life 

overestimated by 11.5%.  

Both at the weld root and weld toe, the mesh convergence study showed small variations for 

an increased number of elements along the circumference, 1% or less for 4 to 12 quadrilateral 

elements. 
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6.3 Parametric weld size study 
On the basis of the validation model, weld sizes were varied and effective notch stress 

extracted. In the same manner as the validation procedure, target notch stress values were 

obtained, and compared to the extracted stress. The results were found to deviate from each 

other, and while the target stresses can be found to be a linear function-, the extracted 

effective notch stress is better described by a second order polynomial, as a function of 

inverse weld sizes.  

Whether or not the validation procedure is intentionally chosen for one specific weld size, is 

considered to be unclear. In order to confirm that the notch stress approach is sufficiently 

conservative for varying weld sizes, the actual fatigue testing results should be reviewed. If 

the effective notch stress approach is found not to be in line with the fatigue results, an 

explanation for the deviation may be due to a varying loading mode for varying weld sizes. 

This has been found to affect the microsupport factor, and thus the size of the fictitious notch 

(Radaj et al. 2013). 

A relation between the linear target stress and the obtained effective notch stress has been 

established. The relation is best expressed with the second order polynomial given in equation 

( 35 ). Utilizing the expressed relation, a corrected notch stress is obtained which is in 

compliance with the nominal stress approach. This allows for extrapolation of the corrected 

stress found from a single FEA of one weld size.  

Another relation, between weld size and fictitious notch radii, has also been established. The 

relation, given by equation ( 33 ), shows that the use of a smaller notch radius for smaller 

weld sizes, and vice versa, will result in a fatigue life corresponding to the nominal approach.  

None of the above relations have been confirmed for other joints. Therefore, additional 

studies are recommended, in order to validate the established relations for varying weld sizes. 

 

6.4 The fillet welded knee plate 
Fatigue life at the weld root of the fillet welded knee plate, has been assessed for the provided 

load spectra by Miner summation. In order to verify the results, model simplifications and 

loading methodology have been discussed based on verifying FEA models and SCF results, 

and are found to be acceptable. Boundary conditions applied to the brace model has also been 

discussed. It is concluded that the fixed boundary conditions applied in the brace model, 

causes the weld toe fatigue to differ from that of Aker Solutions global model. The results, 

and thus the boundary conditions representing a stiff column, are however conservative, and 

therefore accepted for evaluation of weld root fatigue.  

Weld root fatigue was found to be most critical for path c, as shown in Figure 67. This weld 

root is approximately normal to the applied loading, and thus found fit for fatigue assessment 

according to the effective notch stress approach. Fatigue assessments were performed 
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conservatively by use of the established notch stress correction. Weld root fatigue for a fillet 

weld of 6mm was, by FEA, found to give non-conservative results, compared to the weld toe 

in the same analysis. An extrapolation of the obtained results suggested the fillet weld to be 

welded with a minimum weld size of 11.2mm, in order to obtain a greater fatigue life at the 

weld root, than that of the toe. Further, a weld size of 13mm was assessed to give a fatigue 

life approximately 75% greater than that of the weld toe. 
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7 Future work 
The effective notch stress approach has been found to be non-conservative for small weld 

sizes compared to the nominal approach. As the nominal approach is defined as a linear 

relation for weld size, it might be beneficial to compare results from the effective notch stress 

approach for small weld sizes, to actual fatigue tests.  

It might also be useful to study the loading modes of the fictitious weld root notch for varying 

weld sizes. Results from such a study, should be compared with the parameters found for the 

microsupport factor s and loading mode. This might explain a possible need for a fictitious 

notch size dependent on weld size. 

As the notch size and stress relations, found between the nominal- and the effective notch 

stress approach, only has been found for the cruciform joint, it might be useful to validate the 

relation for other well tested joints. This could confirm that the effective notch stress can be 

conservatively extrapolated to any reasonable weld size, from a single FEA. 
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A. Calculation of target values for the effective notch stress 

Appendix 

A. Calculation of target values for the effective notch stress 
In the following, “elec” represents the number of elements seeded per quarter circumference 

of the fictitious notch. 

 

Comparison of approaches for the weld root 

SN-Curves 
NOMINAL APPROACH EFFECTIVE NOTCH STRESS 

N Δσ N Δσ 

N<10^7 
1.00E+07 21.05 1.00E+07 131.623469 

9.33E+01 1000 2.28E+04 1000 

N>10^7 
4.14E+13 1 3.94E+17 1 

1.00E+07 21.05 1.00E+07 131.583066 

Plotting 
results on 
SN-curves 

W3-curve accounts for stress 
concentrations 

Stress concentrations are 
evaluated in FEA 

N Δσ N Δσ 

1.0000E+01 100.00 1.0000E+01 625.17 

9.3325E+04 100.00 9.3325E+04 625.17 

9.3325E+04 1.00 9.3325E+04 1.00 
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A. Calculation of target values for the effective notch stress 

Comparison of approaches for the full pen weld toe 

SN-Curves 
NOMINAL APPROACH EFFECTIVE NOTCH STRESS 

N Δσ N Δσ 

N<10^7 
1.001E+07 41.52 1.000E+07 131.623469 
7.161E+02 1000 2.280E+04 1000 

N>10^7 
1.233E+15 1 3.945E+17 1 
9.993E+06 41.52 1.000E+07 131.583066 

Plotting 
results on 
SN-curves 

F-curve accounts for stress 
concentrations 

Stress concentrations are found 
from FEA 

N Δσ N Δσ 

1.000E+01 100.00 1.000E+01 316.98 
7.161E+05 100.00 7.160E+05 316.98 
7.161E+05 1.00 7.160E+05 1.00 
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A. Calculation of target values for the effective notch stress 

Comparison of approaches for the fillet welded weld toe 

SN-Curves NOMINAL APPROACH EFFECTIVE NOTCH STRESS 

N Δσ N Δσ 

N<10^7 2.695E+07 23.5390179 1.001E+07 131.583066 
3.516E+02 1000 2.280E+04 1000 

N>10^7 2.138E+14 1 3.945E+17 1 
2.956E+07 23.5390179 1.000E+07 131.583066 

Plotting 

results on 

SN-curves 

F3-curve accounts for stress concentrations Stress concentrations are found from FEA 

N Δσ N Δσ 

1.000E+00 100.00 1.000E+01 401.78 
3.516E+05 100.00 3.516E+05 401.78 
3.516E+05 1.00 3.516E+05 1.00 
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A. Calculation of target values for the effective notch stress 

 

Comparison of results 
  Nominal approach Notch stress approach 

  N Δσ N Δσ 

Weld root 
fillet 9.333E+04 100 9.340E+04 625.00 

Weld toe full 
pen 7.161E+05 100 7.160E+05 316.98 

Weld toe 
fillet 3.516E+05 100 3.516E+05 401.78 

  
    

     
     Weld toe using wrong design curve parameters: The F1 

curve 
  Nominal approach Notch stress approach 

  N Δσ N Δσ 

Weld toe 
fillet 5.000E+05 100.00 5.000E+05 357.28 
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B. Stress exceedances diagrams supplied by Aker Solutions 

B. Stress exceedances diagrams supplied by Aker Solutions 
First sheet of data containing stresses from global model, provided by Aker Solutions. 

Positions correspond to nodes.  

 

 

*************************************************************** 

**                                                           ** 

**                        S T O F A T                        ** 

**                                                           ** 

**          F A T I G U E  C H E C K  R E S U L T S          ** 

**                            O F                            ** 

**                      E L E M E N T S                      ** 

**                                                           ** 

**          RUN      : PK3_1_R                               ** 

**          DATE/TIME: 2014-04-22 12:58:50                   ** 

**                                                           ** 

*************************************************************** 

 

 PRINT OF:                                                                

 - STRESS RANGES                                                          

 STRESSES OF ELEMENT STRESS POINTS ARE USED                               

 SPECTRAL MOMENTS APPLIED IN FATIGUE DAMAGE CALCULATION ARE 

USED          

 *************************************************************** 
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B. Stress exceedances diagrams supplied by Aker Solutions 

Element      Positions    Exceedence_levels    Design fatigue life 

 497                  8              61              20.00 Years 

 ----------------------------------------------------------------- 

 

 Element Pos Wavedir     Level   Stress_range   Exceedence 

 497 1 0.00     0   2.20158480E+08   0.00000000E+00 

 497 1 0.00     1   1.69902528E+08   6.21962428E-08 

 497 1 0.00     2   1.67070816E+08   1.24368995E-07 

 497 1 0.00     3   1.64239088E+08   2.46357956E-07 

 497 1 0.00     4   1.61407392E+08   4.83478289E-07 

 497 1 0.00     5   1.58575680E+08   9.40168491E-07 

 497 1 0.00     6   1.55743968E+08   1.81180746E-06 

 497 1 0.00     7   1.52912272E+08   3.46062325E-06 

 497 1 0.00     8   1.50080560E+08   6.55243730E-06 

 497 1 0.00     9   1.47248848E+08   1.23004884E-05 

 497 1 0.00     10   1.44417136E+08   2.28973349E-05 

 497 1 0.00     11   1.41585440E+08   4.22727935E-05 

 497 1 0.00     12   1.38753728E+08   7.74161454E-05 

 497 1 0.00     13   1.35922016E+08   1.40660515E-04 

 497 1 0.00     14   1.33090304E+08   2.53610138E-04 

 497 1 0.00     15   1.30258592E+08   4.53835004E-04 

 497 1 0.00     16   1.27426888E+08   8.06218595E-04 

 497 1 0.00     17   1.24595176E+08   1.42207649E-03 

 497 1 0.00     18   1.21763472E+08   2.49114120E-03 

 497 1 0.00     19   1.18931768E+08   4.33485769E-03 

 497 1 0.00     20   1.16100056E+08   7.49462657E-03 

 497 1 0.00     21   1.13268344E+08   1.28772762E-02 

 497 1 0.00     22   1.10436632E+08   2.19937060E-02 

 497 1 0.00     23   1.07604928E+08   3.73490639E-02 

 497 1 0.00     24   1.04773216E+08   6.30779937E-02 

 497 1 0.00     25   1.01941512E+08   1.05975434E-01 

 497 1 0.00     26   9.91098080E+07   1.77165762E-01 

 497 1 0.00     27   9.62780960E+07   2.94798046E-01 

 497 1 0.00     28   9.34463840E+07   4.88390386E-01 

 497 1 0.00     29   9.06146800E+07   8.05823505E-01 

 497 1 0.00     30   8.77829680E+07   1.32459962E+00 

 497 1 0.00     31   8.49512560E+07   2.16993570E+00 

 497 1 0.00     32   8.21195440E+07   3.54388332E+00 

 497 1 0.00     33   7.92878400E+07   5.77218485E+00 

 497 1 0.00     34   7.64561360E+07   9.37982750E+00 

 497 1 0.00     35   7.36244240E+07   1.52129068E+01 

 497 1 0.00     36   7.07927200E+07   2.46355057E+01 

 497 1 0.00     37   6.79610080E+07   3.98485107E+01 

 497 1 0.00     38   6.51292960E+07   6.44055481E+01 

 497 1 0.00     39   6.22975880E+07   1.04048248E+02 

 497 1 0.00     40   5.94658840E+07   1.68054016E+02 

 497 1 0.00     41   5.66341720E+07   2.71396332E+02 
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 497 1 0.00     42   5.38024640E+07   4.38160645E+02 

 497 1 0.00     43   5.09707560E+07   7.06838379E+02 

 497 1 0.00     44   4.81390480E+07   1.13826404E+03 

 497 1 0.00     45   4.53073400E+07   1.82696814E+03 

 497 1 0.00     46   4.24756280E+07   2.91633423E+03 

 497 1 0.00     47   3.96439200E+07   4.61682959E+03 

 497 1 0.00     48   3.68122120E+07   7.22443848E+03 

 497 1 0.00     49   3.39805040E+07   1.11330000E+04 

 497 1 0.00     50   3.11487940E+07   1.68302227E+04 

 497 1 0.00     51   2.83170860E+07   2.48640410E+04 

 497 1 0.00     52   2.54853780E+07   3.57667461E+04 

 497 1 0.00     53   2.26536700E+07   4.99311211E+04 

 497 1 0.00     54   1.98219600E+07   6.74488359E+04 

 497 1 0.00     55   1.69902520E+07   8.79418203E+04 

 497 1 0.00     56   1.41585430E+07   1.10438695E+05 

 497 1 0.00     57   1.13268350E+07   1.33355062E+05 

 497 1 0.00     58   8.49512600E+06   1.54623781E+05 

 497 1 0.00     59   5.66341750E+06   1.71982094E+05 

 497 1 0.00     60   2.83170875E+06   1.83369234E+05 

 497 1 0.00     61   0.00000000E+00   1.87338516E+05 

 497 1 15.00     0   2.20158480E+08   0.00000000E+00 

 497 1 15.00     1   1.69902528E+08   5.80036108E-08 

 497 1 15.00     2   1.67070816E+08   1.16093169E-07 

 497 1 15.00     3   1.64239088E+08   2.30155464E-07 

 497 1 15.00     4   1.61407392E+08   4.52007839E-07 

 497 1 15.00     5   1.58575680E+08   8.79500817E-07 

 497 1 15.00     6   1.55743968E+08   1.69569705E-06 

 497 1 15.00     7   1.52912272E+08   3.23994186E-06 

 497 1 15.00     8   1.50080560E+08   6.13578868E-06 

 497 1 15.00     9   1.47248848E+08   1.15188859E-05 
  



 

84  

 

C. Script: Importing load spectra and exporting Abaqus input commands 

C. Script: Importing load spectra and exporting Abaqus input 

commands 
Script used for extracting stresses from the data set provided by Aker Solutions, as well as 

writing Abaqus input commands. 

clear all 

clc 

%-------------------------------------------------------------

--------------------------------- 

% Script used for extracting stresses from the data set 

provided by Aker Solutions,  

% create stress range exceedance diagrams for each node and 

averaging the stress at i 

% number of cycles defined in th n'-vector  

% 

%  Input:   Data set from Aker solutions: input2.txt 

%           Number of loadcases intended for the analysis 

%           The name assigned to the model in Abaqus 

% 

%  Output:  Excel sheet containing load inputs for abaqus 

%           Abaqus input commands. 

%-------------------------------------------------------------

--------------------------------- 

  

nsteps=input('How many loadcases (steps) for Abaqus?\n'); 

modelname=input('What is the model name? write as string\n'); 

logNi=linspace(0,7.6,nsteps+1)'; 

  

%-------------------------------------------------------------

--------------------------------- 

% Importing data from input file 

%-------------------------------------------------------------

--------------------------------- 

  

for i=1:nsteps 

    logN(i,1)=logNi(i)+(logNi(i+1)-logNi(i))/2; 

end 

logN 

fprintf('---***Reading from input.txt***---') 

fid=fopen('input2.txt','r'); 

count=1; 

values=zeros(10,6); 

  

fprintf('\n\n---Extracting all lines that are given a wave 

direction of 9999999999---') 

while 1 

    skip=0; 

    str=fgetl(fid); 

    k=findstr(str,'9999999999'); 

    if str==-1 
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C. Script: Importing load spectra and exporting Abaqus input commands 

        break 

    end 

    if length(k)>0|k>0 

            line=str2num(str); 

            l=length(line); 

            if l>1 

                values(count,:)=line(:); 

                count=count+1; 

            end 

    end 

end 

count; 

  

fclose(fid); 

fprintf('\n\n---All data have been extracted into the matrix 

"values"---') 

  

n=max(values(:,4))+1; 

fprintf('\n\n---Number of steps found in data n=%0.0f---',n) 

  

fprintf('\n\n---Averaging nodal stress- and fatigue results @ 

clock positions...---\n---...into matrices cl12, cl03, cl06 

and cl09---\n') 

  

  

logni=log10(values(:,6)); 

si=values(:,5); 

  

%-------------------------------------------------------------

--------------------------------- 

% Fitting the stress range exceedance diagrams for each node 

with a linear 

% polynomial, extracting stresses for cycles defined in the 

n'-vector(logN) 

% and averaging these stresses for each clock position 

%-------------------------------------------------------------

--------------------------------- 

  

%--------------------------------------- 

%cl12 average from node 809 and 7425,  

%Exceedance stress range diagram plotted 

%only as example for node 8, element 809  

%--------------------------------------- 

cl12=zeros(nsteps,3); 

  

I=find(values(:,1)==809); 

pose=I(1); 

  

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 
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C. Script: Importing load spectra and exporting Abaqus input commands 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for j=1:nsteps 

        Sr(j,1)=ffit1(logN(j)); 

        steps(j,1)=j; 

    end 

    cl12=cl12+[steps,Sr,logN]; 

    if i==8 

        h=figure; 

        hold on 

        bar(logN,Sr,1,'y') 

        plot(logni((pose+i*n-n):(pose-1+n*i)),si((pose+i*n-

n):(pose-1+n*i)),'r') 

        plot(logN,Sr,'b') 

        xlabel('stress range exceedances 

[log(n'')]','FontWeight','bold') 

        ylabel('S_r_,_i [Pa]','FontWeight','bold') 

        legend('Fitted stress blocks','Provided stress 

exceedances','Linear fit') 

        saveas(h,'barplot','jpg') 

        hold off 

    end 

end 

  

I=find(values(:,1)==7425); 

pose=I(1); 

  

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for i=1:nsteps 

        Sr(i,1)=ffit1(logN(i)); 

        steps(i,1)=i; 

    end 

    cl12=cl12+[steps,Sr,logN]; 

end 

  

cl12=cl12./16; 

  

%----------------------------------- 

%cl03 average from node 7241 and 7486 

%----------------------------------- 

cl03=zeros(nsteps,3); 

  

I=find(values(:,1)==7241); 

pose=I(1); 

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for i=1:nsteps 
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        Sr(i,1)=ffit1(logN(i)); 

        steps(i,1)=i; 

    end 

    cl03=cl03+[steps,Sr,logN]; 

end 

  

I=find(values(:,1)==7486); 

pose=I(1); 

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for i=1:nsteps 

        Sr(i,1)=ffit1(logN(i)); 

        steps(i,1)=i; 

    end 

    cl03=cl03+[steps,Sr,logN]; 

end 

  

cl03=cl03./16; 

  

%----------------------------------- 

%cl06 average from node 546 and 7174 

%----------------------------------- 

cl06=zeros(nsteps,3); 

  

I=find(values(:,1)==564); 

pose=I(1); 

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for i=1:nsteps 

        Sr(i,1)=ffit1(logN(i)); 

        steps(i,1)=i; 

    end 

    cl06=cl06+[steps,Sr,logN]; 

end 

  

I=find(values(:,1)==7174); 

pose=I(1); 

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for i=1:nsteps 

        Sr(i,1)=ffit1(logN(i)); 

        steps(i,1)=i; 

    end 

    cl06=cl06+[steps,Sr,logN]; 

end 
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C. Script: Importing load spectra and exporting Abaqus input commands 

  

cl06=cl06./16; 

  

%----------------------------------- 

%cl09 average from node 748 and 497 

%----------------------------------- 

cl09=zeros(nsteps,3); 

  

I=find(values(:,1)==748); 

pose=I(1); 

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for i=1:nsteps 

        Sr(i,1)=ffit1(logN(i)); 

        steps(i,1)=i; 

    end 

    cl09=cl09+[steps,Sr,logN]; 

end 

  

I=find(values(:,1)==497); 

pose=I(1); 

for i=1:8 

    fit1=polyfit(logni((pose+i*n-n):(pose-

1+n*i)),si((pose+i*n-n):(pose-1+n*i)),1); 

    ffit1=@(x) fit1(1)*x+fit1(2); 

    for i=1:nsteps 

        Sr(i,1)=ffit1(logN(i)); 

        steps(i,1)=i; 

    end 

    cl09=cl09+[steps,Sr,logN]; 

end 

  

cl09=cl09./16; 

  

%-------------------------------------------------------------

--------------------------------- 

%Writing results to excel file: abainp.xls 

%-------------------------------------------------------------

--------------------------------- 

c={'Average stress provided from Stofat for four clock 

positions'}; 

d={'Clock pose',' ','12:00','Clock pose',' ','03:00','Clock 

pose',' ','06:00','Clock pose',' ','09:00'}; 

e={'Step','Sr','Log(N)','Step','Sr','Log(N)','Step','Sr','Log(

N)','Step','Sr','Log(N)','log(n_1)','log(n_2)'}; 

stepnum=(1:1:nsteps)'; 

n12=[logNi(1:nsteps),logNi(2:nsteps+1)]; 

  

xlswrite(sprintf('abainp%0.0f',nsteps),c,1,'A1') 
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xlswrite(sprintf('abainp%0.0f',nsteps),d,1,'A2') 

xlswrite(sprintf('abainp%0.0f',nsteps),e,1,'A3') 

  

xlswrite(sprintf('abainp%0.0f',nsteps),n12,sprintf('M4:N%0.0f'

,(nsteps+3'))) 

  

xlswrite(sprintf('abainp%0.0f',nsteps),cl12,sprintf('A4:C%0.0f

',(nsteps+3))) 

xlswrite(sprintf('abainp%0.0f',nsteps),cl03,sprintf('D4:F%0.0f

',(nsteps+3))) 

xlswrite(sprintf('abainp%0.0f',nsteps),cl06,sprintf('G4:I%0.0f

',(nsteps+3))) 

xlswrite(sprintf('abainp%0.0f',nsteps),cl09,sprintf('J4:L%0.0f

',(nsteps+3))) 

  

  

  

fprintf('\n---Input data for abaqus has been stored in 

abainp%0.0f.xls---\n\n',nsteps) 

  

%-------------------------------------------------------------

--------------------------------- 

%Creating command inputs for Abaqus that imports Abaqus 

modules, creates steps, creates load fields,  

%creates loads for the steps and assigns the load fields to 

the loads.  

%-------------------------------------------------------------

--------------------------------- 

fid = fopen(sprintf('abainp.txt%0.0f',nsteps),'w'); 

fprintf(fid,'---Script defining models and jobs for all %0.0f 

steps---\r\n\r\n\r\n\r\n',n); 

  

  

fprintf(fid,'from abaqus import *\r\nfrom abaqusConstants 

import *\r\nimport part\r\nimport step\r\nimport 

load\r\nimport visualization\r\nimport job\r\nimport 

assembly\r\nimport section\r\n\r\n\r\n'); 

  

for i=1:nsteps 

    %creating step 

    if 1<i 

        fprintf(fid,'mdb.models['''); 

        fprintf(fid,modelname); 

        fprintf(fid,'''].StaticStep(name=''Step-%0.0f'', 

previous=''Step-%0.0f'')\r\n\r\n',i,i-1); 

    end 

     

    %------------------------------------------------ 

    %Creating mapped analytical field for load case i 

    %------------------------------------------------ 

    fprintf(fid,'mdb.models['''); 
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    fprintf(fid,modelname); 

    fprintf(fid,'''].MappedField(description='''', 

fieldDataType=SCALAR,\r\n'); 

    fprintf(fid,'    localCsys=mdb.models['''); 

    fprintf(fid,modelname); 

    fprintf(fid,'''].rootAssembly.datums[182], 

name=''fieldstep%0.0f'',\r\n',i) ; 

    fprintf(fid,'    partLevelData=False, pointDataFormat=XYZ, 

regionType=POINT, xyzPointData=((\r\n'); 

    fprintf(fid,'    0.0, 0.0, 1.014, %0.0f), (1.014, 0.0, 

0.0, %0.0f), (0.0, 0.0, -1.014, %0.0f), 

\r\n',cl12(i,2),cl03(i,2),cl06(i,2)); 

    fprintf(fid,'    (-1.014, 0.0, 0.0, 

%0.0f)))\r\n\r\n',cl09(i,2)); 

     

    %--------------------------- 

    %Creating load for load case 

    %--------------------------- 

    if 1<i 

        fprintf(fid,'mdb.models['''); 

        fprintf(fid,modelname) ; 

        fprintf(fid,'''].Pressure(amplitude=UNSET, 

createStepName=''Step-%0.0f''\r\n',i); 

        fprintf(fid,', distributionType=FIELD, 

field=''fieldstep%0.0f'', magnitude=-1.0, name=\r\n',i); 

        fprintf(fid,'''pressure%0.0f'', region=\r\n',i); 

        fprintf(fid,'mdb.models['''); 

        fprintf(fid,modelname); 

        fprintf(fid,'''].rootAssembly.surfaces[''Surf-

12''])\r\n\r\n'); 

    elseif 1==i 

        fprintf(fid,'mdb.models['''); 

        fprintf(fid,modelname); 

        

fprintf(fid,'''].loads[''pressure1''].setValues(\r\n'); 

        fprintf(fid,'    distributionType=FIELD, 

field=''fieldstep%0.0f'', magnitude=-1.0)\r\n\r\n',i); 

    end 

     

    %----------------------------------- 

    %Deactivating loads not used in step 

    %----------------------------------- 

    if i>1 

        for k=1:i-1 

            fprintf(fid,'mdb.models['''); 

            fprintf(fid,modelname); 

            

fprintf(fid,'''].loads[''pressure%0.0f''].deactivate(''Step-

%0.0f'')\r\n',k,i); 

        end 

    end 
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    fprintf(fid,'\r\n\r\n\r\n'); 

end 

fclose(fid); 

  

%-------------------------------------------------------------

---- 

%Ploting stress range exceedances diagrams for all clock 

positions 

%-------------------------------------------------------------

---- 

fprintf('---***Input commands for Abaqus created in 

abainp%0.0f.txt***--- \n\n',nsteps) 

figure 

hold on 

plot(cl03(:,2)',cl03(:,3)') 

plot(cl06(:,2)',cl06(:,3)') 

plot(cl09(:,2)',cl09(:,3)') 

plot(cl12(:,2)',cl12(:,3)') 

  

for i=1:nsteps 

    ntest(i,1)=log10(10^logNi(1+i)-10^logNi(i)); 

end 
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D. Abaqus input commands  
Abaqus input commands created from the matlab script. Creates analytical fields for all stress 

ranges and assigns these fields to the steps needed. Only the second and third stress ranges are 

included below, that is Step2 and Step3, all other steps are made correspondingly. The first 

step, Step1 and the corresponding unit load, pressure1, is defined prior to inserting the input 

commands. 

 

---Script defining models and jobs for all 62 steps--- 

 

from abaqus import * 

from abaqusConstants import * 

import part 

import step 

import load 

import visualization 

import job 

import assembly 

import section 

 

mdb.models['Model_Finalonly'].MappedField(description='', fieldDataType=SCALAR, 

    localCsys=mdb.models['Model_Finalonly'].rootAssembly.datums[290], name='fieldstep1', 

    partLevelData=False, pointDataFormat=XYZ, regionType=POINT, xyzPointData=(( 

    0.0, 0.0, 1.014, 200389199), (1.014, 0.0, 0.0, 209357179), (0.0, 0.0, -1.014, 202535882),  

    (-1.014, 0.0, 0.0, 208039966))) 

 

mdb.models['Model_Finalonly'].loads['pressure1'].setValues( 

    distributionType=FIELD, field='fieldstep1', magnitude=-1.0) 
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D. Abaqus input commands 

 

 

mdb.models['Model_Finalonly'].StaticStep(name='Step-2', previous='Step-1') 

 

mdb.models['Model_Finalonly'].MappedField(description='', fieldDataType=SCALAR, 

    localCsys=mdb.models['Model_Finalonly'].rootAssembly.datums[290], name='fieldstep2', 

    partLevelData=False, pointDataFormat=XYZ, regionType=POINT, xyzPointData=(( 

    0.0, 0.0, 1.014, 179554919), (1.014, 0.0, 0.0, 187563398), (0.0, 0.0, -1.014, 181384598),  

    (-1.014, 0.0, 0.0, 186383513))) 

 

mdb.models['Model_Finalonly'].Pressure(amplitude=UNSET, createStepName='Step-2' 

, distributionType=FIELD, field='fieldstep2', magnitude=-1.0, name= 

'pressure2', region= 

mdb.models['Model_Finalonly'].rootAssembly.surfaces['Surf-12']) 

 

mdb.models['Model_Finalonly'].loads['pressure1'].deactivate('Step-2') 

 

 

 

mdb.models['Model_Finalonly'].StaticStep(name='Step-3', previous='Step-2')  

…  
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E. Stress output from Abaqus 

E. Stress output from Abaqus 
Stress output from Abaqus, containing the highest and lowest stresses along each path. 

Complete output data are given for the first and last step only. For further scripting purposes, 

the row containing the lowest stresses is given the name “1111111” and the row containing 

the highest stresses is given the name “9999999”.  

 

  

… 

  

 

The paths above are recognized as the following 

Stepx-1        , Hot spot toe a @ 12o’clock 

Stepx-2        , Hot spot toe a @ 03o’clock 

Stepx-3        , Hot spot toe a @ 06o’clock 

Stepx-4        , Hot spot toe a @ 09o’clock 

Stepx-5        , Root path a @ 12o’clock 

Stepx-6        , Root path b @ 12o’clock 

Stepx-7        , Root path c @ 12o’clock 

Stepx-8        , Root path d @ 12o’clock 
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F. Script sorting stress results from Abaqus 

F. Script sorting stress results from Abaqus 
Script sorting all maximum stresses from the Abaqus output file, according to stress range, 

that is step number. 

clear all 

clc 

  

%----------------------------------------------------- 

% This script is made for sorting all maximum stresses  

% from the Abaqus XY data report file.  

% Stresses are sorted according to stress range, that is  

% step number, and which path they are taken from 

% 

%  Input:    String containing output file's name. 

%            Number of loadcases used in the analysis. 

% 

%  Output    Excel sheet containing stresses obtained from          

%     Abaqus 

%----------------------------------------------------- 

  

  

fprintf('---***Opening ''abaout.rpy'', which is a Abaqus 

Column min/max output data file***---\n\n\n') 

fprintf('---Prior to reading file, the following words in 

abaout.txt is to be replaced---\n') 

fprintf('---"MAXIMUM" to be replaced with 9999999\n\n') 

  

abaout=input('What is the name of the output file? \nInsert as 

string including file extension.\n'); 

fid=fopen(abaout,'r'); 

nsteps=input('How many loadcases (steps) is used in 

Abaqus?\n\n'); 

  

%----------------------------- 

%The following paths are used: 

%----------------------------- 

stepx1='hotsp_cl12'; 

stepx2='hotsp_cl03'; 

stepx3='hotsp_cl06'; 

stepx4='hotsp_cl09'; 

stepx5='path a'; 

stepx6='path b'; 

stepx7='path c'; 

stepx8='path d'; 

  

fprintf('---Extracting all lines that are given a wave 

direction of 9999999---\n\n') 

while 1 

    skip=0; 

    str=fgetl(fid); 

    %j=findstr(str,'1111111'); 
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F. Script sorting stress results from Abaqus 

    k=findstr(str,'9999999'); 

    %if j>1 

    %    minmax(1,:)=str2num(str); 

    %end 

    if k>1 

        minmax(2,:)=str2num(str); 

    end 

    if str<0 

        break 

    end 

end 

fclose(fid); 

  

  

minmax=minmax(1:2,3:length(minmax')); 

  

%------------------------------------------ 

%Sorting data according to points of stress  

%extraction paths, including only maximum stress values 

%------------------------------------------ 

npaths=length(minmax')/nsteps; 

for i=1:nsteps 

    allstep(i,1:npaths)=minmax(2,npaths*(i-1)+1:i*npaths); 

end 

  

%----------------------------------------------- 

%Writing results & hot spot stress to abaout.xls 

%----------------------------------------------- 

c={'Maximum stress read from hot spot and root paths'}; 

d={'step 

#',stepx1,stepx2,stepx3,stepx4,stepx5,stepx6,stepx7,stepx8}; 

stepnum=(1:1:nsteps)'; 

excelout=sprintf('abaout%0.0f',nsteps); 

  

xlswrite(excelout,c,1,'F1') 

xlswrite(excelout,d,1,'A2') 

xlswrite(excelout,stepnum,1,sprintf('A3:A%0.0f',length(allstep

')+2)) 

xlswrite(excelout,allstep,sprintf('B3:I%0.0f',length(allstep')

+2)) 

  

fprintf('\n--------************************************-------

--\n---***** All Abaqus results have been sorted *****---\n---

*** Results have been written to abaout.xls ***---\n------

*****************************************------\n\n\n') 
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G. Extracted stresses from validation model FEA 

G. Extracted stresses from validation model FEA 

combined root1elec4 & toe2elec5 

Distance z [m] 
Max princ root 
[Mpa] 

Distance z 
[m] 

Max princ toe 
[Mpa] 

0.0000 4.747E+08 0.0000 3.443E+08 

0.0004 5.696E+08 0.0004 3.979E+08 

0.0009 6.029E+08 0.0009 4.202E+08 

0.0014 6.102E+08 0.0014 4.315E+08 

0.0020 6.083E+08 0.0020 4.395E+08 

0.0027 6.026E+08 0.0027 4.457E+08 

0.0036 5.954E+08 0.0036 4.508E+08 

0.0045 5.877E+08 0.0045 4.551E+08 

0.0056 5.804E+08 0.0056 4.588E+08 

0.0069 5.737E+08 0.0069 4.619E+08 

0.0084 5.680E+08 0.0084 4.646E+08 

0.0101 5.633E+08 0.0101 4.669E+08 

0.0120 5.597E+08 0.0120 4.686E+08 

0.0143 5.570E+08 0.0143 4.698E+08 

0.0170 5.554E+08 0.0170 4.706E+08 

0.0200 5.548E+08 0.0400 3.441E+08 

0.0230 5.554E+08   

M
ax

 s
tr

es
s 

in
cl

u
d

ed
 (

M
an

u
al

ly
 v

er
yf

ie
d

) 

0.0257 5.570E+08   

0.0280 5.597E+08   

0.0299 5.633E+08   

0.0316 5.680E+08   

0.0331 5.737E+08   

0.0344 5.804E+08   

0.0355 5.877E+08   

0.0364 5.954E+08   

0.0373 6.026E+08   

0.0380 6.083E+08   

0.0386 6.102E+08   

0.0391 6.029E+08   

0.0396 5.696E+08   

0.0400 4.747E+08   

Max stress [Mpa] 610.215   470.574 

Diff Target-obtained 
[Mpa] -14.785   68.794 

Difference [%] -2.366   17.122 

Number of elements 50907.000   50907.000 
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G. Extracted stresses from validation model FEA 

root3elec4 root2elec4 BADCIRC root1elec4 

Distance z [m] 
Max princ 
[Mpa] 

Distance z 
[m] ax princ root [Mpa] 

Distance z 
[m] 

Max princ root 
[Mpa] 

0.0000 4.753E+08 0.0000 5.22E+08 0.0000 4.81E+08 

0.0002 5.384E+08 0.0002 5.90E+08 0.0002 5.45E+08 

0.0005 5.802E+08 0.0005 6.36E+08 0.0005 5.87E+08 

0.0009 6.022E+08 0.0009 6.60E+08 0.0009 6.09E+08 

0.0014 6.091E+08 0.0014 6.68E+08 0.0014 6.17E+08 

0.0022 6.061E+08 0.0022 6.65E+08 0.0022 6.13E+08 

0.0033 5.971E+08 0.0033 6.56E+08 0.0033 6.04E+08 

0.0048 5.855E+08 0.0048 6.43E+08 0.0048 5.91E+08 

0.0069 5.740E+08 0.0069 6.31E+08 0.0069 5.79E+08 

0.0099 5.648E+08 0.0099 6.21E+08 0.0099 5.68E+08 

0.0141 5.589E+08 0.0141 6.15E+08 0.0141 5.61E+08 

0.0200 5.566E+08 0.0200 6.13E+08 0.0200 5.58E+08 

0.0259 5.589E+08 0.0259 6.15E+08 0.0259 5.61E+08 

0.0301 5.648E+08 0.0301 6.21E+08 0.0301 5.68E+08 

0.0331 5.740E+08 0.0331 6.31E+08 0.0331 5.79E+08 

0.0352 5.855E+08 0.0352 6.43E+08 0.0352 5.91E+08 

0.0367 5.971E+08 0.0367 6.56E+08 0.0367 6.04E+08 

0.0378 6.061E+08 0.0378 6.65E+08 0.0378 6.13E+08 

0.0386 6.091E+08 0.0386 6.68E+08 0.0386 6.17E+08 

0.0391 6.022E+08 0.0391 6.60E+08 0.0391 6.09E+08 

0.0395 5.802E+08 0.0395 6.36E+08 0.0395 5.87E+08 

0.0398 5.384E+08 0.0398 5.90E+08 0.0398 5.45E+08 

0.0400 4.753E+08 0.0400 5.22E+08 0.0400 4.81E+08 

Max stress [Mpa] 609.15   668.36   616.55 

Diff Target-obtained [Mpa] -15.85   43.36   -8.46 

Difference [%] -2.54   6.94   -1.35 

Number of elements 21228.00   11108.00   35610.00 
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G. Extracted stresses from validation model FEA 

root1elec2 root1elec4 root1elec8 

Distance z [m] 
Max princ root 
[Mpa] 

Distance z 
[m] 

Max princ root 
[Mpa] 

Distance z 
[m] 

Max princ root 
[Mpa] 

0.0000 4.98E+08 0.0000 4.86E+08 0.0000 4.75E+08 

0.0002 5.60E+08 0.0002 5.51E+08 0.0002 5.44E+08 

0.0005 5.99E+08 0.0005 5.94E+08 0.0005 5.89E+08 

0.0009 6.21E+08 0.0009 6.17E+08 0.0009 6.13E+08 

0.0014 6.29E+08 0.0014 6.24E+08 0.0014 6.20E+08 

0.0022 6.25E+08 0.0022 6.20E+08 0.0022 6.17E+08 

0.0033 6.16E+08 0.0033 6.11E+08 0.0033 6.07E+08 

0.0048 6.03E+08 0.0048 5.98E+08 0.0048 5.94E+08 

0.0069 5.91E+08 0.0069 5.85E+08 0.0069 5.82E+08 

0.0099 5.80E+08 0.0099 5.74E+08 0.0099 5.71E+08 

0.0141 5.73E+08 0.0141 5.67E+08 0.0141 5.64E+08 

0.0200 5.71E+08 0.0200 5.65E+08 0.0200 5.61E+08 

0.0259 5.73E+08 0.0259 5.67E+08 0.0259 5.64E+08 

0.0301 5.80E+08 0.0301 5.74E+08 0.0301 5.71E+08 

0.0331 5.91E+08 0.0331 5.85E+08 0.0331 5.82E+08 

0.0352 6.03E+08 0.0352 5.98E+08 0.0352 5.94E+08 

0.0367 6.16E+08 0.0367 6.11E+08 0.0367 6.07E+08 

0.0378 6.25E+08 0.0378 6.20E+08 0.0378 6.17E+08 

0.0386 6.28E+08 0.0386 6.24E+08 0.0386 6.20E+08 

0.0391 6.21E+08 0.0391 6.17E+08 0.0391 6.13E+08 

0.0395 5.99E+08 0.0395 5.94E+08 0.0395 5.89E+08 

0.0398 5.60E+08 0.0398 5.51E+08 0.0398 5.44E+08 

0.0400 4.98E+08 0.0400 4.86E+08 0.0400 4.75E+08 

Max stress [Mpa] 628.50   623.72   620.00 

Diff Target-obtained 
[Mpa] 3.50   -1.28   -5.00 

Difference [%] 0.56   -0.21   -0.80 

Number of elements 32280.00   33570.00   41070.00 
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G. Extracted stresses from validation model FEA 

toe1elec4 

Distance z [m] max princ toe 

0.0000 2.392E+08 

0.0027 2.769E+08 

0.0054 2.783E+08 

0.0078 2.784E+08 

0.0102 2.781E+08 

0.0125 2.776E+08 

0.0146 2.771E+08 

0.0167 2.768E+08 

0.0186 2.766E+08 

0.0205 2.765E+08 

0.0222 2.766E+08 

0.0239 2.768E+08 

0.0255 2.771E+08 

0.0271 2.774E+08 

0.0285 2.777E+08 

0.0299 2.780E+08 

0.0313 2.782E+08 

0.0325 2.781E+08 

0.0337 2.778E+08 

0.0349 2.771E+08 

0.0360 2.758E+08 

0.0371 2.736E+08 

0.0381 2.698E+08 

0.0391 2.642E+08 

0.0400 2.264E+08 

Max stress [Mpa] 278.434 

Diff Target-obtained [Mpa] -38.566 

Difference [%] -12.166 

Number of elements 21228.000 
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G. Extracted stresses from validation model FEA 

toe2elec2 toe2elec5 toe2elec10 

distance z max princ toe distance z max princ toe distance z max princ toe 

0.0000 2.511E+08 0.0000 2.572E+08 0.0000 

M
an

u
al

ly
 e

xt
ra

ct
ed

 

0.0030 2.921E+08 0.0030 3.017E+08 0.0030 

0.0056 2.953E+08 0.0056 3.095E+08 0.0056 

0.0079 2.965E+08 0.0079 3.122E+08 0.0079 

0.0098 2.963E+08 0.0098 3.135E+08 0.0098 

0.0115 2.960E+08 0.0115 3.142E+08 0.0115 

0.0130 2.956E+08 0.0130 3.147E+08 0.0130 

0.0143 2.953E+08 0.0143 3.150E+08 0.0143 

0.0154 2.951E+08 0.0154 3.152E+08 0.0154 

0.0164 2.950E+08 0.0164 3.153E+08 0.0164 

0.0172 2.949E+08 0.0172 3.154E+08 0.0172 

0.0179 2.948E+08 0.0179 3.154E+08 0.0179 

0.0186 2.948E+08 0.0186 3.154E+08 0.0186 

0.0191 2.947E+08 0.0191 3.155E+08 0.0191 

0.0196 2.947E+08 0.0196 3.155E+08 0.0196 

0.0200 2.947E+08 0.0200 3.155E+08 0.0200 

0.0204 2.947E+08 0.0204 3.155E+08 0.0204 

0.0209 2.947E+08 0.0209 3.155E+08 0.0209 

0.0214 2.948E+08 0.0214 3.154E+08 0.0214 

0.0221 2.948E+08 0.0221 3.154E+08 0.0221 

0.0228 2.949E+08 0.0228 3.154E+08 0.0228 

0.0236 2.950E+08 0.0236 3.153E+08 0.0236 

0.0246 2.951E+08 0.0246 3.152E+08 0.0246 

0.0257 2.953E+08 0.0257 3.150E+08 0.0257 

0.0270 2.956E+08 0.0270 3.147E+08 0.0270 

0.0285 2.960E+08 0.0285 3.143E+08 0.0285 

0.0302 2.963E+08 0.0302 3.135E+08 0.0302 

0.0321 2.965E+08 0.0321 3.122E+08 0.0321 

0.0344 2.953E+08 0.0344 3.095E+08 0.0344 

0.0370 2.921E+08 0.0370 3.017E+08 0.0370 

0.0400 2.511E+08 0.0400 2.573E+08 0.0400 

Max stress [Mpa] 296.47   315.46   315.50 

Diff Target-obtained [Mpa] -20.53   -1.54   -1.50 

Difference [%] -6.476656151   -0.485488959   -0.47318612 

Number of elements 11108   11108   11108 
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H. Miner summation for 15 stress blocks 

H. Miner summation for 15 stress blocks 
Weld toe 

  Maximum stress read from hot spot Effective hot spot stress 

step # hotsp_cl12 hotsp_cl03 hotsp_cl06 hotsp_cl09 hotsp_cl12 hotsp_cl03 hotsp_cl06 hotsp_cl09 

1 2.99E+08 2.99E+08 3.00E+08 2.99E+08 3.35E+08 3.35E+08 3.36E+08 3.34E+08 
2 2.79E+08 2.79E+08 2.80E+08 2.78E+08 3.12E+08 3.12E+08 3.13E+08 3.12E+08 
3 2.58E+08 2.58E+08 2.59E+08 2.58E+08 2.89E+08 2.89E+08 2.90E+08 2.89E+08 
4 2.38E+08 2.38E+08 2.39E+08 2.37E+08 2.67E+08 2.66E+08 2.67E+08 2.66E+08 

5 2.18E+08 2.18E+08 2.18E+08 2.17E+08 2.44E+08 2.44E+08 2.44E+08 2.43E+08 
6 1.97E+08 1.97E+08 1.98E+08 1.97E+08 2.21E+08 2.21E+08 2.21E+08 2.20E+08 
7 1.77E+08 1.77E+08 1.77E+08 1.76E+08 1.98E+08 1.98E+08 1.98E+08 1.97E+08 
8 1.56E+08 1.56E+08 1.57E+08 1.56E+08 1.75E+08 1.75E+08 1.76E+08 1.75E+08 

9 1.36E+08 1.36E+08 1.36E+08 1.36E+08 1.52E+08 1.52E+08 1.53E+08 1.52E+08 
10 1.16E+08 1.15E+08 1.16E+08 1.15E+08 1.29E+08 1.29E+08 1.30E+08 1.29E+08 
11 9.52E+07 9.50E+07 9.52E+07 9.48E+07 1.07E+08 1.06E+08 1.07E+08 1.06E+08 

12 7.48E+07 7.46E+07 7.47E+07 7.44E+07 8.37E+07 8.35E+07 8.37E+07 8.34E+07 
13 5.43E+07 5.41E+07 5.42E+07 5.40E+07 6.09E+07 6.06E+07 6.07E+07 6.05E+07 
14 3.39E+07 3.37E+07 3.37E+07 3.37E+07 3.80E+07 3.78E+07 3.77E+07 3.77E+07 
15 1.35E+07 1.33E+07 1.32E+07 1.33E+07 1.51E+07 1.49E+07 1.48E+07 1.49E+07 

 

Ni (found from Effective HS stress and D curve) Defining stress block cycles 
ni 
[Cycles] Miner sum 

hotsp_cl12 hotsp_cl03 hotsp_cl06 hotsp_cl09 log(n1) log(n2) log(n2-n1) 
All 
positions Di cl12 Di cl03 Di cl06 Di cl09 

3.62E+04 3.62E+04 3.59E+04 3.64E+04 0.00 0.51 0.34 2.21E+00 0.00 0.00 0.00 0.00 
4.47E+04 4.48E+04 4.43E+04 4.50E+04 0.51 1.01 0.85 7.10E+00 0.00 0.00 0.00 0.00 

5.62E+04 5.63E+04 5.57E+04 5.66E+04 1.01 1.52 1.36 2.28E+01 0.00 0.00 0.00 0.00 
7.19E+04 7.20E+04 7.13E+04 7.24E+04 1.52 2.03 1.86 7.32E+01 0.00 0.00 0.00 0.00 
9.41E+04 9.43E+04 9.34E+04 9.48E+04 2.03 2.53 2.37 2.35E+02 0.00 0.00 0.00 0.00 
1.26E+05 1.27E+05 1.26E+05 1.27E+05 2.53 3.04 2.88 7.55E+02 0.01 0.01 0.01 0.01 

1.76E+05 1.76E+05 1.74E+05 1.77E+05 3.04 3.55 3.38 2.42E+03 0.01 0.01 0.01 0.01 
2.54E+05 2.54E+05 2.52E+05 2.56E+05 3.55 4.05 3.89 7.79E+03 0.03 0.03 0.03 0.03 
3.86E+05 3.87E+05 3.84E+05 3.89E+05 4.05 4.56 4.40 2.50E+04 0.06 0.06 0.07 0.06 

6.28E+05 6.31E+05 6.26E+05 6.35E+05 4.56 5.07 4.90 8.03E+04 0.13 0.13 0.13 0.13 
1.13E+06 1.13E+06 1.12E+06 1.14E+06 5.07 5.57 5.41 2.58E+05 0.23 0.23 0.23 0.23 
2.32E+06 2.34E+06 2.33E+06 2.35E+06 5.57 6.08 5.92 8.28E+05 0.36 0.35 0.36 0.35 
6.05E+06 6.11E+06 6.09E+06 6.14E+06 6.08 6.59 6.42 2.66E+06 0.44 0.44 0.44 0.43 

4.55E+07 4.68E+07 4.71E+07 4.73E+07 6.59 7.09 6.93 8.54E+06 0.19 0.18 0.18 0.18 
4.53E+09 4.89E+09 5.11E+09 4.94E+09 7.09 7.60 7.44 2.74E+07 0.01 0.01 0.01 0.01 

      
D 1.47 1.45 1.46 1.44 

      
Fatigue life [years] 13.64 13.785 13.73 13.87 
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H. Miner summation for 15 stress blocks 

Weld root 12o’clock  

  
Max princ. stress - root 

[Pa] 
Corrected notch stress 

[Pa] 

step 
# Path a Path c Path a Path c 

1 9.85E+08 1.45E+09 1.13E+09 1.66E+09 

2 9.18E+08 1.35E+09 1.05E+09 1.55E+09 

3 8.51E+08 1.25E+09 9.78E+08 1.44E+09 

4 7.84E+08 1.15E+09 9.01E+08 1.32E+09 

5 7.16E+08 1.05E+09 8.23E+08 1.21E+09 

6 6.49E+08 9.54E+08 7.46E+08 1.10E+09 

7 5.82E+08 8.55E+08 6.69E+08 9.83E+08 

8 5.15E+08 7.56E+08 5.92E+08 8.69E+08 

9 4.48E+08 6.58E+08 5.14E+08 7.56E+08 

10 3.80E+08 5.59E+08 4.37E+08 6.42E+08 

11 3.13E+08 4.60E+08 3.60E+08 5.29E+08 

12 2.46E+08 3.61E+08 2.83E+08 4.15E+08 

13 1.79E+08 2.63E+08 2.06E+08 3.02E+08 

14 1.12E+08 1.64E+08 1.28E+08 1.88E+08 

15 4.45E+07 6.53E+07 5.11E+07 7.50E+07 

 

Ni Root fatigue 
[cycles] Defining stress block cycles ni [Cycles] Miner sum 

Path a Path c log(n1) log(n2) log(n2-n1) 
All 
positions Di path a Di path c 

1.57E+04 4.95E+03 0.00 0.51 0.34 2.21E+00 0.00 0.00 

1.94E+04 6.12E+03 0.51 1.01 0.85 7.10E+00 0.00 0.00 

2.44E+04 7.69E+03 1.01 1.52 1.36 2.28E+01 0.00 0.00 

3.12E+04 9.84E+03 1.52 2.03 1.86 7.32E+01 0.00 0.01 

4.09E+04 1.29E+04 2.03 2.53 2.37 2.35E+02 0.01 0.02 

5.49E+04 1.73E+04 2.53 3.04 2.88 7.55E+02 0.01 0.04 

7.62E+04 2.40E+04 3.04 3.55 3.38 2.42E+03 0.03 0.10 

1.10E+05 3.47E+04 3.55 4.05 3.89 7.79E+03 0.07 0.22 

1.68E+05 5.28E+04 4.05 4.56 4.40 2.50E+04 0.15 0.47 

2.73E+05 8.60E+04 4.56 5.07 4.90 8.03E+04 0.29 0.93 

4.89E+05 1.54E+05 5.07 5.57 5.41 2.58E+05 0.53 1.67 

1.01E+06 3.18E+05 5.57 6.08 5.92 8.28E+05 0.82 2.60 

2.63E+06 8.28E+05 6.08 6.59 6.42 2.66E+06 1.01 3.21 

1.87E+11 3.41E+06 6.59 7.09 6.93 8.54E+06 0.00 2.51 

2.95E+12 9.34E+11 7.09 7.60 7.44 2.74E+07 0.00 0.00 

  
   

D 2.93 11.80 

        Fatigue life [years] 6.82 1.70 
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I. Drawings for the fillet welded knee plate 

I. Drawings for the fillet welded knee plate 
Inspection position 2 being the knee plate weld toe. 
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