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The present trend is to build modern structures with small weight, high slenderness and highly 

optimized with respect to buckling. A few examples are tethers in tension leg platforms/wind 

turbines, shell structures in turbine towers, substructures in new generator concepts and 

container vessels. During extreme actions the static buckling resistance may be exceeded for a 

short period. The question is whether this is critical for the structure, notably when the 

governing buckling modes mobilize significant inertia forces or drag forces. 

Another challenge may be related to displacement controlled buckling, i.e. the end of a panel 

or a column is subjected to constant rate end shortening; how much is the buckling force 

increased by comparison with static buckling? This issue is relevant for various impact 

scenarios. 

The purpose of the work is to study the behaviour and resistance of relevant structural 

components subjected to impulsive type loads, thereby developing improved insight into 

dynamic buckling. The work is proposed carried out in the following steps: 

1. Supplement the literature review of dynamic buckling of columns, plates and shells 

conducted in the project work. To extent possible develop a simple algorithm in 

MATLAB to solve the dynamic equilibrium equations and compare with published 

analytic and numerical solutions. 

2. Perform systematic studies of dynamic elastic buckling of simple beam-columns with 

varying slendernesses using USFOS. The model shall contain initial imperfections 

compatible with the first three buckling modes.  The loading shall be either  

- Controlled rate of force increase 
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- Controlled rate of end shortening 

- Impulsive type (sinusoidal) loading 

The rate of loading/shortening or load duration shall be varied systematically. The 

effect of a static utilization prior to application of the dynamic force shall be 

investigated.  The transition from one buckling mode to a higher mode when the rate 

of loading is increased shall be observed. The numerical results shall be compared 

with analytical solutions. The sensitivity to the choice of initial 

displacements/imperfections shall also be investigated, both with respect to total value 

as well as the relative composition of imperfection modes. It shall also be investigated 

whether a “dynamic buckling length factor” can be defined for easy buckling checks. 

3. Investigate the effect of yielding on the dynamic buckling loads by running some of 

the analyses in pt 2 with a realistic yield strength. 

4. Perform a mesh size convergence study to determine the required fineness to obtain 

sufficiently accurate solutions for dynamic plate buckling.  

5. Perform systematic studies of dynamic elastic buckling of simply supported plates 

with constrained boundaries and varying slendernesses using USFOS and shell 

modelling. The model shall contain initial imperfections compatible with a sufficient 

number of buckling modes.  The loading shall be either  

- Controlled rate of force increase 

- Controlled rate of end shortening 

- Impulsive type (sinusoidal) loading 

The rate of loading/shortening or load duration shall be varied systematically. The 

effect of a static utilization prior to application of the dynamic force load shall be 

investigated.  The transition from one buckling mode to a higher mode when the rate 

of loading is increased shall be observed. The numerical results shall be compared 

with analytical solutions, refer e.g. Ekstrom: Dynamic Buckling of a rectangular 

Orthotropic Plate. The sensitivity to the choice of initial displacements/imperfections 

shall also be investigated, both with respect to total value as well as the relative 

composition. 

6. Investigate the effect of yielding on the dynamic buckling loads by running some of 

the analyses in pt 5 with a realistic yield strength. Propose simple formulations for the 

resistance of plates  to dynamic buckling. 
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7. If time permits perform conduct simulations of stiffened plates subjected to dynamic 

buckling. 

8. Conclusions and recommendations for further work 

For the shell element simulations it may be necessary to develop a MATLAB script to 

generate displaced coordinates that account for the various choices of initial deflection 

patterns. It is also recommended to generate scripts for the parametric simulation studies with 

USFOS. 

Literature studies of specific topics relevant to the thesis work may be included. 

The work scope may prove to be larger than initially anticipated.  Subject to approval from the 

supervisors, topics may be deleted from the list above or reduced in extent. 

In the thesis the candidate shall present his personal contribution to the resolution of problems 

within the scope of the thesis work. 

Theories and conclusions should be based on mathematical derivations and/or logic reasoning 

identifying the various steps in the deduction. 

The candidate should utilise the existing possibilities for obtaining relevant literature. 

Thesis format 

The thesis should be organised in a rational manner to give a clear exposition of results, 

assessments, and conclusions.  The text should be brief and to the point, with a clear language.  

Telegraphic language should be avoided. 

The thesis shall contain the following elements:  A text defining the scope, preface, list of 

contents, summary, main body of thesis, conclusions with recommendations for further work, list 

of symbols and acronyms, references and (optional) appendices.  All figures, tables and 

equations shall be numerated. 

The supervisors may require that the candidate, in an early stage of the work, presents a written 

plan for the completion of the work.  The plan should include a budget for the use of computer 

and laboratory resources which will be charged to the department.  Overruns shall be reported to 

the supervisors. 

The original contribution of the candidate and material taken from other sources shall be clearly 

defined.  Work from other sources shall be properly referenced using an acknowledged 

referencing system. 

The report shall be submitted in two copies: 



   

 

iv 

 

 - Signed by the candidate 

 - The text defining the scope included 

 - In bound volume(s) 

Drawings and/or computer prints which cannot be bound should be organised in a separate 

folder. 

The report shall also be submitted in pdf format along with essential input files for computer 

analysis, spreadsheets, MATLAB files etc in digital format. 

Ownership 

NTNU has according to the present rules the ownership of the thesis. Any use of the thesis 

has to be approved by NTNU (or external partner when this applies). The department has the 

right to use the thesis as if the work was carried out by a NTNU employee, if nothing else has 

been agreed in advance. 
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Scope of work 

The main focus in this thesis is to investigate different parameters connected to dynamic 

buckling on columns and plates. These parameters are: 

- Reduced slenderness 

- Loading rate 

- Transition from one buckling mode to a higher mode when the rate of loading is 

increased 

- Sensitivity to choice of initial imperfections, both with respect to total value as well as 

the relative composition 

- Use of realistic value for yield strength 

The objective is to identify the different parameters influence on dynamic buckling loads and 

buckling modes. This is done by studying published theory on the subject dynamic buckling. 

Analysis on beam-columns and plates are also performed to increase the insight in the 

phenomena dynamic buckling.  
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Summary 

The behavior and resistance of structural components subjected to impulsive type loads is 

investigated. An increased insight into dynamic buckling is achieved by performing a 

literature study, together with analyses on beam-columns and plates. The analyses are done in 

the programs USFOS and ABAQUS.  

The literature study defines two forms of dynamic buckling; vibration buckling and pulse 

buckling. The thesis' main focus is on dynamic buckling of beam-columns and plates. This 

can be related to slamming loads on ships or collisions between ships and offshore rigs. To be 

able to describe dynamic buckling properly, a theoretic foundation is created. The basic 

equations established by (Lindberg and Florence, 1987) are derived, as well as a mathematical 

description of dynamic buckling. The derivation show some of the basic features of pulse 

buckling for an axially loaded bar.  

Different parameters effect on dynamic buckling loads are also investigated. These 

parameters are load duration, shape and magnitude of initial imperfections, material choice 

and reduced slenderness. The parameters effect on the dynamic loading factor is also included 

in the study. It is shown that the dynamic loading factor may drop below unity for loading 

durations close to the natural period of the component. The parameters effect on the buckling 

loads is shown to be significant, and is therefore further investigated in the analysis.  

An axially loaded beam-column is analyzed in USFOS. Steel is the material of choice. The 

beam-column contains initial geometrical imperfections compatible with the three first 

buckling modes. By varying the loading rate, the transition from one buckling mode to a 

higher mode is investigated. The effect of changing the magnitude of imperfections is also 

considered, as well as the composition of the imperfections. The reduced slenderness of the 

beam-column is varied, and it is found that the effect of this change on dynamic buckling 

loads is significant. To investigate the beam-columns behavior in real life, there are performed 

analyses with using a realistic value for the yield strength.  

A plate loaded with an edge load is analyzed in ABAQUS.  The plate's eigenmodes are found 

by performing an eigenvalue analysis. The eigenvalues are implemented as initial 

imperfections. The effect of using different combinations and scaling of the eigenmodes are 

investigated by considering the change in the dynamic buckling loads. The effect of varying 

the reduced slenderness is also found, and by varying the loading rate the transition from one 

buckling mode to a higher mode is investigated. It is found that parameters such as reduced 

slenderness and scaling of the imperfections have a major influence on the dynamic buckling 

load. To verify the results from the analysis performed in ABAQUS, analytical results are 

obtained from (Ekstrom, 1973) and by using MATLAB.  
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Sammendrag 

Knekkingsmotstanden til konstruksjoner utsatt for impulslaster er undersøkt i denne 

oppgaven. Et litteraturstudium er sammen med analyser gjennomført for å øke innsikten til 

fenomenet dynamisk knekking. Bjelker og plater er hovedfokuset. Analysene er gjennomført i 

programmene USFOS og ABAQUS.  

I litteraturstudiet defineres to typer dynamisk knekking; vibrasjonsknekking og knekking 

grunnet pulslaster. Dynamisk knekking av bjelker og plater kan for eksempel inntreffe i 

skrogkonstruksjonen til et skip grunnet høye bølgelaster, eller i forbindelse med kollisjoner 

mellom skip og oljeplattformer. For å kunne beskrive dette på en god måte, blir et teoretisk 

grunnlag etablert ved utledning av ligningene utarbeidet av (Lindberg and Florence, 1987). 

Utledningen viser noen av de grunnleggende egenskapene for dynamisk knekking av en 

aksielt belastet stav.  

Forskjellige parameteres effekt på dynamisk knekklast er også undersøkt. Eksempler på 

parametere er; lastperiode, form og størrelse på geometriske imperfeksjoner, materialvalg og 

redusert slankhet. Den dynamiske lastfaktoren er også inkludert i analysen. Det er vist at den 

dynamiske lastfaktoren kan være mindre enn 1 hvis lastperioden er i nærheten av 

komponentens egenperiode. Dette vil føre til at den dynamiske knekklasten blir mindre enn 

den statiske knekklasten. Parameterne undersøkt viser seg å ha stor innflytelse på den 

dynamiske knekklasten, og er derfor grundig analysert i oppgaven.   

En aksielt lastet bjelke av stål er analysert i USFOS. Bjelken er modellert med geometriske 

imperfeksjoner opp til tredje grad. Ved å variere hastigheten på den aksielle lasten er 

overgangen mellom de forskjellige knekkformene bestemt. Størrelsen på imperfeksjonene 

viser seg også å ha innvirkning på knekklasten, det samme med bjelkens reduserte slankhet. 

For å kunne relatere analysene til virkeligheten, er analyser ved bruk av realistisk flytspenning 

også gjennomført.  

En plate belastet av en lateral last er analysert i ABAQUS. Platens egenmoder er funnet ved en 

egenverdianalyse. Egenmodene er implementert som geometriske imperfeksjoner. Som for 

bjelken, blir forskjellige kombinasjoner og størrelser på egenmodene undersøkt ved å betrakte 

endringene i dynamisk knekklast. Overgangen mellom de forskjellige egenmodene blir 

etablert ved å variere hastigheten av den innkommende lasten. Effekten av å variere platens 

slankhet blir også undersøkt. Det viser seg at kombinasjonen av endringer i både valg av 

egenmoder og platens slankhet har stor innvirkning på den dynamiske knekklasten.  

For å verifisere resultatene blir en analytisk løsning funnet fra (Ekstrom, 1973). Ved å bruke 

MATLAB blir arbeidet fra (Ekstrom, 1973) sammenlignet med resultater med ABAQUS.  
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1 Introduction 

The development of structures with small weight, high slenderness and highly optimized with 

respect to buckling, has led to increased focus on the topic dynamic buckling. The importance 

of studying the dynamic stability of such structures is crucial to ensure the required level of 

safety in design. Examples of structures that are vulnerable to dynamic buckling are tethers in 

tension leg platforms, shell structures in turbine towers and landing gear of airplanes.  

The difference between static buckling and dynamic buckling is the duration and type of 

loading. During dynamic buckling the loading is time dependent, and the dynamic buckling 

load may exceed the static buckling load. This happens over a short period of time, and the 

question is whether this is crucial for the structure. It is commonly recognized that under short 

loading durations a structure may withstand dynamic buckling which are in excess of its static 

bifurcation load(Weller et al., 1989). 

According to the dynamic loading characteristics, the studies can be divided into three 

categories, buckling under high impact velocity, buckling under low impact velocity, and 

buckling under intermediate impact velocity(Ma et al., 2006). In this thesis' field of interest, 

marine technology, intermediate impact velocity is of most interest. One example of such a 

load is fluid-solid slamming. This can happen when a ship is slammed by sea waves. In this 

case one has to investigate the slamming loads influence on the beams and plates in the ship 

structure. Other examples are when an offshore rig is subjected to sea waves. Here, the 

structural members are under intermediate velocity fluid-solid impact (Cui et al., 1999). The 

focus on structures subjected to dynamic buckling started as early as in the 1940-1950s. (Pian 

and Siddal, 1950) concluded after a thorough investigation of a strut under eccentric axial 

loading of an impact type, that a load much greater than the Euler load could be applied to a 

strut if the period of application were much less than the first natural period of the strut.  

Several factors will have influence on the dynamic buckling load. It is shown that initial 

geometrical imperfection, duration of impulse and effective slenderness have a major 

influence on the buckling loads whereas the effect of material is secondary(Ari-Gur et al., 

1982).  

The problem when dealing with dynamic buckling is the limited amount of publications. Over 

the recent years the focus on the topic has increased, due to the trend to build slender 

structures which are sensitive to dynamic buckling. Due to this development it is expected 

that dynamic buckling will be an important aspect to consider for designers of offshore 

structures in the future.  
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2 Theory 

When dealing with dynamic buckling, structures subjected to dynamic loads are considered. It 

is important to differ between buckling from oscillatory loads, and buckling from transient 

loads consisting of a single pulse characterized by its amplitude, shape and duration. The first 

type is called vibration buckling and the latter is called pulse buckling. The term pulse is used 

because it tends to emphasize the high amplitude and short duration. This force amplitude is 

often much higher than the static load(Lindberg and Florence, 1987). The two forms of 

dynamic buckling are described in figure (2.1). Figure (2.1a) shows vibration buckling where 

the bar oscillates at a frequency twice the size of the lowest bending frequency of the 

unloaded bar. It is called vibration buckling due to the similarity to resonant vibrations. Figure 

(2.1b) shows pulse buckling with the corresponding force/time graph showing the pulse force. 

Pulse buckling will be this thesis' main focus.  

 

Figure 2.1: Vibration buckling & pulse buckling 

Dynamic buckling can be divided into three categories, buckling under low impact velocity, 

buckling under high impact velocity and buckling under intermediate impact velocity (Ma et 

al., 2006). Structural elements which are subjected to dynamic buckling are bars, plates, rings 

and shells (Lindberg and Florence, 1987). 

(Budiansky and Hutchinson, 1964) established a criteria for dynamic buckling. Consider a 

structure with a group of loading histories ( , )q x t


, generated by varying λ in equation(2.1).  
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0( , ) ( , )q x t q x t

 

  (2.1) 

Assume that t ≥ 0 and is 
0 ( , )q x t



 a particular function of position x and time t, while λ is a 

scalar parameter. A critical value of λ can be defined for dynamic buckling. The next step is 

to set up a significant scalar measure of the response of the structure to ( , )q x t


, e.g. stress, 

deflection etc. This scalar is called ( , )R t . Further, equation (2.2) defines the following.  

  

  max
0

( , ) max ( , )
t T

R T R t 
 

  (2.2) 

In equation(2.2), T is the largest value of t that is of interest. To find the criteria for dynamic 

buckling a plot of max ( , )R T versus λ is considered, see figure (2.2). From figure (2.2) it can 

be seen that Rmax rises very steeply over a narrow range of λ. The critical value for dynamic 

buckling, λD, is defined to be the value of λ in the middle of this range. This criterion for 

buckling was proposed by (Budiansky and Hutchinson, 1964).  

 

Figure 2.2: Buckling criterion 

When a column is subjected to axial impact, the column will experience an axial stress wave 

propagation. In most studies, this effect is disregarded by assuming that the strain distribution 

along the column length is uniform after the impact. This situation will however, occur at a 

later time after the initiation of impact (Ji and Waas, 2013). 

Figure (2.3) shows a number of photographs of a long column which is impacted at one end, 

i.e. pulse buckling. The figure shows how the axial compression wave propagates as the time 

increases. From the figure it is seen that the buckling is concentrated near the impacted end 

because the axial load is experienced for the longest time at this location. During pulse 

buckling it is observed that a band of preferred modes grows more rapidly than others. This is 
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another feature that extinguishes pulse buckling from vibration buckling. The buckling modes 

in pulse buckling depends on the load and must be determined as a part of the 

solution(Lindberg, 2003).  

 

Figure 2.3: Pulse buckling 

2.1 Structures subjected to dynamic buckling 

Within marine technology there are several structures that are vulnerable to dynamic 

buckling. Due to the sea environment, the interaction between waves and the structure are 

most relevant. The corresponding dynamic load is fluid-solid slamming(Cui et al., 1999). On 

a ship, the beams and plates on the deck are subjected to buckling under intermediate velocity. 

A container ship has large bow flares to be able to transport as many containers as possible. 

This will lead to large slamming loads, and dynamic buckling can occur.  

Other examples of structures that experience buckling under intermediate velocity are landing 

gear on an airplane during landing, offshore rigs and wind turbine towers. For offshore 

structures collisions plays an important role when dealing with dynamic buckling. One 

example is a collision between a supply vessel and the leg of a platform. This can be related to 

displacement controlled buckling, i.e. the end of a panel or a column is subjected to constant 

end shortening. The knowledge of dynamic buckling in design is limited and it is often based 

on the use of a static buckling load to which a load factor is applied. It is therefore essential 

that this factor is correct, a wrong value will lead to overdesigned structures or in worst case, 

catastrophic failure (Featherston et al., 2010).  

2.2 Equation of motion 

The derivation of the equation of motion was performed by (Lindberg and Florence, 1987). A 

simply supported uniform bar under axial compression is considered. Elastic buckling is 

assumed for the bar with length L and compressive force P, see figure (2.4).  



   

 

5 

 

 

Figure 2.4: Simply supported uniform bar 

The equation of motion is found by considering dynamic equilibrium of an incremental length 

dx of the element, see figure (2.5).  

 

Figure 2.5: Incremental length of element 

The positive direction is taken as the direction of the moment and shear force in figure (2.5). 

When considering the equilibrium in y-direction, the following is obtained: 

  

                                                  

2

2
( ) 0

y
Q A dx Q dQ

t



    


            (2.3) 

The term 
2

2

y
A dx

t





is the inertia force acting on the element. Equation (2.4) is obtained when 

rearranging equation(2.3).  
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2

2

y dQ
A

t dx






         (2.4) 

Taking the sum of moments about point B in figure (2.5), and neglecting rotary inertia of the 

element, gives: 

  
2

02
( ) ( ) ( ) 0

2

y dx
M A dx Q dQ dx M dM P y y dx

t x


 
       

 
 (2.5) 

The initial displacement is accounted for by adding the term 0y to equation (2.5). Second order 

terms are neglected giving equation (2.6). 

                     

       0( )
M

Q P y y
x x

 
  
 

                                                  (2.6) 

The relation between the curvature of the bar axis and the bending moment, is found by 

neglecting the effects of shear deformations and shortening of the bar axis, see equation (2.7).

  

2

2

y
EI M

x


 


       (2.7) 

The differential equation for the bar is found by differentiating (2.6), and eliminating Q  by 

using (2.4), and M  by (2.7) differentiating twice. This will give the equation of motion, 

equation (2.8). 

  
4 2 2

04 2 2
( ) 0

y y
EI P y y A

x x t


  
   

  
 (2.8) 

 

2.3 Analytical solution for dynamic buckling 

The analytical solution for the dynamic buckling problem was performed by (Lindberg and 

Florence, 1987). When equation (2.8) is established, it is possible to obtain an analytical 

solution for dynamic buckling. To keep the theory simple, the material behavior of the bar is 

assumed to be rigid, linear-plastic hardening (Ma et al., 2006). As previously mentioned 

dynamic buckling is different from static buckling. In dynamic buckling loads in excess of the 

static buckling load is experienced over shorter periods of time. Because of this feature in the 

dynamic problem, rather than seeking the maximum load that can be carried, we specify a 

load and seek the response (Lindberg, 2003). The same bar as in figure (2.4) is considered. 
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The magnitude of the load P can be much larger than in the case of static buckling. In static 

buckling the buckling load is known as the Euler load. The differential equation (2.8) governs 

the motion of the bar. This equation is divided by EI and the following parameters are 

introduced  

 2 2 2, ,
P I E

k r c
EI A 

    (2.9) 

The parameters introduced in equation (2.9) are used in equation (2.8). 

  
24 2 2

2 2 0

4 2 2 2 2 2

1 yy y y
k k

x x r c t x

  
   

   
 (2.10) 

To be able to continue the derivation boundary conditions have to be introduced. Zero 

moment and displacement at the end of the bar is assumed. These conditions will give  

 
2

2
0, 0

y
y at x and x L

x


   


 (2.11) 

The solution of equation (2.10) by using the boundary conditions given in (2.11), can be 

expressed by a Fourier sine series in x, hence a product solution is taken 

  
1

( , ) ( )sinn

n

n x
y x t q t

L





  (2.12) 

A product solution can also be assumed for the initial displacement 0 ( )y x  

0

1

( ) sinn

n

n x
y x A

L





               (2.13) 

The coefficient An can be found from 

  0

0

2
( )sin

L

n

n x
A y x

L L


   (2.14) 

It is now possible to substitute equation (2.12) and (2.13) into equation (2.10), to give the 

equation of motion for the Fourier coefficients ( )nq t  

  
4 4 2 2 2 2

2 2

4 2 2 2 2

1
n n n

n n n
k q q k A

L L r c L

   
   

 
 (2.15) 

With some rearranging the more standard from is obtained 
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2 2 2 2 2 2 2 2

2 2 2 2

2 2 2n n n

r c n n n
q k q r c k A

L L L

   
    

 
 (2.16) 

The sign of the coefficient
nq decides the nature of the solutions, i.e. whether the solutions are 

hyperbolic or trigonometric. If /n L k  the coefficient is negative and the solutions are 

hyperbolic, and if /n L k  the coefficient is positive and the solutions are trigonometric. 

The definition of k is found in equation (2.9). From this it is seen that the mode numbers n, 

determines the solution. Thus, if the mode numbers are large enough, i.e., /n kL  , the 

displacements are trigonometric. This means that the displacements are bounded and no 

significant displacement change accompanies the initial imperfections. Over the lower range 

of mode numbers, /n kL  , the hyperbolic solutions grow exponentially with time and have 

the potential of greatly amplifying small initial imperfections. These modes are therefore 

called buckling modes (Lindberg and Florence, 1987). 

The relationship with the static buckling problem can be seen by considering the mode 

number that separates the trigonometric and hyperbolic solutions, i.e. /n kL  . This mode 

number will give a wavelength corresponding to the wavelength of static buckling under the 

load P. Another way to see the relationship with the static buckling problem is to analyze the 

deflection shape. From equation (2.12) it is seen that the deflection shape of the bar is a sine 

wave with n half-waves. For /n kL  this shape is given by sin kx. If one half-wave of this 

shape is considered, this will correspond to the buckling mode of a simple pinned Euler 

column. This shape will occupy a distance given by 

  stkx   (2.17) 

or 

  stx
k


  (2.18) 

k is recognized from equation (2.9), and the following is obtained 

       
2

st

EI
P

x


               (2.19) 

Equation (2.19) is known as the static buckling load of an Euler column of length xst under 

load P. (Lindberg, 2003) proposed a statement that any load greater than 2

1 /P EI L , not 

just the eigenvalues of the static problem, gives unstable motion. This can also be seen from 

equation (2.16), when the coefficient nq is negative, or if 
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2 2

2

2
0

n
k

L


   (2.20) 

It is seen from (2.20) that the expression is most negative for  n = 1, since 2 /k EI L is 

positive. When n = 1 the motion will be unstable, which is also often the case for dynamic 

problems. In dynamic problems, the load is in excess of the Euler load, i.e. P >> π
2
EI / L

2
. 

The mode numbers will therefore be high and the wavelengths so short that the total length of 

the bar becomes unimportant. A case of dynamic buckling is a bar impacted at one end, and 

due to the finite speed of the axial wave propagation, buckling occurs before any signal is 

received from the opposite end. Hence, the total length of the bar has no significance at all, 

and another characteristic length other than the length of the bar is wanted. The nature of the 

motion changes at the static Euler wavelength, /stx k , and therefore 1/ k can be used as 

the characteristic length in x-direction. This can also be done in the lateral direction. The 

lateral deflections can be normalized with respect to the radius of gyration r of the cross 

section. The ratio of these lengths is a significant parameter and can be denoted by s.  

  
2

2 2 2 r P P
s r k

EI AE
     (2.21) 

The following variables are introduced to be able to include these lengths into the equation of 

motion 

  
2y sx s ct

w kx
r r r

      (2.22) 

When equation (2.22) is introduced the equation of motion (2.8) becomes 

  0w w w w      (2.23) 

The primes in equation (2.23) indicate differentiation with respect to ξ, while the dots indicate 

differentiation with respect to τ. The boundary conditions presented by equation (2.11) 

become 

 0 0
sL

w w at and l
r

       (2.24) 

The product form of the solution becomes 

  
1

( , ) ( )sinn

n

n
w g

l


  





  (2.25) 

Similarly, the initial displacement is written according to equation (2.26). 
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0

1

( ) sinn

n

n
w a

l








  (2.26) 

where 

  0

0

2
( )sin

l

n

n
a w d

l l


    (2.27) 

If a wave number η is introduced, defined as /n l  , the equations of motion for the 

Fourier coefficients ( )ng  can be derived as follows  

 2 2 2( 1)n n ng g a      (2.28) 

Equation (2.28) will correspond to equation (2.16), and in the new notation the transition from 

hyperbolic to trigonometric solutions occur at 1  . The general solution to equation (2.28) is 

  
2

( ) cosh sinh 1
1

n
n n n n n

a
g C p D p for   


   


 (2.29) 

  
2

( ) cos sin 1
1

n
n n n n n

a
g C p D p for   


   


 (2.30) 

where 

  
1/2

21np     (2.31) 

If equation (2.29) and (2.30) is introduced in (2.25), the general solution for the lateral 

displacement is obtained 

  

2
1

2
1

( , ) cosh sinh sin
1

cos sin sin
1

N
n

n n n n

n

n
n n n n

n N

a n
w C p D p

l

a n
C p D p

l


   




 







 

 
   

 

 
   

 





 (2.32) 

Since w is measured from the initial displacement w0, the initial conditions are 

  ( ,0) ( ,0) 0w w    (2.33) 

If equation (2.33) is applied to (2.32), the final solution is found. Equation (2.34) shows 

qualitatively the exponential growth of the buckling terms.  
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2

1

cosh 1
( , ) sin

cos 11

nn

n n

pa n
w

p l

 
 







 
  

  
  (2.34) 

The hyperbolic form is taken for 1  , while the trigonometric form is taken for 1  . As 

previously mentioned small initial imperfections can be greatly amplified under the 

hyperbolic form, hence this is the form of interest when dealing with the buckling problem. 

As the time increases the wave number of the most amplified mode can be determined. The 

wave number of the most amplified mode is obtained approximately as 0.707cr  . This 

number is found by differentiating the amplification function for 1  . The amplification 

function is the ratio between the Fourier coefficients an of the initial displacements and the 

coefficients ( )ng  as the structure buckles(Lindberg and Florence, 1987). In this case this 

function is given by equation (2.35). 

                 
2

2

cosh 11
1( )

cos 11( )

/ 2 1

n

n
nn

n

p
ifg

pG
a

if






 

  
  

    
 

 

             (2.35) 

The amplification function can be plotted to get a better insight in how the parameter τ affects 

the imperfection amplification, see figure (2.6) taken from (Lindberg, 2003). In the figure,   

is treated as a continuous variable, and τ is the dimensionless time that spans from significant 

amplification occurring for a range of both trigonometric and hyperbolic modes. A first-order 

criterion for critical loads at the onset of pulse buckling has been found by experiments to 

occur at 8  . The experiments showed that nonlinear effects, such as onset of plastic hinges 

began at this value for τ. For a given structure, specification of τ = 8 can be used to calculate 

combinations of load amplitude and duration that cause buckling. In fact, from the definitions 

of s and  τ in equation (2.21) and (2.22), τ is proportional to the applied impulse (Lindberg, 

2003).  
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Figure 2.6: Amplification function 

The approximation of  0.707cr  can be used in the definition of np stated in equation (2.31). 

A better estimate of cr  will then be 

  
1

22
cr





 


 (2.36) 

By calculating cr for different values of τ it is found that a rough estimate of the wave 

number of the most amplified mode can be taken as simply 0.8cr p   . This is called the 

preferred mode of buckling. 

The above derivation has shown some basic features of the bar pulse buckling, for an axially 

loaded bar. The effect of boundary conditions and load category on the dynamic beam 

buckling under transverse load is still not understood completely. Analytical solutions of the 

pulse buckling problems are very complicated. Numerical simulations can therefore play an 

important role to identify the dynamic instability critical load for various load conditions(Ma 

et al., 2006). By using the analysis tool LS-DYNA, (Ma et al., 2006) performed numerical 

simulations to find the dynamic response of a uniform beam model. The beam was loaded 

transversely with a pulse load, and it was found that the results agreed with the dynamic 

plastic-flow buckling theory developed for axially loaded bars showed above, and originally 

performed by (Lindberg and Florence, 1987). The results from (Ma et al., 2006) agreed with 

the dynamic plastic-flow theory developed for axially loaded bars (Lindberg and Florence, 

1987) that the vibration modes corresponding to η > 1 are bounded and the displacements of 
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the corresponding modes is not significantly amplified with the initial imperfections. This is 

shown in figure (2.7).  

 

Figure 2.7: Time history of modal participation factors: P = (a) 1200N (b) 1550N 

From figure (2.7) it is observed that the beam response is approximately dominated by the 

three first modal participation factors (α1, α2, α3) and modes shaped because the other modal 

participation factors are relatively small.  

2.4 Different parameters effect on dynamic buckling  

When dealing with dynamic buckling there are many parameters to take into account. Since 

dynamic buckling is time-dependent, it is of interest to investigate the effect of duration of the 

loading. Other parameters worth investigating are initial imperfections, reduced slenderness, 

dynamic loading factor and material choice.  

2.4.1 Effect of duration of loading 

The duration of loading is an important factor to consider when dealing with dynamic 

buckling. As previously mentioned, the time-dependence distinguishes dynamic buckling 

from static buckling. It is important to have knowledge about the duration of the loading to be 
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able to compare it to the systems eigenvalues. The reason for this is that in cases where load 

durations is close to the first natural period of lateral vibrations, the dynamic buckling load of 

a plate might be smaller than the classical characteristic bifurcation load for a corresponding 

perfect structure(Weller et al., 1989).  

(Weller et al., 1989) performed a study where dynamic buckling of beams and plates 

subjected to axial impact was investigated. The duration of loading was one of many 

parameters analyzed closely. The specimen tested was a beam clamped at both ends, but with 

the impacted end free to move longitudinally. The impact load had the shape of half a sine 

wave with a period T. (Weller et al., 1989) found out that for lower values of 2T/Tb, (the ratio 

between the period of the applied loading and the period of the first free lateral vibration) the 

knee of the response curve tends to move away from the origin of the axes and flatten down. 

This indicates higher dynamic buckling loads. The analyses were done by using two different 

initial geometric imperfections. From figure (2.8) it is seen that a low 2T/Tb-ratio indicates 

higher dynamic buckling loads, i.e. short loading durations gives high dynamic buckling 

loads.  

The analysis was also done on a plate and gives the same results as for the beam. But as 

previously mentioned the dynamic buckling load is smaller than the classical characteristic 

bifurcation load for a corresponding perfect structure, when the load duration is close to the 

first natural period of lateral vibrations, see figure (2.9). 

 

 

Figure 2.8: Effect of load duration on beams 
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Figure 2.9: Effect of load duration on plates 

The results obtained by (Weller et al., 1989) were confirmed by (Cui et al., 2002), see figure 

(2.10). The parameter αcr is the buckling load amplification coefficient and t0 is the load 

duration. It is seen that the buckling load amplification increases significantly as the duration 

of the loading decreases. λ is the reduced slenderness. The effect of reduced slenderness is 

investigated in section 2.4.3. 

 

Figure 2.10: Buckling load amplification coefficient vs load duration 

(Ekstrom, 1973) found out that a plate loaded rapidly will buckle at a higher critical stress 

than a plate loaded very slowly (statically). In the post-buckling phase the rapidly loaded plate 
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oscillates about the static load-deflection relation. This leads to higher stresses compared to 

the static case, see figure (2.11). 

 

Figure 2.11: Response curves for different loading rates; S = 328, S = 82 

2.4.2 Effect of initial imperfections 

The effect of initial imperfections is also a factor worth investigating. (Weller et al., 1989) 

studied the initial imperfections effect on the dynamic buckling load on beams and plates. The 

analyses were performed by subjecting the components to an axial impact. The duration of the 

loading was kept constant. It was found that when increasing the ratio w0/h , which is the 

initial imperfection divided over the elements length, the dynamic buckling load decreased, 

see figure (2.12). The buckling load is seen from the figure as the respective intersection of 

the branch of the curves in the buckled state with the applied load, Fx.  

 

Figure 2.12: Effect of initial imperfections 
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(Ari-Gur, 1981) presented theoretical and experimental results for a rectangular plate 

impacted by a mass m moving in an in-plane direction, and concluded that the dynamic 

buckling load of the plate is strongly dependent on its initial geometric imperfection and the 

pulse duration. From the experiments performed by (Ari-Gur, 1981) it was obvious that the 

larger the initial imperfection, the smaller the maximum axial strain. This behavior is 

completely different from static buckling where the upper bound of the axial load is 

independent of the magnitude of the initial imperfection. This theory is confirmed by 

(Ekstrom, 1973) who found out that initial imperfections cause a decrease in the critical 

stress. Initial imperfections will also decrease the amplitude of the post-buckling oscillations.   

2.4.3 Effect of reduced slenderness 

(Cui et al., 2002) derived a dynamic buckling criterion, where an expression for the dynamic 

buckling critical load of a column where found.  

  
8 1

0

2

34 2
1cr

t






 


 (2.37) 

From equation (2.37) it is seen that the buckling load is affected by different parameters. One 

of these parameters is λ, the slenderness of the column. Note that this is not the same as λ 

used by (Budiansky and Hutchinson, 1964) in the buckling criterion early in chapter 2.  (Cui 

et al., 2002) plotted equation (2.37) and found out how the slenderness and the duration of the 

load affected the buckling load. The columns which were tested had initial imperfections 

ranging from 0,10 to 0,42mm.  

 

Figure 2.13: Effect of reduced slenderness 
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By investigating figure (2.13) it is seen that the buckling load is expected to decrease when 

increasing the columns slenderness. The reason for this is that a column with a small 

slenderness ratio will have a higher flexural stiffness compared to a column with high 

slenderness ratio. The importance of taking the reduced slenderness into account was 

confirmed by  (Ari-Gur et al., 1982)  who presented experimental results that showed that the 

magnitude of the dynamic buckling load of a column under axial impulse of a certain duration 

is determined by its slenderness ratio, see figure (2.14). 

 

Figure 2.14: Critical strain vs. slenderness for steel columns 

2.4.4 Effect of material choice  

Steel is very much used in the marine industry, but in some cases there are other materials 

which are considered more suitable when designing a structure. Therefore it is important to 

investigate the effect of material choice with respect to dynamic buckling to make sure that 

the structure is safe. (Ari-Gur et al., 1982) performed several dynamic buckling tests with 

different materials. By plotting the dynamic load amplification factor (see section 2.4.5) 

versus the slenderness (figure 2.15), it was seen that the results for steel and aluminum alloy 

columns are within the same experimental scatter. It may then be concluded that material 

properties do not significantly affect the dynamic buckling behavior.  
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Figure 2.15: DLF versus slenderness for columns with different material properties 

The statement that material properties do not affect dynamic buckling behavior was 

reinforced by the results of glass-epoxy specimens. This material consists of different 

materials throughout the column, and is defined as a composite material. These composite 

columns have different material properties in the axial direction and the properties differ also 

from those of the metal specimens. The experiments showed that the dynamic loading factor 

was not significantly affected when changing the material. Figure (2.16) shows the results for 

steel, aluminum and the composite material. The conclusion that materials properties do not 

significantly influence the dynamic buckling phenomenon is similar to that well known for 

static buckling of columns(Ari-Gur et al., 1982).  

 

Figure 2.16: Effect of material choice on dynamic loading factor 
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2.4.5 Dynamic load factor (DLF) 

The dynamic load factor is defined according to equation (2.38). 

  
( )

( )

cr d

cr s

P
DLF

P
  (2.38) 

where (Pcr)s is the static buckling load and (Pcr)d is the dynamic buckling load. The concept of 

DLF is of practical interest for the designer, since it provides a direction indication of the load 

carrying capacity of the structural elements exposed to rapidly applied loads relative to almost 

statically applied loads (Weller et al., 1989). The analysis performed by (Weller et al., 1989) 

showed that both initial geometric imperfections and duration of the loading affect the DLF.  

 

Figure 2.17: Effect of initial imperfections on DLF for various imperfections levels 
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Figure 2.18: Effect of load duration on DLF for various load durations 

From figure (2.17) and (2.18) it is seen that for 2T/Tb ratios above unity, the DLF is above 1. 

This indicates that the design of a structural element to sustain elastic static buckling is 

sufficient to withstand the impact loads. It is also observed that the DLF drops below unity for 

values (2T/Tb) > 1 and (w0/h)> 0.5. This means that in some cases the dynamic buckling load 

does not exceed the static one. For a designer, this is an important phenomenon to be aware 

of.  

Figure (2.17) and (2.18) coincides with the studies done by (Ari Gur and Weller, 1985) who 

found out that in the range of long-duration impacts, where the response is quasi-static and the 

dynamic buckling load approaches the static one, there is a possibility that for certain initial 

geometric imperfections of the plate the dynamic buckling load may drop below the static 

one. Further analysis of plates subjected to axial impacts showed that loading duration should 

be related to the natural period of free lateral vibration. In figure (2.19) the DLF is found by 

numerical methods performed by (Weller et al., 1989). It is seen that the DLF drops below 

unity as (2T/Tb) > 2, for certain values of initial imperfections. This is in correspondence with 

the DLF for beams shown earlier.  
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Figure 2.19: Dynamic load amplification factor for plates vs. duration of loading – numerical 

results  

3 Dynamic analysis of a simple-beam column in USFOS 

The computer program USFOS can be used to investigate dynamic buckling further. 

Following aspects are to be investigated in this section 

- The transition from one buckling mode to a higher mode when the rate of loading is    

increased  

- The sensitivity to the choice of initial imperfections, both with respect to total value as 

well as the relative composition of imperfection modes 

- Effect of yielding on dynamic buckling loads 

The validity of the analysis is examined by comparing results from USFOS with published 

analytical solutions. The analyses are done by considering a simple beam-column made of 

steel. The column is subjected to a nodemass with a constant initial velocity. The boundary 

conditions of the column are modelled with the impacting end of the column free to move 

longitudinally. The other end of the column is fixed from all translations, see figure (3.1). 
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Figure 3.1: Column analysed in USFOS 

3.1 Investigation of transition of buckling modes 

As presented in the theory part, during pulse buckling it is observed that a band of preferred 

modes grows more rapidly than others. This is another feature that extinguishes pulse 

buckling from vibration buckling. The buckling modes in pulse buckling depends on the load 

and must be determined as a part of the solution(Lindberg, 2003).  

To be able to investigate the transition from one buckling mode to a higher mode when the 

rate of loading is increased, the beam-column used in USFOS has to contain initial 

imperfections compatible with the three first buckling modes. Figure (3.2) shows how the 

three first buckling modes are summarized.  

 

Figure 3.2: Summarizing all buckling modes 

The analysis is performed by subjecting the beam-column to a loading consisting of a nodal 

mass with initial velocity. An analysis is run for different velocities and the buckling mode for 

each velocity is noted. The object is to find out when the transition between the different 

buckling modes occur. To increase the insight into dynamic buckling, the slenderness of the 

column is varied. The definition of slenderness is according to equation (3.1) (Amdahl, 2009). 
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  (3.1) 

σY is the yield stress, while σE is the Euler stress. The expression for the reduced slenderness 

can also be written according to equation (3.2). 
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 (3.2) 

The slenderness is varied by changing the length of the column. In the analysis lengths equal 

to 10m, 15m and 20m are used. The column is modeled by 4 elements of equal length. Table 

(3.1) shows the reduced slendernesses for the different columns.  

Length [m] 10 15 20 

Slenderness [-] 1,29 1,94 2,58 

Table 3.1: Reduced slenderness 

Table (3.2) shows the buckling modes of the column after subjecting the column with length 

equal to 10m to nodal masses with different initial velocity.  

Velocity [m/s] Buckling mode 

0,2 1
st
 

0,8 1
st
/2

nd
 

1,0 2
nd

 

6,0 2
nd

 

8,0 2
nd

/3
rd

 

10,0 3
rd

 

Table 3.2: Velocity vs. transition between buckling modes, column with length = 10m 

Figure (3.3) to figure (3.5) shows the different buckling modes for the column.  

 

Figure 3.3: 1
st 

 order buckling mode 
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Figure 3.4: 2
nd

 order buckling mode 

 

Figure 3.5: 3
rd

 order buckling mode 

The values in table (3.2) are found by running an animation of the deformation of the beam-

column in USFOS. By investigating this animation the buckling mode is found for each case. 

In some cases it is difficult to decide the velocity where the transition occurs. Therefore the 

results presented in table (3.2) should be taken with care. With this is mind the buckling loads 

for the transitions are according to table (3.3). 

Buckling mode Velocity [m/s] Buckling load [MN] 

1
st 

→ 2
nd

 0,9 2,8
 

2
nd

 → 3
rd

  9,0 10 

Table 3.3: Transition between buckling modes with associated velocities and buckling loads, 

column with length = 10m 

Table (3.3) shows the velocities and the corresponding buckling loads where the transitions 

between the buckling modes occur. It is observed that it requires a significant increase in 

loading and velocity to elicit the 3
rd

 order buckling mode. The problem can be investigated 

further by running the same analysis for columns with lengths equal to 15m and 20m, i.e. 

changing the slenderness.  

Length Transition 

1
st  

→ 2
nd

 

Transition 

2
nd

 
 
→ 3

rd 

 Velocity 

[m/s] 

Buckling load 

[MN] 

Velocity [m/s] Buckling load [MN] 

15m 0,25 1,16 7,0 6,0 

20m 0,18 0,75 5,0 3,8 

Table 3.4: Transition between buckling loads for columns with lenghts equal to 15m and 20m 
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From table (3.4) it is seen that as the slenderness/length decreases the buckling load for the 

transition between the buckling modes decreases significantly. This coincides with the 

experiments done by (Ari-Gur et al., 1982), where the a column were subjected to an 

impulsive axial compression. The dynamic loading amplification factor was plotted against 

the slenderness, see fig. (3.6). Note that the magnitude of the DLF on the y-axis in fig (3.6) 

decreases as the y-coordinate increases.  

 

Figure 3.6: DLF versus slenderness for columns with different material properties.  

It is seen that when the slenderness is increased the DLF is reduced. This is in correspondence 

with the results obtained in table (3.3) and (3.4).  

3.2 Imperfection sensitivity analysis 

A perfectly straight and symmetric column does not buckle under an axial impulsive 

compression. Real columns, however, are always imperfect and their dynamic buckling loads 

are dependent on the shape and the magnitude of their initial imperfection (Ari-Gur et al., 

1982).  Therefore, an imperfection sensitivity analysis is important when dealing with 

dynamic buckling. Factors worth investigating are the magnitude of the initial imperfections 

and the composition of imperfection modes.  

3.2.1 Magnitude of imperfection 

The analyses run in section 3.1 were done with imperfections with magnitude of order of 

1\1000 times the columns length. In this section analysis with magnitudes of 1\100 and 1\10 

of the length are conducted. The beam-column contains initial imperfections compatible with 

the three first buckling modes. The buckling loads are found by plotting the reaction force 

over the time history, one example is shown in figure (3.7). Results are tabulated in table (3.5) 

to (3.7).  



   

 

27 

 

 

Figure 3.7: Buckling load for column from USFOS 

Magnitude of 

imperfection [1/L] 

Length of 

column [m] 

Impacting velocity 

[m/s] 

Buckling load [MN] 

1/1000 10 0,2 1,900 

1/100 10 0,2 1,250 

1/10 10 0,2 0,450 

Table 3.5: Imperfection analysis, column with length = 10m 

 

Magnitude of 

imperfection [1/L] 

Length of 

column [m] 

Impacting velocity 

[m/s] 

Buckling load [MN] 

1/1000 15 0,2 1,100 

1/100 15 0,2 0,370 

1/10 15 0,2 0,028 

Table 3.6: Imperfection analysis, column with length = 15m 
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Magnitude of 

imperfection [1/L] 

Length of 

column [m] 

Impacting velocity 

[m/s] 

Buckling load [MN] 

1/1000 20 0,2 0,850 

1/100 20 0,2 0,225 

1/10 20 0,2 0,030 

Table 3.7: Imperfection analysis, column with length = 20m 

From table (3.5) to (3.7) it is seen that the dynamic buckling load is significantly reduced 

when the magnitudes of the imperfections are increased. This agrees with the theory presented 

in section 2.4.2 where (Weller et al., 1989) found out that the dynamic buckling load 

decreases when the magnitude of the initial imperfections are increased, see fig. (3.8). 

 

Figure 3.8: Effect on buckling load by changing magnitude of initial imperfections 

3.2.2 Composition of buckling modes 

Another aspect worth investigating is the composition of the buckling modes. In section 3.2.1 

the analyses were done with implementing the three first buckling modes in the column. In 

this section it is investigated how the dynamic buckling load changes as buckling modes of 

higher order are added to the beam-column. Results are shown in table (3.8) to (3.10).  
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Buckling modes Length [m] Impacting velocity 

[m/s] 

Buckling load [MN] 

1
st
 10 0,2 1,32 

1
st
 + 2

nd
  10 0,2 1,25 

1
st
 + 2

nd
 + 3

rd
  10 0,2 1,28 

Table 3.8: Buckling loads with different composition of buckling modes, length = 10m 

 

Buckling modes Length [m] Impacting velocity 

[m/s] 

Buckling load [MN] 

1
st
 15 0,2 1,18 

1
st
 + 2

nd
  15 0,2 1,07 

1
st
 + 2

nd
 + 3

rd
  15 0,2 1,07 

Table 3.9: Buckling loads with different composition of buckling modes, length = 15m 

 

Buckling modes Length [m] Impacting velocity 

[m/s] 

Buckling load [MN] 

1
st
 20 0,2 1,15 

1
st
 + 2

nd
  20 0,2 0,82 

1
st
 + 2

nd
 + 3

rd
  20 0,2 0,81 

Table 3.10: Buckling loads with different composition of buckling modes, length = 20m 

From table (3.8) to (3.10) it is seen that the buckling loads are reduced when buckling modes 

of higher order is added.  It is also noted that the difference in dynamic buckling load when 

adding the 3
rd

 buckling mode is small, compared to only implementing the 1
st
 and 2

nd
 order 

buckling mode.   

3.3 Effect of yielding on dynamic buckling loads 

The focus in the analyses done in section 3 has been to investigate how different factors 

influence the dynamic buckling load. To keep the beam-column out of its plastic zone, the 

analyses have been done by using an unrealistic high yield strength. To be able to run the 
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analyses with a realistic yield strength in USFOS, the time increment has to be decreased to 

1\10000 of a second. The velocity of the initial nodemass is set to 0,2 m/s.  

In this section the yield strength is set to a realistic value for steel. The purpose of the analysis 

is to investigate the effect this has on the dynamic buckling load for the beam-column. The 

yield strength used is equal to 240MPa, and buckling modes up to the 3
rd

 order is 

implemented in the beam-column. 

Length [m] Buckling load [MN] 

10 9,0E-07 

15 9,0E-07 

20 9,0E-07 

Table 3.11: Buckling loads when using realistic yield strength 

From table (3.11) it is seen that the buckling loads are equal for all the columns.  

Figure (3.9) shows the buckling mode for the column with length equal to 10m. This buckling 

mode is also valid for the case with a column length equal to 15m and 20m. It should be noted 

that the magnitude of the displacements is reduced by a factor of 10 when the realistic value 

for the yield strength is used.  

 

Figure 3.9: Buckling mode for column with length = 10m and σy = 240MPa 

3.4 Comparison with hand calculations 

To get an indication of the goodness of the results, it is possible to compare the results 

obtained in part 3 with calculations based on the buckling criterion developed by (Cui et al., 

2002). By calculating the dynamic amplification factor and multiplying this with the static 

buckling load, the dynamic buckling load can be found.  

First a static analysis in USFOS is performed. The beam-column is modelled with an initial 

geometrical imperfection equal to 1/1000 times the columns length. The results are tabulated 

in table (3.12).  

Length [m] 10 15 20 
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Slenderness [-] 1,29 1,94 2,58 

Buckling load [MN] 0,356 0,18 0,12 

Table 3.12: Static buckling loads 

The buckling criterion performed by (Cui et al., 2002) is based on the following equations.  

  

8 1

0

2
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1cr

t





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 (3.3) 

where 

  

4 4 2
2

2

n C

L




   (3.4) 

C is the stress wave velocity of the column, here defined according to equation (3.5). 

  
E

C


  (3.5) 

For the column with length equal to 10m, the buckling criterion gives the following results, 

see table (3.15). 

Buckling mode 1
st
 order 

buckling 

mode 

2
nd

 order 

buckling 

mode 

3
rd

 order 

buckling 

mode 

Dynamic amplification factor 62 16 8 

Dynamic buckling load [MN] 22,1 2,88 0,96 

Dynamic buckling load found 

from USFOS [MN] 

1,32 1,58 1,60 

Table 3.13: Comparison between results from USFOS and from buckling criterion 

The dynamic buckling loads determined from the buckling criterion developed by (Cui et al., 

2002) does not fit very well with the results obtained in USFOS. A reason for this could be 

that (Cui et al., 2002) tested equation (3.3) for large slenderness values ( λ > 50). The column 

with length equal to 20m has the largest slenderness value of the column tested (λ = 2,58), but 

is still well outside this range. It may therefore be possible that this approach is not valid for 

components will low values of reduced slenderness. It should also be noted that the load 

durations used by (Cui et al., 2002) are very small compared to the duration used in the 
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analysis performed in chapter 3. From figure (3.10) it is seen that the amplification factor 

decreases as the load duration increases, and it can be seen that the factor becomes constant 

for high load durations.  

(Cui et al., 2002) developed the buckling criterion for columns with imperfections in the 

range of 0,1mm to 0,42mm, i.e. they can be considered as straight columns. The columns 

analyzed in USFOS have imperfections in the range of 1/1000 times the length, which for the 

column with length equal to 10m results in an imperfection of 10mm. This can also be a 

reason why the analytical results do not coincide with results obtained in USFOS.  

 

 

Figure 3.10: Buckling load amplification coefficient vs. load duration 

This procedure was also shown in the project work (Landa, 2013), but could still be used as 

an indication on dynamic buckling loads for components with high slenderness and small 

values of initial imperfections.   

3.5 Discussion  

For the analyses done with the beam column the results indicate that the impacting velocity 

which defines the transition between one buckling mode to a higher mode varies, when the 

reduced slenderness of the column is changed. It was observed that the transition from the 1
st
 

to 2
nd

 buckling mode occurred at low impacting velocities. To elicit the 3
rd

 buckling mode the 

velocity of the impacting mass has to be significantly increased. The results are in good 

correspondence with the work conducted by (Ari-Gur et al., 1982). This work indicated that 

by decreasing the slenderness/length of the column, the dynamic loading factor will increase.   
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The results also indicate that the magnitude of imperfections is an important factor to take into 

account when dealing with dynamic buckling. It was experienced that the buckling loads 

decreased when the magnitude of imperfections were increased. By comparing the results 

from different values of reduced slenderness it is observed that the reduction in dynamic 

buckling loads increases as the reduced slenderness decreases. This is shown in table (3.14). 

Magnitude of 

imperfection [1/L] 

Percentage reduction in  dynamic buckling loads [%] 

Reduced slenderness [-] 

1,29 1,94 2,58 

1/1000 to 1/100 34 67 74 

1/100 to 1/10 64 92 87 

Table 3.14: Percentage reduction in dynamic buckling loads when changing magnitude of 

imperfection 

From table (3.14) it is observed that the percentage reduction on the dynamic buckling loads 

increases when the reduced slenderness in increased, i.e. length of column increased. Except 

for the change of magnitude of imperfection from L/100 to L/10 for the column with length 

equal to 20m, the results indicate that an increase in magnitude of imperfections combined 

with an increase in slenderness will lead to a significant decrease in dynamic buckling loads.  

It was also experienced that the dynamic buckling loads were affected by the composition of 

the buckling modes. Table (3.15) shows the percentage reduction in dynamic buckling loads 

for the different combinations of buckling modes.  

Buckling modes Percentage reduction in  dynamic buckling loads [%] 

Reduced slenderness [-] 

1,29 1,94 2,58 

1
st
 vs. 1

st
 + 2

nd
  5 9 29 

1
st
 + 2

nd
 vs. 1

st
 + 2

nd 
+ 3

rd
  -2 0 1 

Table 3.15: Percentage reduction in dynamic buckling loads when changing the combination of 

buckling modes 

Table (3.15) shows that the introduction of the 2
nd

 order buckling mode leads to a decrease in 

the dynamic buckling load. The magnitude of the decrease increases as the slenderness 

increases. The change in the dynamic buckling load when the 3
rd

 order buckling mode is 
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introduced is small. A reason for this can be that the magnitude of the 3
rd

 order buckling mode 

was small compare to the 1
st
 and 2

nd
 order buckling modes. Considering the results from table 

(3.4), where the large transition velocity from the 2
nd

 order buckling mode to the 3
rd

 order 

buckling mode was observed, the results are expected. To be able to elicit the 3
rd

 order 

buckling mode the velocity of the impacting mass has to be significantly increased.  

From the analyses where the effect of yielding was investigated it was experienced that the 

buckling loads were significantly reduced when a realistic value for the yield strength was 

used. The dynamic buckling loads were constant for all slendernesses. This can be questioned 

when looking at the previous results from this section. The reduced slenderness has a major 

influence on the dynamic buckling loads. This is confirmed by (Ari-Gur, 1981) who 

concluded from experimental results that the magnitude of the dynamic buckling load of a 

column under axial impulse of a certain duration is determined by its slenderness ratio.  

4 Dynamic analysis of a simply supported plate in ABAQUS 

ABAQUS can be used to analyze a simply supported plate with constrained boundaries and 

varying slenderness. The plate is modeled by using shell modeling. The plate is simply 

supported with constrained boundaries, i.e. all edges of the plate are set to remain straight 

during the analysis.  

By performing an eigenvalue analysis the eigenmodes of the plate is obtained. The 

eigenmodes are implemented as initial imperfections in the plate. Following problems are to 

be investigated in the analysis. 

- Mesh size convergence study 

- The transition from one buckling mode to a higher mode when the rate of loading is 

increased 

- Sensitivity to choice of initial imperfections, both with respect to total value as well as 

the relative composition 

- Effect of yielding on the dynamic buckling loads 

The results obtained in ABAQUS are also compared to results from an analytical solution. 

This analytical solution is found by using the theory developed by (Ekstrom, 1973), see 

section 4.6.  

The plate used in ABAQUS is a rectangular plate, see fig (4.1). As for the column analyzed in 

chapter 3, an unrealistic high yield strength is used, to keep the plate in the elastic zone 

throughout the analyses. Analyses with using a realistic value for the yield strength are done 

in section 4.7. 
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 Figure 4.1: Plate 

With the dimensions shown in figure (4.1), the aspect ratio of the plate is equal to 3. The 

thickness of the plate is varied, which means that the reduced slenderness also varies. In the 

analyses the thickness used are 10mm, 15mm and 20mm. As for the column analyzed in 

chapter 3, the plate is hit with a load that has an initial velocity. In ABAQUS this can be 

modeled by using an edge load. The impacting velocity is varied to investigate different 

phenomena connected to dynamic buckling. The duration of the analysis is set to 2 seconds.  

  

4.1 Mesh size convergence study 

To obtain acceptable results in ABAQUS it is important to generate a good mesh of elements. 

The plate considered is simple without stiffeners, so the mesh size is equal over the whole 

plate. Small elements lead to long computational times, and too large elements will lead to 

inaccurate results. With this is mind, a mesh size convergence study has been performed to 

obtain the optimal mesh size for the current problem. 

It is also important to choose the correct element type. There are several options in ABAQUS 

and in this report the element type used is the S4R-elements.  With these elements reduced 

integration is used. This will reduce computational time and may lead to improved accuracy 

of the computed finite element results (softens the behavior) (Mathisen, 2011).   

The mesh size convergence study is done by varying the mesh size and observing the 

convergence of the results, i.e. buckling load and stresses. It is also important that the mesh 

size is able to describe the initial imperfections properly. The three first eigenmodes of the 

plate are to be implemented in the model as initial imperfections. Figure (4.2) and (4.3) shows 

both the deformed and undeformed shape of the plate when a coarse mesh is used.  
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Figure 4.2: Mesh = 0,25m, undeformed shape 

 

Figure 4.3: Mesh = 0,25m, deformed shape, distribution of von Mises stress 

It is seen from figure (4.2) and (4.3) that a coarse mesh is not able to describe the 

deformations of the plate to an acceptable level of accuracy. A finer mesh is needed, and 

figure (4.4) and (4.5) shows the deformed and undeformed plate with an acceptable mesh size.  

 

Figure 4.4: Mesh 50mm, undeformed 
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Figure 4.5: Mesh 50mm, deformed shaped, distribution of von Mises stresses 

From figure (4.4) and (4.5) it is seen that a mesh size equal to 50mm is able to describe both 

the deformed and undeformed shape well enough. It is also necessary to run further analysis 

with this mesh when changing the initial velocity of the edge load. The reason for this is that 

it is expected that the deformation patterns complexity increases when the velocity is 

increased.  

 

Figure 4.6: Mesh 50mm, velocity = 1m/s 

From figure (4.6) it is seen that the deformation of the plate when the velocity of the edge 

load is equal to 1m/s is significant. The mesh size is however still acceptable. When the 

velocity is increased to 2m/s, the deformation of plate is of a major size, but the mesh size is 

still able to describe stresses and translations well.  

As previously written the mesh shall also be capable to describe the eigenmodes of the plate 

with a sufficient level of accuracy. But since a mesh size equal to 50mm is able to describe 

the deformation pattern for the dynamic analysis well, it is assumed that the eigenmodes are 

described well enough with the same mesh size. When the mesh size is changed to 40mm, the 
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results are the same as for a mesh size equal to 50mm. A mesh size of 50mm is therefore used 

in this report.  

4.2 Eigenvalue analysis 

An eigenvalue analysis has to be performed to be able to introduce imperfections to the plate. 

A static buckling analysis can be run in ABAQUS to find the 8 first eigenmodes. The analyses 

are performed with a mesh size equal to the one found in the mesh size convergence study in 

section 4.1, i.e. 50 mm. Figure (4.7) to (4.10) shows the 5 first eigenmodes.  

 

Figure 4.7: Eigenmode 1, 2 halfwaves 

 

Figure 4.8: Eigenmode 2, 3 halfwaves 



   

 

39 

 

 

Figure 4.9: Eigenmode 3, 4 halfwaves 

 

Figure 4.10: Eigenmode 4, 5 halfwaves 

The eigenmodes showed above is combined and implemented as initial imperfections, and are 

as previously mentioned combined and implemented as initial imperfections. Figure (4.11) 

shows the imperfect plate, when the eigenmodes shown above is combined, i.e. the first 4 

eigenmodes.  
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Figure 4.11: Eigenmode 1 to 4 combined 

An overview of the remaining eigenmodes calculated from ABAQUS can be found in table 

(4.1). 

Eigenmode Number of half-waves 

1 2 

2 3 

3 4 

4 5 

5 6 

6 7 

7 8 

8 9 

    Table 4.1: Overview of eigenmodes 

4.3 Dynamic analysis: Effect of reduced slenderness 

As for the column considered in chapter 3, it is of interest to investigate the effect of changing 

the reduced slenderness of the plate, i.e. changing the thickness of the plate, see equation(4.1). 
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Note that the notation for the reduced slenderness is changed from chapter 3, where λ was 

used. The thicknesses used are 10mm, 15mm and 20mm. This gives the following values for 

the reduced slenderness, see table (4.2). 

Thickness 

[mm] 

b [mm] σy [MPa] E [MPa] Reduced slenderness [-] 

10  1000 240E+16 2.1E+11      3,45  

15 1000 240E+16 2.1E+11                               2,30  

20 1000 240E+16 2.1E+11                               1,73  

Table 4.2: Reduced slenderness 

Different analyses can be performed in ABAQUS to investigate the effect of changing the 

slenderness of the plate. First, the analyses are performed with keeping the initial velocity of 

the edge load constant. Later, the velocity and duration of the load can be varied to investigate 

the problem thoroughly. Initial imperfections are implemented, and eigenmodes 1, 2, 3 and 4 

are used, i.e. eigenmodes with 2, 3, 4 and 5 half-waves. The eigenmodes are scaled according 

to table (4.3). 

Eigenmode Scaling, i.e. max amplitude [mm] 

1
st
 3 

2
nd

 2 

3
rd

 1 

4
th

 0,5 

Table 4.3: Scaling of initial imperfections (eigenmodes) 

The buckling loads are found by plotting the reaction force over the time history for the edge 

parallel to the loaded edge, see figure (4.12).  
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Figure 4.12: Reaction force for edge parallel to loaded edge 

Thickness [mm] Reduced 

slenderness 

Buckling load 

[kN] 

10 3,45 17,20 

15 2,30 66,70 

20 1,73 131,90 

Table 4.4: Buckling load for different values of thickness (reduced slenderness) 

The buckling loads in table (4.4) indicate that a decrease in reduced slenderness (increasing 

the thickness) leads to a significant increase in the buckling load. This is the same as for the 

column investigated in chapter 3 and coincides also with the theory presented in section 2.4.3. 

Here, (Cui et al., 2002) presented figure (4.13) which shows the relation between reduced 

slenderness and buckling load.  
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Figure 4.13: Reduced slenderness vs. critical load 

It is interesting to investigate the buckling modes for the different values of reduced 

slenderness, see figure (4.14) to (4.16). 

 

 

 

Figure 4.14: Buckling mode, thickness = 10mm 
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Figure 4.15: Buckling mode, thickness = 15mm 

 

 

Figure 4.16: Buckling mode, 20mm 

As earlier mentioned the velocity can be varied to investigate further aspects regarding 

variation of reduced slenderness. Results are shown in figure (4.17). 
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Figure 4.17: Buckling load vs. impacting velocity for different values of plate thickness (reduced 

slenderness) 

4.4 Investigation of transition of buckling modes 

It is of interest to investigate the dominant buckling modes when the plate is subjected to an 

edge load with an initial velocity. The analysis is done by combining the eigenmodes found in 

section 4.2, and us these as initial imperfections. The velocity of the edge load is varied, and 

the buckling mode is investigated. Table (4.6) shows the buckling mode of the plate when the 

impacting velocity is varied. To increase the insight of the problem, several combinations of 

the eigenmodes are analyzed. The scaling of the different eigenmodes is also varied. The 

scaling is showed in table (4.5). 

 

 

Combination Eigenmodes Scaling, i.e. amplitudes of 

eigenmodes [mm] 

1 1 + 2 + 3 + 4 1: 3 

2: 2 

3: 1 

4: 0,5 
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2 1 + 2 + 3 + 4 1: 3 

2: 3 

3: 3 

4: 3 

3 2 1: 3 

Table 4.5: Overview of combinations of eigenmodes and respective scaling 

.  

  Velocities[m/s] 

Combination  0,001 0,002 0,004 0,005 0,0075 0,01 0,05 0,1 1,0 

1 3 4 5 5 5 5 9 11 Deformed 

2 3 5 5 5 5 5 9 9 Deformed 

3 3 3 5 5 5 5 8 11 Deformed 

Table 4.6: Number of halfwaves in buckling mode for different combinations of eigemodes vs. 

velocity of edge load, plate with thickness = 10mm 

It is seen from table (4.6) that for high impacting velocities, the plate buckles in buckling 

modes of high order that are not included in the analysis. At a velocity equal to 1 m/s the plate 

is fully deformed and the displacement in the longitudinal direction is significant. Another 

aspect worth investigating is the buckling load for the different combinations of eigenmodes. 

Figure (4.18) shows the buckling loads for the combinations.  
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Figure 4.18: Buckling load vs. impact velocity 

Figure (4.18) shows that the buckling loads for combination 1 and combination 3 are in the 

vicinity of each other, while the buckling loads for combination where all the eigenmodes 

were scaled equally are at a lower level. These results indicate that the scaling and 

combinations of the imperfections have a major influence on the buckling load.  

4.5 Imperfection study 

In the previous analyses the plate has been modeled with initial imperfections. The shape of 

the first buckling mode for the plate can be found from figure (4.19) when the aspect ratio is 

known. The length of the plate has been set to 3m, while the width is equal to 1m. This means 

that the aspect ratio is equal to 3. From figure (4.19) it is found that m = 3. This indicates that 

the buckling mode for the plate consists of three sine halfwaves. From theory presented in 

(Amdahl, 2009) it is shown that when the plate buckles in this form, the lowest buckling load 

is found.  
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Figure 4.19: Buckling coefficient versus plate aspect ratio 

Another aspect worth investigating is the behavior of the plate when buckling modes of 

higher order are implemented in the analysis. This was investigated in section 4.3, and it was 

found that the combination and scaling of the imperfections had a major influence on the 

buckling load. To investigate the problem further, multiple analyses are conducted in 

ABAQUS.  

4.5.1 Combinations of eigenmodes 

Figure (4.18) indicates that the choice of combinations of eigenmodes implemented as initial 

imperfections affects the buckling load of the plate. In this section different combinations of 

eigenmodes are analyzed. The scaling of the eigenmodes is similar for all combinations, while 

the velocity of the impacting edge load is constant equal to 0,005 m/s. The analysis is 

performed on a plate with thickness equal to 10mm.  

Eigenmodes in combination Number of half-waves in 

buckling mode  
Buckling load [kN] 

1 4 21 

1 + 2 5 18 

1 + 2 + 3 5 16 
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1 + 2 + 3 + 4 5 15 

1 + 2 +…+ 5 5 15 

1 + 2 +…+ 6 5 15 

1 + 2 +…+ 7 5 15 

1 + 2 +…+ 8 5 15 

Table 4.7: Buckling loads for different combinations of eigenmodes 

From table (4.7) it is seen that when buckling modes with higher order are introduced, the 

buckling load decreases. The buckling load is however approximately constant after the 4
th

 

order buckling mode is introduced (5 halfwaves). The reason for this can be that the scaling of 

buckling modes after the 4
th

 order is very small. The scaling of the buckling modes are done 

according to table (4.8).  

Buckling mode Scaling, i.e. max amplitude 

[mm] 

1
st
 3 

2
nd

 2 

3
rd

 1 

4
th

 0,5 

5
th

 0,25 

6
th

 0,125 

7
th

 0,0625 

8
th

 0,03125 

Table 4.8: Scaling of eigenmodes 

4.5.2 Scaling of eigenmodes 

Results presented in section 4.4 and 4.5.1 predicts that the scaling of the different eigenmodes 

affects the buckling load. Therefore, several analyses with different scaling of eigenmodes are 

performed in ABAQUS. During the analyses combination 1 of eigenmodes is used, i.e. 

eigenmodes with 2, 3, 4 and 5 half-waves summarized.  The analysis is performed with a plate 
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with thickness equal to 10mm. Table (4.9) shows the different combinations of scaling used in 

the analyses.  

 

 

Combination 

of scaling 

Amplitude [mm]  

 

Maximum 

amplitude 

[mm] 

Eigenmode 1 

2 half-waves 

 

Eigenmode 2 

3 half-waves 

 

Eigenmode 3 

4-halfwaves 

Eigenmode 4 

5 half-waves 

1 3 2 1 0,5 6,5 

2 3 3 3 3 12 

3 1 1 1 1 4 

4 0,5 3 0,5 0,5 4,5 

5 0,5 1 2 3 6,5 

Table 4.9: Overview of different scaling of eigenmodes 

Combination of scaling Buckling load [kN] 

1 12,35 

2 6,66 

3 12,34 

4 5,50 

5 5,50 

Table 4.10: Buckling loads for different scaling of imperfections with initial velocity = 0,005m/s 

It is seen from table (4.9) and (4.10) that the buckling load is changed when the amplitude of 

the amplitudes varies. From table (4.10) it can be observed that the buckling load decreases 

when scaling of higher order buckling modes are large. 

When looking at figure (4.18), it is expected that the buckling loads decreases when the 

amplitudes of imperfections increases. This coincides also with the theory presented by 

(Weller et al., 1989), see figure (4.20). 
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Figure 4.20: Dynamic buckling loads for different values of initial imperfections 

From figure (4.20) it is seen that the buckling load decreases when the amplitude of the 

imperfections are increases, i.e. they are inverse proportional. The results presented in table 

(4.10) does not coincide with the theory presented by (Weller et al., 1989).  

4.6 Analytical results  

Analytical results of a simply supported plate (see fig 4.21) can be obtained by following the 

derivations done by (Ekstrom, 1973). In this section the equations are solved numerically and 

plotted. This is done by using the computer program MATLAB.  

 

Figure 4.21: Plate 
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4.6.1 Mathematical procedure 

The solution of the equations  (Ekstrom, 1973) developed can be found by following the 

procedure for solution of a 2
nd

 order differential equation, found in (Kreyszig, 2006). 

Equation (4.2) can be classified as a 2
nd

 order nonlinear differential equation for the plate.  

   
4 2 2 42

4 4 2 2 212 22
0 22 02

(1 )( 2 )
( ) ( )( ) ) 0

4 8

xy yxm R m Rd
S m R m

d
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      



  
       

 
(4.2) 

where m are the number of halfwaves in the imperfection shape. The following are defined to 

be able to solve equation (4.2).  

 

  
2

1 2

4 xD
p

a h


  (4.3) 

  
f

h
   (4.4) 

  0
0

f

h
   (4.5) 

f and f0 are the values of the imperfections of the plate. Further, the following is defined 

  
a

b
   (4.6) 

where β is the aspect ratio of the plate.   

  
1 1

p ct

p p
    (4.7) 

From equation (4.7) it is seen that the average compressive stress increases linearly with time, 

i.e. p ct . The Greek letter τ is used as the non-dimensional time, and this parameter is used 

later in this section to plot the response curves for a plate. The parameter p1 is the static 

critical stress for a simply-supported isotropic square plate of side a and rigidity Dx. Steel is 

the material of choice, which is an isotropic material, i.e. the material properties are uniform 

in all directions. To be able to solve equation (4.2) the following equations have to be defined. 
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For isotropic materials the parameters R12 and R22 in equation (4.8) and (4.9) are defined as 

R12 = R22 = 1. (Ekstrom, 1973) solved equation (4.2) numerically using a variable step fourth-

order Runge-Kutta method. In this report the equation is solved using Euler’s method, also 

known as 1
st
 order Runge-Kutta method. Since equation (4.2) is a 2

nd
 order differential 

equation, the problem can be solved by dividing equation  (4.2) into two 1
st
 order differential 

equations. Equation (4.2) can be simplified to equation (4.11). 

   
2

2 2

0 02
( ) ( ) ) 0

d
S A B C

d


     


       (4.11) 

By introducing the following conditions, equation (4.11) can be divided into a system of 1
st
 

order differential equations.  

  
1

2

 

 




 (4.12) 

The system of equations will then be 

  1 2    (4.13) 

  

   2 2

2 1 0 1 0 1( ) ( )S A B C              (4.14) 

Equations (4.13) and (4.14)  form the equation set which can be solved by using Euler’s 

method and MATLAB.   

4.6.2 Results from MATLAB 

The script programmed in MATLAB makes it possible to plot the response curve for different 

values of the initial imperfections. The shape of the imperfection is equal to one half-wave. It 

is of interest to compare these results with the results obtained in ABAQUS to find the 

goodness of these results.  
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First, it is interesting to use a plate with equal dimensions as (Ekstrom, 1973) used to find out 

it is possible to obtain the same results using MATLAB. Figure (4.22) and (4.23) shows the 

results obtained by (Ekstrom, 1973). Figure (4.22) shows the effect on response curves with 

the same level of initial imperfections, but with different values of loading rate.  

 

Figure 4.22: Response curve for initial imperfections, ζ0 = 0.01, different loading rates 

Figure (4.23) shows the effect on different values of initial imperfections, when the loading 

rate is kept constant.  

 

Figure 4.23: Response curve for plates with equal loading rate 

When using the material data obtained from (Ekstrom, 1973) and using Runge-Kutta 1st order 

in MATLAB, the following results are obtained, see figure (4.24).  
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Figure 4.24: Response curve calculated from MATLAB with equal loading rate 

By comparing the curves in figure (4.22) and (4.23) with figure (4.24), it is observed that 

good correspondence is obtained between results from (Ekstrom, 1973) and MATLAB.  

The next step is to perform analyses in ABAQUS on a plate with equal dimensions as the plate 

used in (Ekstrom, 1973), but by using steel as the material of choice. The analysis is 

performed in the same way as in section 4.3, i.e. by using an edge load with an initial velocity.  

The load is modelled as a triangular pulse. The buckling mode for initial imperfection, ζ0 = 

0.1, is shown in figure (4.25) and (4.26).  
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Figure 4.25: Buckling mode, initial velocity = 0.01m/s, t = 10mm 

 

 Figure 4.26: Buckling mode, initial velocity = 0.01 m/s, t = 10mm  

The material data from the plate analyzed in ABAQUS can be used in equation (4.2) and by 

using the same MATLAB-program as used earlier, the following results are obtained, see 

figure (4.27). 
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Figure 4.27: Response curve: Velocity of impacting load = 0.01 m/s and equal loading rate 

The results from ABAQUS are shown in figure (4.28) to figure (4.30). 

 

Figure 4.28: Response curve over time history, velocity of impacting load = 0.01 m/s, 

imperfection ζ0 = 0.1 
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Figure 4.29: Response curve over time history, velocity of impacting load = 0.01 m/s, 

imperfection ζ0 = 0.01 

 

Figure 4.30: Response curve over time history, velocity of impacting load = 0.01 m/s, 

imperfection ζ0 = 0.001 

The results obtained in ABAQUS indicate that the response curve is independent on the level 

of initial imperfections. This is not in correspondence with the results obtained by (Ekstrom, 

1973). 

4.7 Analyses with realistic values of yield stress 

To keep the plate out of its plastic zone the analyses run in chapter 4 has been performed by 

using an unrealistic high value for the yield strength. As for the column investigated in 

chapter 3, it is of interest to run some of the analysis in chapter 4 with a realistic yield 

strength. 
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Eigenmodes up to the 4
th

 order (5 half-waves) are implemented as initial imperfections.  The 

yield strength is set to 240MPa and the velocity of the impacting load is set to 0.1m/s. By 

running the analyses the effect of yielding on the dynamic buckling loads are investigated. 

Results are tabulated in table (4.11).   

Reduced slenderness [-] Buckling load with 

σy = 240MPa [kN] 

Buckling load with σy = 

240E+10MPa  

3,45 26 26 

2,30 89 90 

1,73 190 200 

Table 4.11: Buckling loads on plates with varying reduced slenderness 

It is seen from table (4.11) that the buckling loads do not change much when a realistic yield 

strength is used. Although the buckling loads are equal the time history of the reaction forces 

are highly different. Figure (4.31) and (4.32) shows the time history of the reaction force for 

the realistic case and unrealistic case, respectively.  

 

Figure 4.31: Time history for of the reaction force, realistic yield strength 
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Figure 4.32: Time history of the reaction force, high yield strength 

The deformation pattern of the plate will however change. Figure (4.33) to (4.35) shows the 

difference in buckling pattern when a realistic yield strength is introduced. It is seen from the 

figures that areas with high von Mises stresses are experienced when the yield strength is 

decreased. The magnitudes of the maximum values are in the vicinity of the yield strength.  

 

Figure 4.33: Comparison of deformation pattern, realistic yield strength shown on left side, t = 

10mm 

 

Figure 4.34: Comparison of deformation pattern, realistic yield strength shown on left side, t = 

15mm 
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Figure 4.35: Comparison of deformation pattern, realistic yield strength shown on left side, t = 

20mm 

4.8 Discussion 

The results from chapter 4 indicate that, as for columns, the dynamic buckling load increases 

when the slenderness of the plate is decreased. This was also confirmed by theory conducted 

by (Cui et al., 2002). It was also experienced that the impacting velocity of the edge load 

affected the dynamic buckling loads and the buckling modes of the plate. By investigating the 

transition velocity between the different buckling modes, it was found that the 4
th

 order 

buckling mode (5 half-waves) was excited at low impacting velocities. This was different 

compared to the columns analyzed in chapter 3 where the impacting velocity had to be 

significantly increased to elicit the highest order buckling mode.  

It was observed that by increasing the impacting velocity to 0.05 m/s it was possible to elicit 

buckling modes with both 8 and 9 half-waves, even though the highest buckling mode 

implemented only contained 5 half-waves. By gradually implementing buckling modes of 

higher order it was experienced that the dynamic buckling load decreased. This tendency was 

valid up to the 4
th

 order buckling mode. As higher order buckling modes were implemented, 

the dynamic buckling load was constant. The results also indicated that scaling of the 

combinations of the eigenmodes affected the buckling loads  

The analyses with different combinations of eigenmodes showed that the scaling of the 

eigenmodes had a significant effect on the buckling loads. Results presented in figure (4.18) 

give reason to assume that imperfections with large amplitudes lead to low buckling loads. 

This assumption is further investigated in section 4.5.2, were analyses with different scaling 

of eigenmodes are performed. From table (4.9) and (4.10) it is however observed that the 

assumption is not necessarily valid. Results indicate that scaling higher order buckling modes 

large compared to lower order buckling modes, will lead to a decrease in the dynamic 

buckling load. This is shown in combination 1 and 5 in table (4.12). The maximum 

amplitudes of the imperfections are equal, but the buckling load for combination 1 is over 

twice as large as the buckling load for combination 5. The combinations consist of the same 

eigenmodes, but in combination 5 the higher order buckling modes are scaled larger than the 

lower order buckling modes. From earlier it would be natural to assume that the buckling 
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loads would be in vicinity of each other, but as table (4.12) shows, the difference is fairly 

large. This indicates that scaling of the different eigenmodes is an important parameter to take 

into account when dealing with analysis of dynamic buckling.  

 

 

Combination 

of scaling 

Amplitude [mm]  

 

Maximum 

amplitude 

[mm] 

Buckling 

load 

[kN] 

Eigenmode 

1 

2 half-

waves 

 

Eigenmode 

2 

3 half-

waves 

 

Eigenmode 

3 

4-

halfwaves 

Eigenmode 

4 

5 half-

waves 

 

1 3 2 1 0,5 6,5 12,35 

5 0,5 1 2 3 6,5 5,50 

Table 4.12: Buckling loads for different scaling of eigenmodes 

The analytical results showed that the program constructed in MATLAB was able to produce 

the same results as (Ekstrom, 1973). The results from ABAQUS  are however not in 

correspondence with the results presented by (Ekstrom, 1973). The results obtained in 

ABAQUS indicate that the response curve is independent on the level of initial imperfections. 

This is clearly wrong when looking at the results from (Ekstrom, 1973) and analyses 

performed earlier. The dependence on level of imperfections was shown in table (4.10) where 

different scaling and combinations of imperfections resulted in different buckling loads and 

patterns. From theory it is expected that the response curve will be zero until the critical load 

is reached. This critical load is also known to be sensitive to initial imperfections in the plate. 

After this load is reached, non-zero deflections are possible and the load-deflection relation is 

a second-order parabola (Ekstrom, 1973). Since the figures obtained from ABAQUS are 

straight lines, this strengthens the statement that these results are wrong.  

There can be many factors that result in wrong results obtained in ABAQUS. One obvious 

source of error is the setup of the analysis. The plate is modelled as simply-supported, and the 

edges of the plate are set to remain straight during deformation. This is in agreement with 

(Ekstrom, 1973). The modelling of imperfections by using eigenvalues is also correct. The 

assumption that the load is modelled as an edge load with an initial velocity, can be 

questioned when considering the approach of (Ekstrom, 1973). Since the effect of loading rate 

is investigated, a better way to model the load may have been to use a controlled rate of edge 

displacement. Since it is not clear which method (Ekstrom, 1973) used, this could be the 
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reason for the wrong results. A solution to the problem may then be to change the loading 

from a controlled rate of force increase to a controlled rate of relative edge displacement.  

The results from the analyses with a realistic value for the yield strength indicate that the 

buckling loads are independent on yield strength. This do not coincide with the analyses done 

for the beam-column in chapter 3, where the buckling loads were significantly reduced. The 

deformation pattern and reaction forces for the two cases are however completely different. In 

advance it would have been expected that the deformation patterns for the case where the 

realistic value is used would have been opposite of the ones obtained from ABAQUS, i.e. that 

maximum deflection is observed near the loaded edge. This can be demonstrated by the 

deformation of a hood of a car after a car crash, see figure (4.36). From the figure it is 

observed that the deflection of the hood is largest near the place of impact, see figure (4.36) 

(safety", 2006). This is also confirmed by (Lindberg, 2003); Buckling is concentrated near the 

impacted end because the axial load is experienced for the longest time at this location.  

 

Figure 4.36: Deflection from car crash 

The reason for the difference can be the modelling of the boundary conditions of the plate. It 

has been found out that different boundary conditions will induce different plastic collapse 

mechanisms of plates (Kiat Cheong et al., 2000). The loaded edge is free to move inwards, 

but the opposite side is fixed from all translations. A hypothesis for the shape of the deflection 

pattern can be; the deformation pattern is related by the stress waves that occur in the plate 

when the edge load hits the plate. As the edge load hits the plate a stress wave will start to 

propagate towards the opposite edge. The stress wave will be reflected and interact with the 

oncoming stress wave. This will lead to a deformation on the edge parallel to the loaded edge.  

5 Further work 

For further work it would be interesting to expand the analysis to investigate the effect of a 

static utilization prior to application of the dynamic force. This situation can be highly 

relevant in real life. Components in structures are often subjected to a static force, and it is of 

,#_ENREF_19
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interest to investigate how this affects the dynamic buckling load of the component. These 

components can be columns in a leg of an offshore platform, or plates in the hull of a ship. 

The columns are for example subjected to a static force from the deck of the platform. If there 

is a collision between a platform and a ship, dynamic buckling can occur. It could also be 

interesting to expand the analysis to look at several columns and plates (panels), and how they 

interact with respect to dynamic buckling.  

The investigation between the theoretical results obtained in (Ekstrom, 1973) and analyses 

performed in ABAQUS should also be further analyzed. This is also the case for the analyses 

where the realistic yield strength is used. The results from both the column and plate were 

questionable, and further analyses on this subject are recommended.  

It would also be interesting to perform real-life experiments with plates, both unstiffened and 

stiffened. By using high-speed digital cameras, the development of deformation pattern can be 

determined. This was done by (Featherston et al., 2010), but with focus on the relationship 

between dynamic and static buckling loads. A natural next step is to expand the analysis to 

look at dynamic buckling on stiffened panels on ships or platforms. This will give further 

insight into the phenomenon dynamic buckling. 

6 Conclusion 

The main focus in this thesis has been to investigate parameters that affect dynamic buckling. 

It has been found that there are several parameters that have influence on the dynamic 

buckling loads. The reduced slenderness of a plate or column will have a major influence on 

the dynamic buckling loads. When performing analyses scaling of imperfections should also 

be handled with care. An increase in both magnitude of imperfections and reduced 

slenderness will lead to a significant reduction in dynamic buckling loads.  

The modelling of initial imperfections by using the columns/plates eigenmodes works well. 

The dynamic buckling load is however unaffected when adding buckling modes of high order. 

Buckling modes of 3
rd

 (columns) and 4
th

 (plates) order have shown to be the highest modes 

necessary to implement. It is possible for a plate to buckle in high order buckling modes 

which are not implemented in the model.  

The scaling of the different buckling modes in the model should be performed with caution. 

Small maximum amplitudes of the imperfections will not necessarily lead to large dynamic 

buckling loads. The scaling of the different eigenmodes should therefore be taken with care.  

It is also important to verify that the loading duration is not close to the natural period of the 

component. The dynamic loading factor may drop below unity for loading durations in the 

vicinity of the components natural period. 
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Since the results when using realistic yield strength values were questionable, the results from 

this part should be read with caution.  
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8 Appendix 

The appendix contains the most important model and control files from USFOS and the 

keywords from the analysis done in ABAQUS. Complete program files are attached to the 

thesis via a zip-file.  

8.1 Dynamic analysis with column with length = 10m 

The transition velocity between the different buckling modes is found by changing the 

parameter Vx under INI_VELO. 

8.1.1 Control file 

'              Dynamic analysis: Nodeload with initial velocity 

'                 Created by: Andreas Landa 

'       NTNU, Trondheim 

HEAD               

'EIGENVAL   Time           0.1        ! Perform eigenval at time = 1 

'EIGENVAL   NumberOf      40         ! Compute 20 vectors 

'EIGENVAL   Algorithm      Lanczos    ! Use Lanczos solver 

'EIGENVAL   ModeScale      20        ! Scale modes by  2OPor visualization 

'EIGENVAL   Shift         -0.1             

'            End_time   delta_t   dT_res   dT_term 

DYNAMIC      0.10         0.001     0.001    0.001          

'          ID     Type 

TIMEHIST    1   Points 

'    Time   Factr 

            0.0     .0 

            1.0    1.0 

'     Load_case    time_histID 

LOADHIST   1            1  

'          Type Time Vx        Vy   Vz  rVx  rVy  rVz  Id 

INI_VELO   Node   0.0    0.2/1.0    0    0     0      0         0   1 

'          ncnodes    

CNODES     1         

'          nodex  idof  dfact 
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           1      1     1. 

'            Type   Elem_ID  End  Dof 

DYNRES_E   Force        4           1      X 

'            Rat1   Rat2   Freq1   Freq2 

DAMPRATIO  0.01   0.01    0.1     10.0 

8.1.2 Model file 

'              Dynamic analysis: Nodeload with initial velocity 

'                 Created by: Andreas Landa 

'               NTNU, Trondheim' 

'             Node ID         X         Y        Z        Boundary code 

 NODE         1         .000    .000         .000   0 1 1 1 0 1 

 NODE         2           2.500   .000         .0011665  0 1 0 1 0 1 

 NODE   3        5.000   .000        .000667 0 1 0 1 0 1 

 NODE         4        7.500    .000        .0001665  0 1 0 1 0 1 

 NODE         5          10.000    .000        .000      1 1 1 1 0 1  

' 

'             Elem ID     np1      np2   material   geom     

 BEAM              1      1        2        1        1        

 BEAM              2      2        3        1        1        

 BEAM      3  3        4        1        1       

 BEAM              4      4        5        1        1   

    

'            Geom ID       Do         Thick        

PIPE             1        .24070      .00500       

'  ID Mass 

NODEMASS 1 1.0E+10            

 

'          matno    E-mod        poiss    yield       density     term.exp 

MISOIEP    1       210000.0E+6   0.3     240.0E+16    7850    1.4E-05     

'     Load case   Acc_X   Acc_Y    Acc_Z 

GRAVITY  1 0       0 -9.81    
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8.2 Dynamic analysis with column with length = 15m 

The transition velocity between the different buckling modes is found by changing the 

parameter Vx under INI_VELO. 

8.2.1 Control file 

'              Dynamic analysis: Nodeload with initial velocity 

'                 Created by: Andreas Landa 

'   NTNU, Trondheim 

HEAD        

'            restart result print 

CSAVE             0       1      0 

'          ncnodes    

CNODES     1          

'          nodex  idof  dfact 

           1      1     1.         

 

'EIGENVAL   Time          1.0        ! Perform eigenval at time = 1 

'EIGENVAL   NumberOf      20         ! Compute 20 vectors 

'EIGENVAL   Algorithm     Lanczos    ! Use Lanczos solver 

'EIGENVAL   ModeScale      2         ! Scale modes by  2Por visualization 

'EIGENVAL   Shift        -0.1             

 

'            End_time   delta_t   dT_res   dT_term 

DYNAMIC    0.2          0.001     0.001    0.001          

'          ID     Type 

TIMEHIST    1   Points 

'    Time   Factr 

           0.0     .0 

           0.1    1.0 

           1.0    1.0 

'    Load_case    time_histID 

LOADHIST   1            1  
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'          Type   Time  Vx         Vy   Vz  rVx  rVy  rVz  Id 

INI_VELO    Node    0.0    0.2/1.0     0       0    0       0        0   1 

 

'            Type    Elem_ID  End  Dof 

DYNRES_E   Force  4      1     X 

 

'            Rat1   Rat2   Freq1   Freq2 

DAMPRATIO  0.01   0.01    0.1     10.0 

 

8.2.2 Model file 

'              Dynamic analysis: Nodeload with initial velocity 

'                 Created by: Andreas Landa 

'               NTNU, Trondheim' 

'             Node ID        X          Y            Z     Boundary code 

 NODE        1            .000      .000            .000    0 1 1 1 0 1 

 NODE        2           3.750      .000            .0175  0 1 0 1 0 1 

 NODE    3        7.500     .000       .0100  0 1 0 1 0 1 

 NODE        4       11.250     .000            .0025   0 1 0 1 0 1 

 NODE        5          15.000     .000            .000      1 1 1 1 0 1  

' 

'             Elem ID     np1      np2   material   geom     

 BEAM              1         1        2        1        1        

 BEAM              2        2        3        1        1        

 BEAM      3       3        4        1        1       

 BEAM              4         4        5        1        1      

'            Geom ID       Do         Thick        

 PIPE             1        .24070      .00500        

'  ID Mass 

NODEMASS 1 1.0E+10          
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'            matno   E-mod        poiss   yield       density     

term.exp 

MISOIEP    1        210000.0E+6  0.3     240.0E+16    7850        1.4E-05   

  

'     Load case  Acc_X   Acc_Y   Acc_Z 

GRAVITY  1 0       0  -9.81    

8.3 Dynamic analysis with column with length = 20m 

The transition velocity between the different buckling modes is found by changing the 

parameter Vx under INI_VELO. 

8.3.1 Control file 

'              Dynamic analysis: Nodeload with initial velocity 

'                 Created by: Andreas Landa 

'    NTNU, Trondheim 

HEAD               

'EIGENVAL   Time           0.1         ! Perform eigenval at time = 1 

'EIGENVAL   NumberOf      40         ! Compute 20 vectors 

'EIGENVAL   Algorithm      Lanczos     ! Use Lanczos solver 

'EIGENVAL   ModeScale      20         ! Scale modes by  2OPor 

visualization 

'EIGENVAL   Shift         -0.1             

'            End_time        delta_t        dT_res       dT_term 

DYNAMIC      0.2          0.00001     0.00001     0.00001          

'            ID     Type 

TIMEHIST    1   Points 

'    Time   Factr 

           0.0     .0 

           0.1    1.0 

           1.0    1.0 

'    Load_case    time_histID 

LOADHIST   1            1 

  

'           Type   Time  Vx        Vy   Vz  rVx  rVy  rVz  Id 
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INI_VELO   Node      0.0     0.2/1.0    0    0    0      0        0     1 

'          ncnodes    

CNODES     1          

'          nodex  idof  dfact 

           1      1     1. 

'            Type   Elem_ID  End  Dof 

DYNRES_E   Force    4        1    X 

'            Rat1   Rat2   Freq1   Freq2 

DAMPRATIO  0.01   0.01    0.1     10.0 

8.3.2 Model file 

'              Dynamic analysis: Nodeload with initial velocity 

'                 Created by: Andreas Landa 

'              NTNU, Trondheim' 

'            Node ID    X              Y              Z        Boundary code 

 NODE      1       .000            .000            .000    0 1 1 1 0 1 

 NODE        2     5.000            .000            .0233  0 1 0 1 0 1 

 NODE    3 10.000         .000        .0133  0 1 0 1 0 1 

 NODE        4 15.000           .000            .0033   0 1 0 1 0 1 

 NODE        5      20.000           .000            .000      1 1 1 1 0 1

  

' 

'             Elem ID     np1      np2   material   geom     

 BEAM              1         1        2        1        1        

 BEAM              2         2        3        1        1        

 BEAM     3   3        4        1        1       

 BEAM              4         4        5        1        1      

'            Geom ID       Do         Thick        

 PIPE             1        .24070      .00500        

'  ID Mass 

NODEMASS 1 1.0E+10         
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'            matno   E-mod        poiss   yield       density     

term.exp 

MISOIEP    1        210000.0E+6  0.3     240.0E+16    7850        1.4E-05   

'    Load case  Acc_X   Acc_Y   Acc_Z 

GRAVITY  1 0       0 -9.81    

8.4  Dynamic analysis: Investigation of magnitude of imperfection 

To investigate the effect of magnitude of imperfection, the change was done in the model file. 

The code under shows the procedure for the column with length equal to 10m.  

8.4.1 L / 1000  

'            Node ID       X           Y           Z        Boundary code 

 NODE           1         .000         .000         .000    0 1 1 1 0 1 

 NODE           2         2.500        .000         .0011665  0 1 0 1 0 1 

 NODE     3        5.000        .000       .000667 0 1 0 1 0 1 

 NODE           4        7.500        .000          .0001665  0 1 0 1 0 1 

 NODE           5         10.000        .000         .000      1 1 1 1 0 1  

8.4.2 L /100 

'            Node ID       X           Y           Z        Boundary code 

 NODE           1         .000         .000         .000    0 1 1 1 0 1 

 NODE           2         2.500        .000         .011665  0 1 0 1 0 1 

 NODE     3        5.000        .000       .00667  0 1 0 1 0 1 

 NODE           4        7.500        .000         .001665  0 1 0 1 0 1 

 NODE           5         10.000        .000         .000      1 1 1 1 0 1  

8.4.3 L / 10 

'            Node ID       X           Y           Z        Boundary code 

 NODE           1         .000         .000         .000    0 1 1 1 0 1 

 NODE           2         2.500        .000         .11665  0 1 0 1 0 1 

 NODE     3        5.000        .000       .0667  0 1 0 1 0 1 

 NODE           4        7.500        .000          .01665  0 1 0 1 0 1 

 NODE           5         10.000        .000         .000      1 1 1 1 0 1  

 



   

 

viii 

 

8.5 Effect of yielding 

The effect of yielding was investigated by changing the MISOIEP-command in the model 

file. The command was changed from: 

'            matno    E-mod        poiss   yield       density   term.exp 

MISOIEP      1       210000.0E+6  0.3     240.0E+16   7850      1.4E-05   

to: 

'           matno    E-mod        poiss   yield       density  term.exp 

MISOIEP      1        2.1E+5   0.3     240.0       7850       1.4E-05   

8.6 Eigenvalue analysis in ABAQUS for mesh size = 50mm 
*Heading 

** Job name: Stat_buckl005 Model name: Model-1 

** Generated by: Abaqus/CAE 6.12-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

*Node 

      1,           0.,           0.,           1. 

      2, 0.0500000007,           0.,           1. 

      3,  0.100000001,           0.,           1. 

… 

*Element, type=S4R 

   1,    1,    2,   63,   62 

   2,    2,    3,   64,   63 

… 

*Nset, nset=_PickedSet2, internal, generate 

    1,  1281,     1 

*Elset, elset=_PickedSet2, internal, generate 

    1,  1200,     1 

*Nset, nset=_PickedSet3, internal, generate 
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    1,  1281,     1 

*Elset, elset=_PickedSet3, internal, generate 

    1,  1200,     1 

** Section: Plate 

*Shell Section, elset=_PickedSet2, material=Steel 

0.01, 5 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Part-1-1, part=Part-1 

*End Instance 

**   

*Nset, nset=_PickedSet5, internal, instance=Part-1-1, generate 

    1,  1221,    61 

*Elset, elset=_PickedSet5, internal, instance=Part-1-1, generate 

    1,  1141,    60 

*Nset, nset=_PickedSet6, internal, instance=Part-1-1 

    1,    2,    3,    4,    5,    6,    7,    8,    9,   10,   11,   12,   13,   14,   

15,   16 

   17,   18,   19,   20,   21,   22,   23,   24,   25,   26,   27,   28,   29,   30,   

31,   32 

   33,   34,   35,   36,   37,   38,   39,   40,   41,   42,   43,   44,   45,   46,   

47,   48 

   49,   50,   51,   52,   53,   54,   55,   56,   57,   58,   59,   60,   61, 1221, 

1222, 1223 

 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 

1238, 1239 

 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 

1254, 1255 

 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 

1270, 1271 
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 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281 

*Elset, elset=_PickedSet6, internal, instance=Part-1-1 

    1,    2,    3,    4,    5,    6,    7,    8,    9,   10,   11,   12,   13,   14,   

15,   16 

   17,   18,   19,   20,   21,   22,   23,   24,   25,   26,   27,   28,   29,   30,   

31,   32 

   33,   34,   35,   36,   37,   38,   39,   40,   41,   42,   43,   44,   45,   46,   

47,   48 

   49,   50,   51,   52,   53,   54,   55,   56,   57,   58,   59,   60, 1141, 1142, 

1143, 1144 

 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 

1159, 1160 

 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 

1175, 1176 

 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 

1191, 1192 

 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200 

*Nset, nset=_PickedSet7, internal, instance=Part-1-1, generate 

   61,  1281,    61 

*Elset, elset=_PickedSet7, internal, instance=Part-1-1, generate 

   60,  1200,    60 

*Elset, elset=__PickedSurf4_E2, internal, instance=Part-1-1, generate 

   60,  1200,    60 

*Surface, type=ELEMENT, name=_PickedSurf4, internal 

__PickedSurf4_E2, E2 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=Steel 

*Density 

7850., 

*Elastic 

 2e+11, 0.3 

*Plastic 
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 4e+08,0. 

** ---------------------------------------------------------------- 

**  

** STEP: Stat_buckling 

**  

*Step, name=Stat_buckling, perturbation 

Static buckling of simply supported plate 

*Buckle 

5, , 10, 30 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-3 Type: Displacement/Rotation 

*Boundary, op=NEW, load case=1 

_PickedSet7, 2, 2 

_PickedSet7, 3, 3 

*Boundary, op=NEW, load case=2 

_PickedSet7, 2, 2 

_PickedSet7, 3, 3 

** Name: Fixed Type: Displacement/Rotation 

*Boundary, op=NEW, load case=1 

_PickedSet5, 1, 1 

_PickedSet5, 2, 2 

_PickedSet5, 3, 3 

*Boundary, op=NEW, load case=2 

_PickedSet5, 1, 1 

_PickedSet5, 2, 2 

_PickedSet5, 3, 3 

** Name: Simply supported Type: Displacement/Rotation 

*Boundary, op=NEW, load case=1 

_PickedSet6, 2, 2 
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_PickedSet6, 3, 3 

*Boundary, op=NEW, load case=2 

_PickedSet6, 2, 2 

_PickedSet6, 3, 3 

**  

** LOADS 

**  

** Name: Buckling_load   Type: Shell edge load 

*Dsload 

_PickedSurf4, EDNOR, 1. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

*Print, solve=NO 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field 

*EL PRINT, ELSET=_PickedSet5, LAST MODE=10 

S,E 

*EL PRINT, ELSET=_PickedSet6, LAST MODE=10 

S,E 

*EL PRINT, ELSET=_PickedSet7, LAST MODE=10 

S,E, 

*NODE FILE, LAST MODE=10 

U, 

*End Step 

8.7 Combinations  and scaling of eigenmodes 

When investigating the effect of different combinations and scaling of imperfections, the 

command line IMPERFECTION is edited. The input file gets the eigenmodes from the 
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eigenvalue analysis named Stat_buckl005, and the example under is for the combination were 

the 8 first eigenmodes are implemented and scaled.  

*IMPERFECTION, FILE=Stat_buckl005, STEP=1 

**Eigenmode, scaling 

1, 0.003 

2, 0 

3, 0.002 

4, 0.001 

5, 0.0005 

6, 0.00025 

7, 0.000125 

8, 0.0000625 

9, 0.00003125 

8.8 Analytical solution in MATLAB 

8.8.1 Verification of results in (Ekstrom, 1973) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       Analytical solution of the plate buckling equation% 
%                       Andreas Landa                     % 
%                      Trondheim, 2013                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
  
  
%Parameters are defined 
  
a = 10;                                 % Length [in] 
b = 10;                                     % Width [in] 
h = 0.05;                                   % Thickness [in] 
                                             
  
m = 1;                                      % Number of half-waves 
 
beta = a/b;                                 % Aspect ratio [-] 
g = 386.088582677165;             % Gravitational acceleration  
                                            % [in/s^2] 
  
Ex = 40E+6;                                 % Elastic modulus [psi] 
Ey = 4E+6;                                  % Elastic modulus [psi] 
Gxy = 1.5E+6;                               % Shear modulus [psi] 
vxy = 0.25;                                 % Poissons ratio [-] 
vyx = 0.025;                                % Poissons ratio [-] 
ny = 0.0585;                                % Specific weight[lb/in^3] 
  
 
Dx = (Ex*h^3)/(12*(1-vxy*vyx));             % Flexural  
rigidity [Pa*m^3] 
 
Dy = (Ey*h^3)/(12*(1-vxy*vyx));             % Flexural rigidity [Pa*m^3] 
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D1 = (Ex*vyx*h^3)/(12*(1-vxy*vyx));         % Flexural rigidity [Pa*m^3] 
 
Dxy = (Gxy*h^3)/12;                         % Flexural rigidity [Pa*m^3 
  
R12 = 0.09953;                               
R22 = 0.1;                                   
p1 = 3311;                                  % [psi] 
pcr = 1075;                                 % Yield stress 
  
c = 537500;                                 % Axial stress wave velocity [in/s]  
 
ksi_0 = 0.1;                                % Initial imperfection vs. thickness 
   
S = ((p1^3)*g*pi^2)/((c^2)*(a^2)*ny);       % Dynamic similarity number [-] 
  
%Defining constants used in system of equations 
  
A = (m.^4+2*R12*m.^2*beta.^2+R22*beta.^4)/4; 
B = ((1-vxy*vyx)*(m.^4+R22*beta.^4))/8;  
  
dx = 0.001; 
X = 0:dx:2; 
Y = zeros(length(X)); 
G = Y; 
Y(1) = 0;                                   % y(0) 
G(1) = 0;                                   % y'(0) 
tic 
for i = 2:length(X)                         % RK1 (euler) 
    Y(i) = Y(i-1) + dx*G(i-1); 
    G(i) = G(i-1) + dx*(-S*((A*(Y(i-1)-ksi_0))+(B*(Y(i-1)^2-ksi_0^2))*Y(i-1)-
m^2*X(i-1)*Y(i-1))); 
end 
tid = toc; 
steprate = i/tid; 
disp(['    y(x = ' num2str(2) ') = ' num2str(Y(i))]); 
disp(['dy/dx(x = ' num2str(2) ') = ' num2str(G(i))]); 
plot(X,Y,'r') 
hold on 
%plot(X,G,'k') 

  

8.8.2 Verification in SI-units 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       Analytical solution of the plate buckling equation% 
%                       Andreas Landa                     % 
%                      Trondheim, 2013                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
  
%Parameters are defined 
  
a = 0.254;                                 % Length [m] 
b = 0.254;                                 % Width [m] 
h = 0.00127;                               % Thickness [m]                                             
  
m = 1;                                     % Number of half-waves 
beta = a/b;                                % Aspect ratio [-] 
g = 9.81;                                  % Gravitational acceleration   
                                           % [m/s^2] 
  
Ex = 2.76E+11;                             % Elastic modulus [Pa] 
 
Ey = 2.76E+10;                             % Elastic modulus [Pa] 
 
Gxy = 1.03E+10;                            % Shear modulus [Pa] 
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vxy = 0.25;                                % Poissons ratio [-] 
 
vyx = 0.025;                               % Poissons ratio [-] 
 
ny = 15885.333;                            % Specific weight[kg/m^3] 
  
Dx = 2.89E+6;                              % Flexural rigidity [Pa] 
 
Dy = 2.89E+5;                              % Flexural rigidity  
[Pa] 
 
D1 = 72257.06;                             % Flexural rigidity  
[Pa] 
 
Dxy = 107696.11;                           % Flexural rigidity [Pa] 
  
R12 = 0.09953;                               
R22 = 0.1;                                   
p1 = 2.28E+7;                              % [Pa] 
pcr = 7411864;                             % Yield stress[Pa] 
  
c = 3705932043;                            % Axial stress wave velocity [m/s]  
ksi_0 = 0.01;                              % Initial imperfection vs. thickness 
  
  
S = ((p1^3)*g*pi^2)/((c^2)*(a^2)*ny);       % Dynamic similarity number [-] 
  
%Defining constants used in system of equations 
  
A = (m.^4+2*R12*m.^2*beta.^2+R22*beta.^4)/4; 
B = ((1-vxy*vyx)*(m.^4+R22*beta.^4))/8;  
  
dx = 0.001; 
X = 0:dx:2; 
Y = zeros(length(X)); 
G = Y; 
Y(1) = 0;                                   % y(0) 
G(1) = 0;                                   % y'(0) 
tic 
for i = 2:length(X)                         % RK1 (euler) 
    Y(i) = Y(i-1) + dx*G(i-1); 
    G(i) = G(i-1) + dx*(-S*((A*(Y(i-1)-ksi_0))+(B*(Y(i-1)^2-ksi_0^2))*Y(i-1)-
m^2*X(i-1)*Y(i-1))); 
end 
tid = toc; 
steprate = i/tid; 
disp(['    y(x = ' num2str(2) ') = ' num2str(Y(i))]); 
disp(['dy/dx(x = ' num2str(2) ') = ' num2str(G(i))]); 
plot(X,Y,'r') 

 

8.8.3 MATLAB-script on plate with dimensions 1x1m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       Analytical solution of the plate buckling equation% 
%                       Andreas Landa                     % 
%                      Trondheim, 2013                    % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
  
%Parameters are defined% 
  
a = 1;                                     % Length [m] 
b = 1;                                     % Width [m] 
h = 0.01;                                  % Thickness [m] 
v = 0.01;                                  % Veloctiy of impacting load 
ro = 7850; 



   

 

xvi 

 

                                             
m = 1;                                     % Number of halfwaves in  
                                           % imperfection function 
beta = a/b;                                % Aspect ratio [-] 
g = 9.81;                                  % Gravitational acceleration   
                                           % [m/s^2] 
  
Ex = 2.1E+11;                              % Elastic modulus [Pa] 
Ey = 2.1E+11;                              % Elastic modulus [Pa] 
Gxy = 8.08E+10;                            % Shear modulus [Pa] 
vxy = 0.3;                                 % Poissons ratio [-] 
vyx = 0.3;                                 % Poissons ratio [-] 
ny = ro*g;                                 % Specific weight[kg/m^3] 
  
Dx = (Ex*h^3)/(12*(1-vxy*vyx));            % Flexural rigidity [Pa*m^3] 
Dy = (Ey*h^3)/(12*(1-vxy*vyx));            % Flexural rigidity [Pa*m^3] 
D1 = (Ex*vyx*h^3)/(12*(1-vxy*vyx));        % Flexural rigidity [Pa*m^3] 
Dxy = (Gxy*h^3)/12;                        % Flexural rigidity [Pa*m^3 
  
R12 = 1;                               
R22 = 1;                                   
p1 = (4*Dx*pi^2)/(a^2*h);                  % [Pa] 
pcr = 240E+16;                             % Yield stress[Pa] 
  
c = Ex*v/a;                                % Axial stress wave velocity  
                                           % [N/m^2*s]  
ksi_0 = 0.1;                               % Initial imperfection  
                                           % vs. thickness 
  
  
S = ((p1^3)*g*pi^2)/((c^2)*(a^2)*ny);      % Dynamic similarity number [-] 
  
%Defining constants used in system of equations% 
  
A = (m.^4+2*R12*m.^2*beta.^2+R22*beta.^4)/4; 
B = ((1-vxy*vyx)*(m.^4+R22*beta.^4))/8; 
  
  
dx = 0.001; 
X = 0:dx:2; 
Y = zeros(length(X)); 
G = Y; 
Y(1) = 0;                                   % y(0) 
G(1) = 0;                                   % y'(0) 
tic 
for i = 2:length(X)                         % RK1 (euler) 
    Y(i) = Y(i-1) + dx*G(i-1); 
    G(i) = G(i-1) + dx*(-S*((A*(Y(i-1)-ksi_0))+(B*(Y(i-1)^2-ksi_0^2))*Y(i-1)-
m^2*X(i-1)*Y(i-1))); 
end 
tid = toc; 
steprate = i/tid; 
disp(['    y(x = ' num2str(2) ') = ' num2str(Y(i))]); 
disp(['dy/dx(x = ' num2str(2) ') = ' num2str(G(i))]); 
plot(X,Y,'r') 
hold on 

 

8.9 Analysis with realistic yield strength 

When investigating the effect of yield strength, the following are changed in the input file: 

From:  

*Material, name=Steel 

*Density 
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7850., 

*Elastic 

 2.1e+11, 0.3 

*Plastic 

 2.4e+18,0. 

To: 

*Material, name=Steel 

*Density 

7850., 

*Elastic 

 2.1e+11, 0.3 

*Plastic 

 2.4e+08,0. 

 


