
Entropy 2013, 15, 2129-2161; doi:10.3390/e15062129
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Zero Delay Joint Source Channel Coding for Multivariate
Gaussian Sources over Orthogonal Gaussian Channels
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Abstract: Communication of a multivariate Gaussian source transmitted over orthogonal
additive white Gaussian noise channels using delay-free joint source channel codes (JSCC)
is studied in this paper. Two scenarios are considered: (1) all components of the multivariate
Gaussian are transmitted by one encoder as a vector or several ideally collaborating nodes
in a network; (2) the multivariate Gaussian is transmitted through distributed nodes in a
sensor network. In both scenarios, the goal is to recover all components of the multivariate
Gaussian at the receiver. The paper investigates a subset of JSCC consisting of direct
source-to-channel mappings that operate on a symbol-by-symbol basis to ensure zero coding
delay. A theoretical analysis that helps explain and quantify distortion behavior for such
JSCC is given. Relevant performance bounds for the network are also derived with
no constraints on complexity and delay. Optimal linear schemes for both scenarios are
presented. Results for Scenario 1 show that linear mappings perform well, except when
correlation is high. In Scenario 2, linear mappings provide no gain from correlation when
the channel signal-to-noise ratio (SNR) gets large. The gap to the performance upper bound
is large for both scenarios, regardless of SNR, when the correlation is high. The main
contribution of this paper is the investigation of nonlinear mappings for both scenarios. It
is shown that nonlinear mappings can provide substantial gain compared to optimal linear
schemes when correlation is high. Contrary to linear mappings for Scenario 2, carefully
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chosen nonlinear mappings provide a gain for all SNR, as long as the correlation is close to
one. Both linear and nonlinear mappings are robust against variations in SNR.

Keywords: joint source channel coding; multivariate Gaussian; orthogonal channels;
correlation; zero-delay; sensor networks

1. Introduction

We study the problem of transmitting a multivariate Gaussian source over orthogonal additive
white Gaussian noise channels with joint source channel codes (JSCC), where the source and channel
dimensions, M , are equal. We place special emphasis on delay-free codes. That is, we require the
JSCC to operate on a symbol-by-symbol basis. Two scenarios are considered: (1) the multivariate
Gaussian is communicated as an M -dimensional vector source by one encoder over M parallel channels
or M channel uses. This scenario can also be seen as ideally collaborating nodes in a network (“Ideal
collaboration” means that all nodes have access to a noiseless version of all the other node observations
without any additional cost), communicating over equal and independent channels (see Figure 1a).
(2) The multivariate Gaussian is communicated as M distributed (i.e., non-collaborating) sensor nodes
with correlated measurements in a sensor network. That is, each node encodes one component of the
multivariate Gaussian (see Figure 1b). Scenario 2 can be seen as a special case of Scenario 1. In a
more practical setting, Scenarios 1 and 2 may, for instance, represent several wired or non-wired in- or
on-body sensors in a body area network communicating with a common off-body receiver.

Figure 1. Block diagram for networks under consideration. (a) Scenario 1: cooperative
encoders; (b) Scenario 2: distributed encoders.
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Communication problems of this nature have been investigated for several decades. For lossless
channels, it was proven in [1] that distributed lossless coding of finite alphabet correlated sources can be
as rate efficient as with full collaboration between the sensor nodes. This result assumes no restriction
on complexity and delay. It is not known whether a similar conclusion holds in the finite complexity
and delay regime. For lossy source coding of a Gaussian vector source (Scenario 1), the rate-distortion
function was determined in [2]. For lossy distributed source coding (Scenario 2), the rate-distortion
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function for recovering information common to all sources was solved in [3]. For the case of recovering
Gaussian sources (both common, as well as individual information) from two terminals, the exact rate-
distortion region was determined by [4,5]. The multi-terminal rate-distortion region is still unknown,
although several efforts towards a solution have been made in [4,6].

If the channel between the source and sink is lossy, system performance is generally evaluated in terms
of tradeoffs between cost on the channel, for example, transmit power, and the end-to-end distortion of
the source. Considering Scenario 1, the bounds can be found by equating the rate-distortion function for
vector sources with the Gaussian channel capacity. These bounds can be achieved by separate source
and channel coding (SSCC), assuming infinite complexity and delay. Considering Scenario 2, the bound
is determined, in the case of two sensor nodes, by combining the rate-distortion region in [4,5] with the
Gaussian channel capacity. This bound is achieved through SSCC by vector quantizing each source, then
applying Slepian-Wolf coding [1], followed by capacity achieving channel codes [7].

Optimality of the aforementioned SSCC schemes comes at the expense of complexity and infinite
coding delays. If the application has low complexity and delay requirements, it may be beneficial to
apply JSCC. Several such schemes have been investigated in the literature: For Scenario 2, a simple
nonlinear zero delay JSCC scheme for transmitting a single random variable observed by several noisy
sensor measurements over a noisy wireless channel was suggested in [8]. Similar JSCC schemes for
communication of two or more correlated Gaussian random variables over wireless noisy channels was
proposed and optimized in [9]. An extension of the scheme suggested in [8] using multidimensional
lattices to code blocks of samples proposed in [10]. Further, [11] found similar JSCC using variational
calculus and [12] introduced a distributed Karhunen-Loève transform. The authors of [13] examined
Scenario 2, also with side information available at both encoder and decoder. A similar problem with
non-orthogonal access on the channel was studied in [14,15]. At the moment, we do not know of any
efforts specifically targeting delay-free JSCC for Scenario 1, although all schemes for Scenario 2 apply
as special cases. Optimal linear solutions for this problem may be found from [16].

In this paper, we utilize a subset of JSCC named Shannon-Kotelnikov mappings (S-K Mappings),
built on ideas from earlier efforts [16–30]. S-K mappings are continuous or piecewise continuous direct
source-to-channel mappings that operate directly on continuous amplitude, discrete time signals and have
shown excellent performance for the point-to-point problem with independent and identically distributed
(i.i.d.) sources [27,30–35]. Such mappings were applied for multiple description JSCC for wireless
channels in [36]. A semi-analog approach without restriction on complexity and delay, also treating
colored sources and channels, was given in [37].

A theoretical analysis that helps explain and quantify distortion behavior for such mappings is given
in this paper. We investigate Scenario 1 as a generalization of our previous work in [31,32,38] on
dimension expanding S-K mappings for i.i.d. sources, by including arbitrary correlation. Similarly, we
study Scenario 2 by extending the use of S-K mappings to a network of non-collaborating nodes with
inter-correlated observations. Properly designed JSCC schemes for Scenario 1 may serve as bounds
for schemes developed for Scenario 2, since Scenario 1 has more degrees of freedom in constructing
encoding operations. The treatment of Scenario 2 also seeks to explain why certain existing JSCC
solutions for this problem (like the ones in [9]) are configured the way they are and also suggests schemes
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that can offer better performance in certain cases. Throughout this paper, Scenarios 1 and 2 will often be
referred to as collaborative case and distributed case, respectively.

The paper is organized as follows: In Section 2, we formulate the problem and derive performance
bounds assuming arbitrary code lengths. These bounds are achievable in Scenario 1 and serve as upper
bounds on performance for Scenario 2. In Section 3, we analyze optimal linear mappings and discuss
under what conditions it is meaningful to apply linear schemes. In Section 4, we introduce nonlinear
mappings. We revisit some results from [8,31,32,38] in order to mathematically formulate the problem
and give examples on and optimize selected mappings. In Section 5, we summarize and conclude.

Note that parts of this paper have previously been published in [39]. Results on nonlinear mappings
in Section 4 are mostly new and constitute the main contribution of the paper.

2. Problem Formulation and Performance Bounds

The communication system studied in this paper is depicted in Figure 1.
M correlated sources, x1, x2, ...xM , are encoded by M functions and transmitted on

M orthogonal channels.
The sources have a common information, y, and an (additive) independent component, z1, z2, ...zM ,

that is xm = y + zm, m = {1, 2, ...M}. Furthermore, both y and zm are discrete time, continuous
amplitude, memoryless Gaussian random variables, of zero mean and variances σ2

y and σ2
zm , respectively,

and x1, x2, ...xM are conditionally independent, given y. The correlation coefficient between any pair
of sources, m, k, is then ρm,k = σ2

y/σxmσxk
, m ̸= k, where σ2

xm
is the variance of source m and

σ2
xm

= σ2
y+σ

2
zm . With all observations collected in the vector x = [x1, x2, · · · , xM ]T , the joint probability

density function (pdf) is given by:

px(x) =
1√

(2π)Mdet(Cx)
e−

1
2
xTC−1

x x (1)

where Cx = E{xxT} is the covariance matrix.
Two scenarios are considered: (1) Each encoding function operates on all variables,

fm(x1, x2, · · · , xM), as in Figure 1a. This scenario can be seen as one encoder operating on an M

dimensional vector source or as M ideally collaborating encoders. (2) Each encoder operates on one
variable, fm(xm), m = 1, · · · ,M , as in Figure 1b. This scenario can be seen as M non-collaborating
nodes in a sensor network. The encoders operate independently, but are jointly optimized. Throughout
the rest of the paper, we refer to Scenario 1 as collaborative case, and Scenario 2 as distributed case.

The encoded observations are transmitted over M -independent, additive white Gaussian noise
(AWGN) channels with noise n ∼ N (0, σ2

nI), where I is the identity matrix. For the distributed case,
we impose an average transmit power constraint, Pm, for each node, m, where:

E{f2
m} ≤ Pm, m = {1, 2, ...M} (2)

whereas in the collaborative case, we look at an average power constraint, Pa, over all outputs,
Pa = (P1 + P2 + · · ·+ PM)/M . These constraints are equal, if the power for all nodes is the same.

We will consider the special case where σ2
x1

= σ2
x2

= · · · = σ2
xM

= σ2
x. Then, ρij = ρx = σ2

y/σ
2
x, ∀i, j

and y ∼ N (0, σ2
xρx) and zm ∼ N

(
0, σ2

x(1−ρx)
)
, m ∈ [1, · · · ,M ]. For this special case, the covariance
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matrix is simple and has eigenvalues λ1 > λ2 = λ3 = · · · = λM where λ1 = σ2
x

(
(M − 1)ρx + 1

)
and

λm = σ2
x(1 − ρx), m ∈ [2, · · · ,M ]. We restrict our investigation to this special case for the sake of

simplicity and in order to achieve compact closed-form expressions. Generalization to networks with
unequal transmit power and correlation can naturally be made.

At the receiver, the decoding functions, gm(r1, r2, ...rM), which have access to all received channel
outputs, r1, r2, ...rM , produce an estimate, x̂m, of each source. We define the end-to-end distortion, D,
as the mean-squared-error (MSE) averaged over all source symbols:

D =
1

M

M∑
m=1

E{|xm − x̂m|2}, m = {1, 2, ...M} (3)

We assume ideal Nyquist sampling and ideal Nyquist channels, where the sampling rate of each source
is the same as the signaling rate of each channel. We also assume ideal synchronization and timing in
the network. Our design objective is to construct the encoding and decoding functions, fm and gm, that
minimize D, subject to a transmit power constraint, P .

2.1. Distortion Bounds

Achievable bounds for the problem at hand can be derived for the cooperative case, and these serve
as lower bounds for the distributed case. The achievable bound for the distributed case is currently only
known when M = 2, and was shown in [9] to be:

Ddist =
√
(1 + SNR)−2(1− ρ2x) + ρ2x(1 + SNR)−4 (4)

where SNR = P/σ2
n is the channel signal-to-noise ratio.

To derive bounds for general M , we consider ideal collaboration.

Proposition 1 Consider the network depicted in Figure 1. In the symmetric case, D1 = D2 = · · · =
DM = D with transmit power P1 = P2 = · · · = PM = P and correlation ρij = ρx, ∀i, j, the smallest
achievable distortion for Scenario 1 and the distortion lower bound for Scenario 2 is given by:

D ≥ σ2
x


1
M

(
1+(M−1)ρx
(SNR+1)M

+ (M − 1)(1− ρx)

)
, SNR ≤ M

√
1+(M−1)ρx

1−ρx
− 1

M
√

(1+(M−1)ρx)(1−ρx)M−1

SNR+1
, SNR > M

√
1+(M−1)ρx

1−ρx
− 1

(5)

Proof 1 Let R∗, D∗ and P ∗ denote optimal rate, distortion and power, respectively. Assuming full
collaboration, the M sources can be considered as a Gaussian vector source of dimension, M . Then
from [2]:

D∗(θ,M) =
1

M

M∑
i=1

min[θ, λi], R∗(θ,M) =
1

M

M∑
i=1

max

[
0,

1

2
log2

λi
θ

]
(6)
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where λi is the i-th eigenvalue of the covariance matrix, Cx. The channel is a memoryless Gaussian
vector channel of dimension, M , with covariance matrix, σ2

nI. Its capacity with power, MP ∗, per source
vector, (x1, x2, ...xM), is:

C(MP ∗) =
1

2
log2

(
1 +

MP ∗

Mσ2
n

)
=

1

2
log2

(
1 +

P ∗

σ2
n

)
(7)

Now equate R∗ from Equation (6) with C in Equation (7) and calculate the corresponding power, P ∗.
We get D ≥ D∗(θ,M) with D∗ given in Equation (6) and:

P = P ∗(θ,M) = σ2
n

( M∏
i=1

max[λi/θ, 1]

)1/M

− 1

 (8)

The max and min in Equations (6) and (8) depend on ρx and the SNR. Since the special case, ρij =

ρx,∀i, j, is treated, there are two cases to consider: only the first eigenvalue, λ1 (the common informa-
tion), or all eigenvalues, λi, i ∈ [1, · · ·M ], are to be represented. By solving Equation (8) with respect to
θ for these two cases and inserting the result into Equation (6), the bound in Equation (5) results. Finally,
the validity of these two cases is found by solving the equation, λi = θ [with θ in Equation (8)], with re-
spect to SNR=P/σ2

n. �

In the following sections, we will compare suggested mappings to OPTAcoop = σ2
x/D

∗ (Optimal
Performance Theoretically Attainable for the cooperative case), i.e., the best possible received signal-to-
distortion ratio (SDR) as a function of SNR.

By comparing Equations (6) and (8) with Equation (4) (see Figure 2a), one can show that the above
cooperative distortion bound is tight, even for the distributed case when channel SNR is high enough.

Figure 2. Comparison between distributed and cooperative linear scheme and OPTA.
(a) M = 2 and ρx = 0.9; (b) M = 4,10 and ρx = 0.99.
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For the boundary case of ρx = 0, the problem is turned into transmitting M -independent memoryless
Gaussian source over M parallel Gaussian channels, and the resulting end-to-end distortion is
D∗ = σ2

x(1 + P ∗/σ2
n)

−1. It is well known that linear schemes, often named uncoded transmission,
are optimal in this case, and collaboration between the sensors would make no difference. Similarly,
if ρx = 1, i.e., all M sources are identical, we have a single source to transmit over M orthogonal
channels, where the overall source-channel bandwidth ratio is M . Then D∗ = σ2

x(1 + P ∗/σ2
n)

−M . As
noticed in [9], this special case is equivalent to transmitting a single Gaussian source on a point-to-point
channel with M times the bandwidth or channel uses (bandwidth/dimension expansion by a factor M ).
Additionally for this special case, it is possible to achieve D∗ with distributed encoders, but with infinite
complexity and delay.

3. Optimal Linear Mappings

Optimal linear schemes are presented for both the distributed and the cooperative case.

3.1. Distributed Linear Mapping

At the encoder side, the observations are scaled at each sensor to satisfy the power constraint, P :

fi(xi) =

√
P

σ2
x

xi i = {1, 2, ...M} (9)

At the decoder, we estimate each sensor observation utilizing all received channel outputs, r. For
memoryless Gaussian sources, their MSE estimate can be expressed as linear combinations of the
received channel symbols:

gi(r) = bT
i r (10)

bi are coefficients satisfying the Wiener-Hopf equations:

Crbi = Cxir, i = {1, 2, ...M} (11)

where Cr is the covariance matrix of the received vector, r, and Cxir is the cross-covariance matrix for
xi and r. The average end-to-end distortion per source symbol is then given by Dnc = σ2

x − CT
rxi

bi,
i = {1, 2, ...M} (nc denotes “no cooperation”). All i terms are equal for the case treated in this paper,
i.e., D1 = D2 = · · · = DM = Dnc. By inserting the relevant cross covariance matrices and the optimal
coefficient vector, it is straight forward to show that:

Dnc = σ2
x − CT

rxi
bi = σ2

x

SNR(1 + (M − 2)ρx − (M − 1)ρ2x) + 1

SNR2(1 + (M − 2)ρx − (M − 1)ρ2x) + (2 + (M − 2)ρx)SNR + 1
(12)

3.2. Cooperative Linear Mapping

When cooperation is possible, the sources can be decorrelated prior to transmission by a diagonalizing
transform (which is a simple rotation operation when M = 2). The transmit power, MP , is then
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optimally allocated along the eigenvectors of Cx. This scheme is also known as Block Pulse Amplitude
Modulation (BPAM) [23]. The end-to-end distortion, DBPAM, is given by [16] (pp. 65–66) :

DBPAM =
1

2

(
σ2
n

(∑t
i=1

√
λi
)2

tσ2
n +MP

+
M∑

i=t+1

λi

)
(13)

where t = min(M, t′) and t′ is the smallest integer that satisfies:

σ2
n√
λt′+1

( t′∑
j=1

(√
λj −

√
λt′+1

))
≤MP (14)

Case 1: The total power is allocated to all encoders, that is t =M , and so:

DBPAM(1) =
1

M

σ2
n

(∑M
i=1

√
λi
)2

Mσ2
n +MP

=
σ2
x

(√
(M − 1)ρx + 1 + (M − 1)

√
1− ρx

)2
M2(1 + SNR)

(15)

Case 2: The total power is allocated only to the first encoder, that is t = t′ = 1, and thus:

DBPAM(2) =
1

M

(
σ2
nλ1

σ2
n +MP

+
M∑
i=2

λi

)
=
σ2
x

M

(
(M − 1)ρx + 1

1 +MSNR
+ (M − 1)(1− ρx)

)
(16)

To determine for which channel SNR Case 1 and Case 2 apply, assume that t = t′ = 1. Then,
Equation (14) becomes

(√
λ1 −

√
λ2
)
/
√
λ2 ≥ MSNR. By inserting the eigenvalues, one can show that

Case 2 is valid whenever:

SNR ≤ 1

M

(√
1 + (M − 1)ρx

1− ρx
− 1

)
= κ (17)

The performance of any linear scheme for the network in Figure 1 is then, for SNR,≥ 0, bounded by:

Dcoop(SNR) =
σ2
x

M


(√

(M−1)ρx+1+(M−1)
√
1−ρx

)2
M(1+SNR) , SNR > κ

(M−1)ρx+1
1+MSNR + (M − 1)(1− ρx), SNR ≤ κ

(18)

Observe that the bound in Equation (5) results when inserting ρx = 0 in both Equations (12) and (18).
The theoretical performance of both cooperative and distributed linear schemes are plotted for various

M and ρx in Figure 2, along with the OPTA curve for ρx = 0 and OPTAcoop.
Observe that when SNR is low, the cooperative and the distributed schemes coincide, regardless

of M and ρx. When SNR grows, the performance of the cooperative scheme remains parallel to that
of OPTAcoop, while the distributed scheme approaches the OPTA curve for ρx = 0. The distributed
linear scheme, therefore, fails to exploit correlation between the sources at a high SNR. The reason is
that optimal power allocation is impossible in the distributed case, since decorrelation requires that the
encoding function operate on all variables.

The conclusions we draw from the performances of the distributed linear scheme are somewhat
different from the conclusions in [13]. There, the authors claimed that the distributed linear scheme
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(referred to as AF in their paper) performs close to optimal for all SNR and ρx. As we can see from
Figure 2b, this is not necessarily the case, especially at a high SNR. In addition, linear mappings are
not necessarily suitable for all values of ρx, since its gap to OPTAcoop becomes substantial when ρx gets
close to one. Distributed linear coding, although simple, is basically meaningful to use at a relatively low
SNR, since its performance converges to the ρx = 0 case as SNR grows (except when ρx = 1). When ρx
is close to one, a significant gain can be achieved by applying nonlinear mappings.

4. Nonlinear Mappings

The nonlinear mappings we apply for highly correlated sources are known as S-K mappings. We first
review the basics of S-K mapping and illustrate how they apply directly in the distributed case when
ρx = 1. We then generalize these mappings so that they apply to ρx < 1, but still close to one.

4.1. Special Case ρx = 1

S-K mappings can be effectively designed for both bandwidth/dimension compression and expansion
on point-to-point links [27,31]. Consider the dimension expansion of a single source (random variable):
each source sample is mapped into M channel symbols or an M dimensional channel symbol. At the
decoder side, the received noisy channel symbols are collected in M -tuples to jointly identify the single
source sample. Such an expanding mapping, named 1:M mapping, can be realized by parametric curves
residing in the channel space (as “continuous codebooks”), as shown in Figure 3 for the M = 2 and
M = 3 case. The curves basically depict the one-dimensional source space as it appears in the channel
space after being mapped through the S-K mapping. Noise will take the transmitted value away from the
curve, and the task of the decoder is to identify the point on the curve that results in the smallest error.
If we consider a Maximum Likelihood (ML) receiver, the decoded source symbol, x̂m, is the point on
the curve that is closest to the received vector. An ML decoder is therefore realized as a projection onto
the curve [40]. One may also expand an M -dimensional source (M random variables) or M consecutive
samples collected in a vector, into and N -dimensional channel symbol (where M < N ). Such an M :N
expanding S-K mapping is realized as a hyper-surface residing in the channel space.

S-K mappings can be applied distributedly by encoding each variable by a unique function, fm(xm):

f(x) = [f1(x1), f2(x2), · · · , fM(xM)] (19)

when ρx = 1, Equation (19) is really a dimension expanding S-K mapping, since xm = y ∀m. That is,
the same variable is coded and transmitted by all encoders. With the received signal, r̂m = fm(y) + nm,
the ML estimate of y is given by:

ŷ = argmin
y

[(
f1(y)− r1

)2
+ · · ·+

(
fM(y)− rM

)2] (20)

When M = 2, a good choice of functions is the Archimedean spiral in Figure 3a, defined by [27]:

f1(x1) = ±(∆/π)φ(x1)
a cos(φ(x1)), f2(x2) = ±(∆/π)φ(x2)

a sin(φ(x2)) (21)
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where + is for positive source values (blue spiral), while − is for negative (red spiral). ∆ reflects the
distance between the blue and the red curves, φ(·) is a conveniently chosen mapping function and a
determines if the distance between the spiral arms will diverge outwards (a > 1), have constant distance
(a = 1) or collapse inwards (a < 1). Similarly, the “Ball of Yarn” in Figure 3b is defined by [41]:

f1(x1) = ±(∆/π)φ(x1)
a cos

(
φ(x1)/π

)
sin(φ(x1)),

f2(x2) = ±(∆/π)φ(x2)
a sin

(
φ(x2/π)

)
sin(φ(x2)), f3(x3) = ±(∆/π)φ(x3)

a cos(φ(x3)).
(22)

when these transformed values are transmitted simultaneously on orthogonal channels, we get a
Cartesian product resulting in the structures in Figure 3 (when ρx=1). The performance of these
mappings is shown in Figure 4 for a = 1.1 and several values of ∆, together with OPTA and distributed
linear mappings. The optimal ∆ is found in the same way as in [31], and a similar derivation is given
in Section 4.5. Interpolation between optimal points are plotted for the M = 2 case, while a robustness
plot (that is, ∆ is fixed while the SNR varies; this shows how the mapping deteriorates as the channel
SNR moves away from the optimal SNR) is plotted for the M = 3 case.

Figure 3. Shannon-Kotelnikov (S-K) mappings. The curves represent a scalar source
mapped through f in the channel space. Positive source values reside on the blue curves,
while negative reside on the red. (a) M = 2: Archimedes spiral; (b) M = 3: “Ball of Yarn”.
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Both the Archimedes spiral and the Ball of Yarn improve significantly over linear mappings. The
distance to OPTA is quite large for the M = 3 case, but there is still a substantial gain of around 4–6 dB
compared to the M = 2 case. A 1:3 mapping with better performance has been found in [42], but can
only be applied with collaborative encoders. It has also been shown that S-K mappings can perform
better at a low SNR using MMSE decoding [35].

One can get better insight into the design process of S-K mappings by understanding their distortion
behavior. Analyzing nonlinear mappings in general is difficult, and in order to provide closed form
expressions that can be interpreted further, we follow the method of Kotelnikov [18] (chapters 6–8)



Entropy 2013, 15 2139

(see also [40] (chapter 8.2) and [38]) and divide the distortion into two main contributions: weak noise
distortion, denoted by ε̄2wn, and anomalous distortion, denoted by ε̄2th.

Figure 4. Performance of S-K mappings when M = 2, 3 for several values of ∆.
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Weak noise distortion results from channel noise being mapped through the nonlinear mapping at the
receiver and refers to the case when the error in the reconstruction varies gradually with the magnitude of
the channel noise (non-anomalous errors). For a curve, f , weak noise distortion is quantified by [18,31]:

ε̄2wn = σ2
n

∫
D

1

∥f ′(y)∥2
py(y)dy (23)

where D is the domain of the source and py(y) its pdf (we use y here, since x1 = · · · = xM = y, when
ρx = 1). ∥f ′(y)∥ is the length of the tangent vector of the curve at the point, y. The Equation (23)
says that the more the source space (y) is stretched by the S-K mapping, f , at the encoder side (think
about stretching of the real line like a rubber band or a nonlinear amplification), the more the channel
noise will be suppressed (attenuated) when mapped through the inverse mapping at the receiver. If the
curve should be stretched a significant amount without violating a channel power constraint, a nonlinear
mapping that “twists” the curve into the constrained region is needed, as illustrated in Figure 5a.

Still, the curve must have finite length (it cannot be stretched indefinitely), since, otherwise,
anomalies, also called threshold effects [17,43], will occur. Anomalies can be understood as follows:
Consider the 1:2 mapping in Figure 5b. When the distance between the spiral arms (∆) becomes too
small, for a given noise variance, σ2

n, the transmitted value, f(y0), may be detected as f(y+) on another
fold of the curve at the receiver. The resulting distortion when averaging over all such incidents is what
we have named anomalous distortion (see, e.g., [31] or Section 4.5 for more details). Since anomalous
distortion depend on the structure of the chosen mapping, we only state that the pdf needed to calculate
the probability for such errors here and give a specific example on how to calculate anomalous distortion
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for the Archimedes spiral in Section 4.5. The pdf of the norm, ϱ = ∥ñ∥, for an N -dimensional vector,
ñ, with i.i.d. Gaussian components, is given in [44] (p. 237):

pϱ(ϱ) =
2(N

2
)
N
2 ϱN−1

Γ(N
2
)σN

n

e
−

N
2 ϱ2

σ2
n , N ≥ 1 (24)

Note that if f(y) is chosen, so that only noise vectors perpendicular to it, n⊥, lead to anomalous errors
(like the spiral in Figure 5), then N = M − 1. Anomalous errors happen in general if the norm, ϱ, gets
larger than a specific value. For instance, for the Archimedes spiral, the probability for anomalies are
give by Pr{ϱ ≥ ∆/2} when a = 1 (around the optimal ∆).

Figure 5. 1:2 S-K mappings. (a) Linear and nonlinear mappings; (b) when spiral arms come
too close, noise may take the transmitted vector, f(y0), closer to another fold of the curve,
leading to large decoding errors.
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There is a tradeoff between the two distortion effects, which results in an optimal curve length for a
given channel SNR (this corresponds to an optimal ∆ for the Archimedes spiral and Ball of Yarn). The
two distortion effects can be seen for theM = 3 case in Figure 4, where ε̄2wn dominates above the optimal
point and ε̄2th dominates below. Note specifically that ε̄2wn has the same slope as a linear mapping, which
results from the fact that a linear approximation to any continuous (one-to-one) nonlinear mapping is
valid at each point if σn is sufficiently small.

4.2. Nonlinear Mappings for ρx < 1

The situation becomes more complicated when ρx < 1. Since λ1 > λ2=λ3=· · ·=λM , it is straight
forward to deduce from the reverse water-filling principle [45] that only the largest eigenvalue (here λ1)
should be represented when SNR is below a certain threshold (for instance, for the bound in Equation (5);
this threshold is given by SNR= M

√
(1 + (M − 1)ρx)/(1− ρx) − 1). That is, only transmission and
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decoding of y should be considered below a certain SNR. Above this threshold, one should consider all
eigenvalues, i.e., transmit and decode all individual observations.

One can get an idea on how specific mappings should be constructed when M = 2 from the
distributed quantizer (DQ) scheme in [9]. There, each node quantizes its source using a scalar quantizer.
Figures 6a and 6b show the DQ centroids plotted in pairs in the two-dimensional channel space for
ρx = 0.95 and 0.99.

Figure 6. Channel space structures when M = 2 and ρx < 1. (a) 5 bit distributed quantizer
(DQ), ρx = 0.95; (b) 5 bit DQ, ρx = 0.99; (c) sawtooth mapping, ρx = 0.99; (d) Archimedes
spiral, ρx = 0.999.
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Observe that the DQ centroids in Figure 6b lie on a thin spiral-like surface strip that is “twisted”
into the channel space. One possible way to construct a continuous mapping is to use the parametric
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curves introduced for the ρx = 1 case as they are, i.e., use Equations (21) and (22) directly. Inspired
from Figure 6b, we choose to apply the Archimedes spiral in Equation (21), shown in Figure 6c, when
ρx = 0.999. Compared to Figure 3a, the spiral is now “widened” into a thin surface strip.

We propose a mapping for collaborative encoders for the M = 2 case to provide insight into
what benefits collaboration may bring. To simplify, we make a change of variables from x1, x2 to the
independent variables, ya = (x1 + x2)/2 and za = (x2 − x1)/2. ya is aligned with the first eigenvector
of Cx, while za is aligned with the second eigenvector. One possible generalization of the spiral in
Equation (21) is:

f(ya, za) = h(ya) +N(ya)αzza (25)

where h(ya) is the Archimedes spiral in Equation (21) and N(ya) is the unit normal vector to the spiral
at the point, h(ya). One can use Appendix A to show that the components of N(ya) are:

N1(ya) = −φ(ya) cos(φ(ya)) + sin(φ(ya))√
1 + φ2(ya)

, N2(ya) =
cos(φ(ya))− φ(ya) sin(φ(ya))√

1 + φ2(ya)
(26)

A similar generalization can be applied to other parametric curves, h(y), for any M .
To provide geometrical insight into how two correlated variables are transformed by

Equations (25) and (21), we show how they transform the three parallel lines, x2 = x1 − κ (red),
x2 = x1 (blue) and x2 = x1 + κ (green), in Figures 7a and 7b, respectively.

The generalized spiral in Equation (25) represents both common information (the blue curve) and the
individual contributions from both sources uniquely. The distributed mapping in Figure 7b represents
common information well, but ambiguities will distort the individual contributions in certain intervals:
The green curve in Figure 7b results by inserting x2 = x1 + κ in Equation ( 21), which is a “deformed”
spiral lying inside an ellipse with the major axis aligned along the function, w2 = w1. The red spiral,
on the other hand, is lying inside an ellipse with the major axis aligned along w2 = −w1. These
spirals are therefore destined to cross at certain points. Ambiguities can also be observed for similar
mappings found in the literature. One example is the DQ in Figure 6b, as illustrated in Figure 7d.
Whether continuous mappings that avoid ambiguities can be found when the encoders operate on only
one variable is uncertain. Further research is needed in order to conclude.

An alternative mapping that avoids ambiguities in the distributed case is the piecewise continuous
sawtooth mapping proposed in [8], depicted in Figure 6d. Although this mapping was proposed for
transmission of noisy observations of a single random variable, it is applicable for the coding of several
correlated variables by a slight change in the decoder. The encoders for the M = 2 case are given by:

f1(x1) = α1x1, f2(x2) = α2

(
x2 −∆

⌊
x2
∆

⌉)
, (27)

where ∆ determines the period of the sawtooth function, f2, and α1, α2 makes it possible to control the
power for each encoder separately. We use this mapping as an example for M = 2. It can easily be
extended to both arbitrary M , as shown in [8] and blocks of samples (code length beyond one), as shown
in [10], which makes it a good choice of mapping. From Figure 7c, one can observe that ambiguities
are avoided.



Entropy 2013, 15 2143

Figure 7. How the three lines, x2 = x1 − κ (red), x2 = x1 (blue) and x2 = x1 + κ (green),
are mapped by selected nonlinear mappings. (a) Collaborative mapping in Equation (25);
(b) distributed mapping in Equation (21); (c) sawtooth mapping in Equation (27); (d) DQ
from Figure 6b.
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To determine the reconstruction, x̂m, m = 1, · · · ,M , we first decode y then zm. y is found by
projecting the received vector onto the closest point on the curve representing common information,
f(y). f(y) corresponds to the blue curves shown in Figures 7a and 7b when M = 2. The ML detector for
y is therefore given in Equation (20). Given ŷ, the individual contributions, zm, can be found by mapping
values of z = [z1, · · · , zM ] within an M-ball of a certain radius, ϱ, through the encoding functions, f ,
then choose the z that results in the smallest distance to the received vector. For the collaborative case:

ẑ = arg min
z1,··· ,zM :∥z∥≤ϱ

[(
f1(ŷ+ z1, · · · , ŷ+ zM)− r1

)2
+ · · ·+

(
fM(ŷ+ z1, · · · , ŷ+ zM)− rM

)2] (28)

whereas for the distributed case:

ẑ = arg min
z1,··· ,zM :∥z∥≤ϱ

[(
f1(ŷ + z1)− r1

)2
+ · · ·+

(
fM(ŷ + zM)− rM

)2] (29)

Note that ϱ decreases with increasing ρx, making the search for z simpler. If ϱ is chosen as too large,
then anomalous errors will result. The reconstruction is finally given by x̂m = ŷ + ẑm. Note that in
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order to achieve the best possible result at low SNR, one should use MMSE decoding. Since only y is
reconstructed at low SNR, a similar approach to that in [35] for dimension expanding S-K mappings may
be used. We leave out this issue and refer to [35] as one possible way to achieve better performance.

In the following sections, distortion and power expressions are given. These expressions will facilitate
analysis and optimization of S-K mappings for the network under consideration.

4.3. Power and Distortion Formulation: Collaborative Encoders

To calculate power and distortion, we apply and generalize selected results from [8,31,32,38]. For
both cases, the formulation of the problem will depend on whether only common information or both
common information, as well as individual contributions should be reconstructed at the receiver. Details
in some derivations are omitted, since they require substantial space.

4.3.1. Reconstruction of Common Information

When the encoders collaborate, one may drop all individual contributions, zm, prior to transmission by
averaging over all variables, ya = (x1+x2+ · · ·+xM)/M , and so, ya ∼ N (0, σ2

ya) with σ2
ya = E{y2a} =

σ2
x

(
1+(M − 1)ρx

)
/M . ya is then encoded by a parametric curve, f(ya) = [f1(ya), f2(ya), · · · , fM(ya)],

and therefore, the same distortion contributions as for the ρx = 1 case in Section 4.1 apply. That is,
Equation (23) quantifies weak noise distortion by exchanging y with ya and the pdf, py(y), with pya(ya),
and the probability for anomalous errors can be found from Equation (24).

We also get a distortion contribution from excluding zm. This contribution is reflected in the fact that
the eigenvalues, λm, m = 2, · · · ,M , are not represented. The distortion is given by the sum of these
eigenvalues divided over all M sources:

ε̄2l =
1

M

M∑
m=2

λm =
σ2
x(M − 1)(1− ρx)

M
(30)

The power per source symbol is given by [31]:

Pa =
1

M

∫
∥f(ya)∥2pya(ya)dya (31)

4.3.2. Reconstruction of Common Information and Individual Contributions

With f(x) = [f1(x), f2(x), · · · , fM(x)], the power per source symbol becomes:

Pa =
1

M

M−fold︷ ︸︸ ︷∫∫
· · ·
∫

∥f(x)∥2px(x)dx (32)

Since all eigenvalues are now represented, the distortion in Equation (30) will disappear. The weak
noise and anomalous distortion need to be modified.

Weak Noise Distortion: Although we haveM variables communicated onM channels, expansion of
x by an S-K mapping is possible when ρx is close to one (for similar reasons as in Section 4.1). A similar
analysis as that in [32,38] for M :N dimension expanding S-K mappings can therefore be applied.
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We now have a thin M -dimensional hyper-surface strip of dimension M that is twisted and bent into
theM -dimensional channel space (like the structure in Figure 7a). That is, a subset of RM is mapped into
RM . An important fact is that weak noise distortion is defined intrinsically [32,38], i.e., it is defined only
on theM -dimensional surface representing the S-K mapping, independent of any surrounding coordinate
system. One can therefore calculate weak noise distortion here in the same way as in [38]. For brevity,
we only state the result and explain the essentials of the given expression. The reader may consult [38]
for details in the derivation. We have:

ε̄2wn =
σ2
n

M

M−fold︷ ︸︸ ︷∫∫
· · ·
∫
D

M∑
i=1

1

gii(x)
px(x)dx, (33)

with px(x) given in Equation (1) and D, the relevant domain of the source space. gii, i = 1, · · · ,M ,
denote the diagonal components of the so-called metric tensor, described in Appendix B (an intrinsic
feature of the surface, f ), which corresponds to the squared norm of the tangent vectors along f(xi), i =

1, · · · ,M . These components quantify the nonlinear “magnification” done by f on the source vector, x.
Note that Equation (33) is a generalization of Equation (23) and basically says that the more the source,
x, is stretched/magnified by f (in all M directions) at the encoder, the more suppressed the channel noise
will become when mapped through the inverse mapping at the receiver. (Note that for Equation (33) to
be valid, all off-diagonal components gij = 0; this is the case for all mappings treated in this paper.)

Anomalous distortion: Anomalies now refer to the confusion of x1, · · · , xM with the vector,
x̃1, · · · , x̃M , on another fold of the mapping. For instance, in Figure 7a, vectors between the blue and
green spirals may get exchanged with values along the green spiral on another fold. We only derive the
pdf needed to calculate the probability for anomalous errors here and give a specific example on how to
calculate anomalous distortion in Section 4.5.

The probability for anomalies now depends on both the noise, n and z, since the mapping “widens”
with the magnitude of zm. Let y0 denote an M -dimensional vector with all components equal to y0. To
be able to calculate the pdf of z after the nonlinear mapping, f(x1, · · · , xM), given that y = y0, we have
to assume that ρx is close enough to one (zm small) to consider the linear approximation:

f(y0 + z) ≈ f(y0) + J(y0)z (34)

J(y0) is the Jacobian of f(x1, · · · , xM), evaluated at xm = y0, m = 1, · · · ,M (see Appendix B).
The variance per dimension of the transformed vector, zT = J(y0)z, is then given by σ2

zT
(y0) =

(1/M)E
{
(J(y0)z)

T (J(y0)z)
}

. By assuming that the off-diagonal components of the metric tensor
of f is gij = 0, the same arguments as in [38] lead to:

σ2
zT
(y) =

1

M
E
{
zT

TzT
}
=
σ2
z

M

M∑
i=1

gii(y) (35)

The gii(y)’s reflects the magnification of z given y and are given by:

gii(y) =

⟨
∂f

∂xi
,
∂f

∂xi

⟩
|xi=y

(36)
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Let z̃T and ñ denote the N -dimensional sub-vectors of zT and n at f(y0) that point in the direction
of the closest point on another fold of f (like n⊥ in Figure 5a). The pdf of the sum, z̃T + ñ, is given by a
convolution [46] pz̃T (z̃T , y) ∗ pñ(ñ). Since both pz̃T and pñ are i.i.d. Gaussians, the convolution is also
Gaussian [46], with variance σ2

zT ,n(y) = σzT (y)
2 + σ2

n. From Equation (24), with ϱan = ∥z̃T + ñ∥, we
get:

pϱan(ϱan, y) =
2(N

2
)
N
2 ϱN−1

an

Γ(N
2
)σzT ,n(y)N

e
−

N
2 ϱ2an

σzT ,n(y)2 , N ≥ 1 (37)

4.4. Distributed Encoders: ρx < 1

Since each encoder operates on only one variable, it is not possible to diagonalize or take averages,
implying that one cannot remove zm prior to transmission. The average power is therefore given by
the same expression, whether transmission of common information or both common information and
individual contributions are considered:

Pa =
1

M

M∑
m=1

Pm =
1

M

M∑
m=1

∫
f 2
m(xm)pxm(xm)dxm (38)

4.4.1. Reconstruction of Common Information

The distortion from not representing the eigenvalues, λ2, · · · , λM , is again given by Equation (30).

Weak noise distortion: The individual contributions, z, will now represent noise that corrupts the
value of y. If ρx is close to one, then the variance of zm will be small enough to consider the linear
approximation, f(y + zm) ≈ f(y) + zmf

′(y). We are then in the same situation as in [8], and the
distortion can be derived in the same way. The result is (consult [8] for details):

ε̄2wn =

∫ (
σ2
z

∑M
m=1 f

′
i(y)

4

∥f ′(y)∥4
+

σ2
n

∥f ′(y)∥2

)
py(y)dy (39)

The first term accounts for distortion due to zm, whereas the last term accounts for distortion due to
channel noise and is the same as in Equation (23). It was shown in [8] that the first term in Equation (39)
is minimized by a linear mapping. On the other hand, a linear mapping is, in most cases, sub-optimal
when it comes to suppressing channel noise, i.e., minimizing the second term in Equation (39). There is,
therefore, a tradeoff between lowering distortion, due to z and channel noise.

Anomalous distortion: Since zm cannot be removed prior to transmission, the pdf needed to calculate
probability for anomalous errors is basically the same as in Equation (37), except that the metric tensor
is different. The diagonal components of the metric tensor is now:

gii(y) =

⟨
∂f

∂xi
,
∂f

∂xi

⟩
|xi=y

=

⟨
dfi
dxi

,
dfi
dxi

⟩
|xi=y

(40)
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4.4.2. Reconstruction of Common Information and Individual Contributions

The power is given by Equation (38), and the pdf needed to calculate probability for anomalous errors
is given by Equation (37), with the gii’s in Equation (40).

The weak noise distortion must be reformulated, and a distortion contribution, due to the ambiguities
mentioned earlier (shown in Figure 7b), must be added.

Weak noise distortion: Weak noise distortion now refers to distortion in the areas without
ambiguities, that is, where each source vector has a unique representation after being mapped through f .
Since gii(x) = gii(xi) = f ′

i(xi)
2 [see Equation (40)] is a function of only one variable, Equation (33) is

reduced to:

ε̄2wn =
σ2
n

M

M−fold︷ ︸︸ ︷∫∫
· · ·
∫
D

M∑
i=1

1

f ′
i(xi)

2
px(x)dx =

σ2
n

M

M∑
i=1

∫
1

f ′
i(xi)

2
pxi

(xi)dxi (41)

The integral domain, D, is over all xi for a mapping that avoids ambiguities (like the sawtooth mapping)
and over the domain without ambiguities otherwise.

Distortion due to ambiguities: Picture the M = 2 case. For continuous mappings, like the spiral
shown in Figure 7b, remote source values, represented by the green and red lines, may cross in certain
intervals, leading to ambiguities at the decoder. Ambiguities will make the decoder interchange values
along the minor axis (or minor axes for general M ). When the green and red lines cross, positive and
negative values may be interchanged, which lead to a large error in the decoded value. If a continuous
mapping is to be applied, it is better to only decode common information in the areas where ambiguities
are prominent (for instance, in the interval between the arrows in Figure 7b).

Assume that ambiguities happen in the intervals [yi, yi+1] and that there are K such intervals in total.
If we decode only common information in these intervals, the distortion is quantified by:

ε̄2am =
K∑
i=1

∫ yi+1

yi

(
ε̄2l +

σ2
z

∑M
m=1 f

′
i(y)

4

∥f ′(y)∥4
+

σ2
n

∥f ′(y)∥2

)
py(y)dy (42)

while Equation (41) quantifies distortion outside these intervals. ε̄2l is given by Equation (30) and takes
into account the distortion from only representing common information. The second term takes into
account the distortion due to zm, and the last term is distortion due to channel noise. To determine the
values of yi and yi+1, the relevant intersection points must be found (for instance, where the red and
green spirals cross the blue spiral in Figure 7b).

4.5. Examples for the ρx < 1 Case When M = 2

In this section, the mappings in Equations (25), (21) and (27) will be optimized using the power
and distortion analysis presented in the preceding sections, then simulations of the optimized mappings
are given.

First a suitable function, φ must be chosen for the spiral in Equation (21). In [31], it was argued
why choosing φ as the inverse curve length is convenient. For the spiral, the curve length function is
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similar to a quadratic function. Since it is unknown for the problem at hand which function is optimal,
we choose the inverse of φ to be the polynomial φ−1 = ℓ(θ) = ∆(aθ2 + bθ), and so:

φ(xm) = ± 1

2a

√
b2 + 4aα

|xm|
∆

− b

2a
(43)

a and b are coefficients that will be optimized, α is an amplification factor and ± reflects the sign of xm.

4.5.1. Power and Distortion Calculation for Collaborating Encoders

The spiral in Equation (21) is applied when only common information is transmitted, and the
generalized spiral in Equation (25) is applied when individual contributions, z1 and z2, are included.

Reconstruction of common information: Here, only the average, ya = (x1 + x2)/2, is transmitted.
To calculate the power, the norm, ∥f(ya)∥, is needed. By sin2(x) + cos2(x) = 1, it is easy to show

that:

∥f(ya)∥2 =
(
∆

π

)2

φ2(ya) (44)

The power is found by inserting Equation (44) in Equation (31) with M = 2.
Since z1 and z2 are not transmitted, the distortion, ε̄2l = σ2

x(1 − ρx)/2, results [insert M = 2 in
Equation (30)].

Weak noise distortion is found by inserting M = 2 in Equation (23), exchanging y with ya and py(y)
with pya(ya). By again using sin2(x) + cos2(x) = 1, one can show that:

∥f ′(ya)∥2 =
(
∆

π
φ′(ya)

)2(
1 + φ2(ya)

)
(45)

A good approximation to anomalous distortion must be found: With only ya transmitted, we only
need to consider the blue spiral in Figure 7a. Then, the same method as in [31] applies, which we restate
here for clarity. Figure 8 illustrates how to determine anomalous errors approximately.

Figure 8. Illustration on how to approximately calculate anomalous errors when only
common information is to be reconstructed.
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The green curve depicts the noise pdf for a given ya. Since anomalies are mainly caused by the
one-dimensional noise component perpendicular to the spiral (at least, close to the optimal operation
point), denoted n⊥, the wanted pdf is found by inserting N = 1 in Equation (24). The result is the
Gaussian distribution, n⊥ ∼ N (0, σ2

n), denoted by pn⊥(n⊥). When n⊥ crosses the black dotted curve in
Figure 8, anomalous errors result. The probability of anomalous errors, given that ya was transmitted,
is therefore:

Pth = Pr{n⊥ > ∆/2} =

∫ ∞

∆/2

pn⊥(n⊥)dn⊥ =
1

2

(
1− erf

(
∆

2
√
2σn

))
(46)

To determine the errors magnitude, assume first that f(ya) is moved outwards and exchanged with the
nearest point on the neighboring spiral arm. That is, f(ya) is detected as f+ = f(ya) + ∆. By converting
to polar coordinates, we get −∆φ(ŷ+)/π = ∆φ(ya)/π + ∆. By solving this with respect to ŷ+ and
using the same argument for noise moving the transmitted vector inwards to f−, we get:

ŷ± = −φ−1(φ(ya)± π) (47)

An approximation of the anomalous distortion is therefore given by:

ε̄2an = 2Pth

∫ ∞

0

(
(ya − ŷ+)

2 + (ya − ŷ−)
2
)
pya(ya)dya (48)

This expression is accurate around the mappings’ optimal SNR, whereas it may differ if the SNR drops
far below optimum. It serves well in order to determine the optimal parameters.

Reconstruction of individual contributions: The decoder in Equation (28) is simplified with the
generalized spiral in Equation (25), since we only need to search over one variable, za = (x2 − x1)/2

(instead of z1 and z2).
To calculate the power, ∥f(ya, za)∥ must be determined. Since:

∥f(ya, za)∥2 =
2∑

m=1

(
hm(ya) + αzNm(ya)za

)2 (49)

and by using the fact that E{hm(ya)za} = 0, N2
1 (ya) + N2

2 (ya) = 1 (unit normal vector) and h21(ya) +
h22(ya) = φ2(ya), Equation (32) is reduced to:

Pa =
1

2

(
∆2

π2

∫
φ2(ya)pya(ya)dya + α2

zσ
2
za

)
(50)

where σ2
za = E{z2a} = σ2

x(1− ρx)/2.
Weak noise distortion is found from Equation (33) by inserting M = 2. The gii’s must be determined.

Since ∂f(ya, za)/∂za = αz[N1(ya), N2(ya)]
T and N2

1 (ya) +N2
2 (ya) = 1:

g22(ya, za) =

⟨
∂f(ya, za)

∂za
,
∂f(ya, za)

∂za

⟩
= α2

z (51)

For g11:

g11(ya, za) =

⟨
∂f(ya, za)

∂ya
,
∂f(ya, za)

∂ya

⟩
=

2∑
m=1

(
∂hm(ya)

∂ya
+ αzza

∂Nm(ya)

∂ya

)2

(52)
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By using the fact that E{f(ya)za} = 0 (for any measurable function f ) and Equation (45), one can
show that:

ε̄2wn = σ2
n

(
π2

∆2

∫
1(

φ′(ya)
)2(

1 + φ2(ya)
)dya +

1

α2
z

)
(53)

To calculate anomalous distortion, a similar procedure as the one that led to Equation (48) can be
applied. The fact that the spiral in Figure 8 “widens” due to za has to be taken into account. With the
mapping in Equation (25), ya moves along the spiral, h(ya), while za moves normal to it. Therefore, only
g22 affects the probability for anomalies (since it magnifies za). The relevant pdf is found by inserting
N = 1 in Equation (37) with σ2

zT ,n = g22σ
2
za + σ2

n = α2
zσ

2
x(1 − ρx)/2 + σ2

n, which is a Gaussian
distribution. With the construction in Equation (25), the error probability will be the same for any given
ya. With κ(y) = α2

zσ
2
x(1− ρx) + 2σ2

n, then:

Pth =

∫ ∞

∆/2

pϱan(ϱan)dϱan =
1

2

(
1− erf

(
∆

2
√
κ(y)

))
(54)

In Equation (48), the magnitude of anomalous errors was calculated by assuming that points on the
blue solid-line spiral in Figure 8 were exchanged with points on the dashed blue spiral (or the other way
around). Here, as can be seen from Figure 7a, either values lying between the blue and green spirals will
get exchanged with points on the green spiral on another fold, or values between the red and blue spiral
get exchanged with values on the red spiral on another fold. This makes the error somewhat smaller than
in Equation (48). The difference in the error for these two cases is small when ρx is close to one. To
simplify calculations, we therefore choose to use the same error here as in Equation (48), which gives
an upper bound on the error. The anomalous distortion is therefore bounded by Equation (48) with Pth

given in Equation (54).

Optimization and simulation: A constrained optimization problem must be solved in order to
determine the optimal free parameters, α, ∆, a and b for the spiral and α, αz, ∆, a and b for the
generalized spiral. All parameters are functions of the channel SNR. With Pmax, the maximum allowed
power per encoder output, and Dt, the sum of all distortion contributions for the relevant case:

min
a,b,α,αz ,∆:Pa<Pmax

Dt (55)

All parameters must also be positive. The problem must be solved numerically.
The S-K mappings are simulated using the optimized parameters. Figure 9 shows the performance

for cooperative S-K mappings compared to OPTAcoop and BPAM when ρx = 0.99 and 0.999.
The nonlinear S-K mappings outperform BPAM for most SNR, most significantly so when ρx =

0.999. Robustness plots are shown for S-K mappings for several sets of optimal parameters. The cyan
curves show the performance when only common information is reconstructed. The performance levels
off and becomes inferior to BPAM at about a 22 dB channel SNR when ρx = 0.99 and 29 dB when
ρx = 0.999. The reason is that the distortion term, ε̄2l = σ2

x(1− ρx)/2, results from not transmitting za.
The spiral is also quite robust against variations in SNR. With the generalized spiral in Equation (25),
shown by the green curve, the performance does not level off at large SNR, and it does, in fact, maintain
a constant gap to OPTAcoop, as SNR increases without changing α, αz, ∆, a and b. This can be explained
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geometrically: as long as only ya should be transmitted, one can let the distance between the spiral arms,
∆, drop as SNR increases and, thereby, increase the curve length of f , resulting in a larger magnification
of ya. This leads to a unique optimal SNR for each value of ∆, as shown by the cyan curves. When both
ya and zp are transmitted, the spiral widens, and there must therefore be a lower bound on ∆ = ∆min, if
anomalous errors should be avoided. Then, with the right choice of ∆min, weak noise distortion will be
the only contributions to total distortion when the SNR gets high enough. As mentioned earlier, weak
noise distortion has the same slope as the distortion of (linear) BPAM. This effect is also reflected in
OPTAcoop, since it has the same slope as BPAM when SNR gets high enough.

Figure 9. Performance of cooperative S-K mappings (simulated) and Block Pulse Amplitude
Modulation (BPAM) for M = 2 sources when (a) ρx = 0.99; (b) ρx = 0.999.
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4.5.2. Power and Distortion Calculation for Distributed Encoders

Diagonalizing transforms cannot be applied in this case. Some derivations and expressions are,
therefore, long and complicated, and some have to be found numerically. For brevity, we avoid stating
some of the power and distortion expressions and just mention how they can be found numerically.

Reconstruction of common information: The output power is found by inserting the Equation (21)
with a = 1 and M = 2 in Equation (38) and doing the integration numerically. Since decoding of z1
and z2 are not considered, we get the distortion term, ε̄2l = σ2

x(1− ρx)/2. Weak noise distortion is found
by inserting M = 2 and the derivatives of Equation (21) evaluated at y in Equation (39), then doing the
integration numerically.

Anomalous distortion can be calculated in a similar way as in Equation (48), but we have to take into
account that z1 and z2 cannot be removed prior to transmission. From Figure 7b, one can observe that
Pth depends on y (where we are on the blue spiral) and must be moved inside the integral in (48) (we now
integrate over y, not ya). Pth(y) is found by changing κ in Equation (54) to κ(y) = σ2

x(1− ρx)(g11(y) +



Entropy 2013, 15 2152

g22(y)) + 2σ2
n. The gii’s are found from Equation (40), i.e., the partial derivatives of Equation (21) w.r.t.,

x1 and x2, evaluated at y.

Reconstruction of individual contributions: Two examples are considered: (1) spiral mapping and
(2) sawtooth mapping.

(1) Spiral mapping: We may use the same power and anomalous distortion as we did when
considering common information, since the encoders are the same [given by Equation (21)].

To reduce errors from ambiguities, we choose to decode only common information (values along the
blue curve in Figure 7b) whenever ambiguities are present. The distortion is then given by Equation (42)
with M = 2. One can numerically determine where the green and red spirals cross the blue spiral in
Figure 7b in order to find the intervals, [yi, yi+1].

The calculation of weak noise distortion is complicated by two reasons: First, gii(xi) = f ′(xi)
2 for the

functions in Equation (21) contains zeros, implying that 1/gii(xi) becomes infinite for certain values of
xi. Second, since weak noise distortion is valid only in areas where no ambiguities occur, the domain of
integration consists of several subdomains. To get around these problems, one can make the substitution,
x1 = (yp − zp)/

√
2 and x2 = (yp + zp)/

√
2, where yp ∼ N (0, σ2

x(1 + ρx)) and zp ∼ N (0, σ2
x(1− ρx))

are independent. One may then formulate an integral, like in Equation (33) (with M = 2), where gii(x)
is exchanged with gii(yp, zp) and px(x) is exchanged with p(yp, zp) = p(yp)p(zp). One can now divide
the integral over yp into several intervals corresponding to the complement of the intervals, [yi, yi+1],
in Equation (42), and further integrate zp over a much smaller range (which is valid, since large values
of zp are unlikely when ρx is close to one). In order to ensure that the gii’s stays finite when running
the numerical optimization algorithm, it is convenient to further add a negligibly small constant to each
of them.

(2) Sawtooth mapping: The functions in Equation (27) create a Cartesian product, f , with period, α1∆,
and “height”, α2∆. Figure 10 [displaying f(y)] helps in explaining some of the calculations that follow.

Figure 10. Geometrical illustration of Sawtooth mapping used for calculation of distortion.
Only f(y), i.e., the transformation of common information, is displayed here.
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The decoder applied is somewhat different than for the spirals, and similar to the decoder in [8]. First,
the decoder determines which domain, Di, i ∈ Z, that (r1, r2) belongs to. That is, it decides between
which two decision borders (green dashed lines in Figure 10) the received signal is located. The first



Entropy 2013, 15 2153

source is decoded as x̂1 = r1/α1. If (r1, r2) ∈ Di, the decoded value of the second source should be
located in the interval, [(2i−1)∆/2, (2(i+1)−1)∆/2]. The second source is therefore reconstructed as:

x̂2 = arg min
x2∈[(2i−1)∆/2,(2(i+1)−1)∆/2]

(
f2(x2)− r2)

2 (56)

An equivalent way of determining which interval, x2, is in is to choose x2, so that |x̂1 − x2| ≤ ∆/2 [8].
The power for Encoder 1 is P1 = E{f2

1 (x1)} = σ2
xα

2
1. To find P2, we need f 2

2 , which consists of
parabolas limited to the intervals, [(2n− 1)∆/2, ((2n+1)− 1)∆/2], centered at n∆, n ∈ Z. Therefore:

P2 = E{f 2
2 (x2)} =

∞∑
n=−∞

∫ (2(n+1)−1)∆/2

(2n−1)∆/2

(x2 − n∆)2px(x2)dx2 (57)

Note that P1 and P2 may be unequal. To assure equal power, one can use time sharing between the two
encoders. That is, encoder i uses f1 half of the time and f2 the other half.

Weak noise distortion is found from Equation (39), where g11 = f ′
1(x1)

2 = α2
1. Since f2 is a piecewise

continuous function, its derivative must be taken in the sense of distributions (distribution means a special
set of linear and continuous functionals here, not a probability distribution; the reader may consult,
e.g., [47] for technical details concerning such functional derivatives). That is:

f ′
2(x2) = α2

(
1−∆

∞∑
k=−∞

δ∆(n+1/2)

)
(58)

where δi is the Dirac delta functional centered at i. Since weak noise distortion is defined intrinsically,
it is not affected by bending or cutting of the surface, f , into several pieces (such operations may affect
anomalous distortion). Only stretching changes weak noise distortion. One may therefore look away
from the sum of δ’s when calculating weak noise distortion, and so:

ε̄2wn =
σ2
n

2

(
1

α2
1

+
1

α2
2

)
(59)

Since x1 is encoded by a linear function, it does not experience anomalous errors. x2, on the other
hand, experience anomalies when the noise becomes so large that the decision borders in Figure 10 are
crossed. The pdf needed to calculate the probability for anomalous errors is found by setting N = 1

in Equation (37), where σ2
zT

is found by setting M = 2, g11 = α2
1 and g22 = α2

2 in Equation (35) (the
sum, δ’s in Equation (58), has been removed, since they do not contribute to the magnification of z1
and z2. Anomalies happen whenever ∥ρan∥ > d1/2. To determine d1, consider Figure 10. First, note
that l1 = ∆

√
α2
1 + α2

2/2. Further, observe that d1 = α1∆cosψ. Since ψ=π − π/2 − θ=π/2 − θ and
cos θ = α1∆/(2l1) = α1/

√
α2
1 + α2

2, one can show that cosψ =
√
α2
2/(α

2
1 + α2

2). The probability for
anomalous errors becomes:

Pth(y) =

∫ ∞

d1/2

pϱan(ϱan)dϱan =
1

2

(
1− erf

(
α1∆

√
α2
2/α

2
1 + α2

2

2
√
σ2
x(1− ρx)(α2

1 + α2
2) + 2σ2

n

))
(60)
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Whenever the green dashed border in Figure 10 is crossed, the detection, x̂2, jumps across one period of
the sawtooth function, which leads to an error of magnitude, ∆, in the reconstruction. The anomalous
distortion is therefore quantified by:

ε̄2an = 2Pth∆
2. (61)

Even when σ2
n = 0, d1 > 2b

√
λ2 = 2bσx

√
(1− ρx) (with b ≈ 4), in order to avoid anomalous errors.

This places a lower bound on ∆ in any case.

Optimization and simulation: A constrained optimization problem must be solved in order to
determine the optimal free parameters, α, ∆, a and b, for the spiral, and α1, α2, ∆, for the sawtooth
mapping. All parameters are functions of the channel SNR. With Pmax, the maximum allowed power
per encoder output, and Dt, the sum of all distortion contributions for the relevant case, an optimization
problem similar to Equation (55) is solved numerically. All parameters should also be constrained to be
lager than zero.

The S-K mappings are simulated using the optimized parameters. Figure 11 shows the performance
for distributed S-K mappings compared to OPTAcoop, OPTAdist and the distributed linear mapping for
ρx = 0.99 and ρx = 0.999.

Figure 11. Performance of distributed S-K mappings (simulated) and distributed linear
scheme for M = 2 sources when (a) ρx = 0.99; (b) ρx = 0.999.
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Robustness plots are given for S-K mappings for several sets of optimal parameters. The cyan curves
show the performance of the Archimedes spiral when only common information is reconstructed. The
performance levels off and becomes inferior to the distributed linear scheme at about 18 dB when ρx =

0.99 and 28 dB when ρx = 0.999. The reason why the Archimedes spiral levels off is that z1 and z2
act as noise. Also, when individual observations are reconstructed, the spiral levels off (magenta curve
in Figure 11b), although at a slightly higher SNR. It becomes inferior to the linear scheme at about 32
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dB. The reason for saturation is the measures taken to avoid ambiguities, resulting from the distortion
term in Equation (42). The spiral is quite robust to variations in SNR. The sawtooth mapping, shown by
the green line, does not level off at high SNR, since it avoids ambiguities. It also maintains a constant
gap to OPTA, as SNR increases without changing the parameters, α1, α2, ∆. The reason is the same as
for the generalized spiral in Section 4.5.1. . The Archimedes spiral is somewhat closer to OPTA (at its
optimal points) than the sawtooth mapping before it levels off (especially when ρx = 0.999). A probable
reason is that the spiral utilizes the available space more properly (at least with Gaussian statistics), most
significantly so when ρx = 0.999. The nonlinear solutions clearly outperform the linear ones for most
SNR when ρx is close to one.

4.5.3. Comparison Between Collaborative Case, Distributed Case and DQ

Figure 12 shows a comparison between the optimal performance of all the suggested cooperative and
distributed S-K mappings and 5-bit DQ from [9] optimized at 18 dB SNR.

Figure 12. Comparison of cooperative S-K mappings, distributed S-K mappings and 5-bit
DQ for M = 2 when ρx = 0.999. DQ is optimized for 18 dB SNR.
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There is a clear gain from collaboration for SNR above 8 dB. The reason why collaboration helps
when only common information is decoded is that z1 and z2 can be removed prior to transmission,
and thereby reduce the probability for anomalous errors. The fact that z1 and z2 cannot be removed
with distributed encoders may be one possible explanation why the OPTA bounds for the distributed
and cooperative case differ. For higher SNR, when both common information, as well as individual
observations are decoded, there is still a clear gain from collaborative encoders. A probable reason is that
the generalized spiral utilizes the available space better than the sawtooth mapping as ρx approaches one
(at least with Gaussian statistics). The question is if there exists better zero delay distributed mappings
that can close the gap to the cooperative case at high SNR (the OPTA bounds are at least the same at a
high SNR). DQ is around 2 dB inferior to the distributed S-K mappings at its optimal point (17 dB). With
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a higher number of bits in the DQ encoders, one would expect the DQ to become at least as good as the
distributed S-K mapping. Note that the difference between these three cases is smaller when ρx = 0.99.

Note that when ρx gets smaller than about = 0.95, the DQ optimization algorithm in [9] only generates
quantized linear mappings. This corresponds to what happens with S-K mappings: When ρx drops below
a certain value, the source space will be too “wide” to be twisted into the channel space by a nonlinear
S-K mapping. Either the channel power constraint will be violated or a myriad of anomalous errors
would be introduced.

4.6. Extensions

A particular case that needs further investigation is the distributed case when correlation is around
0 < ρx < 0.95. The only known zero delay JSCC applicable (to our knowledge) for this case is
distributed linear schemes, which provide no gain compared to the non-correlated case when SNR is
large (see Figure 2). To avoid this problem, one can look for nonlinear alternatives that may provide
better performance than linear mappings at zero delay. Whether such alternatives can be found or not
must be determined through further research. Alternatively, one will have to increase the code length
beyond one.

The DQ algorithm discussed in Section 4.5.3. is built on uniform quantization, and it is likely that
additional gains can be achieved when 0 < ρx < 0.95 by applying nonuniform quantization. The
continuous analogy of this would be an exchange of the linear encoder in Equation (9), with a nonlinear
one-to-one “stretching” function, φ(xm), that changes the coordinate grids along each dimension in
a nonlinear way. This would result in gii’s better tailored to a Gaussian distribution. Then, weak
noise distortion could be made somewhat smaller without bending or twisting the source space (unlike
the nonlinear mappings suggested in this paper). Anomalous errors are then avoided, and the power
constraint is satisfied. The optimal g11 was determined for a 1:N mapping in [48] (pp. 294–297) using
variational calculus. An extension of this result to include several gii could be applied for our purpose.
Instead of letting all encoders be nonlinear, one may possibly achieve a gain by letting φ(xm) be linear
for some of the encoders and nonlinear for the others, then apply optimal power allocation among all the
encoders. Further research is needed to come to a conclusion, however.

How could one go about extending the nonlinear schemes in this paper beyond zero delay? Piecewise
continuous mappings, like the Sawtooth mapping, have already been extended [10] using known lattice
structures. At the time of writing, we know of no such tools for fully continuous mappings. Fully
continuous mappings can be extended conceptually, however, as we illustrated for i.i.d. sources in [38].
Take the generalized spiral in Equation (25) as an example. The spiral, h, could be generalized to a
two-dimensional “spiral like” surface that map two and two samples of ya at each time instant. One
could further map two and two samples of za along the two normal vectors of h. The difficult part is to
determine the equation for the surface h, since when h is found, its normal vectors are determined by
Equation (63). It might be possible to find such extensions of h when the codelength is small, but this
will be notoriously difficult when the codelength is large. For practical reasons, it is therefore likely that
fully continuous nonlinear mappings are applicable at low delay only.
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5. Summary, Conclusions and Future Work

In this paper, delay-free joint source channel coding (JSCC) for communication of multiple
inter-correlated memoryless Gaussian sources over orthogonal additive white Gaussian noise channels
was investigated. Both ideally collaborating and distributed encoders were studied for the case where all
sources should be reconstructed at the decoder.

First, optimal linear JSCC were investigated. With collaborative encoders, one may decorrelate the
sources then allocate power optimally among the encoders. This provides an increase in received fidelity
with increasing correlation. For the distributed case, however, it is impossible to decorrelate the sources,
implying that no gain in fidelity can be achieved with distributed linear schemes when correlation
increases if the channel SNR is high. Nonlinear JSCC, on the other hand, can provide significant gains
in fidelity over all linear schemes when correlation is close to one for most SNR. Contrary to linear
distributed schemes, carefully chosen nonlinear distributed schemes can provide an increasing gain in
fidelity from increasing correlation also at high SNR. Since collaborative encoders offer more degrees
of freedom in the choice of encoders, they can provide benefits over distributed encoders, except in the
cases when correlation is zero. The zero correlation case is trivial and achieves the performance upper
bounds (OPTA) with linear schemes. When the correlation is nonzero, all suggested schemes leave
a gap to the performance upper bound, however. All schemes studied are robust towards changes in
channel SNR.

Possible extensions of the work in this paper include increasing code length, unequal correlations
between each encoder and unequal attenuation on each sub-channel. Nonlinear mapping that may
provide better performance at intermediate correlation should also be investigated, and the gap to the
performance upper bound should be quantified. Practical issues, like imperfect synchronization and
timing, could also be investigated.
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Appendix

A. Normal Vector for Archimedes Spiral

The unit normal vector for a curve, f(y), can be determined from the tangent vector, v(y) = f ′(y).
Let T = v(y)/∥v(y)∥ and:

s =

∫ b

a

√(
f ′
1(y)

)2
+
(
f ′
2(y)

)2dy (62)

be the curve length of f . The unit normal vector is then given by [49] (chapter 12):

N =
dT
ds

1

K
(63)
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where K = ∥dT/ds∥ is the curvature of f . By calculating Equation (63) for the functions in
Equation (21) with a = 1, then Equation (26) results.

B. Metric Tensor

Consider an M -dimensional parametric hyper-surface, f(x). The metric tensor (also called a
Riemannian Metric) for a smooth embedding of f in RN (M ≤ N ) can be described by the symmetric
and positive definite matrix [50] (chapter 9):

G = JTJ =


g11 g12 · · · g1M

g21 g22 · · · g2M
...

... . . . ...
gM1 gM2 · · · gMM

 (64)

where J is the Jacobian of f , given by:

J =


∂f1
∂x1

∂f2
∂x1

· · · ∂fN
∂x1

∂f1
∂x2

∂f2
∂x2

· · · ∂fN
∂x2

...
... . . . ...

∂f1
∂xM

∂f2
∂xM

· · · ∂fN
∂xM



T

(65)

gii can be interpreted as the squared norm of the tangent vector along f(xi), where xi can be seen as the
i’th parameter in the parametrization, f . All cross terms, gij , are the inner product of tangent vectors
along f(xi) and f(xj). See, e.g., [50] (chapter 9) for further details.

Note that the metric tensor is an intrinsic feature of a manifold/hypersurface. That is, it describes
local properties of a manifold/hypersurface without any dependence on an external coordinate system.
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