


Rule Binary )\ N Class Gen. Evo. Best fitness
Rulejso wrrmm 0.5 0.5 ClassII 100 ] 0.5445
Rulejss = immm  0.625 0.375 ClassII 67 7] 1.0329
Ruleyy wmmoo 025 0.25 ClassII 100 ] 0.5420
Ruleys wrmrm 0.375 0375 ClassII 100 ] 0.5246
Rule;y4 wwrw 0.375 0375 ClassIll 100 ] 0.5580
Rule;y7 wrmrm 0.5 0.5 Class IV 100 ] 0.5315
Rule;ys wmwmo 0375 0375 ClassI 100 ] 0.5555
Rulejyg mrmmm 0.5 0.5 Class Il 100 ] 0.5475
Rulei;sg mrmmm 0.5 0.5 Class III 100 [ 0.5457
Rule;5; = wmm  0.625 0375 ClassIll 21 ] 1.0389
Ruleys, wrm1 0.375 0375 ClassII 100 ] 0.5298
Rule;53 wmrmmm 0.5 0.5 Class III 100 ] 0.5502
Ruleisy wrmm 0.5 0.5 Class II 100 ] 0.5474
Ruleis; wrmmm  0.625 0.375 ClassI 100 ] 0.5259
Rule;sg wimmo 0.5 0.5 Class II 49 0] 1.0040
Rule;s7 = mww  0.625 0.375 ClassIl 27 0] 1.0033
Ruleiss wrmmm:  0.625 0.375 ClassII 100 ] 0.5523
Rule;59 = mmem  0.75 0.25 Class IT 5 [] 1.0198
Rule;gyp mmro 025 0.25 Class I 100 ] 0.4979
Rule;g; wmrm 0.375 0375 ClassIII 100 ] 0.4980
Rule;go  wwrrm 0.375 0375 ClassI 100 | 0.4954
Rule;g3 wwim 0.5 0.5 ClassII 100 ] 0.4961
Rule;gy wmrmo  0.375 0375 ClassI 100 ] 0.4976
Rule;gs mmrmm 0.5 0.5 Class IIT 100 ] 0.5003
Rule;gg mmrm1 0.5 0.5 Class I 100 ] 0.4979
Rule;g; wwrmm 0.625 0.375 ClassI 100 ] 0.5014
Rule;gg  www 0.375 0375 ClassI 100 ] 0.4984
Rule;gg mmmm 0.5 0.5 ClassIV 100 ] 0.4964
Rulej7g wmmm 0.5 0.5 Class II 100 ] 0.4948
Rule;7; wmwm  0.625 0375 ClassI 100 ] 0.5014
Rule;7;o mmmo 0.5 0.5 Class I 100 ] 0.4984
Rule;73 wwmw  0.625 0375 ClassI 100 ] 0.4967
Ruley74 wwmmo  0.625 0375 ClassII 100 ] 0.4975
Rulei7; wmmms (075 0.25 ClassII 100 ] 0.5126
Rule;7¢ wmo 0.375 0375 ClassI 100 ] 0.4981
Rule;7;7 mmmom 0.5 0.5 ClassII 100 ] 0.5000
Rule;7g wmm 0.5 0.5 Class IT 100 ] 0.4996
Rule;79 wmrmm  0.625 0375 ClassII 100 ] 0.5038
Rule;gp wmmmo 0.5 0.5 ClassII 100 ] 0.4991
Rule;g; wmmwmm  0.625 0375 ClassI 100 ] 0.4994
Rule;go  wmwms  0.625 0.375 ClassIll 100 ] 0.4986
Rule;gg wmwmm (.75 025 Class III 100 [ 0.5185
Ruleigy wmm 0.5 0.5 Class II 100 ] 0.4980
Rule1g; wmm—= (0.625 0375 ClassIl 100 ] 0.4995
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Rule Binary A\ N Class Gen. Evo. Best fitness
Rule1gg === 0.625 0.375 Class1I 100 ] 0.4991
Rule;g; wmmm (.75 0.25 Class II 100 ] 0.4998
Ruleigg mwmmm—  0.625 0.375 ClassII 100 ] 0.5021
Ruleigg wmmmm (.75 0.25 Class 11 100 ] 0.5017
Rulejgg = (.75 0.25 Class II 35 0] 1.0042
Rulejg; wmmesm (0875 0.125 ClassII 45 0] 1.0214
Rulejgy; wm= 0.25 0.25 Class I 100 ] 0.4982
Ruleg3 m—m  0.375 0.375 ClassIV 100 ] 0.4982
Ruleigy wmrms 0375 0375 ClassI 100 ] 0.4957
Rulejgs wwrrrmm (.5 0.5 ClassIIT 100 ] 0.4991
Rulejgg == 0.375 0.375 Class I 100 ] 0.4984
Ruleig; mmom= (.5 0.5 Class II 100 ] 0.5038
Rulejgs mmrrms 0.5 0.5 Class II 100 ] 0.4986
Rulejgg wmmrrmm 0.625 0375 ClassII 100 ] 0.5046
Ruleygg mrmr 0375 0375 Class1I 100 ] 0.4962
Ruleygy wmwm 0.5 0.5 Class 1T 100 ] 0.4971
Ruleygy mmrmms (.5 0.5 Class IT 100 ] 0.4975
Ruleggs mrmmm  0.625 0375 ClassII 100 ] 0.4970
Ruleygy mmrm 0.5 0.5 Class II 100 ] 0.4969
Ruleggs mmrmmm  0.625 0375 ClassII 100 ] 0.5051
Ruleggg = mm 0.625 0.375 Class II 51 ] 1.0035
Ruleyg; o wem  0.75 0.25 Class IT 21 ] 1.0123
Rulesgg mmmr——  0.375 0.375 ClassII 100 ] 0.4978
Ruleygg mmmirm 0.5 0.5 Class II 100 ] 0.5000
Ruley;g mmmrms 0.5 0.5 Class II 100 ] 0.4966
Rulep;; wwwrm  (0.625 0375 ClassII 100 ] 0.5000
Ruley;s mwwwr 0.5 0.5 Class IT 100 ] 0.4994
Ruley;3 mmwmwmm  0.625 0375 Class1I 100 ] 0.5068
Ruleg;s mmwm  0.625 0375 ClassII 100 ] 0.5004
Ruley;s mmmmm (.75 0.25 Class II 100 ] 0.5187
Ruley;g === 0.5 0.5 Class II 100 ] 0.4975
Ruley;; wmwwmm 0.625 0375 ClassIl 100 ] 0.4986
Ruley;g =mwm  0.625 0.375 Class 1T 100 ] 0.4936
Ruleyig wrmms (.75 0.25 Class II 100 ] 0.5009
Rulegyy mwmm 0.625 0375 ClassII 100 ] 0.4970
Rulesy; mrmmm (.75 0.25 Class II 100 ] 0.5100
Ruleggy mwwmm (.75 0.25 Class IT 100 ] 0.5002
Ruleyos mwmmem (0875 0.125 ClassII 51 ] 1.0128
Rulegyy w0 0375 0375 ClassI 100 ] 0.4979
Ruleygs mmim (.5 0.5 Class IV 100 ] 0.4973
Ruleygyg mmrms 0.5 0.5 Class II 100 ] 0.4969
Rulegy; wmm  (0.625 0.375 ClassII 100 ] 0.5004
Rulesog wmw 0.5 0.5 Class II 100 ] 0.4983
Rulessg =mmrmm  0.625 0.375 Class1I 100 ] 0.4990
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Rule Binary )\ N Class Gen. Evo. Best fitness
Rulegsy wmrms  0.625 0375 ClassI 100 ] 0.4961
Rulegg; mmrmm (0.75  0.25 ClassII 100 ] 0.4981
Rulegsy, mmwmro 0.5 0.5 ClassII 100 ] 0.4966
Ruleggs mmwim  0.625 0375 ClassIl 100 ] 0.4959
Ruleggy wmwww 0.625 0375 ClassI 100 ] 0.4932
Ruleggs wmwmm 075 0.25 Class I 100 ] 0.4997
Ruleggg mmmms  0.625 0375 ClassI 100 ] 0.4995
Rulesz; mmmwm 075 0.25 ClassII 100 ] 0.5007
Ruleszgy mmmm: 075  0.25 Class I 100 ] 0.4988
Ruleggg = mmm  (0.875 0.125 ClassI 33 0] 1.0123
Rulegyy wmwrr1 0.5 0.5 ClassI 100 ] 0.4990
Rulegy; wwmr=  0.625 0375 ClassI 100 ] 0.4971
Rulegys mmmrwo  (0.625 0375 ClassI 100 ] 0.4965
Rulesys mwmmmm 075 0.25 ClassII 100 ] 0.5082
Rulegyy wmww—  0.625 0375 ClassI 100 ] 0.4977
Rulegys; wmwww (0.75 025 ClassII 100 — 0.5087
Rulegyg wmmm 075  0.25 ClassII 100 ] 0.4992
Rulegy; wwmwmm 0.875 0.125 Class1I 5 ] 1.0080
Ruleoys wmmm=  0.625 0.375 ClassI 100 ] 0.4956
Ruleyyg mmmrm 075  0.25 Class I 100 ] 0.5040
Rulegsy wwmww (0.75 0.25 Class I 100 ] 0.4988
Rulegs; wmswwm  (0.875 0.125 ClassI 100 —_ 0.5083
Rulegsy wmmsm 075  0.25 Class I 100 ] 0.4959
Rulegss wmssmw  (0.875 0.125 ClassI 100 —] 0.5114
Ruleos, —wwwsss  0.875 0.125 Class1 100 [ 0.4990
Rulegs; s | 0 Class I 1 ] 1.0192
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Chapter

Analysis

The experiments show that evolved computation in-materio is indeed possible in single-
walled carbon nanotube and polymer composite meshes, as a multitude of different linear
and non-linear binary logic gates and Elementary Cellular Automata transition tables have
been successfully evolved in the material. Using these results as a basis, an attempt can be
made to reason about the computational properties of the underlying material itself.

4.1 Complexity Ceiling of the Material

From a theoretical standpoint, computation is a purely abstract mathematical concept. In
abstract, a computation can be described as a series of transitions between a number of
states caused by some input.

Defining a concrete physical device as a piece of physical material that can be in any
one of a finite number of states at any given time, and which can transition from one state
to another as a reaction to external excitations, creating a physical implementation of a
device that can perform computation in the abstract then becomes an exercise in defining
a mapping from the physical states of the material to the states in the abstract computation
such that the state transitions in the physical domain result in meaningful state transitions
in the abstract domain. Multiple physical states can map to the same abstract state, but
a physical state may not map to multiple abstract states. A direct consequence of this is
that since there are only a finite number of states a physical device can be in, assuming
discrete physics, there is a limit to which computations may be implemented in a given
physical device. A physical device capable of being in NV different states can implement a
computation with at most IV states. Any computation with more than /N states cannot be
implemented in that physical device, as they will by the pigeonhole principle! violate the
limitation that a physical state may not map to multiple abstract states.

IThe pigeonhole principle states that if n items are put into m containers, and n > m, then at least one
container must contain more than one item.
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Practical implementations of abstract computations in the physical domain today use
a large number of physical states for each logical state.

As an example, consider the MOSFET transistor NAND gate, a physical computational
device. It is a physical implementation of the logical NAND gate, an abstract computa-
tional device. A MOSFET transistor can be in an enormous amount of different physical
states as the electrical charges in different parts of the device vary. Yet, the abstract com-
putation device it implements only has two states, which is also the output of the device:
logical 0 and logical 1.

The larger the disparity between the number of physical states used and the number
of abstract states used in a mapping, the less efficient the computer implementation is in
terms of utilizing the computational potential of the physical substrate. The relationship
between the number of physical state and the number abstract states

|84

T @1

can be defined as in (4.1), where Sy is the set of all possible states in the abstract com-
putation device and Sp is the set of all possible states in the physical computation device.
Then, a physical implementation of an abstract computation device with a higher 7 is
more material-efficient than one with a lower 7, with 7 = 1 being the absolute theoretical
maximum for this measure. The usefulness of 7 in measuring implementation efficiency
presupposes a discrete physical environment, as the converse implies that all materials can
be in an infinite number of different states. Currently, it is not known whether or not the
physical world is discrete.

Armed with the assumption that a physical material sample has a ceiling for the com-
putational complexity of devices that can be implemented in them (i.e. has a maximum
number of states it can be in and transition between), together with the intuition that it is
easier to find a physical-to-abstract state mapping with a larger 7 than one with a smaller
n, the results of the Elementary Cellular Automata evolution experiments explained in
Chapter 3 can be used as a proxy measurement of the computational complexity ceiling of
the material-under-study in this thesis.

4.2 Evolvability and the \-Parameter

Recall that the lambda parameter is one of many different proposed schemes of classifica-
tion of cellular automata. Cellular automata with a A-parameter close to 0 tend toward a
frozen, non-changing structure over time, while cellular automata with a A\-parameter close
to 1 tend toward completely chaotic behavior; “complex” behavior lies in-between [25].
Assuming that different materials have different inherent potentials for computation com-
plexity with regards to evolution in-materio, the A-parameter of different evolved cellular
automata in a material can be used as a proxy for measuring the complexity ceiling of that
material. Since this metric is a proxy metric, it is limited in scope to the specific methods
used for evolution and interpretation of computation.

Care must be taken when using A-parameter, as it is originally only well-defined for
a subset of all cellular automata. A cellular automaton only has a A-parameter if the
non-quiescent state transitions, i.e. state transitions that are not transitions to the quiescent
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state, are randomly and uniformly distributed over the remaining non-quiescent states [25].
For binary cellular automata there can only be one non-quiescent state, which means that
all binary cellular automata strictly speaking have a well-defined A since non-quiescent
state transitions are randomly and uniformly distributed over the only non-quiescent state.
However, the lack of choice in non-quiescent states does alter the qualitative behaviors
of binary cellular automata at high A-parameters when compared to the original find-
ings in [25]. High A-parameter binary cellular automata will tend to frozen structures
rather than chaotic behavior. As such, it can be useful to define a binary variant of the \-
parameter, the \’-parameter, which is like the A-parameter except that the quiescent state
is always the most transitioned-to state. This means that the \’-parameter is effectively a
mirroring of the A-parameter around A = 0.5 as the maximum value.

Looking at the results from the evolution experiments from Chapter 3, and at the All-
ECA experiment in particular, some conclusions can be made with regards to the com-
plexity of the material. It seems that Elementary Cellular Automata with extreme -
parameters, i.e. closer to A\ = 0 and A\ = 1, or closer to \' = 0, evolve more easily
than Elementary Cellular Automata that have a A-parameter somewhere in-between. The
Elementary Cellular Automata that evolve the least easily in the experimental setup are the
ones with the largest \’-parameters. An overview of evolution difficulty measured as the
average number of generations used for evolutionary runs grouped by \'-parameter can be
seen in Figure 4.2. A different overview of evolution difficulty measured as the average
fitness of the best individual of the last generation of each evolutionary run grouped by
M\ -parameter can be seen in Figure 4.1. Both measures tell the same story: Elementary
Cellular Automata with extreme \’'-parameters evolve more easily than Elementary Cellu-
lar Automata with \’-parameters close to 0.5. These findings are in-line with the intuition
that more computationally complex cellular automata should take longer to evolve, if taken
together with the idea that the most computationally complex cellular automata appear at
the Edge-of-Chaos [25], i.e. at the phase transition between ordered and chaotic behavior.
Looking at the location of the Edge of Chaos in Figure 2.8, these results support the notion
that for Elementary Cellular Automata the Edge of Chaos lies around A-parameter values
of ~0.5.

4.3 Evolvability and Wolfram Classification

Recall that a different classification scheme for cellular automata is the Wolfram Classifi-
cation Scheme. Additional insights to the questions around computational complexity in
the material might be gleaned from looking at the evolvability of the different Elementary
Cellular Automata grouped by Wolfram Classes.

In the Wolfram Classification, the classes are ordered by complexity, so if the hypoth-
esis that less complex Elementary Cellular Automata evolve in-materio more easily than
more complex Elementary Cellular Automata, then it is reasonable to expect that evolving
a Class I automaton should on average require fewer generations than a Class II automa-
tion, a Class II automaton should on average require fewer generations than a Class III
automaton, and finally a Class III automaton should require on average fewer generations
to evolve than a Class IV automation.

Figure 4.3 shows the distributions of generations simulated in order to evolve an ac-
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Figure 4.3: Distribution of evolution length as measured by generation count grouped by Wolfram
Class. Circles show the number of generations required to evolve a rule. The boxes are Tukey-
style boxplots [32], and show median and quartile values as vertical lines and average values as
diamonds, with whiskers showing the smallest value larger than (the lower quartile - 1.5 IQR) and
the largest value smaller than (the upper quartile + 1.5 IQR), IQR being the difference between the
upper quartile and the lower quartile. Class IV is not present as there were no successful Class IV
evolution runs in the All-ECA experiment.

ceptable Elementary Cellular Automata for each of the four classes. The distributions do
not include non-successfully evolved Elementary Cellular Automata.

Figure 4.4 shows the class distribution of the 42 successfully evolved Elementary
Cellular Automata compared to the class distribution of all 256 Elementary Cellular Au-
tomata.

Of the 256 Elementary Cellular Automata, 25 (~9.8%) are Class I, 192 (~75.8% are
Class 1), 27 (~10.5%) are Class III, and 12 (~4.7%) are Class IV. If the opposite of what
the hypothesis predicts were true, i.e. that Elementary Cellular Automata are on average
equally likely to be successfully evolved in-materio regardless of Wolfram Class, a similar
distribution of classes should be present in the set of successfully evolved Elementary
Cellular Automata in the AIl-ECA experiment. Of the successfully evolved Elementary
Cellular Automata in the All-ECA experiment, however, ~9.5% are Class I, ~85.7% are
Class II, ~4.8% are Class IIT and 0% are Class IV. This is a very different class distribution
than what should be expected if the any Elementary Cellular Automata were equally likely
to evolve successfully. Hence, the results from the experiment indicate that there might be
a correlation between cellular automata complexity and evolvability in-materio.

4.4 Evolvability and Set Bits in an Elementary Cellular
Automaton Rule

As a contrast to looking at correlations between cellular automata complexity and evolv-
ability in-materio, other potential correlators should be looked at as well. Perhaps the
evolvability of an Elementary Cellular Automata is not a function of its complexity, but
rather simply the numbers of set bits in the Elementary Cellular Automaton Rule number.
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It is easy to imagine a simple hypothetical material for which this is the case — any material
which favors set bits rather than unset bits as output would qualify. An extreme example
is a hypothetical material which always outputs set bits regardless of input. Looking at
the distribution of the amount of set bits in the 256 Elementary Cellular Automata com-
pared to distribution of the amount of set bits in the 42 successfully evolved Elementary
Cellular Automata, solutions with 6-8 bits set are over-represented, and solutions with 2-5
bits set are under-represented. Solutions with O or 1 set bits are over-represented again. A
comparison of the two distributions can be seen in Figure 4.5.

Counting the number of set bits in any binary cellular automaton, and certainly there-
fore in the Elementary Cellular Automata, is analogous to calculating the A-parameter of
arule.

4.5 Sensitivity Analysis

Only a single evolutionary run has been executed for each of the 256 Elementary Cellular
Automata in the experiment detailed in Section 3.4. When taken individually, a single run
for each of the 256 different rules is not enough to be able to draw meaningful conclusions
about a single Elementary Cellular Automaton in-materio, statistically speaking. As an
example, consider the evolution of Elementary Cellular Automata Rules, in the Single El-
ementary Cellular Automaton experiment (Section 3.3) and in the All Elementary Cellular
Automata experiment (Section 3.4). The All-ECA experiment was not able to evolve a
suitable Rulesy, yet a suitable solution for that same rule was clearly found in the Single-
ECA experiment. Care must therefore be taken not to attribute more importance to the
results of this experiment than should be afforded when analyzed from a statistical point-
of-view. Looking at the experiment as a whole, then, treating the different runs as repeat
experiments over different classifications, is the better approach to extracting a meaningful
interpretation of this experiment.

For the purpose of reducing the worst-case evolution time for a single evolutionary
run, each run was capped at 100 generations. That is, if a solution was not found after 100
generations, the run would be considered unsuccessful. This generation cap has probably
pruned away a couple would-be-successful evolutions had the generation cap been higher,
e.g. capped at 1000 generations. Although more Elementary Cellular Automata were
successfully evolved after few generations rather than many, as illustrated in Figure 4.3, it
seems reasonable to assume that more generations per evolutionary run would ultimately
yield more successful evolutions.

Again for the purpose of reducing the evolution time for a single evolutionary run,
the fitness evaluation was changed to a 10 ms-based computation rather than a 100 ms-
based computation. This change could also impact evolvability of a rule in the All-ECA
experiment when compared to the Single-ECA experiment. Ultimately, when considering
the maximum frequency (50 kHz) of oscillation on the input electrodes, the frequency
of sampling on the output electrode (500 kHz), the relative order of magnitude between
the two, a model of the material that assumes an electrical stabilization on the order of
microseconds or less, and considering the fact that the 100 ms value was chosen rather
arbitrarily in the Single-ECA experiment to begin with, it seems at least intuitively unlikely
that a change of execution time from 100 ms to 10 ms should greatly impact evolvability
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of a fit solution. Still, intuition aside, the impact of this change remains an open question.

Further, still motivated by time constraints, the population size in the experiments
was reduced from 40 to 20 individuals in each of the adult and child pools. A change
in this direction generally increases the number of generations that must be simulated
before an acceptable solution is found, and a too small population increases the risk of
the evolutionary algorithm getting stuck at local maxima in the fitness space. Still, the
decreased population size is still well within the limits of what has been shown to work
for evolution in-materio in random single-walled carbon nanotube and polymer meshes.
In a number of experiments, desired computation is successfully evolved in-materio using
an evolutionary algorithm population size of 5 [10, 36, 37, 38], which is considerably less
than the 20+20 population size used in the latter experiments in this thesis.

Even with all these time-saving changes to the largest experiment, performing a sin-
gle fitness evaluation of a solution candidate in the material still takes on the order of
10 s to compute because of various unavoidable overheads. With the enormous number of
fitness evaluations required by these experiments, performing the experiments has taken
several months of around-the-clock in-materio computation. Increasing the number of re-
peat runs of each rule evolution and perhaps also increasing the generation cap for each
evolutionary run would improve results in terms of statistical significance, but is unfortu-
nately prohibitively time-consuming, and therefore out of scope for this thesis.

4.6 Material Sample

The same material sample was used for all the experiments. Random single-walled car-
bon nanotube (SWCNT) and polymer mesh devices, as the name suggests, are randomly
constructed. Because of this, different material samples may exhibit vastly different com-
putational behavior. There are many different variables such as nanotube concentration,
electrode layout, production methods and more that may improve or decrease the mate-
rial’s aptitude for computation substration. One of the goals for this thesis is to investigate
the viability of SWNCT as a material for Evolution-in-Materio, and while the material is
shown to support stable complex computation, there are still many facets of the material
left to investigate.

An abstract computational device evolved on one material sample cannot be used on
a different material sample directly. This limits the commercial potential of SWCNT
devices when used for evolution-in-materio, since while they can be efficiently mass-
produced [14], each individual physical device needs to have a unique configuration evolved
to be useful.

4.7 Stability of Results

The stability of the results is greater than that of previous work [23, 27], and the evolved
solutions seem stable enough to be called “stable” solutions in the context of Evolution-
in-Materio. Looking closer at the distribution of measurements in Figure 3.8, Figure 3.16
and Figure 3.15, a peculiarity becomes apparent. There is sometimes a small separate
clustered group of measurements far away from the median which severely reduce the
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stability of the otherwise very tight clustering of measurements around the median. This
seems strange, and may be caused by some complex intrinsic process within the material
itself, but it may also be caused by some experimental error in process, equipment, soft-
ware or similar. If the latter is the case, the true computational stability of the solutions
may very well be much greater than what they are measured to be in the experiments in
this thesis. Still, how stable is stable enough? Comparing to the error rate of consumer-
grade conventional computers, which, while not published anywhere, seems to be on the
order of one quintillion operations per error’, the computational devices presented in this
thesis are anything but stable.

4.8 Environmental Dependence

The experiments model the material as an ideal device that only reacts to electrical signals
on the electrodes. In reality, the computational properties and process probably vary based
on other external effects such as changes in temperature, light, and other environment
variables. No special care was taken to maintain a stable environment — the experiments
were run on a desk in a shared computer hardware laboratory in close proximity to noisy
computers, a soldering station and multiple different types of lamps and light fixtures, as
you might commonly expect to find in a computer hardware laboratory.

The relative stability of the results despite lack of a strictly controlled environment
suggest that the material is reasonably invariant to the changing environmental effects of
an indoor environment. This is also what one might expect when looking at the material
from a material sciences perspective. The demonstrated environmental invariance in the
computational substrate corroborates the attractiveness of single-walled carbon nanotube
and polymer composite meshes as a computational substrate.

4.9 Speed of Computation

Currently, performing a computation in-materio takes on the order of 10 ms to complete.
This is because the input/output encoding is specified somewhat arbitrarily to last for that
length of time. 10 ms is quite slow compared to even consumer-grade conventional com-
puters, which are easily capable of upwards of hundreds of millions of operations over
the same time period. That being said, the results presented in this thesis are a proof of
concept, and computation speeds may be improved upon in further work.

4.10 Where Does Computation Take Place?

Does the computation actually take place in-materio? When performing evolution-guided
search for computation in a material, the entire input domain and output range of the com-
putational function is known, and a signal encoding and decoding process is performed
off-material. This can make it hard to pinpoint exactly where the computation takes place.
Certainly it is possible to construct a fitness evaluator and input/output encoding that is so

2 An estimated 2 billion operations each second every day for 20 years before the silicon microchip wears out.

60



complex that it can find computation in anything — even random noise. In such a case, the
computation is in reality happening outside of the material. How can the origin of com-
putation be measured? It can be helpful to replace the material with different hypothetical
materials and imagine what would happen if the same computations were performed us-
ing the switched hypothetical materials, but still using the same input and output coding
schemes. Considering the following three hypothetical alternative materials, some insight
might be gained into the computational complexity of the SWCNT material: 1. a compu-
tationally “dead” material that always outputs the same static signal(s); 2. a material that
produces “true random noise” on its output(s) regardless of the input; and 3. a material that
linearly combines its input(s) and passes it on to its output(s). Does the computation that
allegedly happens in the real material also happen when the material is replaced with one
these hypothetical materials? For one, the real material certainly out-performs the “dead”
material — all of the implemented functions show a range that requires the output voltage
to be above or below some static non-changing threshold level depending on the input.
Since the expected output depends on the input, and the static threshold crucially does not
change based on the input, it demonstrably performs more computation than the “dead”
material.

Now, in the case of the random material, it is possible that the random output happens
to measure on the right side of the threshold level for different inputs by pure chance.
However, it will probably not do so very often, statistically speaking. The evolved devices
presented in this thesis are all reasonably stable in their output, or at least much more stable
than what one can expect from a “true” random material. This hints at an understanding
where at least some of the computation happens in the material itself.

In the case of the linearly combining material, linear computation is possible in-materio
almost by definition, but computations that are not linearly separable should not be imple-
mentable. The evolved XOR gate, and several of the Elementary Cellular Automata in
the SWCNT material, however, are not linearly separable functions. Thus, the SWCNT
material seems to exhibit computational promise beyond linearly separable functions.
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Chapter

Conclusion

This thesis has explored the idea of using Evolution-in-Materio to exploit a single-walled
carbon nanotube and polymer composite random mesh material for abstracted computa-
tion using cellular automata. The goals were to investigate the capacity for computational
complexity in the material-under-study, and to reason about the complexity ceiling for a
computational substrate for Evolution-in-Materio in a general sense. The experiments pre-
sented in this thesis show that reasonably stable linear and non-linear binary logic gates,
Sub-Elementary Cellular Automata, and Class I, II, III and IV Elementary Cellular Au-
tomata can be successfully evolved in-materio in a random single-walled carbon nanotube
and polymer mesh material, and as such demonstrate theoretical viability of the material as
a computational substrate. The degree of complexity of different abstract computational
devices is correlated with the probability of a successful evolution of a physical imple-
mentation of those abstract devices. As such, the degree of success in evolution of Ele-
mentary Cellular Automata of different Wolfram Classes and with differing A-parameters
in-materio has been used as a proxy to measure the complexity ceiling for the material-
under-study, and, given that the proxy metric is accurate, supports Langton’s notions of
complexity at the Edge-of-Chaos [25]. Further, a simple theoretical measure 7 for im-
plementation efficiency of abstract computation devices in physical materials has been
introduced.

5.1 Further Work

Evolution-in-materio is a time-consuming approach to designing computational devices.
The analysis and conclusions made in this thesis could be strengthened significantly by
increasing the number of evolutionary runs made to increase sample sizes, as discussed in
Section 4.5. In order to do this efficiently, new implementation schemes could be devised
that allow for shorter computation times in-materio for quicker fitness evaluation, which
again allows for faster Evolution-in-Materio. This also synergizes well with lifting the
efficiency of an evolved device out of the realm of proof-of-concepts and into the realm of
situationally useful computational devices.
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The current input/output encoding scheme for signals in and out of the material are not
chainable without intermediate conversion. This limits the usefulness in creating larger
composite computation devices through traditional componentized design. One possible
avenue for further work is to search for an input-output compatible chainable representa-
tion that allows for feeding output from one device as input to the next.

Energy efficiency is one of the areas in which Evolution-in-Materio could show promise.
No work has been done in this thesis to measure energy efficiency of the presented devices.
One possible avenue for further work is to measure and compare the relative energy effi-
ciency of different signal encoding schemes coupled with different abstract computational
devices implemented in the material-under-study.

In Section 4.7, a peculiarity in stability measurements is discussed. One possible av-
enue for further work is to investigate this peculiarity to determine the cause, which could
result in greater stability.

No special effort has been made to measure the environmental dependence of the ma-
terial, as discussed in Section 4.8. One possible avenue for further work is to examine
how environmental factors such as temperature, light and others affect computation in the
material.

The work in this thesis focuses on the evolution of computational devices in-materio.
However, this is just the first step in designing complete computing systems that use
evolved in-materio designs. One possible avenue for further work is to build a more
practical complete computing system leveraging Evolution-in-Materio, be it specialized
or universal in terms of computational power. One example of such a possible system
would be a hybrid conventional/materio system where a computationally powerful Ele-
mentary Cellular Automata, e.g. the computation-universal Rule 110 [11], is implemented
in-materio and used to calculate state transitions for a cellular automaton simulation where
the state of the simulation is kept track of on a traditional computer for practicality. An
illustration of a possible setup for such a simulation can be seen in Figure 5.1'.

Ultimately, Evolution-in-Materio in the long term promises new possibilities for phys-
ical computational devices with extreme properties arising from specialized exploitation
of substrates beyond what is possible with traditional design approaches such as extremely
high energy efficiency or extremely low latency in real-time systems. It is even possible
to envision computing systems where material configurations are evolved “on-the-fly” to
be used for a short period of period of time before it is discarded as the requirements of
the environment changes, by way of analogy much like a just-in-time compiler from the
world of programming language interpreters works.

Desktop computer drawing adapted with permission from sweetclipart.com.
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Materio

Conventional computer

Figure 5.1: A setup for a practical simulation of Rule 110 in a hybrid conventional/materio device.
The transitions are computed in-materio, and the state is stored on a conventional computer.
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