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Summary

Evolution-in-Materio in the context of unconventional computing is the practice of using
artificial evolution techniques to search for configurations of physical material samples
that allow for them to be used as practical computational devices. The motivation for
Evolution-in-Materio is two-fold: it is in part an exploration of new computational sub-
strate materials as alternatives to silicon, and in part an exploration of metaheuristically-
guided evolutionary search in the design space as a design process instead of traditional
top-down engineered design.

One of the biggest problems in exploiting materials for computation is finding a good
computational abstraction to carry computation on-top of the underlying physical pro-
cesses. This thesis looks at the possibility of implementing cellular automata as an ab-
straction via Evolution-in-Materio to reason about the computational capabilities of single-
walled carbon nanotube and polymer composite meshes.

In this thesis, computationally stable linear and non-linear logic gates and Elemen-
tary and Sub-Elementary Cellular Automata are successfully evolved in-materio. Not all
Elementary Cellular Automata are shown to be successfully evolvable, which reveals com-
putation complexity properties of the material-under-study.
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Sammendrag

I-materio-evolusjon er i en ukonvensjonell-beregningskontekst praksisen å bruke kunstig-
evolusjon-teknikker til å lete etter materialkonfigurasjoner av fysiske materialer som lar de
benyttes som praktiske fysiske beregningsenheter. Motivasjonen for i-materio-evolusjon er
todelt: det er dels en utforskning av nye beregningssubstrater som alternativer til silisium,
og dels en utforskning av bruk av metaheuristiske evolusjonsbaserte søk i designrom som
en designprosess som en motpol til tradisjonell komponentisert ingeniørdrevet design.

En av de største utfordringene i å utnytte beregningskraften i fysiske materialer er å
finne en god beregningsabstraksjon som kan bære beregninger over de underliggende fy-
siske prosessene i substratet. Denne oppgaven tar for seg muligheten å implementere cel-
lulære tilstandsmaskiner via i-materio-evolusjon som en abstraksjon for å kunne si noe om
det absolutte beregningspotensialet til et enkelvegget karbonnanorørkomposittmateriale.

Et utvalg av stabile lineære og ikke-lineære logiske porter og Elementære og Sub-
elementære Cellulære Tilstandsmaskiner er utviklet i denne oppgaven. Ikke alle Elemen-
tære Cellulære Tilstandsmaskiner lot seg vise å være utviklbare i karbonnanorørkompositt-
materialet med den brukte i-materio-tilnærmingen, som avslører beregningskompleksistet-
segenskaper ved materialet.
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Chapter 1
Introduction

The natural evolutionary process, in stark contrast to the traditional human top-down
building-block-oriented engineering design approach, is not one of abstraction, compo-
nentization and careful manipulation based on an understanding of underlying mechanics.
Rather, it is a “blind-yet-guided” metaheuristic search approach able to exploit properties
to create “designs” without needing to understand them or the underlying mechanics that
power them. Evolution-in-Materio is an attempt to mimic this natural evolution process in
order to exploit new, interesting and not-fully-understood materials for different use cases,
most notably for computational purposes.

This thesis explores the idea of using Evolution-in-Materio to exploit a single-walled
carbon nanotube and polymer composite random mesh material for abstracted computation
using cellular automata.

1.1 Assignment Text

The assignment text for this Master’s thesis is reproduced here:

“Computation-in-materio takes place in an unconventional fashion, e.g. cel-
lular automata-like (instead of conventional Turing Machine / von Neumann-
like computation). The way computation is performed at the physical level
is based on local interactions amongst neighboring molecules without a cen-
tral controller. It may be possible to abstract such a process as a “cellular-
automata-in-materio”. As such, it may be possible to exploit materials to
perform computation as a cellular automaton, e.g. evolve cellular automata
transition tables of different complexity (see cellular automata classification
from Wolfram / Langton) or embody a cellular automata into the material
(this can be seen as exploiting the underlying intrinsic cellular automata in
the material to execute on a given external input).”
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1.2 Thesis Overview
Several experiments are presented in this thesis. First, the three logic gates AND, OR and
XOR are attempted evolved in-materio. The hypothesis is that Evolution-in-Materio is
feasible using the experimental process detailed in Chapter 3, and that the material-under-
study is capable of evolved computation at least as complex as a single non-linear logic
gate.

Second, Elementary Cellular Automata Rule 54, Rule 151, and Rule 110 are attempted
evolved in-materio. The hypothesis is that the material-under-study is capable of compu-
tation at least as complex as the transition tables of these three cellular automata.

Third, all 256 Elementary Cellular Automata are attempted evolved in-materio. The
hypothesis is that different cellular automata should be easier or more difficult to evolve
based on how computationally complex they are, and that the ease of evolution may reveal
details about the computational capacity of the material-under-study.

The thesis is organized in the following manner: First this introductory chapter presents
the central theme, motivation and assignment text for this thesis. Then, a background
chapter presents necessary background information, definitions and context on the state-
of-the-art as they relate to the topic of this thesis in five different areas: unconventional
computing, evolutionary computation, Evolution-in-Materio, cellular automata and logic
gates. After the background exposition, each of the three sets of experiments performed
for this thesis is described and the results of each are presented. Following this, a criti-
cal analysis of the experiment results and experimental method is performed. Finally, a
conclusion is drawn, and suggestions for further work are presented.

1.3 Citation Style
This thesis uses a parenthetical, in-line, numerical citation style with fragment and para-
graph citation forms. This means that numbered citations that appear within a sentence
cover that sentence or sentence fragment alone, and a numbered citation that appears after
the final sentence of a paragraph covers that entire paragraph.

2



Chapter 2
Background

2.1 Unconventional Computing

The term “computation” encompasses any type of calculation or information processing
using computers, but when one speaks of computation it is normally in the context of
conventional computing, i.e. computation performed on transistor-based von Neumann
machines implemented as silicon microchips. Unconventional computing, however, is
computation performed using other techniques and methods.

The dominant computer organization in traditional conventional computing today is
based on the von Neumann architecture: computers synchronously read and execute in-
structions from a readable and writable memory, processing data until all instructions have
been completed. This is a centralized model of computing. Conceptually, only a single
instruction can executed at once, and each instruction must fully complete before the next
one can begin. Modern implementations use a range of advanced and sophisticated tech-
niques to circumvent this limitation by exploiting special cases (pipelining, out-of-order
execution, and so on), but the conceptual model remains the same. [43]

As the development of smaller, faster, cheaper and more energy-efficient silicon-based
von Neumann computers continues to push the frontiers of efficient computation, achiev-
ing the levels of progress we have grown accustomed to becomes harder and harder [57].
There are some intrinsic hard limits on increased improvements laid down by the physics
of the material that hinder further progress at certain points. The effect of this is already
apparent in the industry, with the big players scrambling to come up with complex so-
lutions to emergent problems such as the dark silicon effect [13] and quantum tunneling
side-effects [39]. Unconventional computers can challenge these shortcomings in new and
interesting ways.

Most modern unconventional computing work follows one of two popular approaches.
The first approach is to leverage the decades of work done on well-understood computing
models such as the von Neumann model, but to use alternative physical materials as the
computing substrate. This approach is promising, since it addresses one of the two core
issues with conventional computing today, which is that transistor miniaturization is ap-
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proaching the physical limits of silicon. It is possible that there may exist other materials
in which cheaper, faster, more energy-efficient or less heat-dissipant transistors, or really,
any type of logical switch, may be implemented. Indeed, such an advance has already
happened before, in the 1950s, when the invention of the transistor some years earlier en-
abled transistor-based solid-state logic switches to surpass the vacuum tube-based logical
switches that were used in early electrical computers such as the ENIAC [28]. Promising
alternative materials for this purpose that are actively researched today include the use of
graphene [52] or gallium arsenide [56] instead of silicon in microchips, fiber-optic-based
logical switches that work on photons instead of electrons as the carrier of a logical sig-
nal [51], and various materials that may support memristor implementations [4, 7, 15, 24].

One obvious advantage with this approach is that an enormous library of existing
concepts, tools, and software may be relatively trivially reapplied to new unconventional
computers, since the fundamental computing paradigm remains the same even though the
physical layer has been replaced.

The second approach is to investigate alternative theoretical computational models for
use as the fundamental abstraction in place of the traditional von Neumann model. This
approach is promising because it addresses the other core issue with conventional com-
puting, one of the most limiting factors of the conventional computational model, which
is the fact that programs must be executed sequentially. Being able to surpass this limi-
tation in an efficient fashion could yield tremendous speedups for certain classes of par-
allelizable problems [22]. Alternative computational models may also lend themselves to
efficient implementation in traditional computational substrate materials such as silicon,
which means that existing production infrastructure and knowledge may be re-used. The
cellular automata model is one such promising alternative model of computation [55].

It is also possible to combine these two approaches, i.e. implementing an alternative
computational model in an unconventional computational substrate. This thesis attempts
to do precisely this by looking for feasible implementations of an alternative theoretical
computational model (cellular automata) in an unconventional computational material (a
single-walled carbon nanotube and polymer composite mesh).

2.2 Evolutionary Computation
Evolutionary computation is an umbrella term for computation that involves optimiza-
tion, adaptation and discovery using iterative processes guided by some metaheuristic.
One powerful evolutionary algorithm is the Genetic Algorithm, which mimics Darwinian
natural selection for its search heuristic. In it, a population of individuals are simulated
through iterated cycles of life, death and reproduction, favoring individuals deemed as
“fit” by some evaluation function for survival and reproduction into the next cycles. If
each individual is taken as a representation of a candidate solution to a problem, and the
evaluation function is able to reflect a candidate solution’s closeness to an optimum solu-
tion, a Genetic Algorithm search will tend to converge the population toward a group of
individuals representing solutions that are good approximations to the problem. [22]

In Genetic Algorithm terminology, selection is the operation of choosing an individual
from a population based on some fitness-aware selection metric, crossover is the opera-
tion of combining two individuals to create a third, simulating natural reproduction, and
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mutation is the operation of changing a small part of an individual. A genotype is the
genetic code of an individual, and a phenotype is the product of a genotype as it manifests
as an fitness-measurable entity in an environment, i.e. the collection of an individual’s
observable traits.

Evolutionary computation can be used as a tool in systems engineering, and when
embraced as a design paradigm is radically different from regular constructive top-down
systems engineering. In the traditional top-down approach, a system is designed as a sum
of its parts, using nested components as the primary abstraction to create simplicity and
tractability in the design. Thus, it is necessary to understand systems completely in order
to design them, which may demand great imagination, insight and precision from the
engineer. An example of a system designed using the traditional top-down constructive
engineering approach pertinent to the topic of this thesis is that of a traditional computer
processor. A traditional computer processor is typically composed of several high-level
components, which each are again composed of several intermediate-level components,
which are again composed of several even lower-level components, all the way down to
some fundamental component, traditionally the logic switch.

Evolutionary design, on the other hand, tends to result in complex, opaque, non-
hierarchical designs that approximate solutions without having to be understood com-
pletely, or even at all. With evolutionary design, engineers specify desirable properties
in the finished design, and let the stochastic evolutionary process come up with solutions
that exhibit these desirable properties.

An example of a system designed using an evolutionary approach is NASA’s evolved
X-band antenna for use on the micro-satellites of the Space Technology 5 mission. There,
an evolutionary algorithm was used to search the massive solution space of different pos-
sible antenna designs, and the algorithm was ultimately able to come up with antenna
designs that were more performant than their traditionally designed counterparts. Ad-
ditionally, while the initial evolutionary setup took 3 person-months to implement, new
antennas could be evolved to meet new criteria in only 4 person-weeks, enabling a faster
design cycle than what would be possible with a traditional design approach in the face of
changing requirements, which in the end resulted in lower development costs. [21]

2.3 Evolution-in-Materio
Evolution-in-Materio is the exploitation of emergent computational behavior in physical
materials through artificial evolution. The idea is that some physical processes inherent
in different materials may be usefully interpreted as computation. Evolution-in-Materio
attempts to harness this computational power using artificial evolution in order to discover
favorable material configurations that may be efficiently exploited.

One of the earliest attempts at Evolution-in-Materio was conducted by cybernetician
Gordon Pask in 1958. He attempted to create a physical signal processing device based
on configurations of grown dendritic iron wires in a ferrous sulphate solution discovered
through trial-and-error capable of processing sound or magnetic field signals. The device
was eventually successful in discriminating between tones of 50Hz and 100Hz, a pioneer
result in the then-unexplored engineering paradigm of heuristic search-driven systems de-
sign. [42]
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Logical Domain
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Select genotype
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physical signals

Map input data to
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Interpret physical mea-
surements as output data
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Problem definition
Measure fitness
of output data

Physical input

Physical configuration
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Figure 2.1: An overview of Evolution-in-Materio – artificial evolution is simulated in the logical
domain, typically on a traditional computer, and fitness is evaluated by performing computations in
the physical domain.

Modern Evolution-in-Materio was kicked off in 1996 when Thompson demonstrated
that unconstrained evolution in a physically implemented logical system was able to ex-
ploit physical properties outside of the logical domain to improve fitness, and hence per-
form computation [50]. In his experiments, Thompson tried to use artificial evolution to
configure a field-programmable gate array (FPGA) to perform a specific computational
task: discriminate between 1kHz and 10kHz square waves. The hypothesis was that ar-
tificial evolution would be able to evolve a discrete logical circuit design capable of per-
forming the computational task. Thompson managed to find an FPGA configuration that
consistently solved the task, but upon inspection it became clear that the computation was
not entirely performed in the discrete logical circuit. Instead, the computation relied on
physical properties of the FPGA chip itself, outside of the discrete logical domain. This
result shows that using evolution to design physically-implemented computers allows for
a much larger design space than what is possible with traditional constructive engineer-
ing. This, in turn, opens the door to creating more efficient computational devices that to a
greater extent exploit natural physical behaviors of the underlying computational substrate.

The term “Evolution-in-Materio” was coined in 2002 by Miller and Downing [33].

2.3.1 Current Materials

One challenge in the field of Evolution-in-Materio is discovering which materials are suit-
able for use as a computational substrate. A good material should preferably exhibit a
number of properties that both enable computation and configuration so that evolution can
be reliably performed. These properties include having a complex, practically (read: elec-
tronically) configurable semi-conducting structure in such a way that the material responds
near-instantly and consistently to different inputs, as well as being robust to changes in
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(a) Graphene (b) Carbon nanotube

Figure 2.2: An atom-scale visualization of a single-walled carbon nanotube. Each sphere represents
a carbon atom, and the cylinders between them represent atomic bindings. The sheet to the left is
graphene, and the cylinder to the right is graphene wrapped to form a carbon nanotube. Illustrations
adapted with permission from original work by Jozef Sivek, distributed under a CC BY-SA 4.0
license.

the external environment such as lighting conditions, temperature and electromagnetic
fields [41, 48]. It also helps if the material is cheap and easily available.

Some interesting candidate substrates that are currently under research are single-
walled carbon nanotubes, liquid crystal matrices and silicon FPGA chips.

Single-Walled Carbon Nanotubes

Single-walled carbon nanotubes (SWCNT) are cylindrical carbon allotropes with unusual
physical properties. They exhibit extraordinary electrical characteristics, which is inter-
esting from an Evolution-in-Materio standpoint. Single-walled carbon nanotubes are en-
gineered by wrapping a one-atom-thick sheet of graphene into a tube. The “angle” at
which the nanotube is wrapped affects the electrical properties of the nanotube – some
SWCNTs’ electrical conductivity show metallic conducting behavior, whilst others show
different levels of semiconducting behavior. Determining how the different properties of
a nanotube affects its electrical characteristics is an active area of research. [5, 9, 26, 49]
An illustration of a SWCNT can be seen in Figure 2.2.

One way of using SWCNT as a substrate for computation is by arbitrarily arranging
many SWCNTs in a random network and treating it as a single computational device [47].
The advantage of this is that it enables SWCNT mesh device production in large scale at
the wafer level [14].

Single-walled carbon nanotube mesh devices have successfully been used as a sub-
strate for computation in several experiments [10, 23, 36, 37, 38].

The material-under-study in the experiments presented in this thesis is a random single-
walled carbon nanotube and polymer mesh material.

Liquid Crystal Matrices

Liquid crystals are matter that can exist in a mesomorphic state, carrying properties similar
to both conventional liquids and solid crystal. For instance, the matter may behave like a

7



liquid in terms of flow, all the while having molecules that are arranged in a distinct crystal-
like fashion. Liquid crystals are relatively stable materials, but change their characteristics
when subjected to electric fields. This makes them interesting subjects for Evolution-in-
Materio, as it means that they can be configured to assume certain behaviors electronically.

Matrices of liquid crystals are today already mass-produced on a gigantic scale, be-
cause they are a core technology used in modern computer displays. This makes the ma-
terial cheap and readily available, which is convenient.

Liquid Crystal Matrices have successfully been used as a substrate for computation in
several experiments [17, 18, 19, 20].

Silicon Microchips

Even traditional silicon chips may be suitable for Evolution-in-Materio in certain cases.
Reprogrammable silicon chips, known as Field-Programmable Gate Arrays, or FPGAs,
exhibit the same characteristics that we are looking for in a good candidate for Evolution-
in-Materio – they are electronically configurable and configurationally stable. One prob-
lem is that they seem to be easily affected by environmental changes when used for
Evolution-in-Materio [50], which could make reliable computation difficult.

2.3.2 NASCENCE and the Mecobo Evolution-in-Materio Platform
NASCENCE, or NAnoSCale Engineering for Novel Computation using Evolution, is an
EU-funded collaborative research project aiming to “model, understand and exploit the
behavior of evolving nanosystems (e.g. networks of nanoparticles, carbon nanotubes or
films of graphene) with the long-term goal to build information processing devices ex-
ploiting these architectures without reproducing individual components” [40]. One of the
products that have emerged from the NASCENCE project is the Mecobo platform. It
is a hardware and software platform for Evolution-in-Materio developed by Lykkebø et
al. [27]. It is designed to interface with a large variety of materials, allowing Evolution-in-
Materio fitness evaluation directly on a physical substrate. The Mecobo platform is used
to facilitate the experiments presented in this thesis.

The Mecobo material interface works as a Voltage-time-signal sequencer and recorder
that can apply and record arbitrary voltage patterns on its material-connected electrodes.
In practical Evolution-in-Materio scenarios involving the Mecobo, the artificial evolution
solver program is run on a traditional workstation computer. Each genotype in the popu-
lation represents a candidate configuration for a given computational behavior in the ma-
terial. During fitness evaluation of a genotype, the solver may want to execute some trial
computations in the material using the configuration encoded in the genotype. The solver
program on the workstation computer then develops the genotype-under-study into a phe-
notype which represents the material configuration in the physical domain, e.g. a series of
static voltages that should be applied on a set of configuration electrodes into the material.
The program also transforms the logical inputs to the trial computations into the physical
domain as voltage pattern signals so that they can be applied on the material as well. When
the configuration and computation inputs have been prepared for physical execution, they
are communicated to the Mecobo, which applies the voltage signals upon its input and
configuration electrodes, and performs a voltage pattern reading on its output electrodes.
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Figure 2.3: A photograph of the Mecobo. Figure adapted from [27] with permission.

The values sampled are transmitted back to the evolution solver program where they are
interpreted as output in the logical domain and used together with other factors to compos-
ite a fitness score for the genotype-under-study. When used in this fashion, the Mecobo
can be seen as a translation bridge between the logical and the physical world.

2.4 Cellular Automata
Cellular automata are abstract discrete n-dimensional dynamical systems that evolve over
time. They consist of a graph of locally-connected nodes that each take on one of k discrete
states in time step t. The state of a node n in the graph at time step t is given by the states
of n’s neighboring nodes at time step t − 1. Each cellular automaton has a rule table
describing how to transition from time step to time step.

2.4.1 Elementary Cellular Automata
In the simplest canonical case, a cellular automaton takes on the form of a one-dimensional
array of binary cells where each cell has three neighbors: the cell immediately to the left,
the cell immediately to the right, and itself, as illustrated in Figure 2.5. These specific
cellular automata are called Elementary Cellular Automata [54]. There are 256 possible
rule table permutations for the Elementary Cellular Automata. Of these 256 automata, 88
are fundamentally inequivalent [55, p. 57].
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000100010110001101011111

01111000

Figure 2.4: An example Elementary Cellular Automata state transition table laid out to illustrate the
Wolfram Code numbering scheme. The top row of groups of three and three cells are the possible
neighborhood states for a cell at time step t−1, and the cell beneath each group is the resulting state
for that same cell at time step t. Reading the bottom row as a binary number (000111102 = 30)
reveals the name of the automation: Rule 30.

... ...t− 1

t

Figure 2.5: An example state-time representation of an Elementary Cellular Automaton. The state
of a cell is decided by the state of its two neighboring cells and itself in the previous time step.

The Elementary Cellular Automata are given a numbering scheme known as the Wol-
fram Code in [54] that is rooted in binary number representation. Each of the 23 = 8
possible neighborhood states for a given Elementary Cellular Automaton E are repre-
sented as each their binary number and ordered numerically. The resulting states for the
next time step given from each of these neighborhood states are then taken in order as bits
of a new binary number r. This number r is the number identifying E. As an example,
Elementary Cellular Automaton Rule 30’s rule table and corresponding Wolfram Code
number is illustrated in Figure 2.4.

2.4.2 Sub-Elementary Cellular Automata

For the purpose of this thesis, it is useful to define an even simpler class of cellular au-
tomata. Consider the set of one-dimensional binary cellular automata with a brickwall
neighborhood of size 2. That is, cells at every other time step are considered to be shifted
0.5 cell widths to the right, so that the state of a cell in time step t is decided by the state
of the cells 0.5 cell widths at either side at time step t − 1, as illustrated in Figure 2.6.
There are 16 different cellular automata in this set. Dubbing these 16 cellular automata the
Sub-Elementary Cellular Automata and numbering them analogously to the Elementary
Cellular Automata, we can denote them uniquely as S0, S1, .., S15.

Using the cellular automata classification described in Section 2.4.4, S0, S8, S14 and
S15 can be classified as Class I cellular automata, S1-S5, S7 and S10-S13 can be classified
as Class II cellular automata, and S6 and S9 can be classified as Class III cellular automata.

2.4.3 Graphing One-Dimensional Cellular Automata

When examining cellular automata, it is useful to see how they behave over time. Con-
veying passage of time in complex graphs can sometimes be difficult when confined to a
two-dimensional medium such as the one this thesis is written on. For the special case of
one-dimensional cellular automata, only one dimension is needed for illustrating the state
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t− 1

t

t+ 1

Figure 2.6: An example brickwall state-time representation of a Sub-Elementary Cellular Automa-
ton. The cells at every other time step are considered to be shifted 0.5 cell widths to the right. The
state of a cell is decided by the state of its two neighboring cells in the previous time step.

of the system in time step t. Therefore, we can use a second dimension available to us to
show the passage of time. Conventionally, one-dimensional cellular automata behavior is
graphed as a grid of cells where row t represents the entire state of the cellular automaton
at time step t. This is called a time-space diagram [53]. All graphed cellular automatons in
this thesis are graphed using time-space diagrams with randomly generated initial states.

2.4.4 Computation in Cellular Automata
The study of cellular automata is interesting due to their possible suitability as a vehi-
cle for efficient computation. Although some cellular automata are proven to be capable
of universal computation [55, pp. 644-656] [8, 11, 16, 45], perhaps the most interesting
paradigm of computation is one where a cellular automaton is capable of efficiently com-
puting a special non-general task. In this scenario, the program is embodied in the cellular
automaton itself, manifested in the rule table, and possibly in the input state as well. Input
to the computation is coded as an initial configuration of the cell states, and output is read
from the state of the automaton at some time step t > 0. Cellular automata have in this
fashion successfully been used to solve problems such as the Firing Squad Synchroniza-
tion Problem [53], Parallel Formal-Language Recognition [34] and Parallel Arithmetic
computation [34], in addition to multiple simulations of physical processes [3].

Determining which cellular automata are capable of useful computation is an active
area of research [25]. Due to the chaotic nature of dynamic systems, the search space
is seemingly largely unstructured, and finding useful computation is hard. Nevertheless,
efforts have been made to classify cellular automata based on different criteria in order to
reason about the computational properties of these classes – not a lot of conclusive results
have been found, however.

Wolfram’s Four Cellular Automata Classes

Wolfram attempts to classify cellular automata into four different classes based on the
behaviors they seem to exhibit [55]. The class definitions are not strict in the mathematical
sense, however, making it difficult to use for much else than a base for informal intuition
building.

Class I cellular automata are cellular automata that tend to a stable homogeneous state.
Randomness in the initial state tends to disappear as time progresses. Rule 32, which is
shown in Figure 2.7a, is an example of a Class I cellular automaton.

Class II cellular automata are cellular automata that yield a sequence of simple stable
or periodic structures. Randomness in the initial state is somewhat retained in periodic
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(a) Rule 32, a Class I cellular automaton. (b) Rule 108, a Class II cellular automaton.

(c) Rule 30, a Class III cellular automaton. (d) Rule 110, a Class IV cellular automaton.

Figure 2.7: Example Elementary Cellular Automata with random initial states.

structures. Changes made to the initial state tend to only have a local impact on the be-
havior of the cellular automata over time. Rule 108, which is shown in Figure 2.7b, is an
example of a Class II cellular automaton.

Class III cellular automata are cellular automata that exhibit chaotic aperiodic behav-
ior. Changes made to the initial state tend to have a global impact on the behavior of the
cellular automata over time. Rule 30, which is shown in Figure 2.7c, is an example of a
Class III cellular automaton.

Class IV cellular automata are cellular automata that yield complicated localized struc-
tures, some propagating. Changes made to the initial state tend to have a global impact
on the behavior of the cellular automata over time. Wolfram postulates that most Class IV
cellular automata are capable of general computation [55]. Examples of Class IV cellular
automata include Rule 110 (shown in Figure 2.7d) and Conway’s Game of Life [55].

Culik-Yu Classification

Culik et al. presented in [12] a more formal hierarchical classification based on Wolfram’s
four complexity classes. The classification relies on decidability theory. Informally, Class
One contains all cellular automata that lead to a homogeneous state, Class Two contains
all cellular automata that lead to an ultimate periodic evolution, Class Three contains all
cellular automata for which it is decidable whether or not it is able to transition from state
α to state β using zero or more intermediate states, and Class Four contains all cellular
automata.

12



0.0 1.0λc

High

Low

C
om

p
le
x
it
y

I

II III

IV

Figure 2.8: Location of Wolfram Classes in λ space, recreated from [25, Fig. 16].

λ-Parametrization and the Edge of Chaos

A different approach to cellular automata classification is through λ-parametrization [25].
The λ-parameter is a measure of what percentage of transitions in a cellular automaton’s
rule table go to an arbitrarily selected quiescent state. It is defined as

λ =
KN − n
KN

(2.1)

given by (2.1), where K is is the number of different states a cell can have, N is the neigh-
borhood size, and n is the number of state transitions that go the the quiescent state. For
example, in Rule 30 of the Elementary Cellular Automata, taking state 0 as the quiescent
state, 6 of 8 transitions go to the quiescent state. Since Elementary Cellular are binary
cellular automata with a neighborhood size of 3, this means that

λRule 30 =
23 − 6

23
= 0.25 (2.2)

of Rule 30 is as given by (2.2).
The idea is that cellular automata with similar λ-values tend to exhibit similar behav-

iors. This means that, as an example, Rule 129 of the elementary cellular automata with
its λRule 129 = 0.25 should behave more similarly to Rule 30 than a Rule with a different
λ, like Rule 85, which has a λ of λRule 85 = 0.5.

Langton examined a set of different 1-dimensional 4-state cellular automata with a
neighborhood size of 5, and gave a qualitative classification on the behavior of the cellular
automata in relation to their λ-values [25]. Langton observed that low λ-values tended to
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give cellular automata with a high amount of order, reaching a steady (potentially peri-
odic) state quickly, and high λ-values tended to give cellular automata exhibiting chaotic
behavior. Langton goes on to argue that the cellular automata most suitable for com-
putation will be found at the boundary between these two extremes in behavior, at the
“Edge-of-Chaos”. In Fig. 16 of [25], recreated here as Figure 2.8, Langton illustrates
the relationship between the computational complexity in cellular automata with regards
to the λ-parameter and the possible locations in λ space of cellular automata of different
Wolfram Classes. The λ-parametrization’s significance in identifying computationally in-
teresting cellular automata at the “Edge-of-Chaos” was later disputed by Mitchell et al.,
who suggested that the original findings are not properly reproducible [35].

2.4.5 Cellular Automata as a Physical Abstraction

The great advantage of computation in-materio is that it offers the possibility of perform-
ing computation “directly” in the material, as opposed to in some abstracted computational
model implemented in a material. The latter will necessarily discard a large part of the
computational power of the substrate as a consequence of the abstraction. It seems, then,
that exploiting direct in-materio computation is optimal in terms of computation power.
However, direct computation in-materio can be quite difficult, especially if universality
and scalability is desired. There is an apparent trade-off between efficient usage of the
computational complexity in the substrate and ease of programmability for practically
useful results which seems to be related to the intuition that computational potential is lost
in the abstraction from substrate to theoretical model. The larger the disaffinity between
the abstract model and the physical processes in the material becomes, the larger the in-
efficiency in translation will grow. Thus, finding an abstract computational model that
closely matches the physical properties of a material might minimize the computational
gap between the physical and the abstract. [48]

Cellular automata is a promising abstract computational model for this purpose. Just
like they seem to be in physical materials, the computational processes in cellular automata
are massively parallel in a distributed and localized fashion. This is a completely different
paradigm than the centralized model found in conventional computing.

2.5 Binary Logic Gates

A logic gate is a device that implements a Boolean function. It provides a mapping from a
number of Boolean inputs to a single Boolean output. [46, p. 760]

Physically implemented logic gates over silicon transistors is the main building block
used in mainstream microchip computers [43]. Most logic gates in practical use today are
binary logic gates – they have two Boolean inputs and a single Boolean output. Binary
logic gates are usually commutative, i.e. changing the order of the operators does not
change the result. Formally, this means that for some binary operator ?, a ? b = b ? a.
There are 8 possible commutative binary logic gates: FALSE, AND, XOR, OR, NOR,
NXOR, NAND and TRUE. The truth tables for each of the 8 possible binary logic gates
can be seen in Table 2.1.
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Table 2.1: Truth Tables for Each of the 8 Possible Binary Logic Gates

IA IB OFALSE OAND OXOR OOR ONOR ONXOR ONAND OTRUE

0 0 0 0 0 0 1 1 1 1
0 1 0 0 1 1 0 0 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

Binary logic gates are combinatorial devices, which means that output given by binary
logic gates depend only on the current input, not on any internal state [46, p.761]. They
do in other words have no form of stateful memory capabilities.

2.5.1 Complexity
Different binary logic gates can perform computations of different complexity. The FALSE
and TRUE logic gates always output the same answer, 0 and 1 respectively, regardless of
input. This makes them the least complex binary logic gates. AND, OR, NAND and NOR
are linearly separable. XOR and NXOR are not linearly separable, which in a sense makes
them the most complex binary logic gates.
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Chapter 3
Experiments

For this thesis, three series of experiments have been performed in an attempt to measure
and understand the feasibility and utility of evolution in-materio on a mixed single-walled
carbon nanotube and polymer substrate using cellular automata as tool for reasoning about
computational power.

The first series of experiments aim to evolve logic gates in the material, as a first
stepping stone on the way to cellular automata. This is done in an attempt to verify that
the material is capable of performing simple evolved computation, and to measure the
computational stability of the material.

In the second experiment series dubbed the an attempt is made at evolving three spe-
cific Elementary Cellular Automata in the material. The motivation for this is to investigate
the limits of computational complexity in the material when used as a computational de-
vice within the specific constraints put forth by the method of computation used in this
thesis.

A third series of experiments try to explore the computational capacity of the material
by doing a broader evolutionary sweep of all 256 Elementary Cellular Automata in the
material, enabling existing knowledge about Elementary Cellular Automata complexity to
be used in gauging the computational capacity of the material-under-study.

In the proceeding sections, the experimental setup of the different experiments is de-
tailed – first in a general sense explaining the common approach used in the experiments,
and then in the special case for each experiment. The latter sections also include the results
of each of the experiments.

3.1 Experimental Setup
On a high level, each of the experiments is implemented in a similar fashion: an electrode-
wired material sample glass slide containing a sample of the material-under-study is con-
nected to a scientific instrument called Mecobo [27]. This instrument is able to apply ar-
bitrary voltage patterns onto the electrodes connected to the material, and observe voltage
levels on other electrodes connected to the same material. The Mecobo is connected to an
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ordinary desktop computer running custom software to command and control the Mecobo
instrument. The experiments model the material as a stateful computational device that can
accept voltage series over electrodes as input over time and deliver computation results as
voltage levels read at specific points. The challenge of realizing computation in the mate-
rial using this model then boils down to finding a meaningful way to encode and decode
computational input and output to and from time-voltage signals in order to transform the
problem instances to be computed from the logical domain to the physical domain and
back. A heuristically guided genetic algorithm search is employed to evolve the configu-
ration required for a specific computational function in each of the experiments. Hence,
realizing computation in-materio can be seen as a two-step process: first, the evolution
of a stable configuration that enables the desired computation in the material, which is a
process that might take some time (hours), and second, the execution of a single instance
of the problem with some input, which is relatively fast (milliseconds).

3.1.1 Mecobo

The experiments were performed using the Mecobo v3.5 Evolution-in-Materio hardware
and software platform [27]. On boot, the Mecobo FPGA is flashed with the firmware ver-
sion whose compiled bitfile md5 checksum is 78561f68ff096c394213bd703abb-
15a3. The Mecobo motherboard was connected by USB to a Ubuntu 12.10 [6] desktop
computer running the host [2] Mecobo interface / Thrift [1] server. The Genetic Al-
gorithm solver functions as a Thrift client, and connects to the Thrift server in order to
interact with the material that is connected to the Mecobo.

3.1.2 Genetic Algorithm Overview

The Genetic Algorithm solver used for the experiments is a custom generational Genetic
Algorithm solver implemented in Python [44]. The algorithm maintains two populations
of individuals: a child population and an adult population. For each generation, individuals
are selected using some adult selection scheme for promotion to become members of a new
adult population. Adult individuals are then selected using some parent selection scheme
to be combined and create offspring using some crossover scheme, which are taken to
be the new child population. Finally, child individuals are mutated according to some
mutation scheme. Fitness is lazily calculated for individuals when a value is required
(e.g. for selection), and is cached for an individual for as long as it is alive. That is, an
individual is not fitness-evaluated more than once. An overview of the algorithm can be
seen in Figure 3.1.

The solver is configurable in a variety of parameters, and thus each experiment de-
scribed in this report describes the configuration used.

Adult Selection Schemes

The solver can be configured to use one of three different adult selection schemes: full gen-
erational replacement, over-production, and generational mixing. With full generational
replacement, every adult currently in the adult population is removed from the population,

18



and every child in the child population is promoted to adult status and added to the adult
population.

With over-production, every adult currently in the adult population is removed from
the population, and some children from the child population are promoted to adult status
and added to the adult population.

With generational mixing, some adults currently in the adult population are removed
from the population, and some children from the child population are promoted to adult
status.

Parent Selection Schemes

The solver can be configured to use one of four different parent selection schemes.
Fitness-proportionate selection selects individuals by random chance, weighted by the

individual’s fitness. With this scheme, an individual with a high fitness is more likely to
get selected than an individual with a low fitness. The probability

P (selection) =
f(i)∑|I|

n=1 f(In)
(3.1)

for an individual i to be selected given a fitness function f from a population I is given by
(3.1), where |I| is the size of the population and In is the nth individual in I .

Sigma-scaling selection is similar to fitness-proportionate selection, in that it selects
individuals by random chance, weighted by the individual’s fitness, but it scales an indi-
vidual i’s fitness f(i) by a value si, signifying its relation to statistical properties about the
population’s fitnesses. The sigma-scaled fitness function

f ′(i) = 1 +
f(i)− ¯f(I)

2σ
(3.2)

given by (3.2), where ¯f(I) is the average fitness for the population and σ is the standard
deviation of the fitnesses in the population. The probability of selection for an individual i
is then given by (3.1), substituting f with f ′.

Tournament selection looks at k randomly chosen individuals from the population, and
with probability 1 − ε selects the fittest individual of these k individuals, or else selects a
random individual from these k individuals.

Rank selection sorts all the individuals of the population by fitness, and selects an
individual at random weighted by it’s position in the ordered sequence of individuals,
known as an individual’s rank. The fittest individual i in a population of size n has a rank
given by ir = n. The least fit individual j in a population of size n has a rank given by
jr = 1. The probability

P (selection) =
2ir

n(n− 1)
(3.3)

for an individual i to be selected from a population of size n is given by (3.3).

Crossover Schemes

The solver can be configured to use one of two different crossover schemes.
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Figure 3.1: A flow diagram representing the path taken by individuals through the Genetic Algo-
rithm solver.

Split crossover combines two individuals by copying with probability p the first n
symbols of the first parent, and the remaining symbols of the second parent, else every
symbol from the first parent. p is selected by configuration on a per-experiment basis,
whilst n is a random number between 0 and the length of an individual’s symbol vector
generated for each crossover operation.

Genome component crossover combines two individuals by copying with probability p
each symbol from either the first or second parent, chosen randomly with equal probability
for each parent for each symbol, else every symbol from the first parent. Again, p is
selected by configuration on a per-experiment basis.

Mutation Schemes

The solver can be configured to use one of two different mutation schemes.
Per-genome mutation mutates an individual with probability p selected by configura-

tion on a per-experiment basis.
Per-genome component mutation mutates each single component of an individual (i.e.

each gene) individually with probability p selected by configuration on a per-experiment
basis.

The mutation operation for both schemes is configurable in p, and is specified per-
experiment.

3.1.3 Material Overview
The computational substrate material used in the experiments is a random mesh of single-
walled carbon nanotubes mixed with poly(butyl methacrylate) (PBMA) and dissolved in
anisole (methoxybenzene) embedded in a glass plate with 16 gold electrodes into the ma-
terial arranged in a 4x4 grid with 50 µm contacts and 100 µm pitch. The material, slide #1
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Figure 3.2: A photograph of the SWCNT material on its glass slide.

of batch #15, numbered B15S01, was prepared by Kieran Massey at Durham University
by the following method: “20 µl of material are dispensed onto the electrode area; This is
dried at 85°C for 30 min to leave a thick film; The hotplate is turned off and the substrates
are allowed to cool slowly over a period of roughly 2 h to room temperature.” The carbon
nanotube concentration in the material is 0.75%. The electrode configuration is “Mask
#13 - Twin 4x4 grid”. All electrodes show connection resistances on the order of 20 kΩ,
but it is reasonable to assume that the nanotube coverage over the electrodes is noticeably
uneven, given the nanotube concentration level. [31]

Figure 3.2 shows a photograph of the material on its glass slide.

The material is a product of the NASCENCE project [40].

3.2 Evolving Logic Gates in-Materio

This experiment attempts to evolve Boolean binary logic gates in the material to see if
the material is capable of performing simple evolved computation, and to measure the
computational stability of the material. Three Boolean logic gates were evolved: the AND
gate, the OR gate, and the XOR gate. The first two gates are implementations of linearly
separable Boolean functions, whilst the third is not. The input-to-output-mapping function
for each of the three evolved gates can be seen in Table 3.1.

Interestingly, a binary Boolean logic gate input-to-output-mapping function can also be
seen as the transition function of a Sub-Elementary Cellular Automata. As such, evolving
the AND, OR and XOR logic gates is equivalent to evolving the state transition functions
of the S8, S14 and S6 Sub-Elementary Cellular Automata, respectively.
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Figure 3.3: Input, output and configuration mapping of the material interface electrodes for logic
gate computation.

3.2.1 Input Coding

Seven electrodes into the SWCNT/polymer composite material were used as input elec-
trodes. Two of these electrodes represent the two inputs a and b to the binary Boolean
function. Each of these two inputs a and b can be either a logical 0 or a logical 1. A log-
ical 0 on an input electrode is signified by applying a selected constant static voltage, the
exact value of which is decided on a per-solution basis. A logical 1 on an input electrode
is signified by applying a digital square wave with a frequency of 10000Hz and a 3.3 V
amplitude, from 0 V to 3.3 V. The other five input electrodes function as material config-
uration inputs, with a digital pulse wave with a specific frequency and duty cycle chosen
on a per-solution bases from a predetermined range being applied upon each of them.

3.2.2 Output Coding

The computational output expected from a Boolean logic gate is a single Boolean value: 0
or 1. A single electrode into the material was used as an output electrode. The voltage out-
put was sampled at 500000Hz for 80 ms from the 10th to the 90th ms of computation. The
samples were averaged arithmetically and compared to a predetermined threshold value.
If the average was higher than the threshold value plus some small empirically determined
padding to reduce measurement noise, the Boolean output was interpreted as a logical 1.
Conversely, if the average was lower or equal to the padded threshold value, the Boolean
output was interpreted as a logical 0. The threshold value was obtained experimentally
by running a calibration sweep of the material, which consisted of performing 200 logic
gate computations with randomly generated inputs conforming to the coding specified in
Section 3.2.1. The averaged output was calculated for each computation, and the median
of these averages were taken to be the threshold value.

Which specific physical electrodes were used for which of the input and output signals
was decided by a logical-to-physical mapping of electrodes coded in the evolvable geno-
type. An overview of the SWCNT/polymer composite material with its logical input and
output electrodes can be seen in Figure 3.3.
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Table 3.1: Logic Gates Input-to-Output-Mapping Function

I1 I0 OAND OOR OXOR

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

3.2.3 Genetic Algorithm Configuration
Genotype Representation

The evolvable genotype was represented as a symbol vector of length 20 with 256 possible
values for each symbol. The first 5 symbols of the genotype represent material configu-
ration pulse wave frequencies. The next 5 symbols of the genotype represent material
configuration pulse wave duty cycles. The next 8 symbols represent the pin mapping.
Then follows a single symbol representing the static amplitude of logical low coding sig-
nal. The last symbol represents an output interpretation threshold offset. The genotype is
illustrated in Figure 3.4.

Taking a symbol’s value to be a numerical integer value between 1-256, letting Gn

denote the nth symbol of a genotype G, the pulse wave frequency

fn = (Gn + 1)× 100Hz (3.4)

of a configuration electrode Cn is given by (3.4). The pulse wave duty cycle

dn =
bGn+5 × 100

255c
100

(3.5)

of a configuration electrode Cn is given by (3.5). The static voltage level

s = (G18 − 127)× 0.039 V (3.6)

of a logical low input signal is given by (3.6). The center threshold offset

c = (G19 − 127)× 0.156 V (3.7)

is given by (3.7).
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Frequencies Duty cycles Pin mapping S C

Figure 3.4: The genotype mapping for the logic gate experiment. S is the static amplitude of a
logical low input signal and C is the center threshold offset.

Genetic Algorithm Parameters

The Genetic Algorithm solver was run with parameters as described in Table 3.2.
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Table 3.2: Genetic Algorithm Solver Parameters for Logic Gate Evolution

Parameter Configuration

Children pool size 40 individuals

Adult pool size 40 individuals

Adult selection scheme Generational mixing

Parent selection scheme Tournament, ε : 0.05, k : 8

Crossover scheme Per-genome component, p: 0.5

Mutation scheme Per-genome component, p: 0.01

Fitness Function

The fitness of a genotype is given as function of how well it can compute the binary
computation. For all four possible input combinations to the binary logic gate (0, 0), (0,
1), (1, 0) and (1, 1), the input and configuration electrodes were activated simultaneously
for 100 ms. Samples were recorded for 80 ms, from the 10th to the 90th ms of the total
activated time. For each set of inputs, the interpreted output was compared to the expected
output from an ideal binary logical gate. If the output matched, 2 points were awarded to
the total fitness. If the output was undecided (i.e., the measured output average was within
the noise-reducing padding area around the threshold), 1 point was awarded to the total
fitness. If the output otherwise did not match, 0 points were awarded to the total fitness.
Finally, the fitness score was normalized to fit a 0-1 range by dividing the total score by 8.

The fitness function does not account for stability, e.g. by performing the same fitness
evaluation multiple times and averaging the result.

3.2.4 Results

Computationally stable AND, OR and XOR logical gates were successfully evolved. To
the best of the author’s knowledge, this is the first time that stable XOR logic gates (and
other gates) are evolved in SWCNT materials [23, 27]. Many different configurations
yielding different logic gates were found. One configuration for each of the three types of
logic gate is here selected for further examination. These three configurations are shown
in Figure 3.5.

Although the search space in this experiment is quite large, there seems to be a lot of
satisfactory solutions amongst the candidates. The search space contains 25620 possible
candidates, yet in a typical Genetic Algorithm run with a population size of only 40 in-
dividuals, the solver is able to frequently find satisfactory solutions in the first or second
generations, when the individuals are still mostly random.

Stability

Each of the three evolved solutions in Figure 3.5 were tested for correctness by performing
repeated computations in-materio over all four possible inputs. Each solution was tested
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for 2000 repeated calculations over each of the four possible inputs, for a total of 8000
tests.

The evolved OR gate computed the correct value 8000 out of 8000 times, resulting in
an estimated error rate of 0.0000%± 0.0000 pp at a 95% level of confidence. The evolved
AND gate computed the correct value 8000 out of 8000 times, resulting in an estimated
error rate of 0.0000% ± 0.0000 pp at a 95% level of confidence. The evolved XOR gate
computed the correct value 7955 out of 8000 times, resulting in an estimated error rate of
0.5625%± 0.1639 pp at a 95% level of confidence.

Histograms of the averaged physical output values measured in the stability tests are
shown in Figure 3.7, Figure 3.6 and Figure 3.8.

Example Computations

Here, a set of recorded AND, OR and XOR computations are presented. The material
configuration for each of the three computations is the configuration coded in each of the
three genotypes in Figure 3.5. Figure 3.10 shows the state of the (logically mapped) input
and output electrodes over the course of the execution of the computation of the logical
task 1∧0. Figure 3.12 shows the state of the (logically mapped) input and output electrodes
over the course of the execution of the computation of the logical task 1 ∨ 0. Figure 3.14
shows the state of the (logically mapped) input and output electrodes over the course of
the execution of the computation of the logical task 1 ⊕ 0. Figure 3.9 shows samples
recorded from four AND calculations performed in-materio. Figure 3.11 shows samples
recorded from four OR calculations performed in-materio. Figure 3.13 shows samples
recorded from four XOR calculations performed in-materio. The entire recording for each
calculation is in reality 40000 samples long, but for practicality reasons only the first 500
samples are plotted here. The horizontal black lines represent the measured total average
of the entire recording for each calculation. The horizontal magenta line together with a
small gray padding band represents the threshold value above or under which a recorded
average is taken to be a logical 1 or 0, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

233 47 146 232 47 148 236 179 195 76 83 214 37 108 127 203 125 147 29 127∧
{

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

45 127 211 252 28 249 246 191 201 185 161 120 116 11 207 83 43 86 168 127∨
{

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

103 118 150 147 154 88 220 10 157 148 198 155 119 119 69 114 175 225 254 233⊕
{

Figure 3.5: Genotypes representing successfully evolved ∧, ∨, and ⊕ logic gates.
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Figure 3.6: Histograms representing the measured average outputs over 8000 calculations using the
evolved AND configuration, grouped by input. The output threshold used for mapping the measured
output into the binary logical domain is plotted as a red vertical line in each histogram. Measure-
ments that result in a wrong computational answer are in magenta. Interesting details are magnified.
Each histogram bin is roughly 0.0012V wide.
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Figure 3.7: Histograms representing the measured average outputs over 8000 calculations using the
evolved OR configuration, grouped by input. The output threshold used for mapping the measured
output into the binary logical domain is plotted as a red vertical line in each histogram. Measure-
ments that result in a wrong computational answer are in magenta. Interesting details are magnified.
Each histogram bin is roughly 0.0012V wide.
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Figure 3.8: Histograms representing the measured average outputs over 8000 calculations using the
evolved XOR configuration, grouped by input. The output threshold used for mapping the measured
output into the binary logical domain is plotted as a red vertical line in each histogram. Measure-
ments that result in a wrong computational answer are in magenta. Interesting details are magnified.
Each histogram bin is roughly 0.0012V wide.
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Figure 3.9: The first 500 raw material output samples recorded during four AND computations.
The horizontal black lines represent average values for a sample series, and the horizontal red lines
represent the output interpretation threshold value, which is 0.8496V.

10090100

Recording at 500000HzO {
10000Hz PWM 1.65V±1.65V, D: 50%I0 {
3.30V constant voltageI1 {
23400Hz PWM 1.65V±1.65V, D: 58%C0 {
4800Hz PWM 1.65V±1.65V, D: 92%C1 {
14700Hz PWM 1.65V±1.65V, D: 70%C2 {
23300Hz PWM 1.65V±1.65V, D: 76%C3 {
15400Hz PWM 1.65V±1.65V, D: 58%C4 {

Figure 3.10: Timing overview of the activity on each logical electrode over time during a single
computation of 1 ∧ 0 on the evolved AND gate. Time progresses along the x-axis, labeled in mil-
liseconds at points of interest. O is the output pin, In are the input pins, andCn are the configuration
pins. The small waveform illustrations reflect the duty cycle, but not the frequency. D is the duty
cycle.
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Figure 3.11: The first 500 raw material output samples recorded during four OR computations.
The horizontal black lines represent average values for a sample series, and the horizontal red lines
represent the output interpretation threshold value, which is 0.8496V.

10090100

Recording at 500000HzO {
10000Hz PWM 1.65V±1.65V, D: 50%I0 {
3.30V constant voltageI1 {
4600Hz PWM 1.65V±1.65V, D: 97%C0 {
12800Hz PWM 1.65V±1.65V, D: 96%C1 {
21200Hz PWM 1.65V±1.65V, D: 74%C2 {
25300Hz PWM 1.65V±1.65V, D: 78%C3 {
2900Hz PWM 1.65V±1.65V, D: 72%C4 {

Figure 3.12: Timing overview of the activity on each logical electrode over time during a single
computation of 1∨ 0 on the evolved OR gate. Time progresses along the x-axis, labeled in millisec-
onds at points of interest. O is the output pin, In are the input pins, and Cn are the configuration
pins. The small waveform illustrations reflect the duty cycle, but not the frequency. D is the duty
cycle.
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Figure 3.13: The first 500 raw material output samples recorded during four XOR computations.
The horizontal black lines represent average values for a sample series, and the horizontal red lines
represent the output interpretation threshold value, which is 1.367V.

10090100

Recording at 500000HzO {
10000Hz PWM 1.65V±1.65V, D: 50%I0 {
3.30V constant voltageI1 {
10300Hz PWM 1.65V±1.65V, D: 34%C0 {
11800Hz PWM 1.65V±1.65V, D: 86%C1 {
15000Hz PWM 1.65V±1.65V, D: 3%C2 {
14700Hz PWM 1.65V±1.65V, D: 61%C3 {
15400Hz PWM 1.65V±1.65V, D: 58%C4 {

Figure 3.14: Timing overview of the activity on each logical electrode over time during a single
computation of 1 ⊕ 0 on the evolved XOR gate. Time progresses along the x-axis, labeled in mil-
liseconds at points of interest. O is the output pin, In are the input pins, andCn are the configuration
pins. The small waveform illustrations reflect the duty cycle, but not the frequency. D is the duty
cycle.
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Table 3.3: Input-to-Output-Mapping Functions for the Selected Elementary Cellular Automata

I2 I1 I0 ORule 54 ORule 151 ORule 110

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 1 1 1

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 0 1 0

3.3 Evolving Elementary Cellular Automata in-Materio

This experiment attempts to evolve select Elementary Cellular Automata transition func-
tions in-materio, to test the hypothesis that computing with cellular automata in a single-
walled carbon nanotube and polymer composite material is an interesting avenue for fur-
ther research. Of particular interest are the Elementary Cellular Automata in Class III and
Class IV of Wolfram’s Elementary Cellular Automata classification, the former because
they can be capable of performing complex computations [29], and the latter because they
are famously conjectured by Wolfram to be capable of universal computation [55]. Two
stable Elementary Cellular Automata have been evolved: Rule 151, a chaotic Class III
cellular automata, and Rule 54, a complex Class IV cellular automata conjectured but not
yet proven to be computationally universal [55, p. 697][30]. An evolution of Rule 110,
a complex Class IV Elementary Cellular Automata for which a proof of universality of
computation was formulated by Cook in [11], was also attempted, but no suitable solution
was found.

Like in the logical gate experiment, the computational function can be thought of as a
mapping from binary inputs to a binary output. The expected input-to-output mappings for
Rule 54, Rule 151 and Rule 110, are given in Table 3.3, where In is input n, and ORule n

is the output for Rule n. The values are given in the logical domain.

3.3.1 Input Coding

Just as in the logic gate experiment, seven electrodes into the SWCNT material were used
as input electrodes. This time, three of these electrodes represent the state of the three cells
in the neighborhood set for an elementary cellular automaton rule transition. Each of these
three inputs can either be a logical 0 or a logical 1, coded as a static voltage or a digital
pulse applied to the input electrodes, respectively. The parameters for the static voltages
and digital pulses are the same as in the logic gate experiment. The other four input
electrodes function as a static material configuration, each electrode being applied upon a
digital pulse signal chosen from a specific range of frequency and duty cycle combinations,
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SWCNT

Input

Config
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Figure 3.15: Input, output and configuration mapping of the material interface electrodes for Ele-
mentary Cellular Automata computation.

like in the logic gate experiment.

3.3.2 Output Coding

The computational output expected from any binary cellular automaton transition function
is a single Boolean value: 0 or 1. This is the same output range as can be expected from
a binary logical gate. Therefore, the output interpretation scheme for this experiment is
the exact same as the one in the logic gate experiment, recalibrated for the input coding
specified in Section 3.3.1 over 200 computations.

An overview of the logical electrode mapping can be seen in Figure 3.15.

3.3.3 Genetic Algorithm Configuration

Genotype

The evolvable genotype was represented as an 18 symbol long symbol vector with 256
possible values for each symbol. The first 4 symbols of the genotype represent pulse wave
frequencies. The next 4 symbols of the genotype represent pulse wave duty cycles. The
next 8 symbols represent the pin mapping. The penultimate symbol represents the static
voltage level of a logical low input signal. The final symbol represents a center offset. This
genotype coding is similar to the one used in the logic gate experiment, except that it has
been adjusted for the different number of input and configuration electrodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Frequencies Duty cycles Pin mapping S C

Figure 3.16: The genotype mapping for this experiment. S is the static amplitude of a logical low
input signal, and C is the center threshold offset.

Similar to the logic gate experiment, taking a symbol’s value to be a numerical integer
value between 1-256, letting Gn denote the nth symbol of a genotype G, the pulse wave
frequency

fn = (Gn + 1)× 100Hz (3.8)
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Table 3.4: Genetic Algorithm Solver Parameters for Elementary Cellular Automata Evolution

Parameter Configuration

Children pool size 40 individuals

Adult pool size 40 individuals

Adult selection scheme Generational mixing

Parent selection scheme Tournament, ε : 0.05, k : 8

Crossover scheme Per-genome component, p: 0.5

Mutation scheme Per-genome component, p: 0.1

of a configuration electrode Cn is given by (3.8). The pulse wave duty cycle

dn =
bGn+4 × 100

255c
100

(3.9)

of a configuration electrode Cn is given by (3.9). The static voltage level

s = (G16 − 127)× 0.039 V (3.10)

of a logical low input signal is given by (3.10). The center threshold offset

c = (G17 − 127)× 0.156 V (3.11)

is given by (3.11).

Genetic Algorithm Parameters

The Genetic Algorithm solver was run with parameters as described in Table 3.4. This
setup is similar to the setup in the logic gate experiment, but with a higher mutation rate.

3.3.4 Fitness Function
The fitness of a genotype is given as a function of how well it can compute the target cel-
lular automaton’s state transition function. For all eight possible input combinations to the
transition function the input and configuration electrodes were activated simultaneously
for 100 ms. Samples were recorded for 80 ms, from the 10th to the 90th ms of the total
activated time. The squared scaled confidence value

cn =
(on − T )2

52
(3.12)

for input combination n is then calculated for each input combination as defined in (3.12),
where T is the output threshold value, and on is the averaged output value for input combi-
nation n. For each set of inputs, the interpreted output is compared to the expected output
from the input-to-output mapping function. If the output matches, cn points are awarded to
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the total fitness. If the output is undecided, 0 points are awarded to the total fitness. If the
output otherwise does not match, −10cn points are awarded to the total fitness. Then, if
all outputs were correct, an additional 8 points are awarded to the total fitness. Finally, the
fitness is transposed by further 8 points, and then scaled by a factor of 0.0625. Ultimately,
this results in a fitness score which is greater than or equal to 1 if and only if all outputs
are correct.

The fitness function does not account for stability, e.g. by performing the same fitness
evaluation multiple times and averaging the result.

3.3.5 Results
Computationally stable Rule 54 and Rule 151 transition functions have been found. No
suitable solution was found for Rule 110. The evolved solution configurations for Rule 54
and Rule 151 are shown in Figure 3.17.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

160 217 183 55 99 200 160 12 115 180 166 205 30 89 175 119 243 138Rule 54
{

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

149 220 16 174 123 119 75 157 28 51 163 154 138 115 125 36 219 2Rule 151
{

Figure 3.17: Genotypes representing successfully evolved Rule 54 and Rule 151 state transition
functions.

The Rule 151 solution was found in the 2nd generation of the Genetic Algorithm solver.
The Rule 54 solution was found in the 5th generation of the Genetic Algorithm solver.

Stability

Both of the two evolved solutions in Figure 3.17 were tested for correctness by performing
repeated computations in-materio over all eight possible inputs. Each solution was tested
for 1000 repeated calculations of each of the eight possible inputs, for a total of 8000
tests. The evolved Rule 54 computed the correct value 7917 out of 8000 times, resulting
in an estimated failure rate of 1.0375% ± 0.2221 pp at a 95% level of confidence. The
evolved Rule 151 computed the correct value 8000 out of 8000 times, resulting in an
estimated failure rate of 0.0000% ± 0.0000 pp at a 95% level of confidence. Figure 3.16
and Figure 3.15 show the levels of each of the measured average outputs for each of the
8000 calculations grouped by input for the evolved Rule 54 and the evolved Rule 151,
respectively.
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Figure 3.16: Histograms representing the measured average outputs over 8000 calculations using
the evolved Rule 54 configuration, grouped by input. The output threshold used for mapping the
measured output into the binary logical domain is plotted as a red vertical line in each histogram.
Measurements that result in a wrong computational answer are in magenta. Interesting details are
magnified.
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Figure 3.15: Histograms representing the measured average outputs over 8000 calculations using
the evolved Rule 151 configuration, grouped by input. The output threshold used for mapping the
measured output into the binary logical domain is plotted as a red vertical line in each histogram.
Interesting details are magnified.
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Example Computations

Here, a set of recorded Rule 54 and Rule 151 computations are presented. The material
configurations are the configurations coded in the Rule 54 and Rule 151 genotypes in Fig-
ure 3.17. Figure 3.16 and Figure 3.17 shows the states of the (logically mapped) input and
output electrodes over the course of the execution of the computation of the Rule 54 and
Rule 151 transition functions for the neighborhood state 0112. Figure 3.18 shows samples
recorded from eight Rule 54 calculations performed in-materio. Figure 3.19 shows sam-
ples recorded from eight Rule 151 calculations performed in-materio. Again, like with
the logic gates, the entire recording for each calculation is in reality 40000 samples long,
and again for practicality reasons only the first 500 samples are plotted here. The hor-
izontal black lines represent the measured total average of the entire recording for each
calculation. The magenta threshold together with a small gray padding band represents
the threshold value above or under which a recorded average is taken to be a logical 1 or
0, respectively.

10090100

Recording at 500000HzO {
10000Hz PWM 1.65V±1.65V, D: 50%I0 {
10000Hz PWM 1.65V±1.65V, D: 50%I1 {
3.30V constant voltageI2 {
16100Hz PWM 1.65V±1.65V, D: 38%C0 {
21800Hz PWM 1.65V±1.65V, D: 78%C1 {
18400Hz PWM 1.65V±1.65V, D: 62%C2 {
5600Hz PWM 1.65V±1.65V, D: 4%C3 {

Figure 3.16: A timing overview of the activity on each logical electrode over time during a single
computation of r54(0112) on the evolved Rule 54 device. Time progresses along the x-axis, labeled
in milliseconds at points of interest. O is the output pin, In are the input pins, and Cn are the
configuration pins. The small waveform illustrations reflect the duty cycle, but not the frequency. D
is the duty cycle.

10090100

Recording at 500000HzO {
10000Hz PWM 1.65V±1.65V, D: 50%I0 {
10000Hz PWM 1.65V±1.65V, D: 50%I1 {
3.30V constant voltageI2 {
15000Hz PWM 1.65V±1.65V, D: 48%C0 {
22100Hz PWM 1.65V±1.65V, D: 46%C1 {
1700Hz PWM 1.65V±1.65V, D: 29%C2 {
17500Hz PWM 1.65V±1.65V, D: 61%C3 {

Figure 3.17: A timing overview of the activity on each logical electrode over time during a single
computation of r151(0112) on the evolved Rule 151 device. Consult the Figure 3.16 caption for a
legend.
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Figure 3.18: The first 500 raw material output samples recorded during eight Rule 54 computations.
The black horizontal lines represent average values for a sample series, and the red horizontal line is
the output threshold, which is 1.328V.
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Figure 3.19: The first 500 raw material output samples recorded during eight Rule 151 computa-
tions. The black horizontal lines represent average values for a sample series, and the red horizontal
line is the output threshold, which is 0.000V.

42



3.4 Evolving All Elementary Cellular Automata in-Materio

This experiment attempts to evolve all the 256 different Elementary Cellular Automata
transition functions in-materio, one by one. This is done in an attempt to measure the
complexity ceiling of the material by using evolvability of the different rules as a proxy
indicator.

The experimental setup is similar to that of the individual logic gate and elementary
cellular automata transition function experiments detailed in previous sections. Expected
input-to-output mappings were constructed for each of the 256 rules and used as a target
for the evolutionary algorithm.

The electrode configuration used in the evolution of each of the 256 elementary cellular
automata is identical to the configuration used in the previous single elementary cellular
automata experiments.

The calibration value obtained manually in the previous experiments was kept at the
same fixed value as in the previous elementary cellular automata experiments for each
of the 256 rules. This is because the calibration value does not vary much as long the
electrode configuration and input-output coding remains the same.

An overview of the logical electrode mapping can be seen in Figure 3.15.

3.4.1 Input Coding

The input coding was identical to the one detailed in Section 3.3.1.

3.4.2 Output Coding

The output coding was identical to the one detailed in Section 3.3.2.

3.4.3 Genetic Algorithm Configuration

Genotype

The evolvable genotype format was the same as in the previous Elementary Cellular Au-
tomata experiment described in Section 3.3.

Genetic Algorithm Parameters

The parameters for the genetic algorithm are somewhat altered from the previous single
Elementary Cellular Automata experiments. Mostly, the parameters have been tuned with
the goal of reducing the amount of time needed to run each experiment, since there is a
practical limit to how much time experiments can be allowed to run during the course of a
Master’s thesis. Specifically, the population sizes have been decreased and the maximum
generation cutoff has been greatly reduced.

The Genetic Algorithm solver was run with parameters as described in Table 3.5. Aside
from the changes mentioned above, this setup is identical to the setup in the previous
experiment.
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Table 3.5: Genetic Algorithm Solver Parameters for All Elementary Cellular Automata Evolution

Parameter Configuration

Children pool size 20 individuals

Adult pool size 20 individuals

Adult selection scheme Generational mixing

Parent selection scheme Tournament, ε : 0.05, k : 8

Crossover scheme Per-genome component, p: 0.5

Mutation scheme Per-genome component, p: 0.1

3.4.4 Fitness Function
The fitness function was the same as in Section 3.3.4, but operating on samples recorded
for 8ms, from the 1st to the 9th ms of a total electrode activation time of 10ms. This
change in the fitness function was made primarily to decrease the time taken to perform
a single fitness evaluation, a necessity to be able to attempt to evolve all 256 Elementary
Cellular Automata within the time frame of this thesis.

3.4.5 Results
Of the 256 rule evolution attempts, 42 rules were successfully found in the material. The
average number of generations before a successful rule was evolved in the cases that found
a solution was ~23.57. Table 3.6 shows the results of the evolutionary runs for each of the
256 rules.

Table 3.6: The results of each of the 256 evolutionary runs. Grey rows signify that the rule in that
row was successfully evolved. Binary shows a binary representation of the rule transition table. Gen.
is the number of generations simulated for each run. Evo. shows a small fitness graph for each run
illustrating the best fitness for each generation along the x-axis.

Rule Binary λ λ′ Class Gen. Evo. Best fitness

Rule0 0.875 0.125 Class I 1 1.2024
Rule1 1 0 Class II 1 1.0203
Rule2 0.875 0.125 Class II 7 1.0800
Rule3 1 0 Class II 24 1.0874
Rule4 0.75 0.25 Class II 1 1.0047
Rule5 0.875 0.125 Class II 100 0.6235
Rule6 0.875 0.125 Class II 100 0.6140
Rule7 1 0 Class II 16 1.0278
Rule8 0.625 0.375 Class I 100 0.5740
Rule9 0.75 0.25 Class II 100 0.5821
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Rule Binary λ λ′ Class Gen. Evo. Best fitness

Rule10 0.75 0.25 Class II 100 0.5649
Rule11 0.875 0.125 Class II 100 0.5331
Rule12 0.75 0.25 Class II 100 0.5648
Rule13 0.875 0.125 Class II 100 0.5381
Rule14 0.875 0.125 Class II 100 0.5640
Rule15 1 0 Class II 7 1.0247
Rule16 0.5 0.5 Class II 11 1.0728
Rule17 0.625 0.375 Class II 14 1.0759
Rule18 0.625 0.375 Class III 100 0.5932
Rule19 0.75 0.25 Class II 2 1.0066
Rule20 0.625 0.375 Class II 15 1.0043
Rule21 0.75 0.25 Class II 1 1.0063
Rule22 0.75 0.25 Class III 100 0.5924
Rule23 0.875 0.125 Class II 1 1.0162
Rule24 0.625 0.375 Class II 100 0.5343
Rule25 0.75 0.25 Class II 100 0.5512
Rule26 0.75 0.25 Class II 100 0.5317
Rule27 0.875 0.125 Class II 100 0.5380
Rule28 0.75 0.25 Class II 100 0.5329
Rule29 0.875 0.125 Class II 100 0.5311
Rule30 0.875 0.125 Class III 100 0.5399
Rule31 1 0 Class II 4 1.0031
Rule32 0.375 0.375 Class I 100 0.5996
Rule33 0.5 0.5 Class II 100 0.5624
Rule34 0.5 0.5 Class II 100 0.5351
Rule35 0.625 0.375 Class II 100 0.5559
Rule36 0.5 0.5 Class II 100 0.5340
Rule37 0.625 0.375 Class II 100 0.5493
Rule38 0.625 0.375 Class II 100 0.5334
Rule39 0.75 0.25 Class II 100 0.5420
Rule40 0.5 0.5 Class I 100 0.4955
Rule41 0.625 0.375 Class II 100 0.4959
Rule42 0.625 0.375 Class II 100 0.4975
Rule43 0.75 0.25 Class II 100 0.4984
Rule44 0.625 0.375 Class II 100 0.4972
Rule45 0.75 0.25 Class III 100 0.5025
Rule46 0.75 0.25 Class II 100 0.4987
Rule47 0.875 0.125 Class II 27 1.0017
Rule48 0.5 0.5 Class II 100 0.5847
Rule49 0.625 0.375 Class II 77 1.0529
Rule50 0.625 0.375 Class II 100 0.5703
Rule51 0.75 0.25 Class II 18 1.0244
Rule52 0.625 0.375 Class II 100 0.5306
Rule53 0.75 0.25 Class II 100 0.5524

45



Rule Binary λ λ′ Class Gen. Evo. Best fitness

Rule54 0.75 0.25 Class IV 100 0.5474
Rule55 0.875 0.125 Class II 4 1.0037
Rule56 0.625 0.375 Class II 100 0.4975
Rule57 0.75 0.25 Class II 100 0.5005
Rule58 0.75 0.25 Class II 100 0.4969
Rule59 0.875 0.125 Class II 100 0.5068
Rule60 0.75 0.25 Class III 100 0.4997
Rule61 0.875 0.125 Class II 100 0.5017
Rule62 0.875 0.125 Class II 100 0.5011
Rule63 1 0 Class II 12 1.0084
Rule64 0.25 0.25 Class I 88 1.0620
Rule65 0.375 0.375 Class II 100 0.5575
Rule66 0.375 0.375 Class II 100 0.5296
Rule67 0.5 0.5 Class II 100 0.5294
Rule68 0.375 0.375 Class II 88 1.0597
Rule69 0.5 0.5 Class II 100 0.5339
Rule70 0.5 0.5 Class II 100 0.5302
Rule71 0.625 0.375 Class II 100 0.5500
Rule72 0.375 0.375 Class II 100 0.4988
Rule73 0.5 0.5 Class II 100 0.4981
Rule74 0.5 0.5 Class II 100 0.4964
Rule75 0.625 0.375 Class III 100 0.5008
Rule76 0.5 0.5 Class II 100 0.4966
Rule77 0.625 0.375 Class II 56 1.0044
Rule78 0.625 0.375 Class II 100 0.4983
Rule79 0.75 0.25 Class II 100 0.5060
Rule80 0.375 0.375 Class II 100 0.5398
Rule81 0.5 0.5 Class II 100 0.5338
Rule82 0.5 0.5 Class II 100 0.5526
Rule83 0.625 0.375 Class II 100 0.5493
Rule84 0.5 0.5 Class II 100 0.5343
Rule85 0.625 0.375 Class II 10 1.0176
Rule86 0.625 0.375 Class III 100 0.5509
Rule87 0.75 0.25 Class II 2 1.0045
Rule88 0.5 0.5 Class II 100 0.4959
Rule89 0.625 0.375 Class III 100 0.4984
Rule90 0.625 0.375 Class III 100 0.4970
Rule91 0.75 0.25 Class II 100 0.5016
Rule92 0.625 0.375 Class II 100 0.4979
Rule93 0.75 0.25 Class II 17 1.0030
Rule94 0.75 0.25 Class II 100 0.5011
Rule95 0.875 0.125 Class II 100 0.5183
Rule96 0.375 0.375 Class I 100 0.5327
Rule97 0.5 0.5 Class II 100 0.5296
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Rule Binary λ λ′ Class Gen. Evo. Best fitness

Rule98 0.5 0.5 Class II 100 0.5476
Rule99 0.625 0.375 Class II 100 0.5465
Rule100 0.5 0.5 Class II 100 0.5330
Rule101 0.625 0.375 Class III 100 0.5491
Rule102 0.625 0.375 Class III 100 0.5475
Rule103 0.75 0.25 Class II 100 0.5200
Rule104 0.5 0.5 Class II 100 0.4973
Rule105 0.625 0.375 Class II 100 0.4968
Rule106 0.625 0.375 Class IV 100 0.4947
Rule107 0.75 0.25 Class II 100 0.5012
Rule108 0.625 0.375 Class II 100 0.4997
Rule109 0.75 0.25 Class II 100 0.4988
Rule110 0.75 0.25 Class IV 100 0.4979
Rule111 0.875 0.125 Class II 100 0.5116
Rule112 0.5 0.5 Class II 65 1.0010
Rule113 0.625 0.375 Class II 100 0.5288
Rule114 0.625 0.375 Class II 100 0.5473
Rule115 0.75 0.25 Class II 100 0.5465
Rule116 0.625 0.375 Class II 49 1.0270
Rule117 0.75 0.25 Class II 100 0.5514
Rule118 0.75 0.25 Class II 100 0.5343
Rule119 0.875 0.125 Class II 1 1.0084
Rule120 0.625 0.375 Class IV 100 0.4966
Rule121 0.75 0.25 Class II 100 0.5022
Rule122 0.75 0.25 Class III 100 0.4968
Rule123 0.875 0.125 Class II 100 0.5124
Rule124 0.75 0.25 Class IV 100 0.5001
Rule125 0.875 0.125 Class III 100 0.5099
Rule126 0.875 0.125 Class III 100 0.4997
Rule127 1 0 Class III 2 1.0128
Rule128 0.125 0.125 Class I 100 0.5406
Rule129 0.25 0.25 Class III 100 0.5508
Rule130 0.25 0.25 Class II 100 0.5540
Rule131 0.375 0.375 Class II 100 0.5347
Rule132 0.25 0.25 Class II 100 0.5566
Rule133 0.375 0.375 Class II 100 0.5243
Rule134 0.375 0.375 Class II 100 0.5496
Rule135 0.5 0.5 Class III 100 0.5462
Rule136 0.25 0.25 Class I 100 0.5205
Rule137 0.375 0.375 Class IV 100 0.5256
Rule138 0.375 0.375 Class II 100 0.5252
Rule139 0.5 0.5 Class II 100 0.5451
Rule140 0.375 0.375 Class II 100 0.5447
Rule141 0.5 0.5 Class II 100 0.5265
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Rule Binary λ λ′ Class Gen. Evo. Best fitness

Rule142 0.5 0.5 Class II 100 0.5445
Rule143 0.625 0.375 Class II 67 1.0329
Rule144 0.25 0.25 Class II 100 0.5420
Rule145 0.375 0.375 Class II 100 0.5246
Rule146 0.375 0.375 Class III 100 0.5580
Rule147 0.5 0.5 Class IV 100 0.5315
Rule148 0.375 0.375 Class II 100 0.5555
Rule149 0.5 0.5 Class III 100 0.5475
Rule150 0.5 0.5 Class III 100 0.5457
Rule151 0.625 0.375 Class III 21 1.0389
Rule152 0.375 0.375 Class II 100 0.5298
Rule153 0.5 0.5 Class III 100 0.5502
Rule154 0.5 0.5 Class II 100 0.5474
Rule155 0.625 0.375 Class II 100 0.5259
Rule156 0.5 0.5 Class II 49 1.0040
Rule157 0.625 0.375 Class II 27 1.0033
Rule158 0.625 0.375 Class II 100 0.5523
Rule159 0.75 0.25 Class II 5 1.0198
Rule160 0.25 0.25 Class I 100 0.4979
Rule161 0.375 0.375 Class III 100 0.4980
Rule162 0.375 0.375 Class II 100 0.4954
Rule163 0.5 0.5 Class II 100 0.4961
Rule164 0.375 0.375 Class II 100 0.4976
Rule165 0.5 0.5 Class III 100 0.5003
Rule166 0.5 0.5 Class II 100 0.4979
Rule167 0.625 0.375 Class II 100 0.5014
Rule168 0.375 0.375 Class I 100 0.4984
Rule169 0.5 0.5 Class IV 100 0.4964
Rule170 0.5 0.5 Class II 100 0.4948
Rule171 0.625 0.375 Class II 100 0.5014
Rule172 0.5 0.5 Class II 100 0.4984
Rule173 0.625 0.375 Class II 100 0.4967
Rule174 0.625 0.375 Class II 100 0.4975
Rule175 0.75 0.25 Class II 100 0.5126
Rule176 0.375 0.375 Class II 100 0.4981
Rule177 0.5 0.5 Class II 100 0.5000
Rule178 0.5 0.5 Class II 100 0.4996
Rule179 0.625 0.375 Class II 100 0.5038
Rule180 0.5 0.5 Class II 100 0.4991
Rule181 0.625 0.375 Class II 100 0.4994
Rule182 0.625 0.375 Class III 100 0.4986
Rule183 0.75 0.25 Class III 100 0.5185
Rule184 0.5 0.5 Class II 100 0.4980
Rule185 0.625 0.375 Class II 100 0.4995
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Rule Binary λ λ′ Class Gen. Evo. Best fitness

Rule186 0.625 0.375 Class II 100 0.4991
Rule187 0.75 0.25 Class II 100 0.4998
Rule188 0.625 0.375 Class II 100 0.5021
Rule189 0.75 0.25 Class II 100 0.5017
Rule190 0.75 0.25 Class II 35 1.0042
Rule191 0.875 0.125 Class II 45 1.0214
Rule192 0.25 0.25 Class I 100 0.4982
Rule193 0.375 0.375 Class IV 100 0.4982
Rule194 0.375 0.375 Class I 100 0.4957
Rule195 0.5 0.5 Class III 100 0.4991
Rule196 0.375 0.375 Class II 100 0.4984
Rule197 0.5 0.5 Class II 100 0.5038
Rule198 0.5 0.5 Class II 100 0.4986
Rule199 0.625 0.375 Class II 100 0.5046
Rule200 0.375 0.375 Class II 100 0.4962
Rule201 0.5 0.5 Class II 100 0.4971
Rule202 0.5 0.5 Class II 100 0.4975
Rule203 0.625 0.375 Class II 100 0.4970
Rule204 0.5 0.5 Class II 100 0.4969
Rule205 0.625 0.375 Class II 100 0.5051
Rule206 0.625 0.375 Class II 51 1.0035
Rule207 0.75 0.25 Class II 21 1.0123
Rule208 0.375 0.375 Class II 100 0.4978
Rule209 0.5 0.5 Class II 100 0.5000
Rule210 0.5 0.5 Class II 100 0.4966
Rule211 0.625 0.375 Class II 100 0.5000
Rule212 0.5 0.5 Class II 100 0.4994
Rule213 0.625 0.375 Class II 100 0.5068
Rule214 0.625 0.375 Class II 100 0.5004
Rule215 0.75 0.25 Class II 100 0.5187
Rule216 0.5 0.5 Class II 100 0.4975
Rule217 0.625 0.375 Class II 100 0.4986
Rule218 0.625 0.375 Class II 100 0.4936
Rule219 0.75 0.25 Class II 100 0.5009
Rule220 0.625 0.375 Class II 100 0.4970
Rule221 0.75 0.25 Class II 100 0.5100
Rule222 0.75 0.25 Class II 100 0.5002
Rule223 0.875 0.125 Class II 51 1.0128
Rule224 0.375 0.375 Class I 100 0.4979
Rule225 0.5 0.5 Class IV 100 0.4973
Rule226 0.5 0.5 Class II 100 0.4969
Rule227 0.625 0.375 Class II 100 0.5004
Rule228 0.5 0.5 Class II 100 0.4983
Rule229 0.625 0.375 Class II 100 0.4990
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Rule Binary λ λ′ Class Gen. Evo. Best fitness

Rule230 0.625 0.375 Class II 100 0.4961
Rule231 0.75 0.25 Class II 100 0.4981
Rule232 0.5 0.5 Class II 100 0.4966
Rule233 0.625 0.375 Class II 100 0.4959
Rule234 0.625 0.375 Class I 100 0.4932
Rule235 0.75 0.25 Class I 100 0.4997
Rule236 0.625 0.375 Class II 100 0.4995
Rule237 0.75 0.25 Class II 100 0.5007
Rule238 0.75 0.25 Class I 100 0.4988
Rule239 0.875 0.125 Class I 33 1.0123
Rule240 0.5 0.5 Class II 100 0.4990
Rule241 0.625 0.375 Class II 100 0.4971
Rule242 0.625 0.375 Class II 100 0.4965
Rule243 0.75 0.25 Class II 100 0.5082
Rule244 0.625 0.375 Class II 100 0.4977
Rule245 0.75 0.25 Class II 100 0.5087
Rule246 0.75 0.25 Class II 100 0.4992
Rule247 0.875 0.125 Class II 5 1.0080
Rule248 0.625 0.375 Class I 100 0.4956
Rule249 0.75 0.25 Class I 100 0.5040
Rule250 0.75 0.25 Class I 100 0.4988
Rule251 0.875 0.125 Class I 100 0.5083
Rule252 0.75 0.25 Class I 100 0.4959
Rule253 0.875 0.125 Class I 100 0.5114
Rule254 0.875 0.125 Class I 100 0.4990
Rule255 1 0 Class I 1 1.0192
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Chapter 4
Analysis

The experiments show that evolved computation in-materio is indeed possible in single-
walled carbon nanotube and polymer composite meshes, as a multitude of different linear
and non-linear binary logic gates and Elementary Cellular Automata transition tables have
been successfully evolved in the material. Using these results as a basis, an attempt can be
made to reason about the computational properties of the underlying material itself.

4.1 Complexity Ceiling of the Material

From a theoretical standpoint, computation is a purely abstract mathematical concept. In
abstract, a computation can be described as a series of transitions between a number of
states caused by some input.

Defining a concrete physical device as a piece of physical material that can be in any
one of a finite number of states at any given time, and which can transition from one state
to another as a reaction to external excitations, creating a physical implementation of a
device that can perform computation in the abstract then becomes an exercise in defining
a mapping from the physical states of the material to the states in the abstract computation
such that the state transitions in the physical domain result in meaningful state transitions
in the abstract domain. Multiple physical states can map to the same abstract state, but
a physical state may not map to multiple abstract states. A direct consequence of this is
that since there are only a finite number of states a physical device can be in, assuming
discrete physics, there is a limit to which computations may be implemented in a given
physical device. A physical device capable of being in N different states can implement a
computation with at most N states. Any computation with more than N states cannot be
implemented in that physical device, as they will by the pigeonhole principle1 violate the
limitation that a physical state may not map to multiple abstract states.

1The pigeonhole principle states that if n items are put into m containers, and n > m, then at least one
container must contain more than one item.
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Practical implementations of abstract computations in the physical domain today use
a large number of physical states for each logical state.

As an example, consider the MOSFET transistor NAND gate, a physical computational
device. It is a physical implementation of the logical NAND gate, an abstract computa-
tional device. A MOSFET transistor can be in an enormous amount of different physical
states as the electrical charges in different parts of the device vary. Yet, the abstract com-
putation device it implements only has two states, which is also the output of the device:
logical 0 and logical 1.

The larger the disparity between the number of physical states used and the number
of abstract states used in a mapping, the less efficient the computer implementation is in
terms of utilizing the computational potential of the physical substrate. The relationship
between the number of physical state and the number abstract states

η =
|SA|
|SP |

(4.1)

can be defined as in (4.1), where SA is the set of all possible states in the abstract com-
putation device and SP is the set of all possible states in the physical computation device.
Then, a physical implementation of an abstract computation device with a higher η is
more material-efficient than one with a lower η, with η = 1 being the absolute theoretical
maximum for this measure. The usefulness of η in measuring implementation efficiency
presupposes a discrete physical environment, as the converse implies that all materials can
be in an infinite number of different states. Currently, it is not known whether or not the
physical world is discrete.

Armed with the assumption that a physical material sample has a ceiling for the com-
putational complexity of devices that can be implemented in them (i.e. has a maximum
number of states it can be in and transition between), together with the intuition that it is
easier to find a physical-to-abstract state mapping with a larger η than one with a smaller
η, the results of the Elementary Cellular Automata evolution experiments explained in
Chapter 3 can be used as a proxy measurement of the computational complexity ceiling of
the material-under-study in this thesis.

4.2 Evolvability and the λ-Parameter
Recall that the lambda parameter is one of many different proposed schemes of classifica-
tion of cellular automata. Cellular automata with a λ-parameter close to 0 tend toward a
frozen, non-changing structure over time, while cellular automata with a λ-parameter close
to 1 tend toward completely chaotic behavior; “complex” behavior lies in-between [25].
Assuming that different materials have different inherent potentials for computation com-
plexity with regards to evolution in-materio, the λ-parameter of different evolved cellular
automata in a material can be used as a proxy for measuring the complexity ceiling of that
material. Since this metric is a proxy metric, it is limited in scope to the specific methods
used for evolution and interpretation of computation.

Care must be taken when using λ-parameter, as it is originally only well-defined for
a subset of all cellular automata. A cellular automaton only has a λ-parameter if the
non-quiescent state transitions, i.e. state transitions that are not transitions to the quiescent
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state, are randomly and uniformly distributed over the remaining non-quiescent states [25].
For binary cellular automata there can only be one non-quiescent state, which means that
all binary cellular automata strictly speaking have a well-defined λ since non-quiescent
state transitions are randomly and uniformly distributed over the only non-quiescent state.
However, the lack of choice in non-quiescent states does alter the qualitative behaviors
of binary cellular automata at high λ-parameters when compared to the original find-
ings in [25]. High λ-parameter binary cellular automata will tend to frozen structures
rather than chaotic behavior. As such, it can be useful to define a binary variant of the λ-
parameter, the λ′-parameter, which is like the λ-parameter except that the quiescent state
is always the most transitioned-to state. This means that the λ′-parameter is effectively a
mirroring of the λ-parameter around λ = 0.5 as the maximum value.

Looking at the results from the evolution experiments from Chapter 3, and at the All-
ECA experiment in particular, some conclusions can be made with regards to the com-
plexity of the material. It seems that Elementary Cellular Automata with extreme λ-
parameters, i.e. closer to λ = 0 and λ = 1, or closer to λ′ = 0, evolve more easily
than Elementary Cellular Automata that have a λ-parameter somewhere in-between. The
Elementary Cellular Automata that evolve the least easily in the experimental setup are the
ones with the largest λ′-parameters. An overview of evolution difficulty measured as the
average number of generations used for evolutionary runs grouped by λ′-parameter can be
seen in Figure 4.2. A different overview of evolution difficulty measured as the average
fitness of the best individual of the last generation of each evolutionary run grouped by
λ′-parameter can be seen in Figure 4.1. Both measures tell the same story: Elementary
Cellular Automata with extreme λ′-parameters evolve more easily than Elementary Cellu-
lar Automata with λ′-parameters close to 0.5. These findings are in-line with the intuition
that more computationally complex cellular automata should take longer to evolve, if taken
together with the idea that the most computationally complex cellular automata appear at
the Edge-of-Chaos [25], i.e. at the phase transition between ordered and chaotic behavior.
Looking at the location of the Edge of Chaos in Figure 2.8, these results support the notion
that for Elementary Cellular Automata the Edge of Chaos lies around λ-parameter values
of ~0.5.

4.3 Evolvability and Wolfram Classification
Recall that a different classification scheme for cellular automata is the Wolfram Classifi-
cation Scheme. Additional insights to the questions around computational complexity in
the material might be gleaned from looking at the evolvability of the different Elementary
Cellular Automata grouped by Wolfram Classes.

In the Wolfram Classification, the classes are ordered by complexity, so if the hypoth-
esis that less complex Elementary Cellular Automata evolve in-materio more easily than
more complex Elementary Cellular Automata, then it is reasonable to expect that evolving
a Class I automaton should on average require fewer generations than a Class II automa-
tion, a Class II automaton should on average require fewer generations than a Class III
automaton, and finally a Class III automaton should require on average fewer generations
to evolve than a Class IV automation.

Figure 4.3 shows the distributions of generations simulated in order to evolve an ac-
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Figure 4.1: The average fitness of the best individual of the last generation of an evolutionary run
grouped by λ′-parameter.
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Figure 4.2: The average number of generations simulated per evolutionary run grouped by λ′-
parameter.
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Figure 4.3: Distribution of evolution length as measured by generation count grouped by Wolfram
Class. Circles show the number of generations required to evolve a rule. The boxes are Tukey-
style boxplots [32], and show median and quartile values as vertical lines and average values as
diamonds, with whiskers showing the smallest value larger than (the lower quartile - 1.5 IQR) and
the largest value smaller than (the upper quartile + 1.5 IQR), IQR being the difference between the
upper quartile and the lower quartile. Class IV is not present as there were no successful Class IV
evolution runs in the All-ECA experiment.

ceptable Elementary Cellular Automata for each of the four classes. The distributions do
not include non-successfully evolved Elementary Cellular Automata.

Figure 4.4 shows the class distribution of the 42 successfully evolved Elementary
Cellular Automata compared to the class distribution of all 256 Elementary Cellular Au-
tomata.

Of the 256 Elementary Cellular Automata, 25 (~9.8%) are Class I, 192 (~75.8% are
Class II), 27 (~10.5%) are Class III, and 12 (~4.7%) are Class IV. If the opposite of what
the hypothesis predicts were true, i.e. that Elementary Cellular Automata are on average
equally likely to be successfully evolved in-materio regardless of Wolfram Class, a similar
distribution of classes should be present in the set of successfully evolved Elementary
Cellular Automata in the All-ECA experiment. Of the successfully evolved Elementary
Cellular Automata in the All-ECA experiment, however, ~9.5% are Class I, ~85.7% are
Class II, ~4.8% are Class III and 0% are Class IV. This is a very different class distribution
than what should be expected if the any Elementary Cellular Automata were equally likely
to evolve successfully. Hence, the results from the experiment indicate that there might be
a correlation between cellular automata complexity and evolvability in-materio.

4.4 Evolvability and Set Bits in an Elementary Cellular
Automaton Rule

As a contrast to looking at correlations between cellular automata complexity and evolv-
ability in-materio, other potential correlators should be looked at as well. Perhaps the
evolvability of an Elementary Cellular Automata is not a function of its complexity, but
rather simply the numbers of set bits in the Elementary Cellular Automaton Rule number.
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Figure 4.4: Elementary Cellular Automata Grouped by Wolfram Class.
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It is easy to imagine a simple hypothetical material for which this is the case – any material
which favors set bits rather than unset bits as output would qualify. An extreme example
is a hypothetical material which always outputs set bits regardless of input. Looking at
the distribution of the amount of set bits in the 256 Elementary Cellular Automata com-
pared to distribution of the amount of set bits in the 42 successfully evolved Elementary
Cellular Automata, solutions with 6-8 bits set are over-represented, and solutions with 2-5
bits set are under-represented. Solutions with 0 or 1 set bits are over-represented again. A
comparison of the two distributions can be seen in Figure 4.5.

Counting the number of set bits in any binary cellular automaton, and certainly there-
fore in the Elementary Cellular Automata, is analogous to calculating the λ-parameter of
a rule.

4.5 Sensitivity Analysis
Only a single evolutionary run has been executed for each of the 256 Elementary Cellular
Automata in the experiment detailed in Section 3.4. When taken individually, a single run
for each of the 256 different rules is not enough to be able to draw meaningful conclusions
about a single Elementary Cellular Automaton in-materio, statistically speaking. As an
example, consider the evolution of Elementary Cellular Automata Rule54 in the Single El-
ementary Cellular Automaton experiment (Section 3.3) and in the All Elementary Cellular
Automata experiment (Section 3.4). The All-ECA experiment was not able to evolve a
suitable Rule54, yet a suitable solution for that same rule was clearly found in the Single-
ECA experiment. Care must therefore be taken not to attribute more importance to the
results of this experiment than should be afforded when analyzed from a statistical point-
of-view. Looking at the experiment as a whole, then, treating the different runs as repeat
experiments over different classifications, is the better approach to extracting a meaningful
interpretation of this experiment.

For the purpose of reducing the worst-case evolution time for a single evolutionary
run, each run was capped at 100 generations. That is, if a solution was not found after 100
generations, the run would be considered unsuccessful. This generation cap has probably
pruned away a couple would-be-successful evolutions had the generation cap been higher,
e.g. capped at 1000 generations. Although more Elementary Cellular Automata were
successfully evolved after few generations rather than many, as illustrated in Figure 4.3, it
seems reasonable to assume that more generations per evolutionary run would ultimately
yield more successful evolutions.

Again for the purpose of reducing the evolution time for a single evolutionary run,
the fitness evaluation was changed to a 10 ms-based computation rather than a 100 ms-
based computation. This change could also impact evolvability of a rule in the All-ECA
experiment when compared to the Single-ECA experiment. Ultimately, when considering
the maximum frequency (50 kHz) of oscillation on the input electrodes, the frequency
of sampling on the output electrode (500 kHz), the relative order of magnitude between
the two, a model of the material that assumes an electrical stabilization on the order of
microseconds or less, and considering the fact that the 100 ms value was chosen rather
arbitrarily in the Single-ECA experiment to begin with, it seems at least intuitively unlikely
that a change of execution time from 100 ms to 10 ms should greatly impact evolvability
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of a fit solution. Still, intuition aside, the impact of this change remains an open question.
Further, still motivated by time constraints, the population size in the experiments

was reduced from 40 to 20 individuals in each of the adult and child pools. A change
in this direction generally increases the number of generations that must be simulated
before an acceptable solution is found, and a too small population increases the risk of
the evolutionary algorithm getting stuck at local maxima in the fitness space. Still, the
decreased population size is still well within the limits of what has been shown to work
for evolution in-materio in random single-walled carbon nanotube and polymer meshes.
In a number of experiments, desired computation is successfully evolved in-materio using
an evolutionary algorithm population size of 5 [10, 36, 37, 38], which is considerably less
than the 20+20 population size used in the latter experiments in this thesis.

Even with all these time-saving changes to the largest experiment, performing a sin-
gle fitness evaluation of a solution candidate in the material still takes on the order of
10 s to compute because of various unavoidable overheads. With the enormous number of
fitness evaluations required by these experiments, performing the experiments has taken
several months of around-the-clock in-materio computation. Increasing the number of re-
peat runs of each rule evolution and perhaps also increasing the generation cap for each
evolutionary run would improve results in terms of statistical significance, but is unfortu-
nately prohibitively time-consuming, and therefore out of scope for this thesis.

4.6 Material Sample
The same material sample was used for all the experiments. Random single-walled car-
bon nanotube (SWCNT) and polymer mesh devices, as the name suggests, are randomly
constructed. Because of this, different material samples may exhibit vastly different com-
putational behavior. There are many different variables such as nanotube concentration,
electrode layout, production methods and more that may improve or decrease the mate-
rial’s aptitude for computation substration. One of the goals for this thesis is to investigate
the viability of SWNCT as a material for Evolution-in-Materio, and while the material is
shown to support stable complex computation, there are still many facets of the material
left to investigate.

An abstract computational device evolved on one material sample cannot be used on
a different material sample directly. This limits the commercial potential of SWCNT
devices when used for evolution-in-materio, since while they can be efficiently mass-
produced [14], each individual physical device needs to have a unique configuration evolved
to be useful.

4.7 Stability of Results
The stability of the results is greater than that of previous work [23, 27], and the evolved
solutions seem stable enough to be called “stable” solutions in the context of Evolution-
in-Materio. Looking closer at the distribution of measurements in Figure 3.8, Figure 3.16
and Figure 3.15, a peculiarity becomes apparent. There is sometimes a small separate
clustered group of measurements far away from the median which severely reduce the
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stability of the otherwise very tight clustering of measurements around the median. This
seems strange, and may be caused by some complex intrinsic process within the material
itself, but it may also be caused by some experimental error in process, equipment, soft-
ware or similar. If the latter is the case, the true computational stability of the solutions
may very well be much greater than what they are measured to be in the experiments in
this thesis. Still, how stable is stable enough? Comparing to the error rate of consumer-
grade conventional computers, which, while not published anywhere, seems to be on the
order of one quintillion operations per error2, the computational devices presented in this
thesis are anything but stable.

4.8 Environmental Dependence
The experiments model the material as an ideal device that only reacts to electrical signals
on the electrodes. In reality, the computational properties and process probably vary based
on other external effects such as changes in temperature, light, and other environment
variables. No special care was taken to maintain a stable environment – the experiments
were run on a desk in a shared computer hardware laboratory in close proximity to noisy
computers, a soldering station and multiple different types of lamps and light fixtures, as
you might commonly expect to find in a computer hardware laboratory.

The relative stability of the results despite lack of a strictly controlled environment
suggest that the material is reasonably invariant to the changing environmental effects of
an indoor environment. This is also what one might expect when looking at the material
from a material sciences perspective. The demonstrated environmental invariance in the
computational substrate corroborates the attractiveness of single-walled carbon nanotube
and polymer composite meshes as a computational substrate.

4.9 Speed of Computation
Currently, performing a computation in-materio takes on the order of 10 ms to complete.
This is because the input/output encoding is specified somewhat arbitrarily to last for that
length of time. 10 ms is quite slow compared to even consumer-grade conventional com-
puters, which are easily capable of upwards of hundreds of millions of operations over
the same time period. That being said, the results presented in this thesis are a proof of
concept, and computation speeds may be improved upon in further work.

4.10 Where Does Computation Take Place?
Does the computation actually take place in-materio? When performing evolution-guided
search for computation in a material, the entire input domain and output range of the com-
putational function is known, and a signal encoding and decoding process is performed
off-material. This can make it hard to pinpoint exactly where the computation takes place.
Certainly it is possible to construct a fitness evaluator and input/output encoding that is so

2An estimated 2 billion operations each second every day for 20 years before the silicon microchip wears out.
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complex that it can find computation in anything – even random noise. In such a case, the
computation is in reality happening outside of the material. How can the origin of com-
putation be measured? It can be helpful to replace the material with different hypothetical
materials and imagine what would happen if the same computations were performed us-
ing the switched hypothetical materials, but still using the same input and output coding
schemes. Considering the following three hypothetical alternative materials, some insight
might be gained into the computational complexity of the SWCNT material: 1. a compu-
tationally “dead” material that always outputs the same static signal(s); 2. a material that
produces “true random noise” on its output(s) regardless of the input; and 3. a material that
linearly combines its input(s) and passes it on to its output(s). Does the computation that
allegedly happens in the real material also happen when the material is replaced with one
these hypothetical materials? For one, the real material certainly out-performs the “dead”
material – all of the implemented functions show a range that requires the output voltage
to be above or below some static non-changing threshold level depending on the input.
Since the expected output depends on the input, and the static threshold crucially does not
change based on the input, it demonstrably performs more computation than the “dead”
material.

Now, in the case of the random material, it is possible that the random output happens
to measure on the right side of the threshold level for different inputs by pure chance.
However, it will probably not do so very often, statistically speaking. The evolved devices
presented in this thesis are all reasonably stable in their output, or at least much more stable
than what one can expect from a “true” random material. This hints at an understanding
where at least some of the computation happens in the material itself.

In the case of the linearly combining material, linear computation is possible in-materio
almost by definition, but computations that are not linearly separable should not be imple-
mentable. The evolved XOR gate, and several of the Elementary Cellular Automata in
the SWCNT material, however, are not linearly separable functions. Thus, the SWCNT
material seems to exhibit computational promise beyond linearly separable functions.
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Chapter 5
Conclusion

This thesis has explored the idea of using Evolution-in-Materio to exploit a single-walled
carbon nanotube and polymer composite random mesh material for abstracted computa-
tion using cellular automata. The goals were to investigate the capacity for computational
complexity in the material-under-study, and to reason about the complexity ceiling for a
computational substrate for Evolution-in-Materio in a general sense. The experiments pre-
sented in this thesis show that reasonably stable linear and non-linear binary logic gates,
Sub-Elementary Cellular Automata, and Class I, II, III and IV Elementary Cellular Au-
tomata can be successfully evolved in-materio in a random single-walled carbon nanotube
and polymer mesh material, and as such demonstrate theoretical viability of the material as
a computational substrate. The degree of complexity of different abstract computational
devices is correlated with the probability of a successful evolution of a physical imple-
mentation of those abstract devices. As such, the degree of success in evolution of Ele-
mentary Cellular Automata of different Wolfram Classes and with differing λ-parameters
in-materio has been used as a proxy to measure the complexity ceiling for the material-
under-study, and, given that the proxy metric is accurate, supports Langton’s notions of
complexity at the Edge-of-Chaos [25]. Further, a simple theoretical measure η for im-
plementation efficiency of abstract computation devices in physical materials has been
introduced.

5.1 Further Work
Evolution-in-materio is a time-consuming approach to designing computational devices.
The analysis and conclusions made in this thesis could be strengthened significantly by
increasing the number of evolutionary runs made to increase sample sizes, as discussed in
Section 4.5. In order to do this efficiently, new implementation schemes could be devised
that allow for shorter computation times in-materio for quicker fitness evaluation, which
again allows for faster Evolution-in-Materio. This also synergizes well with lifting the
efficiency of an evolved device out of the realm of proof-of-concepts and into the realm of
situationally useful computational devices.
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The current input/output encoding scheme for signals in and out of the material are not
chainable without intermediate conversion. This limits the usefulness in creating larger
composite computation devices through traditional componentized design. One possible
avenue for further work is to search for an input-output compatible chainable representa-
tion that allows for feeding output from one device as input to the next.

Energy efficiency is one of the areas in which Evolution-in-Materio could show promise.
No work has been done in this thesis to measure energy efficiency of the presented devices.
One possible avenue for further work is to measure and compare the relative energy effi-
ciency of different signal encoding schemes coupled with different abstract computational
devices implemented in the material-under-study.

In Section 4.7, a peculiarity in stability measurements is discussed. One possible av-
enue for further work is to investigate this peculiarity to determine the cause, which could
result in greater stability.

No special effort has been made to measure the environmental dependence of the ma-
terial, as discussed in Section 4.8. One possible avenue for further work is to examine
how environmental factors such as temperature, light and others affect computation in the
material.

The work in this thesis focuses on the evolution of computational devices in-materio.
However, this is just the first step in designing complete computing systems that use
evolved in-materio designs. One possible avenue for further work is to build a more
practical complete computing system leveraging Evolution-in-Materio, be it specialized
or universal in terms of computational power. One example of such a possible system
would be a hybrid conventional/materio system where a computationally powerful Ele-
mentary Cellular Automata, e.g. the computation-universal Rule 110 [11], is implemented
in-materio and used to calculate state transitions for a cellular automaton simulation where
the state of the simulation is kept track of on a traditional computer for practicality. An
illustration of a possible setup for such a simulation can be seen in Figure 5.11.

Ultimately, Evolution-in-Materio in the long term promises new possibilities for phys-
ical computational devices with extreme properties arising from specialized exploitation
of substrates beyond what is possible with traditional design approaches such as extremely
high energy efficiency or extremely low latency in real-time systems. It is even possible
to envision computing systems where material configurations are evolved “on-the-fly” to
be used for a short period of period of time before it is discarded as the requirements of
the environment changes, by way of analogy much like a just-in-time compiler from the
world of programming language interpreters works.

1Desktop computer drawing adapted with permission from sweetclipart.com.
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Figure 5.1: A setup for a practical simulation of Rule 110 in a hybrid conventional/materio device.
The transitions are computed in-materio, and the state is stored on a conventional computer.
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