

Romlig mineralogisk og geofysisk karakterisering av Nabberen nefelinsyenittforekomst

Med utgangspunkt i definerte geokjemiske domener og med fokus på forekomsten av magnetitt

Andreas P Lorentzen

Tekniske geofag Innlevert: januar 2016 Hovedveileder: Steinar Løve Ellefmo, IGB

Norges teknisk-naturvitenskapelige universitet Institutt for geologi og bergteknikk

Forord

Fullføring av denne oppgaven hadde ikke vært mulig uten hjelp fra mange parter. Jeg vil først takke min veileder, Steinar Løve Ellefmo, i forbindelse med definering av oppgaven og for å ha hjulpet meg alle gangene jeg har sittet fast. Jeg vil takke Sibelco Nordic AS ved Roar Sandøy og Dirk Schwerdtfeger, for hjelp med feltarbeid og muligheten for å få arbeide i deres gruve på Stjernøya. Bjørn Eske og Kurt Aasly har vært til stor hjelp i forbindelse med den petrologiske analysen, både digitalt ved bildeanalysen og med mikroskopi. En spesiell takk til Erik Stabel Ludviksen for å ha gjennomgått oppgaven og kommet med tilbakemeldinger.

Min mor, Sissel Lorentzen, har vært til stor hjelp med korrektur og som språklig diskusjonspartner. Sist vil jeg takke min bror, Johannes Lorentzen for å ha overbevist meg om å gå over til LATEX og for å ha hjulpet meg med alle problemer i denne forbindelse. Dette har jeg spart mye tid på.

Trondheim, 29. Januar 2016

Andreas Pippidis Lorentzen

Sammendrag

Sommeren 2015 ble det gjort undersøkelser i gruven til Sibelco Nordic AS. Nabbaren Nefelinsyenitt, som blir undersøkt i oppgaven, er lokalisert på sør-siden av Stjernøya, nordvest for Alta. Bedriften har delt forekomsten inn i geokjemiske domener. Dagens produksjonsstyring baserer seg på disse domenene. For produksjonsstyringen, kan tilstedeværelsen av magnetitt være en utfordring. Det ble derfor foretatt en del mineralogiske, petrologiske og prosessmineralogiske undersøkelser med fokus på magnetitt sin opptreden og magnetisk respons.

Resultatene viser at det er liten korrelasjon mellom magnetisk susceptibilitet og produsjonsstyringsparametrene.

Magnetisk susceptibilitet kan potensielt gi ny informasjon, som supplerer de geokjemiske undersøkelsene som gjennomføres i dag. Det burde, uten store problemer og kostnader, være mulig implementere magnetisk susceptibilitet i dagens standardundersøkelser laboratoriet.

En del av arbeidet som er gjennomført, medførte bruk av nye prosedyrer for måling av susceptibilitet, samt utvikling av rutiner for bildeanalyse. Noe av metodesettet kan være relevant for bedriften å vurdere, mens annet er trolig for ressurskrevende i forhold til resultatene.

Summary

The summer of 2015 a survey was done at a mine site of Sibelco Nordic AS. The research was done at Nabbaren Nepheline syenite, located at the southern part of Stjernøya, north-west of Alta. The mining area is divided into geochemical domains by the company. Today's production planning is based on these domains.

In production planning, the presence of magnetite in the raw material, can be a challenge. Several surveys where done, including mineralogical, petrological and process mineralogical examinations, with focus on how magnetite appeared and magnetic response.

The results indicated that it is a small correlation between magnetic susceptibility and the parameters used for production planning. It is found that magnetic susceptibility might give new insight regarding production planning.

The measuring of magnetic susceptibility could, at a low cost, easily be included in the standardised analysis done at the mines laboratory. In order to fulfil the work of this master thesis, a set of new procedures were developed with the purpose of measuring susceptibility and analysing pictures for magnetite.

Innhold

Fo	orord		Ι
Sa	mme	ndrag	ш
Su	ımma	ry	V
O	rd og	uttrykk	XV
1	Intro 1.1 1.2 1.3	oduksjon Oppgavens problemstilling	1 1 2 3
2	Bak 2.1 2.2 2.3 2.4 2.5 2.6	grunn Stjernøya Geologisk setting Gruvedrift Tidligere arbeider Definisjon av kvalitet Programvare	5 6 7 7 9
3	Teor 3.1 3.2 3.3	i Mineralogi Bildeanalyse 3.2.1 Terskelverdi 3.2.2 Filter 3.2.3 Binære operasjoner 3.2.4 Partikkelanayse Statistisk analyse 3.3.1 Deskriptiv statistikk 3.3.2 Ekstremverdier Statisturgene kung	13 13 14 14 14 15 17 18 18 19 20
	3.4 3.5	Strukturanalyse 3.4.1 Support 3.4.2 Variogram 3.4.2 Variogram 3.4.2 Magnetisk susceptibilitet 3.4.2 3.4.2	20 20 20 20 22

4	Data	agrunnlag		25
	4.1	Geologis	k kartlegging	25
	4.2	In situ m	agnetisk susceptibilitet	26
	4.3	Prøver .		27
		4.3.1 N	Magnetisk susceptibilitet	27
		4.3.2 0	Geokjemi og labprodukt	28
		4.3.3 I	Polerte tynnslip	28
	4.4	Borehull	· · ·	31
		4.4.1 I	Drill in Advance	31
		4.4.2 \$	ST-K2014	32
_				28
5	Met	ode		31 27
	5.1	Overordi		31
	5.2	Eksternt	arbeid	39
	5.3	Feltarbei	d	39 29
		5.3.1 8		39
		5.3.2	Jeologisk kartlegging	42
		5.3.3 I	Prøvetaking	42
	5.4	Laborate	riearbeid	44
		5.4.1 \$	Susceptibilitetsmålinger	44
		5.4.2 N	Mikroskopi	44
	5.5	Bildeana	lyse	45
		5.5.1 I	Fremgangsmåte	45
		5.5.2	Ferskelverdi	47
		5.5.3 I	Filter	48
		5.5.4 \$	Sammenlikning	49
	5.6	Ekstrem	verdianalyse	50
	5.7	Korrelas	jonsanalyse	52
	5.8	Struktura	malyse	53
		5.8.1	Variogrammodellering	53
		5.8.2 N	Modell	53
6	Dog	ltaton		5 5
U	6 1	Gaalagi	le tolleningskort	33 55
	0.1			55 55
		0.1.1 $0.1.1$		55 55
		0.1.2 (55 57
	()	6.1.3 I		57
	6.2	Petrolog		57
		6.2.1 I		57
		6.2.2 I		39
		6.2.3 I	311deanalyse	62
	6.3	Suscepti	bilitet	64
		6.3.1 I	Prøver	64
		6.3.2 I	Diabas	66
		6.3.3 I	Detaljstudier	67
		6.3.4 H	Profiler	69

~ .		
6.4	Korrelasjon	75
	6.4.1 Borehull	75
	6.4.2 Prøver	75
Dick	rusion	70
7 1	Korrelasion	80
/ • •	7.1.1 Jern	
	7.1.2 Barium	
	7.1.3 Magnesium	
	7.1.4 Produksion	
	7.1.5 Bildeanalyse og susceptiblitet	
7.2	Domener	82
	7.2.1 Blått domene	82
	7.2.2. Grønt og Oransie domene	
	7.2.3 Rosa domene	
73	Metode	
1.5	7 3 1 Feltarbeid	
	732 Måling av suscentibilitet	
	7.3.2 Riddeanalyse	
	7 3 4 Korrelasionsanalyse	
Kon	klusjon	89
8.1	Besvarelser på hypoteser	
8.2	Klassifisering av domener	90
8.3	Metodesett	91
	8.3.1 Susceptibilitet	91
	8.3.2 Bildeanalyse	91
4 nh	efalinger og videre arheider	03
Q 1	Anbefalinger til bedriften	0?
0.2	Videra arbeidar	
9.2		
Navi	n, koder og ordrenummer	95
Desł	kriptiv statistikk av geokjemi	99
Auto	omatisert terskelverdi	107
A 4 -	omatisering av bildeanalyse ved hjelp av makro	109
Auto		
D.1	Makro	109
D.1 D.2	Makro	· · · · · · 109
D.1 D.2 Resu	Makro	109 110 113
	Disk 7.1 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	6.4.2 Prøver Diskusjon 7.1 Korrelasjon 7.1.1 Jern 7.1.2 Barium 7.1.3 Magnesium 7.1.4 Produksjon 7.1.5 Bildeanalyse og susceptibilitet 7.2 Domener 7.2.1 Bått domene 7.2.2 Grønt og Oransje domene 7.2.3 Rosa domene 7.3.1 Feltarbeid 7.3.2 Måling av susceptibilitet 7.3.3 Bildeanalyse 7.3.4 Korrelasjonsanalyse 8.1 Besvarelser på hypoteser 8.3 Metodesett 8.3.1 Susceptibilitet 8.3.2 Bildeanalyse 8.3.1 Susceptibilitet 8.3.2 Bildeanalyse 8.3.2 Bildeanalyse 8.3.2 Bildeanalyse<

G Rådata, magnetisk susceptibilitet Drill in Advance

Figurer

2.1 2.2 2.3	Stjernøya Nabbaren Nefelinsyenitt Oversikt over kvalitetsoner i forekomsten.	5 6 10
3.1	Prinsipper for filter	15
3.2	Eksempler på filtre	16
3.3	Susceptibilitet	23
4.1	Profiler	26
4.2	Prøvelokaliteter	27
4.3	Presentasjon av tynnslip I	29
4.4	Presentasjon av tynnslip II	30
4.5	Oversikt over borehull benyttet i oppgaven.	33
4.6	Drill in Advance - jern i rågods	34
4.7	Drill in Advance - magnesium i rågods	35
4.8	Drill in Advance - barium i rågods	36
5.1	Prosessbeskrivelse	38
5.2	Borehull benyttet til karakterisering av domene	39
5.3	Prøvetaking på profiler	41
5.4	Detaljstudier	41
5.5	Kartlagt område i dagbruddet	42
5.6	Prøvetaking ved hjelp av borerigg	43
5.7	Prosedyre for susceptibilitetsmåling på prøveposer	43
5.8	Beskjæring av bilder	45
5.9	Endret kontrast	46
5.10	Utfordringer knyttet til bildeanalyse	48
5.11	Sammenlikning mellom sant areal og analysert areal i bildeanalysen	49
5.12	Caption	52
6.1	Feltobservasjoner	56
6.2	Geologisk Tolkningskart	58

6.3	Observasjoner fra undersøkelser i mikroskop	59
6.4	Kornfordeling av magnetitt i tynnslip	60
6.5	Resultater regresjon bildeanalyse	62
6.6	Susceptibilitet på tvers av diabas-gang	66
6.7	Histogram av susceptibilitet i detaljstudiene.	67
6.8	Normal QQ-plot av detaljstudier	68
6.9	Normal QQ-plot av profiler	68
6.10	Histogram av susceptibilitet i profiler.	69
6.11	Variogram for Drill in Advance	70
6.12	Kriging av magnetisk susceptibilitet i Profil 4	72
6.13	Kriging av magnetisk susceptibilitet i Profil 1-3	73
6.14	Kriging av magnetisk susceptibilitet i DIA-kampanjen	74
C.1	Automatiserte metoder for terskelverdi	08
D.1	Makro meny	09

Tabeller

3.1	Oversikt over mineralformler og optiske egenskaper
5.1	Fremgangsmåte for bildeanalyse
5.2	Datapunkt fjernet ved ekstremverdianalyse
6.1	Magnetittbeskrivelse fra bildeanalyse
6.2	Regresjon av resultater fra bildeanalyse
6.3	Susceptibilitet prøver I - Laboratorie
6.4	Susceptibilitet prøver II - In situ
6.5	Susceptibilitetsmålinger på diabas i profiler
6.6	Deskriptiv statistikk av detaljstudier og profiler
6.7	Deskriptiv statistikk av Drill in Advance
6.8	Variogrammodeller for de ulike områdene
6.9	Korrelasjon med Susceptibilitet
6.10	Korrelasjon i prøver med magnetitt
A.1	Oversikt over navn på prøver
1 0	Oversitet over nove og koder benyttet in situ og i borshull
A.2	Oversikt over havn og koder benyttet in situ og i borenun
A.2 B.1	Geokjemi prøver Rågods
A.2 B.1 B.2	Geokjemi prøver Rågods 100 Geokjemi prøver Konsentrat 101
A.2B.1B.2B.3	Geokjemi prøver Rågods 100 Geokjemi prøver Konsentrat 101 Geokjemi DIA Rågods 102
A.2B.1B.2B.3B.4	Geokjemi prøver Rågods 100 Geokjemi prøver Konsentrat 101 Geokjemi DIA Rågods 102 Geokjemi DIA Konsentrat 103
 A.2 B.1 B.2 B.3 B.4 B.5 	Geokjemi prøver Rågods 100 Geokjemi prøver Konsentrat 101 Geokjemi DIA Rågods 102 Geokjemi DIA Konsentrat 103 Geokjemi ST-K2014 rågods 104
 A.2 B.1 B.2 B.3 B.4 B.5 B.6 	Geokjemi prøver Rågods 100 Geokjemi prøver Konsentrat 101 Geokjemi DIA Rågods 102 Geokjemi DIA Konsentrat 103 Geokjemi ST-K2014 rågods 104 Geokjemi ST-K2014 konsentrat 105
 A.2 B.1 B.2 B.3 B.4 B.5 B.6 E.1 	Geokjemi prøver Rågods 100 Geokjemi prøver Konsentrat 101 Geokjemi DIA Rågods 102 Geokjemi DIA Konsentrat 103 Geokjemi ST-K2014 rågods 104 Geokjemi ST-K2014 konsentrat 105 Resultater fra bildeanalyse 113
 A.2 B.1 B.2 B.3 B.4 B.5 B.6 E.1 F.1 	Geokjemi prøver Rågods 100 Geokjemi prøver Konsentrat 101 Geokjemi DIA Rågods 102 Geokjemi DIA Konsentrat 103 Geokjemi ST-K2014 rågods 104 Geokjemi ST-K2014 konsentrat 105 Resultater fra bildeanalyse 113 Rådata, magnetisk susceptibilitet in situ 127

Ord og uttrykk

Her presentert ord, uttrykk og parametre der bruken kan variere mellom fagfelt. Enkelte ord er også mer kjent på engelsk i litteraturen og har en mer usikker betegnelse på norsk. Parametre som er introdusert i resultatene er også beskrevet nedenfor som et raskt oppslag. Enkelte av definisjonene bygger på utdrag fra Sigmond et al. (2013).

 A_M : $[mm^2]$ total mengde magnetitt målt i tynnslip.

- $A_{M,\%}$: [%] and el magnetitt målt i tynnslip.
- $\bar{A_M}$: [mm²] gjennomsnittlig kornstørrelse for magnetitt målt i tynnslip.
- A_B : $[mm^2]$ total mengde magnetitt beregnet fra de målte verdiene i tynnslip.
- $A_{B,\%}$: [%] and el magnetitt beregnet fra de målte verdiene i tynnslip.
- $\bar{A_B}$: $[mm^2]$ gjennomsnittlig kornstørrelse for magnetitt beregnet fra de målte verdiene i tynnslip.
- Am.: forkortelse for amfiobol.
- **A.R.:** aspekt ratio (eng. aspekt ratio). Forholdet mellom største og minste akse i en ellipse som omslutter et korn.
- Avgang: masse som blir fjernet i opptredningsprosessen.
- **Circ.:** sirkularitet (eng. circularity). Mål på sirkulariteten til et korn.
- Dagbruddet: referer til området på overflaten, hvor det drives produksjon i dagen.
- **Diabas (-gang):** betegnelse for flere mørke ganger i forekomsten på mellom noen få mm til 5 m (Geis, 1979). Betegnelsen er petrologisk ikke korrekt, men er benyttet i oppgaven da gangene er kjent under denne betegnelsen.
- Diabastog: betegnelse for områder med store mengder diabasganger.
- Domene: referer til områder definert etter geokjemiske kriterier i forekomsten.
- **Ekstremverdi:** (eng. outlier) en verdi som er flere standardavvik fra gjennomsnittet i et datasett. Verdiene er statistisk mulige, men ikke sannsynlige (Walpole et al., 2007).
- **Ekstremverdianalyse:** undersøkelse av ekstremverdier der man vurderer hvorvidt ekstremverdiene skal fjernes fra datasettet.
- **Element:** er benyttet i oppgaven for de ulike geokjemiske grunnstoffene, ofte i forbindelse med oksidet. Eksempel er barium og *BaO*.
- Frimaling: en kornstørrelse deralle korn er separate i oppredning.

Gruven: referer til området under overflaten i forekomsten.

- Håndstykke ("stuff"): liten steinprøve hentet i felt.
- **Kampanje:** referer til en serie med borehull eller målinger som benytter samme metodesett og blir sett på som en undersøkelse. Eksempler er Drill in Advance og ST-K2014.
- Konsentrat: produktet som blir fremstilt av oppredningsprosessen.
- **Kriging:** metode for å estimere verdi i punkter (eller blokker) basert på omkringliggende data. Metoden benytter seg av vekting basert på variogrammet.
- LAC: forkortelse for Lillebukt alkaline kompleks.
- Labanalyse: betegnelse for undersøkelsene gjennomført på rågods ved bedriften. Analysen inneholder analyser av modal kjemi både i rågods og konsentrat, samt en oppredningstest på 2kg.
- Mag.: forkortelse for Magnetitt.
- **Omvandlingsflate:** flate som er dannet ved at ene siden av en ovandlingsgang har falt av. Vanelig i gruven under jord.
- Perimeter: distansen langs omrisset på et korn.
- **Produksjonsgrad:** referer til prosentandel produkt som blir produsert fra rågods. I oppgaven er parametret "utvinning 2kg" ekvivalent med produksjonsgrad.
- Px.: forkortelse for pyroksen.
- Round.: rundhet (eng. roundness). Mål på rundheten til et korn.
- **Rågods:** materiale som er hentet fra gruven.
- **Soliditet:** (eng. solidity). Mål på hvor solid et korn er. Måler forholdet mellom konkave og konvekse sider ved kornet.
- **Utvinning 2kg:** betegnelse på en produksjonstest ved bedriften der det blir gjennomført en oppredningstest på 2kg rågods. Parametren viser andel produkt i prosent.

l Kapittel

Introduksjon

1.1 Oppgavens problemstilling

Sibelco Nordic AS (heretter bedriften) har delt Nabbaren Nefelinsyenitt (heretter forekomsten) inn i geokjemiske domener. Dagens produksjonsstyring baserer seg på disse domenene. Et problem for bedriften er magnetiske mineraler som forurenser sluttproduktet. Magnetiske mineraler blir fjernet i oppredningen ved bruk av en magnetisk separator. Det er pr. i dag ikke funnet en korrelasjon mellom magnetitt og andel jern. Det var derfor et ønske å undersøke magnetitt sin opptreden i de forskjellige domenene og vurdere om magnetisk susceptibilitet kan benyttes i planlegging av drift.

Et hovedmål for oppgaven er å karakterisere de geokjemiske domene med hensyn på mineralogi, tekstur og magnetisk susceptibilitet. Det skal benyttes tidligere borehull, samt nye prøver og undersøkelser av magnetisk susceptibilitet. Resultatet fra oppgaven vil besvare hvorvidt en kan forbedre muligheten til å predikere produksjonsgrad og produktkvalitet. Undersøkelsene skal fokusere på forekomsten av magnetitt og magnetisk susceptibilitet i forekomsten. Med bakgrunn i oppgavens hovedmål, ble tre arbeidshypoteser brukt som delmål i oppgaven:

Hypotese 1:

Det er en sammenheng mellom geokjemi og magnetisk susceptibilitet.

En kan anta at det må finnes en sammenheng mellom geokjemi og magnetisk susceptibilitet. Ved å gjennomføre statistiske undersøkelser mellom magnetisk respons og modal kjemi, vil det kunne være mulig å sannsynliggjøre om en slik sammenheng eksisterer. Det vil også være mulig å undersøke hvilke elementer som har størst korrelasjon i forhold til magnetisk susceptibilitet.

Hypotese 2:

Opptreden til magnetitt i nefelinsyenitt påvirker produktkvalitet.

Tidligere erfaringer ved gruven tilsier at det ikke nødvendigvis er en sammenheng mellom andel magnetitt og produktkvalitet eller produksjonsgrad. Det bør derfor undersøkes om hvordan magnetitt opptrer og om dette kan være en betydelig faktor for produktkvaliteten og produksjonsgraden.

Hypotese 3:

Det er mulig å predikere produksjonsgrad og produktkvalitet ved å undersøke magnetisk susceptibilitet.

Det er, for å bekrefte den erfaringsbaserte kunnskapen om forholdet mellom produksjongrad og produktkvalitet og magnetitt sin opptreden, valgt å undersøke hvorvidt det er mulig å predikere produksjonsgrad og produktkvalitet på bakgrunn av magnetisk susceptibilitet. Hvis erfaringen fra bedriften stemmer, vil det si at hypotese 3 blir forkastet.

1.2 Oppgavens oppbygning

For å besvare oppgavens hovedmål (beskrevet i Kapittel 1.1), ble arbeidet delt inn i ulike delprosjekter. I store deler av oppgaven er disse prosjektene godt separert og kan deles inn i tre hoveddeler;

- (1) geologisk kartlegging,
- (2) petrologiske undersøkelser av prøver og
- (3) analyser av magnetisk susceptibilitet i forekomsten.

Prosjekter som benytter seg av data fra andre prosjekter vil, der det er mulig, bli presentert og diskutert sist i kapittelet. I enkelte tilfeller er det benyttet samme metodesett for deler av ulike prosjekter. Det refereres til fremgangsmåten der den først ble beskrevet.

En kort oppsummering av hva som kan forventes i de ulike kapitlene i oppgaven er beskrevet nedenfor:

Kapittel 1: Introduksjon

Kapittelet beskriver kort hva som kan forventes å finne i oppgaven, hypoteser og problemstillinger, samt en oversikt over begrensninger.

Kapittel 2: Bakgrunn

Kapittelet inneholder en beskrivelse av Stjernøya, den geologiske settingen i og rundt forekomsten, tidligere arbeider og en beskrivelse av gruvedriften og dens historie. Kriteriene for de geokjemiske domenene blir beskrevet, samt inndelingen i det aktuelle området presentert. Den mest relevante programvaren (og versjon) benyttet i oppgaven blir også beskrevet.

Kapittel 3: Teori

Presentasjon av generell teori som er nødvendig for å forstå oppgaven.

Kapittel 4: Datagrunnlag

Presentasjon av datagrunnlaget benyttet i oppgaven. Data fra bedriften, blir presentert og kommentert. For egenproduserte data som ble samlet inn er bare lokasjonen presentert.

Kapittel 5: Metode

Beskriver metodesettet benyttet i oppgaven. Dette omfatter beskrivelse av feltarbeid, fremgangsmåter og parametre benyttet i analyser og prosesser. Data som ble fjernet fra datasettet, med grunnlag i ekstremverdianalysen, blir beskrevet og argumentert.

Kapittel 6: Resultater

Presentasjon og beskrivelse av alle egenproduserte data, samt resultater fra analyser og sammenlikninger.

Kapittel 7: Diskusjon

Observasjoner og resultater fra analyser blir drøftet opp mot målene og hypotesene presentert i Kapittel 1.

Kapittel 8: Konklusjon

Konklusjonen er tredelt. Den tar for seg (1) besvarelser på hypoteser, (2) vurdering av domener og (3) metodesettets egnethet for bedriften.

Kapittel 9: Videre arbeid og anbefalinger

Kapittelet inneholder forslag til videre arbeid, og hva forfatter mener kan være mulig ved hjelp av metodene benyttet i oppgaven. Det er også presentert en liste med anbefalinger for hva bedriften kan gjøre i forhold til undersøkelser og resultater i oppgaven.

1.3 Begrensninger

Grunnet oppgavens omfang og tidsbegrensning (4 måneder) måtte arbeidet med oppgaven avgrenses, selv om flere områder kunne vært gjenstand for grundigere og mer presise undersøkelser. Nedenfor er det beskrevet hvilke begrensninger som er satt:

Feltarbeid

Rent praktisk har det vært en del begrensninger i oppgaven. Da forekomsten og dagbruddet har en plassering på toppen av Nabberen, med særdeles bratte fjellsider rundt, har dette gjort det vanskelig å gjøre feltarbeid i området rundt forekomsten. Det ble derfor valgt å ikke gjøre susceptibilitetsmålinger på de omkringliggende bergartene.

Det var ikke mulig å ferdes i deler av gruven på grunn av problemer med ventilasjon og rasfare. Det ble tidlig bestemt at siden det mest relevante datasettet fantes i eller nær overflaten, ble det valgt å fokusere på den øverste delen av forekomsten.

Petrologiske undersøkelser

De petrologiske undersøkelsene i oppgaven er forenklet og begrenset, da oppgaven

ikke har hovedfokus innen geologi. Det hadde vært ønskelig å gjøre en grundigere undersøkelse av mineralkjemi, spesielt på magnetitt. Undersøkelsene er imidlertid begrenset til bare å undersøke magnetitt. Disse undersøkelsene er heller ikke i stor grad etterprøvd med andre metoder. Det ble valgt å benytte seg av bildeanalyse på skannede tynnslip, istedenfor å bruke punktteller eller SEM. Dette ble valgt grunnet tidsbegrensinger ved oppgaven. Bildeanalysen måtte også, av tidsmessige hensyn, bli begrenset til bare innledende analyser med enkel filtrering.

Statistikk

Det ble valgt å ikke benytte seg av robust statistikk i oppgaven. Goovaerts (1997) beskriver metoder for å undersøke hvilken effekt ekstreme verdier har på de statistiske resultatene. I en større studie ville dette medføre en ekstra statistisk sikkerhet for resultatene.

Struktuanalyse

Strukturanalysen er begrenset til magnetisk susceptibilitet i datasettet. Drill in Advance er undersøkt alene, som punkter, da supporten er tilnærmet lik for hele datasettet. Borehullsdata fra andre kampanjer er det valgt ikke å ta med ved undersøkelsene og modelleringen.

Korrelasjonsanalyse og hypotesetesting

Da de fleste korrelasjonsanalysene mellom de ulike elementene blir gjort av bedriften, er det i oppgaven begrenset til å kun se på sammenheng mellom elementer og produktkvalitet i forhold til magnetisk susceptibilitet.

Modellering av resultater

De mest relevante elementene det ikke ble gjennomført en strukturanalyse på, blir i oppgaven presentert ved bruk av IDW (inverse distance weighting), istedenfor ved kriging. Det er, som tidligere nevnt, ikke brukt alle tilgjengelige borehull og datasett for å unngå problemer med support.

Kapittel 2

Bakgrunn

Kapittelet beskriver kort bakgrunn for oppgaven. Det blir gjennomgått lokalisering, geologi i området og for forekomsten, gruvedrift og tidligere arbeider gjort på forekomsten.

2.1 Stjernøya

Stjernøya (Figur 2.1) ligger i Vest-Finnmark, ca. 1 times båttur nord-vest fra Alta. Øya har et areal på 245,01 km² og hadde i 2012 80 faste innbyggere (Wikipedia.no, 2015). Stjernøya er del av Alta, Hasvik og Loppa kommune, gruven liggere i Alta kommune. Det drives i dag hovedsakelig bare reindrift i tillegg til gruvedriften på øya.

Figur 2.1: Stjernøya. Nabbaren er markert med gruvesymbol.

2.2 Geologisk setting

Nabbaren Nefelinsyenitt, som blir undersøkt i oppgaven, er lokalisert på sør-siden av Stjernøya, nord-vest for Alta. Forekomsten ligger i Lillebuktkomplekset, som er en del av Seilandsprovinsen (Mjelde, 1983).

Seilandprovinsen er en del av Sørøy Nappe i Kalak Nappe komplekset (KNC) (Gautneb et al., 2009). Provinsen er hovedsakelig av plutonsk opprinnelse (Geis, 1979). De fleste av de plutonske bergartene er av mafisk og ultramafisk type, med noen diorittiske og alkaline områder (Mjelde, 1983).

Lillebukt alkaline kompleks (LAC) ligger på sør-vest siden av Stjernøya og er bestående av syenitter, nefelinsyenitter, nefelinsyenittgneis, pyroksenitt, karbonatitt, fenittiske bergarter, samt mafiske og pegmatiske ganger (Mjelde, 1983). Komplekset ble beskrevet av Skogen (1980), som et deformert ringkompleks. LAC har størrelse på rundt 15 km² og har en avlang form med største akse på rundt 6,8 km (nord-syd) og minste på rundt 2 km (østvest) (Mjelde, 1983). Nabbaren Nefelinsyenitt (Figur 2.2) deler de nefelinførende bergartene i området inn i to hoveddeler, der de på nordsiden er hurtigvekslende og danner gneiser. På sørsiden er bergartene mer syenittiske.

Figur 2.2: Nabbaren Nefelinsyenitt modifisert etter Geis (1979).

Nabbaren Nefelinsyenitt er formet som en linse, med lengde på rundt 1700 meter og en maksimal bredde på rundt 300 meter. Forekomsten har et overflateareal på omkring 270 000 m^2 (Geis, 1979) og har en helning på 70° SV i den midtre og søndre delen. I den nordre delen er helningen på 70° mot nord-øst. Enkelte områder av forekomsten viser tydelig laminering (Mjelde, 1983). Geis (1979) og Mjelde (1983) beskriver to hovedtyper nefelinsyenitt i forekomsten. Biotitt type og hornblende-pyroksen type, navngitt etter det dominante mafiske mineralet. Begge typene inneholder mest nefelin og perthite, mens det hovedsakelig bare kan finnes titanitt i den biotitt dominante typen (Geis, 1979). Grensene mellom de ulike sonene er graderte. Fra undersøkelsene til Mjelde (1983) viste at det er stor forskjell mellom grensene til forekomsten. I nord er grensene graderte, som gjør det vanskelig å sette en konkret grense. På sørsiden er grensen mye skarpere.

Det er blitt gjennomført flere dateringer av bergarter i provinsen, som viser en alder på mellom 500 og 300 millioner år (Mjelde, 1983). Nabbaren viste seg i tidligere undersøkelser å ha en alder på rundt 400 millioner år. Nyere undersøkelser foretatt av Cadow (1993) på LAC har gitt en alder på mellom 520 og 540 millioner år.

2.3 Gruvedrift

Det ble i 1961 startet opp gruvedrift på forekomsten av Norsk Nefelin (del av Elkem-Spigerverket AS) (Geis, 1979) og det har pågått gruvedrift kontinuerlig siden. Gruven på Stjernøya ble kjøpt opp av North Cape Minerals AS 1. februar 1993. I 2010 byttet daværende eier, North Cape Minerals AS, navn til Sibelco Nordic AS (Brønnøysundregisteret, 2010).

Gruven hadde en produksjon på 210 000 metriske tonn i 1977 (Geis, 1979) og har i dag en produksjon på 330 000 metriske tonn produkt, fra 560 000 metriske tonn rågods (Sandøy). Bedriften sysselsetter i dag rundt 100 personer. Gruven startet opp som en underjordisk gruve, men har i senere tid også fått et dagbrudd på toppen av Nabbaren. I oppgaven er det valgt å betegne den underjordiske gruven som "gruven" og dagbruddet som "dagbruddet" for å kunne skille de to delene. Dagbruddet er bare operativt fra medio juni til mengden snø stopper mulighetene for produksjon i løpet av vinteren. Produksjon nen stoppes også to ganger i året grunnet reinflytting. Gruven er operativ hele året, men det produseres hovedsakelig bare i perioder der dagbruddet ikke er i drift.

2.4 Tidligere arbeider

Den første publikasjonen av Seiland og Stjernøy ble publisert i 1878 av C. Pettersen (Mjelde, 1983). I perioden frem til 1980 ble det gjort en god del forskjellige undersøkelser i området, både på Seilandsprovinsen, Lillebuktkomplekset og Nabbaren. En presentasjon av samtlige undersøkelser i den perioden er for omfattende for denne oppgaven, og det henvises derfor til Kapittel 3 i Mjelde (1983) for interesserte lesere. Nedenfor blir bare de mest relevante publikasjoner og senere arbeider presentert.

Heier (1964) gjennomførte en av de første større geokjemiske undersøkelsene. Resultatene ble sammenliknet med andre bergarter. Det påpekes at forekomsten har lav konsentrasjon av Nb, Li, Zr, Y, Nd, La, U og Th, noe som vanligvis er konsentrert i alkaline bergarter. Det diskuteres hvorvidt lave konsentrasjoner av Rb, Cs, Pb og Tl, med høye konsentrasjoner av Sr og Ba, kan reflektere den magmatiske dannelsen eller forholdet mellom krystaliserende magma og gass-fase. Geis (1979) beskrev Nabbaren på bakgrunn av tidligere arbeider og egne undersøkelser. Artikkelen har et hovedfokus på de magmatiske gangene som betegnes som "diabas". Gangene ble delt inn i fire generasjoner i tillegg til omvandlingssoner, som er blitt dannet gjennom hydrotermal aktivitet. Det ble også foretatt kartlegging av forekomsten.

Mjelde (1983) er oppgave fire i en serie på fem hovedoppgaver fra geologisk institutt i Bergen, og som omhandler Lillebuktkomplekset. De tre første oppgavene tok for seg bergartene karbonatitt og pyroksenitt med fenittisering, i tillegg til den strukturelle utviklingen av Lillebuktkomplekset (Mjelde, 1983). De to siste omhandler mer direkte om nefelinsyenitten. Oppgaven til Mjelde (1983) tar for seg nefelinsyenittens teksturelle og mineralogiske variasjon. Undersøkelsene resulterte i flere kart over elementer i forekomsten.

Gautneb et al. (2009) produserte en teknisk rapport for NGU/ Yara International angående potensialet for apatitt i Lillebuktkomplekset. Rapporten tok for seg alle tidligere arbeider på temaet, samt en oppsummering av relevante historiske data. Rapporten konkluderte med at det ikke er et økonomisk potensiale for utvinning av apatitt, hovedsakelig grunnet lav gehalt. Rapporten var hemmeligholdt frem til 31.12.2012.

Lorentzen (2014) modellerte forekomsten ved bruk av Leapfrog Geo. Det ble gjort et forsøk på å modellere andel diabas ved bruk av komposittborehull, basert på geologiske observasjoner i felt og kjerneboringer. Lorentzen konkluderte med at datagrunnlaget var for dårlig, og at det fantes for store variasjoner i diabas.

En del upubliserte arbeider er gjort internt i bedriften. Det er lite skriftlig dokumentasjon på disse arbeidene. I forbindelse med planlegging og produktstyring er det et par pågående borekampanjer, som også er benyttet i større grad i oppgaven. Kampanjene er beskrevet nærmere i Kapittel 4.4.

Drill in Advance (DIA) kampanjen drives i forkant av produksjon i dagbruddet i et regulært rutenett. Det gjøres geokjemiske analyser av både rågods og konsentrat fra en labratorietest.

ST-K er en kampanje liknende DIA-kampanjen i gruven, men er ikke gjennomført i et regulært rutenett. ST-K serien gjennomføres ikke regelmessig, og de ulike kampanjene er etterfulgt av årstall. I oppgaven er data fra ST-K2014 benyttet.

Det er også en del publisert årsrapporter og reguleringsplaner. Mye erfaringsbasert kunnskap foreligger også i bedriften.

2.5 Definisjon av kvalitet

Bedriften har delt forekomsten inn i ulike geokjemiske domener. Kvaliteten er bestemt på grunnlag av geokjemi og laboratorietester. DIA kampanjen gjennomføres for å kunne definere kvaliteten i forkant av produksjonsboringen, og er derfor en viktig del av arbeidet med å definere domenene. Det brukes fargekode for de ulike domenene som vist i Figur 2.3. Grønt domene har høyest kvalitet etterfulgt av Blått, Oransje og Rosa.

- **Grønt domene:** Høy kvalitet. Har den beste kvaliteten i bruddet, og er definert som områder der alt materiale er innenfor spesifikasjonene.
- **Blått domene:** Høy kvalitet. Defineres av høy kvalitets råmateriale, med for høyt innhold av SiO_2 og høyt $K_2O NaO$ forhold.
- **Oransje domene:** Høy kvalitet. Definert med en høy kvalitet, men med et lavt $K_2O NaO$ forhold.

Rosa (pink) domene: Lav kvalitet, lav recovery og produksjons rate. Høy andel jern.

For å få god produksjon fra Blått og Oransje/ Rosa domene, må de blandes med hverandre. Diabas-ganger og omvandlingsoner defineres som:

- **Diabas ganger:** defineres som alle mafiske ganger i nefelinsyenitten og er moderat forurensende for råmaterialet.
- **Omvandlingsoner:** defineres som omvandlet nefelinsyenitt. Er kraftig ødeleggende for råmaterialet.

I dagbruddet er domenene godt definert og kan følges i store deler av bruddet (Figur 2.3a). Domenene går fra Blå på sørsiden til Rosa på nordsiden av forekomsten, med den Grønne og Oransje i midten. Største delen av datasettet i oppgaven ligger i det Blå, Grønne og Oransje domenet i dagbruddet.

I gruven (Figur 2.3b) er det vanskeligere å definere domenene på grunn av manglende data. De områdene som er undersøkt i oppgaven, ligger hovedsakelig i det Oransje domenet, med bare få målinger i det Grønne.

Det bør merkes at domenene er gitt av bedriften og ikke funnet gjennom bruk av kriteriene gitt over. I gruven fantes det mindre data, og grensene er bare definert tre steder i området som er benyttet i oppgaven. Det ble derfor laget rette grenser for å indikere retning, der grensen var gitt.

Figur 2.3: Oversikt over geokjemiske domener i de undersøkte områdene. (a) I dagbruddet. De striplete linjene indikerer domenegrense på bunn av pall. (b) I gruven. Bare undersøkte områder er vist, nivå er indikert.

2.6 Programvare

Det ble benyttet forskjellig programvare i oppgaven. Det blir her bare presentert programvare sentralt for analyser. Programvare benyttet til konvertering eller overføring av data er ikke beskrevet.

ImageJ

ImageJ er gratis, open-source, open-platform programvare for bildeanalyse. Programvaren ble først utviklet for bruk innen medisin, for forskere som ikke benyttet Windows, men har senere blitt Java-basert for å fungere på flere plattformer (Mateos-Pérez & Pascau, 2013). ImageJ består av en mengde forskjellige analytiske og matematiske verktøy for 2D, 3D og flerdimensjonal bildeanalyse. Det finnes også et aktivt "community", en rekke plug-in og Macro-er som er tilgjengelig på internett.

ArcGIS

ArcGIS er en programvarepakke bestående av flere programmer til bruk på spatial data, utviklet av ESRI. ArcGIS består av flere programmer, men ikke alle er benyttet i oppgaven. Hovedsakelig er ArcCatalog og ArcMap benyttet til å korrelere navn, samt gjøre geostatistiske analyser, mens ArcScene er benyttet til arbeider i 3D. I oppgaven er versjon 10.3 benyttet.

Microstation

Microstation blir produsert av Bentley og er et CAD-program, spesialisert for konstruksjon og 3D-modellering. I motsetning til Leapfrog Geo er Microstation et eksplisitt modelleringsverktøy. I oppgaven ble versjon V8i SELECT series 3 benyttet.

Matlab

Matlab er et sofistikert matematikk-program produsert av MathWorks. Gode muligheter for programmering og mange funksjoner gjør Matlab anvendelig for de aller fleste matematiske oppgaver. I oppgaven er Matlab benyttet gjennom en ekstern klient med versjon 2015a.

Teori

Kapittelet gir en oversikt over generell teori som er nødvendig for å forstå metodesett og analyser i oppgaven.

3.1 Mineralogi

I Tabell 3.1 finnes mineralformel og optiske egenskaper i planpolarisert lys. Det bør merkes at magnetitt er vesentlig mørkere enn de andre fargede mineralene. Magnetitt er også det eneste isotrope mineralet og har en høyere reflektans enn silikatmineralene (Philpotts, 1989).

Den teoretiske vektprosenten av jern i magnetitt er 72.4%.

Tabell 3.1: Oversikt over mineralformler og optiske egenskaper. Alle verdier er hentet fra Deer et a
(1992) og Philpotts (1989).

Navn	Formel	Farge i planpolarisert lys
Nefelin	$Na_3(Na,K)[Al_4Si_4O_16]$	Hvit
Kvarts	SiO_2	Hvit
Feltspat	$(K, Na)[AlSi_3O_8]$	Hvit
Plagioklas	$Na[AlSi_3O_8] - Ca[Al_2Si_2O_8]$	Hvit
Pyroksen	$Ca_{1-0}(Mg, Fe)_{1-2}[SiO_2]^1$	Grønnlig
Biotitt	$K(Mg, Fe)_2[AlSi_2O_{10}](OH, F)_2$	Rød, brun, grønn
Hornblede	$(Na, K)_{0-1}Ca_2(Mg, Fe, Al)_5$	Grønn, brun
	$[(Si, Al)_8 O_{22}](OH, F)_2$	
Magnetitt	$Fe^{3+}Fe_2^{2+}O_4$	Mørk grå/brun

3.2 Bildeanalyse

Et bilde er definert som en todimensjonal lys-intensitet funksjon (Gonzalez and Woods, 1992). Det finnes vanligvis flere kanaler for rødt, grønt og blått som brukes for å lage et fargebilde (RGB). Normalt blir bilder lagret med piksler med en verdi. Oppløsningen til et bilde styres av to hovedparametre: DPI og bitdybde (Gonzalez and Woods, 1992)

- **DPI** definers som antall punkter for hver tomme av bildet (dots per inch). Ved høy DPI kan flere detaljer lagres i bildet. For å konvertere DPI til punkter (piksler) pr. centimeter benyttes forholdet: 1 inch = 2,45 cm.
- **Bitdybde** eller tonedybde beskriver hvor mange ulike lysstyrker som kan representeres i en piksel. Bitdybde blir vanligvis representert med antall bit, og antall mulige verdier er 2^n , der n er bitdybden.

I tillegg til oppløsning, benyttes det flere begreper som beskriver egenskapene ved et bilde. De to viktigste begrepene er kontrast og skarphet, beskrevet kort under:

- **Kontrast** (contrast) defineres som forskjellen mellom lyse og mørke partier i et bilde (Leksikon, 2015). Et bilde med høy kontrast vil ha stor forskjell mellom mørke og lyse partier, mens et med lav kontrast vil være mer jevnt og kan ofte virke "grått". For å øke eller senke kontrasten i et bilde benyttes en metode kalt "contrast stretching".
- **Skarphet** (sharpnes) angir hvor mange detaljer som vises i bildet. Ved å øke skarpheten i bildet fremhever man detaljer (Gonzalez and Woods, 1992).

3.2.1 Terskelverdi

Terskelverdi (thresholding) segmenterer et bilde etter pikslenes intensitet/ gråverdi innenfor gitte terskel-verdier (Gonzalez and Woods, 1992). Det finnes mange metoder for å finne den optimale terskelverdi automatisk, men dette er utenfor rekkevidden til denne oppgaven. En oversikt over forskjellige automatiserte metoder for samme eksempelsett som Figur 3.2 finnes i Figur C.1.

3.2.2 Filter

Spatiale filtere er filtre som opererer direkte på en aktuell piksel, i motsetning til frekvens filtrering ved bruk av Fourier transformasjon (Gonzalez and Woods, 1992).

- **Gjennomsnittsfilter:** Et gjennomsnittsfilter tilegner den aktuelle pikselen gjennomsnittet av alle piksler i ett gitt område rundt pikselen. Alle pikslene rundt er dermed vektet likt (Illustrert i Figur 3.1a).
- **Medianfilter:** Et medianfilter fungerer på samme måte som et gjennomsnittsfilter, men tilegner den sentrale pikselen medianen i området (Gonzalez and Woods, 1992). Dette medfører at filteret ikke introduserer noen nye verdier i bildet, og derfor bevarer kanter på en bedre måte enn et gjennomsnittsfilter (Gonzalez and Woods, 1992).

Kuwahara-filter: Kuwahara-filteret er et kant-bevarende jevnings-filter (Kyprianidis et al., 2009) og ble først beskrevet av Kuwahara i 1976. Filteret deler inn et område rundt den sentrale pikselen i fire overlappende deler (der alle deler den sentrale pikselen), for så å tilegne den sentrale pikselen gjennomsnittet av sonen med lavest varians (Bakker et al., 1999). Figur 3.1b illustrerer hvordan sonene overlapper.

Figur 3.1: Prinsippskisse av filter, grått representerer den sentrale pikselen som blir endret av filteret. (a) Gjennomsnitt-filter, etter Gonzalez and Woods (1992). (b) Kuwahara-filter, etter Bakker et al. (1999).

Figur 3.2 er tatt med som en illustrasjon, for å sammenlikne de tre ulike filterene på ett utdrag av datasettet. Det ble valgt å benytte egne data, da dette ble benyttet til valg av filter og er sentralt i deler av metoden.

Som man kan se fra profilene (Figur 3.2e-f), så gir både gjennomsnittsfilteret og medianfilteret en slakere overgang mellom kornene (en lavere gradient). Både gjennomsnitt- og medianfilteret er en type lavpass jevningsfilter (smoothing filters) (Gonzalez and Woods, 1992). Et lavpassfilter vil alltid glatte ut bilde, og vil derfor gjøre grensene mer uklare (Bakker et al., 1999). Ved bruk av Kuwaharafilteret ser vi at gradienten øker, som betyr at det tar bedre vare på kanter enn et normalt lavpass-filter.

3.2.3 Binære operasjoner

Binære operasjoner er operasjoner som fungerer på binære bilder. Mer kompliserte binære operasjoner består ofte av flere enkle operasjoner. Det er nedenfor beskrevet de fire binære operasjonene som er benyttet i bildeanalysen.

- **Erode** (eroder) trekker fra alle piksler som har mer enn et vilkårlig antall naboer med motsatt verdi.
- **Dialate** (utvid) legger til en piksel hvis et vilkårlig av de omkringliggende pikslene er av samme verdi.

Gjennomsnitt-filter med 3 piksler, c og g) median-filter med 5 piksler og d og h) Kuwahara filter med 7 piksler. Figur 3.2: Forskjell mellom gjennomsnitt, median og Kuwahara-filter. Grafen viser gråverdi langs profilet A-B. a og e) originalt bilde, b og f)

- **Close** (lukke) består av to prosesser; (Ferreira and Rasband, 2012) først benyttes "dialate" for å lukke hull i kornene, for så å benytte "erode" for å fjerne det økte areal på utsiden.
- **Open** (åpne) bruker de samme to prosessene som "close" men i motsatt rekkefølge. Open brukes for å fjerne små korn og enkelte piksler (Ferreira and Rasband, 2012). Denne prosessen ble brukt for å fjerne effekter fra sprekker og kanter.

3.2.4 Partikkelanayse

Utviklingen i bildeanalyse har åpnet mulighetene for å gjøre mer komplekse analyser enn bare areal eller andel, men også partiklers form (Rodriguez et al., 2012). Flere parametre for kornform benyttes. De mest relevante for oppgaven er beskrevet nedenfor:

Areal (Area) defineres som overflatearealet i 2D. Måles etter antall piksler innenfor ett gitt område, må så regnes over til mm^2 ved bruk av forholdstall eller skala-er (Olson, 2011).

Perimeter: Lengden på omrisset til kornet.

Sirkularitet (circularity, circ.) beskriver til hvilken grad formen likner en perfekt sirkel (Olson, 2011). Ved verdier mot 0.0 vil kornet være avlangt. ImageJ benytter formel 3.1 (Ferreira and Rasband, 2012).

$$Sirkularitet = 4\pi \cdot \frac{[Areal]}{[Perimeter]^2}$$
(3.1)

- Aspekt forhold er forholdet mellom den lengste og minste aksen av den best passende ellipsen (Ferreira and Rasband, 2012). I oppgaven er dette ofte refert til som A.R. (Aspect Ratio).
- **Rundningsgrad** (roundness, round.) beskriver hvor avrundet kornet er. Det finnes flere forskjellige måter å beregne rundhet (se Rodriguez et al. (2012)). ImageJ benytter funksjon 3.2 (Ferreira and Rasband, 2012).

$$Rundningsgrad = 4 \cdot \frac{[Areal]}{\pi \cdot [Største \ akse]^2}$$
(3.2)

Soliditet (solidity) beskriver kornets konveksitet (Olson, 2011). Soliditeten er definert som forholdet mellom kornets areal og arealet av det konvekse-hull-arealet (som vil si arealet av ett korn som ikke har konvekse sider). En høy soliditet beskriver ett korn med liten ruhet i overflaten. ImageJ benytter funksjon 3.3 til å beregne soliditet (Ferreira and Rasband, 2012). Resultatet er et tall mellom 0 og 1.

$$Soliditet = \frac{[Areal]}{[Konvekst\ areal]}$$
(3.3)

Det finnes hovedsakelig to måter å gjøre målinger på i ImageJ. Ved å benytte funksjonen "Measure" blir hele slipet målt eller bare valgte områder (Ferreira and Rasband, 2012). Ved bruk av funksjonen "Analyse Particles..." finner, teller og måles alle partikler i ett binært (1-bit) eller tersklet bilde (Ferreira and Rasband, 2012). Partikler som går utenfor kanten av bildet blir ikke tatt med i analysen. De mest relevante målingene for oppgaven er:

- "Area",
- "Area%" måler prosentandel av det totale området,
- "fit ellipse" finner den best tilpassede ellipsen for hver partikkel. Finner størrelsene på hovedaksene og vinkelen fra senit (Ferreira and Rasband, 2012).
- "Shape descriptors" returnerer sirkularitet, aspekt forhold, rundningsrad og soliditet til hver partikkel.

For å få avstander og størrelser riktig i ImageJ benyttes funksjonen "Set scale...". For videre lesning om partikkelbeskrivelse anbefales Olson (2011) og Rodriguez et al. (2012). Mer informasjon om funksjonalitet i ImageJ kan finnes i Ferreira and Rasband (2012).

3.3 Statistisk analyse

Når en skal gjennomføre geostatistiske undersøkelser er det viktig å undersøke data i forkant. Det er viktig å undersøke om datagrunnlaget er normalfordelt, symmetrisk og å finne trender i datasettet (Goovaerts, 1997; Johnston et al., 2001).

3.3.1 Deskriptiv statistikk

Goovaerts (1997) beskriver en fremgangsmåte for geostatistiske arbeider. Det første steget inneholder deskriptiv statistikk for å få en oversikt over datagrunnlaget. De viktigste statistiske parametre er aritmetisk gjennomsnitt (Likning 3.4) og varians (3.5). Formlene er hentet fra Walpole et al. (2007), der f(x) er sannsynlighetsfordelingen. Standardavviket er definert som $\sqrt{\sigma^2} = \sigma$ og det dimensjonsløse forholdet σ/μ beskriver variasjonen (Goovaerts, 1997).

$$\mu = E(X) = \sum_{x} x \cdot f(x) \tag{3.4}$$

$$\sigma^2 = VAR(X) = E[(X - \mu)^2] = \sum_x (x - \mu)^2 \cdot f(x)$$
(3.5)

Et annet relevant parameter er skjevhet, definert i Likning 3.6². Skjevheten sier hvordan halene til fordelingene ser ut. Et perfekt normalfordelt datasett har en $\varphi = 0$ (Goovaerts, 1997). En fordeling med høye verdier har positiv φ , mens små verdier gir en negativ φ .

²Hentet fra Goovaerts (1997)
$$\varphi = \frac{1}{n} \sum_{i=1}^{n} \frac{(x_i - \mu)^3}{\sigma^3}$$
(3.6)

Et enklere mål for skjevhet i datasettet, er å se på forholdet mellom gjennomsnittet (μ) og medianen (M). Ofte ønsker man å sammenlikne datagrunnlaget mot en teoretisk fordelingskurve, som normalfordeling. QQ-plottet sammenlikner datagrunnlaget med en fordelingskurve, ved å plotte kvantilene opp mot hverandre (Johnston et al., 2001). Dette gir en god indikasjon på fordelingen i datagrunnlaget.

Når det finnes flere forskjellige variabler tilhørende samme lokalitet eller måling, kan vi undersøke deres relasjon. Det mest brukte utrykket for to variablers relasjon er kovarians (Likning 3.7), som måler variasjonen rundt deres respektive gjennomsnittsverdier.

$$\sigma_{XY} = COV(X,Y) = \sum_{x} \sum_{y} (x - \mu_X) \cdot (y - \mu_Y) \cdot f(x)$$
(3.7)

Korrelasjonskoeffisienten er definert i Likning 3.8, der σ_X og σ_Y er variablenes respektive varians. Koeffisienten er dimensjonsløs og går mellom -1 og 1 (Goovaerts, 1997; Walpole et al., 2007).

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} \tag{3.8}$$

 ρ måler bare om det er en lineær sammenheng, og kan bli sterkt påvirket av ekstremverdier. Scatter-diagrammer benyttes ofte for å vise samhørigheten mellom variabler med korrelasjonskoeffisienten striplet.

3.3.2 Ekstremverdier

Ekstremverdier (outliers) er observasjoner som er usedvanlig langt fra hovedfeltet i datasettet (Walpole et al., 2007), og kan sees på som en sjelden hendelse. Ekstremverdier kan ha en sterk innvirkning på den beskrivende statistikken (Goovaerts, 1997), korrelasjoner og semivariogrammet. Det er derfor viktig å identifisere ekstremverdier, da de kan være forårsaket av målefeil (Johnston et al., 2001) eller feil ved prøvemateriell. Goovaerts (1997) skriver at ekstremverdier kan behandles på fire måter;

- (1) ved å fjerne datapunktene,
- (2) separere dem til et eget datasett,
- (3) bruke robust statistikk eller
- (4) benytte transformasjoner.

Et datasett i oppgaven bare bestående av ekstremverdier, vil ha for få datapunkter for å kunne gjøre statistiske betraktninger. På grunn av tidsbegrensninger er det valgt å begrense statistiske betrakninger til ikke å omfatte robust statistikk eller transformasjon. Metodene er derfor ikke beskrevet nærmere.

Valget å fjerne data fra datasettet er et meget viktig og vanskelig valg (Goovaerts, 1997). Det er ofte at slike ekstremverdier er meget viktige i geostatistiske problemstillinger. De kan indikere høy gehalt, sprekker eller forurensninger. Goovaerts (1997) presiserer at data bare bør slettes hvis de klart er feil. Det er en fordel med stedsbundet data at man kan undersøke både omkringliggende data og omgivelser, for å bedre kunne analysere grunnlaget. Hvis det ikke foreligger en fysisk grunn for ekstremverdier, bør de ikke slettes. En enkel uformell test, for å undersøke ekstremverdier, er å undersøke verdier som ligger et vilkårlig standardavvik fra gjennomsnittet. Denne uformelle testen gjøres ofte ved å se på boks-plott (Walpole et al., 2007). Plottet gir også en god visuell følelse av datagrunnlaget.

Det skilles mellom globale og lokale ekstremverdier (Johnston et al., 2001). Globale ekstremverdier er verdier som ligger langt fra hele datasettet. Lokale ekstremverdier ligger langt fra data i nærområdet, men ikke nødvendigvis i hele datasettet. Det betyr at lokale ekstremverdier kan, til forskjell fra globale ekstremverdier, ikke vises i deskriptiv statistikk. Slike ekstremverdier kan derfor ikke detekteres ved bruk av boks-plott eller andre vanlige statistiske metoder.

Det finnes i ArcGIS flere forskjellige metoder for å identifisere og undersøke ekstremverdier. Johnston et al. (2001) beskriver måter å undersøke ekstremverdier ved bruk av histogrammer, variogrammer og kovarians-skyer. Verktøyet "Cluster and Outlier Analysis (Anselin Local Moran's I)" i "spatial statistics" gjennomfører en analyse av lokale ekstremverdier (Arc). En tommelfingerregel er å ha minst 30 datapunkter for at en slik analyse skal fungere. En bør også ha en undersøkelsesdistanse der hvert datapunkt har minst to naboer innenfor denne distansen. Undersøkelsedistansen bør ikke være så stor at hele datasettet blir en del av undersøkelsen, da dette fører til en global undersøkelse, og ikke en lokal.

3.4 Strukturanalyse

Armstrong (1998) beskriver fremgangsmåten i en strukturanalyse i fire faser;

- (1) forundersøkelser av datagrunnlaget for å få en følelse av problemet,
- (2) beregne det eksperimentelle variogrammet,
- (3) tilpasse den matematiske variogrammodellen(e) og
- (4) kriging.

I den første fasen undersøkes datagrunnlaget. Det gjennomføres en deskriptiv statistikk (Kapittel 3.3.1) for å beskrive datagrunnlaget og en ekstremverdianalyse (Kapittel 3.3.2). Datagrunnlagets support og additivitet må også undersøkes. Det må i denne fasen foretas valg om hvordan analysen skal gjennomføres. Det andre steget benytter Likning 3.9³ til å generere det eksperimentelle variogrammet.

3.4.1 Support

Support refererer til en prøves størrelse og volum (Armstrong, 1998). Prøver med ulik support er ikke direkte sammenliknbare. Prøvene bør derfor ikke benyttes i det samme datasettet, med mindre estimatoren tar hensyn til support.

3.4.2 Variogram

For å undersøke variansen i et datasett benyttes det eksperimentelle variogrammet (definert i Likning 3.9 (Armstrong, 1998)), der h er avstanden mellom to punkter, og N(h) er antall

³For omni-variogram

par⁴ med avstanden h. Det brukes ofte et avstandsbånd slik at $h = h \pm a$, der a er bredden på båndet.

$$\gamma^*(h) = \frac{1}{2N(h)} \cdot \sum_{i=1}^{N} [Z(x_i + h) - Z(x_i)]^2$$
(3.9)

Det eksperimentelle variogrammet kan i ArcGIS implementeres fortløpende og det kan presenteres en variogram-sky, hvor alle par vises. Det eksperimentelle variogrammet kan også brukes i ekstremverdianalysen i følge Johnston et al. (2001), da alle par knyttet til en ekstremverdi vil få høye verdier.

For å benytte variografi i en modellering, kreves det at variogrammet er positivt definert (Goovaerts, 1997; Armstrong, 1998). I teorien kan alle modeller og tabeller benyttes, hvis de oppfyller dette kravet. I de fleste geostatistiske programvarene er det implementert en rekke teoretiske variogram-funksjoner, som oppfyller kravene. Funksjonene kan adderes. De mest sentrale modellene benyttet i oppgaven er: Nugget effekt (Likning 3.10), Gaussisk (3.11), Sfærisk (3.12) og Eksponential (3.13), hentet fra Armstrong (1998).

$$\gamma(h) = \begin{cases} 0 & , |h| = 0 \\ C & , |h| > 0 \end{cases}$$
(3.10)

$$\gamma(h) = C\left(1 - e^{-\frac{|h|^2}{a^2}}\right) \tag{3.11}$$

$$\gamma(h) = \begin{cases} C\left(\frac{3|h|}{4a} - \frac{|h|^3}{a^3}\right) &, |h| < a \\ C &, |h| \ge a \end{cases}$$
(3.12)

$$\gamma(h) = C\left(1 - e^{-\frac{|h|}{a}}\right) \tag{3.13}$$

Ofte benyttes et retningsbestemt variogram. $\gamma(h)$ blir da bare bestemt for par i en viss retning, ofte med en viss margin. Det er normalt å benytte variogrammer i 3-4 retninger for å unngå feil (Armstrong, 1998). Et variogram som tar med alle retninger kalles ofte omnivariogram.

⁴Et par består av to punkter med en avstand h.

3.5 Magnetisk susceptibilitet

Magnetisk susceptibilitet (k) er definert som forholdet mellom styrken på et magnetisk felt (H) og dens resulterende induserte styrke (I) i et gitt materiale (Burger et al., 2006). Den magnetiske susceptibiliteten er, som en kan se fra Likning 3.14, et dimensjonsløst tall.

$$I = k \cdot H \tag{3.14}$$

Mineraler blir, på bakgrunn av deres magnetiske egenskaper, klassifisert som enten diamagnetiske, paramagnetiske eller ferromagnetiske (Ellefmo, 2005; Burger et al., 2006).

- **Diamagnetiske** mineraler har en negativ magnetisk susceptibilitet, dog så lite at den ikke kan benyttes ved kartlegging (Clark, 1997). Kvarts og feltspat er eksempler på diamagnetiske mineraler (Burger et al., 2006).
- **Paramagnetiske** mineraler har derimot en positiv magnetisk susceptibilitet, men som er relativt lav. De fleste Fe-Mg silikater ligger i denne kategorien, deriblant pyroksener, amfiobol, hornblende og biotitt (Clark, 1997; Burger et al., 2006).
- **Ferromagnetiske** mineraler har, i motsetning til diamagnetiske og paramagnetiske mineraler, en mye høyere magnetisk susceptibilitet. Dette oppstår når nærliggende magnetiske momenter overlapper (Clark, 1997; Ellefmo, 2005; Burger et al., 2006). Ferromagnetiske materialer har egenskapen at det induserte magnetfeltet ikke reduseres til null, når det eksterne magnetfeltet forsvinner. Man får da en hysterese. Over en viss temperatur (Curie punktet) blir ferromagnetiske mineraler paramagnetiske, og får vesentlig lavere magnetisk susceptibilitet (Clark, 1997). Rent ferromagnetiske mineraler opptrer ikke naturlig på jorden (Burger et al., 2006).
- **Ferrimagnetiske** mineraler er en en type ferromagnetisme der ikke alle moment-koblingene er parallelle, men det finnes en preferert retning (Burger et al., 2006). Dette fører til en relativt høy magnetisk susceptibilitet som er avhengig av temperatur. Det mest vanlige ferrimagnetiske mineralet er magnetitt.

En sammenlikning mellom de mest vanlige mineralene i forekomsten og deres magnetiske karakter, er presentert i Figur 3.3a. Det er liten tvil om at magnetitt har den høyeste magnetiske susceptibiliteten, og er derfor det viktigste mineralet i forhold til geofysisk utforskning (Burger et al., 2006).

Det er, fra flere kilder, vist at det er en sammenheng mellom mineralogi og magnetisk susceptibilitet (Ellefmo, 2005). Det er funnet flere empiriske likninger på susceptibilitet i forhold til magnetitt. Sandøy (1996) beskrev forholdet ved bruk av Likning 3.15, mens Blum (1997) beskrev forholdet med Likning 3.16. Clark (1997) skriver at forholdet er lineært frem til rundt 0.1 vol% magnetitt, for så å øke noe raskere, på grunn av interaksjoner mellom magnetiske korn. Kornstørrelsen har også en innvirkning på susceptibiliteten.

$$k = 33 \cdot 10^{-3} \cdot Vol\% magnetitt \tag{3.15}$$

$$k = 3 \cdot Volum fraksjon \ av \ magnetitt \tag{3.16}$$

Figur 3.3: Teoretisk susceptibilitet. (a) Teoretisk susceptibilitet for utvalgte mineraler, kompilert fra Hunt et al. (1995); Clark (1997). (b) Susceptibilitet i forhold til magnetittinnhold. Modifisert fra Clark (1997).

$$k = 3.47 \cdot Volum fraksjon \ av \ magnetitt \tag{3.17}$$

Sammenhengen mellom mengden magnetitt og magnetisk susceptibilitet er gitt i Figur 3.3b.

Kapittel

Datagrunnlag

Kapittelet presenterer datagrunnlaget for oppgaven. Alle rådata produsert av eksterne parter (se Kapittel 5.2) er presentert og kommentert kapittelet. Data produsert som en del av oppgaven, er en del av resultatet og er bare presentert i form av oversikter over beliggenhet. Rådata fra egne undersøkelser er presentert i Kapittel 6 sammen med resultatene fra ekstremverdianalysen (beskrevet i Kapittel 5.6).

De geokjemiske analysene gjennomført på laboratorium av Sibelco Nordic AS omfatter undersøkelsen på rågods og produktet fra en oppredningstest i laboratoriet (konsentrat). Analysene består av modal kjemi på Al_2O_3 , BaO, CaO, K_2O , MgO, Na_2O , SiO_2 , Fe_2O_3 og TiO_2 , samt utvinningtest på 2 kg rågods (referert til som "utvinning 2kg"). Resultatene er i datasettet notert som "R" for Rågods og "K" for Konsentrat.

En del forskjellig navn er benyttet på de ulike datasettene. En komplett liste over navn og nummer finnes i appendiks A.

4.1 Geologisk kartlegging

Det ble foretatt geologisk kartlegging i et området på rundt 100 m ganger 50 m i dagbruddet. Figur 4.1 og 4.2 viser det kartlagte området, markert med rød strek. Hele det kartlagte området var dekket av DIA-kampanjen. Det var ikke mulig å kartlegge andre områder, som er nærmere beskrevet i Kapittel 5.3.2.

Hovedfokuset i kartleggingen var diabas-ganger, omvandlings-soner og noen sprekker. Forskjeller i nefelinsyenitt ble ikke undersøkt, da det ville vært en meget tidkrevende og vanskelig prosess i et så lite og relativt homogent område.

4.2 In situ magnetisk susceptibilitet

Magnetisk susceptibilitet ble undersøkt i tre forskjellige områder i forekomsten. Det ble valgt å gjennomføre undersøkelser i ett område i dagbruddet og to områder i gruven. I dagbruddet ble det gjort målinger i det samme området som ble kartlagt. I gruven ble det valgt å gjøre målinger i de områder hvor det også var utført borehull-kampanjer tilsvarende DIA-kampanjen (beskrevet i Kapittel 4.4.2). Det ble totalt foretatt susceptibilitetsmålinger på 608 forskjellige punkter på nefelinsyenitt, og 5 på ulike diabas-ganger. Metodesettet for målinger er beskrevet i Kapittel 5.3.1.

Der hvor det ble foretatt målinger over større strekninger, blir i oppgaven beskrevet som profiler. Figur 4.1 er et kart over profilenes lokasjon i forekomsten, med domenene som bakgrunn. En profil (Profil 5) ble undersøkt i dagbruddet, mens de resterende fire ble målt i to områder i gruven (Presentert med innskuddskart med riktig posisjon i Figur 4.1).

Figur 4.1: Oversikt over de ulike profilene målt i dagbruddet og gruven. Profiler i gruven er innskutt på riktig lokalitet.

Det ble i enkelte områder valgt å gjøre undersøkelser med høyere oppløsning. Slike undersøkelsene blir i oppgaven kalt detaljstudier. Alle detaljstudiene er tilknyttet profilene i gruven eller prøvepunkter i dagbruddet. De ulike studiene er ment å bedre forståelsen av variasjoner i kortere intervaller, enn det som kan oppnås i profiler og borehull. I gruven ble det valgt ut to områder hvor det ble gjort detaljstudier. På enden av Profil 2 ble det funnet ett konturborehull som var særlig godt egnet for dette. Detaljstudiene i dagbruddet og i Profil 2 er presentert i Figur 5.4.

4.3 Prøver

For hvert av de fire domenene ble det tatt tre prøver (i alt 12 prøver). Alle prøvepunktene, med unntak av prøvene i det Rosa domenet, ble tatt i området dekket i DIA kampanjen. Figur 4.1 viser lokaliseringen til de 12 prøvene. Det ble produsert polerte tynnslip for videre undersøkelser for hvert prøvepunkt. Flere prøvepunkter ble vurdert, men på grunnlag av data fra DIA-borehull ble det valgt å endre noen prøvelokaliteter. Prøvelokalitetene beholdt sine originale navn. Alle prøvene ble tatt godt innenfor de respektive domenene (Figur 4.2).

Figur 4.2: Oversikt over prøvelokaliteter i dagbruddet.

4.3.1 Magnetisk susceptibilitet

Det ble undersøkt magnetisk susceptibilitet på prøvene. Susceptibiliteten ble målt in situ for alle prøver, bortsett fra prøvene i det Rosa domenet (prøve 13 til 15) og på borkaks. Ved to av prøvelokalitetene ble det gjort mer omfattende susceptibilitetsmålinger som beskrevet i Kapittel 5.3.1, der prøve 11 er tatt i sentrum av detaljstudie 3 og prøve 6 er tatt på området til Detaljstudie 4. For de øvrige prøvelokalitetene, hvor det er gjort in situ målinger, ble det foretatt mellom 10 og 15 målinger i området. Resultatene fra målingene er presentert i kapittel 6.3.1.

4.3.2 Geokjemi og labprodukt

Data fra analysene gjennomført på laboratoriet på Stjernøya er presentert i Tabell B.1 og B.2. Tabellene er delt inn etter domene, med gjennomsnitt og standardavvik for hvert domene og totalt.

For nesten samtlige elementer har det Rosa domenet høyest standardavvik. Det Rosa domenet har også mange av de høyeste verdiene. Innholdet av SiO_2 er høyest i Blått domene og synker nordover. Innholdet av jern (Fe_2O_3) er relativt likt i alle domenene og er på rundt 2,5%, med noe høyere verdier i Oransje og Rosa domene. Det er et skille i $K_2O - Na_2O$ forholdet mellom nord og sør, med markant høyere verdier i Blått og Grønt domene (sør). Dette stemmer med hva som ble observert i DIA-kampanjen (Kapittel 4.4.1).

4.3.3 Polerte tynnslip

Tolv polerte tynnslip ble produsert på sliplaboratoriet ved IGB, ett fra hver prøvelokalitet (beskrevet i Figur 4.2). Slipene er presentert i Figur 4.3 og 4.4. Alle bildene er kuttet som beskrevet i kapittel 5.5.1. Steinprøvene slipene var kuttet fra ble også tatt vare på, og registrert med navn gitt fra laboratoriet (Appendiks A). Tekststuren i de forskjellige slipene er relativt like. De aller fleste er preget av større klynger med mørke mineraler i forskjellige størrelser.

(d) APL-2015-01

(e) APL-2015-08

(f) APL-2015-09

Figur 4.3: Presentasjon av polerte tynnslip. (a)-(c) Blått domene og (d)-(f) Grønt domene.

(d) APL-2015-13

(e) APL-2015-14

(f) APL-2015-15

Figur 4.4: Presentasjon av polerte tynnslip. (a)-(c) Oransje domene og (d)-(f) Rosa domene.

4.4 Borehull

I Nabberen er det gjennomført mange borekampanjer, deriblant produksjonsboring og kaksboringer i forbindelse med utforskning, samt kjerneboringer. I oppgaven ble det valgt å bruke borehull med lik support og med nødvendig geokjemisk informasjon. Det var også viktig at det var mulig å korrelere borehull med målinger på overflaten, og å undersøke susceptibilitet.

4.4.1 Drill in Advance

Drill in Advance borehull er et prosjekt der det kaks-bores i forkant av sprengning, for å kunne ha bedre styring på kvalitet. Boringen utøveres i et standard rutenett på 10 meter ganger 10 meter, med noen variasjoner grunnet avvik i boring. Alle borehullene er en pall lange. Det blir analysert modal kjemi av rågods og produkt på alle borehullene. Utvinning pr. 2 kg blir også undersøkt.

I oppgaven ble det brukt alle tilgjengelige borehull på nivå 645 pr. august 2015. Borehullene dekker to områder i dagbruddet som vist i Figur 4.5. Det ble målt susceptibilitet på 165 DIA-borehull. Av disse var det gjennomført labanalyse og oppredningstester på 155 borehull, som ble overført i midten av august 2015.

Et sammendrag av oversendte DIA-data er presentert i Tabell B.3 og B.4. De geokjemiske undersøkelsene omfatter modal kjemi på ni forskjellige elementer. Utvinningsgrad er undersøkt på 2 kg labratorietester. Det er presentert gjennomsnitt og standardavvik for de fire domenene, beskrevet i Kapittel 2.5. Det er en overvekt av borehull i det Blå domenet, med 78 borehull mot 23-28 i de andre. Dårligst dekning har det Grønne domenet, der det mangler data fra midten av domenet. Nord i domenet ser vi også at flere av borehullene krysser den interpolerte grensen mellom Grønt og Oransje domene (Figur 4.5a).

Standardavviket i både rågodset og konsentratet er markant høyere i det Blå og Rosa domenet. Både det Grønne og Oransje domenet har lavere standardavvik, men i samtlige datasett har Oransje det laveste standardavviket.

Det Blå og Grønne domenet har for det meste relativt like verdier, det samme gjelder for Oransje og Rosa. Det er et markant skille mellom disse to gruppene for flere elementer. *BaO* har vesentlig høyere verdier i det Rosa og Oransje domenet (Figur 4.8), mens forholdet mellom K_2O og Na_2O er betydelig lavere. Verdiene av SiO_2 i rågodset synker nordover, fra 57,04% i Blått domene til 54,31% i det Rosa domenet. Dette gjenspeiler seg også i konsentratet. Den samme trenden kan ikke sees i andre elementer. Både *BaO* og til en viss grad K_2O har en motsatt trend. Innholdet av jern (Fe_2O_3 , Figur 4.6) følger ikke denne trenden og har de høyeste verdiene i det Blå og Rosa domenet på 3,6% og 4,16%, med rundt 1% høyere verdier enn i Grønt og Oransje domene. Det aller meste av jern blir fjernet i løpet av prosessen og inneholder bare rundt 0,1%. Magnesium, presentert i Figur 4.7, har for det meste relativt like verdier i dagbruddet. Den sørlige delen av det Blå domenet har derimot vesentlig høyere verdier enn resten av dagbruddet. Det samme gjelder noen av borehullene i det Rosa domenet som grenser til gråberg.

4.4.2 ST-K2014

I likhet med DIA-kampanjen, er det gjort en liknende kampanje med kaks-borehull i gruvegangene. De samme undersøkelsene av geokjemi og produktkvalitet ble også undersøkt. Profilene beskrevet i Kapittel 4.2 i gruven er tilknyttet ST-K2014 kampanjen. Borehullene er, på samme måte som profilene, delt inn i to områder. En oversikt over områdene kan sees i Figur 4.1 sammen med profilene. En oversikt over borehullene er presentert i Figur 4.5b og c.

En statistisk oversikt over borehullene kan finnes i Tabell B.5 og B.6. De aller fleste elementene er relativt like i de to områdene. En merkbar forskjell kan være at Profil 1-3 har en negativ $K_2O - Na_2O$. Fra figur 4.5c kan vi se at borehull ST-K2014-72 har en vesentlig lavere utvinningsgrad enn de omkringliggende borehullene. Utvinningsgraden viser i Profil 4 en negativ trend mot nord. En observasjon, som ikke kan finnes i den deskriptive statistikken eller i figurene, er at borehull ST-K2014-052 har en ekstremt høy verdi av CaO i rågodset, på 17%, mot et gjennomsnitt på 3.42.

(a)

Figur 4.5: Oversikt over borehull benyttet i oppgaven. (a) Drill In Advance (DIA) kampanjen. (b) og (c) ST-K2014 kampanjen i de to områdene i gruven. Symbolene viser utvinning i prosent pr. 2 kg opptredningstest.

Kapittel 5

Metode

Kapittelet presenterer metodesettet benyttet for innhenting av data, samt prosesser for bearbeiding av data og analyser.

5.1 Overordnet fremgangsmåte

Som beskrevet i Kapittel 1.1, er et av hovedmålene med oppgaven å karakterisere domenene i forekomsten. For å utføre undersøkelser, ble det laget flere modeller ved bruk av kriging. Den overordnede prosessen for modelleringen er presentert i Figur 5.1. De ulike stadiene kan sees på som lukkede prosesser. Susceptibilitetsdata ble målt i felt (Kapittel 5.3.1) og på prøvemateriale fra DIA-borehull (Kapittel 5.4.1). Alle innsamlede data ble korrelert og "vasket" i ArcGIS. Med "vask" menes at dårlig data ble evaluert og fjernet, eller målt på nytt. Data som ble tatt på omvandlingsflater ble for eksempel slettet. Undersøkelser av DIA borkaks med for stor spredning, ble tatt på nytt. Deretter ble data korrelert med borehull/koordinater. For alle data ble det laget en geo-database, der prøvepunktene og borehullene ble lagret som punkter.

Deretter ble det foretatt en ekstremverdianalyse på samtlige data i datasettene. Dette er beskrevet i Kapittel 5.6, der ekstremverdier ble identifisert og fjernet fra datasettet. Delkapittelet oppgir begrunnelse for alle data som ble fjernet. Det ferdige datasettet er presentert i Kapittel 6.

Strukturanalysen (beskrevet i Kapittel 5.8) ble foretatt på de mest relevante datasettene. Analysen ble foretatt både i ArcGIS, som punktdata og i Datamine Studio 3 som borehullsdata. Det ble gjort individuelle analyser på de ulike områdene og detaljstudiene. Resultatene fra detaljstudiene og profilene ble benyttet til bedre å definere variogrammet i DIA-kampanjen.

Det ble valgt å gjennomføre en kriging på avgrensede områder, delt opp etter hvor det fantes data. Det ble valgt å produsere 2D modeller i ArcGIS for DIA-datasettet i dagbruddet ved bruk av universell kriging i "Geostatistical Analyst".

Figur 5.1: Overordnet fremgangsmåte for arbeider med Drill in Advance data og susceptibilitet. Striplede linjer betyr at resultater benyttes i prosessen. Nærmere beskrevet i teksten.

For å kunne karakterisere de ulike domenene, ble datasettene delt inn etter domene. Det ble valgt å lage en forenklet modell av domenene. Da domenegrensene gitt fra bedriften (Figur 2.3) var definert for et høyere nivå enn palltopp (645), ble det benyttet interpolasjon med grenser fra diamantborehull lenger nede i forekomsten. Det ble også generert en grense på nivå 633. De nye grensene er vist i Figur 5.2, der de striplede strekene indikerer den beregnede domenegrensen på nivå 633. Det ble valgt å benytte borehullene i gråberget som en del av det Rosa domenet, for å ha et bedre datagrunnlag i området. Det ble så foretatt statistiske sammenlikninger på og mellom de ulike domenene. For å forsikre seg om at alle datapunkter lå innenfor domenene, ble det fjernet borehull som lå nær grensene av domenene (de resterende borehullene er vist i Figur 5.2). Det ble gjennomført en hypotesetest (T-test) med 75% konfidensintervall, for å undersøke om det var en signifikant forskjell mellom det Grøne og Oransje domenet. Korrelasjonsanalysen er beskrevet nærmere i Kapittel 5.7.

Det ble tatt tre prøver i hvert av de fire domenene. En nærmere beskrivelse av fremgangsmåte for Prøvetaking i felt, kan finnes i Kapittel 5.3. Alle prøvene ble tatt fra områder som var godt innenfor de definerte domenene. Av prøvematerialet ble det, av eksterne aktører, produsert polerte tynnslip og gjennomført geokjemisk analyse og produksjonstester (Kapittel 5.2). For å undersøke andel magnetitt, ble det gjennomført en bildeanalyse (Kapittel 5.5) av samtlige polerte tynnslip, i tillegg til undersøkelser med mikroskop.

Figur 5.2: Borehull benyttet til karakterisering av domene.

5.2 Eksternt arbeid

All preparering av prøvematerialet ble gjennomført av eksterne parter. Preparering av polerte tynnslip ble gjennomført av sliplaberatoriet ved Institutt for geologi og bergteknikk (IGB) på NTNU. Alle geokjemiske undersøkelser og produksjonstester ble gjennomført av laboratoriet på Stjernøya. Alle data produsert av eksterne parter er presentert og kommentert i Kapittel 4.

5.3 Feltarbeid

Det ble foretatt flere feltundersøkelser på Stjernøya i perioden 15. juni til 17. juli 2015. Magnetisk susceptibilitet ble undersøkt in situ i flere profiler, samt i mindre områder med høyere oppløsning. Prøvene til mikroskopi ble også samlet inn ved hjelp av borerigg.

5.3.1 Susceptibilitet in situ

Som beskrevet i Kapittel 4.2, ble det gjennomført susceptibilitetsmålinger i tre områder. De fleste målingene ble gjennomført innenfor et område på rundt 15-20 cm i diameter. På hvert målepunkt ble det gjort 2-4 individuelle målinger ved bruk av en susceptibilitetsmåler.

Susceptibilitetsmåleren benyttet i oppgaven var en KM-7 modell fra SatisGeo¹.

Målingene i dagbruddet ble senere målt med en Leica RTK-GPS med en presisjon på rundt 2-10 cm. I gruven ble målepunktene senere stedfestet ved bruk av totalstasjon og fastmerkepunktene, som fantes langs hovedveien i gruven. For enkelte områder ved Profil 4 var det ikke mulig å bruke fastmerkepunktene, og det måtte derfor lages egne fastmerkepunkter. Alle målepunktene ble sammenfattet i Excel, importert og undersøkt i ArcGIS før resultater ble overført til CSV format for mer universell lagring av data.

Det ble i de fleste tilfeller ikke tatt målinger på diabas-ganger eller i omvandlingssoner. I forbindelse med profilene, ble det tatt susceptibilitetsmålinger på enkelte diabas-ganger. Det ble også gjort en liten undersøkelse på tvers av en gang i dagbruddet. Målingene er utelatt fra øvrig statistikk, da dette ikke er fokus i oppgaven. Resultater fra målinger på diabas er presentert i Kapittel 6.3.2.

Profiler

Profilene i oppgaven (presentert i Figur 4.1) er mellom 60 og 110 meter lange. Hver profil består av mellom 30 og 150 målepunkter, med et mellomrom på rundt 1-3 meter. I gruven ble de aller fleste målepunktene plassert omtrent en meter over bakken. Det var hoved-sakelig forhold på overflaten (støv og ruhet) som bestemte hvor det var mulig å plassere målepunktene. Figur 5.3 viser et resultat av dette, hvor plassering av målepunktene kan virke litt tilfeldig.

Profilenes plassering ble valgt for å kunne korrelere geokjemisk data med in situ susceptibilitet. I dagbruddet ble profilen lagt i området hvor det ble kartlagt. I gruven ble området valgt grunnet borehull som tilsvarte DIA-kampanjen.

På grunn av usikkerhet med metoden, i starten av arbeidet, ble Profil 1 gjentatt. Dette førte til en høyere tetthet av målepunkter langs profilen. Målepunktene fra den første undersøkelsen ble markert med prikker, i motsetning til ringer som ble benyttet for øvrige målinger.

Detaljstudier

I enkelte områder var det ønskelig å foreta mer detaljerte undersøkelser med kortere intervall mellom målepunktene. I oppgaven er slike undersøkelser betegnet som "detaljstudier". Detaljstudiene ble gjennomført som vist i Figur 5.4. Målepunktene i detaljstudiene hadde normalt et intervall på 10 cm, der 2-3 individuelle målinger ble gjort på samme sted. I enkelte områder, som Detaljstudie 2 (ikke i Figur 5.4) og noen målepunkter i Detaljstudie 3, ble målingene foretatt på samme måte som for profilene.

Plassering av detaljstudiene var valgt i dagbruddet på grunn av muligheter for korrelasjon med prøvetakning og borehull. I gruven var Detaljstudie 1 valgt på grunn av gode muligheter for lik prøvetaking langs et konturborehull (Figur 5.4c). Detaljstudie 3 var valgt på grunnlag av stor forskjell i utvinningsgrad mellom borehullene K-2014-72 og K-2014-73.

¹Informasjon om enheten kan finnes på produsentens hjemmeside: http://www.satisgeo.com/index.php/products/susceptibilitymeters/km-7-field-susceptibility-meter

Figur 5.3: Prøvetakning på profiler. Bildet er tatt fra midten av Profil 2. Prøvepunktene er markert med gule sirkler, hvor alle målingene på punktet er foretatt innenfor. Merk at borehull ST-K2014-066 også er markert.

(b)

(c)

Figur 5.4: Detaljstudier. I dagbruddet: (a) Detaljstudie 3 (kode 1502), ved prøvepunkt 6 og DIAborehull V36. (b) Detaljstudie 4 (kode 1503), ved prøvepunkt 11 og DIA-borehull U36. I gruven: (c) Detaljstudie 1 (kode 1203), gjennomført på et konturborehull i Profil 2.

5.3.2 Geologisk kartlegging

Da store deler av bruddet var overdekket og i drift, var det vanskelig å kartlegge større områder. Det ble derfor kartlagt et lite område som var rensket. Det var fremdeles en del overdekket i området (se Figur 5.5), som til tider gjorde det vanskelig å følge ganger og sprekker. Hele området var innenfor der DIA data var samlet inn. Det ble hovedsakelig bare kartlagt sprekker og diabas-ganger, da å skille typer nefelinsyenitt i området viste seg særdeles vanskelig. Kartleggingen ble utført ved bruk av en RTK GPS, på både geologiske grenser og for å beregne strøk og fall på forskjellige ganger. Det ble valgt å ikke bruke kompass til strøk-fall målinger, grunnet stor magnetisk misvisning i området.

Figur 5.5: Kartlagt område i dagbruddet. Området mellom boreriggen og gravemaskinen som er rensket, det kan sees at det er relativt mye grus igjen etter rensk.

5.3.3 Prøvetaking

Det ble tatt prøver ved tre lokaliteter i hver av de fire definerte sonene. Prøvetaking ble foretatt ved bruk av boremaskin på fast fjell (Figur 5.6). Det ble til sammen samlet rundt 20 kg stein og en bøtte med borkaks for hver lokalitet. Det ble prøvd å få prøver fra sentrum av prøveområdet, markert med gul (grønn) strek i Figur 5.6. Et gult (grønt) kryss markerte sentrum av prøveområdet. Blotningen ble grundig målt for magnetisk susceptibilitet på overflaten, før prøvetaking ble foretatt med mellom 10 til 15 ulike målinger. Det ble ikke utført målinger på blotningene for de tre siste lokalitetene (i Rosa domene), da prøvene ble tatt etter at forfatter forlot Stjernøya. Prøvene ble utført under oppsyn av Dirk Schwerdtfeger. Bare en del av prøvemassen ble brukt til videre undersøkelser, den resterende delen ble merket og satt på pall i kjernelageret til gruven.

Figur 5.6: Prøvetaking ved hjelp av borerigg. Det ble boret flere steder rundt midten (markert med gult (grønt) kryss) for så å ta prøver fra det som var fast fjell.

Figur 5.7: Prosedyre for susceptibilitetsmåling på prøveposer. Det ble gjort 3 uavhengige prøver langs linjene markert med rødt.

5.4 Laboratoriearbeid

Det meste av laboratoriearbeidet i oppgaven ble utført av eksterne parter (beskrevet nærmere i Kapittel 5.2). Laboratoriearbeidet som ble gjennomført i oppgaven var mikroskopi og måling av magnetisk susceptibilitet på borkaks, sistnevnte ble gjort på Stjernøya.

5.4.1 Susceptibilitetsmålinger

Susceptibilitetsmålinger av kaks fra borehull ble gjort ved bruk av KM-7. De fleste prøvene var tatt på "kikkeposer", som er en liten del av borkakset som ikke ble brukt til produksjonprøver eller geokjemiske analyser, også kalt "Rågods". Målingen ble gjort på en standardisert måte, med tre individuelle målinger for hver prøve. For målinger der posen var for liten til å kunne ta målinger i selve posen, ble prøvene helt ut i en ny brødpose (ny for hver prøve), før prøvene ble planert og målt i tre retninger (Figur 5.7). Prøvene ble så helt tilbake i original pose, brødposen ble byttet og sensoren på KM-7 ble blåst og rensket, slik at ingen korn ble værene igjen.

For de 12 prøvene i dagbruddet ble det også foretatt susceptibilitetsmålinger på konsentratet og avgangen fra labanalysen, i tillegg til på rågodset.

5.4.2 Mikroskopi

Den petrologiske analysen ble for det meste undersøkt ved bruk av gjennomlysningsmikroskopi. Det ble bare gjennomført en overordnet undersøkelse av mineraler, som er beskrevet i tidligere publikasjoner som Heier (1961) og Geis (1979). En grundigere undersøkelse av hvordan magnetitt opptrer i slipene, ble gjennomført. Det var et spesielt fokus på mengden og størrelsen på magnetitt. Det ble også undersøkt hvordan magnetitt opptrer i nefelinsyenitten.

For å kunne gi data til bruk i korrelasjonsanalyser, ble det for magnetitt gjennomført en undersøkelse ved bruk av bildeanalyse. Metodesettet for bildeanalysen er beskrevet nærmere Kapittel 5.5.

5.5 Bildeanalyse

Bildeanalyser av slip ble utført i programmet ImageJ. Målet med analysen var å undersøke andel magnetitt i slipene. Slipene er presentert i kapittel 4.3.3. Alle slipene ble skannet med en oppløsning på 3200 dpi som tilsvarer 125.984252 piksler pr. millimeter. For ikke å skade skanneren, ble det brukt et transparent ark under slipene. Det ble ikke brukt noen fargekonfigurasjon under skanning, da dette viste seg å gi en del ulike resultater, både i farger og lys (brightness).

5.5.1 Fremgangsmåte

Slipene ble først skannet ved bruk av en Epson Perfection V600 Photo. Før analysen ble bildene kuttet ved bruk av Adobe Lightroom², slik at minst mulig annet enn slipet ble igjen, illustrert i Figur 5.8. Alle slipene var litt forskjellig plassert, og ikke alle var helt rette, noe som gjorde at denne delen av analysen måtte gjøres manuelt og med skjønn.

Figur 5.8: Beskjæring av bilder i Adobe Lightroom. Fra prøve nr. APL-2015-15. Utdraget er markert med rødt.

Deretter ble bildene prosessert ved bruk av ImageJ. Etter at bildet var importert ble kontrasten endret, for å korrigere for lysstyrken til skanneren (Figur 5.9a). Videre ble bildet filtrert ved bruk av et Kuwahara-filter (beskrevet i kapittel 3.2.2), for å glatte ut korn og gjøre grensene mer tydelige. Bildet ble deretter konvertert til 8-bit gråtone før kontrasten ble endret igjen, for å gjøre det lettere å bruke terskelverdien for å identifisere magnetitt (Figur 5.9b).

Terskelverdi (threshold) ble brukt for å skille ut de mørkeste områdene i bildet. Valget av terskelverdi er beskrevet nærmere i Kapittel 5.5.2. For å kunne gjøre analyser av andel magnetitt, måtte bildet bli konvertert til binært, med bakgrunn i terskelverdien. Feil fra

 $^{^2\}mathrm{Mer}$ informasjon om Adobe Lightroom kan finnes på: http://www.adobe.com/products/photoshop-lightroom.html

Figur 5.9: Kontrast satt til 0 og 90 i steg 6. a) Originalt histogram etter korrigering for lysstyrke og b) buttet histogram. Man ser flere topper mot de mørkere partiene enn man kunne i det originale histogrammet.

Steg		Parameter	Verdi
1.	Kutte bilde ^a	-	-
2.	Importer bilde	-	-
3.	Endre kontrast	Min, Max	0,240
4.	Kuwahara filter	Vindu, alle kanaler[1]	7px, nei
5.	Konverter til gråtone	Туре	8-bit
6.	Endre kontrast	Min, Max	0,90
7.	Sette terskelverdi	Min, Max	0,120
8.	Konvertere til binær	-	-
9.	Fjerne topper (Open)	Iterasjoner, naboer	2,2
10.	Fjerne hull (Close)	Iterasjoner, naboer	1,4
11.	Mål andel	Area, Area%	-
12.	Lagre fil	-	-
13.	Kontroll mot mikroskop ^b	-	-
14.	Mål partikler	Area, Area	-
15.	Beregne areal	-	-

 Tabell 5.1: Fremgangsmåte for bildeanalyse. Bare nevnt parametre som endres fra standardverdier.

^a Utført i Adobe Lightroom.

^b Utført manuelt i ImageJ.

"hull" og "topper" ble fjernet i noen grad, med flere binære operasjoner, beskrevet i Kapittel 3.2.3. Det ble valgt å ikke bruke funksjonen "fill holes", da det var observert flere korn i slip, som hadde inklusjoner eller hull. Til slutt ble areal-andel av magnetitt målt. Den nøyaktige algoritmen som er benyttet er presentert i Tabell 5.1, sammen med en oversikt over de parametre som er benyttet.

Etter behandlingen i ImageJ ble resultatene lagret, for så å bli undersøkt opp mot slipene i mikroskop, for så å fjerne gjenværende feil fra kanter og mørke mineraler, som ikke var isotrope. Til slutt ble slipene målt igjen for prosent-andel, antall korn, størrelse, ellipse og perimeter (Kapittel 3.2.4). Den målte kornstørrelsen ble delt på perimeter, for å gi et uttrykk for ruheten til kornet. Det bør merkes at dette resultatet ikke vil gi optimale resultater, grunnet bruk av de binære operasjonene i steg 9 og 10. Da det ble klart av sammenlikninger mellom resultat- og original-bildene fra analysen ikke dekket hele kornet, ble det beregnet en empirisk funksjon (Figur 5.11). Fremgangsmåten for å definere den empiriske funksjonen er beskrevet nærmere i Kapittel 5.5.4, mens resultatene er presentert i Kapittel 6.2.3. Resultatene fra bildeanalysen er presentert både før og etter bruk av denne funksjonen i Kapittel 6.2.2.

Det ble skrevet en makro til ImageJ for å sikre lik prosess på samtlige slip. Makroen gjør den samme prosessen (steg 2 til 12) på samtlige bildefiler i en mappe, måler areal og lagrer resultat-filene i en egen mappe. Mer detaljert beskrivelse finnes sammen med kildekode i appendiks D.

5.5.2 Terskelverdi

Siden det ble antatt at magnetitt er det eneste opake mineralet (Kapittel 3.1), så vil teoretisk sett alle piksler under en gitt terskelverdi være en del av magnetitt. Som nevnt i Kapittel 5.5.3, var ett av de største problemene at korngrensene var graderte. Det var derfor viktig å finne den best mulige terskelverdien for å få med nok av korngrensen, samt utelukke mest mulig av andre mørke mineraler.

For å finne riktig terskelverdi, ble det gjort flere undersøkelser langs korngrenser og innad i magnetitt mineraler ved bruk av funksjonen "plot profile". Funksjonen viser gråverdien langs en gitt profil vist i Figur 3.2e-f og ved bruk av lokale histogrammer ved kornene (Ferreira Rasband, 2012). Det ble, på grunnlag av undersøkelsene, valgt en terskelverdi som representerte brorparten av magnetitten. Dette kom på bekostning av at deler av andre mørke mineraler ble med. De mørke områdene, som ikke tilhørte magnetitt, ble senere ble fjernet ved bruk av binære operasjoner (Kapittel 3.2.3) og undersøkelser opp mot mikroskop (Kapittel 5.4.2).

Det ble valgt å ikke benytte seg av noen form for automatisk terskelverdi. Ingen av de automatiske metodene ga like gode resultater som manuell bestemmelse av terskelverdi med korrigering mot mikroskop. En oversikt over resultater fra forskjellige automatiske metoder kan finnes i Appendix C.

5.5.3 Filter

To problemer ved bildene, illustrert i Figur 5.10, ble forsøkt løst ved bruk av filter; Det første problemet omhandler lysere og mørkere områder innad i mineralkorn, som magnetitt og pyroksene. Områdene gjør det vanskeligere å definere magnetitt ved bruk av terskelverdi (threshold), da det kan i flere tilfeller føre til "hull" eller "topper" innad i kornene. Det andre problemet er korngrenser, som grunnet ujevnheter i overflaten og manglende optikk i skanneren får en graderende overgang, som fører til at en mye høyere terskel-verdi må benyttes for å få med hele kornet.

Figur 5.10: Problemer med topper og grenser i magnetitt og pyroksen. Markert med rødt for gråverdi innenfor terskelen er valgt til 34 og 50). Omrissene av magnetittkorn viser at grensene er graderte, med samme verdi som finnes flere steder i pyroksen og amfibol (piler). I dette tilfellet er det ingen sprekker eller grenser som er prominente nok til å vises.

Det ble undersøkt tre forskjellige typer filtre (beskrevet i kapittel 3.2.2) for å hindre problemer med "hull", "topper" og uklare grenser. De tre typene filtre ble prøvd på et utsnitt av bildematerialet, der begge problemene var forekommende. På grunnlag av denne undersøkelsen (vist i Figur 3.2) ble det valgt å benytte seg av Kuwahara-filter, da dette ga en høyere gradient og derfor gjorde korngrensene skarpere. Hvilken størrelse Kuwahara-filter som ga best resultater ble undersøkt, og en størrelse på 7 piksler ble valgt, da høyere verdier begynte å fjerne mindre inklusjoner.

5.5.4 Sammenlikning

Korngrenser ble tegnet opp manuelt på tre slip. Kornstørrelsen ble målt og sammenliknet med resultatene fra analysen beskrevet i Tabell 5.1. En sammenlikning mellom analysert og tegnet korngrense kan finnes i Figur 5.11. Ved regresjon i Matlab, ble det funnet en funksjon basert på målt kornstørrelse, som beskriver hvor mye resultatene fra analysen måtte multipliseres med for å gi et mer riktig resultat. Resultatene fra regresjonen er presentert i Kapittel 6.2.3.

Figur 5.11: Sammenlikning mellom sant areal og analysert areal i bildeanalysen. Gul strek indikerer arealet målt gjennom bildeanalysen beskrevet i Tabell 5.1. Grønn strek indikerer sant areal tegnet for hånd.

5.6 Ekstremverdianalyse

Som beskrevet i kapittel 3.3.2 er en ekstremverdianalyse kritisk for å sikre pålitelige resultater. I oppgaven er det i stor grad prøvd å bare slette klare feil i datasettet ved å benytte følgende kriterier;

(1) Data skal slettes hvis det er klare fysiske grunner for dens spesielle verdi.

(2) Data som er usedvanlig langt fra det lokale gjennomsnittet (lokale ekstremverdier).

(3) Data som er usedvanlig langt fra hele datasettet (globale ekstremverdier).

Det ble i første omgang benyttet boks-plott for å identifisere de globale ekstremverdiene. Verktøyet "Cluster and Outlier Analysis (Anselin Local Moran's I)" ble så benyttet for å undersøke lokale ekstremverdier. Distansen (distance band³) benyttet i undersøkelsene, ble funnet individuelt for hver undersøkelse med verktøyet "Calculate Distance Band from Neighbor Count". Det ble valgt å benytte gjennomsnittsdistansen der punkter har 10 naboer. Det ble også undersøkt gjennomsnittlig avstand mellom to punkter i de ulike datasettene. For å bedre grunnlaget, ble det undersøkt histogrammer og normal-QQ plot for å se hvordan verdiene (spesielt de globale ekstremverdier) oppførte seg.

All fjernet data er beskrevet og begrunnet i tabell 5.2. I datasett bestående av flere variabler pr. lokalitet (DIA-, ST-K2014-kampanjen og prøvepunkter) er det valgt å fjerne hele datapunktet. Analyser på profilene er gjort individuelt på hvert område, detaljstudier ble undersøkt individuelt.

³Beskriver hvor langt unna ett punkt data blir ignorert.

Kampanje	e	Verdi	Begrunnelse
Detaljstudie 2	1	58.4	Global outlier. Over 2.5 std. fra snittet. Stor usikkerheter i målinger.
Detaljstudie 2	25	43.0	Lokal outlier. Verdier i området rundt ligger på 20-26. Punkt rett ved har verdien 26.7
Detaljstudie 3	b16	64.2	Global outlier. Undersøkelser in situ tilsier at de kan være påvirket av diabas.
Detaljstudie 3	b17	85.3	Global outlier. Undersøkelser in situ tilsier at de kan være påvirket av diabas.
Detaljstudie 4	6p	53.0	Lokal outlier.
Drill in Advance	E39	46.1	Global Outlier. Vesentlig høyere verdier enn resten av datasettet.
Drill in Advance	E40	49.7	
Profil 1	57/58-05	60.4	Global outlier. Stor variasjon av i målinger.
Profil 1	51/52-02	68.1	Global outlier. Punkt rett ved har en verdi på 21.6
Profil 1	50/51-03	51.4	Lokal outlier. Verdier rundt har rundt 16-27.
Profil 1	1102-38	45	Lokal outlier. Verdi 4 cm unna har verdi 26, som er nærmere verdiene rundt.
Profil 1	54/55-05	69	Global outlier. Punkter på sidene har verdier: 34 og 37
Profil 1	58/59-05	16	Verdi 5 cm unna har verdi 30. Trolig målefeil.
Profil 1	Profil1-38	41	Lokal outlier. Verdier i området rundt ligger på 16-30. Punkt rett ved har verdien 26.7
Profil 3	DIA-1	211.9	Diabas
Profil 3	DIA-2	9.1	Diabas
Profil 3	DIA-3	2.2	Diabas
Profil 3	44	81.2	Global outlier. Punkter på hver side har verdier: 26.5 og 18.7
Profil 4	DIA-4		Diabas
Profil 4	DIA-5		Diabas
Profil 4	52	13.3	Lokal outlier. Verdier rundt har verdier mellom 23 og 37. Diabas gang like ved.
Profil 5	1501-002	2.2	Global outlier. Trolig tatt på rester av diabas-gangen som er like ved.
Profil 5	1501-018	46.9	Ligger i diabas. Outlier.

Tabell 5.2: Datapunkt fjernet ved ekstremverdianalyse.

5.6 Ekstremverdianalyse

5.7 Korrelasjonsanalyse

Det ble foretatt en undersøkelse av korrelasjon mellom magnetisk susceptibilitet og de geokjemiske resultatene. Det er valgt å ikke foreta analyse innad i geokjemi, da dette ligger utenfor oppgavens målsetning. I DIA-kampanjen, hvor det fantes både susceptibilitet og geokjemisk data ble korrelasjonen beregnet ved hjelp av Matlab.

For å få en bedre forståelse av Drill in Advance datasettet, ble det valgt å gjøre korrelasjonsanalyser på utvalgte deler av datasettet. Et kjent diabastog strekker seg nord-sør i forekomsten, og dekker en del av borehullene i det Blå domenet. Det ble valgt å gjøre en separat undersøkelse på borehull i dette området (markert med rødt i Figur 5.12), samt en undersøkelse på alle borehullene som ikke er påvirket av diabastoget (markert med svart). Det ble også gjort en egen undersøkelse på den nordlige delen av dagbruddet.

Figur 5.12: Caption

Da det i gruven ikke ble gjennomført undersøkelse av susceptibilitet på ST-K2014 kampanjen, var det ikke mulig å finne en korrelasjonskoeffisient ved hjelp av Matlab direkte. For å kunne gjennomføre en analyse, ble resultatene fra strukturanalysen og modelleringen benyttet til å korrelere med borehulldata. Dette ble gjennomført ved å benytte verktøyet "Extract Multi Values to Points (Spatial Analyst)" som tilegner verdier fra et rasterdatasett og allokerer disse til et punktdatasett. Det nye datasettet ble eksportert og analysert på samme måte som DIA-kampanjen i Matlab.

En undersøkelse av korrelasjonen mellom resultatene fra bildeanalysen (beskrevet i Kapittel 5.5) og geokjemi ble også foretatt.

5.8 Strukturanalyse

Strukturanalysen i oppgaven ble for det meste utført i ArcMap. Det ble valgt å undersøke alle datasettene i 2D, da de aller fleste hadde en veldig liten vertikal spredning. Verktøyet "Geostatistical Wizard" i "The Geostatistical Analyst toolbox" ble benyttet for å utføre samtlige modelleringer og beregninger i ArcMap.

Det ble benyttet "Global Polynomial Interpolation" for fjerne påvirkningen fra globale trender i datasettet.

5.8.1 Variogrammodellering

De teoretiske variogrammodellene ble først modellert for detaljstudiene. Resultatene fra detaljstudiene ble benyttet, for bedre å kunne modellere variogrammene for profilene og DIA-datasettet nær h = 0.

I Detaljstudie 1 og 2, der alle målingene var tatt langs en rett linje, ble det ikke undersøkt anisotropier. Det var derimot mulig, på grunn av deres lokalisering, å få et innblikk på anisotropien i området. For Detaljstudie 3 og 4, som ble utført på flater, ble det undersøkt anisotropi. Hovedaksene og retningen ble funnet, og er presentert i resultatene.

For enkelte av profilene var det en lavere terskelverdi (sill) i profilen enn det var i Detaljstudiene. Det var derfor ikke mulig benytte variogrammene fra detaljstudiene direkte. Siden ett av de viktigste aspektene ved variogrammet er nugget-effekten, ble det valgt å benytte nugget-effekten fra detaljstudiene, for så å senke terskelverdien, slik at den ble tilsvarende profilen.

5.8.2 Modell

Det ble for 2D modellene benyttet universal kriging, med bakgrunn av de teoretiske variogrammene for susceptibilitet. For de resterende elementene fremvist i oppgaven, er det benyttet invers distanse vekting.

Da området med Profil 1, 2 og 3 hadde utbredning vertikalt, ble det gjort en liten modellering av området ved bruk av RBF i Leapfrog Geo. Siden RBF ikke benytter direkte et variogram, men en liknende formel, ble det bare benyttet som en tilnærming.
Kapittel 6

Resultater

6.1 Geologisk tolkningskart

De geologiske undersøkelsene som nevnt i Kapittel 5.3.2, ble utført på et relativt vanskelig område. Grunnet mye overdekke enkelte steder, kan ikke kartleggingen sies å være totalt dekkende for området. Det var likevel mulig å produsere et geologisk tolkningskart i størrelse 1:400 over området, til bruk i videre undersøkelser. Tolkningskartet er presentert i Figur 6.2.

6.1.1 Sprekker

Det ble kartlagt få sprekker i dagbruddet. Foruten de som ble assosiert med omvandlingssoner (Kapittel 6.1.2), så ble et lite området med SW-NØ gående og horisontale sprekker kartlagt. Noen sprekker ble også kartlagt i gruven ved bruk av totalstasjon. Mange av disse sprekkene viste en mørk omvandling eller glideplan (Figur 6.1a). De fleste sprekkene hadde et fall på rundt 90 grader.

6.1.2 Omvandlingssoner

Det ble observert to ulike former for rød-rosa fargede omvandlingssoner i dagbruddet:

- **Tynne omvandlingssoner** (Figur 6.1b) som ligger i og rundt enkelte sprekker og glideplan. Sonene er under 5 mm tykke, men synes tykkere på overflaten. Det er bare funnet to slike soner i det kartlagte området. I gruven ble det funnet flere slike, som artet seg som flater i gruveveggene.
- **Tykke omvandlingsganger** (Figur 6.1c) er vesentlig tykkere. Det er ikke funnet noen sammenheng mellom sonene, sprekker eller glideplan. Fargen er rød-rosa og er relativt homogen. Det ble ikke funnet tilsvarende soner i områdene undersøkt i gruven.

Det ble ikke målt noe fall på noen disse sonene, da det ikke lot seg gjøre i dagbruddet. I gruven ble det ikke foretatt en ordentlig kartlegging og fall ble derfor ikke målt.

(b)

(c)

Figur 6.1: Feltobservasjoner fra geologisk kartlegging. (a) Sprekker i SW-NØ retning og horisontalt med mørk omvandling. (b) Rosa omvandlingssone i sprekk, selve sprekken er bare noen mm bred. (c) Omvandlingssoner på hver side av en diabas gang og rågods. Linselokket ligger på rågodset.

6.1.3 Diabasganger

I dagbruddet hadde diabasgangene hovedsakelig et strøk med retning nord nord-vest til nord-vest. Nesten samtlige ganger hadde et fall på mellom 70 og 90 grader mot syd-vest. Tykkelsen varierte fra få centimeter til rundt en halv meter. Gangene var mange steder diskontinuerlige og varierte mye i tykkelse. Gangene var heller ikke rette, og hadde svingninger i enkelte områder.

6.2 Petrologisk analyse

Resultatene fra den petrologiske analysen tar først for seg en overordnet beskrivelse av de observasjoner som er gjort med mikroskop. Observerte mineraler og deres opptreden er beskrevet i Kapittel 6.2.1. Deretter blir resultatene fra bildeanalysen beskrevet og presentert i Kapitel 6.2.2.

Et sammendrag av resultater i forhold til selve bildeanalysens metode og korreksjonsfaktorer benyttet er presentert i Kapittel 6.2.3.

6.2.1 Mineralbeskrivelse

Det ble observert relativt store variasjoner i tynnslip, innad i de ulike domenene. I håndstykke var det observert mindre forskjeller innad i domenene. Det virker generelt som det er en større laminering i prøvene fra det Blå og Grønne domenet, enn for de to nordligste. For alle håndstykkene, er brorparten av de mørke mineralene å finne i små aggregater, som i bedriften betegnes som "spettet". I de to nordligste domenene er det også en del mindre enkeltkorn eller aggregater.

Nedenfor er det kommentert kort de mørke og lyse mineralene fra undersøkelsene gjort med mikroskop, med unntak av magnetitt, som blir kommentert for seg selv i Kapittel 6.2.2.

Mørke mineraler

Det er, ved overslag, rundt 5-20% mørke mineraler i slipene. Det er ikke mulig å se en spesiell tendens i forekomsten, da det finnes slip med mye og lite mørke mineraler i de aller fleste domenene. Nesten alle de mørke mineralene, med unntak av magnetitt, opptrer nesten utelukkende i aggregater eller i løsere grupper i tynnslip (Figur 6.3a). Kornene er for det meste subhedrale eller euhedrale, og kan inneholde inklusjoner av både magnetitt og nefelin. Kornstørrelsen kan variere fra 0.1 til 2 mm².

Lyse mineraler

De lyse mineralene i slipene er hovedsakelig nefelin og perthit. De er i all hovedsak anhedrale i alle slipene, og har en større kornstørrelse enn de mørke. Det er ikke funnet noen store forskjeller mellom de fire domenene i forhold til nefelin eller perthit. I enkelte slip, i det Rosa domenet, er funnet noe omvandlig rundt enkelte korn, vist i 6.3b.

6.2.2 Magnetitt

Resultatene fra bildeanalysene er gitt i Tabell 6.1. Det totale arealet (A_B) med magnetitt ligger på mellom 4,9 og 5,5 for samtlige domener, med høyere verdier i det Oransje og Rosa domenet. Variasjonen mellom slipene er relativt store, der både det Grønne og Oransje domenet viser større variasjon. Prosentandelen med magnetitt $(A_{B,\%})$ viser tilsvarende tendenser som arealet, med litt høyere verdier i det Oransje og Rosa domenet.

Antall korn varierer fra 27 til 58. Den gjennomsnittlige kornstørrelsen (\overline{A}_B) er litt større for det Rosa domenet, med et gjennomsnitt på $0.15 mm^2$. Slip med få korn, som slip nr. 2 og 15, har høyere gjennomsnittlig kornstørrelse enn slip med mange korn. Fra kornfordelingskurvene (Figur 6.4) ser vi at det er en relativt lik fordeling i alle domenene. Sirkulariteten, rundhetsgraden og soliditeten er nesten helt lik i samtlige slip, med en verdi på respektivt 0.7, 0.65 og 0.85. Akseforholdet (A.R.) varierer i litt større grad mellom slipene med verdier på rundt 1.5 til 2. Korrelasjon mellom magnetitt og de geokjemiske undersøkelsene er nærmere beskrevet i Kapittel 6.4.

(a)

(b)

(c)

(d)

Figur 6.3: Observasjoner fra undersøkelser i mikroskop. (a) Normal opptreden av mørke mineraler. (b) Omvandling ved korngrense i de nordlige delene av forekomsten. (c) Magnetitt i korngrenser. Merk også ett magnetittkorn som inklusjon i amfiobol. (d) Magnetitt som inklusjon.

KAPITTEL 6. RESULTATER

En trend i alle slipene var at magnetitt-kornene hovedsakelig lå langs korngrenser (Se Figur 6.3c). Det var hovedsakelig bare små korn som opptrådte som inklusjoner (Figur 6.3d), mens de større, uten unntak, lå i korngrenser. De aller fleste inklusjonene lå inne i andre mørke mineraler.

Figur 6.4: Kornfordeling av magnetitt i tynnslip. (a) Blått domene, (b) Grønt domene, (c) Oransje domene og (d) Rosa domene.

Tabell 6.1: Magnetittbeskrivelse fra bildeanalyse. Delt inn etter domene, beskrevet nærmere i teksten. circ. = circularity, Round. = Roundness, AR = Aspect Ratio.

Domene	Slip	A_M $[mm^2]$	A_B $[mm^2]$	$\stackrel{A_{M,\%}}{\scriptstyle [\%]}$	$\stackrel{A_{B,\%}}{\scriptstyle [\%]}$	Antall	A^M $[mm^2]$	\bar{A}_B $[mm^2]$	A.R.	Circ.	Round.	Solidit
	01	3.86	5.21	0.49	0.67	43	0.09	0.12	2.04	0.69	0.60	0.85
	02	3.25	4.24	0.42	0.55	27	0.12	0.16	1.56	0.75	0.66	0.87
Blått	03	3.54	5.20	0.48	0.71	58	0.06	0.09	1.85	0.70	0.62	0.85
	AVG	3.55	4.88	0.47	0.64	43	0.09	0.12	1.82	0.71	0.63	0.86
	STD	0.31	0.56	0.04	0.08	16	0.03	0.03	0.24	0.03	0.03	0.01
	90	1.71	2.75	0.22	0.36	43	0.04	0.06	1.89	0.73	0.60	0.87
	11	4.47	5.99	0.61	0.82	45	0.10	0.13	1.95	0.68	0.60	0.84
Grønt	12	4.40	6.20	0.59	0.83	59	0.07	0.11	2.01	0.70	0.60	0.85
	AVG	3.52	4.98	0.47	0.67	49	0.07	0.10	1.95	0.70	0.60	0.85
	STD	1.57	1.93	0.22	0.27	6	0.03	0.03	0.06	0.02	0.00	0.01
	08	2.84	4.09	0.37	0.54	44	0.06	0.09	1.92	0.74	0.60	0.87
	60	6.02	7.98	0.81	1.08	51	0.12	0.16	1.82	0.70	0.57	0.88
Oransje	10	2.68	3.97	0.34	0.50	47	0.06	0.08	1.68	0.78	0.66	0.89
	AVG	3.85	5.35	0.51	0.71	47	0.08	0.11	1.80	0.74	0.61	0.88
	STD	1.89	2.28	0.26	0.32	4	0.03	0.04	0.12	0.04	0.04	0.01
	13	3.93	5.17	0.52	0.69	34	0.12	0.15	1.82	0.68	0.60	0.86
	14	4.94	6.70	0.64	0.86	50	0.10	0.13	1.77	0.68	0.60	0.85
Rosa	15	3.68	4.76	0.47	0.61	27	0.14	0.18	1.92	0.69	0.59	0.86
	AVG	4.18	5.55	0.55	0.72	37	0.12	0.15	1.84	0.68	0.60	0.86
	STD	0.67	1.02	0.08	0.13	12	0.02	0.02	0.07	0.00	0.00	0.00

61

6.2.3 Bildeanalyse

Forskjellene mellom resultatene fra den automatiserte bildeanalysen (A_M) og resultatet fra tegnet areal (A_T) er vist i Figur 6.5a. Figuren viser at den automatiserte bildeanalysen underestimerer alle korn, og at den er relativt jevn for kornstørrelser over 0.03 mm^2 . En sammenlikning av hvor mange prosent større det tegnete kornet er i forhold til det analyserte, er vist i Figur 6.5b. Multiplikatoren sier hvor mange ganger kornet som må legges til for å oppnå tegnet areal. Funksjon 6.1 viser hvordan det beregnede arealet (A_B) er avhengig av A_M og $f(A_M)$.

$$A_B = A_M + A_M \cdot f(A_M) \tag{6.1}$$

Det ble gjennomført en regresjon på datasettet og det viste seg at en funksjon på formen:

$$f(A_M) = a \cdot A_M^b \tag{6.2}$$

, beskrev multiplikatoren best. Parametrene a og b ble beregnet for hvert av de tre slipene, individuelt og totalt for hele datasettet (Tabell 6.2). Det ble valgt å benytte resultatet for hele datasettet.

Figur 6.5: Sammenlikning av automatisk og manuell tegnet korn-areal. a)Størrelser. b) Sammenlikning mellom analysert størrelse og økning, for å oppnå sant areal (multiplikator) i området $0 - 0, 1 mm^2$. Regresjonsresultater er vist med linjer. Rød linje representerer regresjon for alle data, mens svart linje representerer regresjon uten data som ligger mer enn ett standardavvik fra den røde streken.

Trenden er sterkt synkende frem til rundt $0.3 mm^2$ og blir derfra tilnærmet linært synkende. Det er høyere R^2 verdier når alle data er benyttet, enn for hvert enkelt slip. Det kan sees en viss segregering av data i Figur 6.5a, der APL-2015-06 i gjennomsnitt har en høyere multiplikator enn de to andre slipene.

Figur 6.5b viser at Likning 6.2 øker betraktelig for små kornstørrelser. Da $f(A_M)$ er sterkt preget av verdier under $0.02 mm^2$, ble det valgt å gjøre en regresjon med bare korn

over $0.02 \ mm^2$. En endelig funksjon benyttet for å beregne kornstørrelse er presentert i Likning 6.3:

$$A_B = \begin{cases} A_M + A_M \cdot f(A_M) & , A_M \le 0.02mm^2\\ 1.154 \cdot A_M + 0.022 & , A_M > 0.02mm^2 \end{cases}$$
(6.3)

, der $f(A_M)$ er Likning 6.2.

For å vertifisere Likning 6.3, ble det foretatt en sammenlikning mellom beregnet og tegnet data. Sammenhengen viste seg å være på formen:

$$A_B = 1.0063 \cdot A_T - 0.002 \tag{6.4}$$

, med $R^2 = 0.96$, som betyr at funksjonen overestimerte arealet med rundt 0.06%.

Data	a	b	R^2
Alle	0.1962	-0.5041	0.44
Alle - Ekstrem	0.1047	-0.5611	0.67
APL-2015-01	0.1837	-0.4628	0.59
APL-2015-06	0.117	-0.7106	0.66
APL-2015-09	0.0004005	-1.382	0.95

Tabell 6.2: Regresjon av resultater fra bildeanalyse. På formen beskrevet i funksjon 6.2.

6.3 Susceptibilitet

Først presenteres resultatene fra prøvene og diabas i Kapittel 6.3.1 og 6.3.2. Siden resultatene fra detaljstudiene er benyttet til å definere variogrammer i profiler og DIA-kampanjen, er de presentert separat i Kapittel 6.3.3.

For hvert av de fire hovedområdene (prøver, detaljstudier, profiler og borehull) blir det først presentert rådata i mindre grad, før en mer detaljert presentasjon av datagrunnlaget etter ekstremverdianalysen. Det blir så presentert modellert variogram og kriget kart.

6.3.1 Prøver

Susceptibilitetsmålingene fra borkaks og labprodukt er presentert i Tabell 6.3, og målingene in situ er presentert i Tabell 6.4. Resultatene fra in situ har ikke gjennomgått ekstremverdianalyse, og det blir her bare presentert rådata. For prøvepunktene tilknyttet detaljstudiene (6 og 11) refereres det til mer omfattende resultater i Kapittel 6.3.3.

I rågodset er det verdier mellom 13 og $20 \cdot 10^{-3}$. Størst spredning er det i det Blå domenet, og minst i det Grønne. Den største anomalien i sitt domenet kan vi finne i det Rosa domenet. Verdiene fra konsentratet varierer mindre, med de høyeste verdiene i det Grønne domenet, med unntak av nr. 12. Prøve nr. 12, med de laveste verdiene i konsentratet, har de helt klart høyeste verdiene i avgangen.

In situ er det store forskjeller på antall prøvepunkter. Det er helt klart mest data for prøvepunkt 06 og 11, da disse er tilknyttet detaljstudiene. Gjennomsnittet ser ut til å være vesentlig høyere i prøvepunktene i det Grønne domenet enn for prøvepunktene i det Blå og Oransje. Foruten prøvepunkt 10, så har det Grønne domenet også størst standardavvik og høyeste maksimalverdi. Resultatene fra detaljstudiene etter ekstremverdianalysen finnes i Kapittel 6.3.3.

		Rågods		K	onsentr	at		Avgang	
Prøve nr.	gjen.	max	min	gjen.	max	min	gjen.	max	min
01	20.36	20.87	20.00	-0.30	-0.25	-0.36	-	-	_
02	14.87	14.94	14.78	-0.33	-0.23	-0.46	-	-	-
03	15.76	16.20	15.26	-0.15	-0.10	-0.20	-	-	-
06	17.91	18.21	17.36	-0.49	-0.49	-0.49	-	-	-
11	18.16	18.33	17.95	-0.55	-0.50	-0.63	-	-	-
12	18.64	18.88	18.29	-0.03	-0.03	-0.03	134.23	137.30	131.60
08	15.61	16.03	15.32	-0.44	-0.40	-0.46	-	-	-
09	17.84	18.23	17.42	-0.28	-0.26	-0.30	-	-	-
10	16.96	17.54	16.33	-0.11	-0.08	-0.13	-	-	-
13	18.83	19.23	18.19	-0.41	-0.34	-0.52	24.06	24.99	22.66
14	18.52	19.09	17.95	-0.32	-0.31	-0.32	62.96	63.73	62.55
15	12.98	13.24	12.61	-0.33	-0.30	-0.34	47.63	49.87	45.80

Tabell 6.3: Susceptibilitet målt på pulver-poser fra prøvelokaliteter. Tabellen er inndelt etter domene; Blå, Grønn, Oransje og Rosa. Prøver fra avgang ble ikke overlevert for alle prøvene.

Tabell 6.4: Susceptibilitet målt in situ på prøvelokaliteter. Tabellen er inndelt etter domene; Blå, Grønn, Oransje og Rosa. Ved noen prøvelokaliteter ble det ikke gjennomført undersøkelser. Beskrevet i teksten.

Prøve nr.	Antall	gien.	std.v.	max	min	dif.	rel.dif.
		2,					
01	11	26.62	4.78	38.16	22.45	15.71	59.01%
02	10	19.95	3.84	30.41	15.14	15.27	76.53%
03	11	22.74	4.66	31.74	15.38	16.36	71.93%
06	101^{a}	31.96	8.72	56.16	19.66	36.50	114.21%
11	193^{b}	29.67	5.33	44.74	20.24	24.50	82.58%
12	-	-	-	-	-	-	-
08	20	22.38	3.46	29.28	16.18	13.10	58.53%
09	16	24.21	6.12	37.44	18.38	19.06	78.74%
10	10	22.57	2.86	29.30	20.42	8.88	39.35%
13	-	-	-	-	-	-	-
14	-	-	-	-	-	-	-
15	-	-	-	-	-	-	-

^a Tilhører detaljkampanje med kode 1503

^b Tilhører detaljkampanje med kode 1502

6.3.2 Diabas

Det er stor forskjell i susceptibilitet på de ulike diabas-gangene. Resultatene fra målinger i profilene er presentert i Tabell 6.5. De fleste gangene ligger på rundt 0-8, mens enkelte har en magnetisk respons på over $200 \cdot 10^{-3}$. Overgangen mellom nefelin og diabas er skarp. Susceptibilitetsmålinger på tvers av overgangen er vist i Figur 6.6. Susceptibiliteten synker fra rundt $20 \cdot 10^{-3}$ til rundt $1 - 2 \cdot 10^{-3}$ på under 10 cm. Hver måling har et spenn på rundt 5 cm.

Tabell 6.5: Susceptibilitetsmålinger $(\cdot 10^{-3})$ på diabas i profiler. DIA referer her til diabas og ikke Drill in Advance.

Profil	Navn	Snitt	min	max
3	DIA1	211.93	216.60	205.90
3	DIA2	9.09	10.86	8.17
3	DIA3	2.18	2.49	1.91
4	DIA4	0.86	0.93	0.76
4	DIA5	0.92	0.99	0.84

Figur 6.6: Målinger av susceptibilitet gjort på overgangen mellom Nefelinsyenitten og en diabasgang. Den stiplede streken representerer omtrentlige posisjonen til grensen. Utført i dagbruddet.

6.3.3 Detaljstudier

Histogrammet (Figur 6.7) av det samlede datasettet fra detaljstudiene før ekstremverdianalyse, viser at det er relativt like verdier i samtlige undersøkelser. En flat positiv hale med en del ekstremverdier, men ellers relativt god normalfordeling rundt $30 \cdot 10^{-3}$.

Figur 6.7: Histogram av susceptibilitet i detaljstudiene. Før ekstremverdianalyse.

Et sammendrag av detaljstudiene etter ekstremverdianalysen er presentert i Tabell 6.6. Gjennomsnittet på samtlige detaljstudier ligger på rundt $30 \cdot 10^{-3}$, med unntak av Detaljstudie 1, som ligger på $23 \cdot 10^{-3}$. Skjevheten i datasettene er for det meste positive, med unntak av Detaljstudie 3, som har tilnærmet ingen skjevhet. Dette kan også sees i de respektive normal QQ-plottene (Figur 6.8).

Den teoretiske variogram-modellen til de ulike studiene er presentert i Tabell 6.8. For Detaljstudie 1 og 2, der det bare ble gjort målinger langs en linje, ble det ikke beregnet anisotropi.

Tabell 6.6: Deskriptiv statistikk av detaljstudier og profiler etter ekstremverdianalyse. Gjennomsnittet av susceptibilitetsmålinger er oppgitt i $(\cdot 10^{-3})$. Profil 1-3 er samlet i et datasett.

			Detalj	studie			Profiler	
		1	2	3	4	1-3	4	5
Antall		36	43	87	49	273	74	32
Gjennomsnitt	\bar{x}	22.99	30.69	29.39	31.41	27.93	28.53	23.98
Standardavvik	σ	4.24	6.03	5.58	8.31	7.12	4.19	4.95
Skjevhet	φ	0.89	0.55	-0.04	1.19	0.13	0.34	0.75

Figur 6.8: Normal QQ-plot av detaljstudier etter fjerning av ekstremverdier: (a) Detaljstudie 1. (b) Detaljstudie 2. (c) Detaljstudie 3. (d) Detaljstudie 4.

Figur 6.9: Normal QQ-plot av profiler etter fjerning av ekstremverdier: (a) Profil 1, 2 og 3 samlet og (b) Profil 4 og 5.

6.3.4 Profiler

I hele datasettet av nefelinsyenitt en gjennomsnittlig susceptibilitet på $28,71 \cdot 10^{-3}$ med et standardavvik på $8.21 \cdot 10^{-3}$ før ekstremverdianalysen (Figur 6.10). De fleste målingene ligger mellom $10 \cdot 10^{-3}$ og $50 \cdot 10^{-3}$, med få ekstremverdier på $2 \cdot 10^{-3}$ og over $60 \cdot 10^{-3}$. Den gjennomsnittlige forskjellen mellom målinger på samme målepunkt var på 10.3%.

Figur 6.10: Histogram av susceptibilitet i profiler. Før ekstremverdianalyse.

Figur 6.9 viser et normal QQ-plot av de ulike profilene etter ekstremverdianalysen (beskrevet i Tabell 5.2). Profil 1-3 er samlet som et datasett i analysene, mens Profil 4 og 5 er behandlet hver for seg. Profil 1-3 har en god normalfordeling, med litt tendens til flate haler. Profil 4 og 5 viser tendens til å være positivt skjevfordelt. Dette kan også sees fra den statistiske oversikten i Tabell 6.6.

Profil 1 ble gjennomført to ganger, som fører til en høyere tetthet av målepunkter i området. I den første undersøkelsen var det undersøkt 112 punkter, mens i den andre var det foretatt undersøkelse av 60 punkter. Begge undersøkelsene ga relativt like resultater. Begge datasettene fra Profil 1 ble benyttet i oppgaven.

Resultatene viste vesentlige forskjeller mellom strukturene i de ulike områdene. Det er i Profil 4, vesentlig lavere terskelverdi enn for de andre profilene.

6.3.5 Drill in Advance

Et statistisk sammendrag av domenene etter ekstremverdianalysen er gitt i Tabell 6.7. Tabellen er delt inn etter domene. Som beskrevet i Kapittel 5.1, ble det tatt et utvalg fra de ulike domenene, som er vist i kolonne nummer to for hvert domene. Den gjennomsnittlige forskjellen mellom målinger på samme prøve var på 2.9%.

Gjennomsnittet i hele datasettet ligger på $14.71 \cdot 10^{-3}$. Gjennomsnittet i de ulike domenene er relativt likt for både hele datasettet, og for utvalget. Det er en stigende trend i datasettet fra det Blå til Rosa domenet, med en gjennomsnittlig økning på rundt $8 \cdot 10^{-3}$. Det er et relativt likt standardavvik i alle domenene på mellom 2 og 5, med lavest verdier i det Oransje datasettet, som også er det minste. Skjevheten i de ulike domenene er for det meste positiv, med unntak av det Blå domenet.

Tabell 6.7: Deskriptiv statistikk av Drill in Advance etter ekstremverdianalyse. Gjennomsnittet av susceptibilitetsmålinger er oppgitt i $(\cdot 10^{-3})$, delt opp etter domene. Første kolonne i hvert domene er basert på hele datasettet. Andre kolonne er resultater fra utdraget beskrevet i Kapittel 5.1.

Domene		DIA	Bl	ått	Gr	ønt	Ora	ansje	Ro	osa
Antall		163	83	73	27	20	27	13	26	23
Gjennomsnitt	\bar{x}	14.2	11.3	11.0	16.0	15.5	16.9	16.4	18.9	19.2
Standardavvik	σ	4.71	3.53	3.37	4.07	3.35	2.50	2.18	3.93	4.11
Skjevhet	φ	0.22	-0.65	-0.97	1.82	2.42	0.62	-0.52	0.68	0.50

Forskjellen mellom Grønne og Oransje domenet viste seg å ikke være signifikant.

Den strukturelle analysen i DIA-kampanjen viste at variogrammet (Presentert i Tabell 6.8) har en betydelig lavere nugget og terskelverdi enn Detaljstudiene i dagbruddet. Nugget-effekten ser ut til å være relativt lik den vi finner i Detaljstudie 1 og 2. Den endelige terskelverdien er den nest laveste, etter Profil 4. I Figur 6.11, ser vi at det er en variasjon i gjennomsnittsverdiene for varians i verdier lengre enn 60m fra hverandre.

Figur 6.11: Variogram for Drill in Advance med retning 16°.

Resultatene fra krigingen for DIA-kampanjen er presentert i Figur 6.14. Det er, som vi også så fra den statistiske oversikten, en positiv trend på tvers av forekomsten. Det er områder i det Blå og Grønne domenet, hvor det er høyere verdier. I nord er det en trend fra sør-øst mot nord-vest tydelig i resultatene.

			In	fluensavsta	and
Område	Modell	Terskelverdi	Største	Minste	Retning
Dotalictudia 1	Nugget	6	-	-	-
Detaijstuule 1	Gaussian	16	0.6 m	-	-
	Nugget	6	-	-	-
Detaljstudie 2	Sfærisk	22	1.4 m	-	-
	Nugget	12	-	-	-
Detaljstudie 3	Sfærisk	20	2 m	0.7 m	120°
	Nugget	20	-	-	-
Detaijstuule 4	Sfærisk	60	1 m	0.8 m	30°
	Nugget	6	-	-	-
Profil 1-3	Gaussisk	16	1.4 m	0.6 m	146°
110111-5	Sfærisk	32	3 m	-	-
D (14	Nugget	6	-	-	-
Profil 4	Sfærisk	8.5	4 m	-	-
D 61 7	Nugget	20	-	-	-
Proni 5	Sfærisk	60	1 m	0.8 m	30°
	Nugget	6.5	-	-	-
Drill in Advance	Sfærisk	10	189.3 m	97.9 m	106.5°

Tabell 6.8: Variogrammodeller for de ulike områdene. Modellene benyttet i kriging.

Figur 6.12: Kriging av magnetisk susceptibilitet i Profil 4. Samme skala som for resultatene fra Profil 1-3. Alle verdier er gitt i 10⁻³.

74

6.4 Korrelasjon

Resultatene fra korrelasjonsanalysene blir delt inn i to deler. Det blir først presentert og kommentert resultatene fra analysene mellom susceptibilitet og geokjemi i de to borehullskampanjene (DIA og ST-K2014). Deretter blir korrelasjonen mellom resultatene av bildeanalysen, geokjemi og magnetisk susceptibilitet presentert.

6.4.1 Borehull

Resultatene fra analysen med Drill in Advance og ST-K2014 er presentert i Tabell 6.9. De to kampanjene er merkbart forskjellige. Alle resultater fra ST-K2014 viser tilnærmet ingen korrelasjon, der den kraftigste korrelasjonskoeffisienten er -0.29 med utvinning 2kg. DIA-kampanjen viser større korrelasjon, med høyeste korrelasjonskoeffisienten på 0.60 for Na_2O for hele datasettet.

I hele DIA-datasettet er det en moderat positiv korrelasjon med Al_2O_3 (0.42), BaO (0.58), K_2O (0.36), recovery (0.46) og utvinning (0.47). En moderat negativ korrelasjon opptrer med MgO (-0.57) og Fe_2O_3 (-0.37). Korrelasjonen blir for de fleste parametrene, mindre i konsentratet enn i rågodset. Ett unntak her er SiO_2 , som har tilnærmet ingen korrelasjon i rågodset (0.01), og som får en moderat negativ korrelasjon i konsentratet (-0.53).

Det er store forskjeller mellom hele datasettet og de tre utdragene. Borehullene, som ligger i området med diabas, har en sterk korrelasjon med både Al_2O_3 (0.86), K_2O (0.86), Na_2O (0.82) og SiO_2 (0.75) og en sterk negativ korrelasjon med CaO (-0.86), MgO (-0.81), Fe_2O_3 (-0.81) og TiO_2 (-0.72) i Rågodset. I konsentratet ser vi at de fleste korrelasjonene er vesentlig svakere, spesielt for Fe_2O_3 (-0,08) og TiO_2 (-0.02). Det er en sterk positiv korrelasjon til både recovery (0.88) og utvinning 2kg (0.86).

I borehullene, som ikke ligger i diabastoget, er det ikke like sterke korrelasjoner. Her er det en god del forskjell fra borehullene som lå i diabastoget. De aller fleste parametrene har en motsatt korrelasjon, med unntak av Na_2O , Mg_O og BaO. Den sterkeste korrelasjonen er med SiO_2 (-0.53), K_2O (-0.52) og BaO (0.50). Borehullene i nord viser mye av de samme tendensene, dog noe svakere, som det totale datasettet (uten diabastog), med unntak av at det ikke forekommer noen korrelasjon med hverken BaO, MgO eller Na_2O .

To interessante observasjonr er at BaO er moderat positiv i de sørlige delene av forekomsten, da korrelasjonen er relativt lik både i diabastoget og uten, men nærmest forsvunnet i den nordre delen av forekomsten. En annen observasjon er at korrelasjonen med Fe_2O_3 er moderat positiv i hele datasettet, med unntak av områdene påvirket av diabastoget.

6.4.2 Prøver

Tabell 6.10 viser korrelasjonen mellom beregnet andel $(A_{B,\%})$ og gjennomsnittlig størrelse $(\overline{A_B})$ for magnetitt med resultatene fra labanalysen. Det er en moderat negativ korrelasjon mellom andel magnetitt og andel Al_2O_3 (-0.35), mens en moderat positiv korrelasjon med Ca_O (0.39), som er motsatt av det vi kan finne med susceptibilitet (Tabell 6.9). På samme måte som for susceptibilitet, er det også en moderat positiv korrelasjon for både andel og størrelse, både i rågods og konsentrat. Kornstørrelsen har en moderat negativ korrelasjon

Tabell 6.9: Korrelasjon med Susceptibilitet, uten ekstremverdier. "Alle" referer til alle DIA-borehull
etter ekstremverdianalysen, som inneholder geokjemisk data. "Uten" referer til alle DIA-borehull
som ikke er en del av diabastoget. Nord Referer til alle DIA-borehull, som ligger på nordsiden av
dagbruddet.

			Drill	in Advance		
Parame	eter	Alle	Uten	Diabastog	Nord	ST-K2014
	Al_2O_3	0.42	-0.23	0.86	-0.20	-0.09
	BaO	0.58	0.50	0.55	-0.01	0.07
	CaO	-0.23	0.41	-0.86	0.34	0.09
	K_2O	0.36	-0.52	0.86	-0.38	-0.16
Rågods	MgO	-0.57	-0.11	-0.81	0.01	0.08
	Na_2O	0.60	0.34	0.82	0.01	0.08
	SiO_2	0.01	-0.53	0.75	-0.33	-0.12
	Fe_2O_3	-0.37	0.33	-0.81	0.34	0.14
	TiO_2	-0.31	0.34	-0.72	0.29	-0.02
	Al_2O_3	0.34	-0.04	0.63	-0.35	0.00
	BaO	0.48	0.52	0.10	0.12	0.10
	CaO	-0.15	0.24	-0.64	0.22	0.07
	K_2O	0.26	-0.38	0.63	-0.19	-0.07
Voncontrat	MgO	-0.51	-0.40	-0.60	-0.13	-0.10
Konsentrat	Na_2O	0.51	0.44	0.51	-0.27	0.18
	SiO_2	-0.53	-0.35	-0.34	-0.15	-0.14
	Fe_2O_3	-0.19	-0.24	-0.08	-0.03	0.10
	TiO_2	-0.03	0.37	-0.02	0.29	-0.12
K_2O	$-Na_2O$	-0.20	-0.53	0.11	0.03	-0.12
F	Recovery	0.46	-0.21	0.88	-0.14	-0.27
Utvini	ning 2kg	0.47	-0.20	0.86	-0.13	-0.29

med susceptibilitet, for både rågods (-0.36) og konsentrat (-0.44). Andel magnetitt har derimot bare en negativ korrelasjon med susceptibilitet i konsentratet (-0.38). Det er en veldig svak korrelasjon mellom resultatene fra bildeanalysen og utvinning 2kg.

Paramet	ter	$A_{B,\%}$	$\bar{A_B}$
Bildeanalyse	$\bar{A_B}$	0.48	1.00
	Susc.	0.13	-0.36
	Al_2O_3	-0.35	-0.16
	BaO	0.27	0.35
	CaO	0.39	0.19
Dågoda	K_2O	-0.02	-0.18
Kagous	MgO	0.23	0.21
	Na_2O	-0.19	-0.03
	SiO_2	-0.22	-0.05
	Fe_2O_3	0.29	0.02
	TiO_2	0.24	0.14
	Susc.	-0.38	-0.44
	Al_2O_3	-0.12	-0.01
	BaO	0.28	0.33
	CaO	0.20	0.30
	K_2O	0.16	-0.33
Konsentrat	MgO	-0.01	0.32
	Na_2O	-0.05	0.20
	SiO_2	-0.09	-0.22
	Fe_2O_3	-0.04	0.11
	TiO_2	-0.02	0.32
K_2O	$-Na_2O$	0.10	-0.26
ŀ	Recovery	0.16	-0.18
Utvin	ning 2kg	-0.16	-0.12

 Tabell 6.10:
 Korrelasjon i prøver med magnetitt.
 Inndelt etter type prøve.

l Kapittel

Diskusjon

Dette kapittelet inneholder en diskusjon omkring resultatene og metodesettet i oppgaven. Kapittelet er inndelt slik at det skal være sammenheng mellom de hypotesene som ble framsatt, og målsetningen for oppgaven.

Det blir først, i Kapittel 7.1, tatt for seg korrelasjoner mellom resultatene fra oppgaven og geokjemiske data gitt fra bedriften. Det er unnlatt å diskutere korrelasjoner mellom de geokjemiske parametrene, for å kunne fokusere på det nye datasettet med susceptibilitet og magnetitt. Delkapittelet vil også belyse hvorvidt hypotese 1 (definert i Kapittel 1.1) er sann.

Deretter, i Kapittel 7.2, blir det diskutert ulikheter i de forskjellige domenene. Delkapittelet belyser muligheter og utfordringer ved dagens domener, og har som målsetning å gi en god karakterisering av de ulike domenene med hensyn på mineralogi, tekstur og magnetisk susceptibilitet.

Sist, i Kapittel 7.3, blir det diskutert oppgavens metodesett og eventuelle feilkilder. Det blir diskutert hvilke muligheter metodesettet har i forhold til bedriftens behov, samt hvilke praktiske utfordringer som finnes i forhold til implementasjon. Denne delen av diskusjonen prøver også å gi svar på hvilke parametre som kan predikeres ved bruk av susceptibilitet, og om magnetisk susceptibilitet og magnetitt sin opptreden kan egne seg som et styringsparameter.

7.1 Korrelasjon

Som beskrevet i Kapittel 6.4, er det en del geokjemiske variasjoner i dagbruddet. På bakgrunn av disse observasjonene ble det valgt å gjøre egne analyser på utvalgte deler av dagbruddet. Da datagrunnlaget i enkelte domener ble veldig lite (13 borehull i det Rosa domenet), ble det besluttet bare å se på korrelasjon uavhengig av domene. Da det også ble funnet en klar trend i forekomsten (diskutert nærmere i Kapittel 7.2), vil det ikke være nyttig å se på de enkelte domenene i forhold til korrelasjon.

7.1.1 Jern

En moderat negativ korrelasjon med Fe_2O_3 (-0.37) i hele datasettet, tyder på at det er andre mineraler enn magnetitt som styrer innholdet av jern i forekomsten. Teoretisk sett, burde det på grunn av magnetitt sitt høye jerninnhold (beskrevet i Kapittel 3.1), være en klar positiv korrelasjon. Det er to mulige årsaker til en slik korrelasjon.

- 1. Det observert at det er lave susceptibilitetsverdier og høye jernverdier i store deler av det Blå domenet. Erfaringer fra gruven tilsier at jern i dette området er i større grad forbundet med de tykke omvandlingssonene og diabas-toget (Figur 2.3a).
- 2. Jerninnholdet er styrt av andre mineraler i nefelinsyenitten. Det er påvist at det finnes varierende mengder med pyroksen, amfiobol og hornblende i forekomsten (Geis, 1979), som alle kan inneholde jern.

Ved å se på resultatene i området som er definert av bedriften, og som er påvirket av diabastoget, er det en sterk negativ korrelasjon med Fe_2O_3 på -0.81. Ovennevnte årsak 1 har klart en stor innvirkning på resultatene for hele datasettet. Dette området i det Blå domenet, viste store forskjeller fra resten av datasettet, og har trolig en så stor innvirkning på hele datasettet grunnet det høye antallet borehull i området. På grunn av dens store innvirkning på resultatene i hele datasettet, ble det valgt å utelate området fra den endelige analysen.

Når vi ser bort i fra det området som er påvirket av diabas, er det en moderat positiv korrelasjon med susceptibilitet i DIA-kampanjen (0.33 og 0.34 i nord) og med andelen magnetitt i slipene (0.29). Denne korrelasjonen er svakere enn det vi kan forvente, ut fra det teoretiske innholdet av jern i magnetitt. Vi kan derfor si at jern i forekomsten påvirkes også av andre mineraler enn bare magnetitt, som ovenfor nevnte årsak 2.

I labanalysen (konsentratet) er det en svak negativ korrelasjon på -0.24 i datasettet uten diabas. Dette tyder på at en høyere susceptibilitet, i en viss grad, bidrar med å trekke ut jernholdige mineraler fra rågodset. Dette stemmer med hva som ble funnet i den petrologiske analysen. Der ble det observert at det, i stor grad, er aggregater av mørke mineraler. Da korrelasjonen er svak, kan det også være tilfellet at bare magnetitt, eller magnetitt med likt andel lyse og mørke mineraler blir fjernet. Dette ser vi også fra bildeanalysen, der det er nesten ingen korrelasjon med Fe_2O_3 (-0.04 for andel magnetitt og 0.11 for kornstørrelse). Resultatene kan også være påvirket av målenøyaktighet fra bildeanalysen (diskutert nærmere i kapittel 7.3.2).

7.1.2 Barium

For barium, vist i Figur 4.8, er det en markant økning mot nord-vest. Dette er en god korrelasjon med magnetisk susceptibilitet i den største delen av dagbruddet, og med andel magnetitt og dens gjennomsnittsstørrelse. Ett unntak fra denne trenden er i den nordlige delen av bruddet. Spesielt i det Oransje domenet, der det i østlige deler av området korrelerer dårlig. Dette kan også sees i resultatene fra korrelasjonsanalysen for området, som viser en korrelasjonskoeffisient på -0.1 mellom BaO og magnetisk susceptibilitet.

Om det er en direkte sammenheng mellom magnetitt og barium, eller om det stammer fra en felles kilde, er uvisst. Det vil trolig kreve en mer dyptgående undersøkelse av hvilke mineraler barium er assosiert med, og forekomstens geologiske utvikling, for å kunne gi svar på en mulig sammenheng.

7.1.3 Magnesium

Da det normalt ikke finnes magnesium i hverken nefelin eller feltspatt, og det ofte å finnes i pyroksener, amfiobol, hornblende og biotitt, er innholdet av magnesium en god indikator for å undersøke andelen av andre mørke mineraler i forekomsten. Fra Figur 4.7 ser vi at det er høye verdier av magnesium i de samme områdene, som kan assosieres med diabastoget, og en sterk negativ korrelasjon med magnetisk susceptibilitet (-0.81). Da andelen magnesium øker kraftig i området, mens susceptibiliteten holder seg på rundt de samme verdiene som for resten av det Blå domenet, kan en anta at det hovedsakelig er pyroksen, amfiobol, hornblende og biotitt i diabas, som er den største bidragsyteren til magnesium (og jern) i området. Dette stemmer godt med Bryhni (1962) sine undersøkelser. Det forteller også at det i området høyst trolig ikke er store mengder magnetitt i diabas. Dette ser vi også i de få susceptibilitetsmålingene gjort på diabas, som alle hadde veldig lave verdier (med ett unntak).

For den resterende delen av dagbruddet, er det en nesten uvesentlig korrelasjon med magnetisk susceptiblitet, på -0.11 for hele datasettet (uten diabastoget) og 0.01 for de nordlige delene av dagbruddet. Det ser derfor ikke ut til å være en direkte korrelasjon mellom magnetitt og de andre mørke mineralene. Den moderate negative korrelasjonen med magnesium i konsentratet (-0.44), kan derimot tyde på at magnetitt blir trukket ut av rågodset til fordel for de andre mørke mineralene. Det kan også være introdusert av dårlig definert diabastog, og at borehullene der trekker dette snittet kraftig opp. Til sammenlikning er det en svak negativ korrelasjon (-0.13) i den nordlige delen av dagbruddet. Det kunne være interessant, i fremtiden, å se på forholdet mellom susceptibilitet i konsentrat, for å se om magnetitt trekker med seg mørke mineraler i oppredningsprosessen. Alternativt kan en se på om de andre mørke mineralene er magnetiske nok til å bli trukket ut selv.

Andelen med magnetitt i slipene $(A_{B,\%})$ har en svak positiv korrelasjon med magnesium i rågodset (0.23), som forsvinner i konsentratet (-0.01). For gjennomsnittlig kornstørrelse (\bar{A}_B) øker derimot korrelasjonen i konsentratet. Dette kan indikere at større magnetittkorn kan trekke med seg mer av de mørke mineralene, og at dette overstyrer mengden. Det er trolig ikke nok data (13 datapunkter) til å kunne si dette sikkert, da det er svake korrelasjoner.

7.1.4 Produksjon

Et interessant aspekt ved susceptibilitet, er hvorvidt det er en korrelasjon med produksjonen og produksjonsparametrene "Recovery" og "utvinning 2kg". Dette vil kunne gi svar på om det er en mulighet for direkte kartlegging av produksjon, ved bruk av magnetisk susceptibilitet.

Det er en svak negativ korrelasjon med både "Recovery" og "utvinning 2kg" på rundt -0.14 til -0.20 i hele dagbruddet (som ikke er påvirket av diabas). Denne svake negative korrelasjonen bør sees i sammenheng med forholdet mellom magnetitt og de andre mørke mineralene (som ble diskutert i Kapittel 7.1.3).

Da det trolig er ingen korrelasjon mellom magnetitt og de andre mørke mineralene, er det trolig at mengden magnetitt ikke har en stor innvirkning på produktkvaliteten, da de største forurensingene skyldes mørke mineraler. Magnetitt vil også i stor grad bli tatt ut i magnetseparatoren i oppredningsprosessen. Dette kan forklare den lave korrelasjonen vi ser. At korrelasjonen er negativ vil kan komme av at det er mer magnetitt når det også er andre mørke mineraler, men at magnetitt lettere blir tatt ut i oppredningsprosessen.

De tilsvarende lave korrelasjon med både kornstørrelse og andel magnetitt, bygger under det faktum at magnetitt opptrer anderledes enn de andre mørke mineralene i nefelinsyenitten.

7.1.5 Bildeanalyse og susceptiblitet

Fra bildeanalysen ser vi at det er en moderat negativ korrelasjon mellom magnetisk susceptibilitet og andel magnetitt (-0.38) i konsentratet. Med bakgrunn i den mye høyere susceptibiliteten i magnetitt, enn i de andre mineralene (Figur 3.3), burde dette tallet vært vesentlig høyere. En mulig årsak er svakheter ved bildeanalysen, da den ikke klarer å finne de minste magnetittkornene. Dette kan også være årsaken til at det er en moderat negativ korrelasjon mellom gjennomsnittlig kornstørrelse og magnetisk susceptibilitet (-0.44). Det kan også tyde på at det finnes en nedre grense på hvilken kornstørrelse som kan bli fjernet i oppredningsprosessen, da store korn er vesentlig lettere å fjerne. En slik sammenheng vil være påvirket av om magnetitten hovedsakelig finnes som inklusjoner eller i korngrenser, og hvilken fraksjon som produseres.

7.2 Domener

Som beskrevet i Kapittel 1.1, så var ett av hovedmålene med oppgaven å karakterisere de ulike domenene med hensyn på mineralogi, tekstur og magnetisk susceptibilitet. Da det er forskjellige aspekter som må diskutere for de fire ulike domenene, er dette delkapittelet inndelt etter domene.

Resultatene fra den petrologiske analysen viste at det er relativt store teksturelle forskjeller innad i de ulike domenene, selv om ingen av domenene totalt sett skilte seg vesentlig ut. En liten økning i gjennomsnittlig andel magnetitt, fra sør til nord i forekomsten, kan finnes i resultatene. Forskjellen er relativt liten, og kan trolig være et produkt av usikkerheter ved metoden. Den gjennomsnittlige kornstørrelsen til magnetitt er også relativt lik for samtlige domener. Det ser derimot ut til at det er en viss sammenheng mellom mange små magnetittkorn og antall, da selv de slipene med minst gjennomsnittstørrelse har relativt lik mengde magnetitt. Det er trolig også en sammenheng mellom opptreden og størrelsen på magnetittkornene, da de hovedsakelig lå langs korngrenser og det var bare mindre korn som inklusjoner i andre mineraler. Da magnetitt hovedsakelig lå sammen med andre mørke mineraler, men ikke utelukkende, kan det tyde på at det er mindre sammeheng mellom magnetitt og de andre mørke mineralene (som hovedsakelig ser ut til å opptre sammen). Den gjennomsnittlige magnetittstørrelsen er på mellom 0.10 og 0.15 mm², av kornene som ble funnet ved bildeanalyse.

Både sirkulariteten, rundhetsgraden og soliditeten er nesten identisk for de fire domenene, med veldig små standardavvik. Dette kan trolig være avhengig av hvor nøyaktig metoden er. Områder som ville påvirke disse parametrene, vil være mer utsatt for feil i forhold til kanten på kornet og bruk av de binære operasjonene (diskutert nærmere i kapittel 7.3.3).

Resultatene fra krigingen av susceptibilitet fra dagbruddet (Figur 6.14) viser en klar og jevn økning av susceptibilitet mot de nordlige delene av forekomsten. Det er, så langt undersøkelsene viser, ingen segregering i forhold til de ulike domenene. Det vil derfor ikke være mulig å definere dagens domener direkte etter magnetisk susceptibilitet.

7.2.1 Blått domene

Som tidligere diskutert i Kapittel 7.1, er det i store deler av det Blå domenet et område preget av store mengder diabas. I dette området er det en sterk korrelasjon mellom susceptibilitet og mange geokjemiske parametre. Det ble diskutert i Kapittel 7.1.3 hvorvidt magnesium (og jern) ble introdusert av diabas, og at magnetitt trolig hovedsakelig var å finne i nefelinsyenitten.

Resultatene fra krigingen stemmer godt med de få resultatene fra undersøkelser på diabas, som viser at diabas vanligvis har veldig lav magnetisk susceptibilitet. Det er mulig at et slikt diabastog kan være mer synlig i områder hvor vi ellers forventer en høyere magnetisk susceptibilitet. En slik sammenheng ville være naturlig å undersøke når DIA-kampanjen dekker et større område av forekomsten, spesielt i den nord-vestlige delen. Hvorvidt magnetisk susceptibilitet kan være med på å finne diabas i forekomsten vil ut fra hva vi ser i det Blå domenet, være usikkert, da det ikke kan verifiseres at det blir markant lavere verdier i området. En bedre indikator på diabas vil derfor være å se på magnesium, som normalt finnes i de mørke mineralene. Et billig alternativ for å undersøke geokjemi,

kunne være å gjøre en analyse av fargen på råstoffet, da det er vesentlig mer mørke mineraler i diabas. En slik undersøkelse ville kunne gjøre analysene vesentlig raskere enn en geokjemisk analyse.

Det blå domenet har den laveste magnetiske susceptibiliteten i forekomsten på rundt $11 \cdot 10^{-3}$. Det er, som tidligere nevnt, ingen vesentlig endring i susceptibilitet i sonen med mye diabas, hvilket tyder på at resultatet for hele domenet stemmer godt. Det kan derimot være fornuftig å dele området opp i to subdomener, med tanke på diabastoget, da det er vesentlig lavere verdier av "utvinning 2kg" i diabastoget.

7.2.2 Grønt og Oransje domene

Susceptibiliteten i det Grønne og Oransje domenet er relativt like. Den magnetiske susceptibiliteten i de to domenene ligger på mellom 15 og $17 \cdot 10^{-3}$ i borehullene. Det var ikke mulig å skille domenene ved bruk av hypotesetesting. I prøvene var verdiene noe høyere i det Grønne domenet, og relativt like i det Oransje. Dette kan komme av lokale variasjoner, som kan sees i resultatene fra krigingen (Figur 6.14). Fra krigingen ser vi også at det trolig kan være en trend i de nordlige delene av det Oransje domenet, hvor det blir høyere susceptibilitet mot vest.

Resultatene fra den petrologiske analysen viser det samme bildet. Samtlige resultater fra de to domenene er langt innenfor en feilmargin. Begge domenene viser også de høyeste standardavvikene for både mengde og kornstørrelse i bildeanalysen, noe som kan tyde på at det er større lokale forskjeller. Det er lite data i begge domenene, spesielt i det Grønne domenet, der det er store spredning. Det er, med det datagrunnlaget som er benyttet i denne oppgaven, ikke mulig å skille disse to domenene, hverken i forhold til susceptibilitet eller magnetittens opptreden.

I områdene i gruven (Figur 6.12 og 6.13) ser vi en en økning i magnetisk susceptibilitet mot nord (Profil 4), mens det i sørligere områder viser ingen økning. I de sørlige delene av gruven ser vi en en del lokale forskjeller. Det ble spekulert på om dette kunne ha en sammenheng med CaO, da borehull 52 ligger i et område med høy susceptibilitet og har en ekstremt høyt innhold av CaO (17%). Som nærmere diskutert i Kapittel 7.3.4, er datasettet trolig ikke godt nok til å kunne besvare dette spørsmålet. En undersøkelse av susceptibilitet på borkakset til STK-2014 vil derfor være nødvendig, for å kunne se på sammenhengen i området. Det er, fra dagbruddet, en viss moderat positiv korrelasjon. Dette kan tyde på at det i fremtiden kan være interessant å se nærmere på denne sammenhengen. Dette er ikke gjennomført i denne oppgaven.

7.2.3 Rosa domene

Det fantes relativt lite data i det Rosa domenet. Det ble, som beskrevet i Kapittel 5.1, derfor valgt å ta med områdene som kan vurderes som gråberg. Området har den klart høyeste susceptibiliteten i bruddet men, som tidligere nevnt, er det en gradert overgang. Et avvik fra denne rene trenden på tvers av dagbruddet, ser vi i det Rosa (og nordlige delene av det Oransje) domenet. Vi ser også at en del av parametrene endrer korrelasjonskoeffisient i dette området. Dette kan tyde på at korrelasjonen mellom magnetitt og geokjemi er dårligere enn hva som kan antas, fra det øvrige datasettet. Det er dessverre ikke nok data i området, til å kunne gi et godt svar på om dette stemmer.

7.3 Metode

En viktig del av oppgaven, var å se om magnetisk susceptibilitet og magnetitt sin opptreden kunne benyttes som styringsparametre. For at det skal være nyttig for bedriften, er det viktig at parameteret gir ny informasjon, og det er mulig å gjennomføre undersøkelsene på en rask og kostnadseffektiv måte. Det er i delkapittelet forsøkt å besvare dette spørsmålet, samt å antyde hvilke feilkilder og forbedringspotensial som finnes ved de forskjellige undersøkelsene. Det blir også diskutert eventuelle svakheter ved bruk av metodene.

Som diskutert i Kapittel 7.1 og 7.2, er det mange aspekter i forhold til magnetisk susceptibilitet og geokjemi. Av de mest interessante, er at det er relativt lite korrelasjon med magnesium, og derfor trolig også med de andre mørke mineralene. Magnetisk susceptibilitet er altså ikke en direkte indikator på andelen med mørke mineraler i forekomsten. Det er heller ikke en god estimator for å undersøke andelen diabas, da de aller fleste diabasgangene ikke inneholder nevneverdige mengder magnetitt. Det kan derimot være muligheter for at magnetisk susceptibilitet vil kunne identifisere diabastog i en større skala, om dette er i områder som ellers viser høy magnetisk susceptibilitet. Dette kan eventuelt også undersøkes ved bruk av magnetometriske metoder.

Susceptibiliteten kan derimot gi god kunnskap om magnetitt i forekomsten, noe som er godt etablert i litteraturen (Sandøy, 1996; Blum, 1997; Clark, 1997; Ellefmo, 2005; Cavanough et al., 2006). Det kan også være relevant å undersøke forholdet til andre geokjemiske parametre, men dette er ikke diskutert i detalj i oppgaven. I store deler av bruddet er det, for eksempel, en svak positiv korrelasjon med *CaO* (-0.24) i datasettet uten diabastoget). Det er også liten korrelasjon mellom magnetitt, magnetisk susceptibilitet og produksjonsgraden i dagbruddet. Dette vil si at susceptibiliteten kan gi et svakt bilde på produktkvaliteten, men som estimator i forhold til produksjonsparametre (recovery og utvinning 2kg), egner det seg i mindre grad.

7.3.1 Feltarbeid

Den geologiske kartleggingen i forbindelse med oppgaven ble hovedsakelig utført ved bruk av en RTK-GPS, noe som gir en god nøyaktighet på målepunktene. Som metode for å kartlegge omvandlingsoner og diabasganger fungerer metoden godt, da det gir god nøyaktighet og man kan tegne presise kart i CAD-programvare uten store problemer.

Kartlegging av teksturer og endringer innad i nefelinsyenitten var meget vanskelig å gjøre på et så lite område. Dette fordi det krever store ressurser for å fjerne overdekke/ renske områdene som skal kartlegges. En bedre metode enn å kartlegge i felt, ville være å samle inn prøvemateriale og undersøke dette, enten i håndstykke eller i mikroskop mot standard-typer.

Profiler og Detaljstudier

Gjennomføringen av susceptibilitetsmålinger in situ var relativt mye arbeide, og tok nesten en hel arbeidsdag (6,5 timer) pr. profil. Dette er en tidkrevende prosess, og ga lite resultater for større områder grunnet de korte influensavstandene (Diskutert nærmere i Kapittel 7.3.2). Siden alle resultatene må måles opp med enten totalstasjon eller GPS i ettertid, for så å settes sammen, tar det ytterligere tid før resultatene kan benyttes til produktstyring. Det vil derfor trolig være en lite kostnadseffektiv metode.

7.3.2 Måling av susceptibilitet

Som man klart ser fra resultatene fra Profil 5 og Drill in Advance, ligger susceptibilitetsmålingene som er gjort in situ, i gjennomsnitt rundt $8 \cdot 10^{-3}$ høyere enn for målinger gjort på borkaks. Denne forskjellen kan komme av mengden prøvemateriell. Det var i gjennomsnitt mellom 1 og 3 cm med borkaks, når det ble gjennomført målinger på rågodset. I motsetning, er målingene in situ tatt på fast fjell, noe som vil si at det er et betydelig mer prøvemateriell nært måleapparatet. En annen grunn kan være, at borkakset i større grad er homogent, og vil derfor gi et resultat som er nærmere gjennomsnittet av hele borehullet.

Det er flere forskjeller mellom susceptibilitetsmålinger gjennomført på borkaks og in situ. Fire av de mest relevante forskjellene er: (1) struktur (2) usikkerheter ved målinger, (3) support og (4) gjennomføring og implementasjon.

- 1. Strukturelle forskjeller. De fleste undersøkelsene av variogram viser at det er en markant høyere terskelverdi og nugget-effekt for profilene, enn for borehull, som er gjort in situ. Vi kan se fra resultatene av Detaljstudie 1 og 2, at nugget-effekten ligger på rundt det samme som for DIA-kampanjen og Profil 4, noe som tilsier at den trolig er relativt godt definert. Hvorfor Detaljstudie 3 og 4, samt de resterende profilene viser nugget-effekt på over 20, kan godt komme av lokale variasjoner eller målefeil.
- 2. Usikkerheten ved målingene. Målingene på borkaks hadde vesentlig lavere forskjeller på de tre målingene, enn målingene in situ. Da det er mindre forskjeller mellom målinger gjort på borehull, vil dette indikere at målingene er nærmere prøvenes korrekte verdi. Målinger på borkaks kan eventuelt også gjennomføres på laboratorieutstyr, som vil øke nøyaktigheten betraktelig.
- 3. Forskjeller i support. En susceptibilitetsmåling på borkaks fra et borehull kan, ved god miksing, sies å være gjennomsnittet av hele borehullet. Til sammenlikning er en måling in situ bare representativt for et lite område rundt måleapparatet. Det er derfor grunnlag for å si at det er vesentlig bedre support for borehull, enn målinger in situ.
- 4. En vesentlig forskjell er gjennomføring og implementering av metoden. Erfaringsmessig tar det rundt en arbeidsdag å produsere en profil, og krever en del arbeide med koordinatfesting og "vask" av prøvepunktet i etterkant. Derimot så kan undersøkelser på borkaks gjennomføres på et laboratorium, og kan derfor innlemmes i de allerede eksisterende prøvene som blir gjennomført på rågods.

På grunnlag av en enklere implementasjon, bedre support og sikrere resultater, anbefales det at fremtidige målinger gjøres på borkaks, der det er mulig.

7.3.3 Bildeanalyse

Et av de mest begrensende delene i bildeanalysen var digitaliseringsprosessen. Selv om skanneren kunne ha en maksimal oppløsning på 12 000 dpi, var det ikke noen grunn til å gå over 3600 dpi, da det over denne oppløsningen ikke ga noe klarere bilde av korngrenser. Siden det ikke er optikk i en slik skanner, er det ikke mulig å få like skarpe korngrenser som det er mulig med mikroskop. Det vil derfor trolig, på grunn av mengden med små korn, være en vesentlig feil i antall korn i tynnslipet. Da mengden magnetitt hovedsakelig blir kontrollert av de store kornene, vil feil der være vesentlig lavere.

Et eventuelt alternativ til å skanning med en kommersiell skanner, vil være å utvikle en automatisert skanning av slip ved bruk av punktteller og mikroskop. En slik løsning vil både gi skarpere bilder og vesentlig bedre muligheter for prosessering av bilder i flere lag og retninger i polarisert og krysspolarisert lys. Dette vil også gjøre at korreksjonskoeffisienten vil bli mye mindre, da korngrensene blir skarpere.

Resultatene fra bildeanalysen var relativt gode, innenfor de kornstørrelsene som var mulig å måle. Det kan være store potensialer i bruk av bildeanalyse, for å undersøke magnetitt i forekomsten. Det er også mulig å gjøre analysen på alle mørke mineraler, både i pulverform og tynnslipform. En slik metode krever derimot en viss kunnskap om geologi, som gjør analysen mer kostbar. Å produsere tynnslip er også en kostbar og tidkrevende prosess. Dette krever også en del utviklingsarbeide i forhold til automatisering av tynnslipskanning, hvis slike metoder ikke allerede eksisterer. Når en eventuell bildeanalyse er definert, vil dette være et rimelig alternativ til andre og dyrere metoder, og ha vesentlig lavere investeringskostnader. Det vil derimot ha større begrensinger i forhold til brukbarhet på andre bergarter.

Bildebehandling

Den automatiserte prosessen i ImageJ (Tabell 5.1, steg 2 til 12) kan forbedres ved bruk av ytterligere filtre og bedre terskelverdisetting. En svakhet ved metoden er at mørke deler av biotitt og pyroksen kan bli tatt med i analysen. Dette krever derfor en manuell korrigering i ettertid, ved å bruke dagens metode. Dette problemet kan overkommes ved å benytte farge-spekteret, og eventuelt kryssreferere bilder i flere retninger og forskjellige lyssettinger. En annen mulighet er å benytte veiledet klassifisering, for å definere ulike mineralkorn.

Kornform

Kornform-analysen ga veldig like resultater for alle typer kornform, noe som kan komme av feil i metoden. Den største feilkilden er graderingen av korngrensene, noe som fører til at utstikkere og andre mindre deler av mineralkornene, ikke blir tatt med i den endelige analysen. Resultatene fra kornformanalysen må også sees i sammenheng med at under en viss kornstørrelse vil nesten alle korn virke sirkulære, på grunn av korngrensene. En annen feilkilde som ble introdusert, var de binære operasjonene "open" og "close", som effektivt runder ut kornformen.

7.3.4 Korrelasjonsanalyse

Da undersøkelsene av korrelasjon i de to kampanjene (DIA og ST-K2014) viste svært ulike resultater, kan dette tyde på feil. Det er flere grunner til at ST-K2014 kan inneholde vesentlige feil. Susceptibilitetsverdiene i datasettet er ikke målt på borkaks, men kommer fra resultatene til profilene. Dette fører til at det er svært ulik support på de to kampanjene. Målepunktene til profilene er, i snitt, tatt rundt 1 meter over starten på borehullene, og 8 meter over sentrum. Dette medfører at det er en stor avstand mellom borehullet og tilegnet verdi. Fra variogrammene (Kapittel 6.3.3) er det en influensavstand for susceptibilitet på henholdsvis 2,5 og 5 meter. Det er derfor å anta at verdiene benyttet i korrelasjonsanalysen, ikke er representative for borehullet. Det kan også sluttes at, på grunn av den lave influensavstanden og forskjeller i support, ikke er tilstrekkelig å undersøke in situ for å få gode resultater for borehull.

Kapittel 8

Konklusjon

Et hovedmål for oppgaven var å karakterisere de geokjemiske domene med hensyn på mineralogi, tekstur og magnetisk susceptibilitet. Det ble også sett på mulige metoder for videreføre dette arbeidet i bedriften. Dette kapittelet er tredelt. Første del tar for seg hypotesene presentert i Kapittel 1.1, mens den andre delen tar for seg kategorisering av de ulike domenene presentert i Kapittel 2.5. Til sist, i Kapittel 8.3, beskrives erfaringer fra metodesettet benyttet i oppgaven.

8.1 Besvarelser på hypoteser

Det blir her tatt for seg de tre arbeidshypotesene presentert i Kapittel 1.1. Hypotesene blir først presentert før konklusjonene blir presentert og begrunnet.

Hypotese 1:

Det er en sammenheng mellom geokjemi og magnetisk susceptibilitet.

Det er ikke en sterk nok korrelasjon til å kunne konkludere med at det er en direkte sammenheng mellom magnetisk susceptibilitet og geokjemi. Trenden for magnetisk susceptibilitet i forekomsten likner på det vi kan se av innholdet av barium. Det er i enkelte deler ikke en slik korrelasjon, som kan tilsi at det er andre årsaker til denne tilsynelatende likheten.

Hypotese 2:

Opptreden til magnetitt i nefelinsyenitt påvirker produktkvalitet.

Det er indikasjon på at kornstørrelsen til magnetitt kan påvirke muligheten for å trekke ut magnetitt fra rågodset i oppredningsprosessen. Analyse av prøvene viser en moderat negativ korrelasjon mellom kornstørrelse magnetitt og magnetisk susceptibilitet i konsentratet. Det er grunn til å tro at det finnes en grense hvor alle magnetittkorn blir fjernet fra rågodset, på grunn av oppredningsprosessen. Dette må studeres nærmere og sees i forhold til frimaling.

Hypotese 3:

Det er mulig å predikere produksjonsgrad og produktkvalitet ved å undersøke magnetisk susceptibilitet.

Det er ikke mulig å predikere hverken produksjonsgrad eller produktkvaliteten ved bruk av magnetisk susceptibilitet, ut fra resultater fra undersøkelsene i oppgaven. Den manglende korrelasjonen mellom andelen magnesium (MgO) i forekomsten og magnetisk susceptibilitet tilsier at andelen med mørke mineraler heller ikke kan predikeres ved bruk av susceptibilitet.

Det ble ikke funnet en tydelig sammenheng mellom diabastoget og susceptibiliteten, som tyder på at magnetitt ikke finnes i noen nevneverdig grad i de aller fleste diabasganger. Dette stemmer med tidligere undersøkelser av diabas i forekomsten.

8.2 Klassifisering av domener

Da det ikke ble funnet klare forskjeller i susceptebilitetsdatasettet i de ulike domenene, er det ikke mulig å definere dagens domener kun ved bruk av magnetisk susceptibilitet. Det vil være lite hensikt i å utfordre dagens domener på grunnlag av magnetisk susceptibilitet.

Undersøkelsene viste at det var en klar økende trend av magnetisk susceptibilitet på tvers av forekomsten fra sør-vest til nord nord-vest. Graderingen så ut til å bli høyere i de nordligste områdene, og at det kan finnes en viss gradering mot vest i det Oransje og Rosa domenet. Det var derimot lite data til å kunne definere denne trenden tilstrekkelig.

Blått domene:

Det Blå domene var preget av et stort område som forbindes med et diabastog. Det kan være lurt å definere dette området som et subdomene. Susceptibiliteten ser ikke ut til å være påvirket av diabastoget i vesentlig grad. Den gjennomsnittlige susceptibiliteten i området er på $11.0 \cdot 10^{-3}$.

Grønt og Orange domene:

Det er utifra det datasettet som finnes, ikke mulig å skille det Grønne og Oransje domenet. Områdene hadde også de største interne variasjonene i mengde magnetitt og kornstørrelse. Dette, samt større lokale variasjoner i gruven, gir grunnlag til å tro at den midterste delen av forekomsten er påvirket av lokale variasjoner i susceptibilitet. Den gjennomsnittlige magnetiske susceptibiliteten i området, basert på Drill in Advance borehull, ligger på mellom 15 og $17 \cdot 10^{-3}$.

Rosa domene:

Det Rosa domenet, og deler av gråberget ble undersøkt sammen. Område viste de høyeste verdiene av magnetisk susceptibilitet på rundt $19 \cdot 10^{-3}$. Domenet viste også til den høyeste andelen magnetitt, som hovedsakelig viste seg i større magnetittkorn.
8.3 Metodesett

En del av arbeidet som er gjennomført, medførte bruk av nye prosedyrer for måling av susceptibilitet, samt utvikling av rutiner (macro) for bildeanalyse. Noe av metodesettet kan være relevant for bedriften å vurdere, mens annet er trolig for ressurskrevende i forhold til resultatene.

8.3.1 Susceptibilitet

Det er sterkt å anbefale å gjennomføre susceptibilitetsmålinger på borkaks, fremfor in situ. På grunn av større lokale forskjeller i målinger in situ, anbefales det å heller benytte målinger på borkaks, for å få bedre support. Målinger på borkaks er også både raskere å gjennomføre, og er enkelt å implementere i de standard-analysene som gjennomføres i dag. Det bør ikke være nødvendig å investere i mer kostbart utstyr enn en feltmåler.

Det bør ikke forsøkes å overføre susceptibilitet fra kriget verdi av målinger in situ. På grunn av in situ målingene sin lave influensavstand, og forskjeller i support, vil verdiene ikke bli representative for borehullet.

8.3.2 Bildeanalyse

Bildeanalyse er ett billig alternativ for å få undersøkt andelen magnetitt og kornstørrelse i forekomsten. Ved å videreutvikle metoden benyttet i oppgaven, kan metoden bli vesentlig bedre. Per i dag kreves det geologisk kunnskap for å kunne gjennomføre deler av analysen. Metoden vil trolig kunne adopteres til pulverprøver.

Kapittel 9

Anbefalinger og videre arbeider

Kapittelet er delt inn i to deler. Kapittel 9.1, som tar for seg anbefalinger til metodesett, og hva bedriften kan gjøre for å jobbe videre med susceptibilitet. Kapittel 9.2 tar for seg forslag til hva som kan gjøres av akademisk karakter.

9.1 Anbefalinger til bedriften

Det anbefales at bedriften implementerer magnetisk susceptibilitet som en del av de undersøkelsene som brukes i forhold til produksjonsplanlegning. Magnetisk suscepetibilitet vil gi bedriften en ny innsikt i forekomsten, og kan hjelpe til å definere eventuelle avvik i fremtiden. Det er under presentert fire konkrete anbefalinger i forhold til bruk av magnetisk susceptibilitet.

- 1. Alle susceptibilitetsmålinger bør foretas på borkaks, da de i mye større grad gir et gjennomsnitt over et større volum enn ved målinger in situ. Det er også mindre arbeidskrevende, da det kan implementeres i den allerede etablerte analyseprosessen.
- Målinger av magnetisk susceptibilitet bør bli foretatt med flere individuelle målinger (2-3), ved bruk av feltmåler.
- 3. Det burde ikke være nødvendig å gå til en investering av mer utstyr enn en KM-7 eller ekvivalent felt-måler.
- 4. Det bør bli innført en standardisert metode for målinger. Et forslag til metodesett kan bygge på metoden benyttet i oppgaven. Se Kapittel 5.4.1 for nærmere beskrivelse av metoden.

I forhold til å benytte magnetitt sin opptreden, til å undersøke kvalitet, er bildeanalyse av tynnslip et rimelig alternativ til mer avanserte metoder. Bildeanalyse på pulver er trolig en raskere metode, da det ikke krever en så omfattende prepareringsprosess. Fordelen med en automatisk bildeanalyse i forhold til mer erfaringsbaserte undersøkelser er:

- 1. Standardisert metode, som gjennomføres likt på alle prøver.
- 2. Vesentlig raskere når metoden er implementert.
- 3. Metoden krever mindre geologisk kunnskap.
- 4. Resultatene er statistisk sammenliknbare.

9.2 Videre arbeider

En del problemstillinger og spørsmål ble ikke besvart i oppgaven. Noen var det ikke tid til å gjøre undersøkelser for, og andre fantes det ikke nok tilgjengelig data. Det er under presentert en liste med forslag til eventuelle videre arbeider, som er mer rettet mot akademia enn praktisk bruk for bedriften.

1. Utvide datasettet av magnetisk susceptibilitet i DIA-kampanjen.

Ved å innføre magnetisk susceptibilitet, som en standard undersøkelse for kampanjen, kan datasettet økes betraktelig. Dette vil kunne gi et mye bedre bilde på korrelasjoner og trender i forekomsten. Undersøkelse av de borehullene som allerede eksisterer (borehull som er foretatt fra august 2015 og utover), vil være en relativt tidkrevende arbeidsoppgave. Arbeidet kan godt gjøres av en student, som en del av en sommerjobb. Et slikt arbeid kan eventuelt også være del av en fremtidig masteroppgave.

2. *En større undersøkelse av magnetisk susceptibilitet i områdene med diabastog.* Ved å ha ett større datasett i de nord-vestlige områdene, kan det gi svar på hvorvidt det er mulig å predikere diabastog med magnetisk susceptibilitet.

3. Undersøke hvilke mineraler barium er assosiert med i forekomsten. Dette kan gi svar på om det er en sammenheng mellom magnetisk susceptibilitet og barium, slik det virker i store deler av forekomsten. Arbeidet vil trolig passe bedre for en mastergrad innen geologi enn for teknisk ressursgeologi.

- 4. *Undersøke innholdet av jern og magnesium i forekomsten.* En slik undersøkelse vil trolig gi vesentlig informasjon i forhold til en eventuell sammenheng mellom de andre mørke mineralene og magnetitt.
- 5. *Undersøke magnetiske forskjeller i biotitt og hornblende facies.* Det er i oppgaven ikke gjort forsøk på å undersøke hvorvidt det er forskjeller i mag-

netisk susceptibilitet i de to facies av nefelinsyenitt (hornblende og biotitt). En slik undersøkelse kan belyse hvordan magnetitten relateres til andre mørke mineraler.

6. *Undersøke i hvilken grad andre mineraler bidrar til magnetisk susceptibilitet.* Det vil i fremtiden være interessant å se på hvorvidt det er et bidrag til magnetisk susceptibilitet fra andre mineraler enn magnetitt. Dette kan for eksempel gjennomføres ved å se hvordan resultatene fra et utvidet datasett stemmer med forholdet som er presentert i Likning 3.15, 3.16 og 3.17.

Tillegg A

Navn, koder og ordrenummer

Det er, av ulike årsaker, benyttet en del forskjellige navn på de ulike datasettene i oppgaven. I dette vedlegget er det forsøkt å gi en oversikt over hvilke navn en kan forvente å finne for de ulike data. Tabell A.1 viser en oversikt over navn benyttet for prøver og prøvelokaliteter i oppgaven. Tabell A.2 gir en oversikt over navn, koder og navnsetting benyttet på in situ susceptibilitet og borehull datasettene.

Ordrenummer for tynnslip: 15-04

Lokalitetsnavn	Prøve nr.	Prøvenavn Stjernøy ^a	Slip nr: ^b	Slip navn ^c	Notat
APL-2015-01	1	apl 2015 01blaa	37068	APL-2015-01	Т
APL-2015-02	2	apl 2015 02blaa	37069	APL-2015-02	I
APL-2015-03	3	apl 2015 03blaa	37070	APL-2015-03	I
APL-2015-04	·	•	I		Ble ikke benyttet
APL-2015-05	ı	•	·	·	Ble ikke benyttet
APL-2015-06	6	apl 2015 06gronn	37071	APL-2015-06	In situ tilsvarer detaljstudie 3 (1503)
APL-2015-07	I	•	·	ı	Ble ikke benyttet
APL-2015-08	8	apl 2015 08orrange	37072	APL-2015-08	
APL-2015-09	9	apl 2015 09orrange	37073	APL-2015-09	I
APL-2015-10	10	apl 2015 10orrange	37074	APL-2015-10	I
APL-2015-11	11	apl 2015 11gronn	37075	APL-2015-11	In situ tilsvarer detaljstudie 4 (1502
APL-2015-12	12	apl 2015 12gronn	37076	APL-2015-12	I
APL-2015-13	13	pinkapl1	37077	APL-2015-13	Utført av Dirk
APL-2015-14	14	pinkapl2	37078	APL-2015-14	Utført av Dirk
APL-2015-15	15	pinkapl3	37079	APL-2015-15	Utført av Dirk

Tabell A.1: Oversikt over forskjellige navn og koder benyttet på de ulike prøvene. Det er i teksten benyttet enten lokalitetnavn eller prøve nr.

^aNavn på lokalitet på data oversendt fra Stjernøy
^bKode benyttet ved slip-laboratoriet ved IGB. Blir også benyttet på korresponderende polerte steiner.
^cNavn skrevet på slipet.

Tabell A.2: Oversikt over navn og koder benyttet in situ og i borehull. Det er i teksten benyttet hovedsakelig navn i teksten, mens kode er ofte benyttet for borehull.

Navn	Kode	Beliggenhet	Notat
Drill in Advance	DIA-#	Dagbrudd	Ofte forkortet til DIA.
ST-K2014	ST-K2014-#	Gruve	
Profil 1	1101	Gruve, Område 1	Markert med prikker
Profil 1	1102	Gruve, Område 1	Markert med ringer
Profil 2	1201	Gruve, Område 1	
Profil 3	1302	Gruve, Område 1	
Profil 4	1401	Gruve, Område 2	
Profil 5	1501	Dagbrudd	"Stor profil"
Detaljstudie 1	1203	Gruve, Område 1	Konturborehull
Detaljstudie 2	1301	Gruve, Område 1	I Profil 3, mellom borehull ST-K2014-73 og 74
Detaljstudie 3	1502	Dagbrudd	Prøvepunkt 11
Detaljstudie 4	1503	Dagbrudd	Prøvepunkt 6

Tillegg B

Deskriptiv statistikk av geokjemi

Prøve nr.	Al_2O_3	BaO	CaO	MgO	Na_2O	K_2O	SiO_2	Fe_2O_3	TiO	Sum
1	22.73	0.26	1.72	8.28	0.32	7.46	54.93	2.55	0.58	98.82
2	22.76	0.25	1.67	8.48	0.25	7.41	55.40	2.11	0.53	98.85
3	23.14	0.25	1.86	8.15	0.27	7.91	53.26	2.69	0.65	98.16
gjen.	22.87	0.25	1.75	8.30	0.28	7.59	54.53	2.45	0.59	98.61
std.v.	0.23	0.01	0.10	0.17	0.04	0.27	1.13	0.30	0.06	0.39
6	22.87	0.24	2.07	8.34	0.24	7.86	53.66	2.42	0.57	98.27
11	22.69	0.28	2.08	8.76	0.14	7.47	53.67	2.20	0.40	97.68
12	23.34	0.26	2.51	8.40	0.22	8.35	51.76	2.06	0.36	97.26
gjen.	22.97	0.26	2.22	8.50	0.20	7.89	53.03	2.23	0.44	97.74
std.v.	0.34	0.02	0.25	0.22	0.05	0.44	1.10	0.18	0.11	0.51
8	22.75	0.45	2.58	7.72	0.31	8.06	52.29	2.63	0.66	97.43
6	21.99	0.47	2.92	7.75	0.39	7.55	52.51	3.00	0.86	97.44
10	22.96	0.45	2.51	7.68	0.29	8.21	52.33	2.46	0.61	97.50
gjen.	22.57	0.46	2.67	7.72	0.33	7.94	52.37	2.70	0.71	97.45
std.v.	0.51	0.01	0.22	0.04	0.05	0.34	0.12	0.28	0.13	0.04
13	21.65	0.48	3.30	7.58	0.46	7.61	52.23	3.43	0.97	97.71
14	22.43	0.48	2.72	7.90	0.34	8.00	52.70	2.84	0.76	98.16
15	23.94	0.43	2.23	7.66	0.23	8.97	51.35	1.90	0.42	97.14
gjen.	22.67	0.47	2.75	7.71	0.34	8.19	52.09	2.73	0.72	97.67
std.v.	1.16	0.03	0.53	0.17	0.11	0.70	0.68	0.77	0.28	0.51
gjen. totalt	22.77	0.36	2.35	8.06	0.29	7.90	53.01	2.52	0.61	97.87
std.v. totalt	0.59	0.11	0.50	0.39	0.08	0.46	1.23	0.44	0.18	0.58

Tabell B.1: Resultater fra geokjemisk analyse på rågods av prøver undersøkt ved bedriften.

Prøve nr.	Al_2O_3	BaO	CaO	MgO	Na_2O	K_2O	SiO_2	Fe_2O_3	TiO	Sum	utvinning 2kg.	K_2O-Na_2O
-	23.11	0.30	1.00	9.03	0.00	7.26	57.76	0.09	0.05	98.60	67.70	1.77
7	23.57	0.26	0.93	8.95	0.01	7.58	56.94	0.09	0.05	98.39	69.80	1.38
e	23.16	0.33	0.87	9.34	0.00	7.09	57.52	0.09	0.04	98.43	66.70	2.26
gjen.	23.28	0.30	0.93	9.11	0.00	7.31	57.41	0.09	0.05	98.47	68.07	1.80
std.v.	0.25	0.03	0.07	0.21	0.00	0.25	0.42	0.00	0.00	0.11	1.58	0.44
9	23.94	0.26	1.11	9.01	0.01	8.04	55.50	0.12	0.08	98.08	62.50	0.96
11	23.86	0.31	1.23	9.31	0.01	7.72	55.55	0.10	0.04	98.13	67.60	1.60
12	23.15	0.34	1.72	9.31	0.02	7.63	55.37	0.11	0.05	97.69	62.00	1.68
gjen.	23.65	0.30	1.35	9.21	0.01	7.80	55.47	0.11	0.06	97.96	64.03	1.41
std.v.	0.43	0.04	0.32	0.18	0.00	0.22	0.09	0.01	0.02	0.24	3.10	0.39
×	24.03	0.53	1.11	8.68	0.01	8.10	54.82	0.11	0.04	97.43	70.40	0.58
6	23.78	0.56	1.13	8.84	0.00	7.88	55.23	0.11	0.05	97.58	65.50	0.95
10	24.01	0.53	1.26	8.59	0.01	8.22	54.45	0.11	0.05	97.22	65.90	0.38
gjen.	23.94	0.54	1.17	8.70	0.00	8.07	54.84	0.11	0.05	97.41	67.27	0.64
std.v.	0.14	0.02	0.08	0.12	0.00	0.17	0.39	0.00	0.00	0.18	2.72	0.29
13	23.72	0.55	1.44	8.64	0.04	8.18	54.44	0.13	0.11	97.24	53.70	0.46
14	24.26	0.49	1.41	8.55	0.03	8.72	53.52	0.12	0.12	97.22	60.40	-0.17
15	23.68	0.53	1.69	8.49	0.02	8.37	53.71	0.12	0.09	96.69	65.50	0.12
gjen.	23.88	0.53	1.51	8.56	0.03	8.42	53.89	0.12	0.11	97.05	59.87	0.14
std.v.	0.32	0.03	0.16	0.08	0.01	0.27	0.48	0.01	0.02	0.31	5.92	0.31
gjen. totalt	23.69	0.42	1.24	8.90	0.01	7.90	55.40	0.11	0.06	97.72	64.81	1.00
std.v. totalt	0.38	0.12	0.28	031	0.01	0.47	1 38	0.01	0.03	0.60	461	0.75

Antall 26 29 Oransje avg 22.53 0.4 std 0.58 0.0 Antall 28 28 Rosa avg 21.26 0.4 std 1.99 0.0	Antall 26 20 Oransje avg 22.53 0.4 std 0.58 0.0		Antall 23 23 Grønn avg 22.31 0.2 std 0.92 0.0	Antall 78 70 Blå avg 21.59 0.2 std 2.24 0.0	Domene Al ₂ O ₃ Ba [%] [%] [%]
6 26 44 2.92 03 0.43 8 28 45 4.31 26 2.48	6 26 44 2.92 03 0.43		3 23 29 2.70 06 0.80	8 78 26 3.06 07 1.64	0. CaO 6] [%]
7.93 0.34 28 7.08 0.92	7.93 0.34	26	23 8.47 0.35	78 7.72 1.48	MgO [%]
0.12 28 0.86 0.60	0.12	26 0.43	23 0.56 0.50	78 1.44 1.90	Na_2O [%]
0.41 28 7.52 0.78	0.41	26 7.88	23 7.42 0.50	78 6.81 1.27	K_2O [%]
20 51.50 2.59	00	26 52.73 0.50	23 53.75 1.05	78 53.82 2.14	SiO_2 [%]
	28 4.17 1.50	26 2.98 0.46	23 2.91 0.82	78 3.60 2.11	Fe_2O_3 [%]
1 / አ	28 1.10 0.43	26 0.71 0.15	23 0.58 0.23	78 0.82 0.59	TiO [%]
155	28 98.26 1.39	26 98.56 0.54	23 99.00 0.90	78 99.11 1.18	Sum [%]
155	28 49.63 15.02	26 62.07 4.51	23 65.15 6.57	78 52.31 18.33	Recovery [%]

etter inndelingen beskrevet i Kapittel 2.5. Tabell B.3: Resultater fra geokjemisk analyse fra Rågods av samtlige "Drill in Advance" borehull undersøkt ved bedriften. Data er delt inn i domener

Domene		$\begin{array}{c} Al_2O_3\\ [\%]\end{array}$	BaO.[%]	CaO [%]	MgO[%]	Na_2O [%]	K_2O [%]	SiO_2 [%]	Fe_2O_3 [%]	TiO [%]	Sum [%]	$\frac{K_2O - Na_2O}{[]}$	Utvinning [%]
	Antall	78	78	78	78	78	78	78	78	78	78	72	78
Bla	avg std	23.71 0.77	0.07	0.94	8./0 0.82	0.10 0.16	0C./ 0.80	1.41	0.18	0.07 0.07	99.25 1.44	1.20	45.90 16.64
	Antall	23	23	23	23	23	23	23	23	23	23	23	23
Grønn	avg	23.95	0.32	1.55	9.07	0.03	7.96	55.77	0.10	0.04	98.80	1.11	58.65
	std	0.53	0.06	0.63	0.28	0.03	0.31	0.99	0.01	0.01	0.84	0.48	6.00
	Antall	26	26	26	26	26	26	26	26	26	26	26	26
Oransje	avg	24.33	0.49	1.52	8.75	0.02	8.37	54.53	0.11	0.05	98.16	0.38	55.50
	std	0.30	0.05	0.17	0.17	0.01	0.14	0.44	0.01	0.01	0.53	0.20	4.35
	Antall	28	28	28	28	28	28	28	28	28	28	20	28
Rosa	avg	23.83	0.52	2.14	8.38	0.03	8.25	54.31	0.12	0.07	97.65	0.13	44.34
	std	0.91	0.07	1.76	0.36	0.01	0.32	2.28	0.02	0.03	1.82	0.35	13.86
	Antall	155	155	155	155	155	155	155	155	155	155	155	155
Totalt	avg	23.87	0.37	1.64	8.74	0.06	7.88	55.94	0.15	0.06	98.70	0.86	49.15
	std	0.74	0.12	1.05	0.64	0.12	0.69	1.87	0.23	0.05	1.47	0.92	14.49

	Totalt			Profil 4			Profil 1-3			Område
	Gjen.	Antall	Std.	Gjen.	Antall	Std.	Gjen.	Antall		
1 10	22.27	44	1.29	22.27	28	1.00	22.27	16	[%]	Al_2O_3
80.0	0.38	44	0.09	0.37	28	0.07	0.41	16	[%]	BaO.
2.45	3.42	44	2.97	3.72	28	0.80	2.90	16	[%]	CaO
۶T 0	7.86	44	0.77	8.06	28	0.48	7.52	16	[%]	MgO
0.45	0.38	44	0.11	0.30	28	0.71	0.52	16	[%]	Na_2O
22 N	8.03	44	0.29	8.00	28	0.37	8.10	16	[%]	K_2O
87 C	52.12	44	3.29	51.83	28	1.38	52.63	16	[%]	SiO_2
0.61	2.55	44	0.23	2.35	28	0.86	2.90	16	[%]	Fe_2O_3
0.19	0.54	44	0.14	0.47	28	0.21	0.66	16	[%]	TiO
2.21	97.57	44	2.70	97.37	28	0.71	97.91	16	[%]	Sum
7 JU	73.58	44	3.13	74.98	28	7.91	71.13	16	[%]	Recovery

Susceptibilitetsprofilene.	Tabell B.5: Resultater fra geokjemisk analyse fra rågods av samtlige "ST-K20
	14" borehull undersøkt ved bedriften. Data er delt inn i Områder basert på

Tabell B.6: Ro på Susceptibil	esultater fra litetsprofilen	ı geokjemis 1e.	sk analyse	fra konse	ntrat av sa	mtlige "ST	[-K2014"	borehull ı	undersøkt v	/ed bedri	ten. Data	er delt inn i Områd	er basert
Område		$\begin{array}{c} Al_2O_3\\ [\%]\end{array}$	BaO.	CaO [%]	MgO[%]	Na_2O [%]	K_2O [%]	SiO_2 [%]	Fe_2O_3 [%]	TiO	Sum [%]	$K_2O - Na_2O$ []	Utvinning [%]
Profil 1-3	Antall	16	16	16	16	16	16	16	16	16	16	16	16
	Gjen.	24.09	0.45	1.63	8.17	0.03	8.69	54.32	0.12	0.05	97.54	-0.53	61.94
	Std.	0.32	0.09	0.36	0.27	0.01	0.15	0.92	0.01	0.01	0.79	0.37	7.09
Profil 4	Antall	28	28	28	28	28	28	28	28	28	28	28	28
	Gjen.	23.64	0.39	2.56	8.53	0.03	8.44	53.56	0.11	0.04	97.30	0.09	65.36
	Std.	1.22	0.10	2.74	0.76	0.01	0.30	3.14	0.02	0.01	2.46	0.82	3.06
Totalt	Antall	44	44	44	44	44	44	44	44	44	44	44	44
	Gjen.	23.80	0.41	2.22	8.40	0.03	8.53	53.84	0.12	0.04	97.39	-0.14	64.12
	Std.	1.02	0.10	2.24	0.65	0.01	0.29	2.59	0.01	0.01	2.02	0.75	5.19

Tillegg

Automatisert terskelverdi

Det finnes 16 forskjellige metoder for å beregne optimal terskelverdi automatisk i ImageJ, som beskrevet av Ferreira and Rasband (2012). Det er utenfor rekkevidden til denne oppgaven å beskrive alle disse metodene.

Det ble gjennomført en undersøkelse av de mulige automatiske metodene, på det samme datasettet som ble benyttet for å vise terskelverdi i oppgaven. Oversikten er laget ved bruk av funksjonen "Auto Threshold" med metode "Try all" i ImageJ. Resultatene finnes i Figur C.1.

Figur C.1: Automatiserte metoder for terskelverdi. Generert med bruk av funksjonen "Auto Threshold" med settingen "show all" aktivert. Linje 1 fra høyre; Default, Huang, Intermodes, IsoData; linje 2: Li, MaxEntropy, Mean, MinError(I); linje 3: Minimum, moments, Otsu, Percentile; linje 4: RenyiEntropy, Shanbhag, Triangle, Yen.

Automatisering av bildeanalyse ved hjelp av makro

D.1 Makro

For å sikre lik behandling av samtlige bilder, ble det skrevet en makro til ImageJ. Makroen går gjennom alle bildene i en gitt mappe og kjører lik analyse på samtlige. Resultat-filene blir lagret i en egen mappe. Når makroen skal kjøres, blir man først bedt om å velge input og output mappe. Så kommer det opp et vindu (Figur D.1, Makro meny), der man kan velge innstillinger for analysen. Deretter prosesseres makroen, som måler prosent areal på bildene. Batchprosessene som kalles er laget etter eksempler fra Herbert. Resten av koden er basert på "macro recorder" og ImageJ sin wiki-side. Det ble også skrevet en makro for å nedskalere alle bilder i en mappe og lagre dem i JPEG-format. Makroene ble skrevet i Java, og installert i ImageJ.

œ	Area% Analysis	×
0, Pre-Co	ntrast	
min: max	240	
1, Kuwah	ara filtering:	
Size:	7	
*must be	an odd number	
2, Contra	st	
min:	15	
max	150	
3, Thresh	old	
min:	0	
max	138	
4, open		
ittersjoner:	· · ·	6
count	2	
5, close		
itterasjoner:	1 D	6
count	2	
	OK	Cancel

Figur D.1: Makro meny

D.2 Kildekode

```
//choose directory for input and output folder.
1
2
    dir1 = getDirectory("Choose_input_folder_");
3
   dir2 = getDirectory("Choose_output_folder_");
4
   list = getFileList(dir1);
5 setBatchMode(true);
6
7
   //dialog box
   Dialog.create("Area%_Analysis");
8
9
   Dialog.addMessage("0,_Pre-Contrast");
10 Dialog.addNumber("min:",0);
   Dialog.addNumber("max:", 240);
11
12 Dialog.addMessage("1,_Kuwahara_filtering:");
   Dialog.addNumber("Size:_", 7);
13
14
   Dialog.addMessage("*must_be_an_odd_number");
15
   Dialog.addMessage("2, Contrast");
   Dialog.addNumber("min:",15);
16
17
   Dialog.addNumber("max:", 150);
   Dialog.addMessage("3, Threshold");
18
19
   Dialog.addNumber("min:",0);
20 Dialog.addNumber("max:", 138);
21
   Dialog.addMessage("4,_open")
22 Dialog.addSlider("iterasjoner:", 1,10,6)
23
   Dialog.addNumber("count:",2);
24
   Dialog.addMessage("5, _close")
25
   Dialog.addSlider("iterasjoner:", 1,10,6)
26
   Dialog.addNumber("count:",2);
27
   Dialog.show();
28
29
   //Getting values from dialog box
30
            //pre-contrast
31
            pkmin=Dialog.getNumber();
32
            pkmax=Dialog.getNumber();
33
            //mean filter parameter
34
            meanFilter=Dialog.getNumber();
35
            // contrast
36
            kmin=Dialog.getNumber();
37
            kmax=Dialog.getNumber();
38
            // threshold
39
            tmin=Dialog.getNumber();
40
            tmax=Dialog.getNumber();
41
            //binary process
42
            o1=Dialog.getNumber();
43
            o2=Dialog.getNumber();
44
            c1=Dialog.getNumber();
45
            c2=Dialog.getNumber();
46
47
    //batch processing
48
    for (i=0; i<list.length; i++) {
49
    showProgress(i+1, list.length);
50
     filename = dir1 + list[i];
     if (endsWith(filename, "tif")) {
51
52
     open(filename);
53
54
   //set scale
55
    run ("Set_Scale...", "distance=125.984252_known=1_pixel=1_unit=mm_global");
```

```
56
57
    //makes sure it is in RGB color space
58
   run("RGB_Color");
59
60 //pre-contrast
61
   setMinAndMax(pkmin, pkmax);
   run("Apply_LUT");
62
63
64 //mean filter
65 run ("Mean...", "radius="+meanFilter);
66
67
   //make grayscale
68
   run("8-bit");
69
70 // contrast
71 setMinAndMax(kmin, kmax);
72
   run("Apply_LUT");
73
74 //set threshold
75 setThreshold(tmin, tmax);
76 setOption ("BlackBackground", false);
77
   run ("Convert_to_Mask");
78
79 //convert to binary
80 run("Make_Binary");
81
   //run binary processing; first open, then close
run("Options...", "iterations="+ol+"_count=" +o2 + "_do=Open");
run("Options...", "iterations="+cl+"_count=" +c2 + "_do=Close");
82
83
84
85
86
   //measure area
87
   run("Set_Measurements...","area_area_fraction_limit_redirect=None_decimal=9");
88
   run("Measure");
89
90 //save
91
     saveAs("TIFF", dir2+list[i]);
92
     close();
93
94
   //closing batch
95
    }
   }
96
```

TILLEGG D. AUTOMATISERING AV BILDEANALYSE VED HJELP AV MAKRO

Tillegg E

Resultater fra bildeanalyse

Tabell E.1 presenterer samtlige resultater fra bildeanalysen.

Tabell E.1: Magnetittbeskrivelse fra bildeanalyse. Alle data. Perim. = Perimeter, Circ. = Circularity, Round. = Roundness, A.R. = Aspect Ratio.

Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity
-		$[mm^2]$	$[mm^2]$	[mm]				-
01	1	0.400	0.483	2.874	0.61	2.28	0.44	0.90
01	2	0.316	0.387	2.336	0.73	1.77	0.56	0.96
01	3	0.001	0.007	0.112	0.82	1.00	1.00	0.76
01	4	0.086	0.121	1.488	0.49	2.42	0.41	0.79
01	5	0.062	0.094	1.142	0.60	2.76	0.36	0.88
01	6	0.007	0.023	0.356	0.66	2.75	0.36	0.88
01	7	0.026	0.052	0.696	0.67	1.92	0.52	0.86
01	8	0.119	0.159	1.607	0.58	1.48	0.68	0.85
01	9	0.000	0.002	0.022	1.00	1.00	1.00	1.00
01	10	0.038	0.066	0.815	0.73	1.90	0.53	0.90
01	11	0.008	0.026	0.347	0.85	1.44	0.69	0.90
01	12	0.374	0.454	5.438	0.16	1.78	0.56	0.45
01	13	0.012	0.034	0.787	0.24	6.11	0.16	0.56
01	14	0.004	0.016	0.225	0.89	1.28	0.78	0.88
01	15	0.002	0.011	0.166	0.91	1.28	0.78	0.84
01	16	0.019	0.047	0.664	0.54	3.40	0.29	0.84
01	17	0.045	0.074	0.803	0.89	1.06	0.95	0.95
01	18	0.136	0.179	1.497	0.76	1.25	0.80	0.93
01	19	0.008	0.026	0.340	0.88	1.35	0.74	0.91
01	20	0.034	0.061	0.883	0.55	3.23	0.31	0.88
01	21	0.287	0.354	3.353	0.32	4.40	0.23	0.69
01	22	0.005	0.018	0.264	0.84	1.59	0.63	0.88
01	23	0.006	0.022	0.356	0.63	2.83	0.35	0.84

			Fort	settelse av	Tabell	E.1		
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity
		$[mm^2]$	$[mm^2]$	[mm]				
01	24	0.025	0.051	0.778	0.53	2.69	0.37	0.82
01	25	0.186	0.237	1.979	0.60	2.35	0.42	0.93
01	26	0.264	0.327	2.996	0.37	2.95	0.34	0.74
01	27	0.189	0.240	2.203	0.49	2.49	0.40	0.83
01	28	0.005	0.020	0.277	0.88	1.42	0.70	0.88
01	29	0.211	0.265	2.045	0.63	1.57	0.64	0.84
01	30	0.000	0.002	0.022	1.00	1.00	1.00	1.00
01	31	0.000	0.002	0.022	1.00	1.00	1.00	1.00
01	32	0.002	0.012	0.189	0.84	1.56	0.64	0.84
01	33	0.485	0.582	4.386	0.32	2.19	0.46	0.63
01	34	0.004	0.016	0.221	0.93	1.31	0.77	0.88
01	35	0.001	0.007	0.112	0.82	1.00	1.00	0.76
01	36	0.001	0.007	0.106	0.99	1.13	0.89	0.82
01	37	0.039	0.068	0.782	0.81	1.45	0.69	0.94
01	38	0.193	0.244	1.840	0.71	1.33	0.75	0.90
01	39	0.090	0.126	1.382	0.59	1.81	0.55	0.81
01	40	0.025	0.050	0.685	0.66	2.16	0.46	0.87
01	41	0.091	0.127	1.149	0.86	1.25	0.80	0.96
01	42	0.015	0.039	0.482	0.80	1.79	0.56	0.92
01	43	0.043	0.071	1.085	0.46	3.17	0.32	0.77
02	1	0.011	0.033	0.422	0.81	1.87	0.53	0.92
02	2	0.006	0.022	0.297	0.86	1.25	0.80	0.88
02	3	0.002	0.011	0.153	1.00	1.06	0.94	0.91
02	4	0.271	0.334	2.190	0.71	1.54	0.65	0.92
02	5	0.007	0.024	0.327	0.82	1.91	0.52	0.91
02	6	0.031	0.057	0.739	0.71	1.87	0.53	0.89
02	7	0.324	0.396	2.730	0.55	1.88	0.53	0.89
02	8	0.073	0.106	1.055	0.83	1.67	0.60	0.97
02	9	0.063	0.095	0.979	0.83	1.31	0.76	0.96
02	10	0.141	0.185	1.806	0.54	2.29	0.44	0.84
02	11	0.184	0.235	1.880	0.66	1.84	0.54	0.88
02	12	0.003	0.015	0.221	0.86	1.37	0.73	0.86
02	13	0.001	0.005	0.083	0.91	1.20	0.84	0.80
02	14	1.571	1.835	10.680	0.17	1.05	0.95	0.49
02	15	0.007	0.024	0.324	0.85	1.24	0.80	0.89
02	16	0.005	0.020	0.277	0.87	1.60	0.63	0.88
02	17	0.035	0.062	0.894	0.55	2.32	0.43	0.77
02	18	0.021	0.047	0.599	0.74	1.63	0.61	0.91
02	19	0.026	0.052	0.642	0.80	1.75	0.57	0.93
02	20	0.094	0.131	1.398	0.61	2.57	0.39	0.87
02	21	0.033	0.060	0.791	0.66	2.29	0.44	0.89

Fortsettelse av Tabell E.1										
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
-		$[mm^2]$	$[mm^2]$	[mm]				·		
02	22	0.267	0.330	2.374	0.60	1.37	0.73	0.80		
02	23	0.000	0.002	0.022	1.00	1.00	1.00	1.00		
02	24	0.003	0.013	0.189	0.95	1.10	0.91	0.85		
02	25	0.049	0.078	0.909	0.74	1.32	0.76	0.90		
02	26	0.009	0.029	0.369	0.86	1.62	0.62	0.91		
02	27	0.013	0.036	0.489	0.70	1.75	0.57	0.89		
03	1	0.017	0.043	0.519	0.80	1.76	0.57	0.92		
03	2	0.003	0.014	0.203	0.94	1.29	0.78	0.90		
03	3	0.018	0.045	0.538	0.79	1.52	0.66	0.91		
03	4	0.002	0.011	0.160	0.93	1.19	0.84	0.86		
03	5	0.012	0.033	0.605	0.40	5.43	0.18	0.73		
03	6	0.058	0.089	1.120	0.58	1.96	0.51	0.84		
03	7	0.107	0.146	1.692	0.47	3.53	0.28	0.82		
03	8	0.002	0.012	0.166	1.00	1.09	0.92	0.86		
03	9	0.037	0.065	0.825	0.69	1.75	0.57	0.88		
03	10	0.001	0.007	0.112	0.82	1.00	1.00	0.76		
03	11	0.182	0.232	2.639	0.33	1.92	0.52	0.63		
03	12	0.005	0.018	0.264	0.83	1.56	0.64	0.88		
03	13	0.246	0.306	2.507	0.49	2.90	0.34	0.80		
03	14	0.002	0.012	0.178	0.90	1.43	0.70	0.84		
03	15	0.070	0.103	1.206	0.61	1.77	0.57	0.81		
03	16	0.007	0.025	0.387	0.62	3.07	0.33	0.85		
03	17	0.004	0.016	0.221	0.94	1.33	0.75	0.89		
03	18	0.010	0.031	0.399	0.82	1.34	0.74	0.91		
03	19	0.418	0.505	3.613	0.40	2.54	0.39	0.78		
03	20	0.010	0.029	0.410	0.71	2.27	0.44	0.90		
03	21	0.080	0.114	1.156	0.75	1.70	0.59	0.94		
03	22	0.009	0.029	0.376	0.82	1.28	0.78	0.89		
03	23	0.078	0.112	1.120	0.78	1.35	0.74	0.95		
03	24	0.085	0.120	1.388	0.55	1.44	0.69	0.78		
03	25	0.004	0.016	0.221	0.93	1.19	0.84	0.87		
03	26	0.104	0.143	2.394	0.23	3.87	0.26	0.47		
03	27	0.101	0.139	1.379	0.67	2.27	0.44	0.93		
03	28	0.274	0.338	2.393	0.60	1.23	0.82	0.85		
03	29	0.072	0.106	1.441	0.44	2.70	0.37	0.79		
03	30	0.007	0.024	0.320	0.90	1.34	0.74	0.90		
03	31	0.031	0.058	0.685	0.84	1.24	0.81	0.93		
03	32	0.057	0.088	0.990	0.74	1.24	0.81	0.91		
03	33	0.026	0.052	0.676	0.72	1.49	0.67	0.86		
03	34	0.092	0.128	1.223	0.77	1.28	0.78	0.93		
03	35	0.004	0.018	0.250	0.88	1.77	0.56	0.93		

	Fortsettelse av Tabell E.1									
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
		$[mm^2]$	$[mm^2]$	[mm]				-		
03	36	0.015	0.040	0.501	0.77	1.97	0.51	0.92		
03	37	0.083	0.118	1.324	0.60	1.21	0.82	0.82		
03	38	0.050	0.079	1.072	0.54	1.63	0.61	0.80		
03	39	0.007	0.024	0.324	0.87	1.59	0.63	0.91		
03	40	0.024	0.050	0.621	0.79	1.69	0.59	0.94		
03	41	0.059	0.090	1.063	0.65	2.14	0.47	0.88		
03	42	0.009	0.029	0.369	0.86	1.27	0.79	0.90		
03	43	0.029	0.055	0.761	0.63	2.31	0.43	0.87		
03	44	0.033	0.060	0.782	0.67	2.03	0.49	0.90		
03	45	0.201	0.254	3.362	0.22	3.78	0.26	0.48		
03	46	0.003	0.013	0.189	0.89	1.25	0.80	0.83		
03	47	0.004	0.017	0.266	0.76	2.10	0.48	0.84		
03	48	0.041	0.069	0.847	0.72	1.67	0.60	0.91		
03	49	0.012	0.035	0.422	0.88	1.43	0.70	0.92		
03	50	0.038	0.066	0.877	0.62	1.43	0.70	0.88		
03	51	0.072	0.105	1.324	0.52	1.13	0.89	0.78		
03	52	0.037	0.065	0.977	0.49	3.67	0.27	0.88		
03	53	0.319	0.390	3.382	0.35	1.10	0.91	0.68		
03	54	0.013	0.037	0.440	0.87	1.53	0.65	0.95		
03	55	0.072	0.105	1.042	0.83	1.67	0.60	0.96		
03	56	0.091	0.127	1.758	0.37	3.04	0.33	0.65		
03	57	0.061	0.093	0.944	0.87	1.12	0.90	0.97		
03	58	0.024	0.050	0.597	0.85	1.59	0.63	0.94		
06	1	0.032	0.059	0.713	0.78	1.44	0.69	0.92		
06	2	0.071	0.104	1.224	0.60	2.12	0.47	0.87		
06	3	0.002	0.011	0.180	0.83	1.63	0.61	0.81		
06	4	0.155	0.201	2.024	0.48	1.94	0.52	0.78		
06	5	0.103	0.141	1.258	0.82	1.49	0.67	0.97		
06	6	0.065	0.097	1.194	0.57	2.33	0.43	0.82		
06	7	0.010	0.030	0.420	0.70	2.40	0.42	0.91		
06	8	0.154	0.200	1.718	0.66	1.96	0.51	0.89		
06	9	0.012	0.034	0.538	0.52	3.88	0.26	0.94		
06	10	0.009	0.029	0.394	0.75	1.97	0.51	0.89		
06	11	0.005	0.019	0.277	0.82	1.77	0.56	0.86		
06	12	0.036	0.064	1.107	0.37	4.00	0.25	0.65		
06	13	0.021	0.046	0.634	0.66	2.23	0.45	0.84		
06	14	0.002	0.009	0.151	0.84	1.31	0.76	0.80		
06	15	0.012	0.034	0.403	0.94	1.15	0.87	0.92		
06	16	0.135	0.177	1.767	0.54	1.56	0.64	0.76		
06	17	0.015	0.039	0.532	0.67	2.36	0.42	0.86		
06	18	0.033	0.060	0.755	0.72	1.10	0.91	0.87		

Fortsettelse av Tabell E.1										
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
1		$[mm^2]$	$[mm^2]$	[mm]						
06	19	0.105	0.144	1.316	0.77	1.34	0.75	0.93		
06	20	0.159	0.205	1.911	0.55	2.90	0.34	0.91		
06	21	0.035	0.062	0.771	0.74	1.98	0.50	0.93		
06	22	0.064	0.096	1.188	0.57	2.87	0.35	0.91		
06	23	0.017	0.042	0.491	0.86	1.05	0.95	0.92		
06	24	0.007	0.023	0.302	0.91	1.28	0.78	0.91		
06	25	0.003	0.014	0.209	0.90	1.74	0.58	0.89		
06	26	0.013	0.035	0.513	0.61	2.61	0.38	0.84		
06	27	0.001	0.008	0.144	0.76	1.52	0.66	0.75		
06	28	0.010	0.030	0.390	0.83	1.69	0.59	0.92		
06	29	0.001	0.008	0.135	0.87	1.16	0.86	0.77		
06	30	0.009	0.029	0.383	0.80	1.85	0.54	0.91		
06	31	0.011	0.032	0.435	0.73	1.64	0.61	0.88		
06	32	0.003	0.015	0.211	0.94	1.39	0.72	0.87		
06	33	0.002	0.011	0.162	0.91	1.50	0.67	0.83		
06	34	0.003	0.014	0.205	0.94	1.29	0.78	0.87		
06	35	0.157	0.203	2.150	0.43	1.71	0.59	0.80		
06	36	0.003	0.014	0.198	0.93	1.36	0.74	0.88		
06	37	0.044	0.073	0.858	0.75	1.24	0.81	0.90		
06	38	0.011	0.032	0.394	0.88	1.43	0.70	0.91		
06	39	0.023	0.049	0.581	0.86	1.22	0.82	0.93		
06	40	0.055	0.085	0.897	0.85	1.25	0.80	0.95		
06	41	0.046	0.076	1.330	0.33	4.98	0.20	0.72		
06	42	0.003	0.015	0.216	0.88	1.36	0.73	0.86		
06	43	0.053	0.083	1.121	0.53	3.04	0.33	0.85		
08	1	0.073	0.106	1.278	0.56	2.77	0.36	0.86		
08	2	0.033	0.060	0.681	0.88	1.24	0.81	0.95		
08	3	0.311	0.381	3.298	0.36	1.85	0.54	0.72		
08	4	0.036	0.063	0.814	0.68	2.15	0.47	0.90		
08	5	0.003	0.013	0.205	0.81	1.65	0.60	0.85		
08	6	0.006	0.022	0.320	0.75	1.87	0.53	0.86		
08	7	0.288	0.354	2.785	0.47	1.51	0.66	0.74		
08	8	0.365	0.443	2.644	0.66	1.63	0.61	0.91		
08	9	0.017	0.044	0.523	0.80	1.77	0.57	0.92		
08	10	0.040	0.068	0.750	0.90	1.25	0.80	0.96		
08	11	0.046	0.075	0.958	0.63	1.57	0.64	0.85		
08	12	0.004	0.016	0.234	0.85	1.64	0.61	0.85		
08	13	0.004	0.016	0.221	0.96	1.17	0.86	0.89		
08	14	0.425	0.512	3.966	0.34	1.87	0.54	0.70		
08	15	0.014	0.037	0.444	0.87	1.32	0.76	0.92		
08	16	0.035	0.063	0.864	0.59	2.72	0.37	0.84		

	Fortsettelse av Tabell E.1									
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
		$[mm^2]$	$[mm^2]$	[mm]						
08	17	0.072	0.105	1.072	0.78	1.69	0.59	0.96		
08	18	0.067	0.100	1.726	0.28	4.20	0.24	0.64		
08	19	0.016	0.040	0.485	0.83	1.83	0.55	0.94		
08	20	0.025	0.051	0.620	0.83	1.57	0.64	0.93		
08	21	0.008	0.025	0.340	0.84	1.63	0.61	0.90		
08	22	0.007	0.025	0.375	0.67	2.72	0.37	0.89		
08	23	0.005	0.020	0.270	0.90	1.35	0.74	0.89		
08	24	0.005	0.018	0.250	0.91	1.74	0.58	0.94		
08	25	0.007	0.023	0.304	0.90	1.42	0.70	0.90		
08	26	0.046	0.075	0.933	0.66	2.17	0.46	0.90		
08	27	0.014	0.038	0.538	0.61	2.75	0.36	0.87		
08	28	0.002	0.012	0.178	0.98	1.30	0.77	0.87		
08	29	0.032	0.059	0.677	0.89	1.25	0.80	0.95		
08	30	0.041	0.069	0.773	0.85	1.09	0.92	0.95		
08	31	0.017	0.043	0.678	0.47	3.96	0.25	0.81		
08	32	0.417	0.503	2.986	0.59	2.71	0.37	0.88		
08	33	0.026	0.052	0.624	0.83	1.51	0.66	0.94		
08	34	0.010	0.031	0.388	0.87	1.61	0.62	0.93		
08	35	0.006	0.021	0.302	0.82	1.68	0.60	0.89		
08	36	0.008	0.026	0.329	0.92	1.32	0.75	0.92		
08	37	0.001	0.005	0.079	1.00	1.20	0.84	0.80		
08	38	0.001	0.005	0.083	0.91	1.20	0.84	0.80		
08	39	0.049	0.079	0.848	0.86	1.16	0.86	0.95		
08	40	0.129	0.170	1.890	0.45	3.73	0.27	0.85		
08	41	0.054	0.084	1.119	0.54	3.55	0.28	0.90		
08	42	0.047	0.076	1.340	0.33	2.30	0.43	0.61		
08	43	0.026	0.052	0.597	0.92	1.24	0.81	0.95		
08	44	0.003	0.014	0.211	0.83	1.49	0.67	0.83		
09	1	0.168	0.216	1.735	0.70	1.57	0.64	0.92		
09	2	0.462	0.555	3.685	0.43	1.77	0.56	0.79		
09	3	1.659	1.936	5.554	0.68	1.07	0.93	0.89		
09	4	0.712	0.844	3.866	0.60	1.84	0.54	0.91		
09	5	0.012	0.034	0.412	0.91	1.42	0.71	0.93		
09	6	0.022	0.048	0.591	0.80	1.72	0.58	0.94		
09	7	0.068	0.101	1.172	0.62	2.69	0.37	0.93		
09	8	0.006	0.022	0.322	0.78	2.07	0.48	0.90		
09	9	0.469	0.563	3.587	0.46	1.29	0.78	0.74		
09	10	0.185	0.236	1.941	0.62	2.04	0.49	0.83		
09	11	0.030	0.057	0.690	0.80	1.74	0.57	0.94		
09	12	0.201	0.254	1.910	0.69	1.97	0.51	0.91		
09	13	0.001	0.008	0.122	0.96	1.08	0.93	0.86		

Fortsettelse av Tabell E.1										
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
		$[mm^{2}]$	$[mm^{2}]$	[mm]						
09	14	0.037	0.065	0.979	0.49	3.36	0.30	0.76		
09	15	0.051	0.081	0.888	0.82	1.67	0.60	0.95		
09	16	0.015	0.040	0.492	0.80	1.45	0.69	0.93		
09	17	0.056	0.087	1.059	0.63	2.61	0.38	0.95		
09	18	0.068	0.100	1.084	0.73	1.67	0.60	0.93		
09	19	0.015	0.040	0.487	0.81	1.66	0.60	0.93		
09	20	0.076	0.110	1.577	0.38	2.77	0.36	0.68		
09	21	0.067	0.099	1.297	0.50	2.67	0.37	0.83		
09	22	0.032	0.059	0.997	0.40	3.26	0.31	0.67		
09	23	0.029	0.055	0.661	0.82	1.59	0.63	0.94		
09	24	0.019	0.046	0.586	0.69	1.58	0.63	0.87		
09	25	0.228	0.285	2.664	0.40	3.31	0.30	0.74		
09	26	0.125	0.166	1.614	0.60	1.98	0.50	0.83		
09	27	0.012	0.035	0.412	0.92	1.27	0.79	0.93		
09	28	0.015	0.040	0.542	0.65	2.20	0.46	0.87		
09	29	0.009	0.027	0.377	0.76	2.01	0.50	0.90		
09	30	0.110	0.149	1.303	0.82	1.33	0.75	0.95		
09	31	0.005	0.020	0.309	0.72	2.18	0.46	0.86		
09	32	0.010	0.030	0.408	0.75	2.13	0.47	0.92		
09	33	0.013	0.035	0.473	0.71	2.05	0.49	0.87		
09	34	0.035	0.062	0.792	0.69	1.70	0.59	0.91		
09	35	0.063	0.094	1.191	0.56	2.86	0.35	0.86		
09	36	0.317	0.388	2.293	0.76	1.62	0.62	0.95		
09	37	0.002	0.011	0.171	0.89	1.11	0.90	0.84		
09	38	0.055	0.086	1.021	0.67	2.53	0.40	0.95		
09	39	0.004	0.017	0.238	0.89	1.34	0.74	0.86		
09	40	0.040	0.068	0.750	0.90	1.13	0.88	0.96		
09	41	0.107	0.145	1.471	0.62	2.67	0.37	0.95		
09	42	0.018	0.044	0.626	0.57	3.37	0.30	0.88		
09	43	0.045	0.074	1.007	0.56	3.16	0.32	0.86		
09	44	0.003	0.013	0.189	0.95	1.15	0.87	0.85		
09	45	0.012	0.034	0.425	0.83	1.58	0.63	0.90		
09	46	0.223	0.279	2.666	0.39	1.80	0.56	0.69		
09	47	0.048	0.077	0.928	0.69	2.00	0.50	0.89		
09	48	0.022	0.047	0.579	0.82	1.35	0.74	0.92		
09	49	0.012	0.033	0.396	0.93	1.29	0.78	0.93		
09	50	0.001	0.005	0.083	0.91	1.20	0.84	0.80		
09	51	0.030	0.056	0.714	0.73	1.72	0.58	0.94		
10	1	0.006	0.022	0.291	0.96	1.09	0.92	0.91		
10	2	0.072	0.105	1.053	0.82	1.35	0.74	0.95		
10	3	0.051	0.081	0.931	0.74	1.85	0.54	0.95		

	Fortsettelse av Tabell E.1								
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity	
		$[mm^2]$	$[mm^2]$	[mm]					
10	4	0.047	0.077	0.846	0.83	1.28	0.78	0.93	
10	5	0.015	0.039	0.487	0.77	1.42	0.70	0.90	
10	6	0.020	0.046	0.622	0.66	2.05	0.49	0.85	
10	7	0.045	0.074	0.930	0.66	2.37	0.42	0.92	
10	8	0.003	0.014	0.214	0.86	1.65	0.61	0.89	
10	9	0.018	0.045	0.514	0.86	1.50	0.67	0.93	
10	10	0.120	0.160	1.382	0.79	1.53	0.65	0.95	
10	11	0.001	0.005	0.079	1.00	1.20	0.84	0.80	
10	12	0.013	0.035	0.417	0.92	1.28	0.78	0.93	
10	13	0.073	0.106	1.185	0.65	1.56	0.64	0.91	
10	14	0.047	0.077	0.880	0.77	1.47	0.68	0.92	
10	15	0.149	0.194	1.800	0.58	1.69	0.59	0.82	
10	16	0.001	0.005	0.083	0.91	1.20	0.84	0.80	
10	17	0.013	0.036	0.465	0.76	2.02	0.49	0.92	
10	18	0.003	0.015	0.214	0.93	1.39	0.72	0.89	
10	19	0.020	0.048	0.537	0.86	1.50	0.67	0.94	
10	20	0.006	0.021	0.288	0.87	1.46	0.69	0.88	
10	21	0.022	0.047	0.559	0.88	1.14	0.87	0.94	
10	22	0.003	0.015	0.234	0.78	1.26	0.80	0.82	
10	23	0.003	0.013	0.192	0.95	1.28	0.78	0.90	
10	24	0.060	0.091	1.126	0.59	1.65	0.61	0.91	
10	25	0.020	0.048	0.599	0.69	2.06	0.49	0.91	
10	26	0.027	0.054	0.956	0.38	3.49	0.29	0.64	
10	27	0.025	0.051	0.628	0.80	1.85	0.54	0.94	
10	28	0.216	0.271	2.058	0.64	1.68	0.60	0.87	
10	29	0.110	0.149	1.425	0.68	1.48	0.67	0.87	
10	30	0.059	0.090	1.044	0.68	1.70	0.59	0.90	
10	31	0.005	0.019	0.252	0.96	1.06	0.95	0.90	
10	32	0.760	0.899	4.847	0.41	2.34	0.43	0.80	
10	33	0.003	0.015	0.214	0.90	1.58	0.63	0.88	
10	34	0.043	0.071	0.792	0.85	1.11	0.90	0.94	
10	35	0.031	0.057	0.775	0.64	2.05	0.49	0.89	
10	36	0.024	0.049	0.658	0.69	1.66	0.60	0.85	
10	37	0.095	0.131	1.250	0.76	1.80	0.55	0.96	
10	38	0.024	0.050	0.597	0.84	1.39	0.72	0.94	
10	39	0.037	0.065	0.759	0.81	1.62	0.62	0.93	
10	40	0.018	0.044	0.496	0.91	1.12	0.89	0.94	
10	41	0.005	0.019	0.266	0.91	1.32	0.76	0.88	
10	42	0.002	0.009	0.144	0.92	1.10	0.91	0.83	
10	43	0.008	0.026	0.356	0.79	1.23	0.81	0.89	
10	44	0.012	0.034	0.454	0.73	2.14	0.47	0.89	
10	45	0.000	0.004	0.093	0.55	3.31	0.30	0.75	

Fortsettelse av Tabell E.1										
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
		$[mm^2]$	$[mm^2]$	[mm]				•		
10	46	0.022	0.048	0.570	0.86	1.44	0.69	0.93		
10	47	0.325	0.397	2.377	0.72	1.97	0.51	0.96		
11	1	0.004	0.015	0.221	0.91	1.28	0.78	0.88		
11	2	0.779	0.921	5.964	0.28	2.91	0.34	0.58		
11	3	0.094	0.131	2.055	0.28	2.52	0.40	0.53		
11	4	0.157	0.203	1.703	0.68	1.73	0.58	0.89		
11	5	0.003	0.013	0.182	0.98	1.27	0.79	0.89		
11	6	0.007	0.023	0.318	0.85	1.69	0.59	0.91		
11	7	0.192	0.244	2.279	0.46	1.57	0.64	0.74		
11	8	0.008	0.026	0.360	0.79	1.84	0.54	0.88		
11	9	0.116	0.156	1.402	0.74	1.35	0.74	0.91		
11	10	0.119	0.159	1.368	0.80	1.26	0.79	0.93		
11	11	0.379	0.459	3.580	0.37	2.64	0.38	0.66		
11	12	0.115	0.154	1.671	0.52	1.95	0.51	0.77		
11	13	0.225	0.282	1.930	0.76	1.32	0.76	0.95		
11	14	0.059	0.090	1.138	0.57	1.78	0.56	0.80		
11	15	0.035	0.062	0.758	0.76	1.75	0.57	0.93		
11	16	0.009	0.028	0.367	0.85	1.67	0.60	0.91		
11	17	0.040	0.068	0.848	0.70	1.62	0.62	0.93		
11	18	0.002	0.009	0.151	0.84	1.31	0.76	0.80		
11	19	0.012	0.034	0.399	0.94	1.31	0.76	0.94		
11	20	0.048	0.077	0.959	0.65	1.27	0.79	0.86		
11	21	0.187	0.238	3.123	0.24	5.37	0.19	0.54		
11	22	0.157	0.203	1.840	0.58	2.92	0.34	0.91		
11	23	0.022	0.047	0.573	0.84	1.50	0.67	0.93		
11	24	0.002	0.012	0.171	1.00	1.22	0.82	0.88		
11	25	0.004	0.016	0.250	0.72	2.14	0.47	0.84		
11	26	0.163	0.210	2.091	0.47	2.40	0.42	0.74		
11	27	0.001	0.007	0.112	0.82	1.00	1.00	0.76		
11	28	0.012	0.034	0.402	0.94	1.03	0.97	0.95		
11	29	0.083	0.118	1.291	0.63	2.08	0.48	0.88		
11	30	0.518	0.620	3.460	0.54	1.04	0.96	0.79		
11	31	0.011	0.032	0.527	0.50	1.98	0.51	0.72		
11	32	0.004	0.016	0.225	0.92	1.54	0.65	0.90		
11	33	0.003	0.014	0.214	0.79	1.75	0.57	0.84		
11	34	0.049	0.078	0.851	0.85	1.63	0.61	0.96		
11	35	0.000	0.002	0.022	1.00	1.00	1.00	1.00		
11	36	0.411	0.496	3.996	0.32	1.62	0.62	0.59		
11	37	0.028	0.054	0.737	0.65	2.67	0.37	0.91		
11	38	0.018	0.045	0.579	0.68	1.85	0.54	0.83		
11	39	0.101	0.138	1.328	0.72	1.77	0.57	0.91		

	Fortsettelse av Tabell E.1								
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity	
		$[mm^{2}]$	$[mm^2]$	[mm]					
11	40	0.053	0.084	0.981	0.70	2.14	0.47	0.91	
11	41	0.124	0.165	1.867	0.45	3.36	0.30	0.82	
11	42	0.033	0.060	1.107	0.34	5.48	0.18	0.75	
11	43	0.029	0.055	0.652	0.85	1.49	0.67	0.95	
11	44	0.049	0.078	0.969	0.65	1.78	0.56	0.91	
11	45	0.004	0.016	0.237	0.86	1.43	0.70	0.88	
12	1	0.279	0.344	2.936	0.41	2.19	0.46	0.74	
12	2	0.028	0.055	0.854	0.49	2.44	0.41	0.71	
12	3	0.003	0.014	0.198	0.99	1.11	0.90	0.89	
12	4	0.068	0.101	1.515	0.37	4.04	0.25	0.68	
12	5	0.029	0.056	0.755	0.64	1.69	0.59	0.82	
12	6	0.045	0.073	0.822	0.83	1.64	0.61	0.95	
12	7	0.008	0.025	0.322	0.93	1.25	0.80	0.90	
12	8	0.030	0.057	0.704	0.77	1.73	0.58	0.93	
12	9	0.513	0.614	4.927	0.27	1.76	0.57	0.52	
12	10	0.032	0.059	0.814	0.61	2.87	0.35	0.90	
12	11	0.301	0.370	3.292	0.35	1.33	0.75	0.62	
12	12	0.019	0.047	0.549	0.80	1.84	0.54	0.93	
12	13	0.113	0.153	2.118	0.32	2.82	0.35	0.60	
12	14	0.125	0.166	1.420	0.78	1.53	0.66	0.94	
12	15	0.044	0.072	0.871	0.72	1.91	0.52	0.92	
12	16	0.404	0.488	3.243	0.48	2.74	0.36	0.85	
12	17	0.003	0.014	0.200	0.95	1.24	0.80	0.86	
12	18	0.043	0.071	0.868	0.71	1.99	0.50	0.94	
12	19	0.008	0.026	0.340	0.85	1.86	0.54	0.92	
12	20	0.100	0.137	2.194	0.26	4.82	0.21	0.58	
12	21	0.046	0.075	1.085	0.49	3.68	0.27	0.89	
12	22	0.020	0.048	0.635	0.62	2.30	0.44	0.90	
12	23	0.064	0.096	1.156	0.61	2.28	0.44	0.90	
12	24	0.373	0.452	2.835	0.58	1.60	0.63	0.85	
12	25	0.000	0.002	0.022	1.00	1.00	1.00	1.00	
12	26	0.020	0.048	0.556	0.81	1.68	0.60	0.92	
12	27	0.013	0.035	0.419	0.92	1.16	0.86	0.92	
12	28	0.089	0.125	1.381	0.59	2.51	0.40	0.89	
12	29	0.015	0.040	0.462	0.91	1.03	0.97	0.93	
12	30	0.205	0.258	1.997	0.65	1.96	0.51	0.90	
12	31	0.012	0.035	0.457	0.75	2.01	0.50	0.90	
12	32	0.014	0.039	0.482	0.78	1.93	0.52	0.92	
12	33	0.045	0.074	0.865	0.76	2.02	0.49	0.94	
12	34	0.027	0.053	0.761	0.59	2.70	0.37	0.87	
12	35	0.013	0.035	0.537	0.55	3.32	0.30	0.87	

Fortsettelse av Tabell E.1										
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
•		$[mm^2]$	$[mm^2]$	[mm]				•		
12	36	0.550	0.657	3.819	0.47	1.99	0.50	0.74		
12	37	0.011	0.031	0.390	0.88	1.52	0.66	0.92		
12	38	0.004	0.017	0.243	0.88	1.39	0.72	0.89		
12	39	0.202	0.255	2.833	0.32	2.05	0.49	0.59		
12	40	0.004	0.016	0.221	0.94	1.15	0.87	0.88		
12	41	0.006	0.021	0.281	0.90	1.06	0.94	0.90		
12	42	0.005	0.019	0.270	0.81	1.59	0.63	0.87		
12	43	0.038	0.066	0.871	0.64	1.99	0.50	0.84		
12	44	0.004	0.017	0.238	0.88	1.30	0.77	0.85		
12	45	0.001	0.007	0.112	0.82	1.00	1.00	0.76		
12	46	0.005	0.018	0.250	0.93	1.10	0.91	0.87		
12	47	0.006	0.022	0.304	0.86	1.52	0.66	0.89		
12	48	0.005	0.019	0.254	0.92	1.19	0.84	0.88		
12	49	0.063	0.095	1.503	0.35	4.16	0.24	0.69		
12	50	0.052	0.082	0.880	0.85	1.53	0.65	0.96		
12	51	0.083	0.118	1.347	0.58	2.64	0.38	0.85		
12	52	0.066	0.098	1.111	0.67	1.89	0.53	0.85		
12	53	0.031	0.058	0.703	0.79	1.33	0.75	0.95		
12	54	0.026	0.052	0.676	0.73	1.50	0.67	0.90		
12	55	0.035	0.062	0.881	0.57	2.67	0.37	0.80		
12	56	0.007	0.025	0.320	0.92	1.32	0.76	0.91		
12	57	0.035	0.063	0.868	0.59	1.85	0.54	0.82		
12	58	0.002	0.012	0.178	0.90	1.08	0.92	0.82		
12	59	0.002	0.011	0.166	0.91	1.28	0.78	0.84		
13	1	0.124	0.165	1.771	0.50	2.08	0.48	0.73		
13	2	0.095	0.132	1.387	0.62	2.75	0.36	0.90		
13	3	0.077	0.111	1.203	0.67	1.89	0.53	0.92		
13	4	0.002	0.010	0.153	0.94	1.13	0.88	0.88		
13	5	0.006	0.021	0.281	0.92	1.37	0.73	0.91		
13	6	0.014	0.038	0.489	0.74	1.32	0.76	0.88		
13	7	0.154	0.200	1.608	0.75	1.38	0.73	0.91		
13	8	0.025	0.051	0.631	0.80	1.87	0.53	0.93		
13	9	0.055	0.085	1.034	0.64	2.21	0.45	0.89		
13	10	0.007	0.023	0.324	0.82	1.29	0.78	0.89		
13	11	0.005	0.020	0.293	0.79	1.79	0.56	0.88		
13	12	0.014	0.038	0.470	0.82	1.52	0.66	0.91		
13	13	0.036	0.063	0.767	0.77	1.01	0.99	0.93		
13	14	0.097	0.134	1.496	0.54	3.14	0.32	0.86		
13	15	1.307	1.530	7.035	0.33	1.74	0.58	0.75		
13	16	0.001	0.007	0.108	1.00	1.00	1.00	1.00		
13	17	0.001	0.008	0.128	0.96	1.38	0.72	0.83		

	Fortsettelse av Tabell E.1									
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
		$[mm^2]$	$[mm^2]$	[mm]						
13	18	0.278	0.343	2.217	0.71	1.68	0.59	0.94		
13	19	0.178	0.227	2.265	0.44	2.41	0.41	0.71		
13	20	0.002	0.012	0.192	0.82	1.75	0.57	0.90		
13	21	0.012	0.033	0.428	0.81	1.45	0.69	0.90		
13	22	0.368	0.447	3.060	0.49	2.43	0.41	0.84		
13	23	0.041	0.069	0.768	0.86	1.25	0.80	0.94		
13	24	0.161	0.208	2.199	0.42	1.88	0.53	0.74		
13	25	0.120	0.161	1.878	0.43	1.88	0.53	0.71		
13	26	0.167	0.215	2.126	0.47	1.02	0.98	0.72		
13	27	0.020	0.046	0.606	0.70	2.11	0.47	0.87		
13	28	0.127	0.168	1.872	0.45	2.29	0.44	0.77		
13	29	0.005	0.019	0.277	0.81	1.63	0.61	0.85		
13	30	0.007	0.024	0.377	0.64	2.74	0.37	0.88		
13	31	0.024	0.049	0.746	0.54	2.89	0.35	0.82		
13	32	0.305	0.374	2.505	0.61	1.53	0.66	0.86		
13	33	0.082	0.117	1.195	0.72	1.50	0.67	0.94		
13	34	0.007	0.024	0.367	0.65	2.72	0.37	0.85		
14	1	0.336	0.410	3.116	0.43	2.16	0.46	0.76		
14	2	0.217	0.273	2.986	0.31	2.85	0.35	0.65		
14	3	0.090	0.126	1.809	0.35	3.95	0.25	0.66		
14	4	0.003	0.014	0.203	0.90	1.28	0.78	0.88		
14	5	0.009	0.027	0.385	0.74	1.96	0.51	0.88		
14	6	0.003	0.014	0.194	0.95	1.18	0.85	0.87		
14	7	0.073	0.107	1.236	0.60	2.37	0.42	0.85		
14	8	0.073	0.106	1.195	0.64	1.35	0.74	0.84		
14	9	0.085	0.120	1.137	0.83	1.38	0.72	0.96		
14	10	0.372	0.451	3.190	0.46	1.16	0.86	0.81		
14	11	0.052	0.082	1.038	0.61	2.56	0.39	0.85		
14	12	0.225	0.282	2.646	0.40	1.27	0.79	0.77		
14	13	0.102	0.140	1.528	0.55	2.33	0.43	0.79		
14	14	0.010	0.029	0.425	0.66	2.72	0.37	0.87		
14	15	0.226	0.283	2.389	0.50	2.24	0.45	0.74		
14	16	0.059	0.090	1.142	0.57	3.11	0.32	0.93		
14	17	0.122	0.163	1.694	0.53	1.42	0.70	0.81		
14	18	0.005	0.020	0.288	0.82	1.74	0.57	0.88		
14	19	0.072	0.106	1.136	0.71	1.52	0.66	0.90		
14	20	0.009	0.028	0.377	0.79	1.74	0.57	0.90		
14	21	0.008	0.025	0.318	0.94	1.31	0.76	0.92		
14	22	0.023	0.049	0.577	0.87	1.52	0.66	0.94		
14	23	0.067	0.099	1.052	0.76	1.45	0.69	0.93		
14	24	0.002	0.011	0.155	0.99	1.19	0.84	0.86		

Fortsettelse av Tabell E.1										
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity		
-		$[mm^2]$	$[mm^2]$	[mm]				-		
14	25	0.022	0.048	0.734	0.52	1.65	0.61	0.73		
14	26	0.119	0.160	1.580	0.60	1.86	0.54	0.89		
14	27	0.022	0.047	0.720	0.53	3.01	0.33	0.80		
14	28	0.074	0.107	1.079	0.80	1.57	0.64	0.95		
14	29	0.013	0.036	0.444	0.84	1.76	0.57	0.93		
14	30	0.293	0.360	2.447	0.61	1.58	0.63	0.88		
14	31	0.004	0.017	0.235	0.94	1.59	0.63	0.93		
14	32	0.059	0.090	1.004	0.74	1.30	0.77	0.89		
14	33	0.037	0.065	0.755	0.81	1.38	0.72	0.93		
14	34	0.236	0.295	2.155	0.64	1.29	0.77	0.87		
14	35	0.011	0.032	0.408	0.83	1.66	0.60	0.91		
14	36	0.384	0.466	2.417	0.83	1.19	0.84	0.96		
14	37	0.020	0.045	0.545	0.85	1.58	0.63	0.93		
14	38	0.013	0.035	0.476	0.70	2.25	0.45	0.90		
14	39	0.398	0.481	3.399	0.43	1.72	0.58	0.71		
14	40	0.020	0.047	0.595	0.69	1.84	0.54	0.92		
14	41	0.017	0.043	0.505	0.83	1.59	0.63	0.93		
14	42	0.084	0.119	1.555	0.44	3.78	0.26	0.74		
14	43	0.104	0.142	1.266	0.81	1.32	0.76	0.96		
14	44	0.001	0.008	0.135	0.87	1.16	0.86	0.77		
14	45	0.077	0.111	1.875	0.28	2.69	0.37	0.50		
14	46	0.164	0.211	1.836	0.61	1.99	0.50	0.83		
14	47	0.174	0.223	1.843	0.64	1.51	0.66	0.88		
14	48	0.278	0.343	2.320	0.65	2.16	0.46	0.88		
14	49	0.075	0.108	1.204	0.65	1.69	0.59	0.90		
14	50	0.002	0.010	0.149	1.00	1.13	0.88	0.88		
15	1	0.176	0.225	2 0 1 9	0.54	1.00	0.51	0.95		
15	1	0.170	0.225	2.018	0.54	1.98	0.51	0.85		
15	2	0.009	0.028	0.383	0.77	1.60	0.62	0.88		
15	3	0.029	0.030	0.758	0.04	2.33	0.43	0.92		
15	4	0.004	0.016	0.243	0.78	1.92	0.52	0.85		
15	5	0.105	0.145	1.455	0.03	2.17	0.40	0.91		
15	0	0.088	0.124	1.389	0.44	4.02	0.25	0.85		
15	0	0.009	0.028	0.381	0.79	1.90	0.51	0.90		
15	ð	0.204	0.257	2.472	0.42	1.01	0.62	0.72		
15	10	0.005	0.015	0.189	0.95	1.10	0.91	0.83		
15	10	0.293	0.302	2.321	0.38	1.32	0.70	0.84		
15	11	0.000	0.023	0.520	0.80	1.80	0.33	0.87		
15	12	0.200	0.200	5.457 0.402	0.22	1.23	0.82	0.49		
15	13	0.009	0.029	0.403	0.72	2.10	0.40	0.89		
15	14	0.026	0.052	0.030	0.80	1.40	0.08	0.93		
15	15	0.035	0.062	0.825	0.64	2.65	0.38	0.92		

					T. 1. 11.1				
~			Forts	settelse av		E.I		~	
Slip	Nr.	A_M	A_B	Perim.	Circ.	A.R.	Round.	Solidity	
		$[mm^2]$	$[mm^2]$	[mm]					
15	16	0.003	0.014	0.207	0.91	1.44	0.69	0.84	
15	17	0.006	0.021	0.281	0.89	1.25	0.80	0.88	
15	18	0.070	0.102	1.076	0.76	1.38	0.72	0.93	
15	19	0.151	0.196	1.620	0.72	1.40	0.71	0.88	
15	20	0.241	0.300	2.681	0.42	2.78	0.36	0.71	
15	21	0.118	0.158	1.413	0.74	1.69	0.59	0.95	
15	22	1.373	1.606	6.675	0.39	2.73	0.37	0.80	
15	23	0.014	0.038	0.446	0.88	1.42	0.70	0.93	
15	24	0.008	0.026	0.329	0.93	1.27	0.79	0.91	
15	25	0.003	0.015	0.205	1.00	1.21	0.83	0.89	
15	26	0.426	0.514	2.987	0.60	1.73	0.58	0.85	
15	27	0.060	0.091	1.098	0.62	2.46	0.41	0.91	
Slutt av Tabell E.1									
Tillegg

Rådata, magnetisk susceptibilitet in situ

Tabell F.1 presenterer samtlige rådata fra susceptibilitetsmålingene in situ. Det er presenter gjennomsnitt, samt maksimum og minimum der det er gjennomført flere målinger. Målingene er koordinatfestet.

Kode	Gjen.	Maks	Min	Х	Y	Ζ
1502	25.96	26.19	25.67	64326.218	1368999.406	644.546
1502	24.47	24.59	24.24	64326.33	1368999.388	644.548
1502	25.63	25.86	25.40	64327.156	1368999.113	644.542
1502	24.26	24.41	24.10	64327.272	1368999.076	644.537
1502	30.64	31.24	30.04	64327.355	1368999.054	644.53
1502	32.27	33.41	31.12	64327.454	1368999.01	644.531
1502	34.53	34.91	34.14	64327.553	1368998.979	644.531
1502	30.02	30.23	29.81	64327.65	1368998.935	644.524
1502	35.33	36.65	34.00	64327.732	1368998.901	644.527
1502	27.79	27.94	27.63	64327.822	1368998.854	644.498
1502	32.37	32.41	32.32	64327.904	1368998.79	644.531
1502	36.88	38.55	35.21	64327.987	1368998.763	644.534
1502	28.34	29.72	26.48	64326.423	1368999.365	644.55
1502	30.54	30.94	30.13	64328.089	1368998.736	644.527
1502	32.70	33.15	32.25	64328.168	1368998.694	644.522
1502	27.68	28.27	27.09	64328.288	1368998.669	644.521
1502	34.77	35.88	33.65	64328.385	1368998.635	644.522
1502	32.60	34.39	30.81	64328.473	1368998.604	644.529
1502	28.52	28.66	28.37	64328.57	1368998.58	644.528
1502	30.47	31.22	29.71	64328.666	1368998.528	644.524

Tabell F.1: Rådata, magnetisk susceptibilitet in situ. Gjen. = Gjennomsnitt.

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Ζ
1502	33.40	33.46	33.33	64328.758	1368998.497	644.514
1502	26.63	27.04	26.21	64328.824	1368998.467	644.513
1502	21.58	21.84	21.32	64328.926	1368998.428	644.512
1502	27.52	27.73	27.28	64326.521	1368999.327	644.545
1502	30.80	33.07	28.53	64329.045	1368998.398	644.498
1502	31.88	32.20	31.55	64329.152	1368998.367	644.522
1502	27.10	27.55	26.64	64329.215	1368998.339	644.514
1502	24.67	24.71	24.62	64329.322	1368998.29	644.522
1502	23.77	24.25	23.28	64329.416	1368998.267	644.526
1502	20.56	20.60	20.52	64329.503	1368998.21	644.515
1502	21.32	21.35	21.29	64329.605	1368998.17	644.511
1502	32.53	33.23	31.83	64329.671	1368998.129	644.512
1502	23.35	23.38	23.32	64329.768	1368998.064	644.495
1502	20.92	21.08	20.76	64329.831	1368998.019	644.487
1502	33.04	33.87	32.62	64326.619	1368999.307	644.545
1502	29.63	29.73	29.43	64326.723	1368999.267	644.539
1502	29.98	30.84	28.75	64326.823	1368999.248	644.536
1502	32.09	32.87	30.57	64326.911	1368999.218	644.528
1502	29.90	30.30	29.64	64326.991	1368999.187	644.533
1502	31.33	31.70	30.64	64327.076	1368999.14	644.534
1502	26.85	28.16	25.54	64326.669	1368996.967	644.539
1502	24.13	24.51	23.74	64326.719	1368997.042	644.522
1502	39.62	41.92	37.32	64327.516	1368997.534	644.457
1502	40.44	43.45	37.43	64327.603	1368997.629	644.448
1502	35.36	35.46	35.26	64327.685	1368997.648	644.446
1502	29.60	29.83	29.37	64327.685	1368997.636	644.446
1502	25.97	26.35	25.59	64327.744	1368997.732	644.44
1502	64.21	65.62	62.79	64327.846	1368997.787	644.444
1502	84.88	85.29	84.47	64327.937	1368997.848	644.459
1502	35.91	36.27	35.55	64327.961	1368997.914	644.469
1502	35.59	35.61	35.57	64328.063	1368998	644.467
1502	30.37	30.37	30.36	64328.136	1368998.089	644.484
1502	23.05	24.24	21.85	64326.804	1368997.097	644.511
1502	28.87	29.02	28.71	64328.194	1368998.195	644.485
1502	28.33	28.49	28.16	64328.242	1368998.251	644.497
1502	33.82	34.29	33.34	64328.336	1368998.347	644.498
1502	28.12	28.17	28.07	64328.408	1368998.384	644.498
1502	24.41	24.64	24.17	64328.467	1368998.438	644.502
1502	26.97	27.02	26.91	64328.549	1368998.514	644.515
1502	27.65	28.32	26.97	64328.615	1368998.604	644.523
1502	25.14	25.17	25.10	64328.704	1368998.669	644.519
1502	27.09	33.29	20.88	64328.78	1368998.728	644.527
1502	10.22	10.54	9.90	64328.829	1368998.779	644.531

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1502	23.72	25.38	22.05	64326.865	1368997.136	644.498
1502	20.43	20.61	20.24	64328.879	1368998.898	644.533
1502	22.30	23.14	21.45	64328.914	1368998.969	644.517
1502	24.02	24.38	23.66	64329.003	1368999.034	644.523
1502	30.58	31.13	30.03	64329.073	1368999.105	644.524
1502	23.35	23.35	23.34	64329.127	1368999.198	644.51
1502	26.92	27.32	26.52	64329.206	1368999.25	644.524
1502	27.10	28.92	25.28	64329.247	1368999.338	644.528
1502	41.09	42.43	39.74	64329.325	1368999.397	644.549
1502	31.29	36.23	26.35	64329.382	1368999.471	644.559
1502	32.43	33.47	31.38	64326.933	1368997.184	644.485
1502	34.60	34.69	34.51	64327.006	1368997.292	644.468
1502	37.69	39.12	36.26	64327.109	1368997.318	644.466
1502	34.95	35.51	34.30	64327.295	1368997.37	644.47
1502	44.65	44.74	44.56	64327.382	1368997.422	644.469
1502	30.54	31.25	29.83	64327.449	1368997.499	644.464
1502	22.82	23.82	22.07	64326.11	1368998.3	644.536
1502	34.66	39.72	24.82	64329.846	1368999.053	644.52
1502	30.27	30.94	29.69	64326.863	1368998.278	644.49
1502	24.87	25.12	24.74	64326.515	1368997.506	644.529
1502	27.83	28.08	27.42	64327.751	1368998.439	644.511
1502	38.81	40.45	37.34	64328.45	1368997.779	644.474
1502	33.79	35.33	32.27	64329.241	1368997.868	644.501
1502	23.54	24.95	22.69	64328.385	1368999.229	644.561
1502	29.97	30.35	29.30	64327.107	1368999.628	644.563
1502	39.42	40.80	37.99	64326.45	1368998.845	644.512
1503	36.78	37.28	36.25	64329.419	1368989.261	645.354
1503	39.26	39.74	38.77	64329.378	1368989.348	645.372
1503	51.67	53.88	49.46	64329.346	1368989.446	645.404
1503	36.26	38.01	34.51	64329.285	1368989.536	645.387
1503	55.57	56.16	54.98	64329.288	1368989.628	645.415
1503	36.71	36.90	36.51	64329.24	1368989.739	645.44
1503	37.15	39.83	34.47	64329.232	1368989.825	645.452
1503	29.88	31.74	28.01	64329.212	1368989.912	645.462
1503	29.26	30.22	28.30	64329.185	1368989.994	645.467
1503	35.15	35.70	34.60	64329.165	1368990.095	645.464
1503	41.35	41.77	40.92	64329.124	1368989.189	645.384
1503	49.32	49.40	49.24	64329.103	1368989.287	645.41
1503	51.36	54.09	48.62	64329.082	1368989.388	645.428
1503	35.21	35.48	34.94	64329.045	1368989.477	645.441
1503	31.45	31.84	31.06	64329.016	1368989.582	645.437
1503	30.58	31.56	29.60	64328.98	1368989.677	645.463
1503	27.92	28.56	27.28	64328.944	1368989.752	645.49

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1503	27.74	27.96	27.52	64328.93	1368989.846	645.474
1503	33.08	33.25	32.91	64328.903	1368989.98	645.501
1503	32.02	32.03	32.00	64328.899	1368990.076	645.491
1503	26.13	26.49	25.76	64328.739	1368989.188	645.295
1503	44.82	47.51	42.13	64328.707	1368989.275	645.325
1503	30.71	31.62	29.80	64328.696	1368989.362	645.334
1503	24.24	24.28	24.20	64328.664	1368989.453	645.331
1503	30.26	30.83	29.69	64328.649	1368989.572	645.361
1503	23.45	24.69	22.21	64328.603	1368989.661	645.345
1503	20.82	21.57	20.07	64328.566	1368989.738	645.379
1503	26.72	27.82	25.62	64328.571	1368989.849	645.405
1503	35.93	38.17	33.69	64328.544	1368989.949	645.411
1503	26.68	31.58	19.75	64328.553	1368990.048	645.424
1503	25.37	25.40	25.33	64328.444	1368989.174	645.12
1503	21.53	22.06	20.99	64328.427	1368989.274	645.158
1503	28.48	28.83	28.13	64328.404	1368989.377	645.163
1503	35.29	40.23	30.35	64328.404	1368989.472	645.188
1503	21.97	24.28	19.66	64328.411	1368989.597	645.195
1503	23.45	23.60	23.30	64328.426	1368989.673	645.202
1503	28.38	28.98	27.77	64328.391	1368989.771	645.232
1503	30.23	31.10	29.35	64328.365	1368989.881	645.24
1503	52.96	52.98	52.94	64328.347	1368989.955	645.249
1503	22.47	23.60	21.33	64328.345	1368990.049	645.266
1503	22.36	23.24	21.47	64329.175	1368990.214	645.364
1503	26.41	27.45	25.36	64329.091	1368990.21	645.363
1503	26.94	27.14	26.74	64329.003	1368990.233	645.387
1503	27.07	27.18	26.96	64328.912	1368990.221	645.392
1503	22.03	22.33	21.72	64328.796	1368990.209	645.359
1503	28.31	28.76	27.85	64328.695	1368990.214	645.363
1503	26.62	27.46	25.78	64328.609	1368990.208	645.365
1503	34.62	34.69	34.55	64328.484	1368990.205	645.292
1503	24.10	24.99	23.21	64328.403	1368990.203	645.27
1503	26.03	26.44	25.61	64329.553	1368989.718	645.302
1501	23.84	24.45	22.94	64278.36	1368981.461	645.319
1501	2.21	2.63	1.91	64278.608	1368982.599	645.813
1501	24.49	25.73	23.84	64279.186	1368983.055	645.912
1501	23.31	24.12	22.67	64280.275	1368983.773	645.542
1501	18.24	18.64	17.54	64282.74	1368982.042	645.16
1501	34.55	35.55	33.61	64283.069	1368983.539	645.266
1501	20.29	20.41	20.11	64283.413	1368986.378	645.203
1501	27.48	28.89	25.66	64284.685	1368986.185	645.194
1501	21.96	23.26	20.30	64287.617	1368984.8	644.454
1501	21.86	22.50	20.72	64289.318	1368984.519	644.596

	Fortsettelse av Tabell F.1							
Kode	Gjen.	Maks	Min	Х	Y	Ζ		
1501	21.12	22.18	20.55	64288.635	1368990.711	645.115		
1501	22.91	24.13	22.13	64287.33	1368993.136	645.533		
1501	21.32	21.99	20.62	64288.478	1368991.913	645.327		
1501	31.15	31.87	30.57	64289.5	1368992.573	645.287		
1501	17.28	19.33	14.72	64292.255	1368989.585	644.573		
1501	20.72	21.05	20.24	64293.905	1368990.302	644.468		
1501	19.33	20.56	16.91	64295.143	1368987.976	644.256		
1501	46.86	49.28	43.62	64297.517	1368985.676	644.52		
1501	14.24	14.44	13.96	64300.727	1368986.824	644.382		
1501	30.22	30.72	29.59	64302.587	1368989.059	644.454		
1501	21.48	21.95	21.22	64304.875	1368987.925	644.733		
1501	19.64	19.96	19.41	64307.867	1368987.197	645.174		
1501	25.09	25.87	24.45	64311.782	1368987.649	645.707		
1501	20.69	21.51	19.50	64317.981	1368991.332	645.655		
1501	27.29	27.75	26.49	64314.879	1368994.836	644.822		
1501	20.66	21.55	19.84	64321.394	1368993.052	644.846		
1501	24.54	28.36	20.40	64324.339	1368991.456	644.634		
1501	26.45	26.99	25.72	64328.74	1368990.079	645.518		
1501	37.28	39.21	36.15	64330.895	1368994.649	645.053		
1501	25.37	26.32	24.34	64334.446	1368992.857	645.139		
1501	25.94	26.53	25.30	64336.412	1368995.871	644.872		
1501	31.30	31.83	30.41	64339.657	1368990.796	645.616		
1501	24.36	24.57	24.01	64343.581	1368992.872	645.542		
1501	23.09	23.33	22.72	64343.726	1368997.179	645.32		
1101	37.45	45.65	31.04	64692.471	1368823.747	634.214		
1101	34.15	42.52	25.77	64692.969	1368824.269	634.028		
1101	28.23	28.47	27.99	64693.41	1368824.783	634.106		
1101	29.94	30.34	29.53	64693.742	1368825.121	634.177		
1101	27.84	27.99	27.68	64694.365	1368825.581	633.988		
1101	24.36	24.36	24.36	64694.918	1368826.083	634.25		
1101	31.42	32.14	30.70	64695.489	1368826.556	634.36		
1101	31.00	31.15	30.84	64695.749	1368827.072	634.01		
1101	33.69	36.79	31.80	64691.896	1368823.335	634.176		
1101	33.60	33.76	33.44	64691.638	1368823.102	634.543		
1101	29.46	33.00	23.87	64691.382	1368822.788	634.387		
1101	27.73	29.50	26.65	64691.04	1368822.415	634.586		
1101	25.68	28.11	23.24	64696.144	1368827.116	632.89		
1101	24.02	24.76	23.28	64696.835	1368827.908	633.792		
1101	51.40	54.22	48.58	64697.197	1368828.393	633.783		
1101	27.99	28.42	27.56	64697.535	1368828.73	633.603		
1101	31.40	32.43	30.37	64697.951	1368829.303	633.603		
1101	31.31	34.91	27.70	64698.438	1368829.831	633.728		
1101	15.49	26.51	4.47	64698.949	1368830.293	633.722		

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1101	32.65	33.53	31.76	64699.292	1368830.795	633.707
1101	27.23	27.85	26.61	64696.418	1368827.544	633.877
1101	22.64	23.17	22.10	64700.226	1368831.876	633.645
1101	68.09	71.90	63.36	64700.73	1368832.553	633.263
1101	39.93	42.40	37.45	64701.328	1368833.039	633.474
1101	17.74	18.08	17.40	64701.804	1368833.686	633.433
1101	38.84	39.18	38.50	64702.2	1368834.084	633.474
1101	16.86	17.60	16.12	64702.576	1368834.596	633.287
1101	14.88	15.97	13.79	64703.138	1368835.215	633.366
1101	9.74	10.26	9.09	64703.525	1368835.645	633.306
1101	9.85	10.39	9.31	64699.79	1368831.249	633.653
1101	27.20	27.77	26.63	64699.774	1368831.265	632.639
1101	33.19	34.24	32.13	64699.934	1368831.38	633.529
1101	31.71	32.12	31.29	64703.981	1368835.965	633.276
1101	22.35	23.79	20.91	64704.456	1368836.474	633.262
1101	35.70	36.01	35.38	64704.891	1368836.871	633.133
1101	14.84	18.48	11.04	64705.193	1368837.466	632.88
1101	33.43	35.62	31.23	64705.756	1368838.257	632.711
1101	39.46	42.15	37.41	64706.097	1368838.643	632.487
1101	36.76	49.15	25.19	64706.556	1368839.061	632.302
1101	24.11	30.46	20.34	64707.419	1368839.818	632.324
1101	31.61	32.49	30.65	64707.674	1368839.964	632.176
1101	12.25	12.46	12.03	64703.702	1368835.761	633.408
1101	29.70	32.29	27.10	64708.542	1368840.639	631.876
1101	19.98	21.18	18.77	64708.941	1368841.109	631.807
1101	34.41	37.26	31.56	64709.384	1368841.773	631.981
1101	30.96	31.28	30.64	64709.761	1368842.14	631.904
1101	22.78	24.67	20.89	64710.215	1368842.548	631.843
1101	26.93	27.20	26.66	64710.772	1368842.932	631.601
1101	35.76	35.82	35.70	64711.337	1368843.302	631.629
1101	34.96	38.63	28.66	64711.786	1368843.889	631.445
1101	31.95	31.95	31.95	64708.159	1368840.279	631.839
1101	22.04	22.17	21.90	64743.858	1368853.312	628.21
1101	24.00	25.52	22.48	64747	1368852.074	628.53
1101	29.47	31.40	28.02	64748.082	1368851.077	628.166
1101	31.11	31.52	30.70	64748.79	1368849.689	627.895
1101	69.03	74.48	65.18	64714.34	1368846.294	631.089
1101	28.10	28.12	28.08	64714.802	1368846.822	630.917
1101	32.80	33.95	31.64	64715.304	1368847.126	630.761
1101	19.26	21.58	16.63	64715.731	1368847.502	630.744
1101	21.61	24.09	19.54	64738.894	1368854.355	629.045
1101	28.47	29.93	27.01	64716.735	1368848.369	630.675
1101	27.99	28.40	27.58	64717.249	1368848.887	630.419

	Fortsettelse av Tabell F.1							
Kode	Gjen.	Maks	Min	Х	Y	Ζ		
1101	26.08	27.56	24.60	64717.557	1368849.174	630.404		
1101	21.09	21.42	20.76	64717.995	1368849.487	630.365		
1101	16.25	16.85	15.64	64718.368	1368849.832	630.277		
1101	26.73	26.73	26.73	64719.096	1368849.988	630.582		
1101	25.74	28.52	22.96	64719.721	1368850.052	630.565		
1101	25.94	26.87	25.01	64720.227	1368850.064	630.498		
1101	32.52	38.14	26.90	64720.492	1368850.221	630.366		
1101	43.25	60.88	28.86	64716.236	1368847.992	630.559		
1101	34.18	36.70	31.66	64721.537	1368850.971	630.211		
1101	23.28	26.00	21.61	64721.992	1368851.429	630.144		
1101	11.08	11.64	10.52	64722.754	1368851.747	630.056		
1101	23.46	25.32	21.60	64723.465	1368851.994	629.999		
1101	35.58	35.87	35.29	64724.117	1368852.134	630.184		
1101	24.02	24.39	23.64	64724.831	1368852.29	629.951		
1101	16.32	17.02	15.33	64726.467	1368852.835	630.043		
1101	34.80	36.60	33.00	64726.887	1368852.889	630.019		
1101	28.71	31.96	26.90	64727.452	1368853.176	629.8		
1101	43.51	44.05	42.97	64728.05	1368853.326	629.523		
1101	60.43	73.54	44.73	64728.595	1368853.578	629.553		
1101	27.54	27.94	27.14	64729.281	1368853.953	629.284		
1101	47.06	47.16	46.95	64729.971	1368854.08	629.297		
1101	36.78	37.03	36.53	64730.571	1368854.1	629.213		
1101	35.69	36.93	34.45	64731.247	1368854.183	629.278		
1101	35.15	35.23	35.07	64731.538	1368854.139	629.37		
1101	21.69	21.96	21.42	64725.639	1368852.574	629.96		
1101	32.49	34.16	30.81	64732.366	1368854.759	629.069		
1101	27.42	27.72	27.12	64733.268	1368854.919	629.197		
1101	48.80	49.08	48.51	64733.26	1368854.931	629.191		
1101	30.66	32.29	29.02	64733.951	1368854.989	629.11		
1101	15.97	16.73	15.21	64734.437	1368855.162	629.198		
1101	31.94	32.39	31.49	64734.395	1368855.18	629.321		
1101	18.10	19.07	17.13	64734.821	1368855.192	629.41		
1101	40.21	40.51	39.91	64734.931	1368854.974	629.771		
1101	28.82	29.30	28.33	64735.646	1368854.7	629.485		
1101	29.86	31.45	28.27	64736.343	1368854.614	629.345		
1101	36.25	37.63	34.87	64736.89	1368854.611	629.251		
1101	23.99	24.06	23.91	64737.974	1368854.848	628.942		
1101	27.55	28.09	27.01	64738.47	1368854.547	628.995		
1101	24.77	25.64	23.90	64738.462	1368854.545	629.006		
1101	28.82	29.90	27.74	64731.914	1368854.466	629.269		
1101	22.18	24.47	19.88	64739.577	1368854.017	628.809		
1101	36.41	37.15	35.67	64740.185	1368853.896	628.731		
1101	33.67	36.84	30.49	64740.929	1368853.794	628.456		

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1101	34.80	34.80	34.79	64741.651	1368853.801	628.284
1101	24.00	24.99	23.00	64742.532	1368853.65	628.231
1101	26.31	26.46	26.16	64743.539	1368853.347	628.107
1101	24.61	25.07	24.15	64744.055	1368853.316	628.089
1101	30.71	31.35	30.06	64745.378	1368852.855	628.587
1101	23.89	25.62	22.16	64738.948	1368854.244	628.727
1101	9.30	10.75	7.86	64745.36	1368852.871	628.569
1102	25.38	26.61	24.36	64691.104	1368822.531	634.702
1102	28.84	30.76	27.51	64691.549	1368823.041	634.468
1102	36.51	37.87	35.75	64691.909	1368823.308	633.987
1102	27.78	28.47	26.85	64692.354	1368823.628	634.123
1102	25.66	29.94	20.21	64693.053	1368824.38	634.247
1102	33.52	34.00	32.86	64693.978	1368825.293	634.051
1102	29.45	32.07	27.46	64694.698	1368825.927	634.199
1102	32.54	34.31	31.25	64695.383	1368826.61	634.141
1102	30.20	31.19	29.53	64696.226	1368827.432	634.149
1102	16.20	16.85	15.18	64697.205	1368828.101	634.048
1102	26.74	29.47	25.36	64697.595	1368828.946	633.894
1102	33.72	34.56	32.60	64698.311	1368829.688	634.131
1102	30.61	31.42	29.38	64699.218	1368830.648	633.838
1102	24.49	24.76	24.27	64700.124	1368831.731	633.792
1102	21.65	22.19	20.83	64700.644	1368832.541	633.482
1102	20.32	22.08	18.73	64701.572	1368833.322	633.532
1102	31.23	32.18	30.09	64702.265	1368834.166	633.72
1102	20.48	23.38	17.76	64703.026	1368835.009	633.559
1102	12.93	13.69	12.28	64703.593	1368835.68	633.403
1102	38.41	42.34	34.80	64704.586	1368836.516	633.384
1102	23.99	26.46	22.07	64705.366	1368837.726	633.041
1102	18.87	23.18	15.29	64705.948	1368838.289	632.94
1102	25.83	27.92	24.66	64706.501	1368839.001	632.515
1102	35.51	38.81	33.81	64707.332	1368839.769	632.483
1102	26.01	28.55	24.63	64708.025	1368840.326	632.311
1102	36.78	37.95	34.82	64708.78	1368840.948	632.323
1102	16.36	18.39	14.62	64709.515	1368841.786	632.191
1102	17.03	17.70	15.72	64710.295	1368842.547	632.075
1102	16.45	17.06	15.91	64711.314	1368843.245	631.948
1102	24.27	25.71	22.99	64711.992	1368843.868	631.868
1102	28.97	30.96	26.71	64712.865	1368844.912	631.701
1102	34.74	36.23	33.61	64713.921	1368845.929	631.501
1102	37.41	39.80	34.07	64714.695	1368846.574	631.439
1102	36.38	38.64	34.77	64715.438	1368847.119	631.27
1102	26.67	27.84	24.67	64716.427	1368848.021	631.232
1102	35.83	36.27	35.27	64717.417	1368848.937	630.812

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1102	21.50	23.74	19.13	64718.2	1368849.619	630.799
1102	41.03	42.30	39.86	64719.051	1368849.993	630.654
1102	17.06	17.69	16.71	64720.097	1368849.987	630.349
1102	22.49	23.25	22.02	64721.089	1368850.665	630.656
1102	19.59	20.15	19.18	64722.002	1368851.362	630.462
1102	19.53	20.82	18.82	64723.181	1368851.833	630.401
1102	29.86	30.55	29.21	64724.154	1368852.092	630.353
1102	15.35	15.65	14.99	64725.375	1368852.331	630.376
1102	18.42	19.36	17.52	64726.434	1368852.739	630.362
1102	39.54	40.03	38.69	64728.181	1368853.398	630.042
1102	26.96	27.26	26.78	64729.718	1368854.07	629.81
1102	31.77	33.76	30.68	64731.435	1368854.163	629.345
1102	30.02	30.32	29.58	64732.809	1368854.931	629.328
1102	31.63	33.16	28.79	64736.529	1368854.585	629.259
1102	49.57	51.71	47.63	64738.894	1368854.355	629.045
1102	21.57	23.11	20.50	64741.083	1368853.909	628.802
1102	34.01	35.89	31.84	64738.903	1368854.355	629.033
1102	33.76	34.15	33.15	64741.083	1368853.909	628.801
1102	26.11	27.46	25.14	64742.94	1368853.782	628.441
1102	22.62	22.98	22.10	64743.858	1368853.312	628.21
1102	23.99	24.57	22.93	64747	1368852.074	628.53
1102	33.52	34.30	32.56	64748.082	1368851.077	628.166
1102	22.62	23.16	21.78	64748.79	1368849.689	627.895
1201	27.48	28.00	26.48	64716.495	1368834.405	632.096
1201	27.56	29.00	25.60	64716.798	1368834.893	631.84
1201	18.25	19.63	17.03	64717.157	1368835.38	631.624
1201	31.47	35.10	28.59	64717.525	1368835.752	631.067
1201	40.86	47.18	34.62	64718.409	1368836.815	631.356
1201	33.33	39.46	29.36	64719.26	1368837.582	631.789
1201	24.99	25.27	24.75	64719.696	1368838.057	630.588
1201	19.90	20.80	19.26	64720.709	1368838.709	631.076
1201	26.64	29.43	24.02	64721.297	1368839.188	630.594
1201	28.10	28.45	27.65	64721.719	1368839.637	630.219
1201	20.33	21.99	19.35	64722.268	1368839.972	631.046
1201	36.88	39.67	33.94	64722.559	1368840.283	630.5
1201	28.94	29.48	28.43	64723.232	1368840.702	630.294
1201	22.42	23.94	20.71	64724.134	1368841.232	630.616
1201	22.85	25.36	18.40	64725.271	1368841.782	630.592
1201	31.60	31.87	31.33	64725.534	1368842.106	630.397
1201	22.23	22.25	22.21	64709.367	1368826.948	633.466
1201	33.98	34.16	33.68	64726.817	1368842.642	629.582
1201	31.95	32.16	31.74	64728.111	1368843.049	629.596
1201	25.51	26.18	25.14	64728.818	1368843.321	629.52

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1201	22.75	22.96	22.34	64729.507	1368843.531	629.503
1201	26.15	31.56	20.74	64730.122	1368843.711	629.537
1201	24.53	25.56	23.84	64722.12	1368839.822	631.125
1201	20.09	20.19	19.98	64703.995	1368821.192	633.543
1201	46.77	52.41	36.76	64703.387	1368820.87	633.414
1201	27.56	27.72	27.40	64702.928	1368820.363	633.846
1201	30.55	31.80	29.29	64702.227	1368819.677	633.743
1201	37.75	37.81	37.69	64701.591	1368818.89	633.777
1201	35.06	35.85	34.27	64701.041	1368818.177	633.909
1201	27.04	27.11	26.97	64704.486	1368821.431	633.515
1201	25.36	25.66	25.05	64704.912	1368821.952	633.384
1201	28.86	29.49	27.71	64705.818	1368823.042	633.375
1201	46.70	47.32	46.08	64706.271	1368823.722	633.435
1201	27.28	29.39	25.17	64706.905	1368824.373	633.729
1201	41.13	41.41	40.84	64707.308	1368824.832	633.919
1201	18.76	18.85	18.67	64707.62	1368825.163	633.84
1201	28.31	28.44	28.18	64708.271	1368825.911	633.781
1201	30.72	32.92	28.51	64708.617	1368826.22	633.141
1201	30.58	31.29	29.87	64708.967	1368826.551	633.368
1201	21.57	22.21	20.92	64709.802	1368827.307	633
1201	17.66	18.48	16.83	64710.168	1368827.814	632.697
1201	29.32	33.00	25.64	64710.703	1368828.451	632.95
1201	24.37	24.59	24.14	64711.312	1368829.21	632.67
1201	27.37	30.70	24.04	64712.99	1368830.171	632.758
1201	20.82	28.36	13.27	64713.497	1368830.748	632.468
1201	20.85	22.44	19.25	64714.113	1368831.676	632.098
1201	19.04	19.90	18.18	64714.864	1368832.605	631.909
1201	15.35	15.79	14.91	64715.053	1368832.881	632.379
1201	31.41	31.46	31.36	64715.743	1368833.6	632.247
1202	27.11	27.77	26.39	64690.302	1368804.91	633.714
1202	21.89	23.85	20.72	64691.182	1368804.751	633.897
1202	27.21	27.66	26.50	64690.886	1368804.882	633.419
1202	36.43	39.31	34.71	64699.844	1368814.615	634.52
1202	27.58	29.00	24.81	64700.039	1368815.483	634.74
1203	27.86	28.74	27.25	64727.016	1368842.708	630.128
1203	24.17	24.33	24.06	64727.13	1368842.737	630.114
1203	20.77	20.84	20.67	64727.221	1368842.765	630.108
1203	20.85	20.94	20.77	64727.312	1368842.793	630.09
1203	20.62	20.71	20.52	64727.409	1368842.816	630.082
1203	22.47	22.92	22.17	64727.516	1368842.841	630.071
1203	19.77	20.09	19.41	64727.603	1368842.871	630.057
1203	19.11	19.42	18.89	64727.706	1368842.904	630.046
1203	24.23	25.53	23.16	64727.805	1368842.929	630.04

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Ζ
1203	22.38	22.91	21.87	64727.889	1368842.955	630.032
1203	21.18	21.49	20.69	64727.998	1368842.987	630.018
1203	29.53	29.93	28.76	64728.086	1368843.014	630.004
1203	27.94	28.00	27.90	64728.184	1368843.041	629.996
1203	31.60	31.87	31.33	64728.287	1368843.072	629.988
1203	33.98	34.16	33.68	64728.393	1368843.107	629.977
1203	31.95	32.16	31.74	64728.484	1368843.134	629.968
1203	25.51	26.18	25.14	64728.574	1368843.165	629.957
1203	22.75	22.96	22.34	64728.661	1368843.19	629.942
1203	19.07	20.06	17.98	64728.754	1368843.215	629.932
1203	22.38	22.54	22.21	64728.842	1368843.24	629.924
1203	19.85	20.03	19.74	64728.945	1368843.271	629.91
1203	25.24	25.58	24.98	64729.033	1368843.297	629.9
1203	23.93	24.58	23.20	64729.133	1368843.332	629.883
1203	21.29	21.62	20.71	64729.226	1368843.359	629.872
1203	27.14	27.89	25.72	64729.324	1368843.391	629.859
1203	21.34	21.74	21.02	64729.428	1368843.418	629.853
1203	17.36	17.84	16.96	64729.521	1368843.445	629.836
1203	21.03	21.18	20.84	64729.618	1368843.477	629.826
1203	21.39	21.58	21.09	64729.713	1368843.502	629.815
1203	16.58	16.74	16.32	64729.814	1368843.53	629.804
1203	21.91	22.38	21.01	64729.903	1368843.556	629.79
1203	21.38	21.84	21.08	64729.991	1368843.581	629.786
1203	19.53	19.88	19.36	64730.088	1368843.609	629.776
1203	25.58	26.23	25.15	64730.18	1368843.64	629.767
1203	17.39	17.97	16.58	64730.288	1368843.672	629.744
1203	18.43	19.27	17.95	64730.383	1368843.7	629.728
1301	58.37	66.99	49.30	64745.987	1368800.068	620.746
1301	38.32	38.51	38.17	64745.444	1368799.164	620.491
1301	36.98	38.36	35.68	64745.361	1368799.062	620.557
1301	26.45	26.62	26.25	64745.22	1368798.933	620.585
1301	29.81	30.21	29.29	64745.19	1368798.857	620.465
1301	28.83	30.43	27.58	64745.075	1368798.687	620.422
1301	31.15	32.04	30.10	64745.051	1368798.638	620.365
1301	28.26	29.06	27.23	64745.013	1368798.582	620.304
1301	31.18	32.20	29.27	64744.97	1368798.51	620.284
1301	36.30	36.72	35.85	64744.78	1368798.475	620.421
1301	25.23	26.65	23.47	64744.549	1368798.181	620.358
1301	36.12	36.26	36.03	64745.886	1368799.894	620.78
1301	28.99	30.15	27.80	64744.515	1368798.133	620.298
1301	32.78	34.87	30.39	64744.345	1368797.979	620.289
1301	35.99	36.45	35.35	64744.235	1368797.865	620.199
1301	26.89	27.86	25.92	64744.166	1368797.715	620.226

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1301	26.10	26.78	25.31	64744.047	1368797.518	620.154
1301	43.01	49.45	33.43	64743.88	1368797.244	620.093
1301	20.55	20.89	19.94	64743.832	1368797.188	620.093
1301	21.65	22.04	21.34	64743.781	1368797.094	620.117
1301	24.92	24.99	24.85	64743.739	1368797.027	620.103
1301	28.16	28.42	27.86	64743.723	1368796.892	620.093
1301	40.47	42.88	36.48	64745.851	1368799.826	620.7
1301	26.82	28.14	25.72	64743.7	1368796.787	620.048
1301	23.78	24.70	23.06	64743.71	1368796.64	619.781
1301	28.84	30.44	26.15	64743.651	1368796.563	619.748
1301	31.79	32.99	30.61	64743.547	1368796.416	619.985
1301	24.77	26.07	23.48	64743.506	1368796.338	619.767
1301	28.79	30.01	27.17	64743.451	1368796.265	619.749
1301	25.70	26.80	25.05	64743.39	1368796.188	619.749
1301	27.63	31.18	25.70	64743.064	1368796.005	620.029
1301	31.65	34.69	29.57	64743.007	1368795.924	620.023
1301	27.48	32.11	23.64	64742.885	1368795.782	620.214
1301	33.44	35.64	30.63	64745.81	1368799.744	620.62
1301	27.13	27.68	26.12	64742.82	1368795.682	620.196
1301	22.63	24.53	20.28	64742.775	1368795.536	620.085
1301	27.19	28.27	26.10	64742.649	1368795.32	619.949
1301	37.09	41.25	34.60	64742.424	1368795.064	620.1
1301	23.79	25.66	22.24	64742.347	1368794.904	619.748
1301	30.54	32.81	27.94	64742.293	1368794.835	619.712
1301	44.33	45.59	43.53	64745.76	1368799.649	620.611
1301	40.24	43.32	37.09	64745.698	1368799.56	620.57
1301	43.20	44.11	42.28	64745.67	1368799.49	620.538
1301	36.50	37.64	35.72	64745.606	1368799.38	620.616
1301	41.40	41.99	40.56	64745.554	1368799.295	620.615
1302	30.30	32.61	27.72	64756.328	1368831.319	625.04
1302	27.00	31.65	22.14	64754.478	1368820.325	623.239
1302	33.30	34.67	31.12	64753.989	1368819.043	622.998
1302	28.96	34.02	25.89	64753.691	1368818.061	623.103
1302	24.21	26.00	22.57	64752.947	1368816.772	623.011
1302	36.10	45.08	29.17	64752.736	1368815.858	622.62
1302	21.36	25.41	19.07	64752.233	1368814.675	622.46
1302	26.35	26.61	26.16	64751.613	1368813.436	622.508
1302	31.47	31.57	31.38	64751.113	1368812.21	622.219
1302	24.61	24.70	24.52	64750.648	1368810.309	622.103
1302	21.93	28.75	17.62	64750.262	1368809.607	622.124
1302	29.20	30.09	28.55	64756.53	1368830.323	625.131
1302	20.86	25.26	17.93	64749.469	1368808.396	621.206
1302	20.50	20.63	20.41	64748.965	1368806.965	621.728

		F	Fortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Ζ
1302	23.10	26.45	16.80	64749.143	1368805.771	621.467
1302	19.16	21.52	16.60	64748.593	1368804.312	621.341
1302	28.05	36.17	23.33	64747.868	1368803.276	621.277
1302	30.39	31.69	28.89	64747.238	1368802.447	620.879
1302	29.34	30.11	28.66	64746.667	1368801.336	620.89
1302	25.69	30.26	21.66	64746.274	1368800.446	620.94
1302	37.54	41.56	34.82	64745.588	1368799.351	620.64
1302	30.93	33.45	29.19	64744.705	1368798.362	620.32
1302	23.92	24.67	23.34	64756.366	1368829.856	624.46
1302	28.58	30.51	25.34	64743.937	1368797.366	620.187
1302	24.58	25.27	24.17	64743.166	1368796.145	620.046
1302	36.90	39.89	32.21	64742.536	1368795.198	619.994
1302	25.06	28.55	22.72	64742.108	1368794.614	619.886
1302	29.86	32.31	28.21	64741.692	1368793.862	619.725
1302	31.90	32.26	31.24	64741.003	1368792.934	619.717
1302	23.71	24.49	22.97	64740.423	1368791.898	619.66
1302	27.61	30.14	26.27	64739.838	1368790.854	619.514
1302	30.85	34.49	28.02	64739.412	1368789.891	619.391
1302	21.28	22.31	20.64	64739.076	1368788.743	618.957
1302	31.83	33.59	29.61	64756.295	1368828.613	624.511
1302	34.84	45.13	27.55	64737.405	1368785.62	618.973
1302	21.08	22.33	20.17	64737.045	1368784.798	618.696
1302	21.71	25.98	19.13	64736.22	1368783.903	618.404
1302	18.71	19.67	17.50	64735.589	1368783.285	617.752
1302	81.18	84.66	78.92	64735.191	1368782.364	617.994
1302	26.56	27.69	25.74	64734.83	1368781.486	617.912
1302	35.18	36.39	34.36	64733.106	1368780.587	618.052
1302	37.81	38.46	37.06	64732.352	1368780.225	617.869
1302	30.16	30.30	30.05	64731.396	1368779.278	617.758
1302	29.11	29.21	29.04	64730.051	1368778.429	617.399
1302	28.99	30.03	28.33	64756.165	1368827.214	624.713
1302	23.45	24.45	22.51	64729.455	1368777.697	617.54
1302	30.76	31.63	30.09	64720.609	1368771.627	616.484
1302	23.13	23.44	22.72	64721.555	1368770.852	616.555
1302	26.51	28.16	24.64	64721.179	1368771.31	615.852
1302	21.74	22.09	21.40	64755.582	1368825.902	624.034
1302	39.15	50.22	31.45	64755.407	1368824.762	623.921
1302	35.80	37.30	34.95	64754.991	1368823.788	623.411
1302	26.41	27.65	24.03	64754.871	1368822.317	623.783
1302	211.93	216.60	205.90	64753.007	1368817.301	622.94
1302	9.09	10.86	8.17	64738.492	1368787.793	618.942
1302	2.18	2.49	1.91	64737.847	1368786.967	619.022
1402	24.39	26.93	21.33	64551.034	1368927.808	612.668

		F	ortsettels	e av Tabell F.1		
Kode	Gjen.	Maks	Min	Х	Y	Z
1402	26.75	27.18	26.44	64551.594	1368928.623	612.394
1402	21.00	21.69	19.90	64552.308	1368929.304	612.439
1402	28.25	28.78	27.61	64553.082	1368930.061	612.634
1402	22.93	23.39	22.57	64553.63	1368930.679	612.709
1402	21.25	21.80	20.32	64554.112	1368931.486	612.584
1402	21.66	22.91	20.82	64554.069	1368932.422	612.788
1402	23.86	25.00	23.03	64554.208	1368933.3	612.526
1402	30.37	31.57	28.63	64554.385	1368934.289	612.833
1402	26.38	28.23	23.11	64554.594	1368935.036	612.574
1402	32.78	35.75	29.12	64554.831	1368936.397	612.526
1402	28.46	29.46	27.94	64555.059	1368937.491	611.616
1402	31.11	32.84	27.77	64555.241	1368938.246	612.247
1402	28.37	31.96	25.15	64555.682	1368939.19	612.338
1402	27.50	29.74	25.87	64556.277	1368940.102	612.289
1402	30.29	32.66	27.80	64556.577	1368940.883	612.454
1402	27.61	29.42	24.53	64557.113	1368941.582	612.286
1402	28.65	32.94	24.92	64557.828	1368942.259	612.291
1402	27.95	33.03	23.23	64558.777	1368943.357	612.579
1402	26.66	29.24	25.25	64559.387	1368944.257	612.485
1402	28.24	28.86	27.85	64560.398	1368945.11	612.499
1402	26.73	29.54	23.90	64561.288	1368945.603	612.405
1402	27.75	29.31	25.89	64561.939	1368946.39	612.357
1402	23.84	26.22	21.09	64562.579	1368947.349	611.998
1402	31.60	31.66	31.48	64563.673	1368947.813	612.261
1402	22.88	26.25	21.06	64564.847	1368948.137	612.439
1402	28.35	32.84	22.94	64565.926	1368948.671	612.456
1402	24.49	25.65	23.15	64566.937	1368949.152	612.326
1402	25.27	27.32	24.20	64567.88	1368949.382	612.157
1402	21.52	21.93	20.82	64568.84	1368949.784	612.266
1402	31.91	38.88	28.05	64569.785	1368950.313	611.828
1402	34.18	36.24	31.91	64571.074	1368950.298	611.771
1402	26.37	29.41	23.27	64572.353	1368950.471	612.109
1402	27.86	28.28	27.21	64573.169	1368950.701	611.944
1402	26.09	26.58	25.53	64576.286	1368950.802	611.652
1402	28.29	29.26	26.67	64577.298	1368950.864	611.596
1402	31.39	32.50	29.83	64578.43	1368950.793	611.607
1402	30.81	33.59	26.85	64579.254	1368950.599	611.539
1402	27.85	28.64	27.10	64580.395	1368950.168	611.359
1402	23.40	26.02	21.56	64581.754	1368950.103	611.078
1402	19.43	20.71	18.45	64582.565	1368950.091	611.323
1402	23.96	24.88	23.30	64584.088	1368950.754	610.813
1402	29.01	30.31	27.94	64584.776	1368951.544	610.942
1402	27.09	30.19	24.81	64585.274	1368952.469	611.15

	Fortsettelse av Tabell F.1								
Kode	Gjen.	Maks	Min	Х	Y	Z			
1402	31.19	31.95	30.58	64585.355	1368953.537	611.545			
1402	26.28	26.72	25.96	64585.366	1368954.475	611.384			
1402	28.11	29.34	27.03	64585.252	1368955.529	611.483			
1402	27.48	30.44	25.36	64585.191	1368956.448	611.881			
1402	30.96	31.23	30.64	64585.096	1368957.48	612.206			
1402	35.67	39.17	33.45	64584.939	1368958.643	612.001			
1402	33.24	40.68	27.68	64585.058	1368959.807	611.95			
1402	13.29	14.72	12.31	64584.944	1368960.606	611.934			
1402	27.28	27.83	26.38	64583.33	1368976.48	613.586			
1402	22.95	24.60	21.91	64583.655	1368976.704	613.333			
1402	26.72	28.37	25.07	64583.845	1368977.395	613.377			
1402	27.51	29.17	25.61	64584.096	1368979.135	613.294			
1402	30.31	30.44	30.08	64584.432	1368980.094	613.568			
1402	32.19	35.76	28.32	64584.687	1368981.325	613.916			
1402	26.84	29.77	23.61	64585.105	1368982.782	613.924			
1402	30.71	34.51	28.41	64585.245	1368984.024	614.186			
1402	26.21	30.26	24.05	64585.613	1368985.462	614.222			
1402	33.34	35.83	30.92	64586.187	1368987.271	614.307			
1402	39.88	41.92	36.56	64586.94	1368988.585	614.298			
1402	27.07	28.50	25.90	64587.299	1368989.888	614.367			
1402	29.82	32.28	26.62	64588.363	1368990.962	614.742			
1402	31.82	34.41	29.48	64588.693	1368991.755	614.611			
1402	36.11	37.62	34.90	64589.151	1368992.894	615.064			
1402	30.27	31.92	29.33	64590.134	1368993.697	614.519			
1402	31.39	32.18	30.95	64591.087	1368994.664	615.28			
1402	37.12	39.24	35.38	64591.861	1368995.822	615.296			
1402	38.64	41.77	35.61	64593.129	1368996.927	615.329			
1402	36.24	38.05	34.99	64594.044	1368998.008	615.453			
1402	26.14	29.15	23.26	64594.866	1368998.608	615.566			
1402	32.28	34.07	31.25	64596.747	1368998.387	615.702			
1402	32.78	36.08	28.32	64597.818	1368998.236	615.989			
1402	0.86	0.93	0.76	64584.76	1368961.85	612.318			
1402	0.92	0.99	0.84	64584.482	1368962.635	612.171			
	Slutt av Tabell F.1								

Tillegg G

Rådata, magnetisk susceptibilitet Drill in Advance

Tabell G.1 presenterer rådata fra Drill in Advance datasettet. Det er, på grunn av konfidensialitet, ikke vedlagt den geokjemiske informasjonen tilknyttet borehullene. Det er presentert verdier for maksimum, gjennomsnitt og minimum målt magnetisk susceptibilitet.

BHID	Gjen.	Maks	Min	Х	Y	Z
ST-DIA-X29	13.78	14.16	13.40	64260	1368970	645
ST-DIA-E36	21.22	21.50	20.75	64329.85	1369160.022	646.133
ST-DIA-E37	23.73	23.90	23.46	64340.058	1369160.102	646.607
ST-DIA-E38	23.76	23.87	23.67	64350.004	1369160.022	646.604
ST-DIA-E39	46.14	46.43	45.87	64359.957	1369160.094	646.532
ST-DIA-E40	49.71	50.67	49.14	64370.017	1369159.934	646.598
ST-DIA-F37	16.70	16.87	16.47	64339.984	1369150.046	646.108
ST-DIA-F38	22.92	23.07	22.84	64349.98	1369150.148	646.19
ST-DIA-F39	16.83	16.87	16.76	64359.958	1369149.993	646.37
ST-DIA-F40	17.00	17.08	16.93	64370.019	1369150.021	646.517
ST-DIA-F41	21.74	22.15	21.15	64380.012	1369149.964	646.424
ST-DIA-F42	22.12	22.48	21.51	64390.027	1369149.961	646.178
ST-DIA-F43	20.03	20.41	19.75	64400.036	1369149.991	646.46
ST-DIA-F44	30.63	31.11	30.20	64410.029	1369149.97	646.548
ST-DIA-G37	18.26	18.42	18.12	64340.061	1369139.986	646.1
ST-DIA-G38	24.52	24.58	24.48	64350.033	1369139.985	646.12
ST-DIA-G39	19.53	19.85	19.36	64359.972	1369140.011	646.276
ST-DIA-G40	13.25	13.52	12.96	64370.044	1369139.977	646.599
ST-DIA-G41	17.51	17.58	17.46	64380.017	1369139.976	646.613
ST-DIA-G42	20.31	20.43	20.21	64389.985	1369140.02	646.744

Tabell G.1: Rådata, magnetisk susceptibilitet Drill in Advance. Gjen. = Gjennomsnitt.

	Fortsettelse av Tabell G.1								
BHID	Gjen.	Maks	Min	Х	Y	Ζ			
ST-DIA-G43	20.28	20.62	20.08	64399.967	1369140.034	646.815			
ST-DIA-G44	20.02	20.18	19.88	64410.086	1369139.987	647.433			
ST-DIA-G45	19.32	19.50	19.06	64420.077	1369139.992	647.576			
ST-DIA-G46	15.40	15.49	15.27	64429.976	1369139.98	645.99			
ST-DIA-G47	10.64	10.81	10.47	64439.847	1369139.3	645.1			
ST-DIA-H43	16.65	16.79	16.51	64400.006	1369129.863	645.894			
ST-DIA-H44	19.75	19.91	19.56	64409.968	1369129.968	648.079			
ST-DIA-H45	16.56	16.87	16.26	64420.045	1369129.971	648.305			
ST-DIA-H46	16.52	16.75	16.32	64429.978	1369130	648.045			
ST-DIA-H47	21.07	21.53	20.62	64440.03	1369130.023	648.199			
ST-DIA-H48	15.75	15.90	15.50	64450.046	1369129.989	645.138			
ST-DIA-H49	15.95	16.14	15.74	64459.214	1369129.441	645.306			
ST-DIA-I45	15.41	15.46	15.36	64420.01	1369120.015	648.49			
ST-DIA-I46	15.70	15.87	15.61	64430.126	1369120.123	648.422			
ST-DIA-I47	16.78	17.03	16.44	64441.385	1369122.002	648.24			
ST-DIA-I48	14.35	14.56	14.07	64450.073	1369119.991	648.279			
ST-DIA-J44	18.55	18.65	18.41	64410.031	1369110.055	648.314			
ST-DIA-J45	15.85	16.06	15.59	64420.025	1369110.097	647.85			
ST-DIA-J46	17.41	17.73	17.04	64429.98	1369110.148	648.38			
ST-DIA-J47	19.24	19.50	18.79	64439.885	1369110.121	647.676			
ST-DIA-J48	16.94	17.06	16.87	64450.043	1369110.079	648.464			
ST-DIA-J49	14.88	15.07	14.72	64459.951	1369109.937	648.365			
ST-DIA-K44	17.38	17.64	16.97	64410.023	1369100.034	647.913			
ST-DIA-K45	16.25	16.32	16.18	64419.977	1369099.968	648.234			
ST-DIA-K46	15.45	15.66	15.34	64429.999	1369100.076	648.064			
ST-DIA-K47	17.89	18.12	17.68	64440.039	1369100.025	648.432			
ST-DIA-K48	15.57	15.68	15.40	64450.075	1369099.999	648.378			
ST-DIA-L44	20.16	20.39	19.73	64410.022	1369090.052	647.816			
ST-DIA-L45	12.78	12.99	12.64	64420.058	1369090.003	648.314			
ST-DIA-L46	12.02	12.89	10.33	64430.032	1369089.984	648.337			
ST-DIA-L47	14.71	15.10	14.20	64440.009	1369090.07	648.574			
ST-DIA-M44	17.23	17.39	16.94	64410.036	1369080.086	647.771			
ST-DIA-M45	17.50	17.75	17.29	64420.015	1369080.011	648.125			
ST-DIA-M46	17.57	17.86	17.41	64429.93	1369079.995	648.216			
ST-DIA-N44	19.33	19.41	19.29	64410.017	1369070.023	647.137			
ST-DIA-N45	16.58	16.62	16.51	64419.972	1369070.072	648.187			
ST-DIA-N46	14.93	15.31	14.60	64429.982	1369070.013	648.392			
ST-DIA-O44	14.94	15.09	14.75	64410.035	1369060.008	647.303			
ST-DIA-O45	28.50	28.54	28.42	64419.914	1369060.049	648.109			
ST-DIA-U38	17.02	17.30	16.61	64349.962	1369000.002	646.007			
ST-DIA-U39	15.71	15.87	15.54	64359.984	1369000.028	646.296			
ST-DIA-U40	11.48	11.71	11.21	64370.043	1369000.019	646.113			
ST-DIA-U41	13.03	13.13	12.93	64380.059	1369000.012	646.165			

	Fortsettelse av Tabell G.1								
BHID	Gjen.	Maks	Min	Х	Y	Ζ			
ST-DIA-V31	14.30	14.37	14.22	64280.045	1368989.988	645.806			
ST-DIA-V31	20.13	20.80	19.53	64280.045	1368989.988	645.806			
ST-DIA-V32	10.87	11.04	10.68	64290.05	1368989.971	645.699			
ST-DIA-V33	11.47	11.59	11.34	64299.959	1368990.093	646.037			
ST-DIA-V34	15.20	15.30	15.03	64309.986	1368990.003	646.119			
ST-DIA-V35	13.81	14.02	13.47	64319.977	1368990.012	645.94			
ST-DIA-V36	15.58	15.65	15.46	64329.977	1368990.008	645.99			
ST-DIA-V37	14.89	15.19	14.50	64339.971	1368990.01	645.924			
ST-DIA-V38	17.12	17.16	17.06	64349.969	1368990.075	646.006			
ST-DIA-V39	16.59	16.99	16.37	64360.002	1368990.014	646.122			
ST-DIA-V40	13.26	13.58	13.10	64370	1368990.012	646.278			
ST-DIA-W26	14.65	14.77	14.44	64229.986	1368980.047	645.587			
ST-DIA-W27	8.12	8.29	7.91	64239.958	1368980.019	645.9			
ST-DIA-W28	8.92	9.07	8.66	64250.01	1368980.007	646.468			
ST-DIA-W29	13.82	13.98	13.72	64260.046	1368980.009	646.447			
ST-DIA-W30	11.62	11.78	11.50	64270.038	1368980.076	646.292			
ST-DIA-W31	12.98	13.19	12.83	64280.027	1368980.001	646.198			
ST-DIA-W32	15.92	16.28	15.68	64289.97	1368980.027	645.986			
ST-DIA-W33	6.68	6.84	6.51	64299.936	1368980.041	645.984			
ST-DIA-W34	10.74	11.01	10.48	64310.036	1368980.002	646.047			
ST-DIA-W35	13.37	13.61	13.08	64319.971	1368980.028	645.786			
ST-DIA-W36	17.43	17.59	17.28	64329.966	1368980.003	646.022			
ST-DIA-W37	28.06	28.39	27.59	64339.929	1368979.979	646.038			
ST-DIA-W38	15.96	16.25	15.58	64350.038	1368980.071	645.973			
ST-DIA-W39	12.57	12.60	12.53	64360.04	1368980.031	646.019			
ST-DIA-X26	10.53	10.66	10.47	64230.204	1368969.887	645.711			
ST-DIA-X27	4.70	4.78	4.63	64239.943	1368970.052	645.818			
ST-DIA-X28	11.86	12.04	11.71	64250.111	1368969.917	646.444			
ST-DIA-X30	11.20	11.41	10.99	64269.997	1368969.96	646.382			
ST-DIA-X31	13.40	13.90	13.09	64279.963	1368970.033	646.29			
ST-DIA-X32	12.57	12.96	12.29	64289.988	1368969.996	646.451			
ST-DIA-X33	12.14	12.32	11.88	64299.99	1368970.055	646.292			
ST-DIA-X34	15.20	15.35	15.08	64309.945	1368970.032	645.899			
ST-DIA-X35	12.22	12.44	11.89	64320.023	1368969.997	646.13			
ST-DIA-X36	14.96	15.08	14.85	64329.932	1368970.041	645.662			
ST-DIA-X37	8.48	8.58	8.38	64339.902	1368969.982	645.519			
ST-DIA-X38	19.95	20.14	19.80	64349.998	1368970.004	645.925			
ST-DIA-Y26	12.30	12.44	12.20	64230.044	1368960.119	645.133			
ST-DIA-Y2/	2.51	2.56	2.46	64239.965	1368960.015	645.752			
ST-DIA-Y28	10.17	10.33	10.08	64249.85	1368960.031	645.954			
ST-DIA-Y29	11.22	11.30	11.09	64259.823	1368959.982	646.447			
ST-DIA-Y30	12.93	13.23	12.74	64269.986	1368959.939	646.336			
ST-DIA-Y31	14.28	14.35	14.15	64279.966	1368960.017	646.54			

Fortsettelse av Tabell G.1								
BHID	Gjen.	Maks	Min	Х	Y	Ζ		
ST-DIA-Y32	15.25	15.40	15.10	64289.891	1368960.066	646.638		
ST-DIA-Y33	12.24	12.33	12.13	64299.986	1368959.973	646.588		
ST-DIA-Y34	10.92	11.08	10.72	64310.023	1368960.001	646.021		
ST-DIA-Y35	13.55	13.75	13.35	64320.022	1368960.042	646.251		
ST-DIA-Y36	12.28	12.63	12.07	64329.934	1368959.992	645.822		
ST-DIA-Y37	13.89	14.21	13.53	64339.937	1368959.983	645.717		
ST-DIA-Y38	18.12	18.37	17.99	64349.952	1368960.011	645.831		
ST-DIA-Z26	12.79	13.03	12.59	64230.012	1368950.065	645.01		
ST-DIA-Z27	11.48	11.67	11.35	64239.926	1368950.063	645.535		
ST-DIA-Z28	9.34	9.39	9.30	64250.012	1368950.099	645.938		
ST-DIA-Z29	12.27	12.56	12.01	64260.04	1368949.953	646.07		
ST-DIA-Z30	10.30	10.42	10.17	64270	1368950.022	646.265		
ST-DIA-Z31	13.45	13.52	13.40	64280.01	1368949.976	646.489		
ST-DIA-Z32	14.90	15.08	14.81	64290.011	1368949.989	646.856		
ST-DIA-Z33	13.27	13.63	12.92	64299.997	1368950.022	646.447		
ST-DIA-Z34	17.36	17.48	17.18	64310.084	1368949.922	646.334		
ST-DIA-Z35	11.95	12.31	11.56	64320.022	1368950.009	646.166		
ST-DIA-Z36	12.83	12.96	12.65	64330.001	1368949.97	646.038		
ST-DIA-Z37	12.18	12.29	12.02	64340.107	1368949.933	646.041		
ST-DIA-AA27	9.47	9.62	9.38	64239.993	1368939.928	645.878		
ST-DIA-AA28	7.20	7.32	7.03	64249.821	1368939.914	646.044		
ST-DIA-AA29	9.69	9.80	9.51	64259.981	1368940.007	646.264		
ST-DIA-AA30	13.43	13.45	13.41	64269.932	1368940.069	646.044		
ST-DIA-AA31	11.19	11.31	11.10	64279.992	1368940.024	646.295		
ST-DIA-AA32	12.56	12.82	12.34	64289.996	1368940.023	646.459		
ST-DIA-AA33	14.92	15.24	14.73	64299.991	1368939.945	646.476		
ST-DIA-AA34	16.72	16.99	16.34	64309.986	1368939.943	646.228		
ST-DIA-AA35	11.17	11.24	11.06	64319.969	1368940	646.496		
ST-DIA-AA36	8.93	8.95	8.89	64330.042	1368940.039	646.023		
ST-DIA-AB27	5.34	5.53	5.17	64240.027	1368930.017	645.738		
ST-DIA-AB28	9.71	9.88	9.59	64249.981	1368930.031	646.095		
ST-DIA-AB29	9.92	10.02	9.81	64260.001	1368930.006	646.385		
ST-DIA-AB30	14.13	14.23	14.04	64269.978	1368929.987	646.484		
ST-DIA-AB31	12.72	12.76	12.70	64279.956	1368929.948	646.601		
ST-DIA-AB32	4.07	4.13	4.01	64289.962	1368930.049	646.612		
ST-DIA-AB33	12.85	13.00	12.78	64299.979	1368929.916	646.711		
ST-DIA-U36	14.97	15.11	14.80	64330	1369000	645		
ST-DIA-U37	15.57	15.69	15.43	64340	1369000	645		
ST-DIA-V27	14.63	14.90	14.34	64240	1368990	645		
ST-DIA-V28	7.54	7.58	7.51	64250	1368990	645		
ST-DIA-V29	11.50	11.76	11.29	64260	1368990	645		
ST-DIA-V30	13.67	13.77	13.57	64270	1368990	645		
ST-DIA-W40	15.26	15.54	14.86	64370	1368980	645		

Fortsettelse av Tabell G.1								
BHID	Gjen.	Maks	Min	Х	Y	Ζ		
ST-DIA-X39	14.93	15.17	14.66	64360	1368970	645		
ST-DIA-I44	16.65	16.92	16.35	64410.004	1369119.971	648.642		
ST-DIA-AB34	11.47	11.58	11.41	64309.978	1368929.987	646.702		
ST-DIA-AB35	14.17	14.23	14.12	64319.93	1368929.942	646.747		
ST-DIA-AC29	11.74	12.02	11.57	64259.972	1368920.038	647.185		
ST-DIA-AC30	3.82	3.87	3.73	64269.96	1368920.067	646.88		
ST-DIA-AC31	1.85	1.88	1.80	64279.998	1368920.014	647.098		
ST-DIA-AC32	6.52	6.59	6.45	64289.992	1368919.974	647.018		
ST-DIA-AC33	11.98	12.28	11.61	64299.922	1368919.976	647.146		
ST-DIA-AC34	11.48	11.80	11.15	64310.004	1368919.952	647.109		
ST-DIA-AD30	10.00	10.13	9.91	64270.031	1368910.003	646.974		
ST-DIA-AD31	1.78	1.82	1.75	64280.069	1368909.939	647.053		
ST-DIA-AD32	5.23	5.33	5.15	64290.027	1368909.956	647.211		
ST-DIA-AD33	9.96	10.04	9.91	64299.99	1368909.986	647.363		
ST-DIA-AE32	9.25	9.37	9.11	64289.927	1368900.071	647.091		
ST-DIA-AE33	7.56	7.58	7.53	64299.997	1368899.948	646.934		
Slutt av Tabell G.1								

TILLEGG G. RÅDATA, MAGNETISK SUSCEPTIBILITET DRILL IN ADVANCE

Bibliografi

ArcGIS 10.3 Help. ESRI.

- Armstrong, M. (1998). Basic Linear Geostatistic. Springer, Fontainebleau.
- Bakker, P., Vliet, L. J. v., and Verbeek, P. W. (1999). Edge preserving orientation adaptiv filtering. In *Computer Vision and Pattern Recognition*, pages 535–540.
- Blum, P. (1997). Physical properties handbook: A guide to the shipboard measurement of physical properties of deep-sea cores. Technical report.
- Bryhni, I. (1962). Strukturpetrologi i nenefelinsyenitt på Stjernøy. Technical report, Upublisert raport for Christiania Sigerverk.
- Brønnøysundregisteret (2010). Sibelco nordic as. Website.
- Burger, H. R., Sheehan, A. F., and Jones, C. H. (2006). *Introduction to applied geophysics*.W. W. North & Company.
- Cadow, R. (1993). Sm-nd and rb-sr ages of hornblende clinopyroxenite and metagabbro from the lillebukt alkaline complex, seiland igneous province. *Norsk geologisk tids-skrift*, 73(4):243–249.
- Cavanough, G. L., Hotham, P. N., and Powell, T. M. (2006). Magnetic susceptibility mesurment applied to the mineral industry. *Mineral Engineering*.
- Clark, D. A. (1997). Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. *Journual of Australian Geology & Geophysics*.
- Deer, W. A., Howie, R. A., and Zussman, J. (1992). *The Rock Forming Minerals secound edition*.
- Ellefmo, S. L. (2005). A probabilistic approach to the value chain of underground iron ore mining: From deposit to product. Book, NTNU, NTNU.

Ferreira, T. and Rasband, W. (2012). ImageJ User Guide IJ 2.46r.

- Gautneb, H., Ihlen, P., and Boyd, R. (2009). Review of the geology and the distribution of phosphorus in the lillebukt alkaline complex, and adjacent areas, stjernøy northern norway. Technical report.
- Geis, H. P. (1979). Nepheline syentite on stjernøy, northern norway. *Economic Geology*, pages 1286–1295.
- Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing.
- Goovaerts, P. (1997). *Geostatistics for Natural Resources Evaluation*. Oxford University Press, New York.
- Heier, K. (1964). Geochemistry of the nepheline syenite on stjernøy, north norway. *Norsk Geol. Tidsskr*, 44.
- Heier, K. S. (1961). Layered gabbro, hornblendite, carbonatite and nepheline syenite on stjernøy, north norway. *Norsk geol. tidsskr*, 41:190–155.
- Herbert, A. Imagej batch processing.
- Hunt, C. P., Moskowitz, B. M., and Banerjee, S. K. (1995). Magnetic properties of rocks and minerals. *Rock physics & phase relations: a handbook of physical constants*, pages 189–204.
- Johnston, K., Ver Hoef, J. M., Krivoruchko, K., and Lucas, N. (2001). Using ArcGIS geostatistical analyst, volume 380. Esri Redlands.
- Kyprianidis, J. E., Kang, H., and Döllner, J. (2009). Image and video abstraction by anisotropic kuwahara filtering. *Pasiffic Graphics*, pages 1955–1963.
- Leksikon, S. N. (2015). Kontrast forskjell. Website.
- Lorentzen, A. P. (2014). Implisitt modellering av Nabberen Nefelinsyenitt. Prosjektoppgave.
- Mjelde, (1983). Nabberen Nefelinsyenitt. Bergen.
- Olson, E. (2011). Particle shape factors and their use in image analysis part 1: Theory. *Journal of GXP Compliance*, 15(3):85.
- Philpotts, A. R. (1989). *Petrography of Igneous and Metamorphic Rocks*. The university of Connecticut.
- Rodriguez, J., Johansson, J., and Edeskär, T. (2012). Particle shape determination by two-dimensional image analysis in geotechnical engineering. In *Proceedings of Nordic Conference on Soil Mechanics and Geotechnical NGM. - Copenhagen : Danish Geotechnical Society.*
- Sandøy, R. (1996). En beskrivelse av den mineralogiske og geokjemiske omvandlingen fra gabbro til skapolittførende bergart (ødegårditt) fra ødegaarden i bamble, telemark. *Hovedoppgave, University of Trondheim (NTH)*.

Sandøy, R. Kommunikasjon med Sibelco Nordic AS.

- Sigmond, E. M., Bryhni, I., and Jorde, K. (2013). Norsk geologisk ordbok: med engelsknorsk ordliste. Akademika forl.
- Skogen, J. (1980). The structural evolution of the lillebukt carbonatite, stjernøy, norway. *Lithos*, 13(2):221 –.
- Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2007). *Probability & Statstics for Engineers & Scientists eighth edition*. Person Educantion International.

Wikipedia.no (2015). Stjernøya.