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S U M M A RY

Most decisions based on predictions from a model have uncertain
outcomes. The uncertainty may be exogenous or endogenous to the
modeled process, or both, and can greatly affect the degree to which
the decision-maker’s goals are met. In this thesis I study optimal con-
trol problems for systems with endogenous uncertainty that can be
reduced by manipulating the system input. When the decision-maker
can improve performance through actively reducing uncertainty (“ac-
tive learning”), there is a dual nature to the optimal sequence of deci-
sions; the decisions or inputs must direct the process toward the desired
state and also ensure that information-rich data be generated so that
decision-relevant uncertainty is resolved.

The dual-control problem can be defined as that of minimizing the
expected output error

E
[t+N−1

∑
k=t

(y(k + 1)− y∗(k + 1 | t))2
∣∣∣∣ Y(t + N − 1 | t)

]
(∗)

where y∗ is the output reference, Y(t + N − 1 | t) represents future
information up to time t + N − 1 in addition to all past information,
and the model for the system output y is not fully known. My coworkers
and I propose a novel reformulation technique for a probabilistically-
constrained stochastic dual-control problem and show that the optimal
strategy for minimizing this cost function involves active exploration of
the plant to generate informative data. It is consequently necessary that
the model that informs the decision-making include how future data
resolve uncertainty. The reformulation permits practical algorithms for
true dual control for a class of systems, allows new interpretation of
earlier approaches, and may guide approximate dual-control designs
where no exact results are obtainable.

In addition to useful algorithms, this thesis contains a number of
conceptual insights. In particular, the most recent results provide a
foundation from which we argue that the conventional dual-control
interpretation involving a trade-off between control and exploration is
a false dichotomy. These derivations clearly show, for a specific system
class, that control of the nominal model and a specific form of uncer-
tainty reduction are both necessary components of the optimal control,
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as opposed to separate entities in which uncertainty reduction can be
sacrificed for increased control performance.

I consider the approaches to dual control presented in this thesis
as falling into one of the following three categories: minimization of
(i) a heuristic objective that is different from, yet still reduces, the dual
objective (∗); (ii) a systematic approximation of (∗); and (iii) an exact
reformulation of (∗). This main contributions in this thesis are taken
from the following three papers:

A Heirung, T.A.N., Foss, B., and Ydstie, B.E. (2015). “MPC-based dual
control with online experiment design.” Journal of Process Control 32,
pp. 64–76.

B Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2013b). “An MPC approach
to dual control.” In: Dynamics and Control of Process Systems. Mumbai,
India, pp. 69–74.

C Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2015b). “Dual adaptive
model-predictive control.” Under revision for resubmission to Automatica.

The following conference paper presents a possible extension of Paper B
to the multivariable case, in addition to experimental results:

D Kumar, K. et al. (2015). “Experimental evaluation of a MIMO adaptive
dual MPC.” In: Advanced Control of Chemical Processes. Whistler, Canada,
pp. 546–551.

Each of the three main papers introduce control designs that involve
solving a finite-horizon optimal-control problem (O.C.P.) at every sam-
pling instant, with the initial state set to the current state of the plant.
Common to the algorithms is their foundation in model-predictive con-
trol (M.P.C.). The approaches each involve augmenting the standard
O.C.P. in M.P.C. with cost-function terms and constraints, with the re-
sult that the controller generates plant inputs with a dual effect. The
cost-function terms incentivize plant exploration while the additional
constraints model the mechanisms for learning by propagating the un-
certainty (or system information) as a function of the signals in the loop.
The controller thereby endogenizes the learning process through its ca-
pability to predict how the control decisions affect future uncertainty,
resulting in semi-closed-loop feedback control. Each of the proposed
algorithms are (indirect) adaptive in nature, a consequence of receding-
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horizon solution the O.C.P. with updated plant-parameter statistics in
the prediction model.

We consider linear single-input single-output (siso) systems with
constant unknown parameters and a Gaussian disturbance. The choice
of simple system structures is motivated by our focus on developing a
foundation on which to base design choices in approximate dual control
for more complex problems. While we have made significant progress
toward this goal, the linear, Gaussian, siso dual-control problem is far
from solved, and much remains to be discovered.

In Paper A we introduce two purely heuristic approaches to reduc-
ing uncertainty for model improvement while simultaneously minimiz-
ing the nominal output error, both developed for autoregressive systems
with exogenous input (A.R.X.). We present several candidates for scalar
costs of uncertainty and choose two from which we develop practical
algorithms for suboptimal dual control. One minimizes a function of
the parameter-estimate error-covariance matrix P; the other maximizes
a function of the information matrix R = P−1 with diminishing mar-
ginal return. While the heuristic approaches are suboptimal in nature,
they work well and are capable of improving performance compared
with a passive-adaptive M.P.C. We apply the second algorithm to the
problem of models inadmissible for control and derive a result for
guaranteed model identification in minimal time for a two-parameter
system. Paper A is an extension of two previous conference papers, and
the contribution is primarily of practical interest.

I consider the approach we develop in Paper B an extension of the
methods from Paper A and a step toward an exact and more formal
approach to dual control. This paper also focuses on A.R.X. systems, but
rather than continuing with heuristic objective functions, we develop an
exact reformulation for a one-step-ahead cost similar to (∗). Applying
this reformulation to the entire prediction horizon and adding the nec-
essary constraints for uncertainty propagation results in a semi-exact
dual M.P.C.

Paper C contains a more systematic approach to the dual-control
problem. We identify and define the subset of the future information
that is necessary for exact reformulation of (∗) for systems modeled with
orthonormal basis functions (O.B.F.s). This subset is the sequence of fu-
ture decisions (control inputs) in the finite-horizon O.C.P., which we
further use for exact reformulation of probabilistic output constraints.
We then demonstrate that the deterministic equivalent to the stochastic
finite-horizon dual-control problem (with the objective (∗) conditional
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on future inputs) can be formulated as a quadratically-constrained qua-
dratic program (Q.C.Q.P.), for which there exist efficient global solvers.
While this approach does not recover the dynamic-programming solu-
tion, Paper C introduces what I argue fully qualifies as (adaptive) dual,
model-predictive control (D.M.P.C.). Paper C is an extension of a pre-
vious conference paper. We consider the results as having a significant
theoretical contribution in addition to their practical importance.
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Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

This part contains a brief introduction with some intuitive
examples for motivation, a chapter on various aspects and
manifestations of uncertainty, and a chapter with a fairly
general treatment of dual control. Finally, there is a chapter
that provides an overview of this thesis, including a list of
publications.





1

I N T R O D U C T I O N

A manager in a company has several people working for her, none
of which she knows well enough to have a complete picture of their
abilities. If the manager only assigns tasks based on her current impres-
sion of her staff, she risks losing out by not taking full advantage of
their skills. She may learn new things about their capabilities over time,
but that is a potentially slow process. She may learn faster, while still
getting things done, by challenging the people working for her and as-
signing work they may or may not be able to complete in a satisfactory
manner. This type of experimentation can expedite the learning process
and give the manager a much better idea of what the people in her team
are capable of, increasing the team’s performance and quality of work.

A central bank is faced with the decision of whether to increase,
decrease, or leave untouched the national interest rate. Aware of the
predictive limitations in their economic models, they know that the
outcome of any decision is uncertain. However, a small adjustment
for the purpose of learning from the resulting response may provide
additional insight into the current workings of the economy and thereby
contribute to an improved foundation from which they can base future
decisions. Expecting a response that differs from what they predict
based on their current knowledge, they make the small adjustment
while simultaneously trying to direct the economy in the right direction
and minimize any potential downside to their interference. The fact
that they anticipate learning from future information and sometimes
act accordingly improves their overall performance as governors of the
economy.

The citizens of a small town depend on income from industry that
pollutes their nearby beautiful lake. Most people in the town want
economic growth, but are aware that lakes can exhibit threshold be-
havior, in which the increased pollution from higher economic activity
may suddenly turn a healthy lake unhealthy and murky. Not know-
ing the details of this threshold response, the inhabitants must weigh
economic benefit against an uncertain adverse effect that is difficult
quantify. Careful monitoring of the pollution and the relevant health
metrics for the lake can provide data from which the citizens can deter-
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4 introduction

mine the highest economic activity level the lake can withstand without
turning unhealthy. Experimenting with the pollution levels to locate
the threshold does carry risk, as returning the lake to a healthy state
after crossing the threshold may be expensive. This decision-making
problem, analogous to many in climate policy, involves issues of utilityArctic methane

release is an example
of a climate

phenomenon that
exhibits a threshold

response.

maximization, experimenting and learning for uncertainty reduction,
modeling disagreement, risk, and possibly irreversibility.

A driver in a rental car on slippery roads is in a hurry to his desti-
nation. The driver is inexperienced and he does not know whether the
car has an anti-lock braking system (A.B.S.), how good the brakes are,
and how slippery the roads are. A turn is coming up and the driver
faces the question of how to best learn about the car and the road con-
ditions without losing too much time, so that he can make the turn fast
but responsibly and without excessive caution. Carefully experimenting
with small turns and testing the brakes can provoke responses that are
valuable to the driver, improving his mental model of the circumstances
and in turn his ability to safely and quickly maneuver the vehicle.

These scenarios are simple examples of dual control tasks: problems
where the original goal (some form of utilization or exploitation) can
best be reached by accounting for the lack of complete knowledge and
devising an ideal strategy to reduce the uncertainty (by learning about
the system’s response to the decision-maker’s actions) with the aim of
making better decisions from the improved model.

In the driving example, we can assume that there are three alter-
natives available to the driver: acceleration, gentle braking, and hard
braking, each with clear consequences. Accelerating can provide infor-
mation about how slippery the road is, but not about the type of braking
system nor its effectiveness. Gentle braking provides some idea of the
responsiveness of the brake pedal but may be insufficient to teach the
driver about the road friction or A.B.S., if present. Harder braking that
causes the car to lose traction provides a lot of information on the slip-
periness of the road and makes it apparent whether the car is equipped
with an A.B.S. Failure to learn the characteristics of the car and road
can lead the driver to turn over-cautiously and lose valuable time, or
not cautiously enough and lead to a dangerous situation.

Neglecting the relationship between the two goals of the optimal
decision sequence, (i) reaching the destination quickly and safely and
(ii) learning about the road conditions and car handling, leads to a
decision-making approach where the goals can be mistakenly identi-
fied as separate and conflicting. Braking for the purpose of learning
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means reaching the destination later if one does not account for the
future value of the learning outcome (the potential to drive faster after
learning the brakes perform well); the best strategy is to drive as fast as
achievable if one ignores the limited knowledge about the car and the
conditions. A driver will not reach his destination faster by ignoring his
lack of familiarity with the car and conditions if the brakes are poor,
the tires are worn, and the roads are icy. Hence, it is not meaningful to
think of a trade-off between reducing ignorance by testing the brakes
and making decisions based on a faulty mental model. The optimal
sequence of decisions accounts for the future value of learning, or how
current and future data (the decisions and the observed consequences)
resolve uncertainty.

In addition to clarifying the dual aspects of an optimal decision se-
quence, (driving fast and learning about the braking system and road
conditions) the simple example above highlights an important differ-
ence between two kinds of uncertainty: parametric and structural. The
relationship between how hard the driver presses the brake pedal and
how quickly the car decelerates under normal circumstances can be
described with a parameter, where a large value can indicate significant
deceleration from a light press on the pedal while a small value can
indicate that pressing the pedal hard is necessary to achieve the same
result in braking. The structural uncertainty comes from not knowing
whether the car is equipped with an A.B.S. Since an A.B.S. prevents the
wheels from locking when the tires lose traction, the braking behavior
of an A.B.S.-equipped car is fundamentally different from one without
an A.B.S. when the tires lose traction. This difference cannot be cap-
tured by different parameter values; rather, two models with different
structures are required to capture the two kinds of behavior.

The characteristics of this problem change entirely if the roads are
sufficiently dry and free of gravel. The friction between the tires and
road can still be determined by braking very hard and there are still
things to learn about the effectiveness of the brakes, but most drivers
would consider this uncertainty fairly minor and deem experimentation
unnecessary; the uncertainty is not relevant for the driving decisions
and taking active steps for learning is no longer the best course of action.
With sufficiently good road conditions it might be impossible to actively
cause a loss of traction that initiates the A.B.S. That is, the presence of an
A.B.S. is not only irrelevant for the driving strategy, it is also impossible
to determine by experimenting with the car.
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A challenge in model development for sequential decision-making
and automatic control is the difficulty of obtaining and formulating
accurate and precise knowledge about the system. The lack of exact
knowledge may manifest itself in uncertain model parameters or in the
choice of appropriate model structure. Parameter uncertainty is a com-
mon way of describing a lack of “true” parameter values, often in the
form of assuming statistical distributions for the parameters. In some
cases, the greater modeling challenge is to formulate and represent the
lack of knowledge.

The ultimate challenge is to find the sequence of decisions for op-
timal performance. Finding that sequence involves accounting for un-
certainty while anticipating and endogenizing learning. This challenge,
known as the dual control problem, is the topic of this thesis.

1.1 the organization of this thesis

This chapter presented a handful of intuitive examples that highlight
some of the defining characteristics of dual-control problems. In the fol-
lowing two chapters I discuss some fundamental aspects of uncertainty,
uncertainty in the context of optimal control and decision-making, the
dual control problem in more detail, and some general solution strate-
gies. The fourth chapter contains an outline of the research reported
in this thesis, followed by a series of chapters that each contain one
research article. I draw some conclusions in the following chapter and
share some thoughts on directions for future research.



2

U N C E RTA I N T Y

The topic of this thesis is optimal control and decision-making
under uncertainty. Uncertainty is a wide term applied to several dis-
tinct phenomena and the following brief discussion, primarily based
on an article by Smith and Stern (2011), is intended to review some
concepts and different forms of uncertainty and clarify their relevance
to engineering contexts.

When discussing uncertainty and estimates, the terms precise and
accurate are sometimes used interchangeably in the literature. This is
unfortunate, as the distinction is frequently important. A precise esti-
mate is narrow, but not necessarily true; an accurate statement is true,
but not necessarily narrow. As an example, the statement “one liter of
water weighs ten to twelve grams” is precise but not accurate. Similarly,
“one liter of water weighs between ten grams and ten kilograms” is
accurate but not precise. Imprecise, a term I define below, is not always
an antonym for precise.

Smith and Stern (2011) write with great clarity on the nature of
uncertainty, its various forms and manifestations, and how these forms
affect decision-making differently. Their discussion is primarily focused
on the use of models to generate real-world probabilities, but most
of the subject matter is more general and widely applicable to other
contexts. The following list of terms is adapted from their paper.

• Imprecision (Knightian risk, statistical uncertainty): related to values we
do not or cannot know precisely, but for which we can make reliable
probability statements. This is what is generally referred to as uncer-
tainty in the engineering literature.

• Ambiguity (Knightian uncertainty): related to values where we cannot
make probability statements. Ambiguity is sometimes used to describe
uncertainty in a probability statement, for instance uncertainty in the
statistical parameters describing a distribution for a model parameter or
in which type of distribution is most appropriate. In this case, the term
second-order uncertainty is frequently used, and sometimes the more
ambiguous term deep uncertainty.

7



8 uncertainty

• Intractability: related to relevant computations that we are unable to for-
mulate or perform for reasons such as limitations on the mathematical
or computational capacity. Intractability may render ambiguity reduc-
tion impossible.

• Indeterminacy: related to decision-relevant quantities to which we may
assign values, even though no true values exist. This situation can arise
with model parameters that have no correspondence to real physical
quantities.

The most familiar among these varieties of uncertainty in the engi-
neering literature is imprecision. Imprecision is often invoked through
the common approach of accounting for parametric uncertainty by as-
suming distributions for the unknown parameters, with normal and
uniform among the most common types. Since the normal distribution
is a stable distribution, there exists a large number of results that cannot
be obtained for other common distributions. This property, combined
with its ability to capture a large range of phenomena acceptably well,
makes the distribution an attractive choice in many situations, includ-
ing cases where its application implies there is a nonzero probability of
events we recognize as impossible, for instance a negative mass. Simi-
larly, the uniform distribution is often applied for convenience, despite
evidence of a non-uniform probability profile or of there being small,
nonzero probabilities of events outside the support.

A deterministic model with wrong parameter values has limited
value for predicting the consequences of decisions. Models that account
for uncertainty with probability distributions for unknown parameters
are generally able to predict a distribution of outcomes, informing the
decision-maker that there is a range of possible consequences, some
more likely than others. Specifying a distribution for an unknown pa-
rameter that appropriately characterizes the uncertainty is typically
difficult and is essential to the predictive capabilities of the model. As-
suming a distribution that misrepresents the parameter uncertainty is
a modeling error that may result in a model that makes less decision-
relevant predictions compared with a wrong deterministic model. When
we cannot quantify uncertainty using probabilities, or do not know how
to formulate the probability statements, we are faced with ambiguity.
This is a frequent occurrence when using data-driven models, such as
the auto-regressive moving-average (arma) structure, combined with
parameter estimation. These models often contain parameters that have
no real-world counterpart (which then involves indeterminacy), and
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there are rarely sufficient data available for making informed assump-
tions on their distributions. Even with a rich data set, it may be prohib-
itively difficult to characterize the uncertainty in a way that somehow
improves the model; in fact, the notion of distributions for parameters
in data-driven models is meaningless in many cases.

Ambiguity is also related to the inability to predict the details of
an outcome that is virtually inevitable. As an example, a battery will
almost certainly break if a high-enough voltage is applied over a suf-
ficient length of time, but predicting the details of the failure may be
beyond the capabilities of the best models available. One may be able
to establish a probability based on experience and analysis of data, but
this probability will itself be uncertain. Similarly, there are no mod-
els capable of accurately and precisely predicting the effect charging
and usage patterns have on the long-term health of batteries, despite
virtual certainty that the capacity will decay with time and use. Op-
timistic and pessimistic estimates of the future energy capacity may
be predicted, but such estimates are themselves uncertain. Models can
provide decision-relevant probability distributions for phenomena they
simulate realistically and thus reduce ambiguity. In situations where
such models run too slow to provide information in a timely manner,
when we have no reliable way of solving the equations numerically, or
when the relevant equations are not known (as was the case with the
orbit of Mercury before Einstein’s theory of relativity, noted by Smith
and Stern), ambiguity cannot be reduced because of intractability.

Many multi-stage decision problems can be formulated compactly
with a Bellman equation. However, we can only rarely derive a non-
approximate decision-rule from the Bellman equation (see Section 3.3),
and numerical solution procedures are usually impractical as they in
general suffer from exponential complexity growth. The computations
required to answer a question like “given an optimal decision sequence,
what is the probability of an event A?” may be intractable, and we might
have to resort to approximate solution methods that result in unreliable
probability estimates.

An objective in sequential decision processes is maximizing dis-
counted future utility (see Bond and Loomis (2009) for an example
I discuss below). Rather than the specific value being unknown, a sin-
gle correct value of a discount rate does not exist, and the “best value”
may vary as a personal opinion. Furthermore, discount rates often have
no empirical meaning or counterpart in the real world, and it can be
impossible to state anything more definitive than that the discount
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rate be strictly between zero and one. The model studied by Bond and
Loomis (the source of the lake example in the introduction chapter, also
considered by Lempert and Collins (2007)) involves finding the best
trade-off between nominal economic development and the resulting en-
vironmental damage. Economic damage is then quantified with a cost,
the magnitude of which is highly debatable in any real decision-making
process of this type. The practice of attaching costs and prices to things
that have no inherent monetary value is somewhat controversial; the
quantities will differ among experts and non-experts alike; may be a
matter of political views, personal preferences, and other subjective fac-
tors; and have no objective true value. When an optimal policy is highly
sensitive to this type of costs or to the discount rate (Groeneveld, Spring-
born, and Costello, 2014), the premise of the optimal-control problem
should be examined, as well as the extent to which it is ill posed or
even meaningful. In such cases, indeterminacy refers not only to the
parameter, but to the decision problem in which it is included.

Smith and Stern (2011) discuss the fallacy of confusing model error
with imprecision, which is of particular relevance to the topic of this
thesis. As an example, they point out how a model based on Newton’s
laws cannot provide accurate predictions of Mercury’s position, and
how an ensemble of such models cannot quantify the imprecision of
the prediction with any accuracy. This is an illustrative case of how the
inadequate nature of the model, not imprecision, leads to inaccurate
conclusions.

A related fallacy, also discussed by Smith and Stern, concerns over-
confidence in a given model’s ability to inform decision-makers, and
more specifically the fallacy of mistakenly identifying model-based en-
tities with their real-world counterparts, which they refer to as “White-
head’s fallacy of misplaced correctness.” One engineering area where
this is of relevance is petroleum-reservoir simulation, where a common
prediction approach is to use an ensemble of parameter sets for one
model, and then infer probability distributions for various outcomes.

Most control engineers recognize that even high-fidelity models can-
not accurately predict system behavior when projecting sufficiently far
into the future. The most common sources of uncertainty when model-
ing for control include imprecision in initial conditions, measurement
noise (which may be the source of the imprecision in the initial condi-
tions), exogenous disturbances (process noise), endogenous parametric
uncertainty, and endogenous structural uncertainty. These phenomena
are all reasons to encourage feedback-based methods over open-loop
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control, since feedback to some extent corrects for the difference be-
tween model output and system behavior. Hence, control approaches
based on open-loop predictions often incorporate feedback through
recalculating the predicted behavior at regular intervals, often called
open-loop feedback control.

2.1 model sets and true models

Gevers (2006), in his overview of the historical developments in system
identification, touches upon an important change of focus that occurred
around 1976. Up until that point, nearly all activity in the field focused
on identifying the true system and ensuring convergence to the true pa-
rameters. However, the attention gradually shifted after the realization
that a more intellectually honest framework would have to treat “system
identification as an approximation theory,” meaning the goal is to find
“the best approximation of the true system” within a given model class.
This realization is of great importance for a thorough understanding
of the dual control problem, which is the problem of optimal adaptive
control under reducible, decision-relevant uncertainty. That there are no
true parameters and that every model is an approximation are central
facts to dual-control theory. Furthermore, realizing that the “true” op-
timal control is not obtainable without omnipotent system knowledge
makes clear that the distance to this true optimal control is determined
by the model’s veracity and the ability of the algorithm to utilize all the
knowledge and uncertainty representation embedded in the model.

Optimal control based on an uncertain model that misrepresents
the lack of knowledge, for instance through assuming an inappropri-
ate model structure or set, is arguably not optimal in any meaningful
sense of the word, despite qualifying in the traditional mathematical
sense. It is arguably more difficult to accurately model uncertainty in
a non-deterministic system than it is to comprehensively model a com-
plex deterministic system. Formulating an uncertainty model that is
computationally tractable and decision relevant while at the same time
provides a realistic representation of the system is even more challeng-
ing. This, combined with difficulties in algorithm development, makes
optimal, adaptive control under uncertainty a formidable challenge.
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2.2 structural uncertainty

While the control-engineering literature has traditionally focused on
modeling uncertainty with unknown parameters and associated distri-
butions, there are types of uncertain phenomena for which this mod-
eling approach is not suitable. An important example is uncertainty
regarding the appropriate model structure for some process. This hap-
pens, for instance, when one out of several possible chemical reactions
may be occurring; the uncertainty here is better captured by a set of
model hypotheses, where each hypothesis has its own structure or func-
tional form. This type of uncertainty also appears in Fault Detection
(Blanke et al., 2006), where potential faults are modeled with entirely
different equations rather than variations in parameters.

2.3 uncertainty reduction

The standard non-dual approaches to data-based uncertainty reduc-
tion in control engineering can be divided into two classes: dedicated
experiments and passive learning. Dedicated experiments are gener-
ally performed separately from normal operation, and the experiments
are often developed according to principles from the field of Optimal
Experiment Design (Gevers, Bombois, et al., 2011). A successful experi-
ment generates data that aid the modeling effort and lets the modeler
determine, with a high degree of certainty, a model structure with ap-
propriate parameter values. The resulting model is subsequently used
for decision-making or automatic control. An alternative to this is often
referred to as “passive learning,” and can be thought of as learning
occurring as a byproduct of normal control operation, in the control
community known as (non-active) Adaptive Control (Åström and Wit-
tenmark, 1995).

There is a variety of now standard techniques to determine the pa-
rameter values that best fit a given model structure. These techniques
have been developed over the last few decades in the System Identi-
fication and Parameter Estimation literature and have reached a high
degree of maturity; see (Ljung, 1999). The task of determining the most
likely among a set of candidate model hypotheses is not widely studied
and does not enjoy the same stage of maturity. Common approaches
are based on Bayesian statistics, but the control engineering community
has not adopted a standard set of techniques for sequential model-
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hypothesis testing. The research in this thesis considers parametric un-
certainty only; structural uncertainty is beyond its scope.





3

D U A L C O N T R O L

3.1 dual effect

A dual control signal is often considered to be a signal that both excites
the system for uncertainty reduction and attempts to achieve desired
plant behavior. Desired plant behavior usually involves keeping the
states (or outputs) close to a constant or time-varying setpoint, in addi-
tion to satisfying the specified constraints. Before discussing the more
nuanced aspects of dual control, I find it useful to first investigate the
term dual effect.

The following definition, after Bar-Shalom and Tse (1974), relates
dual effect to the central moments of the unknown quantities in a prob-
lem.

definition 1 (dual effect). A control with dual effect is a signal that
with nonzero probability can affect at least one rth-order central moment of a
state, with r ≥ 2. Conversely, if the future uncertainty is unaffected by the
control with probability one, i.e., there are no central moments of order r ≥ 2
of any state that are affected by the input signal, the control has no dual effect.

Feldbaum (1961b) used neutral system to describe a system with no
dual effect. Note that while Bar-Shalom and Tse define dual effect as a
property of the control signal, the presence of a dual effect is a system
feature, not determined by the decision maker or control algorithm. I
use the term dual effect in reference to systems in this thesis.

A simple (although somewhat pathological) example of a system
with no dual effect is

x(t + 1) = a(t)x(t) + bu(t) (3.1)

where x(t) and u(t) are the state and control at time t, respectively, b is a
known constant, and a(t) ∼ U [amin, amax] is at every time t drawn from
a uniform distribution with bounds at, say, amin = 0.2 and amax = 0.8.
Since a(t) takes a new random value at every time t, the control has no
way of affecting the uncertainty.

15
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A similar and more common effect is that of a constant, unknown
disturbance, also called a bias. Consider the system

x(t) = ax(t − 1) + bu(t − 1) + d (3.2)

The conditional distribution of d, given the signals recorded up to and
including time t, is Gaussian with mean d̂(t) and variance P(t) that
satisfy the equation set

d̂(t) = d̂(t − 1) + K(t)(x(t)− ax(t − 1)− bu(t − 1)− d̂(t − 1)) (3.3a)

K(t) = P(t − 1)
(
1 + P(t − 1)

)−1 (3.3b)
P(t) =

(
1 − K(t)

)
P(t − 1) (3.3c)

with initial conditions d̂(t0) = d̂0 and P(t0) = P0; see Åström and
Wittenmark (1995). The covariance equation can be simplified to

P(t) = P(t − 1)− P2(t − 1)
/(

1 − P(t − 1)
)

(3.4)

which makes it clear that the second central moment is not affected by
the control. That is, there is no dual effect, and the control cannot be
used to improve the estimate of d. I find it important to emphasize that
the absence of dual effect does not imply that learning is impossible,
only that the learning is independently of the control.

It is worthwhile to note that in certain problems one can clearly de-
termine when the input signal does and does not affect the uncertainty.
The following example, adapted from Bond and Loomis (2009), helps
illustrate this phenomenon. Let x(t) and u(t) be the state and control
at time t, respectively, let a ∈ [−1, 1], b, and x′ be known constants, and
let d ∼ N (µ, σ2) be an unknown constant with a normal distribution
for which µ and σ are known. The system behaves according to

x(t + 1) =




ax(t) + bu(t) if x(t) < x′

ax(t) + bu(t) + d if x(t) ≥ x′
(3.5)

This formulation describes a dynamic system where a threshold effect
(a disturbance) of unknown magnitude d is activated at a known region
in the state space. This magnitude can not be determined as long as the
state is below the threshold value x′; in order to reduce uncertainty in
the bias magnitude d the control must take the state past the threshold.
That is, as long as x(t) < x′ and x(t + 1) < x′ it is clear that the control
u(t) can not affect the future uncertainty in d (central moments of order
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two or higher). It is equally clear that this uncertainty is reduced when-
ever the state is above threshold unless the uncertainty is already at its
minimum. In general, however, the control can affect future uncertainty,
but it is up to the decision maker whether to try to bring the system into
the region of the state space where this effect occurs. In a more complex
system it may be nontrivial to determine the presence of a dual effect,
for instance if it is unclear whether the system can be brought into a
state where learning occurs.

It is not obvious in the above example model that there is any value
in learning the value of d. Consider the case where x(t0) < x′ and the
performance measure is J = ∑N

t=t0
E[(x(t) − x∗)2] with the reference

value x∗ < x′ and N either finite or infinite. In this case it is optimal
to stay below the threshold which means the control problem is deter-
ministic and the value of information about d is zero. This leads to the
notion of decision-relevant, or control-relevant uncertainty; uncertainty for
which reduction offers no benefit in decision making is not relevant
in that context. The decision relevance of uncertainty is primarily a
property of the problem, more than of the system or the model: the un-
certainty in d becomes relevant for control if the reference value in the
above performance measure is x∗ > x′. The following example contains
uncertainty that is irrelevant for the control problem yet fully possible to
reduce, and is a better illustration of how not all uncertainty is relevant
for control and decision making. We wish to minimize

J =
N

∑
t=t0

E[x2(t)] (3.6a)

subject to
x(t + 1) = ax(t) + bu(t) (3.6b)
x(t0) = x0 > 0 (3.6c)
0 ≤ u(t) ≤ 1 (3.6d)
a ∼ U [0.2, 0.8] (3.6e)
b ∼ U [1, 2] (3.6f)

The control task for this stable system (|a| ≤ 1) is to reduce the state x
from x0 > 0 to zero. Since a is positive, the control u is non-negative, and
the gain b is positive, the optimal control is a sequence of zeros. While
it is trivial to excite the system for the purpose of reducing uncertainty
and identifying the values of a and b, this reduction does not aid the
decision maker or control algorithm in improving performance for this
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particular formulation; there is no decision-relevant uncertainty in this
problem.

In certain problems with decision-relevant uncertainty and dual ef-
fect it is not optimal, or even acceptable, to actively use the control
for uncertainty reduction. Consider a modified version of the ecosys-
tem model (3.5), with d a known constant but unknown, uniformly
distributed threshold location x′ ∼ U [x′min, x′max] with known support
[x′min, x′max]. Assume that the objective is to minimize an expected cost
of the form J = ∑N

t=t0
E[(x(t)− x∗)2] + ru2(t) where r > 0 is a chosen

parameter and let x∗ > x′min. If x∗ > x′ and b, d, and r are sufficiently
large, the optimal steady-state will be well below x∗ since the cost asso-
ciated with the effort of compensating for the threshold effect is higher
than the cost of deviating from x∗. The decision maker is then faced with
the question of whether or not to explore the system in order to learn
the location of the threshold x′. One strategy may be to investigate if
x∗ > x′ and then make decisions based on the acquired information, re-
alizing that the price of information may be high. However, the problem
parameters may have values such that the optimal decision sequence
is risk averse, in the sense that the expected benefit of learning the
threshold location does not outweigh the expected cost associated with
crossing the threshold. In this case, the optimal strategy does not utilize
the dual effect. Crossing the threshold may be irreversible if the control
is limited in magnitude. This effect further complicates the question of
whether it is optimal to reduce the uncertainty.

3.2 the dual control problem

Feldbaum (1961a,b,c,d, 1965) introduced and defined dual control (ar-
guably somewhat ambiguously) as the optimal control for systems that
exhibit dual effect. That is, the dual control is optimal for problems
where the uncertainty can be actively reduced. Feldbaum was also the
first to recognize the dual character or purpose of the optimal control
for this problem: to direct the system states or outputs to their reference
values and generate data that reduces uncertainty. However, this defi-
nition does not explicitly account for situations where the uncertainty
is not relevant for determining the optimal control. As I demonstrate
above, it is not necessarily optimal, or even beneficial, to reduce uncer-
tainty. While any actively reducible uncertainty can be made decision
relevant by choice of control objective, the inclusion of decision rele-
vance in the definition better connects the characteristics of the problem
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with its solution. For this reason I argue that the following definition is
clearer and more useful.

definition 2 (dual control). A dual control signal is the optimal control
for a system with dual effect where the uncertainty is decision relevant for a
non-empty subset of the state and parameter space.

Note that this definition does not imply that the solution to a dual
control problem necessarily affect any central moments of order two or
higher. As noted above, there are several situations where the optimal
course of action is to not use the control for learning, such as when the
moments are affected only by the control in a purposefully unexplored
region of the state space, or when the uncertainty is so low that the
cost of reduction is higher than the benefit of more knowledge. As a
consequence, the definition permits solutions where the control reduces
uncertainty as a side effect, as opposed to actively exploring for the
purpose of affecting the moments. In this case, the control is insensitive
to the uncertainty.

While this may appear somewhat paradoxical, it is not practical to
define the problem by the features of its solution, and it may be impos-
sible to determine whether learning is beneficial or active uncertainty
reduction is optimal prior to solving the dual control problem. Defining
a dual control as the solution to a dual control problem then allows dual
controls that do not actively excite the process. Accordingly, a control
that is designed for improved learning applied to a system with dual
effect is not necessarily a dual control, since a deliberately exciting com-
ponent in no way implies that the control is optimal. As an example, a
control signal u(t) generated by superimposing a random signal w(t)
on an input generated by a proportional controller,

u(t) = KPe(t) + w(t) (3.7)

where e(t) = y(t)− y∗(t) is the output error, is not a dual controller, un-
less it happens to be the optimal control for a given problem. However,
this control signal does actively excite the process and the added term
w(t) may increase the information generated in the loop.

This argument might be clearer by exploring the alternative. Sup-
pose for the sake of argument that a definition of dual control is any
control that actively excites the system for improved adaptation or iden-
tification. The question is then what an optimal dual controller is. As we
have seen, the presence of dual effect does not imply that it is beneficial
to actively reduce uncertainty. Accepting this terminology then entails
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that an optimal dual controller may not be a dual controller. This leads
down a path of confusing nomenclature, and it is clear that a much
more informative set of definitions allows dual control to describe a
problem of optimal control in the presence of dual effect. This means
a dual control problem must be solved with the learning mechanism
included in the model, and that the solution may not involve active
uncertainty reduction. Hence, a dual control problem must be solved
a certain way (accounting for the dual effect), but the solution does
not necessarily include active learning (the dual effect is not necessarily
exploited).

The following optimal control problem is a fairly general mathemat-
ical formulation of the dual control problem in discrete time: find the
control sequence {u(k)}t+N−1

k=t that is the solution to

min
{u(k)}t+N−1

k=t

E
[t+N−1

∑
k=t

�(y(k + 1), u(k))
∣∣∣∣ Y(t + N − 1 | t)

]
(3.8a)

subject to
x(k + 1) = f (x(k), u(k), θ(k), v(k)) (3.8b)
θ(k + 1) = g(θ(k), e(k)) (3.8c)
y(k) = h(x(k), w(k)) (3.8d)

with given initial conditions and possibly bounds on some or all vari-
ables. Here, �(·) is the stage cost (a Lagrange term); E[ · | Y(t + N − 1 |
t)] denotes expectation conditioned on all past (up to an including time
t) and future (from t+ 1 to t+ N − 1) observations or data Y(t+ N − 1 |
t); N is the control horizon, which may be finite or infinite; x(t), u(t),
y(t), and θ(t) are the states, control inputs, outputs, and parameters at
time t, respectively; and v(t), e(t), and w(t) are uncorrelated sequences
random variables, where the variables in each sequence are indepen-
dent and with known and identical probability distributions. I discuss
the information set Y(·) in more detail below. A typical example of a
stage cost �(·) is

�(y(k + 1), u(k)) = y�(k + 1)Qy(k + 1) + u�(k + 1)Ru(k + 1) (3.9)

where Q ≥ 0 and R > 0 are symmetric matrices that specify perfor-
mance priorities. Note that the dual control problem (3.8) includes no
explicit notion of excitation or active uncertainty reduction, a point I
will return to below.
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3.3 information and dynamic programming

In his original paper on dual control, Feldbaum recognized dynamic
programming (Bellman, 1957) as an appropriate tool for analysis and
solution. While dynamic programming can be used to derive explicit
solutions for simple control problems like the linear-quadratic regula-
tor (L.Q.R.) (see Kirk (1970) for a very clear derivation), most solution
methods based on dynamic programming rely on numerical representa-
tions. However, the “curse of dimensionality” — the exponential growth
in computational cost — associated with numerical dynamic program-
ming renders the method ill-suited for all but the simplest problems.
Despite its shortcomings as a method for obtaining numerical solutions,
dual control problems are compactly and elegantly stated through a
Bellman equation. Moreover, this formulation of the problem clarifies
certain aspects of dual control and helps illustrate some of the more
nuanced details.

Analytical evaluation of the conditional expected value of the stage
cost �(·) is in most cases impossible. The expected stage cost is in gen-
eral a function of the probability density (or mass) functions, sometimes
referred to as belief states. Let the hyperstate ξ(t) be a variable that con-
tains all states, inputs, and moments that characterize the system at
time t. Note that the hyperstate is not necessarily finite-dimensional.

In order to simplify the following exposition I omit a terminal cost
(a Mayer term) from the cost function and assume full noise-free state
feedback, so that y(t) = x(t). Let

J = E
[t+N−1

∑
k=t

�(y(k + 1), u(k))
∣∣∣∣ Y(t + N − 1 | t)

]
(3.10)

be the cost function and

V(ξ(t′), t′; t) =

min
{u(k)}t+N−1

k=t′
E
[t+N−1

∑
k=t′

�(y(k + 1), u(k))
∣∣∣∣ Y(t + N − 1, t′ | t)

]
(3.11)
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be the minimal (feasible) expected cost, commonly referred to as the
value function or the cost to go (from time t′ ≥ t to time t + N). Splitting
up the sum on the right-hand side gives

V(ξ(t′), t′; t) = min
{u(k)}t+N−1

k=t′
E
[
�(y(t′ + 1), u(t′))

+
t+N−1

∑
k=t′+1

�(y(k + 1), u(k))
∣∣∣∣ Y(t + N − 1, t′ | t)

]
(3.12)

which through the principle of optimality (Bellman, 1957) allows the
recursive formulation

V(ξ(t′), t′; t) = min
{u(k)}t+N−1

k=t′
E
[
�(y(t′ + 1), u(t′))

+ V(ξ(t′ + 1), t′ + 1; t)
∣∣∣ Y(t + N − 1, t′ | t)

]
(3.13)

The recursive equation (3.13) is the Bellman equation for the dual control
problem. While simple and compact, the recursive relationship is in
general very computationally expensive to resolve. The dual control, or
the solution to (3.13), takes the form of an optimal hyperstate-feedback
control and can be determined through the computed value functions
as

u∗(ξ(t), t) = arg min
u(t)

E
[
�(y(t + 1), u(t))

+ V(ξ(t + 1), t + 1; t)
∣∣ Y(t + N − 1 | t)

]
(3.14)

Numeric solution of (3.13) involves quantizing the hyperstate space,
i.e., the states, controls, and moments, into a grid and iterating over all
values. That is, a continuous space is approximated by a discrete space.
Dynamic programming guarantees a globally optimal control on the
discrete approximation of the space. While this is arguably a disadvantage
of the method, the global solution is obtained without any assumptions
on the functions ( f , g, h, and �) defining the problem.

The recursion (3.13) is started at the final time t′ = t + N − 1, where
the cost to go depends on the final stage cost only. A full step of the
recursion, calculating the right-hand-side of (3.13) for some stage t′,
means evaluating the expected value for all combinations of the quan-
tized hyperstate and control values. From the perspective of evaluating
the expected value, the actual information observed between time t0 and
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time t is indistinguishable from the hypothetical information assumed
for the interval t to t′. That is, the synthetic information appears real for
the purpose of finding the expected value of the cost to go from time t′

to time N, but the synthetic information is fundamentally different in
that it is an approximation that can take only values from the quantized
space, as opposed to the continuous space of the actual information. The
future information from time t′ to time t′ + N is incorporated through
solving the Bellman equation recursively backwards in time; the future
information shares the quantization property since only discrete points
in the future hyperstate space are directly considered by the previous
recursion steps. At the final stage, the first stage solved by backwards
recursion, then involves finding V(ξ(t + N − 1), t + N − 1; t) for each
quantized value of ξ(t + N − 1). This operation involves evaluating the
expected value of the final stage cost given Y(t + N − 1, t + N − 1 | t).
By the above argument, this is equivalent to the conditional expecta-
tion with respect to Y(t + N − 1). Note that ξ(t + N − 1) depends on
Y(t + N − 1). Hence, the final-stage value function is

V(ξ(t + N − 1), t + N − 1; t) =

min
u(t+N−1)

E
[
�(y(t + N), u(t + N − 1))

∣∣∣ Y(t + N − 1)
]

(3.15)

A recursion step is completed when every combination of quantized
hyperstate values is explored, and the algorithm can advance to the
preceding time stage. Here, that means evaluating the value function
for every quantized value of the hyperstate at time t′ = t + N − 2. The
optimal control for each hyperstate depends on actual past information
(from prior to time t), synthetic past information (from between time t
and time t′ = t + N − 2), and synthetic future information (from time
t + N − 1). By the same argument as above, the information relevant for
calculating the expected value of current state cost and the cost to go
is directly dependent only on the information up to the current stage
t′ = t + N − 2. However, the optimal control is implicitly dependent
on the future information used to determine the expected value at the
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future stage t + N − 1, which explains the notation in (3.10) and (3.11).
The value function for the penultimate stage is then

V(ξ(t + N − 2), t + N − 2; t) =

min
u(t+N−2)

E
[
�(y(t + N − 1), u(t + N − 2))

+ V(ξ(t + N − 1), t + N − 1; t)
∣∣∣ Y(t + N − 2)

]
(3.16)

where the dependence on the future information Y(t + N − 1) is im-
plicit through V(ξ(t + N − 1), t + N − 1; t). How the future informa-
tion enters the recursion can be made clearer by expanding the re-
cursive formulation. For a more compact representation, let �t′ :=
�(y(t′ + N), u(t′ + N − 1)), Yt′ := Y(t′), and ut′ := u(t′), and write

V(ξ(t), t; t) = min
ut

E
[
�t + min

ut+1
E
[
�t+1 + · · ·+ min

ut+N−2
E
[
�t+N−2

+ min
ut+N−1

E
[
�t+N−1

∣∣ Yt+N−1
] ∣∣ Yt+N−2

]
· · ·

∣∣ Yt+1
] ∣∣ Yt

]
(3.17)

It is clear from this formulation that at time t, Y(t) and Y(t′) with t′ ≥
t + 1 are conceptually different. The actual information Y(t) represents
a single realization or trajectory through hyperstate space; the future
information Y(t′), t′ ≥ t + 1, represents the set of all feasible candidates
for optimal trajectories. The size and characteristics of this set may
change, in that the admissible futures in Y(t′ + k1) at time t′ may be
different from (that is, a superset of) those admissible futures in Y(t′ +
k2) at time t′ + k3, where k1 = k2 + k3. Furthermore, any numerical
algorithm for dynamic programming has to approximate the future
information, often representing the elements with discrete set of values,
as opposed the recorded information Y(t) with elements that typically
take any real value (down to machine precision).

This explains the reason for the notation Y(t + N − 1 | t) used in the
cost function (3.10): the cost function implicitly depends on the future
information over the horizon for which it is evaluated. Explicitly noting
this dependence is important, and I argue below that the method for
representing and approximating future synthetic information is para-
mount for how close a near-optimal dual control is to the true dual
control that is obtainable with dynamic programming and a sufficiently
accurate representation of the future.

Solving the Bellman equation involves exploring all paths that are
potentially optimal; paths that cannot be optimal are not evaluated. The
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cost to go from the next stage to the end of the horizon is a simple table
lookup (with interpolation) when the system is deterministic. With a
stochastic system where there is noise and unknown parameters, eval-
uating the expected value of the cost to go is in general a complicated
operation since the next state of the process is uncertain; see Åström
and Helmersson (1986) for one example, also discussed below.

The following example, taken from Åström and Helmersson (1986)
and the first dual control problem solved with numeric dynamic pro-
gramming reported in the literature, helps clarify some of the discussion
above. Åström and Helmersson consider the simplest nontrivial process
on a continuous state space: an integrator with unknown gain. Their
system is written

y(t + 1) = y(t) + bu(t) + σe(t + 1) (3.18)

with y(t) the state, u(t) the control, e(t) a sequence of standard normal
variables, σ a known constant, and b ∼ N (b̂(0), P(0)) an unknown
constant with a known distribution. The authors define information
at time t as the sequence of inputs and outputs observed up to and
including time t:

Y(t) =
{

u(t − 1), u(t − 2), . . . , u(0), y(t), y(t − 1), . . . , y(0)
}

(3.19)

The hyperstate in this problem is the state and the conditional distribu-
tion of the unknown parameter b given Y(t);

ξ(t) =
(
y(t), b̂(t), P(t)

)
(3.20)

where the conditional mean is

b̂(t) = E[b | Y(t)] (3.21a)

and the conditional covariance is

P(t) = E[(b − b̂(t))2 | Y(t)] (3.21b)

The conditional distribution can be expressed recursively as

b̂(t) = b̂(t − 1) + K(t)(y(t)− y(t − 1)− b̂(t − 1)u(t − 1)) (3.22a)

K(t) = P(t − 1)u(t − 1)(σ2 + P(t − 1)u2(t − 1))−1 (3.22b)
P(t) = (1 − K(t)u(t − 1))P(t − 1) (3.22c)
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The conditional distribution of the output y(t) given Y(t − 1) is Gauss-
ian with

ŷ(t) = b̂(t − 1)u(t − 1) (3.23a)

and
σ2

y (t) = P(t − 1)u2(t − 1) + σ2 (3.23b)

the mean and variance, respectively.
Åström and Helmersson state the control problem as minimization

of

J = E
[t+N−1

∑
k=t

y2(k + 1)
∣∣∣∣ Y(t)

]
(3.24)

Note that this objective function does not anticipate future information.
In fact, the cost (3.24) can be interpreted as the squared nominal output
error based on the currently available data; see Theorem 6 in Paper C.
The value function (conditioned on Y(t) in Åström and Helmersson’s
paper) is

V(y(t′), b̂(t′), P(t′), t′; t) =

min
{u(k)}t+N−1

k=t′
E
[t+N−1

∑
k=t′

y2(k + 1)
∣∣∣∣ Y(t + N | t)

]
(3.25)

with

V(y(t′), b̂(t′), P(t′), t′; t) = min
{u(k)}t+N−1

k=t′
E
[t+N−1

∑
k=t′

y2(k + 1)

+ V(y(t′ + 1), b̂(t′ + 1), P(t′ + 1), t′; t)
∣∣∣∣ Y(t + N | t)

]
(3.26)

the corresponding Bellman equation. Evaluating the expected cost to go
amounts to finding the average with respect to the distribution of y(t +
1) given Y(t + N | t). The conditional expected value is determined for
each point in the gridded hyperstate space, and is therefore equivalent
to considering that at any given hyperstate, the information that must
have occurred in order for that realization of the hyperstate is real, as
opposed to synthetic. The expected value of the cost to go, after Åström
and Wittenmark (1995), is

E
[
V(y(t′ + 1), b̂(t′ + 1), P(t′ + 1), t′; t)

∣∣ Y(t′)
]
=

∞∫

−∞

V(ỹ, b̂(t′ + 1), P(t′ + 1), t′; t)w(ỹ, t′ + 1)d ỹ (3.27a)



3.4 solving dual control problems 27

where

w(ỹ, t′ + 1) =
1

σy(t′ + 1)
√

2π
exp

−(ỹ − ŷ(t′ + 1))2

2σ2
y (t′ + 1)

(3.27b)

and

b̂(t′ + 1) = b̂(t′) + K(t′ + 1)(ỹ − y(t′)− b̂(t′)u(t′)) (3.27c)

K(t′ + 1) = P(t − 1)u(t′)(σ2 + P(t′)/σ2
y (t

′ + 1) (3.27d)

P(t′ + 1) = (1 − K(t′ + 1)u(t′))P(t′) (3.27e)

This example illustrates the complexity of determining the cost to go,
even for a simple dual control problem. It also clarifies how there is
no explicit uncertainty reduction; the value of future information and
the ability of the control to reduce future uncertainty is implicitly ac-
counted for by modeling the conditional distribution of the states and
parameters, the propagation of statistics forward in time made possible
through backwards recursion over synthetic future information.

3.4 solving dual control problems

From the above discussion it is clear that while the dual control problem
is elegantly stated and analyzed with dynamic programming, the frame-
work is impractical for any problems but the very simplest. As noted,
the backwards recursion iterates over an approximate characterization
of future synthetic information, typically a discrete representation of
a continuous space. The computational requirements limit the accu-
racy of the approximation since the complexity is exponential in the
resolution. With infinite memory and an infinitely fast computer the
true dual solution could be obtained with dynamic programming on
hyperstate-space grid where the quantization distance approaches zero.
The absence of such resources raises the question of how best to find a
solution that approaches the unobtainable one, and how to design an
algorithm that is able to reduce the distance with a reasonable increase
in computational expense.

This section contains many terms and categories of controllers. I
define the terms informally for a rough idea of how they relate to each
other:

• An actively adaptive controller takes active steps to improve the adap-
tation or learning, for instance by adding an excitation signal to the
control input.



28 dual control

• An approximate dual controller contains a mechanism for active adap-
tation or uncertainty reduction and computes the control by solving
an optimal-control problem that is designed to approximate the dual
control problem.

• A heuristic dual controller is an approximate dual controller in which
the approximation of the dual-control problem is purely heuristic and
not necessarily possible to derive from the original problem.

• A semi-exact dual controller is an approximate dual controller that com-
putes the control from an optimal-control problem that approximates
the dual-control problem through approaches such as reformulations
or series expansions.

• An exact dual controller makes less significant approximations, which
are qualitatively comparable to the quantization in standard numeric
dynamic programming.

• An ideal dual control is the solution to the non-approximated dual
control problem. No general technique exists for obtaining the ideal
dual control.

Many early approaches to overcoming the the curse of dimension-
ality in dynamic programming focused on better quantizing; see, for
instance, Larson (1965). A recent example of this type of focus is the
algorithm based on adaptive sparse grids for parallel computing devel-
oped by Brumm et al. (2015). Approaches such as these are primarily
concerned with lowering the cost of increased accuracy in the quantiza-
tion through more efficient representations of synthetic future informa-
tion.

Approximate dynamic programming (A.D.P.) is a broad term for a
class of algorithms that in general move forward in time, rather than
backward, and approximate the value function in the Bellman equation
(Bertsekas, 2012). A common technique for approximating the value
function is repeated simulation of the hyperstate forward in time, with
a wealth of techniques that accelerate convergence. A typical A.D.P. al-
gorithm explores only a subset of the hyperstate space, which in effect
is similar to finding the expected cost to go with respect to a subset
of the admissible future information. Thus, implicit approximation of
future information is a side effect of generating sample paths for ap-
proximating the value function. Two notable approximate dual-control
algorithms based on A.D.P. are developed by Lee and Lee (2009) and
Bayard and Schumitzky (2010).

In his review of dual control, Unbehauen (2000) terms the above
solution approaches to dual control problems implicit, referring to how
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the uncertainty reduction is rewarded implicitly. He contrasts this to
explicit methods that reward the uncertainty reduction explicitly in the
cost function. I discuss some explicit methods below and argue that
some of those classified as explicit by Unbehauen are better categorized
as, e.g., methods for actively adaptive control (Tse, Bar-Shalom, and Meier,
1973).

An alternative to the two approaches above is to directly approxi-
mate, or consider only a subset of, the future information Y(t + N − 1 |
t) in the cost function (3.10). This is the approach my coauthors and
I take in Paper C, where we pose the resulting control problem as a
nonlinear programming (N.L.P.) problem. For the type of systems we
consider there, our proposed subset of future information enables exact
propagation of the conditional distribution of the unknown parameters
as well as the variance of the output. We are also able to reformulate a
probabilistic cost function of the form (3.10) into a deterministic func-
tion that includes an explicit uncertainty cost.

The dual control algorithm we develop in Paper B is based on apply-
ing the exact reformulation from Paper C to systems where the equiv-
alence no longer holds. Since the optimal-control problem solved by
this controller is derived from approximating the dual control problem
through applying an exact reformulation beyond its region of validity,
it can be classified as a semi-exact dual controller.

Unbehauen (2000) uses the term explicit dual control for algorithms
that explicitly reward learning or uncertainty reduction. Definition 2
makes no distinction between dual controllers that implicitly and ex-
plicitly reward uncertainty reduction. Certain dual-control problems
can be reformulated so that an implicit reward becomes explicit, which
does not alter the controller in any way. However, heuristically adding
a term that measures uncertainty to an existing cost function does not
mean the minimizing control is dual. Minimizing the sum of a stan-
dard nominal control cost and an uncertainty-dependent function will
in most cases not lead to optimal performance.

I argue these approaches are generally better classified as approximate
dual control, heuristic suboptimal dual control, or actively adaptive con-
trol (Tse, Bar-Shalom, and Meier, 1973). (Non-heuristic suboptimal dual
control implies an algorithm that finds a control that nearly optimizes
performance, possibly with a measure of proximity to the solution.)
This class of algorithms does not really approximate a specific aspect of
the dual control problem; rather, it solves an alternative problem that
exploits the dual effect with the aim of producing a control that is close
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to the dual control. Wittenmark (1975) developed an early example of
heuristic sub-optimal dual control for A.R.X. systems (autoregressive
with exogenous input), or in his own terminology “an active suboptimal
dual controller.” He suggests adding the one-step-ahead variance of the
first (non-delayed) input gain Pb(t + 1) := E[(b − b̂(t + 1))2 | Y(t)], a
deterministic function of the current input u(t), to the output cost with
the resulting cost function

J = E[(y(t + 1)− y∗)2 | Y(t)] + Pb(t + 1) (3.28)

where y∗ is a reference. Actively reducing the uncertainty in the most
important input gain is a well-justified goal, and the excitation gener-
ated for this purpose is likely to contribute to uncertainty reduction in
other unknown parameters. However, while the controller may work
well in a range of cases, there is nothing to suggest it leads to optimal,
or even close to optimal, performance. Hence, the controller minimiz-
ing (3.28) is not a dual controller. This approach and the algorithms we
develop in Paper A fall into the category of heuristic dual control. The
controllers in Paper A are based on adding a term to a nominal cost for
the purpose of rewarding uncertainty reduction.

A related approach, taken by for instance Rathouský and Havlena
(2013), is to optimize for nominal control and excitation separately. Their
algorithm first solves a nominal M.P.C. problem and then modifies the
nominally optimal input to increase the resulting information content.
Another class of controllers that are not dual, but utilize the dual ef-
fect, are based on guaranteeing a certain level of excitation. An early
algorithm of this type is developed by Genceli and Nikolaou (1996)
and guarantees excitation by adding constraints to a standard M.P.C.
formulation. A similar approach is taken by Marafioti, Bitmead, and
Hovd (2014), where the resulting optimal control problem can be for-
mulated as a quadratic programming problem. These approaches are
in this context best described as actively adaptive controllers.

3.5 exploration vs . exploitation : a false dichotomy

N-armed bandit problems are a good example of dual-control prob-
lems and are frequently, yet misleadingly, used with the catchphrase
exploration versus exploitation. Åström and Wittenmark (1995) analyze a
simple version of the two-armed bandit problem, which is sufficient for
the argument I make here. In this problem, a player has N coins and
must choose between two slot machines to maximize winnings. One
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play on machine 1 or machine 2 gives a unit reward with probabilities p1
and p2, respectively. In the simplest instance of the problem, the player
knows p1 but only the distribution of p2. For the sake of argument,
let p1 = 0.6 and let p2 be uniformly distributed over the interval [0, 1].
Playing all coins on machine 1 gives an expected gain of 0.6 per play,
while placing all bets on machine 2 gives the expected gain of 0.5 per
play. The naïve best strategy, based purely on the prior, is then to spend
all coins on machine 1. Since there is a 40 % chance that p2 is larger
than p1, a smarter player will try to find a better strategy. With a very
large number of coins, one could play machine 2 and estimate p2, even-
tually obtaining a confident estimate of its value. The choice of which
machine to play with the remaining coins is then easy based on the
exact estimate of p1 and the accurate and precise estimate of p2. With
a limited number of coins, the best strategy for maximal exploitation
involves playing machine 2 to explore the chances of winning on that
machine. The dynamic programming solution shows that the optimal
strategy for maximal expected winnings is to play machine 2 until the
estimate of p2 is less than p1, at which point the player should spend the
remaining coins on machine 1. That is, the strategy that results in the
best exploitation involves exploration. From this perspective, there is
no trade-off or conflict between exploitation and exploration. However,
the pervasive expression exploration versus exploitation gives the impres-
sion that exploration will reduce earnings, or that maximizing earnings
excludes exploration. The only trade-off is between exploration and
the strategy that ignores the potential for learning. Since the phrasing
suggests that exploitation implies naïveté, I find this type of expression
counterproductive and a missed opportunity to shed light on the very
important realization that learning should not be ignored; sticking to
a decision strategy based on the initial belief is rarely the best course
of action when the situation permits learning through exploration. A
better and more thought-provoking wording is optimal exploitation may
involve exploration.

An analogous false dichotomy is widespread in adaptive control,
from (Feldbaum, 1961b) to the present day (Åström and Kumar, 2014),
which is that control and excitation (for learning) are in conflict (“. . .
there is a conflict between the two sides of the controlling process, the
investigational and the directional.” —Feldbaum (1961b)) or that there
is a trade-off between the two (“. . . the quintessential trade-off implied
by the dual roles of control” —Åström and Kumar (2014)). Assume a
dual control sequence that gives optimal performance, and that this
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sequence contains components whose purpose is excitation, in addition
to components that arise from traditional control objectives. The idea
that one can reduce the learning component and achieve “better than
optimal” performance is not wrong. In Paper C my coauthors and I
derive a deterministic function from a dual objective similar to (3.8a)
for a specific class of systems. We prove that for these systems,

t+N−1

∑
k=t

{
E
[
(y(k + 1)− y∗(k + 1 | t))2∣∣Y(k | t)

]}
=

t+N−1

∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r
}

(3.29)

where y is the output, P is the parameter-estimate-error covariance, ϕ

is a regression vector of filtered inputs, and r is the constant variance of
the Gaussian process noise. The first line in this equation is the expected
squared output error conditioned on future information, the second line
is the expected square nominal output error, and the third line is the
output variance as a function of the parameter uncertainty as repre-
sented by P. From the premise that the left-hand side is a meaningful
control objective, it is clear that introducing weights that allow priori-
tizing nominal control over uncertainty reduction, or vice versa, cannot
improve the overall control performance. Uncertainty reduction is in
conflict with neither overall expected control performance nor nomi-
nal control performance. This reformulation demonstrates that nominal
control and uncertainty reduction are intrinsic parts of the expected per-
formance; it is just as clear that these parts are equally important and
cannot be traded off against each other. It is true that a decreased focus
on nominal control can improve the learning, but a lower priority on
uncertainty reduction does not improve expected performance. Further-
more, while the sum in the first line of Equation (3.29) is similar to the
one in the second line, a lower nominal output cost in the second line
does not imply improved performance as measured by the left-hand
side. Improving precision in the terminology will clarify the sometimes
nebulous intricacies and interesting details of the dual-control problem,
and will ideally lead to more systematic and rigorous research on dual
control.
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T H E S I S O V E RV I E W

The main contributions in this thesis are the three papers A, B,
and C, each included as a separate chapter. Rather than in order of
publication, the papers are listed in what I consider the most logical
order, which is also the order in which the ideas were developed. Pa-
per A is based on two earlier conference papers (Heirung, Ydstie, and
Foss, 2012b, 2013a) and contains two related methods for approximate
suboptimal dual control. Paper B is a natural step on the evolution from
the heuristic methods in Paper A to the dual control algorithm in Pa-
per C. The semi-exact dual controller in Paper B is a useful approach
to dual-like control of A.R.X. systems (autoregressive with exogenous
input), but the development reflects what at the time was my incom-
plete and somewhat immature understanding of the complexity of the
problem we consider in the paper, in particular the propagation of un-
certainty through a dynamic system and the nature of the associated
future information. The dual controller in Paper C represents a big step
toward a practical dual control algorithm, and contains several inter-
esting results for orthonormal-basis-function (O.B.F.) models, and is a
significant expansion and formalization of the ideas first presented in
a conference paper (Heirung, Ydstie, and Foss, 2015c). The results also
demonstrate several important nuances of the dual control problem. Pa-
per D expands the ideas from Paper B to a multivariable armax system
(autoregressive moving-average with exogenous input) and implements
the resulting algorithm on an experimental lab setup.

The chapters that contain the original research are followed by a
chapter with conclusions, some comments made in hindsight, and
thoughts on future directions and research. A list of literature cited
in the text is at the very end.

Since each of the following four chapters are self-contained and con-
tain one article in its original form, there is some overlap and redundant
or repeated material. These four chapters begin with a foreword written
specifically for this thesis. All referenced material in the research chap-
ters have numbers that are identical to their published (or submitted)
counterpart. That is, elements such as sections, equations, figures, and
statements are numbered without being prefixed by chapter number.
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If referenced from outside of their own chapters, I have included the
chapter in the reference; e.g., “Theorem 4 in Chapter C.”

4.1 research objectives and scope

The objectives of the research included in this thesis are the following:

Develop and analyze computationally tractable methods for dual
control, including heuristic suboptimal approaches.

These are fairly wide-ranging objectives, which makes a well-defined
scope important. The development of conceptual ideas is more central
than comprehensive analysis in the research presented here, and this
places natural limits on the types of systems considered. We only study
dual control with parametric, as opposed to structural, uncertainty, and
do not investigate the effect of measurement noise. Since there is still a
lot to discover in dual control of linear systems, none of the presented
algorithms are developed for nonlinear systems. With the exception of
controller in Paper D, all linear systems have a single input and a single
output, constant unknown parameters drawn from known initial Gauss-
ian distributions, and Gaussian white process noise. Papers A and B
develop algorithms for A.R.X. systems, while the exact reformulation
in Paper C is developed for O.B.F. models.

4.2 contributions in this thesis

The algorithm in Paper C is based on approximating, or rather consider-
ing a subset, without quantizing, the elements of the future information
set. The resulting problem is solved exactly for O.B.F. models through
reformulation techniques. This paper also includes probabilistic output
constraints. I consider these results the most important contribution of
the thesis.

Applying the reformulation to A.R.X. models, where it is no longer
an exact representation of the dual control problem, results in the algo-
rithm we develop in Paper B. As mentioned above, this is a somewhat
immature approach, and the development is less rigorous than in Pa-
per C. However, the algorithm is a reasonable approach to semi-exact
dual control of A.R.X. systems.

The two control formulations in Paper A are arguably best viewed
as approximations or alternatives to a dual controller. That is, the solu-
tion utilizes the dual effect in the problem and excites the process for
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improved learning, but the heuristic reward for uncertainty reduction
means the controllers are not dual since they are not designed from the
perspective of optimal performance. Furthermore, the tuning parame-
ters in the objective functions may give a false impression of a trade-off
between control and uncertainty reduction.

The semi-exact dual-control algorithm from Paper B is extended
to multivariable armax systems and tested in real-time on an experi-
mental setup in Paper D. My involvement in this paper is limited to
contributing to extending the algorithm, evaluating the experimental
results, and writing parts of the paper. While the experimental data
are not conclusive and somewhat difficult to interpret, the results show
promise for real-time implementation and performance enhancements
for uncertain systems with dual effect. The experiments also demon-
strate that this type of near-dual control with data-driven models can
work well for fairly complex plants.

4.3 list of publications

The following three papers form the core of the contributions in this
thesis.

A Heirung, T.A.N., Foss, B., and Ydstie, B.E. (2015). “MPC-based dual
control with online experiment design.” Journal of Process Control 32,
pp. 64–76.

B Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2013b). “An MPC approach
to dual control.” In: Dynamics and Control of Process Systems. Mumbai,
India, pp. 69–74.

C Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2015b). “Dual adaptive
model-predictive control.” Under revision for resubmission to Automatica.

The following paper is the result of a collaboration where I did not do
the majority of the work.

D Kumar, K. et al. (2015). “Experimental evaluation of a MIMO adaptive
dual MPC.” In: Advanced Control of Chemical Processes. Whistler, Canada,
pp. 546–551.

All of the interesting material from the the first two of the following
papers, Papers E and F, is included and expanded in Paper A; the
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results from the third of the following three, Paper G, is included and
expanded in Paper C.

E Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2012b). “Towards dual
MPC.” In: Nonlinear Model Predictive Control. Noordwijkerhout, the Nether-
lands, pp. 502–507.

F Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2013a). “An adaptive model
predictive dual controller.” In: Adaptation and Learning in Control and
Signal Processing. Caen, France, pp. 62–67.

G Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2015c). “Dual MPC for FIR
systems: Information anticipation.” In: Advanced Control of Chemical Pro-
cesses. Whistler, Canada, pp. 1034–1039.

4.4 list of presentations

In addition to the conference presentation listed above, I have presented
research results from this thesis at the following conferences and work-
shops.

1 Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2012a). “Optimal input de-
sign for parameter identification in dynamic systems using nonlinear
programming.” In: Nordic Process Control Workshop. Kgs Lyngby, Den-
mark.

2 Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2012c). “Towards model
predictive dual control.” In: AIChE Annual Meeting. Pittsburgh, PA.

3 Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2013c). “MPC-based adaptive
dual control.” In: AIChE Annual Meeting. San Francisco, CA.

4 Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2014). “Optimal control of
uncertain systems using dual model predictive control (DMPC).” In:
AIChE Annual Meeting. Atlanta, GA.

5 Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2015d). “Optimal control of
uncertain systems using Dual Model Predictive Control (DMPC).” In:
Nordic Process Control Workshop. Trondheim, Norway.

6 Heirung, T.A.N., Ydstie, B.E., and Foss, B. (2015a). “A QCQP problem
for dual control of FIR systems.” In: The British-French-German Conference
on Optimization. London, UK.

7 Heirung, T.A.N., Morinelly, J.E., et al. (2015). “Dual Model Predictive
Control (DMPC): State of the Art.” In: AIChE Annual Meeting. Salt Lake
City, UT.



4.4 list of presentations 37

The invited talks listed below were also based on research contained in
this thesis.

1 Heirung, T.A.N. (2014a). “Optimal sequential decision making under
uncertainty: anticipatory learning with stochastic dynamic program-
ming.” In: Process system engineering seminar, Carnegie Mellon University.
Pittsburgh, PA.

2 Heirung, T.A.N. (2014b). “Some methods for approximate dual control
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University of Heidelberg. Heidelberg, Germany.

3 Heirung, T.A.N. (2015a). “Optimal control of uncertain systems using
Dual Model Predictive Control (DMPC).” In: Seminar at the Ilmenau
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R E S E A R C H A RT I C L E S

This part contains the main contributions of the thesis, pa-
pers A, B, and C, in addition to Paper D. Each paper is
included as published (or submitted), with exception of cos-
metic improvements, minor changes for better consistency
of notation, and corrected typographical errors.
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M P C - B A S E D D U A L C O N T R O L W I T H O N L I N E
E X P E R I M E N T D E S I G N

Reference information for Paper A:
Heirung, T.A.N., Foss, B., and Ydstie, B.E. (2015). “MPC-based dual
control with online experiment design.” Journal of Process Control 32,
pp. 64–76.

foreword

This article presents the two heuristic suboptimal control approaches,
with objectives that differ from the dual objective. The material here is
a formalization and extension of the methods developed in Heirung,
Ydstie, and Foss (2012b) and Heirung, Ydstie, and Foss (2013a). The
information-maximizing objective first presented in Heirung, Ydstie,
and Foss (2013a), here included in Section 4, was applied to optimal
experiment design by Janka (2015), who found no advantages over
existing methods for the case study considered.

abstract

We present two dual control approaches to the model maintenance
problem based on adaptive model-predictive control (M.P.C.). The con-
trollers employ systematic self excitation and design experiments that
are performed under normal operation, resulting in improved control
performance with smaller output variance and less control effort. Our
control formulations offer a novel approach to the question of how to
excite the plant input to generate informative data within the context of
M.P.C. and adaptive control. One controller actively tries to reduce the
parameter-estimate error covariances; the other controller maximizes
the information in the signals for enhanced learning. Our approach
differs from existing ones in that we let our controllers converge to
standard certainty equivalence (C.E.) M.P.C. when the parameter uncer-
tainty decreases or more information is generated, and as a result we
avoid plant excitation when the uncertainty is low or enough informa-
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tion has been generated. We demonstrate that the controllers work well
with a large number of tuning configurations and also address the issue
of models that are not admissible for control design.

1 introduction

Model predictive control (M.P.C.) is a widely-adopted control strategy,
in large part because it is an inherently multivariable approach and
can handle systems that are constrained. Since predictions from a poor
model can lead to control action that is far from optimal, high model
quality is key to good performance in an M.P.C. loop. The most expen-
sive and time-consuming part of M.P.C. commissioning is frequently
cited as modeling, with up to 80 % of the design effort often spent on
obtaining a model suitable for M.P.C. (Sun et al., 2013). As the controlled
process may change over time, the verisimilitude of the model may de-
crease and lead to lower performance. There are many possible sources
of performance deterioration in M.P.C. loops, including inappropriate
setup of constraints, inconsistencies in dynamic optimization in M.P.C.
and the higher-level optimization, and poor quality of the input-output
and/or disturbance models; among these, the model quality is the most
significant for control performance in M.P.C. (Sun et al., 2013).

The active field of controller performance monitoring (C.P.M.) ex-
amines questions that are relevant to these issues, among them how to
provide information on whether a model is no longer representative
of the process behavior (Qin and Yu, 2007; Zagrobelny, Ji, and Rawl-
ings, 2013). In the event of a process model that does not capture the
plant dynamics sufficiently, some form of model maintenance must be
executed in order to restore the controller’s ability to meet its design
specifications. Normal operating data recorded in closed loop is rarely
informative enough for the purpose of reidentifying the model or for
continuous adaptation of the model or controller. However, recently-
proposed algorithms are capable of searching through large data sets
and locating sufficiently informative segments (Isaksson, 2013) and thus
offer a possible alternative to performing dedicated experiments when
inadequate models cause poor control performance. Still, model main-
tenance as a means of improving control performance usually entails
conducting a system identification exercise for the entire plant (Sun
et al., 2013). Accurate and precise parameter estimates can be obtained
by planning the experiment using a model-based experiment design
approach, where the current parameters are used to predict the result-
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ing information content (Franceschini and Macchietto, 2008). The most
common design criteria are based on the parameter-estimate covariance
matrix (or its inverse, the information matrix), and include minimiz-
ing (maximizing) the determinant, minimizing the largest (maximizing
the smallest) eigenvalue, and minimizing (maximizing) the trace. These
criteria are commonly referred to as D-, E-, and A-optimal designs,
respectively. Franceschini and Macchietto (2008) provide an excellent
overview of applications and theoretical developments in model-based
experiment design. Their extensive list of applications include many
from process systems and closely related fields, including heat and
mass transfer, kinetics, fermentation, and biochemical networks. Plant
experiments for identification purposes may be expensive for reasons
such as the required expertise, their time-consuming nature, and the dis-
ruptions to normal operation, all of which lead to a high cost for M.P.C.
commissioning or maintenance. Furthermore, the resulting model is not
necessarily good enough to increase control performance to a degree
that offsets the cost of the experiment.

A common design specification in process control is that the outputs
stay close to some optimal operating point while the inputs move as
little as possible. When this control goal is met there is a minimum of
information being generated in the loop, and standard adaptive control
strategies cannot guarantee stability. Hence, in order to ensure infor-
mative data, the process must be excited. The conditions for sufficient
excitation suggest that the important thing is that something be done
(excitation), and that it may be less important exactly how it is done.
There are many simple heuristic approaches to meeting the require-
ments of persistent excitation; the most recent survey of M.P.C. systems
in industry found that most test packages use pseudo-random binary
step signals in their identification protocols (Qin and Badgwell, 2003).
However, a systematic approach to integrating control design and smart
excitation experiments enables the analysis necessary for demonstrating
important properties such as convergence and stability.

Larsson, Annergren, et al. (2013) developed an M.P.C. that performs
identification experiments while controlling the plant. The experimen-
tal aspect of the control signal is a result of adding a constraint on an
approximation of the information matrix. By relaxing this constraint
they arrive at a convex quadratic programming (Q.P.) problem, which
is solved online to obtain the control law. Through an example system,
they demonstrated that the input signal excited the system sufficiently
and that their approach is significantly better for identifying the plant
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than a normal M.P.C. A similar scheme termed Model Predictive Con-
trol and Identification (M.P.C.I.) was introduced by Genceli and Niko-
laou (1996) and further developed in a number of papers by Nikolaou
and coworkers, notably Shouche, Genceli, Vuthandam, et al. (1998) and
most recently Shouche, Genceli, and Nikolaou (2002). This approach is
based on requiring a persistently exciting input to the process, result-
ing in a noncovex optimization problem solved to optimality with a
branch-and-bound approach developed by the authors.

These algorithms show that M.P.C.-based approaches to integrating
control and experiments can be both practically implementable and of-
fer clear advantages over more heuristic means of exciting an unknown
process under normal control operation. However, in some sense they
require a priori that a certain amount of information be generated un-
der closed-loop operation, which may result in unnecessarily invasive
experimentation. Furthermore, this type of integration of control and
experiment design indirectly results in suboptimal dual controllers.

The dual nature of a signal controlling an unknown plant was first
recognized by Feldbaum (1961b). Feldbaum identified the twofold effect
of the signal as investigating as well as directing, or as affecting the
uncertainty of the unknown parameters as well as the system states.
In a series of seminal papers, Feldbaum analyzed the problem and
demonstrated that (stochastic) dynamic programming is an appropriate
tool for solving dual control problems. Feldbaum’s early work on dual
control was pioneering in integrating active learning and multistage
decision making under uncertainty and inspired it several important
directions in stochastic adaptive control.

Despite the conceptually appealing features of dual control, fac-
tors such as the limited computational power available in the 1960s
and 1970s contributed to a lack of practical algorithms. Åström and
Helmersson (1986) were among the first to solve a simple yet nontrivial
dual control problem numerically using dynamic programming. The
problem they studied had only one unknown parameter but required
180 C.P.U. hours with a time horizon of 30 samples (Åström, 1983). De-
spite the superior computers available today, the method is ill-suited for
solving even moderately large problems because of the curse of dimen-
sionality. The computational complexity and associated difficulties with
obtaining dual control laws has led to a limited number of industrial
implementations reported in the literature. Allison et al. (1995) reported
one of the first applications of suboptimal dual control to a process con-
trol problem. Even though several heuristics were used in the control
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design, the dual controller improved performance through better identi-
fying gain changes and preventing turn-off. Ismail, Dumont, and Back-
strom (2003) successfully implemented a suboptimal dual controller
for a paper-coating process. Despite the severe challenges associated
with a coupled multivariable process and a gain that drifts over time
with frequent sign reversals, their proposed dual controller resulted in a
substantial quality improvement over the standard industrial controller.

Lee and Lee (2009) approached the problem of exponential growth in
computational requirements using approximate dynamic programming.
Their approach uses Monte Carlo simulations with multiple known
suboptimal controllers to define a limited region of the hyperstate space
and then obtains approximate solutions with dynamic programming
within that region. A related method based on sampling and forward
dynamic programming with particle filtering was developed by Bayard
and Schumitzky (2010).

Only recently has the dual control problem been studied directly
within the context of M.P.C. One early M.P.C. for systems with a finite
impulse response, similar to those proposed by Shouche, Genceli, and
Nikolaou (2002) and Larsson, Annergren, et al. (2013), was developed
by Marafioti (2010) and Marafioti, Bitmead, and Hovd (2014). In this
approach, the dual character of the control is obtained by guaranteeing
the input be persistently exciting. A nonconvex excitation constraint
was derived and imposed on the first of the open-loop optimal input
variables, resulting in a periodic input signal generated by the con-
troller. Another M.P.C.-based method was developed by Rathouský and
Havlena (2013) and later extended by Žáčeková, Prívara, and Pčolka
(2013). In the most recent version of the algorithm, the first step is to
solve a standard M.P.C. problem with the nominal model; the second
step involves finding a perturbation to the first element of the resulting
control sequence so that the minimal eigenvalue of the information ma-
trix is maximized without increasing the cost function by more than a
prescribed amount. Lucia and Paulen (2014) developed a robust non-
linear M.P.C. capable of actively reducing uncertainty. Deviations from
the nominal process output predictions are represented by a scenario
tree of possible realizations of uncertainty, and uncertainty is reduced
by minimizing an optimal experiment design criterion as part of the
algorithm.

We base our approach on certainty-equivalence (C.E.) M.P.C., and ex-
pand that structure to allow predictions of how future data will resolve
uncertainty. The algorithms we present in the following both reduce pa-
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rameter uncertainty and increase the information content of the closed-
loop signals. This is accomplished by adding constraints to a standard
M.P.C. formulation and augmenting the objective function with a term
that explicitly rewards the experimentation. Our formulation does not
require that a certain amount of information be generated or that the
signals be persistently exciting. The result is controllers that perform
experimentation only when there is high uncertainty in the parameters
or not enough information for accurate model identification.

This article is organized as follows: Section 2 discusses the problem
of uncertainty and learning in the context of predictive and adaptive
control and motivates and outlines our proposed design approach; in
this section we formulate our problem as well as the M.P.C. framework
that we extend, followed by a test problem and a discussion of applying
our approach to the admissibility problem. The proposed controllers are
presented in Section 3 and Section 4 along with simulation results and
sensitivity analyses. In Section 5 we compare and discuss the algorithms.
We conclude the article in Section 6 and provide some suggestions for
future work. A1 contains a proof of Proposition 1.

2 background and problem formulation

2.1 Uncertainty and active learning in predictive control

Figure 1 shows the typical adaptive C.E. M.P.C. structure, which consists
of two blocks. One block performs parameter estimation while the other
updates control inputs using the most recent parameter estimates and
an M.P.C. strategy. The parameter estimation block takes the control u(t)
and the process output y(t) as inputs and uses these signals to produce
an updated estimate of the unknown parameters θ̂(t) at the discrete
time instant t. This enables a form of learning to take place outside of the
controller. The parameter estimation procedure typically also generates
some measure of confidence in its beliefs about the parameters, such
as the parameter-estimate error covariance P(t) in the case of a least-
squares algorithm. In a C.E.-type controller, the control input u(t) is
calculated using the latest parameter estimates θ̂(t) as if they were
true values; the uncertainty measure (e.g., P(t)) does not influence the
control signal. This means that the controller treats the estimates as if
the uncertainty were zero, and that the control signal does not account
for the estimator’s beliefs on the precision of the estimates.
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Parameter
estimation

Unknown
plant

u(t) y(t)

θ̂(t)

v(t)
y∗(t)

y(k + 1), u(k)
k = t, . . . , t + N − 1

C.E.
M.P.C

P(t)

Figure 1: Block diagram illustrating a standard certainty-equivalence M.P.C.
structure.

The C.E. M.P.C. uses the current parameters to predict future out-
puts and control inputs. It does not use information about present or
future parameter uncertainties. Since the mechanism for learning is
exogenous to the controller and in no way included in the prediction
model, the controller does not account for the learning that takes place
in the loop as a side effect of control. In other words, the controller is
unaware of the loop being closed and how future inputs and outputs
can generate information since it does not anticipate information acqui-
sition. Therefore, it cannot predict future parameter uncertainty and as
a result is unable to take steps for active learning. The prediction is in
this case open-loop optimal, meaning the prediction does not account
for how future outputs or state trajectories will influence the system
through the closed loop. Hence, this particular control structure is often
called open-loop feedback (feedback is achieved by using the latest output
y(t) as initial condition for the prediction calculated at every time t).

It is clear that this strategy can be improved in two ways: first, the
control should be robust so that more cautious controls are used if
there are large uncertainties; second, it should be explorative to reduce
parameter uncertainties. These features are addressed when the con-
troller predicts the future closed-loop response of the system, i.e., not
only inputs and outputs, but also how these signals will affect the fu-
ture information acquisition and hence possible reduction of parameter
uncertainty. In the structure outlined in Figure 1, this entails feeding
the parameter uncertainty measure P(t) back to the controller, and let-
ting the predictions include the future behavior of this quantity. This
design choice leads to a closed-loop feedback predictive controller. Now
that the controller is aware of the closed loop it anticipates that the
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future data can resolve uncertainty and can hence make decisions for
active learning; the controller has endogenized the learning. The re-
sulting structure is a model predictive controller with dual features, as
illustrated in Figure 2. The input u(t) now both controls and explores
through experimentation. The controlling aspect of the signal is moti-
vated by standard control objectives, while the exploring action seeks to
excite the plant for improved information acquisition whenever deemed
necessary by the controller.

Parameter
estimation

Unknown
plant

u(t) y(t)

v(t)
y∗(t) k = t, . . . , t + N − 1

θ̂(t), P(t)

Dual
M.P.C.

y(k + 1), u(k), P(k + 1)

Figure 2: Block diagram illustrating a dual model predictive controller.

2.2 Problem formulation

The finite-horizon dual control problem can be formulated as follows:
given the recorded process data Y(t) available at time t, find the se-
quence of controls {u(k)}t+N−1

k=t that minimizes the performance mea-
sureThis formulation of

the dual-control
problem is not

consistent with that
of Chapter 3 or

Paper C (see
Appendix A2 in

Paper C).

JN = E
[t+N−1

∑
k=t

{
w1y(k + 1)2 + w2u(k)2}

∣∣∣∣ Y(t)
]

(1)

where y is the plant output, w1 > 0 and w2 ≥ 0 are weighting parame-
ters, and N is the length of the finite prediction horizon. E{· | Y(t)} is
the conditional expectation given the available information. The process
model is uncertain and this implies that the causal relationship between
the input u and the output y must be inferred based on recorded data.
The dynamic properties of the process emerge during exploration, and
the resulting information can be expressed in terms of updated model
parameter values and corresponding uncertainties. The explicit dual
controllers we develop in this article incorporate these features.

The plants we consider in this work are linear and time-invariant
with a single input and a single output (siso), formulated in discrete
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time. With these assumptions we formulate our models as autoregres-
sive time-series processes with an exogenous input (A.R.X. processes):

y(t) + a1y(t − 1) + · · ·+ ana y(t − na) =

b1u(t − 1) + · · ·+ bnb u(t − nb) + v(t) (2)

Here, t is the discrete time instant; y(t), u(t), and v(t) are the system
output, input, and disturbance at time t, respectively; the coefficients
{ai}na

i=1 and {bj}nb
j=1, b1 �= 0, are the system parameters, some of which

are unknown. The independent and identically distributed Gaussian
random variables v(t) have zero mean and variance r.

The A.R.X. model (2) can be written in the more compact form

A(q−1)y(t) = B(q−1)u(t) + v(t) (3)

where A and B are polynomials in the backwards shift operator q−1.
We assume that the unknown plant is controllable and observable with
A(q−1) and B(q−1) coprime. The unknown model parameters can be
determined through analysis of recorded process data using system
identification techniques.

We formulate A.R.X. models like (2) in terms of a regression vector
ϕ(t − 1) and a parameter vector θ;

y(t) = ϕ�(t − 1)θ + v(t) (4)

where

ϕ(t − 1) =
[
−y(t − 1), . . . ,−y(t − na), u(t − 1), . . . , u(t − nb)

]� (5a)

contains past inputs and outputs and

θ =
[
a1, . . . , ana , b1, . . . , bnb

]� (5b)

contains the unknown model parameters. We denote all recorded data
available at time t, meaning all past inputs and outputs, by

Y(t) =
{

u(t), u(t − 1), . . . , y(t), y(t − 1), . . .
}

(6)

The L.Q.G. (linear-quadratic Gaussian) minimizes the performance
measure (1) with w2 > 0 when all of the parameters in the model (2)
are known. With w2 = 0 and N = 1 the optimal performance for a
minimum-phase model is obtained by the minimum-variance controller.
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In indirect adaptive control we use the past information Y(t) to
estimate the parameters, for instance by solving a least squares prob-
lem. The estimates can then be used to determine a control law like the
L.Q.G. or the minimum-variance controllers mentioned above knowing
that we use the best available estimates given the current information.
This is the essence of the certainty-equivalence approach to adaptive
control: the estimates are used as if they were the true values (Åström
and Wittenmark, 1995). This approach does not consider estimate uncer-
tainty, and it incorporates no mechanism for speeding up convergence
and reducing parameter uncertainty by manipulating the control inputs
for exploration.

In our proposed control approach we estimate parameters online by
minimizing a least-squares criterion recursively. Let R(t) be an informa-
tion matrix defined as

R(t) =
t

∑
j=t0

r−1λt−j ϕ(j − 1)ϕ�(j − 1) (7)

where λ ∈ (0, 1] is a forgetting factor. The information matrix R(t) can
also be expressed recursively as

R(t) = λR(t − 1) + r−1ϕ(t − 1)ϕ�(t − 1), t > t0 (8a)

with R(t0) given. This matrix then forms the basis for the least-squares
estimate of θ at time t, θ̂(t), with the recursive update equation

θ̂(t) = θ̂(t − 1) + r−1R−1(t)ϕ(t − 1)
(
y(t)− ϕ�(t − 1)θ̂(t − 1)

)
(8b)

From the definition of R(t) it is clear that the matrix must be positive
semidefinite. When R(t0) = 0, rank R(t) ≤ t − t0 since R undergoes one
rank-one update per time step, such that R(t) is invertible at the earliest
at time t0 + na + nb.

In order to avoid calculating the inverse of R(t) at every time step,
the estimate can be updated through introducing P(t) = R−1(t). The
matrix P(t) is positive definite when R(t) is positive definite and is not
defined when R(t) is positive semidefinite. The matrix-inversion lemma
(see Ljung (1999)) can then be used to derive the recursive algorithm

θ̂(t) = θ̂(t − 1) + K(t)
(
y(t)− ϕ�(t − 1)θ̂(t − 1)

)
(9a)

K(t) = P(t − 1)ϕ(t − 1)
(
rλ + ϕ�(t − 1)P(t − 1)ϕ(t − 1)

)−1 (9b)

P(t) =
(

I − K(t)ϕ�(t − 1)
)

P(t − 1)(1/λ) (9c)
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where K(t) is commonly referred to as the injection gain. This recur-
sive least-squares (R.L.S.) algorithm can be interpreted as a Kalman
filter for estimating the state of a system with the state variable θ con-
stant and output described by Equation (4), provided λ = 1 (Ljung,
1999). Furthermore, when λ = 1, the conditional distribution of θ

given the information Y(t) is Gaussian with mean θ̂(t) and covari-
ance P(t) = E[(θ − θ̂(t))(θ − θ̂(t))�] as described by the equation set (9)
(Åström and Wittenmark, 1995). Note that the value of the estimate
θ̂(t) does not change with r (evident by inserting Equation (7) into
Equation (8b)), which makes the inclusion of this variable superfluous
when the equation set (9) is used as an estimation algorithm for the
parameters θ. However, it is clearly necessary to include r in the equa-
tions when we are interested in the variance P(t). We set r = 1 in the
parameter estimation algorithm when there is no noise present in the
system (4).

The parameter estimate θ̂(t) from the R.L.S. algorithm (9) forms the
basis for the one-step-ahead predictor

ŷ(t + 1 | t) = E
[
y(t + 1)

∣∣ Y(t)
]

= ϕ�(t)θ̂(t) (10)

which can be used to derive a variety of control laws.
As outlined above, minimizing the dual objective (1) directly can

be a formidable computational task for even a moderate number of
unknown parameters. Instead of finding approximate solutions to the
exact dual problem, we develop control algorithms that find the exact
solution to approximations of the dual control problem. These algo-
rithms are based on certainty-equivalence M.P.C., which we formulate
next.

2.3 Certainty-equivalence M.P.C.

We now introduce the M.P.C. formulation that forms a basis for the
controllers we develop in Sections 3 and 4. Consider the quadratic
finite-horizon objective function

min
{u(t)}t+N−1

k=t

VC.E.(t) =
t+N−1

∑
k=t

{
w1ŷ2(k + 1 | t) + w2u2(k)

}
(11)

This objective can be modified to include setpoints for both signals,
integral action, and control move minimization. The objective function



52 paper a

is minimized at time t and the most recent parameter estimates θ̂(t) are
used to predict the effect of the inputs on the process output using the
equation

ŷ(k + 1 | t) = ϕ̂�(k)θ̂(t), k = t, t + 1, . . . , t + N − 1 (12)

which is a modified version of the predictor (10). Note that the regressor
ϕ̂ used here contains recorded outputs y(k) for k ≤ t and predicted
outputs ŷ(k | t) for k > t; similarly, it contains recorded inputs u(k) for
k < t and free control variables for k ≥ t. Most M.P.C. formulations
include bounds on inputs and predicted outputs, often called “box
constraints.” Bounds on the inputs can be formulated as

umin ≤ u(k) ≤ umax, k = t, t + 1, . . . , t + N − 1 (13a)

where umin and umax are the lower and upper bounds on the input,
respectively, usually chosen based on physical hardware limitations or
design preferences. Since we assume a plant-model mismatch, there is
no notion of a nominal guarantee that bounds on the output y(t) will
be respected. We therefore constrain the predicted outputs by

ymin ≤ ŷ(k + 1 | t) ≤ ymax, k = t, t + 1, . . . , t + N − 1 (13b)

where ymin and ymax are the lower and upper bounds on predicted out-
puts, respectively. As the model uncertainty decreases and the accuracy
of the predictions improves, the constraint (13b) is more likely to ensure
that the future plant outputs satisfy

ymin ≤ y(t) ≤ ymax (14)

The objective function (11) and the two constraint sets (12) and (13)
form a convex Q.P. problem.

At every time instant t, the plant output y(t) and the older signals in
the regressor ϕ(t − 1) are used in one of the R.L.S. algorithms (8) or (9)
to produce an updated parameter estimate θ̂(t). Subsequently, the open-
loop optimization problem formed by (11), (12), and (13) is solved with
the output history {y(k)}t

k=t−na+1, the input history {u(k)}t−1
k=t−nb+1,

and the current parameter estimate θ̂(t) given. The solution to the opti-
mal control problem is the open-loop input sequence {uo(k)}t+N−1

k=t ;
the first element of this sequence is used as an input to the plant:
u(t) = uo(t). Feedback control is achieved by repeating this process at
every sampling time. This control approach is of certainty-equivalence
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type, since the control signal u(t) is obtained using the parameter esti-
mate θ̂(t) as if it were the true parameter set.

Note that the dependence on time t is explicitly noted in the output
prediction constraint (12) since the parameter estimate θ̂(t) appears
directly in the equation. Since we write y(k + 1 | t) in the optimization
problem it would be consistent to also write u(k | t) and use the notation
u(t) = uo(t | t) for the plant input. However, since it is clear from
context whether a variable is an optimization variable on the prediction
horizon or a physical realization of that variable in the plant, we omit
the explicit dependence on t to simplify notation in the following.

2.4 Extending C.E. M.P.C.: explicit dual predictive control for integrated
experiment design

The following sections present two approximate solutions to the dual
control problem. Both approaches result in controllers that excite the
process in order to increase the information content of signals and
thereby reduce parameter uncertainty, and they both accomplish this
through modifying the C.E. M.P.C. framework from Section 2.3 with an
augmented objective function and an augmented constraint set. The first
algorithm controls the system while explicitly attempting to reduce the
parameter estimate error variances; the second controller maximizes the
information content of the input and output signals while controlling
the system. We refer to the resulting type of controller as explicit dual
M.P.C. (D.M.P.C.), since the learning is explicitly rewarded through an The term D.M.P.C.

as used here is not
fully consistent with
the use in Chapter 3
and Paper C.

added experiment term in the objective function. Early versions of the
controllers in Sections 3 and 4 were presented in Heirung, Ydstie, and
Foss (2012b) and Heirung, Ydstie, and Foss (2013a), respectively.

When the experiment term is added to the objective, the parameter
uncertainty influences the plant input since part of the control effort is
used to reduce predicted uncertainty. Enabling the controller to predict
how future data reduces that uncertainty then closes a learning loop in
the control structure, effectively enabling endogenous learning in the
controller.

2.5 The admissibility problem

The admissibility problem (Ydstie, 1997) concerns the fact that certain
identified models are not admissible for certainty equivalence control in
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the sense that there may be regions in the parameter space that lead to
irregular control performance. One example is a pole/zero cancellation
in the estimated transfer function, which causes most pole-placement
design procedures to fail. An even simpler example is parameters that
cause a division by zero in the control law. Similarly, there may be pa-
rameters that are non-admissible if the resulting control model is not
controllable. See Mareels and Polderman (1996) for a thorough treat-
ment of the admissibility problem, there referred to as the pole/zero
cancellation problem.

For our test system (23), a model with â1 = 0 and/or b̂1 = 0 is not
admissible for control design. â1 = 0 hides the fact that the system
is dynamic and results in a model with no predictive ability. b̂1 =
0 gives an uncontrollable model and prevents a normal C.E. M.P.C.
from producing nonzero controls; other control designs may produce
infinitely large control signals. A gain b̂1 very close to zero may also
produce unacceptably large inputs.

We address the admissibility problem in Section 4.1, where we pro-
vide a proposition stating that our proposed information-maximizing
controller will identify a1 and b1 in (23) in the worst case of an initial
belief state [R, θ̂] of zero information and all estimates set to zero.

3 minimizing the variance of the estimate

As noted above, the conditional distribution of θ given Y(t) is Gaussian
with mean θ̂(t) and covariance P(t) as described by the equation set (9)
when λ = 1. A natural approach to reducing parameter uncertainty
is then to control the system is such a way that the future covariances
P(k + 1), k = t, t + 1, t + 2, . . ., are reduced. This entails generating
information-rich input and output signals by experimenting with or ex-
citing the plant while minimizing the normal control loss. We approach
this by augmenting the control objective with an experiment term, here
the function fP of P(k + 1), which we minimize over an experiment
horizon Ne, with Ne ≤ N. The resulting objective function takes the
form

VP(t) = w0

t+Ne−1

∑
k=t

δk−t
e fP(P(k + 1)) +

t+N−1

∑
k=t

{
w1ŷ2(k + 1 | t) + w2u2(k)

}
(15)

where w0 ≥ 0 is a weight parameter and 0 < δe ≤ 1 is a discount factor
further discussed below. Note that this objective function reduces to (11)
when w0 = 0.
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In order to evaluate P(k + 1) in the objective function we need to
add constraint equations to the optimization problem so that the effect
of the input and output on the error covariance is included in the
process model used for predictions. This is achieved by adding the two
equations

K(k + 1) =
P(k)ϕ̂(k)

r + ϕ̂�(k)P(k)ϕ̂(k)
, k = t, t+ 1, . . . , t+ Ne − 1 (16a)

P(k + 1) = (I − K(k + 1)ϕ̂�(k))P(k), k = t, t+ 1, . . . , t+ Ne − 1 (16b)

as constraints to the online optimization problem; ϕ̂ is defined as in
the predictor (12). The constraint set (16) is highly nonlinear and in-
creases the complexity of the optimization problem in the C.E. M.P.C.
given by (11), (12), and (13), turning the Q.P. problem into a nonlinear
programming (N.L.P.) problem.

The constraints (16a) and (16b) are identical to (9b) and (9c) from the
R.L.S. parameter estimation algorithm, except for the forgetting factor
which is set to λ = 1 in the constraints. Including the forgetting factor
would deem a reduction in uncertainty in the near future less valuable
than a reduction in the distant future, which is clearly not desirable
from a design perspective. A more systematic way of specifying time
preference on future uncertainty reduction is to include the discount
factor δe directly in the objective, providing an intuitive way of formu-
lating that a better parameter estimate at the next time step is more
valuable than an improvement further into the future.

There are several possible candidates for the function fP(P(k + 1))
in the objective (15), some of which we discuss here. Possible types of
matrix functions include various norms, the determinant, and the trace;
each of these measure the magnitude of matrices in different ways. Ma-
trix norms involve expensive and nonlinear computations, adding to
the complexity already introduced by the constraints responsible for
computing P(k + 1). The determinant offers an alternative to a matrix
norm, and there are various ways of computing the determinant. The
simplest expression for the determinant of a matrix is the product of its
eigenvalues, but using this formulation in the objective function would
necessitate adding nonlinear equality constraints to the N.L.P. problem.
One possible approach to supply the eigenvalues is to add a constraint
equation that represents the characteristic polynomial of P(k + 1). This
type of equation is highly nonlinear since the coefficients would be
functions of the variable elements of P(k + 1), again adding significant
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complexity. It is possible to calculate det P(k + 1) without adding equal-
ity constraints by instead using the cofactors and minors of P(k + 1)
to calculate the determinant directly, but this gives a large number of
products of the elements of the matrix in the objective function. These
large products can be decomposed by adding a bilinear equality con-
straint for each unique product. Adding a number of these constraints
adds substantial complexity, and the number of additional constraints
needed becomes intractable with a large number of unknown param-
eters np. One possible way of including a determinant is through the
matrix exponential and the relation

det(exp(P(k + 1))) = exp(tr(P(k + 1))) (17)

The right-hand side of this expression is cheap to evaluate since the trace
is the sum of the diagonal elements, and the exponential of a scalar is a
convex function that is simple to calculate. Since the diagonal elements
of P(k + 1) are already available, the trace can be evaluated without
adding constraints to the optimization problem. While computationally
attractive, this function candidate can lead to tuning difficulties as the
exponential dominates the other terms in the objective function when
uncertainty is high.

We utilize the computational simplicity of the trace by choosing

fP(P(k + 1)) = tr P(k + 1) (18)

where we retain the advantage of not having to add constraints while
avoiding the considerable extra penalty on large variances imposed
by the exponential function. The one-stage cost function proposed by
Wittenmark (1975) is a special case of the objective function resulting
from choosing tr P(k+ 1). Since the trace is both the sum of the diagonal
elements of the matrix and the sum of the eigenvalues of the matrix, the
trace provides the sum of all the parameter estimate error variances and
is hence directly related to the original objective of reducing variance.
Minimizing the trace of P corresponds to A-optimal design in the field
of optimal experiment design (Franceschini and Macchietto, 2008). Note
that since P(k + 1) is always positive definite, the trace and determinant
are similar in that

∂ det P(k + 1)
∂λi

> 0 and
∂ tr P(k + 1)

∂λi
> 0 (19)

for all eigenvalues λi of P(k + 1).
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The optimization problem solved at time t can thus be stated as
follows:

min
{u(k)}t+N−1

k=t

VP(t) = w0

t+Ne−1

∑
k=t

δk−t
e tr P(k + 1)

+
t+N−1

∑
k=t

{
w1ŷ2(k + 1 | t) + w2u2(k)

}
(20a)

subject to

ŷ(k + 1 | t) = ϕ̂�(k)θ̂(t), k = t, t + 1, . . . , t + N − 1 (20b)
umin ≤ u(k) ≤ umax, k = t, t + 1, . . . , t + N − 1 (20c)
ymin ≤ ŷ(k + 1 | t) ≤ ymax, k = t, t + 1, . . . , t + N − 1 (20d)

K(k + 1) =
P(k)ϕ̂(k)

r + ϕ̂�(k)P(k)ϕ̂(k)
, k = t, t + 1, . . . , t + Ne − 1 (20e)

P(k + 1) = (I − K(k + 1)ϕ̂�(k))P(k), k = t, t + 1, . . . , t + Ne − 1 (20f)

{y(k)}t
k=t−na+1, {u(k)}t−1

k=t−nb+1, P(t), and θ̂(t) given (20g)

The given values in ϕ(t) include the initial value for the output, y(t),
along with the na most recent outputs y and nb most recent control in-
puts u. Hence, the controller takes feedback from the hyperstate defined
by {y(k)}t

k=t−na+1, {u(k)}t−1
k=t−nb+1, P(t), and θ̂(t).

When parameter uncertainty is reduced, P(t) → 0, which means
the objective function (20a) converges to the objective function (11) of
the C.E. M.P.C. Hence, the degree of experimentation decreases as the
parameter uncertainty is reduced.

The objective function (20a) is quadratic and convex, and no com-
putational complexity is introduced by adding the linear experiment
term tr P(k + 1) to the objective function in the linear C.E. M.P.C. in
Section 2.3. All of the added complexity comes from augmenting the
constraint set with the nonlinear equality constraints (20e) and (20f) that
represent future parameter uncertainty. The linear C.E. M.P.C. obtains
the control input u(t) by solving a Q.P. problem at every time sample;
our extension turns the optimization problem into a nonconvex N.L.P.
problem.
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3.1 Reformulation for implementation

The formulation of the optimal control problem (20) can be significantly
simplified. We introduce the variables z(k) ∈ Rnp×1 and ζ(k) ∈ R1

defined as

z(k) = P(k)ϕ̂(k), k = t, t + 1, . . . , t + Ne − 1 (21a)

ζ(k) = ϕ̂�(k)z(k), k = t, t + 1, . . . , t + Ne − 1 (21b)

and write the optimization problem as

min
{u(k)}t+N−1

k=t

VP(t) = w0

t+Ne−1

∑
k=t

δk−t
e tr P(k + 1)

+
t+N−1

∑
k=t

{
w1ŷ2(k + 1 | t) + w2u2(k)

}
(22a)

subject to

ŷ(k + 1 | t) = ϕ̂�(k)θ̂(t), k = t, t + 1, . . . , t + N − 1 (22b)
umin ≤ u(k) ≤ umax, k = t, t + 1, . . . , t + N − 1 (22c)
ymin ≤ ŷ(k + 1 | t) ≤ ymax, k = t, t + 1, . . . , t + N − 1 (22d)
z(k) = P(k)ϕ̂(k), k = t, t + 1, . . . , t + Ne − 1 (22e)

ζ(k) = ϕ̂�(k)z(k), k = t, t + 1, . . . , t + Ne − 1 (22f)
z(k) = rK(k + 1) + ζ(k)K(k + 1), k = t, t + 1, . . . , t + Ne − 1 (22g)

P(k + 1) = P(k)− K(k + 1)z�(k), k = t, t + 1, . . . , t + Ne − 1 (22h)

{y(k)}t
k=t−na+1, {u(k)}t−1

k=t−nb+1, P(t), and θ̂(t) given (22i)

This reformulated optimization problem has (np + 1)Ne added equa-
tions, and all constraints are now quadratic (or bilinear). With our choice
of fP(P(k + 1)) = tr P(k + 1), the problem can be simplified further by
only implementing the diagonal elements of the matrix equality con-
straint (22h). There is then a total of (3np + 1)Ne constraints added to
the standard C.E. M.P.C. formulation for the purpose of achieving the
experimentation; the constraints contain a total of (n2

p + 3np)Ne bilin-
ear terms. Since the objective function is quadratic, the problem is a
quadratically-constrained quadratic programming (Q.C.Q.P.) problem;
solvers dedicated to solving this problem class to global optimality have
been developed. See Misener and Floudas (2013) for a description of
one such algorithm (glomiqo) and a review of others.
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3.2 Simulation results

The proposed controllers are demonstrated on a system of the form

y(t) + a1y(t − 1) = b1u(t − 1) + v(t) (23)

with a1 �= 0 and b1 �= 0. This gives the vectors

ϕ(t) =
[
−y(t), u(t)

]�, θ̂(t) =
[
â1(t), b̂1(t)

]� (24)

and the predictor

ŷ(t + 1 | t) = −â1(t)y(t) + b̂1(t)u(t) = ϕ�(t)θ̂(t) (25)

Unless otherwise noted the simulation examples in the following sec-
tions are all performed with a1 = −1.1 (an unstable system), b1 = 1,
y(0) = 1.0, and noise variance r = 0.1. The parameter estimates are
initialized with â1(0) = 0.1, b̂1(0) = −0.1, and the forgetting factor is
λ = 0.99. In the M.P.C. the objective weights are w1 = w2 = 1, the
prediction horizon is N = 10, and the signal bounds are ymin = −10,
ymax = 10, umin = −5, umax = 5.

All results presented below are produced with the two algorithms
implemented in matlab and gams (GAMS Development Corporation,
2015) with ipopt (Cervantes et al., 2000) as the N.L.P. solver. ipopt is a
state-of-the-art interior-point solver, which exploits the sparse structure
of the N.L.P. and is capable of solving very large problems. The system
is simulated in matlab; gams is called at every time step t and returns
a (local) solution to the optimal control problem to matlab. All solu-
tion times are reported in C.P.U. seconds (C.P.U. s) and obtained with a
1.6 GHz Intel Core i5.

Unless otherwise noted, the parameters in this and the following sec-
tions are as follows: the covariance matrix is initialized at P(0) = 10−3 I,
the information matrix is initialized at R(0) = 0, the experiment weight
is w0 = 10, the experiment horizon length is Ne = 4, the experiment
discount factor is δ = 1, and all simulations are from time t0 = 0 to
time t f = 10.

Figure 3 shows a comparison simulation of the variance-minimizing
D.M.P.C. defined by (22) with w0 = 10 and the standard C.E. M.P.C.
from Section 2.3 (corresponding to w0 = 0). That the parameter esti-
mates are initialized nowhere close to their true values, with wrong
signs and at one order of magnitude error, causes the C.E. M.P.C. to ex-
cite the system accidentally through the misinformed control decisions.
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The D.M.P.C. excites the system because of the experiment term with a
weight w0 = 10, and the controller is able to achieve both smaller output
variance (1.31, compared with 5.50) and smaller control input energy
(3.41, compared with 5.35). As noted above, the objective functions of
the two controllers converge as the parameter error variances go to zero,
which can be observed here after around t = 7, where the plant output
and the control input are nearly identical.

The following section provides a better illustration of how the per-
formance of the D.M.P.C. changes as the different tuning parameters
are adjusted.

Figure 3: Representative example simulation comparing the variance-
minimizing D.M.P.C. defined by (22) with w0 = 10 and the standard
C.E. M.P.C. from Section 2.3 (corresponding to w0 = 0).

3.3 Sensitivity analyses

Figures 4 and 5 show the sensitivity of the D.M.P.C. control performance
with respect to the experiment weight w0 and the excitation horizon Ne,
respectively. Since the graphs illustrating the sensitivity analyses for r
and δ provide very little insight beyond the discussion below, they are



3 minimizing the variance of the estimate 61

not included. All simulations are performed on the example system (23)
with parameters as indicated above. The results are based on averaging
100 simulations for each plotted value of the tuning parameters, with
a different random seed in each simulation for the noise sequence v(t).
In Figures 4 and 5, the average output error Ey, average control effort
Eu, and average estimate errors Eâ1 and Eb̂1

are defined as follows:

Ey :=
t f

∑
t=t0+1

y2(t)
t f − t0

(26a)

Eu :=
t f −1

∑
t=t0

u2(t)
t f − t0

(26b)

Eâ1 :=
t f

∑
t=t0+1

(a1 − â1(t))2

t f − t0
(26c)

Eb̂1
:=

t f

∑
t=t0+1

(b1 − b̂1(t))2

t f − t0
(26d)

The sensitivity with respect to the experiment weight w0 is shown in
Figure 4. The standard C.E. M.P.C. corresponding to w0 = 0 is included
at the left. As the experimentation term is included with a small weight,
the most notable change is the improvement in the estimate of the input
gain b1. No notable improvement in output variance or input usage
takes place until w0 is in the range 1–10. In this range there is a signifi-
cant reduction of output variance, and this is achieved with less use of
control input. The simultaneous reduction in these two quantities shows
how excitation does not necessarily come at the price of deterioration
in output regulation. As the experiment weight is increased toward a
value of 1000 the performance suffers, likely because of the large im-
balance in the objective weights which can lead to an ill-conditioned
problem. The quality of the estimate â1(t) is largely unaffected by the
experiment weight, while b̂1(t) is significantly improved when w0 goes
from 0 to 0.001. That the number of C.P.U. seconds spent solving the
optimization problems increases notably for the highest values of w0 is
also likely caused by the poorly scaled objective function.

Consistent with the observation that increasing the experiment weight
w0 up to a moderate value improves performance, increasing the exper-
iment horizon Ne also improves performance up to a point. Figure 5
shows that both output variance and input usage decrease significantly
when Ne is increased from 0 (the non-dual C.E. M.P.C.) to 1. Increasing
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Figure 4: Sensitivity of various performance metrics with respect to the ex-
periment weight w0 for the variance-minimizing controller defined
by (22). Note that the abscissa is logarithmic except for the inclusion
of w0 = 0, where the data are obtained using the non-dual C.E. M.P.C.
from Section 2.3. The quantities Ey, Eu, Eâ1 , and Eb̂1

are defined in
Equation (26).
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Ne to 2 reduces the output variation slightly but increases the control
input usage. A further increase in Ne reduces the input usage again
with minimal effect on output regulation. Also here the estimate b̂1(t)
benefits from turning on the dual feature by increasing Ne from 0 to 1
while there is very little variation in the quality of â1(t) with different
experiment horizon lengths. The reason the time required to solve the
optimal control problems increases with Ne is that every increase in Ne
adds a number of nonlinear constraints.

Figure 5: Sensitivity of various performance metrics with respect to the ex-
periment horizon Ne for the variance-minimizing controller defined
by (22). The data for Ne = 0 are obtained using the non-dual
C.E. M.P.C. from Section 2.3. The quantities Ey, Eu, Eâ1 , and Eb̂1

are
defined in Equation (26).

A similar sensitivity analysis with respect to the noise variance r
reveals that control performance suffers from increased noise variance.
Both output variance and control expenditure increase with the larger
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disturbance, and the quality of the parameter estimates suffers similarly.
Since the noise variance does not affect the complexity of the optimiza-
tion problems, the C.P.U. time spent on solving the problems varies
little with the noise magnitude.

An investigation of the effect of the experiment discount factor δ

reveals that the performance is not sensitive to this parameter. A dis-
count factor in the range 0.95–0.99 improves output regulation slightly
compared with larger and smaller values, while the control effort is min-
imally affected. Heavily discounting future parameter estimate variance
reduction is in principle similar to reducing the length of the experi-
ment horizon Ne and decreasing the experimentation weight w0. It is
therefore consistent with the above observations that reducing δ from
0.95 to 0.5 has a negative effect on output regulation and a somewhat
smaller negative effect on control input usage. The parameter estimate
accuracy does not vary significantly with δ. Since the complexity of the
optimization problems is unaffected by the value of the discount factor,
the time spent solving the optimization problems is not significantly
affected.

4 maximizing information

Motivated by the complexity and the high number of added constraint
equations in the optimization problem (22), we propose a different ap-
proach that offers computational advantages while solving a similar
problem. Instead of using the covariance matrix P to formulate an ob-
jective term that rewards exploration and experimentation, we use the
information matrix R = P−1 in our augmented objective function and
constraint set.

We begin by adding an equation to the constraint set of the C.E.
M.P.C. Since we aim to express the exploration reward in terms of R,
we take Equation (8a) and formulate the equality constraint equation

R(k + 1) = R(k) + r−1 ϕ̂(k)ϕ̂�(k), k = t, t + 1, . . . , t + Ne − 1 (27)

for predicting future information over the experiment horizon Ne. The
forgetting factor λ from Equation (8a) is not included here, consistent
with the formulation in Section 3. We again augment the C.E. objective



4 maximizing information 65

function (11) with an experiment term, now a function fR of R(k + 1),
and define the objective VR as

VR(t) = w0

t+Ne−1

∑
k=t

δk−t
e fR(R(k+ 1))+

t+N−1

∑
k=t

{
w1ŷ2(k+ 1 | t)+w2u2(k)

}
(28)

For expressing the exploration reward function fR, we start by noting
that

fP(P) = tr P =
np

∑
i=1

Pii =
np

∑
i=1

λP
i =

np

∑
i=1

1
λR

i
(29)

where λP
i and λR

i are the ith eigenvalues of P and R, respectively, and
np = na + nb is the number of parameters in the plant model. A possible
approach would be to use

fR(R(k + 1)) =
np

∑
i=1

1

λ
R(k+1)
i

(30)

which amounts to substituting this function for tr P(k + 1) in the objec-
tive (20a) and replace the constraints (20e) and (20f) with (27), and then
add constraints that provide the eigenvalues of R(k + 1) for t ≤ k ≤
t + Ne − 1. As mentioned above, the cost of eigenvalue calculations in
constraints prevents this from being a computationally viable approach.

Patwardhan and Goapluni (2014) maximize the trace of the informa-
tion matrix by maximizing a standard M.P.C. objective in their approach
to input design for closed loop identification. They demonstrate that
maximization of the M.P.C. objective is equivalent to maximizing the
trace of the information matrix under mild assumptions, leading to T-
optimal (or A-optimal, see Franceschini and Macchietto (2008)) inputs
through minimizing a concave objective function.

We can develop a convex experiment function candidate that max-
imizes the trace of the information matrix by modifying Equation (17)
into

fR(R(k + 1)) = det(exp(−R(k + 1))) = exp(− tr(R(k + 1))) (31)

The right-hand side of this equation is cheap to evaluate and there are
no additional constraints required beyond Equation (27). An important
aspect of maximizing the trace of the information matrix is that the trace
can be maximized over the prediction horizon by increasing only one of
the diagonal elements of R(k + 1), meaning there is no guaranteed in-
centive to distribute the experimental effort into providing information
about all parameters.
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Using the function (30) as a basis for a more suitable function can-
didate, we observe that tr P is minimized by maximizing all of the ei-
genvalues of R. This motivates maximizing the trace of R by increasing
all of the diagonal elements as opposed to just a few. Furthermore, the
function in Equation (30) also captures the diminishing marginal return
of increased information through the term 1/λR

i , with tr P approaching
its minimum as all eigenvalues of R approach infinity. A computation-
ally simpler function that rewards information and experimentation by
evenly increasing the diagonal elements Rii of R is

fR(R(k + 1)) =
np

∑
i=1

exp
(
−Rii(k + 1)

)
(32)

which also approaches its minimum as the trace of R increases with di-
minishing return. Hence, this objective too corresponds to an A-optimal
experiment design criterion (Franceschini and Macchietto, 2008). This
candidate for fR is convex and does not require additional constraint
equations in the optimization problem. Using this function for reward-
ing process experimentation results in solving the following optimiza-
tion problem at every time sample t:

min
{u(k)}t+N−1

k=t

VR(t) = w0

t+Ne−1

∑
k=t

δk−t
e

np

∑
i=1

exp
(
−Rii(k + 1)

)

+
t+N−1

∑
k=t

{
w1ŷ2(k + 1 | t) + w2u2(k)

}
(33a)

subject to

ŷ(k + 1 | t) = ϕ̂�(k)θ̂(t), k = t, t + 1, . . . , t + N − 1 (33b)
umin ≤ u(k) ≤ umax, k = t, t + 1, . . . , t + N − 1 (33c)
ymin ≤ ŷ(k + 1 | t) ≤ ymax, k = t, t + 1, . . . , t + N − 1 (33d)

R(k + 1) = R(k) + r−1 ϕ̂(k)ϕ̂�(k), k = t, t + 1, . . . , t + Ne − 1 (33e)

{y(k)}t
k=t−na+1, {u(k)}t−1

k=t−nb+1, R(t), and θ̂(t) given (33f)

Analogous to the objective function (20a), VR will converge to the
C.E. objective (11) as experimentation increases information, as mea-
sured by the diagonal elements of R. The convexity of the objective
function is conserved as the exponential function is convex. However,
the optimization problem is no longer convex because of the introduc-
tion of nonlinear equality constraints, and must therefore be solved with
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a general N.L.P. solver. Note that only the equations that update the
diagonal elements in the constraint (33e) need be implemented. Hence,
the experimentation feature is achieved by adding npNe constraints that
contain a total of npNe quadratic terms.

4.1 Application to the admissibility problem

We now demonstrate some aspects of the information-maximizing con-
troller by investigating its performance in a simple example. We use the
system

y(t) = −a1y(t − 1) + b1u(t − 1) = ϕ�(t)θ(t) (34)

where np = 2 and vt ≡ 0 (so that r = 1). The following proposition
establishes that the information-maximizing controller identifies the
two parameters in the shortest possible time when starting with zero-
estimates and zero initial information.

proposition 1. Let Ne = 1, λ = 1, w0 > w2 and umin < umax. The
information-maximizing M.P.C. defined by the optimization problem (33) iden-
tifies the parameters a1 �= 0 and b1 �= 0 in (34) in two time steps with zero
initial information (R(t0) a 2 × 2 zero matrix) and an initial uncontrollable
and unobservable process model (â1(t0) = 0, b̂1(t0) = 0).

Proof. See Appendix A1.

The proposition suggests that some care must be taken when choos-
ing the weights w0 and w2. This is further explored through sensitivity
analyses in Section 4.3.

The simulation example shown in Figure 6 demonstrates Proposi-
tion 1. The information-maximizing D.M.P.C. avoids the admissibility
problem associated with the estimates initialized at zero and identifies
the parameters in two time steps. The C.E. M.P.C. is unable to resolve
the situation and the system output hence grows because the system is
unstable and the input u(t) remains zero.

4.2 Simulation results

The example setup in this section is identical to the one described in
Section 3.2. Figure 7 shows a typical simulation example comparing the
information-maximizing D.M.P.C. defined by (33) with w0 = 10 and the
C.E. M.P.C. from Section 2.3 (corresponding to w0 = 0). The C.E. M.P.C.
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Figure 6: Simulation example demonstrating Proposition 1 with the
information-maximizing D.M.P.C. defined by (33) and the C.E. M.P.C.
from Section 2.3.
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excites the system as a side effect of the poor initial parameter estimates
in this case too. However, the information-maximizing D.M.P.C. excites
the system in a systematic manner motivated by the experiment term
formulated in R(t) and achieves both lower output variance (1.05, com-
pared with 5.50), and smaller input energy (0.30 compared with 5.35).
Also here the output and control input trajectories converge around
t = 7, in this case as the information increases.

Figure 7: Representative example simulation comparing the information-
maximizing D.M.P.C. defined by (33) with w0 = 10 and the standard
C.E. M.P.C. from Section 2.3 (corresponding to w0 = 0).

4.3 Sensitivity analyses

The sensitivity analyses for the information maximizing controller are
based on the same approach as the ones in Section 3.3. Each plotted
value of the tuning parameters is based on 100 simulations, each with a
different random seed for the noise sequence. The quantities Ey (aver-
age output error), Eu (average control effort), and Eâ1 and Eb̂1

(average
estimate errors) in Figures 8 and 9 are defined in Equation (26).
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The sensitivity with respect to the experiment weight w0 is shown
in Figure 8. As suggested by the analysis in Section 4.1, there is little
improvement in performance when w0 < w2 = 1. Additionally, the
parameter estimates are very inaccurate when w0 < 0.1. Performance
is best when w0 is in the range 1–10, with a marginal increase in in-
put energy after this point. As long as w0 ≥ 0.1 the estimate b̂1(t) is
significantly better than with the non-dual C.E. M.P.C. while â1(t) is
worse but acceptable for w0 ≥ 0.1. Again, the results show the scope for
improving performance by exciting the system appropriately without
paying a price in output regulation.

The impact of the experiment horizon length Ne is shown in Figure 9.
The biggest improvements come from increasing Ne from 0 (the non-
dual C.E. M.P.C.) to 1 and thereby turning on the dual feature. There is
very little to gain by increasing Ne beyond 1. When Ne increases from
6 the input energy increases along with the output variance, demon-
strating that the controller is not able to “hide” the excitation without
increasing the output variance with a suboptimal combination of tuning
parameters. Also here the estimate b̂1(t) benefits greatly from turning
on the dual feature by increasing Ne from 0; the estimate â1(t) is some-
what better when Ne = 0 and not much affected by an increase in the
experiment horizon length beyond Ne = 1. Furthermore, increasing
Ne adds complexity to the optimization problem (33) by increasing the
number of bilinear constraints and exponential terms in the objective,
leading to a higher computational cost as shown in the bottom plot in
the figure.

Like the variance-minimizing D.M.P.C., the control performances
with information-maximizing D.M.P.C. decreases with increasing noise
variance r. However, the parameter estimates are not as adversely af-
fected when the information-maximizing D.M.P.C. is used, unless the
noise variance increases to a value above 1. The solution times for the
optimization problems are not significantly affected by the noise vari-
ance.

The information-maximizing D.M.P.C. is almost entirely insensitive
to changes in the experiment discount factor δ, with virtually no change
in performance in the range 0.9 ≤ δ ≤ 1. When δ is in the range 0.6–0.9
there is a pronounced deterioration of output variance, input cost, and
parameter estimate quality. For the lower values 0.5–0.6 the performance
metrics are similar to those for δ ≥ 0.9. The solution times are largely
unaffected by the value of δ.
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Figure 8: Sensitivity of various performance metrics with respect to the ex-
periment weight w0 for the information-maximizing controller de-
fined by (33). The average parameter estimate error is not shown for
w0 = 0.001 and w0 = 0.01 because the values are disproportionately
large. Note that the abscissa is logarithmic except for the inclusion of
w0 = 0, where the data are obtained using the non-dual C.E. M.P.C.
from Section 2.3. The quantities Ey, Eu, Eâ1 , and Eb̂1

are defined in
Equation (26).
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Figure 9: Sensitivity of various performance metrics with respect to the ex-
periment horizon Ne for the information-maximizing controller de-
fined by (33). The data for Ne = 0 are obtained using the non-dual
C.E. M.P.C. from Section 2.3. The quantities Ey, Eu, Eâ1 , and Eb̂1

are
defined in Equation (26).
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The sensitivities with respect to r and δ are not plotted since minimal
insight can be gained beyond what is described above.

5 discussion

Both D.M.P.C. formulations show an improvement in output regula-
tion when Ne is increased from 0 (non-dual M.P.C.) to 1 (D.M.P.C. with
myopic experimentation) when applied to our test problem from Sec-
tion 3.2. Increasing Ne beyond 1 has a positive effect on output reg-
ulation with the variance-minimizing D.M.P.C., but that comes at a
price of increased control effort. Of the two controllers, the information-
maximizing D.M.P.C. benefits the most from increasing the experiment
horizon length Ne from 0 to 1. This controller does not benefit much
from increasing Ne beyond 1, and the variance-minimizing controller
is not able to achieve similar performance by increasing Ne. Since all
solutions are found using a local N.L.P. solver, these results may differ
if a global solver is used.

The controllers perform similarly with respect to output regulation
for experiment weights w0 in the range 1 to 100, but the information-
maximizing controller uses less control effort in this range. The perfor-
mance of the variance-minimizing D.M.P.C. does not change with w0
in the range 0 to 0.1; in the same range the information-maximizing
controller performs worse than with any w0 ≥ 1.

Taken together, these results show that for our test case both pro-
posed D.M.P.C. approaches can achieve the same improvement in out-
put regulation compared with a non-dual C.E. M.P.C. However, the
information-maximizing controller improves output regulation with
less control effort.

The number of C.P.U. seconds required to solve the optimization
problems is significantly different between the two D.M.P.C. algorithms
as the experiment horizon Ne increases, which is shown in Figures 5
and 9. Since the number of nonlinear equality constraints in the opti-
mization problems increases with Ne at a higher rate for the variance-
minimizing D.M.P.C., the extent to which the variance-minimizing con-
troller is the more complex can be quantified by its larger requirements
in computational resources. This difference in required C.P.U. seconds
between the two controllers is likely to increase with Ne, suggesting that
the information-maximizing controller is a better choice when applied
to larger systems if computation time is a possible constraint.
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Our experience suggests that the best values of w0 and Ne largely
depend on the plant and that universally good values most likely do not
exist. Nevertheless, it seems that choosing a w0 that is at least as large
as w2 (as suggested by Proposition 1) works well for both controllers in
general, and not only for the information-maximizing controller. Our
experience furthermore indicates that in most cases w0 should be at
least as large as w1 and that w0 should be increased if the noise vari-
ance r increases significantly. A good first value for Ne is the number
of parameters np in the model. However, the value of Ne can be some-
what smaller than np if np is large, without any noticeable effect on
performance.

The approaches presented here do not immediately extend to multi-
variable systems or real-time control. One possible extension by Kumar
et al. (2015) relies on formulating a multiple-input multiple-output lin-
ear system as a set of multiple-input single-output armax (Ljung, 1999)
models and estimating parameters with an extended least-squares ap-
proach. The resulting controller is tested on a benchmark continuously-
stirred tank heater system (Thornhill, Patwardhan, and Shah, 2008)
with two tanks. The experimental results are promising, but much work
remains on evaluating the performance of this approach for real-time
control of multivariable systems and there are several theoretical aspects
that require further investigation.

6 conclusions and future work

We present two related approaches to dual control with M.P.C. that inte-
grate experiment design and control. The controllers are based on min-
imization of parameter estimate error variance or maximization of in-
formation; different results are achieved although the approaches arise
from similar ideas. Both controllers converge to a standard C.E. M.P.C.
as uncertainty decreases or there is sufficient information generated,
and the experimentation hence decreases with the diminishing need.
Sensitivity analyses reveal that the D.M.P.C. algorithms can outperform
non-dual C.E. M.P.C. on average, and that the tuning scheme gives
intuitive results. The simulations also demonstrate excitation for im-
proved performance without a sacrifice in output regulation and that
the information-maximizing approach is the more efficient in terms of
reducing output variance with less control effort. The simplicity of the
formulation of the information-maximizing D.M.P.C. allows faster con-
trol input computation and analysis showing that in certain cases the
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admissibility problem in adaptive control can be overcome with simple
methods. The more intuitive quantities in the covariance matrix make
the variance-minimizing controller a more appealing formulation.

Future work includes research on extensions to multivariable sys-
tems and time-varying parameters. As established in the discussion on
formulation of the optimization problem, there is scope for global opti-
mization provided the problems are formulated appropriately. We will
investigate what can be gained from finding the global optima and to
what extent the solution times grow impractical.

a1 proof of proposition 1

Proof (Proposition 1). Without loss of generality we set t0 = 0, and note
that at t = 0 the prediction constraint (33b) is

ŷ(k + 1 | t) = 0, k = t, . . . , N − 1 (35)

because θ̂(0) =
[
0, 0

]�. Furthermore,

R(0) =

[
0 0
0 0

]
and R(1) =

[
y2(0) −y(0)u(0)

−y(0)u(0) u2(0)

]
(36)

The objective function (33a) is in this situation reduced to

VR(0) = w0

0

∑
k=0

δk
e

2

∑
i=1

exp
(
−Rii(k + 1)

)
+

N−1

∑
k=0

{
w1 · 0 + w2u2(k)

}

= w0 exp(−y2(0)) + w0 exp(−u2(0)) + w2

N−1

∑
k=0

u2(k) (37)

It is then clear that the solution must satisfy u(k) = 0 for k = 1, . . . , N −
1 since the predictor is unable to describe any relationship between the
input and the output with the given estimates θ̂(0). Hence, the only
control input that will affect the objective function value is u(0). If umin
and umax are such that u2

min ≤ ln(w0/w2) ≤ u2
max, a minimizing initial

control input must satisfy

∂VR(0)
∂u(0)

= −2w0u(0) exp
(
− u2(0)

)
+ 2w2u(0) = 0 (38)

which is obtained for either

u(0) = 0 or u2(0) = ln
w0

w2
(39)
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when w0 > w2. Since

∂2VR(0)
∂u(0)2 = 2

(
(2u2(0)− 1)w0 exp

(
− u2(0)

)
+ w2

)
(40)

is negative for u(0) = 0 and positive for u2(0) = ln(w0/w2), u(0) = 0
is a maximizer and u2(0) = ln(w0/w2) is a minimizer. Furthermore,

∂VR(0)
∂u(0)

< 0 ∀ u(0) < −
√

ln
w0

w2
,

and
∂VR(0)
∂u(0)

> 0 ∀ u(0) >
√

ln
w0

w2
(41)

so there can be no minimizer at the edge of the feasible region. If umin
and umax are not such that u2

min ≤ ln(w0/w2) ≤ u2
max, u(0) will take a

nonzero value at the bound of the feasible region, and the argument
still holds.

The parameter estimates are updated by solving the least squares
equation

R(1)θ̂(1) = ϕ(0)y(1) (42)

Since rank R(1) = 1, this equation has no unique solution, except when
y(0) = 0, which gives b̂1(1) = b1. The choice of solution method, like
Gaussian elimination or the pseudoinverse, determines the value of
θ̂(1) if one is desired when the information matrix is singular. We here
choose to not update the parameter estimate when rank R < np and
pass θ̂(t − 1) and R(t − 1) to the optimization problem instead of θ̂(t)
and R(t). The objective function will now be

VR(1) = w0 exp(−y2(1)) + w0 exp(−u2(1)) + w2

N

∑
k=1

u2(k) (43)

Now, u(k) = 0 for k = 2, . . . , N since the parameters were not updated
because of insufficient information. Hence, the solution to the control
problem is again u2(1) = ln(w0/w2). The information matrix then be-
comes

R(2) =

[
y2(0) + y2(1) −y(0)u(0)− y(1)u(1)

−y(0)u(0)− y(1)u(1) u2(0) + u2(1)

]
(44)

Since a1 �= 0 and u2(1) = ln(w0/w2), y(1) �= y(0) and R(2) has full
rank. The least-squares equation

R(2)θ̂(2) = ϕ(0)y(1) + ϕ(1)y(2) (45)
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then has a unique solution. Writing out (45) to obtain

[
y2(0) + y2(1) −y(0)u0 − y(1)u1

−y(0)u0 − y(1)u1 u2
0 + u2

1

] [
â1(2)
b̂1(2)

]

=

[
a1y2(0) + a1y2(1)− b1y(0)u0 − b1y(1)u1

−a1y(0)u0 − a1y(1)u1 + b1u2
0 + b1u2

1

]
(46)

reveals that

θ̂(2) =

[
â1(2)
b̂1(2)

]
=

[
a1

b1

]
(47)

is the unique solution. Thus, the algorithm has identified the two pa-
rameters in two time steps, the shortest possible time.

As we can see from the proof, VR(0) and VR(1) are convex functions
with minimizers satisfying u(0) = 0 and u(1) = 0, respectively, if
w0 < w2. Hence, w0 > w2 is in this case a condition for a nonzero
control signal in the face of a worst-case belief state [R, θ̂].
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foreword

This paper is a step from heuristic suboptimal dual control in the direc-
tion of an exact deterministic formulation of the dual control problem.
We reformulate the first stage of the stochastic objective function and
applying the reformulation beyond its temporally valid range. The re-
sulting objective function thus differs from the dual objective, and the
controller can be classified as semi-exact. The reformulation we develop
Paper C can be applied to the controller we present here. The published
version of this article contains some smaller errors that I have been
corrected here.

abstract

We present a model predictive control (M.P.C.) approach to solve the
dual adaptive control problem. The cost function minimized by the con-
troller rewards probing the system for information when the parameter
estimates are poor. The control algorithm is designed to handle poorly
identified models and excites the system so that information can be
gathered to achieve the optimal trade-off between process control and
identification. This excitation is achieved without requiring the input to
be persistently exciting; rather, the probing objective is based on an ex-
act formulation of the expected value of the output error at the first time
stage. The resulting expression is also used for the second time stage;
this ensures that a proper trade-off between excitation and output reg-
ulation is maintained. The algorithm can be viewed as the merging of
adaptive control with M.P.C. and its design can easily be implemented
with modifications to an existing M.P.C. As an example we consider a
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first-order linear process system with two unknown parameters. Our
proposed algorithm probes the system even when the output error is
small and quickly gathers enough information to correctly identify the
unknown plant parameters.

1 introduction

Maintaining a good model of a controlled plant is an important chal-
lenge in the process industries, model quality being one determining
factor for the performance of a model predictive controller (M.P.C.).
Performing experiments to generate data suitable for system identifi-
cation is not always practical due to factors such as time constraints,
the expertise needed, and expensive operational disruption. Model pa-
rameters are therefore commonly estimated using data collected during
normal operation; however, recorded process data may be insufficiently
informative for system identification or it can be difficult to locate the
informative portions of a large data set.

Feldbaum (1961b) was the first to recognize that an optimal con-
troller for a system with unknown parameters has two conflicting tasks:
directing the output toward a reference, and exciting the system for
learning purposes so that better control decisions can be made in the
future. In its simplest form the dual control problem can be seen as
finding the sequence of controls {u(t) : t = 0, 1, 2, . . .} that minimizes
the control objective

J∞ = E
[ ∞

∑
t=0

y2(t) + µu2(t)
]

(1)

given data collected up until t = 0, where µ ≥ 0 is a weighting param-
eter. This formulation does not include the notion of a model of the
system. Thus we expect that the controller should be capable of explor-
ing the system to find out the causal relationship between input u and
output y. The dynamic properties of the system emerge as exploration
takes place. This knowledge can be stored, for example in the terms of
tables or as parameters in a linear or nonlinear model. We would expect
the performance of the control system to improve as more data is gath-
ered. A major contribution of the field of adaptive control was to show
that the seemingly impossible problem of even stabilizing an unknown
system could be solved for some classes of systems (Mårtensson, 1985).
However, claims of optimality were not made. One important property
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of a dual controller is that it is optimal in the sense that it finds the best
trade-off or balance between control and excitation.

Dual control laws have been computed for very simple systems us-
ing dynamic programming (Åström and Helmersson, 1986), but the
optimization problem quickly becomes intractable as the number of un-
known parameters increases. Lee and Lee (2009) approach the problem
of exponential growth in computational requirements using approxi-
mate dynamic programming; Bayard and Schumitzky (2010) developed
a sampling-based approach to the dual control problem based on for-
ward dynamic programming and particle filtering. Other approxima-
tions have been proposed to solve the problem of combined estimation
and control. Some of these are motivated by adaptive control and they
lead to the idea of generating exiting signals (Radenković and Ydstie,
1995). These approaches led to the idea of iterative adaptive control
where instabilities observed in adaptive controllers were controlled by
supplying sufficient excitation (Gevers, 2002). Around the same time
the problem was approached from the point of view of Model Predic-
tive Control and an approach termed Model Predictive Control and
Identification (M.P.C.I.) was introduced by Genceli and Nikolaou (1996)
and later extended in several publications by Nikolaou and coworkers,
notably Shouche, Genceli, and Nikolaou (2002). The M.P.C.I. approach
is based on parameterizing the input as a sum of sinusoids with pre-
scribed frequencies and finding the optimal amplitudes; this leads to
an input that is persistently exciting. While persistent excitation guaran-
tees that parameter estimates converge exponentially when a recursive
weighted least-squares algorithm is used (Johnstone et al., 1982), the
excitation may be excessive. Marafioti, Stoican, et al. (2012) developed
a persistently exciting M.P.C. using techniques similar to those used by
Genceli and Nikolaou (1996).

The papers above show that the adaptive control and M.P.C. control
approaches appear to be converging. However, the previous approaches
that have been developed, whether from an M.P.C. or an adaptive con-
trol perspective, have not taken advantage of the fact that these perspec-
tives can be blended by mixing M.P.C. and learning directly into the
M.P.C. objective as originally proposed by Feldbaum when he devel-
oped the idea of dual control. While the original formulation of dual
control may be intractable due to strong nonlinearity and the postu-
lation of an infinite horizon, it seems reasonable to believe that good
approximations can be obtained by considering finite horizon formu-
lations. This approach has been successfully applied in the areas of
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nonlinear M.P.C. and Moving Horizon Estimation in the form of finite
horizon approximations to the infinite horizon problem, formulated
within the context of dynamic programming. By combining the objec-
tives into one, as suggested by the dual-control formulation, we develop
an approach that does not require external excitation to excite the sys-
tem unnecessarily since excitation is explicit in the sense that excitation
is part of the control objective. In this case the objective above is restated
so that

JN(t) = E
[ N

∑
k=0

{
y2(t + k)2 + µu2(t + k) + J(t + N)

} ∣∣∣∣ Y(t)
]

(2)

where E[ · | Y(t)] denotes the conditional expectation given all data
gathered up to time t, Y(t); N ≥ 1 is the prediction horizon; and J(t +
N) is the cost to go that may not include the exploration component
in order to make the problem computationally tractable. This control
can then be computed using nonlinear programming and it will be
implemented using the idea of receding horizon. Setting N = 1 give the
classical adaptive control approach since and no exploration is provided.
Extending the prediction horizon to 2 and beyond provides control
signals that include a trade-off between exploration and control.

In this paper we develop a case study to illustrate the application
of Dual Model-Predictive Control (D.M.P.C.) and we give particularThe term D.M.P.C.

as used here is not
consistent with the

use in Chapter 3 and
Paper C.

attention to systems and formulations that cause certainty-equivalence
based adaptive controllers to fail. The most common problem is an
input gain estimated to be zero; other problems include models of
dynamic systems where the dynamic component is missing and pole-
zero cancellations in transfer functions.

This article is organized as follows: The control problem is described
in Section 2, followed by a discussion of the control algorithm in Sec-
tion 3. Sections 4 and 5 discuss implementation and provides an exam-
ple, respectively. We conclude and discuss future work in Section 6.

2 problem formulation

We consider control of stably invertible, single input, single output, lin-
ear, time-invariant systems in discrete time with unknown parameters,
disturbed by a sequence of independent zero-mean Gaussian variables
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with variance r. Systems of this type can be formulated as autoregres-
sive process with exogenous input (A.R.X.):

y(t) + a1y(t − 1) + · · ·+ ana y(t − na) =

b1u(t − 1) + · · ·+ bnb u(t − nb) + v(t) (3)

where t is a discrete time instant (integer), y(t), u(t), and v(t) are the sys-
tem output, input, and disturbance respectively at time t, and a1, . . . , ana

and b1, . . . , bnb are the unknown system parameters with b0 �= 0. The
system is stably invertible so we can set µ = 0 in the control objective
and focus on controllers of the type

u(t) =
1
b1
(a1y(t) + · · ·+ ana y(t − na + 1)

− b2u(t − 1)− · · · − bnb u(t − nb + 1)) (4)

This controller gives the optimal control when the parameters are pre-
cisely known. When they are not known we need to consider algorithms
that estimate the parameters and implement controllers that in some
way trade-off the learning and control.

In adaptive control we use the past information to estimate the pa-
rameters, for instance by solving a least squares problem. Subject to the
assumptions made above we can guarantee that these estimates are opti-
mal in the sense that they give the Best Linear Unbiased Estimate (blue)
(Ljung, 1999). We can then use the estimated parameters to calculate
the control law in Equation (4) with the knowledge that the estimates
we use are the best estimates we can obtain using current information.
This is the essence of the certainty-equivalence approach to adaptive
control and it has been shown that this in fact can give optimal controls
asymptotically. The approach however ignores the possibility of generat-
ing exploration signals that can speed up convergence by manipulating
control signals to gain better knowledge about the parameters.

The A.R.X. system (3) can be written in the compact form

y(t) = ϕ�(t − 1)θ + v(t) (5)

where
θ =

[
a1, . . . , ana , b1, . . . , bnb

]�

is a vector containing all system parameters, and

ϕ(t − 1) =
[
−y(t − 1), . . . ,−y(t − na), u(t − 1), . . . , u(t − nb)

]� (6)



84 paper b

is a regression vector containing past inputs and outputs. We can also
write (3) as

A(q−1)y(t) = B(q−1)u(t) (7)

where A and B are polynomials in the backwards shift operator q−1. It
is necessary for controllability and observability that A(q−1) and B(q−1)
are coprime.

We let Y(t) denote all inputs and outputs recorded up until the
present time t. That is,

Y(t) =
{

u(t), u(t − 1), . . . , y(t), y(t − 1), . . .
}

(8)

The unknown parameters in θ are estimated with the recursive least-
squares (R.L.S.) algorithm (Ljung, 1999)

θ̂(t) = θ̂(t − 1) + K(t)
(
y(t)− ϕ�(t − 1)θ̂(t)

)
(9a)

K(t) = P(t − 1)ϕ(t − 1)
(
λ + ϕ�(t − 1)P(t − 1)ϕ(t − 1)

)−1 (9b)

P(t) =
(

I − K(t)ϕ�(t − 1)
)

P(t − 1)(1/λ) (9c)

where θ̂(t) is a vector of parameter estimates, K(t) is the injection gain,
λ is the forgetting factor, and P(t) is a matrix of parameter estimate
error covariances (when λ = 1, which is used in the remainder of this
paper).

Based on the parameter estimate from the R.L.S. algorithm, we in-
troduce the process model or one-step-ahead predictor

ŷ(t + 1 | t) = E
[
y(t + 1)

∣∣ Y(t)
]

= ϕ�(t)θ̂(t) (10)

2.1 The dual control objective

By setting µ = 0 the objective of a dual controller can be be stated as
minimizing

J∞ =
∞

∑
k=0

E
[(

y∗(t + 1 + k)− y(t + 1 + k)
)2 ∣∣ Y(t)

]
(11)

where y∗(t+ 1+ k) is the output reference. That is, at time t the objective
is to minimize future output error (y∗(t + 1 + k)− y(t + 1 + k))2, k =
0, 1, . . ., using the information gathered up to time t, Y(t). This is a fairly
standard objective in optimal control; the main challenge comes from
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the lack of a model capable of predicting future outputs y(t + 1 + k),
k = 0, 1, . . .. As noted by Feldbaum (1961b), an optimal controller must
in this case find the best trade-off between control and excitation.

The objective function (11) can be approximated in a variety of ways.
The simplest approximation is to use a one-step-ahead cost function
and then replace y(t + 1) by the model ŷ(t + 1); this gives a simple
certainty-equivalence controller. Minimization of a one-step-ahead ob-
jective without replacing y(t + 1) gives a cautious controller (meaning
less aggressive control when parameter uncertainty is high). A probing
effect appears when the horizon is of length 2 or more, meaning that in
addition to moving the output toward y∗ the control signal attempts to
reduce parameter uncertainty through excitation or probing.

3 controller

3.1 Objective reformulation

We first rewrite the objective function (11) as

J∞ = E
[(

y∗(t + 1)− y(t + 1)
)2 ∣∣ Y(t)

]

+
∞

∑
k=1

E
[(

y∗(t + 1 + k)− y(t + 1 + k)
)2 ∣∣ Y(t)

]
(12)

The first term is from here on referred to as J1; that is,

J1 = E
[(

y∗(t + 1)− y(t + 1)
)2 ∣∣ Y(t)

]
(13)

We now subtract and add the predictor (10) and get

J1 = E
[
(y∗(t + 1)− ŷ(t + 1) + ŷ(t + 1)− y(t + 1))2 ∣∣ Y(t)

]
(14)

In order to simplify the notation, the condition in the expectation is no
longer explicitly stated. The cost (14) can be expanded to

J1 = E
[(

y∗(t + 1)− ŷ(t + 1)
)2

− 2
(
y∗(t + 1)− ŷ(t + 1)

)(
ϕ�(t)θ̃(t) + v(t + 1)

)

+
(

ϕ�(t)θ̃(t)− v(t + 1)
)2 ∣∣ Y(t)

]
(15)

where θ̃(t) = θ − θ̂(t). The first of the three terms in (15) is deterministic;
the second term is zero since both

E
[
θ̃(t)

]
= E

[
θ − θ̂(t)

]
= θ̂(t)− θ̂(t) = 0 (16)
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and E[v(t + 1)] = 0. Since θ̃(t) and v(t + 1) are independent,

P(t) = E
[
θ̃(t)θ̃�(t)

]
, and r = E

[
(v(t + 1))2] (17)

we can write the third term in (15) as

ϕ�(t)P(t)ϕ(t) + r (18)

We then have that (15) can be written

J1 =
(
y∗(t + 1)− ϕ�(t)θ̂(t)

)2
+ ϕ�(t)P(t)ϕ(t) + r (19)

given Y(t). The reformulation of the first stage cost highlights the trade-
off between output control and caution, represented by the first and
second terms in (19), respectively. That is, a large P(t) matrix leads to
a reward for small signals, meaning that a cautious input reduces the
cost. Note that there are no stochastic variables in the one-step-ahead
cost (19), which means that a myopic optimal controller can be found
by minimizing J1.

In order to obtain a probing effect, we use an identical cost function
for the second time stage. That is, we set the total cost of the first two
stages to

J2 :=
1

∑
k=0

{(
y∗(t + 1 + k)− ϕ�(t + k)θ̂(t + k)

)2

+ ϕ�(t + k)P(t + k)ϕ(t + k) + r
}

(20)

The probing effect is achieved since a certain choice of input u(t) will
reduce the elements of the predicted future parameter estimate error
covariance matrix P(t + 1) such that the cost is reduced. In other words,
an input u(t) that probes or excites the system in a manner that reveals
information about the parameters and thereby reduces their estimate
uncertainty is rewarded.

The infinite horizon objective function (11) can now be approximated
in the following manner:

J∞ ≈
N−1

∑
k=0

{(
y∗(t + 1 + k)− ϕ�(t + k)θ̂(t + k)

)2

+ ϕ�(t + k)P(t + k)ϕ(t + k) + r
}

+
∞

∑
k=N

E
[(

y∗(t + 1 + k)− y(t + 1 + k)
)2 ∣∣ Y(t)

]
(21)
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Another simplification of the cost function is obtained by truncating
the horizon from infinity to some finite number N > 1. This simplified
objective function can then be written

JN :=
1

∑
k=0

{(
y∗(t + 1 + k)− ϕ�(t + k)θ̂(t + k)

)2

+ ϕ�(t + k)P(t + k)ϕ(t + k) + r
}

+
N−1

∑
k=2

E
[(

y∗(t + 1 + k)− y(t + 1 + k)
)2 ∣∣ Y(t)

]
(22)

Since we apply a model-predictive-control strategy, the minimizer
of the objective function (subject to the specified constraints) will be
found at every time instant. The solution to the problem contains an
open-loop optimal control sequence; the first input in this sequence is
applied to the plant. Hence, it can be argued that the first time stage in
the objective is the most important term.

For this reason, we approximate the second sum using the model or
predictor (10) instead of the expected value of the output and call the
approximated cost VN. We also add a cost of input usage. This gives The input cost is

missing from both
the left-hand side
and the first sum on
the right-hand side
of Equation (23) in
the published version
of this paper.

JN +
N−1

∑
k=0

w3u2(t + k) ≈

VN :=
1

∑
k=0

{(
y∗(t + 1 + k)− ϕ�(t + k)θ̂(t + k)

)2

+ ϕ�(t + k)P(t + k)ϕ(t + k) + r + w3u2(t + k)
}

+
N−1

∑
k=2

{
w2

(
y∗(t + 1 + k)− ŷ(t + 1 + k)

)2
+ w3u2(t + k)

}
(23)

where w2 and w3 are cost weights. Note that

ŷ(t + 1 + k | t) = ϕ�(t + k)θ̂(t) (24)

meaning the output is predicted over the horizon using the current
parameter estimate.

3.2 Constraints

A second contribution in our proposed algorithm is adding an adapted
version of the recursive least-squares algorithm (9) as a set of equality
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constraints in the optimization problem. We have pursued similar ap-
proaches in Heirung, Ydstie, and Foss (2012b) and Heirung, Ydstie, and
Foss (2013a), although to different ends. Adding these estimation equa-
tions gives the optimization solver a measure of how the input sequence
affects parameter estimate uncertainty through predicting future covari-
ances P(k). Before discussing the addition of the modified estimation
equations as constraints, we discuss the certainty-equivalence principle
used in our controller, as well some standard M.P.C. constraints.

Using the latest parameter estimate θ̂(t), the output predictor Equa-
tion (10) is added as a constraint at all future time instants k in the
prediction horizon as

ŷ(k + 1 | t) = ϕ̂�(k)θ̂(t), k ∈ {t, . . . , t + N − 1} (25)

Since the regressor contains predicted future outputs when k > t, we
use

ϕ̂�(k) =
[
u(k), . . . , u(k − nb + 1), −ŷ(k), . . . ,−ŷ(k − na + 1)

]� (26)

(cf. (6)) where

ŷ(i) := y(i) if i ≤ t, i ∈ {k − na + 1, . . . , k} (27)

meaning ŷ(i) is a recorded output (as opposed to a prediction) if i
corresponds to a current or past time instant.

For k = t+ 1, we set ϕ̂(k− 1) = ϕ(t), which contains past inputs and
outputs and is passed from the simulator to the optimization problem.
Note that in (27), θ̂(t) is the most recent parameter estimate produced
by the estimation algorithm (9) during simulation at time t. The predic-
tor (27) is added as an equality constraint to the optimization problem.
Since the output is predicted in this manner our controller becomes a
certainty-equivalence type M.P.C. Finally, note that θ̂(t) is a constant
in the optimization problem solved at time t; this means that (27) is a
linear equality constraint.

An M.P.C. commonly includes bounds on inputs and outputs as
inequality constraints (“box constraints”) as part of the online optimiza-
tion problem. The input bounds are formulated

umin ≤ u(k) ≤ umax, k ∈ {t, . . . , t + N − 1} (28)

The minimum and maximum values umin and umax are usually based
on either hardware limitations or similar physical constraints. Since the
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model contains unknown parameters, the constraints on the output y(t)
cannot be directly included in the optimization problem. Instead, we
simply add the bounds the predicted outputs:

ymin ≤ ŷ(k) ≤ ymax, k ∈ {t + 1, . . . , t + N} (29)

There is no guarantee that predicted outputs ŷ(k) being feasible with
respect to the bounds implies that the actual output y(t) would stay
within the limits if some open-loop optimal input sequence u∗(t), . . . , u∗(t+
N − 1) were implemented on the real process. However, since the pa-
rameter estimates improve over time, the box constraint (29) is more
likely to ensure that

ymin ≤ y(t) ≤ ymax

We now add the necessary constraints for the optimization algorithm
to have a way of predicting P(t + 1) based on its choice of u(t). Since
the future parameter estimates can not be predicted (without future
data), we add only equations (9b)–(9c) as equality constraints. We only
need P at t + 1 and hence include the equations in the form

K(t + 1) = P(t)ϕ̂(t)
(
λ + ϕ̂�(t)P(t)ϕ̂(t)

)−1 (30a)

P(t + 1) =
(

I − K(t + 1)ϕ̂�(t)
)

P(t)(1/λ) (30b)

3.3 The online optimization problem

Based on the above discussion, we can now state the full optimization
problem solved online at every time stage t:

min
u(k)

VN =
1

∑
k=0

{(
y∗(t + 1 + k)− ϕ�(t + k)θ̂(t + k)

)2

+ ϕ�(t + k)P(t + k)ϕ(t + k) + r
}

+
N−1

∑
k=2

{
w2

(
y∗(t + 1 + k)− ŷ(t + 1 + k)

)2

+ w3u2(t + k)
}

(31a)
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subject to

ŷ(k | t) = ϕ̂�(k − 1)θ̂(t), k = t + 1, . . . , t + N (31b)

K(t + 1) = P(t)ϕ̂(t)
(
λ + ϕ̂�(t)P(t)ϕ̂(t)

)−1 (31c)

P(t + 1) =
(

I − K(t + 1)ϕ̂�(t)
)

P(t)(1/λ) (31d)
umin ≤ u(k) ≤ umax, k = t, . . . , t + N − 1 (31e)
ymin ≤ ŷ(k) ≤ ymax, k = t + 1, . . . , t + N (31f)

An important consequence of the nonlinear equality constraints (31c)–
(31d), which represent the estimation algorithm, is that the optimization
problem becomes a nonconvex nonlinear programming (N.L.P.) prob-
lem.

The optimization problem has a number of variables fixed; the val-
ues of ϕ(t) (except for u(t)), θ̂(t), and P(t) are all passed from the
simulation to the optimization algorithm and are fixed parameters in
the optimization problem. Note that ϕ(t + 1) being fixed implies that
y(t), . . . , y(t − na) and u(t), . . . , u(t − nb) are all given and fixed in the
N.L.P. problem. This means that the controller is neither output nor
state feedback; rather, we have feedback from a hyperstate containing
the current output y(t), the parameter estimates θ̂(t), the covariance
matrix P(t), as well as a history of inputs and outputs.

4 implementation

Our implementation of the algorithm in written in matlab and gams
(GAMS Development Corporation, 2012) with ipopt (Cervantes et al.,
2000) as the N.L.P. solver for the online optimization problem. ipopt
is a state-of-the-art open-source interior-point N.L.P. solver, which ex-
ploits the sparsity of the N.L.P. and is capable of solving large-scale
problems. The system is simulated in matlab; gams is called at ev-
ery iteration and returns a (locally) open-loop optimal input sequence
u∗(t), . . . , u∗(t + N − 1). The example runs on a standard laptop com-
puter and the optimization problems are solved reasonably fast with
solution times ranging from 0.21 to 1.04 C.P.U. seconds. The implemen-
tation is not written with a focus on speed of execution.
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5 application example

As an application example we consider a tank containing a solution of
salt dissolved in water. Let y(t) be the amount of salt in the tank, V(t)
be the volume of solution in the tank, and cout(t) = x(t)/V(t) be the
concentration in the tank. A solution with constant known concentration
cin flows into the tank at a rate qin(t) = k1u(t) where u(t) ∈ [0, 1] is a
valve setting and k1 is an unknown constant. Solution flows out of the
tank at a constant unknown rate qout and with variable concentration
cout(t).

This system can be modeled with the linear first-order differential
equation

ẏ = −qout

V
y(t) + cink1u(t) (32)

A sketch of the system is shown in Figure 1.

V(t)

cout(t) =
y(t)
V(t)

cout(t)

cin
qin(t)

qout

u(t)

y(t)

Figure 1: Sketch of the mixture example problem.

We can discretize Equation (32) to obtain a discrete-time equation of
the form

y(t) = −a1y(t − 1) + b1u(t) (33)

We want to control the inlet flow rate to keep the concentration at y∗

while identifying the unknown parameters (a1 and b1 in Equation (33)).
In the numerical example we use the following parameter values:

y∗ = 2.5, y(0) = 2.00, a1 = −0.60, b1 = 5.50, â1(0) = −0.10, b̂1(0) =
0.00, P(0) = 1 × 103 I, N = 6, w2 = 1.00 × 10−2, w3 = 1.00, umin = 0,
umax = 1, ymin = 0, ymax = 10; the system is simulated for 10 time steps
and no noise is used in the simulation.
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The results are presented in Figure 2. The most significant result is
that the Dual M.P.C. generates a control input that probes or excites
the system, even though the output error is very small at t = 0. The
probing leads to both parameter estimates converging in 2 time steps;
the diagonal elements of the covariance matrix decrease accordingly.
The output exhibits some oscillation due to the probing, but settles fairly
quickly close to the reference of 2.5. The figure also contains results
from applying a certainty-equivalence (C.E.) M.P.C. to the same control
problem. The initial input gain estimate is zero (b̂1(0) = 0), which
causes the C.E. M.P.C. to generate a zero-input since the system appears
uncontrollable. This again leads to a complete lack of information about
the input gain and the situation is never resolved. This problem is
avoided by the Dual M.P.C. since it knows that excitation is necessary
for good future performance.

6 conclusions and future work

We present a new model predictive controller exhibiting dual features
in that it actively probes the system for information when the parameter
estimates are poor. The main contribution is that the cost function is
based on an exact reformulation of the output error for the first time
step. This resulting expression is also used for the second stage cost and
provides the probing reward in the cost function. The objective function
is evaluated by the N.L.P. solver with the help of constraints based on a
recursive least-squares algorithm for parameter estimation.

Future work includes extending the controller to larger systems with
more unknown parameters as well as developing a version that can
handle time-varying parameters. The algorithm will also be extended to
multivariable systems. Analysis of stability and convergence properties
will be investigated at a later point in time. We will also analyze the
nonconvexity of the optimization problem and investigate the effect of
finding the global solution.

The trade-off between an update constraint for R(t + 1) with a more
complicated objective function and the update constraint for P(t + 1)
and a simpler objective function (done here) in the N.L.P. will be the
topic of a future paper.



6 conclusions and future work 93
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Figure 2: Results from the numerical example. Results obtained with our Dual
M.P.C. are in solid blue and results from using a standard certainty-
equivalence (C.E.) M.P.C. are in dashed red. The input gain is initially
estimated to be zero, causing the C.E. M.P.C. to fail; the Dual M.P.C.
excites the system and overcomes the problem.
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foreword

This paper is based on ideas similar to those used to derive the semi-
exact dual controller in Paper B. We here consider orthonormal-basis-
function (O.B.F.) models instead of autoregressive processes with exoge-
nous input (A.R.X.), which enables exact reformulation into determinis-
tic form. The concept of future information is also formalized, and we
include probabilistic output constraints in the deterministic formulation.
The reformulation allows several interesting insights, in particular how
nominal control and uncertainty reduction must be combined to obtain
the dual control. We further reformulate the problem to a quadratically-
constrained quadratic program to facilitate fast solution. Some of the
ideas that form the foundation for this paper were presented in simpler
form for finite-impulse-response (F.I.R.) systems, without comprehen-
sive proofs, in Heirung, Ydstie, and Foss (2015c).

abstract

We present an adaptive dual model-predictive controller (D.M.P.C.) that
uses current and future parameter-estimate errors to minimize expected
output error by optimally combining probing for uncertainty reduction
with nominal control. Our novel approach relies on orthonormal-basis-
function models to derive expressions for the predicted distributions
for the output and unknown parameters, conditional on the future in-
put sequence. Propagating the exact future statistics allows us to refor-
mulate the original stochastic problem into a deterministic equivalent
that illustrates the dual nature of the optimal control but is nonlin-
ear and nonconvex. We further reformulate the nonlinear determinis-
tic problem to pose an equivalent quadratically-constrained quadratic-
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programming (Q.C.Q.P.) problem that we solve efficiently using state-
of-the-art algorithms, providing the exact solution to the probabilisti-
cally constrained finite-horizon dual control problem. We implement
the adaptive D.M.P.C. by solving the Q.C.Q.P. at each sampling time in
a receding-horizon fashion; the adaptation is a result of updating the pa-
rameter estimates used by the D.M.P.C. to decide the control input. We
demonstrate the application of D.M.P.C. to a single-input single-output
(siso) system with unknown parameters. In the simulation example, the
parameter estimates converge quickly and the excitation vanishes with
increasing accuracy and precision of the estimates.

1 introduction

This paper addresses the problem of optimal control and learning in
the context of stochastic systems with parametric uncertainty and prob-
abilistic constraints. Dual control, as introduced by Feldbaum (1961b),
is the optimal control under decision-relevant, reducible uncertainty.
This control has dual tasks in that it must explore (or excite) the system
in order to generate informative data that can reduce the uncertainty
while simultaneously directing the outputs toward the reference signal.

Using data to progressively reduce uncertainty is often framed as
a learning process. Learning in control has primarily been studied in
the field of adaptive control, which in general involves adjusting the
controller parameters based on observation of the uncertain system’s
response to the input (Åström and Wittenmark, 1995). Most adaptive
control algorithms are passively adaptive in the sense that learning
takes place only as a side effect of the control action and is not actively
pursued. This means that the controller learns from normal operat-
ing data, which can contain very little information if, for instance, the
process is operating at a steady state. The data can be made more in-
formative by actively perturbing the process, also known as excitation
(Mareels, Bitmead, et al., 1987), probing (Bar-Shalom, 1981), experimen-
tation (Gevers and Ljung, 1986), exploration (Sutton and Barto, 1998), or
active learning (Tse and Bar-Shalom, 1973). Any adaptive controller that
is designed to increase the information content in the generated data
(or increase the level of excitation), and thus in some sense improve
learning, can be classified as an actively adaptive controller. An early
example of one such algorithm was developed by Tse and Bar-Shalom
(1973). Although the most immediate motivation for active learning is
improved performance, this is not necessarily achieved, for instance,
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if the design leads to excessive excitation. Active learning can also be
motivated by the goal of inferring a more accurate and precise estimate
of physical parameters, or more generally, finding model parameters
that better fit the data.

Adaptive model-predictive control M.P.C. has received relatively lit-
tle attention in the literature (Mayne, 2014). As with most types of
adaptive control, adaptive M.P.C.s may suffer from signals that are
insufficiently exciting for the controller or model parameters to con-
verge, which may lead to problems such as bursting (Anderson, 1985),
pole-zero cancellations or inadmissible models (Mareels and Polder-
man, 1996), and turn-off (Wieslander and Wittenmark, 1971). One way
of approaching this issue is to design a controller that actively explores
the plant by ensuring a certain level of excitation, either constantly or
when needed.

Shouche, Genceli, Vuthandam, et al. (1998) combined M.P.C. with
system identification for autoregressive systems with an exogenous
input (A.R.X. systems) and added a constraint to the controller that
ensures persistent excitation for improved identification. Marafioti, Bit-
mead, and Hovd (2014) presented a related approach for systems with
a finite impulse response (F.I.R.), but accounted for the input history
and required only the first predicted output be persistently exciting.
Similarly, Larsson, Rojas, et al. (2015) developed an M.P.C. for output-
error models that guarantees a specified performance level through the
addition of an experiment-design constraint that ensures sufficiently
rich signals for model re-identification. Common to these approaches
is the requirement that future signals generate a prescribed minimum
amount of information or excitation, leading to a constant level of exci-
tation which may be unnecessary in some cases.

Several proposed controllers generate excitation without a specific
requirement. Rather, they include a function of information or uncer-
tainty in the M.P.C. cost function and optimize this function together
with standard control objectives. Heirung, Foss, and Ydstie (2015) pro-
posed and compared two such formulations, one minimizing a function
of parameter-estimate variance and one maximizing a function of gen-
erated information, and showed that both controllers converge to a
standard adaptive certainty-equivalence M.P.C. as the uncertainty is re-
duced, but that the excitation can lead to improved performance. Weiss
and Di Cairano (2014) developed a robust M.P.C. for polytopic linear dif-
ference inclusion models that rewards informative signals through the
addition of a cost term that increases with the prediction error, result-
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ing in diminishing excitation reward with decreasing prediction errors.
Tanaskovic et al. (2014) suggest the addition of an exploring property as
a possible extension of their adaptive M.P.C. for finite-impulse-response
(F.I.R.) systems. Their approach involves modifying the nominally op-
timal input sequence by solving a second-stage optimization problem
with the objective of decreasing the set of possible models at the next
time step. Common to all of these approaches is that the excitation is
a consequence of either a heuristic modification or addition to the con-
troller, motivated by the assumption that the resulting excitation will
improve overall performance. While this type of algorithm may work
very well in practice and improve performance over passive-learning ap-
proaches (see Heirung, Foss, and Ydstie (2015)), the excitation does not
implicitly arise as a consequence of directly optimizing for performance,
which is the case for “ideal” dual control in the sense of Feldbaum
(1961b). That is, these approaches are all suboptimal or approximate
dual controllers by definition, and they illustrate an important distinc-
tion: superimposing excitation on a nominally optimal control signal
does not produce the true optimal input, and hence does not give a
dual control.

The act of exciting the process is often seen as conflicting with the
control objective (see, e.g., Tse and Bar-Shalom (1973)); however, based
on the derivations in this article we argue that this is not a correct
interpretation and show that excitation is an intrinsic part of the opti-
mal control. That excitation is an inextricable part of the input in dual
control means it cannot be derived or rewarded heuristically. Further-
more, the excitation and the nominal output error-minimization are
not conflicting goals that can be traded off against each other; rather,
they are inseparable components that together constitute the optimal
control. Uncertainty reduction cannot be sacrificed for increased control
performance.

Feldbaum (1961b) identified (stochastic) dynamic programming as
an appropriate solution method for dual control problems in his pio-
neering papers on integrating active learning with multistage decision
making under uncertainty, providing a foundation for much of the later
work in stochastic adaptive control. Åström and Helmersson (1986) use
solve a dual control problem for a scalar integrator with one unknown
parameter, which is among the first reported results obtained with nu-
merical dynamic programming. At the time, they spent 180 C.P.U. hours
to obtain the solution using a time horizon of 30 samples (Åström, 1983).
Although today’s computers are far superior, the “curse of dimension-
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ality” prevents dynamic programming from being a viable solution
approach for dual control problems. This has motivated investigation of
the use of modern approximate methods such as approximate dynamic
programming (Lee and Lee, 2009) and forward dynamic programming
with particle filtering (Bayard and Schumitzky, 2010). These methods
directly approximate the dynamic programming equations rather than
coming up with an approximate formulation of the problem.

The optimal strategy for control of systems with resolvable, decision-
relevant uncertainty is dual control. This definition, however, is only
meaningful for developing algorithms provided the true system can be
modeled perfectly. From the mid-1970s, the field of system identifica-
tion increasingly abandoned the notion of a model set that contains the
true system in favor of the more realistic goal of finding the “best ap-
proximate model” (Gevers, 2006). A better definition of the dual control,
which is the definition we use in this work, is then the optimal control
with respect to an a priori chosen model set with resolvable, decision-
relevant uncertainty. As with all types of optimal control, the extent to
which a dual-control algorithm is able to imitate the optimal strategy
is limited by the veracity of the model set, including the assumptions
made on parameter uncertainty, if it exists. We thus distinguish between
two definitions of dual control: the one that is optimal with respect to
the chosen model set, defined above, and the one obtainable with a
yet-to-be-invented algorithm combined a with model set that contains
the true system and perfectly captures the uncertainty. Although the
latter represents the most perfect (and unobtainable) form of dual con-
trol, we call the former “ideal” dual control in order to distinguish it
from an approximate dual control policy obtained, for instance, through
approximation of the Bellman equation. While the importance of this
distinction may depend on the problem at hand, it is of particular inter-
est when using dual control with data-driven models but also relevant
for high-fidelity models based on first principles. Note that in the sim-
ulation examples we present to demonstrate the dual controller we
develop, the true system is in fact contained in the model set.

In this article we derive an adaptive dual M.P.C. (D.M.P.C.) for sys-
tems modeled with orthonormal basis functions with parametric un-
certainty and process noise. We formulate a stochastic optimal-control
problem for minimizing expected performance cost, which involves the
use of future information to evaluate the conditional expected future
tracking error. We transform this stochastic problem into an equivalent
deterministic form that enables exact evaluation of both the objective
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function and the probabilistic output constraints. This reformulation
demonstrates that a particular form of uncertainty reduction is a nec-
essary part of optimizing performance and provides insight into how
the uncertainty must be reduced. The reformulation relies on the fu-
ture decisions to propagate the exact conditional distributions over the
prediction horizon, meaning the learning outcome of the input can be
exactly evaluated. Consequently, the solution to the problem is an input
sequence that provides optimal expected performance by combining
excitation with control of the nominal output. We transform this prob-
lem into a quadratically-constrained quadratic-programming (Q.C.Q.P.)
problem that can be solved efficiently using state-of-the-art solvers. At
every sampling time we use the updated conditional distribution for
the unknown parameters and solve the optimal-control problem over
a finite horizon to obtain the dual control. The controller is therefore
of indirect-adaptive receding-horizon type. The proposed D.M.P.C. en-
sures that the system is sufficiently excited for accurate and precise
parameter estimation but does not require a persistently exciting input.
The excitation term in the deterministic formulation of the dual objec-
tive can be interpreted as a time-varying L-optimal experiment design
criterion (see Gevers, Bombois, et al. (2011)).

In addition to providing the foundation for a practical algorithm
for dual control, the results clarify aspects of the dual control problem.
Most importantly, our reformulated objective function answers the ques-
tion of how to formulate excitation and output tracking objectives that
when minimized together result in optimal expected tracking. The refor-
mulation also demonstrates how the two objectives are not conflicting,
and that it is not optimal to eliminate all uncertainty. For the systems
we consider here, the dual control is obtained by minimizing a unique
combination of two specific functions of nominal output-tracking error
and parameter-estimate variance. Minimizing a different combination
of two functions of nominal output error and parameter-estimate vari-
ance does not give dual control, although the resulting control may
achieve almost the same performance in some cases. The reformulated
objective can furthermore guide the design of approximate or subopti-
mal dual controllers for systems where we cannot derive deterministic
expressions for the stochastic objective function. Some of the results in
this article are generalizations of the work of Heirung, Ydstie, and Foss
(2015c), a portion of which are given there without proof. Primarily,
we here consider a more general system type and allow probabilistic
output constraints.
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This article is organized as follows: we formulate the stochastic con-
trol problem in Section 2. In Section 3 we review and develop the statisti-
cal foundation needed for parameter estimation, for the control problem
reformulations, and for propagating the necessary moments of the sys-
tem output and unknown parameters; we then formulate the stochastic
optimal-control problem (P). The main contributions of the paper are
in Section 4, where we state and prove a set of theorems and corollaries
that are necessary to reformulate the stochastic optimal-control problem
as the equivalent deterministic form (P′) and subsequently transform
this formulation into the Q.C.Q.P. problem (P′′). Section 5 contains the
dual control algorithm, followed by a simulation example in Section 6.
We provide a brief discussion of the results in Section 7. In Section 8 we
conclude the paper and provide some thoughts for future work.

2 formulation of the dual control problem

We consider the output tracking problem for a class of systems that can
be written in the form

ϕ(t + 1) = Aϕ(t) + Bu(t) (1a)

y(t) = θ�ϕ(t) + v(t) (1b)

where ϕ(t) is a deterministic regression vector whose elements are
functions of past control inputs (deterministic decision variables) u, and
A ∈ Rnp×np and B ∈ Rnp are known matrices determined by the basis
functions. The variable y(t) is the plant output and v(t) an additive, sta-
tionary process disturbance assumed to be a sequence of independent
and identically distributed Gaussian random variables with zero mean
and variance r. The vector θ ∈ Rnp contains the unknown parameters,

θ =
[
θ1, θ2, . . . , θnp

]� (2)

where {θj}np
j=1 are drawn from a multivariate Gaussian distribution at

time t = t0 with mean θ̂(t0) and covariance P(t0). The model (1b)
is often referred to as a linear regression. Note that if some of the
parameters in Equation (1b) are known we can write

y(t) = θ�ϕ(t) + v(t) + µ(t − 1) (3)

where µ(t − 1) is known at time t.
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The system (1) is a linear, time-invariant, single-input, single-output
(siso) system, and the formulation here includes systems modeled
by orthogonal basis functions (O.B.F.s). Heuberger, Van den Hof, and
Wahlberg (2005) provide a comprehensive overview of models based on
O.B.F.s. The most well-known member of this class is the F.I.R. model;
other common formulations include the Laguerre (Wahlberg, 1991) and
Keutz (Wahlberg, 1994) models; see also Wahlberg and Mäkilä (1996),
as well as Finn, Wahlberg, and Ydstie (1993) for a combination of the
F.I.R. and Laguerre structures. Appendix A3 contains some examples
of the A and B matrices for specific model types. We assume that the
pair (A, B) in the system (1) is controllable and stabilizable.

A standard definition of information recorded up to and including
time t is the set of all past decisions and measurements:

Y(t) =
{

u(t), u(t − 1), . . . , u(t0), y(t), y(t − 1), . . . , y(t0)
}

(4)

We use this to define the parameter estimate

θ̂(t) := E
[
θ | Y(t)

]
=

[
θ̂1(t), . . . , θ̂np(t)

]�

and the parameter-estimate-error covariance matrix P(t) := E
[
θ̃(t)θ̃�(t) |

Y(t)
]

with θ̃(t) := θ − θ̂(t). The definition of information in Equation (4)
may also include the initial values for the parameter estimates and the
covariances, θ̂(t0) and P(t0). Let {u(k | t)}t+N−1

k=t be a sequence of future
control inputs decided at time t; the decision u(k | t) may later change,
so note that in general, u(k | t′) �= u(k | t) with k ≥ t′ ≥ t + 1. Note that
we have k ≥ t unless otherwise noted. The output predictor is

ŷ(k + 1 | t) = E
[
y(k + 1)

∣∣ Y(t)
]
, k ≥ t

= θ̂�(t)ϕ(k + 1 | t) (5)

where ϕ(k | t) is the decision regressor defined such that

ϕ(k + 1 | t) = Aϕ(k | t) + Bu(k | t), k ≥ t (6)

where ϕ(t | t) := ϕ(t) and u(t | t) := u(t).
The results in this work depend on extending the definition of Y(t)

to include future decisions (first introduced by Heirung, Ydstie, and
Foss (2015c)). We define

Y(k | t) =
{

u(k | t), u(k−1 | t), . . . , u(t+1 | t), u(t | t)︸ ︷︷ ︸
anticipated information, k≥t

,

u(t−1), u(t−2), . . . , u(t0), y(t), y(t−1), . . . , y(t0)︸ ︷︷ ︸
past information

}
(7)
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Note that the future input sequence {u(i | t)}i=k
i=t consists of exogenous

decisions and is deterministic, in contrast to other predicted variables
that are subject to uncertainty, such as the predicted outputs ŷ(k | t)
that are based on Y(t) (see Equation (5)). Hence, Y(k | t) contains no in-
formation from the plant beyond time t. Similarly, the future regressors
ϕ(k | t) in Equation (6) contain deterministic decisions only, as opposed
to uncertain signals like future plant outputs or noise terms.

We define the finite-horizon performance cost

JN(t) =
t+N−1

∑
k=t

{
E
[
(y(k + 1)− y∗(k + 1 | t))2 ∣∣ Y(k | t)

]

+ w2u2(k | t) + w3(∆u(k | t))2} (8)

where 1 ≤ N ≤ ∞ is the length of the prediction horizon, y∗(k + 1 | t) is
the output reference sequence at time t, ∆u(k | t) := u(k | t)− u(k − 1 |
t) is the control input change, with u(t − 1 | t) := u(t − 1), and w2 ≥ 0,
w3 ≥ 0 are tuning weights. Since JN may be unbounded for an infinite
horizon length, we use only finite N in this paper. Note that we take
the conditional expectation of the squared output-tracking error with
respect to the future decision sequence. If we use only the current
information Y(t) we obtain the output cost

t+N−1

∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1 | t))2 + ϕ�(k + 1 | t)P(t)ϕ(k + 1 | t) + r

}
(9)

as a special case of (8). This cost function does not reward excitation
since the future parameter covariances are not included; see Theorem 6
and the discussion in Appendix A2. The inclusion of P(t) does pro-
vide a rationale for caution, or a form of robustness with respect to
parameter-estimate errors, since large uncertainties heavily penalize
current and future inputs u(k | t), k ∈ {t, t + 1, . . . , t + N − 1}. How-
ever, this formulation does not anticipate information and as a result
the controller does not excite the system to reduce future uncertainty.
Hence, there is no dual effect. In contrast, the objective function we
develop in this paper takes future decisions into account and as result
captures the dual nature of the optimal control.

We want to minimize JN(t) in (8) subject to a set of constraints.
The outputs and the decision variables are given by the model (5)–(6).
We further specify probabilistic output constraints and deterministic
bounds on the magnitude and rate of change of the inputs. The resulting
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moving-horizon stochastic optimal-control problem we solve at time t
is

min JN(t) (P.a)
subject to

ϕ(k + 1 | t) = Aϕ(k | t) + Bu(k | t) (P.b)

ŷ(k + 1 | t) = θ̂�(t)ϕ(k + 1 | t) (P.c)
Pr[ymin ≤ y(k + 1) | Y(k | t)] ≥ py,min (P.d)
Pr[y(k + 1) ≤ ymax | Y(k | t)] ≥ py,max (P.e)
umin ≤ u(k | t) ≤ umax (P.f)
∆u(k | t) = u(k | t)− u(k − 1 | t) (P.g)
∆umin ≤ ∆u(k | t) ≤ ∆umax (P.h)
k ∈ {t, t + 1, . . . , t + N − 1} (P.i)

ϕ(t | t), u(t − 1 | t), θ̂(t), P(t) given (P.j)

where ϕ(t | t) = ϕ(t), u(t − 1 | t) = u(t − 1). Furthermore, Pr[ymin ≤
y(k + 1) | Y(k | t)] and Pr[y(k + 1) ≤ ymax | Y(k | t)] are the probabili-
ties, conditioned on Y(k | t), that the predicted outputs stay above ymin
and below ymax, respectively, and py,min, py,max ∈ (0, 1) are the specified
constraint satisfaction probabilities. Hence, the constraints (P.d)–(P.e)
are probabilistic (chance) constraints on the output. The stochastic pro-
gramming problem is solved with θ̂(t), ϕ(t), u(t − 1), and P(t) as pa-
rameters; the solution includes an optimal sequence of predicted control
inputs {uo(k | t)}t+N−1

k=t .
We now describe the evolution and prediction of the parameter-

estimate statistics at each time t and then discuss a how we evaluate
the objective function JN(t) and the chance constraints (P.d)–(P.e) to
transform (P) into a tractable, deterministic problem for N < ∞.

3 uncertainty propagation, parameter statistics , and es-
timation

With the class of systems we consider here, in which the regressor ϕ(t) is
deterministic, we can formulate the following theorem for propagation
of the parameter statistics.



3 uncertainty propagation, parameter statistics , estimation 105

theorem 1. For a system of the form (1), the conditional covariance of θ,
P(k | t), can be propagated forward in time with k ≥ t through the recursive
relations

K(k+1|t) = P(k|t)ϕ(k+1|t)(r+ ϕ�(k+1|t)P(k|t)ϕ(k+1|t))−1 (10a)

P(k+1|t) =
(

I−K(k+1|t)ϕ�(k+1|t)
)

P(k|t) (10b)

given Y(k | t).

Proof. The proof of Theorem 1 is identical to a textbook proof of the
Kalman Theorem (see Åström and Wittenmark (1995)), except we here
state the result for future time. The equivalence follows from the de-
terministic nature of Y(k | t) and the fact that ϕ(k | t) is a function of
Y(k | t), which means that K(k | t) and P(k | t) are deterministic for
k ≥ t given the recorded outputs and the past and deterministic future
decisions in Y(k | t).

For the systems we consider here, P(t), the covariance of θ at time t
given Y(t), becomes as a special case of P(k | t) in Equation (10b). With
Y(t) available we can also determine the conditional mean θ̂(t). These
two quantities fully describe the temporal evolution of the conditional
distribution of θ at time t, as described in the following theorem.

theorem 2. For a system of the form (1), the conditional distribution of
θ given Y(t) is Gaussian with mean θ̂(t) and covariance P(t) satisfying the
recursive equation set

θ̂(t) = θ̂(t − 1) + K(t)
(
y(t)− θ̂�(t − 1)ϕ(t)

)
(11a)

K(t) = P(t − 1)ϕ(t)
(
rλ + ϕ�(t)P(t − 1)ϕ(t)

)−1 (11b)

P(t) =
(

I − K(t)ϕ�(t)
)

P(t − 1)(1/λ) (11c)

with λ = 1 and the initial conditions θ̂(t0) and P(t0).

Proof. The proof is found many standard texts on stochastic and adap-
tive control; see, e.g., Åström and Wittenmark (1995).

Note that with λ = 1 the equation set (11) can be interpreted as a
Kalman filter for estimating the state of a system with the constant state
variable θ (no dynamics and no process noise) and output equation (1b).

We now derive (after Ljung (1999)) a standard recursive least-squares
algorithm for estimating θ using past data. Let R(t) be the information
matrix

R(t) =
t

∑
k=t0+1

r−1
R λt−k ϕ(k)ϕ�(k) + r−1

R λt−t0 R(t0), t > t0 (12)
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with the forgetting factor λ ∈ (0, 1] and R(t0) = P−1(t0) given; rR = r
when r �= 0 and rR = 1 when r = 0. R(t) is better expressed recursively,
as

R(t) = λR(t − 1) + r−1
R ϕ(t)ϕ�(t), t > t0 (13a)

We can now update the conditional mean (the parameter estimate) θ̂(t)
according to

θ̂(t) = θ̂(t − 1) + R−1(t)ϕ(t)
(
y(t)− θ̂�(t − 1)ϕ(t)

)
(13b)

The inverse of the information matrix R(t) is the covariance matrix P(t).
Instead of calculating the inverse P(t) = R−1(t) at every time t we
update the least squares parameter estimate recursively using (11) as an
estimation procedure where we set r = rR. The equation set (11) can be
derived directly from (13) using the matrix-inversion lemma (see Ljung
(1999)).

Note the possibility of bias in the parameter estimate θ̂(t) when
using the algorithm for identification under closed-loop control. The
issue of possible bias is beyond the scope of this paper, although suf-
ficiently complex controllers should in general allow experiments that
generate enough information to eliminate bias (Ljung, 1999). Van den
Hof, Heuberger, and Bokor (1995) analyze bias and variance errors in
system identification with generalized orthonormal basis functions.

4 reformulation to a deterministic Q.C.Q.P.

The process (1) belongs to a class of systems in which the output is
dependent on past inputs but not past outputs. This means the future
regressors are deterministic since they do not contain future outputs,
which are stochastic variables. We have the freedom to choose the fu-
ture decisions, meaning we effectively decide Y(k | t) for any k ≥ t. As
demonstrated above, the future covariances P(k | t) are deterministic
functions of these deterministic future inputs. The following theorem,
which we use to reformulate the optimal-control problem (P), is a con-
sequence of this feature.

theorem 3. For a stochastic process of the form (1),

E
[
y2(k + 1) | Y(k | t)

]
= ŷ2(k + 1 | t)

+ ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r (14)

for all k ≥ t.
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Proof. From the definition of variance,

E
[
y2(k + 1)

∣∣ Y(k | t)
]
= E

[(
θ�ϕ(k + 1) + v(k + 1)

)2 ∣∣ Y(k | t)
]

(15)

Expanding the square gives

E
[
y2(k + 1)

∣∣ Y(k | t)
]
= E

[
ϕ�(k + 1)θθ�ϕ(k + 1)

+ v2(k + 1) + 2v(k + 1)θ�ϕ(k + 1)
∣∣ Y(k | t)

]
(16)

Since ϕ(k + 1) is deterministic, this reduces to

E
[
y2(k + 1)

∣∣ Y(k | t)
]

= ϕ�(k + 1 | t)E
[
θθ�

∣∣ Y(k | t)
]
ϕ(k + 1 | t)

+ E
[
v2(k + 1)

∣∣ Y(k | t)
]

+ 2 E
[
v(k + 1)θ�

∣∣ Y(k | t)
]
ϕ(k + 1 | t) (17)

where the second term is the variance of the noise, r, and last term is
zero since v(k + 1) and θ are uncorrelated. Using Theorem 5, we then
have

E
[
y2(k + 1)

∣∣ Y(k | t)
]
= ϕ�(k + 1 | t)

(
θ̂(t)θ̂�(t)
+ P(k | t)

)
ϕ(k + 1 | t) + r (18)

which after expanding the parenthesis can be written

E
[
y2(k + 1)

∣∣ Y(k | t)
]
=

(
θ̂�(t)ϕ(k + 1 | t)

)2

+ ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r (19)

Inserting the model (5) for θ̂�(t)ϕ(k + 1 | t) completes the proof.

The following corollary extends Theorem 3 to tracking of a time-
varying output reference y∗(t).

corollary 1. For a stochastic process of the form (1),

E[(y(k + 1)− y∗(k + 1 | t))2 | Y(k | t)]

= (ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ ϕ�(k + 1 | t)P(t)ϕ(k + 1 | t) + r (20)

for all k ≥ t.
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Proof. We have that

E
[
(y(k + 1)− y∗(k + 1 | t))2 | Y(k | t)

]

= E
[
y2(k + 1)− 2y(k + 1)y∗(k + 1 | t)

+ (y∗(k + 1 | t))2 | Y(k | t)
]

= E
[
y2(k + 1) | Y(k | t)

]
− 2 E

[
y(k + 1) | Y(k | t)

]
y∗(k + 1 | t)

+ (y∗(k + 1 | t))2 (21)

Using Theorem 3, we can write

E
[
(y(k + 1)− y∗(k + 1 | t))2 | Y(k | t)

]

= ŷ2(k + 1 | t) + ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r
− 2ŷ(k + 1 | t)y∗(k + 1 | t) + (y∗(k + 1 | t))2

= (ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r (22)

which is the desired result.

We now define the future conditional output variance σ2
y (k + 1 |

t) := E
[
(y(k + 1) − ŷ(k + 1 | t))2

∣∣ Y(k | t)
]
; the following corollary

follows from Theorem 3 and states the explicit expression for the output
variance at time k predicted at time t (k ≥ t).

corollary 2. For a stochastic process of the form (1), the future output
variance σ2

y (k + 1 | t) predicted at time t is

σ2
y (k + 1 | t) = ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r (23)

for all k ≥ t given Y(k | t).

Proof. We let σ2
y (k + 1 | t) denote the anticipated conditional output

variance and by definition have that

σ2
y (k + 1 | t) = E

[
(y(k + 1)− ŷ(k + 1 | t))2 ∣∣ Y(k | t)

]

= E
[
y2(k + 1) | Y(k | t)

]
− ŷ2(k + 1 | t) (24)

which follows from expanding the square and collecting the terms in the
same manner as in the proof of Lemma 1. The expression for σ2

y (k+ 1 | t)
is then obtained directly from Theorem 3.
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4.1 Evaluating the objective function

Corollary 1 allows the stochastic objective (8) to be reformulated into the
equivalent deterministic function in the following theorem. We consider
this one of the main contributions of the paper.

theorem 4. For a stochastic process of the form (1), the objective function
JN(t) in Equation (8) can be written

JN(t) =
t+N−1

∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r

+ w2u2(k | t) + w3(∆u(k | t))2} (25)

Proof. This reformulation follows directly from Corollary 1.

Note that this objective function rewards probing (excitation) pro-
vided N ≥ 2, since P(t | t) = P(t) is not a variable, but rather a
parameter or initial condition. On the other hand, P(t + 1 | t) is a vari-
able that represents the covariance one step ahead, which has to be
included if a reduction of uncertainty is to be rewarded.

4.2 Evaluation of the chance constraints

We now transform the probabilistic constraints (P.d)–(P.e) into determin-
istic form using Corollary 2. From Åström and Wittenmark (1995) and
implied from Theorem 2 we know that the conditional distribution of
y(t + 1) given Y(t) is Gaussian with mean and variance

ŷ(t + 1) = θ̂�(t)ϕ(t + 1) (26a)

σ2
y (t + 1) = ϕ�(t + 1)P(t)ϕ(t + 1) + r (26b)

Similarly, the future conditional distribution of y(k + 1) given Y(k | t),
k ≥ t, is Gaussian with mean

ŷ(k + 1 | t) = θ̂�(t)ϕ(k + 1) (27a)

and covariance

σ2
y (k + 1 | t) = ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r (27b)

which follows from Corollary 2.
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Hence, the constraint

Pr[ymin ≤ y(k + 1) | Y(k | t)] ≥ py,min (P.d)

is equivalent to the deterministic constraint

ymin ≤ ŷ(k + 1 | t)− sminσy(k + 1 | t) (28)

where Φ(smin) = py,min and Φ is the cumulative distribution function
(C.D.F.) for the standard normal distribution. Similarly,

Pr[y(k + 1) ≤ ymax | Y(k | t)] ≥ py,max (P.e)

corresponds to

ŷ(k + 1 | t) + smaxσy(k + 1 | t) ≤ ymax (29)

where Φ(smax) = py,max. The parameters smin and smax are determined
once and offline.

Taken together, the probabilistic constraints (P.d)–(P.e) can be written
in deterministic form as

ymin + sminσy(k + 1 | t) ≤ ŷ(k + 1 | t) ≤ ymax − smaxσy(k + 1 | t) (30)

Note that specifying py,min = py,max = 0.5 simplifies the control
problem since the chance constraints then are linear. This is because
Φ(s = 0) = 0.5, which renders the quadratic variance expression (27b)
superfluous since the constraints in this case correspond to requiring
that the output means ŷ(k + 1 | t) stay within the bounds.

Extending this formulation to time-varying probabilities py,min(k | t)
and py,max(k | t) is trivial. The only change required is that a larger
number of equations Φ(smin(k | t)) = py,min(k | t) and Φ(smax(k | t)) =
py,max(k | t) must be solved once and offline.

4.3 The deterministic optimal-control problem

The objective function JN(t) in Equation (25) can now be minimized by
augmenting the constraint set of (P) with (10) from Corollary 1 and (23)
from Theorem 2, and replacing the probabilistic constraints (P.d)–(P.e)
with the deterministic equivalents (28)–(29). The result is a deterministic
optimal-control problem that is equivalent to (P):

min JN(t) (P′.a)
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subject to
ϕ(k + 1 | t) = Aϕ(k | t) + Bu(k | t) (P′.b)

ŷ(k + 1 | t) = θ̂�(t)ϕ(k + 1 | t) (P′.c)

σ2
y (k + 1 | t) = ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t) + r (P′.d)

K(k + 1 | t) = P(k | t)ϕ(k + 1 | t)
×

(
rR + ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t)

)−1 (P′.e)

P(k + 1 | t) =
(

I − K(k + 1 | t)ϕ�(k + 1 | t)
)

P(k | t) (P′.f)
ŷ(k + 1 | t) ≥ ymin + sminσy(k + 1 | t) (P′.g)
ŷ(k + 1 | t) ≤ ymax − smaxσy(k + 1 | t) (P′.h)
umin ≤ u(k | t) ≤ umax (P′.i)
∆u(k | t) = u(k | t)− u(k − 1 | t) (P′.j)
∆umin ≤ ∆u(k | t) ≤ ∆umax (P′.k)
k ∈ {t, t + 1, . . . , t + N − 1} (P′.l)

ϕ(t | t), u(t − 1 | t), θ̂(t), P(t | t), smin, smax given (P′.m)

where ϕ(t | t) = ϕ(t), u(t − 1 | t) = u(t − 1), and P(t | t) = P(t). The
constraints (P′.c)–(P′.d) and (P′.e)–(P′.f) deterministically propagate the
complete statistics (the two first moments) of the system output and the
variance (the second moment) of the parameters, respectively.

Note that if the uncertainty represented by P(t) goes to zero, the for-
mulation of the output cost in the objective JN(t) in (25) converges to the
certainty-equivalence output cost (48) (except for the constant term r).
This implies that the excitation reward induced by the parameter uncer-
tainty vanishes as the uncertainty is resolved. This property highlights
the main idea of adaptive certainty-equivalence control, which is the
assumption that the parameter estimates give the correct representation
of the plant dynamics; see Åström and Wittenmark (1995).

Although the solution to (P′) exactly minimizes

JN(t) =
t+N−1

∑
k=t

{
E
[
(y(k + 1)− y∗(k + 1 | t))2 ∣∣ Y(k | t)

]

+ w2u2(k | t) + w3(∆u(k | t))2} (8)

over the finite horizon k ∈ {t, t + 1, . . . , t + N − 1}, the feasible area
is nonconvex because of the inclusion of the nonlinear equality con-
straints (P′.e)–(P′.f) and (P′.d) for propagating the parameter variance
and output variance, respectively. This motivates investigation of refor-
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mulation approaches that facilitate solving the optimal-control problem.
We consider this reformulation the other main contribution of the paper.

4.4 Reformulation as a Q.C.Q.P.

In order to reduce the complexity of the deterministic optimal-control
problem (P′) we introduce a set of new variables. First, we define the
scaled, noise-invariant, predicted information matrix R̄(k + 1 | t),

R̄(k + 1 | t) := rRR(k + 1 | t) (31)

which is then recursively expressed as (cf. (13))

R̄(k + 1 | t) = R̄(k | t) + ϕ(k + 1 | t)ϕ�(k + 1 | t) (32)

Accordingly, the covariance matrix P(k + 1 | t) (which is positive def-
inite) can be expressed in terms of R̄(k + 1 | t) as P(k + 1 | t) =
rRR̄−1(k + 1 | t). By introducing the variable z(k | t) defined through

R̄(k | t)z(k | t) = ϕ(k + 1 | t) (33)

or equivalently z(k | t) := r−1
R P(k | t)ϕ(k + 1 | t), we write

ϕ�(k + 1 | t)P(k | t)ϕ(k + 1 | t)

= rR ϕ�(k + 1 | t)R̄−1(k | t)ϕ(k + 1 | t)

= rR ϕ�(k + 1 | t)z(k | t) (34)

Using this equation we can simplify both the objective function (25)
from Theorem 4 and the predicted output variance constraint (P′.d). Fur-
thermore, the highly nonlinear uncertainty-propagation constraints (P′.e)–
(P′.f) can be replaced with the quadratic (bilinear) equations (32) and (33).

The objective function (25) is then equivalent to

JN(t) =
t+N−1

∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ rR ϕ�(k + 1 | t)z(k | t) + r

+ w2u2(k | t) + w3(∆u(k | t))2} (35)

Accordingly, the optimal-control problem (P′) is equivalent to

min JN(t) (P′′.a)



4 reformulation to a deterministic Q.C.Q.P. 113

subject to
ϕ(k + 1 | t) = Aϕ(k | t) + Bu(k | t) (P′′.b)

ŷ(k + 1 | t) = θ̂�(t)ϕ(k + 1 | t) (P′′.c)

σ2
y (k + 1 | t) = rR ϕ�(k + 1 | t)z(k | t) + r (P′′.d)

R̄(k + 1 | t) = R̄(k | t) + ϕ(k + 1 | t)ϕ�(k + 1 | t) (P′′.e)
R̄(k | t)z(k | t) = ϕ(k + 1 | t) (P′′.f)
ŷ(k + 1 | t) ≥ ymin + sminσy(k + 1 | t) (P′′.g)
ŷ(k + 1 | t) ≤ ymax − smaxσy(k + 1 | t) (P′′.h)
umin ≤ u(k | t) ≤ umax (P′′.i)
∆u(k | t) = u(k | t)− u(k − 1 | t) (P′′.j)
∆umin ≤ ∆u(k | t) ≤ ∆umax (P′′.k)
k ∈ {t, t + 1, . . . , t + N − 1} (P′′.l)

ϕ(t | t), u(k − 1 | t), θ̂(t), R̄(t | t), smin, smax given (P′′.m)

where ϕ(t | t) = ϕ(t), u(k − 1 | t) = u(t − 1), and R̄(t | t) = rRP−1(t).
The parameters rR and r both appear in the objective function in this

formulation, and can there be interpreted as parameters determining
the performance cost incurred by the noise sequence. In addition, rR
can be interpreted as the optimal choice for how uncertainty reduction,
represented by the term ϕ�(k+ 1 | t)z(k | t), should be weighted against
reducing the nominal output tracking error.

The formulation (P′′) with (35) is nonlinear, but all nonlinearities
are now quadratic; that is, either bilinear (e.g., ϕ�(·)z(·)) or square (e.g.,
σ2

y (·)). If we collect all the variables in (P′′) in a single vector x (the
variable R(t + N | t) is not needed to obtain the solution and can be
omitted), the objective function can be written in the form

JN(t) = x�Q0(t)x + α�0(t)x (36)

where x�Q0(t)x contains all square (ŷ2(·), w2u2(·), and w3(∆u(·))2)
and bilinear (rR ϕ�(·)z(·)) terms, and α�0(t)x contains all linear terms
(−2y∗(·)ŷ(·)). The square and bilinear terms are represented in Q0(t)
by diagonal and off-diagonal entries, respectively. The constant terms
(ŷ2(·) and r) do not affect the solution and need not be included in the
implementation.

The constraints (P′′.d) and (P′′.e) contain linear and quadratic terms
(square as well as bilinear), while the quadratic terms in (P′′.f) are all
bilinear; hence, these constraints can all be written in the form

βmin,i ≤ x�Qix + α�i x ≤ βmax,i, i = 1, . . . , nq (37)
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where nq is the number of quadratic constraints. Since there are both
square and bilinear terms in (P′′.d) and (P′′.e), the corresponding Qi
matrices have nonzero elements both on and off the diagonals. All
quadratic terms in (P′′.f) are bilinear (no square terms), so the corre-
sponding Qi matrices have all zeros on their diagonals. We set βmin,i =
βmax,i = r for the constraints that correspond to (P′′.d); similarly, we
set βmin,i = βmax,i = 0 for the constraints that correspond to (P′′.e)
and (P′′.f) to obtain equality constraints with a zero right-hand side.
The remaining constraints are all linear and can be written in the form

βmin,i ≤ α�i (t)x ≤ βmax,i, i = nq + 1, . . . , nq + n� (38)

where n� is the number of linear constraints.
The optimal-control problem (P′′) can then be written as a standard

quadratically-constrained quadratic programming (Q.C.Q.P.) problem
(cf. Misener and Floudas (2013)):

min
x

x�Q0(t)x + α�0(t)x (39a)

subject to

βmin,i ≤ x�Qix + α�i x ≤ βmax,i, i = 1, . . . , nq (39b)

βmin,i ≤ α�i (t)x ≤ βmax,i, i = nq+1, . . . , nq+n� (39c)
some elements of x given (39d)

The structures of the matrices Qi (i = 0, . . . , nq) and the vectors αi
(i = 0, . . . , nq + n�), βmin,i, and βmax,i (i = 0, . . . , nq + n�), depend on the
organization of variables in the vector x.

The optimal-control problem (P′′) increases moderately in complex-
ity with the number of unknown model parameters np and the length
of the prediction horizon N. There are npN bilinear terms of the form
ϕj(·)zj(·) (j denotes vector element) in the objective function (35), while
there are n2

pN quadratic terms in each of the uncertainty-propagation
constraints (P′′.e) and (P′′.f). The output-variance constraint (P′′.d) con-
tains N square terms and npN bilinear terms. The symmetric nature of
the quadratic equality constraints can be exploited in implementation
to reduce this number, but the quadratic growth cannot be avoided.

Although the quadratic equality constraints imply that (P′′) is a non-
convex Q.C.Q.P. problem, there are several algorithms that efficiently
solve Q.C.Q.P. problems to ε-global optimality (Tawarmalani and Sahini-
dis, 2002). Two such algorithms are baron (Tawarmalani and Sahinidis,
2005) and glomiqo (Misener and Floudas, 2013); the latter reference
also provides a good overview of the Q.C.Q.P. problem class.
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5 dual control algorithm

We now propose a dual control algorithm based on Model Predictive
Control (M.P.C., see Mayne et al. (2000)). Just as in standard M.P.C., we
find the control by solving an optimal-control problem at each sampling
instant in a receding-horizon fashion. With our D.M.P.C. algorithm, the
dual control input at time t, u(t), is contained in the solution to the
finite-horizon stochastic optimal-control problem (P), which we obtain
by solving the equivalent Q.C.Q.P. problem (P′′). The solution is the
control sequence {uo(k | t)}t+N−1

k=t , the first element of which is imple-
mented as the control input: u(t) = uo(t | t). In contrast to standard
M.P.C., where there is feedback from the system state or state estimate,
our adaptive D.M.P.C. depends on feedback from the hyperstate defined
as (ϕ(t), u(t − 1), θ̂(t), P(t)) (Åström and Wittenmark, 1995). Further-
more, (P′′) is not a true open-loop problem since the uncertainty predic-
tions implicitly anticipate a closed loop, which we discuss in Section 7.
The (indirect) adaptive feature of the algorithm is a consequence of solv-
ing the optimal-control problem using the latest parameter estimate θ̂(t).
Note that this does not make the D.M.P.C. a certainty-equivalence con-
troller, since the control action also depends on the estimate covariance,
meaning the estimates are not used as if they were the true values. The
algorithm is illustrated in Figure 1 and can be summarized as follows:

1 Initialize at time t = t0: specify the hyperstate (ϕ(t0), u(t0 − 1), θ̂(t0), P(t0)).
2 At time t, collect plant data: measure y(t) and u(t − 1).
3 Update the hyperstate

(
ϕ(t), u(t − 1), θ̂(t), P(t)

)
(the conditional dis-

tribution of θ is updated using (11)).
4 Solve (P′′) to obtain the solution {uo(k | t)}t+N−1

k=t .
5 Implement u(t) = uo(t | t).
6 Set t ← t + 1 and go to step 2.

Our algorithm differs from standard M.P.C. in that the D.M.P.C. not
only needs feedback from the system state, but from the hyperstate(

ϕ(t), u(t − 1), θ̂(t), P(t)
)
. While the approach is similar to an adap-

tive certainty-equivalence controller in that it uses parameter estimates
(expected values) in the prediction model, an important difference is
that the D.M.P.C. does not assume that the expected values equal the
true parameter values.
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Parameter
estimation

Unknown
plant

u(t) y(t)

v(t)y∗(t)
k ∈ {t, t + 1, . . . , t + N − 1}

θ̂(t), P(t)

Dual
M.P.C.

y(k + 1 | t), u(k | t), P(k + 1 | t)

Figure 1: Block diagram illustrating the adaptive D.M.P.C. structure. The
dashed line illustrates variables predicted by the D.M.P.C.

6 example

We now demonstrate our D.M.P.C. algorithm on a small simulation
test case that highlights some of its main features. The simulations
compare adaptive certainty-equivalence M.P.C. with D.M.P.C. (Figure 2)
and also demonstrate how D.M.P.C. performance is affected by different
initial error-covariance magnitudes (Figure 3). To best demonstrate the
qualitative behavior of the D.M.P.C. we consider a scenario where the
system has been in steady state for some time and show the effect of
reinitializing the controller with different sets of values in the covariance
matrix P(t0). We use one case with very large variances at time t0 to
trigger a strong dual action that results from uncertainty. This behavior
is contrasted with an adaptive certainty-equivalence M.P.C. as well as
more moderate variance values at t0.

All four simulations are identical up to time t0 = 0, with the history
from t = −5 included for clearer illustration of the decisions made
by the D.M.P.C.s. The parameter estimates are perfect and there is no
uncertainty (P is a matrix of zeros) prior to time t = −3. This means the
D.M.P.C. reduces to a certainty-equivalence M.P.C., which gives optimal
control performance in this situation (correct parameter estimates with
no uncertainty). A shift in the model parameters occurs at t = −2,
but the D.M.P.C. and the certainty-equivalence M.P.C. are both able to
keep the ouput at the reference without changing the input. Figures 2
and 3 together show the consequence of reinitializing the D.M.P.C. at
time t0 = 0 by setting P(t0) to a nonzero, positive-semi-definite matrix.
From top to bottom, the four plots show the outputs, including the
reference y∗(t); the inputs, including the optimal steady-state input
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Figure 2: A comparison of certainly-equivalence (C.E.) M.P.C. (dashed, heavy
lines) and D.M.P.C. (solid, heavy lines).
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uss(t; θ) (defined below for the example system); the true parameters
θ and both sets of estimates θ̂(t); and the diagonal elements of the
covariance matrix P(t), which are the variance terms.
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P (0) = 50I

P (0) = 10I

uss(t; θ)

P (0) = 50I
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Figure 3: A comparison of two D.M.P.C. setups that differ only in the choice of
covariance at t = t0: P(t0) = 10I (dashed, heavy lines) and P(t0) =

50I (solid, heavy lines).

Figure 2 shows how a D.M.P.C. with P(t0) = 500I diverges from
an identically-tuned certainty-equivalence M.P.C., provided the same
operational history. The certainty-equivalence M.P.C. (dashed red line)
continues applying a control identical to the optimal steady-state input
uss(t; θ) after the change in parameter values, keeping the output at
the reference without changing the control signal. Note the dependence
on the true model parameters θ in the optimal steady-state input. A
consequence of the status-quo input-output situation is that no new
data is generated with the result that there is no indication that a change
occurred in the plant. Hence, the parameter estimates do not change and
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are wrong when the subsequent change in output reference occurs at
t = 12, resulting in a violation of the lower output bound and significant
oscillations before the output settles at the new reference value. Note
that none of the controllers anticipate the setpoint change.

The consequence of reinitializing the D.M.P.C. (solid blue line) with
P(t0) = 500I is clear when contrasted with the certainty-equivalence
M.P.C. The output from the D.M.P.C. is reduced in magnitude at t =
t0 = 0 in order to reduce the covariance matrix, in turn reducing the
cost incurred from the term ϕ�(k | t)P(k | t)ϕ(k | t) in the objective (25).
This probing action causes a reduction in output magnitude, and sub-
sequently a change in the parameter estimates (solid lines) and a re-
duction of the variance (the diagonal elements of P(t) are shown). The
excitation, or probing action, continues until about t = 5, which can be
understood as a consequence of P(5) being sufficiently small (the vari-
ances are two orders of magnitude smaller than their initial values) so
that further uncertainty reduction is not worth the price paid in control
deterioration in the nominal sense. At this time, the parameter esti-
mates are very close to the true values and the input from the D.M.P.C.
in converging toward the optimal steady-state value. Consequently, the
output is converging back to the setpoint. When the subsequent change
of setpoint occurs, the D.M.P.C. has learned enough about the new plant
parameters to successfully move the output toward the new reference,
without the constraint violation and oscillations in the output seen with
the certainty-equivalence M.P.C.

Figure 3 shows how the D.M.P.C. performs when reinitialized with
smaller diagonal values in P(t0) (10I and 50I) and all other factors
kept identical. We observe the same qualitative behavior with these
smaller covariance matrices that represent less system uncertainty, but
the excitation vanishes sooner and decreases in magnitude with the
smaller variance quantities. Less excitation means less informative data,
which leads to parameter estimates that are further from the true values.
Despite the very moderate excitation, both of these D.M.P.C. setups
are able to direct the output to the new reference without constraint
violations and significant oscillations.

The example system is of F.I.R. type with np = 4 parameters, and
the matrices A and B in the model formulation (1) are given in Appen-
dix A3. In order to isolate the capabilities of the D.M.P.C. algorithm
we are not including noise in the simulations, meaning r = 0 and
rR = 1. All simulations start at ti = −5 and end at t f = 20 with
t0 = 0 (the time at which we set P to a nonzero matrix in the D.M.P.C.);
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the output setpoints are y∗(t) = 5.0 for t ≤ 11.0 and y∗(t) = −2 for
t ≥ 12; the unknown model parameters are θ = θ1 = [2.5, 1.8, 1.6, 0.9]�

for t ≤ −3 and θ = θ2 = [4.2, 2.2, −0.2, 0.6]� for t ≥ −2; the initial
data are u(t) = uss(t; θ1) for all t ≤ ti, θ̂(ti) = θ1, P(ti) = 0np×np ,
and y(ti) = 5.0; the algorithm parameters are N = 8, w2 = 0, w3 =
10−3, ymin − 3.0, ymax = 6.0, smin = smax = 0 (which corresponds to
py,min = py,max = 0.5), −umin = umax = 1.0, −∆umin = ∆umax = ∞,
and λ = 1. The optimal steady-state input for the example system
is uss(t; θ) = y∗(t)

/ (
∑

np
j=1 θj

)
, which depends on the true parameter

values θ.
The example simulations are implemented in matlab and the Q.C.Q.P.

problems are solved using the local N.L.P. solver snopt 7.2 (Gill, Murray,
and Saunders, 2005) under gams (GAMS Development Corporation),
which uses automatic differentiation to provide gradients to the solver.
We run the simulations on a standard laptop computer and the Q.C.Q.P.
problems all take between 0.05 s and 5.02 s to solve, with a mean of
0.47 s and more than 90 % of the solutions obtained in less than 0.70 s.

7 discussion

The dual-control algorithm we develop here is based on exact transfor-
mation of a stochastic optimal-control problem, formulated for ortho-
normal-basis-function systems, into deterministic form. Starting from
the stochastic dual output cost in (8), which is the square of the future
tracking error, we are able to arrive at two distinct, deterministic compo-
nents: 1) future nominal tracking error, and 2) future output covariance.
Minimizing the sum of these quantities results in the minimal expected
tracking error, both conditioned on the future information. That is, these
two quantities cannot be traded off against each other; less excitation
does not improve the expected tracking error, and neither does prior-
itizing the nominal tracking error over excitation. Rather, the specific
reward functions for excitation and nominal output error are the unique
expressions that at the minimum of their sum result in the dual control,
which is the control that minimizes the expected output error. That is,
excitation and nominal output tracking are not tasks in conflict: they are
inseparable means to an end and must be rewarded together in specific
forms when the goal is to determine the optimal control. One insight
from this line of argument is that any objective function with its min-
imum different from that of (8) does not result in the dual control. At
best, this type of design leads to an approximate dual control. Neverthe-
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less, such strategies may give improved performance over non-exciting
control algorithms. For more general system formulations it may be
impossible to obtain a closed-form deterministic function that can be
systematically minimized in order to obtain the dual control. However,
this type of insight may aid the control designer to better approximate
the unknown deterministic dual objective.

For the systems we consider here, we can formulate the equivalent
deterministic dual-control problem as a Q.C.Q.P. problem of modest
complexity. Solving this problem in a receding-horizon manner results
in a dual feedback controller, or a D.M.P.C. algorithm.

We demonstrate the main features of D.M.P.C. through simulation
examples. When there is uncertainty in the parameter estimates, as
represented by a nonzero covariance matrix, the D.M.P.C. takes active
steps to reduce uncertainty and improve the parameter estimates. The
controller accomplishes this through systematic self-excitation, the mag-
nitude and length of which increases with the estimate covariance. The
uncertainty is not reduced to zero and the parameter estimates do not
converge completely to the true values; rather, the excitation is such that
further uncertainty reduction decreases the expected performance. That
is, the cost of the additional excitation required for zero uncertainty
and perfect estimates is greater than the expected marginal return of
the improved model. The control objective of the D.M.P.C. converges to
that of the certainty-equivalence M.P.C. as the uncertainty goes to zero,
resulting in identical input decisions when the D.M.P.C. is not actively
perturbing the system for learning purposes. The simulations show how
active learning, or excitation for uncertainty reduction, directly enables
the D.M.P.C. to later move the output to a different setpoint without
encountering problems such as constraint violations and significant
oscillations, both if which are experienced with the passive-learning
approach in the certainty-equivalence M.P.C.

The D.M.P.C. is an indirect adaptive controller since we update the
plant-parameter statistics in the prediction model used by the algorithm.
This is not a design choice; it is a natural consequence of updating the
statistics and making the control decisions based on current and fu-
ture information, resulting in a closed loop. Furthermore, the D.M.P.C.
accounts for the effect of the control actions on learning since the mech-
anisms for learning in the closed loop are part of the prediction model.
This form of endogenized learning is a type of feedback control with a
partially closed prediction loop model.
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The results presented here rely on the assumption that both the pa-
rameters θ and the process noise v(t) are Gaussian; the reformulations
are not valid if these assumptions are not met. However, we can triv-
ially extend the framework we develop here to time-varying parameters
modeled as the Gauss-Markov process

θ(t + 1) = Φθ(t) + w(t) (40)

where Φ is a known, constant matrix and w(t) is a sequence of inde-
pendent and identically distributed Gaussian random vectors with zero
mean and variance rw. Extending the approach to multivariable control
is possible by using ideas similar to those presented by Kumar et al.
(2015), where an approximate D.M.P.C. for scalar systems is extended
to the multivariable case.

8 conclusions and future work

Our reformulation (P′) of the probabilistically-constrained stochastic
optimal-control problem (P) provides clear insight into how specific
functions of excitation and nominal control together result in dual con-
trol when their sum is minimal, as well as a foundation for practi-
cal control-algorithm design. Through careful choices in the control-
problem reformulation we arrive at a Q.C.Q.P. problem (P′′) that can
be solved efficiently. Solving this Q.C.Q.P. on a receding horizon using
the future and current information results in the D.M.P.C. algorithm.
Global solutions to the optimal-control problem can be obtained effi-
ciently, which is the topic of a future paper. The reformulation allows for
easy incorporation of exact probabilistic constraints with only a small
increase in problem complexity.

Future work includes stability analysis, derivation of tight variable
bounds to help facilitate global solutions, and investigation of when
dual control is and is not beneficial.

a1 other results

The following lemma is a standard result, but we list it here as it is
omitted from several basic statistics texts.

lemma 1. For a stochastic variable vector X ∈ Rn, the variance of X is

Var(X) = E
[
XX�]− X̂X̂� (41)
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where X̂ = E[X].

Proof. Since X E[X]� is symmetric, we have that

Var(X) = E
[
(X − E[X])(X − E[X])�

]

= E
[
XX�− X E[X]�− E[X]X�+ E[X]E[X]�

]

= E
[
XX�− 2X E[X]�+ E[X]E[X]�

]

= E
[
XX�]− 2 E[X]E[X]�+ E[X]E[X]�

= E
[
XX�]− E[X]E[X]�

= E
[
XX�]− X̂X̂� (42)

For the systems we consider in this paper, the expected value of
the unknown parameter vector θ given current information and future
decisions, Y(k | t), is the same as given only current information. We
state this formally in the following lemma.

lemma 2. For a stochastic process of the form (1),

E
[
θ
∣∣ Y(k | t)

]
= E

[
θ
∣∣ Y(t)

]
= θ̂(t), k ≥ t (43)

Proof. From (11a) it is apparent that the conditional mean of θ at time
t depends on y(t). Thus, Y(k | t) does not contain any information
relevant for θ̂(k), k ≥ t, beyond Y(t), so the conditional mean of θ

given Y(k | t) is simply E
[
θ
∣∣ Y(t)

]
= θ̂(t).

A consequence of this is that we can write

θ̂(k | t) := E
[
θ
∣∣ Y(k | t)

]
= θ̂(t), k ≥ t (44)

The following theorem states an expression for the expected value
of the matrix θθ� given the anticipated information Y(k | t) in terms of
deterministic quantities.

theorem 5. For a stochastic process of the form (1),

E
[
θθ�

∣∣ Y(k | t)
]
= θ̂(t)θ̂�(t) + P(k | t), k ≥ t (45)
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Proof. Using Lemma 2 and the fact that θ̂(t)θ� is symmetric, we start
from the definition of the anticipated covariance matrix P(k | t) and get

P(k | t) := E
[(

θ − E
[
θ | Y(k | t)

])(
θ − E

[
θ | Y(k | t)

])� ∣∣ Y(k | t)
]

= E
[(

θ − θ̂(t)
)(

θ − θ̂(t)
)� ∣∣ Y(k | t)

]

= E
[
θθ�− θθ̂�(t)− θ̂(t)θ�+ θ̂(t)θ̂�(t)

∣∣ Y(k | t)
]

= E
[
θθ�− 2θθ̂�(t) + θ̂(t)θ̂�(t)

∣∣ Y(k | t)
]

= E
[
θθ� | Y(k | t)

]
− 2 E

[
θ | Y(k | t)

]
θ̂�(t) + θ̂(t)θ̂�(t)

= E
[
θθ� | Y(k | t)

]
− 2θ̂(t)θ̂�(t) + θ̂(t)θ̂�(t)

= E
[
θθ� | Y(k | t)

]
− θ̂(t)θ̂�(t)

(46)
Rearranging the equation completes the proof.

An immediate consequence is the expression obtained when the
expectation is taken with respect to the current information Y(t):

corollary 3. For a stochastic process of the form (1),

E
[
θθ�

∣∣ Y(t)
]
= θ̂(t)θ̂�(t) + P(t) (47)

Proof. The proof follows trivially from the proof of Theorem 5.

a2 alternative objective functions

The simplest output cost for an uncertain system of the form (1) is
obtained by minimizing the squared difference between the predicted
model output and the output reference. This amounts to taking the ex-
pected value of the output with respect to current information, resulting
in the output cost

t+N−1

∑
k=t

(
E[y(k + 1) | Y(t)]− y∗(k + 1 | t)

)2

=
t+N−1

∑
k=t

(ŷ(k + 1 | t)− y∗(k + 1 | t))2 (48)

This cost penalizes the output error as if the most recent parameter
estimate θ̂(t), as defined by (5), were exact. That means this output
cost forms the basis for a certainty-equivalence-type M.P.C. Combining
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this idea with system identification then gives the indirect adaptive pre-
dictive controller. Neither the current nor future uncertainty affect the
output cost, meaning this type of controller has no caution or probing
features (see Bar-Shalom (1981)). Hence, the controller is not risk averse
in the face of large uncertainty, and takes no active steps to explore the
plant.

If we take the conditional expectation of the squared output-tracking
error with respect to the current information Y(t), as opposed to also
including the future decision sequence through Y(k | t), we can derive
an output cost that rewards cautious controls, as stated in the following
theorem.

theorem 6. For a stochastic process of the form (1),

t+N−1

∑
k=t

E
[
(y(k + 1)− y∗(k + 1 | t))2 ∣∣ Y(t)

]

=
t+N−1

∑
k=t

{
(ŷ(k + 1 | t)− y∗(k + 1 | t))2

+ ϕ�(k | t)P(t)ϕ(k | t) + r
}

(49)

Proof. This proof is near identical to that of Theorem 3. We have that

E[(y(k + 1)− y∗(k + 1 | t))2 | Y(t)]

= E[y2(k + 1)− 2y(k + 1)y∗(k + 1 | t)
+ (y∗(k + 1 | t))2 | Y(t)]

= ϕ�(k + 1 | t)E
[
θθ�

∣∣ Y(t)
]
ϕ(k + 1 | t)

+ E
[
v2(k + 1)

∣∣ Y(t)
]

+ 2 E
[
v(k + 1)θ�

∣∣ Y(t)
]
ϕ(k + 1 | t)

− 2 E
[
y(k + 1)

∣∣ Y(t)
]
y∗(k + 1 | t)

+ (y∗(k + 1 | t))2 (50)
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where the second term r and the third term is zero since v(k + 1) and θ

are uncorrelated. We here use Corollary 3 for the first term to arrive at
the desired result:

E[(y(k + 1)− y∗(k + 1 | t))2 | Y(t)]

=
(
θ̂(t)ϕ�(k | t)

)2
+ ϕ�(k | t)P(t)ϕ(k | t) + r

− 2ŷ(k + 1 | t)y∗(k + 1 | t) + (y∗(k + 1 | t))2

=
(
θ̂�(t)ϕ(k | t)

)2
+ ϕ�(k | t)P(t)ϕ(k | t) + r

− 2θ̂�(t)ϕ(k | t)y∗(k + 1 | t) + (y∗(k + 1 | t))2

= (ŷ(k + 1 | t)− y∗(k + 1 | t))2 + ϕ�(k | t)P(t)ϕ(k | t) + r (51)

The output cost (49) (which is identical to (9)) rewards caution be-
cause the current covariance P(t) is included in the quadratic form
ϕ�(t)P(t)ϕ(k). The current covariance can be interpreted as a weight
for a 2-norm of the regressors: ‖ϕ�(k | t)‖2

P(t). The same covariance
matrix P(t) is thus penalizing all future regressors ϕ�(k | t) on the pre-
diction horizon, k ≥ t. Large covariances then lead to smaller inputs, or
caution, while there is no incentive to explore the plant since the effect
of future decisions on the future uncertainty is not modeled.

Note that neither of the two objectives above requires the additional
constraints for uncertainty propagation. (The chance constraints do of
course require the uncertainty propagation constraints.)

a3 state-space formulations for models with orthonor-
mal basis functions

The simplest and most common model of the form (1) is the finite-
impulse-response (F.I.R.) model. A ∈ Rnp×np and B ∈ Rnp×1 in (1a) are
in this case

A =




0 · · · · · · · · · 0

1 . . . ...

0 . . . . . . ...
... . . . . . . . . . ...
0 · · · 0 1 0




, B =




1
0
...
...
0




(52)
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Note that all the eigenvalues of A are at the origin in the F.I.R. case.
For a Laguerre model, we can write Ēϕ(t + 1) = Āϕ(t) + B̄u(t) (see,
e.g, Wahlberg and Lindskog (1990)) with

Ē =




1 0 · · · · · · 0

a . . . . . . ...

0 . . . . . . . . . ...
... . . . . . . . . . 0
0 · · · 0 a 1




, Ā =




a 0 · · · · · · 0

1 . . . . . . ...

0 . . . . . . . . . ...
... . . . . . . . . . 0
0 · · · 0 1 a




(53a)

B̄�=
[
1 0 · · · · · · 0

]�√
1 − a2 (53b)

We can also write the Laguerre model in the form (1) with A = Ē−1Ā ∈
Rnp×np and B = Ē−1B̄ ∈ Rnp×1. A and B are then

A =




a 0 0 · · · 0
1−a2 a 0 · · · 0

(−a)(1−a2) 1−a2 a . . . ...
...

... . . . . . . 0
(−a)np−2(1−a2) (−a)np−3(1−a2) · · · 1−a2 a




(54a)

B =
[
1 (−a) (−a)2 · · · (−a)np−1

]�√
1 − a2 (54b)

Note that an F.I.R. model is a Laguerre model with the pole a = 0.
A state-space realization in terms of Ē, Ā, and B̄ for Kautz models
can be found in the literature, for instance in Wahlberg and Lindskog
(1990), which also provides illustrations of network structures for dif-
ferent models based on orthonormal basis functions. The state-space
representation for Kautz models is more involved than for the F.I.R. and
Laguerre models, and is not repeated here.
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abstract

Maintaining uniformly satisfactory control performance of an M.P.C.
scheme in the face of changing operating conditions is a difficult task.
An adaptive M.P.C. scheme that directs the output towards a reference
and simultaneously injects a probing signal to get more information
about the system for better model identification appears to be ideally
suited for achieving this goal. In this work, taking motivation from The term D.M.P.C.

as used here is not
consistent with the
use in Chapter 3 and
Paper C.

the dual control problem originally developed by Feldbaum (1961b), a
mimo adaptive dual M.P.C. (adaptive D.M.P.C.) formulation has been
proposed, which does not require external probing signals to improve
the model parameter estimates. The objective function of the M.P.C. is
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modified to include terms that ensure that sufficient excitation is in-
jected into the system while performing the control tasks. The efficacy
of the proposed adaptive D.M.P.C. formulation is evaluated by conduct-
ing experimental studies on the benchmark heater mixer system. The
experimental results demonstrate that the proposed formulation is able
to inject probing inputs of small magnitude while meeting the desired
servo and regulatory control objectives.

1 introduction

Over the last three decades, model predictive control (M.P.C.) has emerged
as the most effective multivariable control scheme and has been used
to control a wide variety of processes (Qin and Badgwell, 2003). The
quality of the model has a large effect on the closed loop performance
of a linear M.P.C. scheme. Maintaining a high quality model so as to
achieve good control performance in the face of changing operating con-
ditions poses a difficult challenge in the process industry. This problem
has been dealt with mainly by (a) incorporating robustness in the con-
troller design (b) employing multiple model-based controller designs
and (c) updating the parameters of the linear prediction model either
intermittently or on-line (Morari and Lee, 1999). While (c) appears to
be an attractive option, due to various constraints, such as the time re-
quired for model identification and the cost associated with the model
identification exercise, the model updates are carried out infrequently.
If it is desired to update model parameters online, then a variety of
recursive least square algorithms are available in the system identifica-
tion literature (Åström and Wittenmark, 1995; Söderström and Stoica,
1989). These approaches, though extensively studied in the system iden-
tification and adaptive control literature, have not received the attention
they deserve in the industrial applications of M.P.C. Qin and Badgwell
(2003), in their review of industrial M.P.C., noticed that only two adap-
tive M.P.C. algorithms had reached the marketplace by 2003 despite
strong market incentive for self-tuning M.P.C.

The observed lack of interest in employing these adaptive M.P.C.
(A.M.P.C.) formulations on industrial systems can be attributed to the
reliability of on-line parameter estimation schemes, which are at the
heart of any A.M.P.C. strategy. Ydstie (1997) has indicated that instability
of the parameter estimator or the parameter drift is an important issue that
needs to be addressed while developing an adaptive control scheme.
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This drift can be avoided by adding deliberate perturbations to the
manipulated inputs.

In the present work we focus on maintaining high quality parameter
estimates by deliberately letting manipulated inputs perturb the plant.
The persistent excitation guarantees the convergence of the parameter
estimates. However, in practice, the perturbation signal are often chosen
through some heuristic means and this can lead to excessive excitation.
Ideally, an optimal controller must direct the output towards a refer-
ence and simultaneously inject a probing signal to get more information
about the system for improved model identification, so that better con-
trol can be achieved in the future. This type of controller is referred to as
a dual controller. In the dual control formulation, external persistent ex-
citation is not required because the controller itself optimally excites the
process when needed. The concept of dual control was first introduced
by Feldbaum (1961b) as a result of an attempt to formulate optimal
control problems which would give an adaptive control law. This dual
character of the control law refers to the two tasks of directing the out-
put towards specified values and investigating the plant for learning.
That is, the controller finds a balance between control and excitation. A
dual controller optimally probes the system when the model is poor,
which generates sufficient excitation to improve the model and, in turn,
the closed loop performance.

Larsson, Annergren, et al. (2013) developed an M.P.C. that experi-
ments with the plant for identification processes while simultaneously
controlling the plant. The excitation is introduced through a constraint
on the predicted information matrix. A similar M.P.C. with dual features
was developed by Marafioti, Bitmead, and Hovd (2014). The excitation
is here guaranteed by requiring that the first element of the open-loop
optimal input sequence be persistently exciting. Žáčeková, Prívara, and
Pčolka (2013) suggested an approach where a standard M.P.C. problem
is solved first, followed by a procedure for finding an optimal per-
turbation to the nominally optimal input so that the resulting control
increases the minimal eigenvalue of the information matrix.

Adaptive M.P.C. with dual control features has emerged as an at-
tractive approach to the problem of control loop performance degra-
dation due to model plant mismatch. Recently, Heirung, Ydstie, and
Foss (2012b, 2013b) developed a dual control formulation based on
certainty-equivalence adaptive M.P.C. In their most recent approach
the first stage cost is reformulated from a stochastic expression into
a deterministic one. The same expression is used for the next stage
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cost in order to ensure that excitation is rewarded by the controller.
The result is a level of excitation that excites the process enough to
improve the quality of the parameter estimates and thereby improves
closed loop performance. However, they considered only single-input
single-output (siso) systems subjected to zero-mean white disturbances;
an extension to the more general mimo case is not obvious. Since the
ability to handle multivariable systems are among the main advantages
of M.P.C. in industrial applications, we here extend the formulation
proposed by Heirung, Ydstie, and Foss (2013b) to deal with multiple
input multiple output (mimo) systems subjected to colored unmeasured
disturbances. Our proposed extension is based on multiple miso armax
models, which are better suited for colored disturbances. The efficacy of
the proposed adaptive dual M.P.C. is evaluated through experimental
studies on a heater-mixer system (Thornhill, Patwardhan, and Shah,
2008).

This paper is organized into four sections. In the next section, devel-
opment of the proposed A.M.P.C. formulation motivated by the dual
control approach is presented. The analysis of the experimental results
is presented in Section 3. The major conclusions reached from the analy-
sis are summarized in Section 4.

2 a dual-control approach to adaptive M.P.C.

In this section we extend the M.P.C.-based approach to dual control
proposed by Heirung, Ydstie, and Foss (2013b) to handle mimo systems
subjected to unmeasured stochastic disturbances. Heirung, Ydstie, and
Foss (2013b) used an A.R.X. model to formulate an algorithm for adap-
tive dual M.P.C. for siso systems. The proposed extension can in prin-
ciple be carried out using miso or mimo versions of the A.R.X. model,
but the conventional A.R.X. models have certain limitations when the
system under consideration is subjected to colored unmeasured distur-
bances (Söderström and Stoica, 1989). For example, consider a system
governed by a siso armax model of the form

y(k) =
B(q−1)

A(q−1)
u(k) +

C(q−1)

A(q−1)
e(k) (1)
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where e(k) is a zero mean white noise sequence and C(q−1) has all roots
inside the unit circle. An equivalent A.R.X. model for this system can
be obtained by rearranging the armax model as

y(k) =
B(q−1)/C(q−1)

A(q−1)/C(q−1)
u(k) +

1
A(q−1)/C(q−1)

e(k) (2)

and by truncating Ã(q−1)=A(q−1)/C(q−1) and B̃(q−1)=B(q−1)/C(q−1)
after the coefficients of Ã(q−1) and B̃(q−1) become insignificant. The
truncation order depends on the locations of the roots of C(q−1). If
C(q−1) has root(s) close to the unit circle, then an A.R.X. model of high
order is needed to adequately capture the noise dynamics. Thus, even
for a siso system, it may be necessary to estimate a relatively large
number of model parameters to adequately capture the system dynam-
ics when an A.R.X. structure is used to model a system subjected to
colored noise. This difficulty is further compounded for a mimo system.
A model with a large number of parameters can lead to difficulties
with on-line parameter estimation as a large data set is needed to keep
the variance errors small (Madakyaru, Narang, and Patwardhan, 2009).
In other words, the plant needs to be perturbed for a longer time to
estimate the parameters accurately. From the viewpoint of parsimony
of model parameters, a better option is to employ miso models with
either armax or Box-Jenkins (B.J.) structure (Ljung, 1999). In this work
we propose to capture the system dynamics using an armax model
structure to keep the development simple.

2.1 armax models and online parameter estimation

Consider a mimo system with r outputs and m manipulated inputs. The
system under consideration is assumed to have a local linear approxi-
mation in the neighborhood of a desired operating point such that the
approximate linear model is stably invertible. We propose to model the
system as r miso armax models of the form

Ai(q−1)yi(k) =
m

∑
j=1

Bij(q−1)uj(k) + Ci(q−1)ei(k) (3)

where i = 1, . . . , r. Here, Ai(q−1), Bij(q−1), and Ci(q−1) are polynomials
in the backward shift operator q−1 and {ei(k)} represents a zero mean
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white noise sequence. To simplify the notation, the index i is dropped
in this subsection and the ith miso model is represented as

A(q−1)y(k) =
m

∑
j=1

Bj(q−1)uj(k) + C(q−1)e(k) (4)

For the purpose of online parameter estimation, this model can be
expressed as

y(k) = φ�(k − 1)θ(k − 1) + e(k) (5)

where

θ = [a1, . . . , an, b11, . . . , b1n, . . . , bm1, . . . , bmn, c1, . . . , cn]
� (6)

is a vector containing the miso model parameters and

φ(k − 1) = [−y(k − 1), . . . ,−y(k − n), u1(k − 1),

. . . , um(k − n), e(k − 1), . . . , e(k − n)]� (7)

represents the regressor vector, which consists of inputs, outputs, and
noise inputs from the past.

remark. For the sake of simplifying the notation we assume that the orders
of A(q−1), Bj(q−1), and C(q−1) are equal (cf. equation (6)). However, the
orders of the Bj(q−1) and C(q−1) polynomials may in general differ, and they
can be of any (positive) order less than or equal to the order of A(q−1).

A difficulty in using (7) for recursive parameter estimation is that
the noise sequence {e(k)} is unknown. This difficulty can be alleviated
if we employ the extended least square (E.L.S.) approach (also known
as pseudo-linear regression or approximate M.L. method) for the model
parameter estimation (Åström and Wittenmark, 1995; Söderström and
Stoica, 1989). In this approach, e(k) is replaced by the estimated predic-
tion error. Thus, the regressor vector is in the E.L.S. approach modified
to

ϕ(k − 1) = [−y(k − 1), . . . ,−y(k − n), u1(k − 1),

. . . , um(k − n), ε(k − 1), . . . , ε(k − n)]� (8)

where e(k − i) has been replaced by ε(k − i), which is the past innova-
tions. Here, the innovation ε(k) at instant k is

ε(k) = y(k)− ϕT(k − 1)θ̂(k − 1) (9)
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where θ̂(k − 1) represents the parameter estimate obtained at instant
(k − 1) using the E.L.S. method. The E.L.S. method can be summarized
as

θ̂(k) = θ̂(k − 1) + L(k)ε(k) (10a)

L(k) = P(k − 1)ϕ(k − 1)(λ + ϕT(k − 1)P(k − 1)ϕ(k − 1))−1 (10b)

P(k) = (I − L(k)ϕT(k − 1))P(k − 1)/λ (10c)

To carry out model identification, r miso estimators are used in parallel.
Thus, we obtain the estimates θ̂(i)(k) and the corresponding covariance
matrices P(i)(k) for i = 1, 2, . . . , r, which are then used in the proposed
adaptive dual M.P.C. (D.M.P.C.) formulation. Let Y(k) denote the set of
inputs and outputs recorded up to time instant k; i.e.,

Y(k) :=
{

u(k), u(k − 1), . . . , y(k), y(k − 1), . . .
}

(11)

Based on the E.L.S. parameter estimates, let the one step ahead predic-
tion for the model be

ŷi(k + 1) = E
[
yi(k + 1)

∣∣ Y(k)
]
=

[
ϕ(i)(k)

]�
θ̂(i)(k) (12)

Here, E(·) represents the expectation operator. To facilitate the devel-
opment of the dual controller we further assume that the E.L.S. algo-
rithm asymptotically generates unbiased (or consistent) estimates of the
model parameters. A sufficient condition for the convergence of the
pseudo-linear regression type methods for an armax model (under the
ideal conditions) can be found in Söderström and Stoica (1989). The
convergence of the E.L.S. estimates to the true parameters implies that
the innovation sequence {ε(k)} asymptotically converges to {e(k)}. In
practice, however, the model error may approach a very small value if
the model order is chosen appropriately.

2.2 An objective function for dual M.P.C.

The objective for M.P.C.-based dual control can be stated as finding the
control sequence {u(k), u(k + 1), . . . } that minimizes

J∞ = E
[ ∞

∑
j=k+1

{ r

∑
i=1

wiEi(j)2 +
r

∑
i=1

µiui(j − 1)2
} ∣∣∣∣ Y(k)

]
(13)

given data obtained up to time k, where

Ei(j) = ri(j)− yi(j) (14)
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Here, wi > 0 and µi ≥ 0 are weighting parameters and r(j) represents
the output reference or the setpoint vector at the future time instant j.
Since we assume that the system is stably invertible we can set µi = 0
for all i and work with the control objective

J∞ = E
[ ∞

∑
j=k+1

r

∑
i=1

wiEi(j)2
∣∣∣∣ Y(k)

]
(15)

The main difficulty in using this objective function is the lack of a model
that can accurately predict future outputs y(k + j). Thus, the objective
function needs to be reformulated for simultaneous probing and control.
To achieve this we first rewrite the objective function as

J∞ = E
[ k+2

∑
j=k+1

r

∑
i=1

wiEi(j)2
∣∣∣∣ Y(k)

]
+ E

[ ∞

∑
j=k+3

r

∑
i=1

wiEi(j)2
∣∣∣∣ Y(k)

]
(16)

Now, consider the first term, J1 = ∑r
i=1 wi J1i where

J1i = E
[
Ei(k + 1)2 ∣∣ Y(k)

]
(17)

By adding and subtracting the model ŷi(k + 1), we can rewrite equation
(17) as

J1i = E
[
(ri(k + 1)− ŷi(k + 1) + δyi(k + 1))2 ∣∣ Y(k)

]
(18)

where
δyi(k + 1) = ŷi(k + 1)− yi(k + 1) (19)

Dropping the conditional expectation notation for the sake of simplicity
and using the assumption that εi(k) → ei(k) asymptotically, the term J1i
can be expressed as

J1i = E
[
(ri(k + 1)− ŷi(k + 1))2 + (δyi(k + 1))2

− 2(ri(k + 1)− ŷi(k + 1))(δyi(k + 1))
]

(20)

where
δyi(k + 1) =

[
ϕ(i)(k)

]�
δθ(i)(k)− εi(k + 1) (21)

and δθ(i)(k) = θ̂(i)(k)− θ(i)(k). The first term is deterministic and the
third term is zero since the E.L.S. algorithm is assumed to be an asymp-
totically unbiased estimator; i.e.,

E
[
δθ(i)(k)

]
= 0 and E

[
εi(k + 1)

]
= 0 (22)
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Since δθ(i)(k) and εi(k + 1) are independent, using

Cov
[
δθ(i)(k)

]
=: P(i)(k) and Cov

[
εi(k)

]
=: σ2

i (23)

we can write

J1i =
(
ri(k + 1)−

[
ϕ(i)(k)

]�
θ̂(i)(k)

)2

+
[
ϕ(i)(k)

]�P(i)(k)ϕ(i)(k) + σ2
i (24)

given Y(k). Note that σi is not a known quantity, but since it appears
as a constant term in the objective function its value does not matter
and can be treated as zero. To achieve the probing effect, the same
reformulation that is used to approximate the cost function is used in
the second stage; i.e.,

J2i ≈
(
ri(k + 2)−

[
ϕ(i)(k + 1)

]�
θ(i)(k + 1)

)2

+
[
ϕ(i)(k + 1)

]�P(i)(k + 1)ϕ(i)(k + 1) + σ2
i

We can further simplify J∞ by truncating the infinite horizon to some
finite number N. The modified approximate cost function can be ex-
pressed as

JN ≈
k+1

∑
j=k

r

∑
i=1

{
wi

(
ri(j + 1)−

[
ϕ(i)(j)

]�
θ(i)(j)

)2

+ wi
([

ϕ(i)(j)
]�P(i)(j)ϕ(i)(j) + σ2

i
)}

+ E
[ k+N

∑
j=k+2

r

∑
i=1

wi (Ei(j + 1))2
∣∣∣∣ Y(k)

]
(25)

Since we intend to use M.P.C., we further approximate the last term
in JN using the model predictions instead of expected values of the
outputs, which yields a cost function

VN =
k+1

∑
j=k

r

∑
i=1

{
wi

(
ri(j + 1)−

[
ϕ(i)(j)

]�
θ(i)(j)

)2

+ wi
([

ϕ(i)(j)
]TP(i)(j)ϕ(i)(j) + σ2

i
)}

+
k+N

∑
j=k+2

r

∑
i=1

wi (ri(j + 1)− ŷi(j + 1 | k))2 (26)
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Note that the covariance matrices {P(i)(k + 1) : i = 1, . . . , r} and future
regressor vectors {ϕ(i)(k + 1) : i = 1, . . . , r} are functions of u(k). As a
consequence, the modified optimization objective rewards inputs that
reduce the future covariance P(i)(k + 1). In other words, the controller
injects inputs that improve the quality of the parameter estimates and
thereby reduce the parameter uncertainty.

2.3 Output prediction

In the proposed adaptive M.P.C. formulation, the identified models
are used for predicting future outputs. Consider a scenario at the kth
sampling instant, when given the N future inputs

Uk := {u(k | k), u(k + 1 | k), . . . , u(k + N − 1 | k)} (27)

we want to predict outputs over time window [k + 1, k + N]. Since the
future parameter vectors and future innovations are unavailable at time
k we have to make further simplifying assumptions to carry out predic-
tions using the proposed model.

• Given the information at time k, the expected value of the unknown
parameters in model i is θ̂(i)(k). Hence, the model outputs are predicted
with

θ̂(i)(k + j | k) = θ̂(i)(k) for j > 0 and for all i (28)

• Consistent with conventional M.P.C. formulations, we assume the fol-
lowing for the future innovations for output prediction:

εi(k + j + 1) = εi(k + j) for i = 1, 2, . . . , r (29)

where j = 0, 1, . . . , N − 1. However, a difficulty with this approach is
that the sequence {εi(k)} contains high frequency noise, which can lead
to noisy predictions. Thus, to eliminate the effect of the high frequency
noise on the predictions and limit the frequency range of the model
plant mismatch, we use a unity gain innovation filter for each innovation
sequence (Madakyaru, Narang, and Patwardhan, 2009):

ε f ,i(k) = αiε f ,i(k − 1) + (1 − αi)εi(k) (30)

for i = 1, . . . , r and with 0 < αi < 1 being tuning parameters. Thus, the
future innovation terms in ϕ(i)(k + j) are estimated as

εi(k + j | k) = ε f ,i(k) for j > 0 (31)
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With the above simplifying assumptions, the predicted output for
the ith miso armax model at time k + j can be expressed

ŷi(k + j + 1 | k) =
[
ϕ(i)(k + j | k)

]�
θ̂(i)(k) (32)

where the predicted regressor vector is

ϕ̂(i)(k + j | k) =
[
−ŷi(k + j | k), . . . ,−ŷi(k + 1 | k),
− yi(k), . . . ,−yi(k + j − n + 1),

u1(k + j | k), . . . , um(k + j | k), . . . , um(k + j − n),

εi(k + j | k), . . . , εi(k + j − n)
]� (33)

for j = 0, 1, . . . , N − 1 and i = 1, 2, . . . , r. Note that εi(k + j) for j ≤ 0 are
available at instant k and are directly used in formulating ϕ(i)(k + j | k).

2.4 Adaptive D.M.P.C. formulation

Based on the modified cost function (26) and the proposed prediction
model (32), an adaptive M.P.C. scheme is proposed as follows

min
Uk

VN(k) =
k+N

∑
j=k+1

E(j)�WEE(j)

+
k+1

∑
j=k

r

∑
i=1

wi
[
ϕ(i)(j | k)

]�P(i)(j)ϕ(i)(j | k)

+
k+N

∑
j=k+3

∆u�(j)W∆u∆u(j) (34)

where ∆u(j) = u(j)− u(j − 1), E(j) = r(j)− ŷ(j | k), and

ŷi(j | k) =
[
ϕ(i)(j − 1 | k)

]�
θ̂(i)(k) (35)

for i = 1, . . . , r, subject to the following constraints

P(i)(k + 1) =
[
I − Li(k + 1)ϕ(i)(k))

]
P(i)(k) (36a)

Li(k + 1) = P(i)(k)ϕ(i)(k)×
[
1 + ϕ(i)(k)�P(i)(k)ϕ(i)(k)

]−1 (36b)
for i = 1, 2, . . . , r

∆umin ≤ ∆u(j) ≤ ∆umax (36c)
∆u(j) = 0, for j = k + Nc, . . . , k + N − 1 (36d)
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Here, Nc is the control horizon and WE = diag[w1, . . . , wr] is the track-
ing error weighting matrix. Note that we introduced an input-move
suppression term with a corresponding tuning matrix W∆u ≥ 0, and
that this can be used to adjust the intensity of the probing effect. That
is, the weighting matrix W∆u can be used to counteract excessively
large input changes that can otherwise occur when P(i)(k) is large. Also
note that the proposed adaptive D.M.P.C. formulation results in a con-
strained non-convex optimization problem that has to be solved with a
nonlinear programming (N.L.P.) solver.

3 experimental evaluation

We now demonstrate an experimental evaluation of the proposed adap-
tive D.M.P.C. algorithm carried out using the benchmark Continuous
Stirred Tank Heater (C.S.T.H.) system (Thornhill, Patwardhan, and Shah,
2008) at the Automation Lab in the Chemical Engineering Department
at I.I.T. Bombay.

3.1 Plant description

The C.S.T.H. setup consists of two tanks in series as shown in Figure 1.
The cold water flow (F1) from the reservoir is heated using a 4 kW h
heating coil in Tank 1. The water level in Tank 1 remains constant and
the hot water overflows to Tank 2 where it is mixed with cold water flow
F2. The water in Tank 2 can be heated using another 3.5 kW h heating
coil. To make the system more complex and interactive, a recycle flow
(FR) is set up from the bottom of Tank 2 to Tank 1 using a metering
pump. Cold water inflows to both the tanks can be manipulated using
pneumatic control valves CV-1 and CV-2. Also, the heat input to both
heaters can be manipulated using two thyristor power controller (T.P.C.)
systems, which are driven by 4 mA to 20 mA current inputs. From a
control viewpoint the C.S.T.H. is a mimo system with three manipulated
inputs (4 mA to 20 mA current inputs to TPC 1 (u4), TPC 2 (u5), and
to CV-2 (u2)), and three controlled outputs (temperature in Tank 1 (T1),
temperature in Tank 2 (T2) and water level in Tank 2 (h2)). The current
input to CV-1, which can be used to manipulate the cold water flow
to Tank 1, and the temperature of the cold water inflows both act as
unmeasured disturbances. This setup is controlled with a P.C. (with an
Intel Core i5 processor and 8 GiB ram) using a combination of LabView
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version 2012 and matlab. A sampling interval of 5 seconds is used in
this work for carrying out identification and control studies.

In the experimental study, the level in the second tank (h2) is main-
tained at 50 % (i.e., 20 cm) using a P.I. controller (kc = 1.723 and τI =
2 min), which manipulates current input to control valve (CV-2). The
inputs to CV-1 and the recycle flow metering pump are kept constant at
50 % levels. Thus, for the evaluation of the adaptive D.M.P.C., the sys-
tem is reduced to a 2 × 2 configuration with u4 and u5 as manipulated
inputs and the tank temperatures (T1 and T2) as the controlled outputs.

Appendix: Modified Stirred Tank Heater System  
 A modified version of STH has been developed in Automation Laboratory at Dept. 
of Chemical Engineering, IIT Bombay. This system consists of an additional stirred tank 
upstream of the STH (see Figure A.1). The cold water entering Tank 1 and Tank 2 is 
heated using two separate electrical heaters. A portion of hot water from Tank 2 (or STH) 
is recycled to Tank 1, which introduces additional multivariable interactions and 
additional complexity in the system.  
    

   
 

Figure A.1: Modified Stirred Tank Heater- Schematic Diagram 
 

A gray-box model has been developed for the modified STH system as follows  
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Figure 1: Schematic diagram of the C.S.T.H.

3.2 Closed-loop studies

Before implementing the proposed adaptive D.M.P.C. it is necessary to
decide a suitable armax model structure. We perturbed the C.S.T.H. sys-
tem in open loop by simultaneously introducing low frequency pseudo-
random binary sequences (P.B.R.S.) in the heating inputs to the tanks.
We used the resulting data to identify an armax model using the System
Identification Toolbox in matlab. Using first order miso armax models
were sufficient for ensuring that the innovation sequences {ei(k)} are
white noise for each output. However, a minimum of 9th and 12th or-
der miso A.R.X. models were needed to obtain white noise innovation
sequences for T1 and T2, respectively. This may be attributed to fact that
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the C polynomials in the identified miso armax models have a pole
close to 0.88.

We developed and implemented the adaptive D.M.P.C. on the C.S.T.H.
system using two miso second order armax models. Each of these ar-
max models is of the form

(
1 +

2

∑
i=1

aiq−i
)

y(k) =
2

∑
j=1

2

∑
i=1

bjiq−iuj(k) +
(

1 +
2

∑
i=1

ciq−i
)

e(k) (37)

The tuning parameters used for the adaptive D.M.P.C. formulation are
set to N = 60, Nc = 6, αi = 0.9 for all i, WE = I, and W∆U = diag

[
2, 1

]
,

umin =
[
4, 4

]�, and umax =
[
20, 20

]� (38)

The initial model identified from the open loop data was used to initial-
ize the parameter estimators and the initial covariance matrices were
selected as P(1)(0) = P(2)(0) = 104 I. We deliberately set the initial co-
variances to high numbers and the adaptive D.M.P.C. was started when
the parameter estimates stabilized and the covariances reduced signifi-
cantly. The system was controlled using the conventional (non-adaptive)
M.P.C. that the initial model employed for predictions prior to starting
the adaptive D.M.P.C. The adaptive D.M.P.C. was implemented using
the constrained N.L.P. solver fmincon from the matlab Optimization
Toolbox. Average computation time for the adaptive D.M.P.C. computa-
tions at each sampling instant was found to be 0.5482 seconds.

The closed loop experiments consist of (a) a sequence of positive and
negative setpoint changes in both tank temperatures (a servo problem)
and (b) a large magnitude step change in the cold water inflow to Tank 1
(a regulatory problem). Performance of the adaptive D.M.P.C. for the
servo problem is presented in Figure 2 and the corresponding profiles of
the manipulated inputs are presented in Figure 3. As shown in Figure 2,
the controller is able to achieve quick transitions to the desired setpoint
and settle the reference temperatures without any offset. The probing
effect of the proposed adaptive D.M.P.C. formulation is visible in Fig-
ure 3, where time-varying low-amplitude perturbations are introduced
after switching to adaptive D.M.P.C. from conventional M.P.C. These
perturbations of varying intensity are continuously introduced through-
out the experiment with adaptive D.M.P.C. Since the high-frequency
excitation may increase actuator wear, an operator may consider turn-
ing off the dual feature if it is deemed unnecessary based on some
performance criterion. Since the high-frequency excitation may increase
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actuator wear, an operator may consider turning off the dual feature if it
is deemed unnecessary based on some performance criterion. Note that
the manipulated input profiles generated by the conventional M.P.C.
are smoother and without any such excitation.

Figure 2: C.S.T.H. experiment — controller performance: setpoint tracking.

Figure 3: C.S.T.H. experiment — controller performance: manipulated inputs.

4 conclusion

In this work, we develop a mimo adaptive D.M.P.C. using armax mod-
els. The efficacy of the proposed control scheme is evaluated by con-
ducting experimental studies on the benchmark heater-mixer setup.
We show that despite the complexity of the algorithm, we are able to
implement the controller for real-time control with a fairly standard
implementation and achieve fast control input computation. Analysis
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of the experimental results reveals that if the tuning parameters are
selected carefully, the proposed adaptive D.M.P.C. is able to inject in-
put perturbations that are sufficient for maintaining the health of the
on-line parameter estimators. When the system is operating at a fixed
setpoint, these fluctuations are found to be of variable and low ampli-
tudes, thereby introducing minimal disturbance in the plant operation.
Though initial experimental studies have shown promising results, a
number of issues remain to be resolved. The armax structure leads
to nonlinear parameter models and the E.L.S. algorithm is a nonlinear
estimator. Thus, alternate model structures that are parsimonious in
parameters are currently being examined for cases in which the system
is subjected to correlated unmeasured disturbances.



Part III

A F T E RW O R D





C O N C L U S I O N S , H I N D S I G H T, A N D T H E F U T U R E

concluding remarks and hindsight

In this thesis I present three similar, yet fundamentally different, ap-
proaches to (heuristic) dual control, each of which is based on the
receding-horizon principle. The approach from Paper A solves a prob-
lem that is different from, while inspired by, the dual; it improves perfor-
mance through utilizing the dual effect and actively exciting the process.
We develop a semi-exact dual controller in Paper B through transform-
ing the stage cost and applying the result beyond its temporally valid
region. In Paper B we suggest an extension of this algorithm to mimo
armax models and apply the result to an experimental setup, showing
that there is potential for using multivariable M.P.C. with dual effect
on moderately challenging real-time problems. The dual controller my
coworkers and I develop in Paper C includes probabilistic chance con-
straints and is based on an exact reformulation of the dual objective
with respect to a specific subset of the future information. I consider
this last contribution the most significant and see great potential for
future research that may result in useful extensions and insights.

The terminology used in the dual control literature does, arguably,
suffer from a lack of consensus and standardization. I have attempted
to clarify some of the terms and associated nuances with Definitions 1
and 2 in Chapter 3. While one may argue that there are other defi-
nitions and different terminology that serve the field better, I main-
tain that greater consensus and clarity would be of significant help in
both conducting and communicating research. While the discussion
in Chapter 3 on implicit dependence on future information in the Bell-
man equation is brief and somewhat superficial, I consider this a fair
attempt at clarifying certain aspects of an important issue worthy of
more attention.

In hindsight, I should have directed more of my research focus at
an earlier point in time toward the concept of future information and
its role in the dual control problem. In my opinion, this type of ap-
proach shows great promise, but much remains to be learned about
its extendibility as well as its stability and convergence properties. The
most valuable results from the research presented in this thesis is in

147
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my judgment the introduction of the subset of future information, the
reformulation in Theorem 4 and the formulation of the Q.C.Q.P. (P′′),
all in Paper C. The resulting insight and the fact that the cost functions
for nominal control and uncertainty reduction so clearly appear is re-
markable, makes a strong statement on the lack of conflicting goals, and
can serve as inspiration for heuristic methods for systems where no ex-
act results exist. It is also remarkable that the optimal-control problem
can be stated as a Q.C.Q.P. with the introduction of a small number of
variables.

thoughts and recommendations for future work

I see the most potential in continued research on the dual controller
from Paper C. The formulation is at a degree of maturity where it
makes sense to investigate convergence and stability; Martingale con-
vergence theory (Williams, 1991) is to me the obvious place to start.
The performance of the algorithm for larger systems and with other
types of orthonormal basis functions should be investigated. There is a
strong possibility that the importance of global solutions to the Q.C.Q.P.
problem increases with system size, and there is great potential for
improving the performance of global optimization software for this
problem, both in terms of refining the problem formulation and tailor-
ing the optimization algorithm. The possibility of better representing
the future through a larger subset of future information should be in-
vestigated; the algorithm does not account for future system outputs in
its current form. I would like to see a closer link established between
this algorithm and the Bellman equation, possibly providing insights
that guide the development of future improvements.

The case for dual control would be easier to make with successful ap-
plications to demonstrate its effectiveness. There are many systems with
reducible decision-relevant uncertainty that are unlikely to benefit from
dual control and more effort should be put into identifying when dual
control comes with the largest potential for improving performance.

For optimal control of linear systems with a quadratic cost, the
dynamic-programming solution can be obtained with a receding-horizon
solution and quadratic programming (M.P.C.). The numeric dynamic-
programming solution to dual-control problems is the closest we can
get to the ideal dual solution. An important question that warrants
thorough investigation is whether this solution can be obtained with a
receding-horizon approach. My sense is that it is not possible to obtain
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the dynamic-programming solution using nonlinear programming on
a receding horizon, which does not mean the receding-horizon solution
cannot get very close.
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