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Abstract

A low-order repetitive control (RC) design in continuous-time for nanopositioning applications is presented. It focuses on achieving
high performance and sufficient robustness to uncertainties. The design is mainly applicable to analog implementation, but due
to the exceptionally low order, it also results in a fast and efficient digital implementation. Experimental results for an analog
implementation using a bucket brigade device (BBD), as well as a digital implementation, is presented. RC can provide fast and
accurate tracking of periodic reference signals, which is useful in many scanning probe microscopy and nanofabrication applications.
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1. Introduction

Nanopositioning stages often require control laws with the
ability to track periodic reference signals with high accuracy,
e.g. in scanning probe microscopy and nanofabrication. Such
signals occur in applications such as raster scanning, pick-and-
place operations, and mass-production of features [1, 2, 3, 4].

Repetitive control (RC) is ideally suited for periodic sig-
nals. It is based on the internal model principle [5]: it will track
or reject periodic exogenous references and/or disturbances by
embedding a periodic signal model. This can be efficiently
implemented using a time-delay inside of a positive feedback
loop [6, 7]. An important feature of RC is that as long the over-
all control loop is stable, the RC scheme is invariant to changes
in plant dynamics, thus the performance should be consistent for
any plant perturbations within the specifications of a chosen un-
certainty weight. RC only requires the period of the reference
to be known [7]. In contrast, any linear control law without a
periodic signal model will not achieve the same level of perfor-
mance for periodic signals and any change in plant dynamics
will also lead to a different closed-loop response [8]. Examples
of such control laws applied to nanopositioning systems can be
found in [9, 10, 11, 12, 13, 14, 15].

Recently, RC has been introduced for nanopositioning sys-
tems [16, 17, 18, 19]. For periodic references, due to the in-
variance to changes in plant dynamics, RC can address the
challenges posed by state-of-the-art mechanically stiff nanopos-
itioner-designs. Such systems often have lightly damped vibra-
tion modes, and use piezoelectric actuators which introduces
hysteresis and creep [20]. Applications often involves moving
payloads of various masses, thus the vibration modes and the
effective gain of the mechanical structure changes every time a
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new payload is attached. Another concern is the inherent varia-
tions in piezoelectric actuators, where the effective system gain
changes due to actuator temperature, offset voltage, displace-
ment range, and depolarization effects. Thus, there are several
sources of uncertainty which jeopardizes overall control system
performance and robustness.

RC is very similar to iterative learning control (ILC) [21,
22, 23, 24]. Compared to ILC, RC does not require resetting the
initial conditions at the start of each iteration step, and can be
implemented using analog devices. For convenience, RC can be
plugged into an existing feedback loop to enhance performance
with minimal changes to the existing control system [16].

1.1. Contribution
The aim of this work it to synthesize a low-order continuous-

time robust RC scheme which can yield high performance and
is suitable for analog implementation. This is achieved using a
robust damping and tracking control law in combination with
a plug-in type continuous-time repetitive control (RC) scheme.
Specifically, a robust stability criterion and a tuning procedure
for the RC scheme are proposed, and an inexpensive analog im-
plementation of the scheme is presented. This work is an up-
dated and expanded version of [25, 26].

1.2. Outline
The performance and stability of RC depends on the dy-

namics of the controlled system [27, 28]. Particularly, lightly
damped vibration modes and the hysteresis effect can degrade
performance and make it difficult to obtain a stable RC sys-
tem [29]. A modified integral control law [15] is designed and
used to minimize the effect of vibration modes. The control law
introduces damping, increases the bandwidth, and incorporates
the anti-aliasing and reconstruction filters to good effect.

The modified integral control law is combined with a ro-
bust continuous-time RC for tracking of periodic references. Al-
though existing work on robust RC has dealt with both uncer-
tainties in the signal period [30, 17, 31, 32] and the plant [7, 33,
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34, 35], such works are not immediately applicable since this
work considers a known reference period, and the chosen struc-
ture of the overall control scheme and type of uncertainty differs
from what has been previously studied. A tuning method to en-
sure robust stability for the RC scheme is therefore proposed.

The overall control scheme has exceptionally low order; sim-
plifying the implementation process. A digital and an analog
implementation is presented. The digital implementation uses
standard digital signal processing (DSP) equipment, and the
analog implementation is realized using regular analog filters
and a bucket brigade device (BBD) [36, 37, 38], which provides
the required time-delay. The use of BBDs for RC have previ-
ously been investigated [39, 40], but using different control law
structures and not for motion control. The digital implemen-
tation serves as a reference implementation for the subsequent
analog implementation.

Experimental results are presented to demonstrate the effec-
tiveness of the overall control scheme, where the proposed con-
trol system is applied to a custom-designed piezo-based nano-
positioning system.

2. System Description and Modeling

2.1. Mechanical Model
The nanopositioning stage used in this work is shown in

Fig. 1, where the serial-kinematic motion mechanism is de-
signed such that the first vibration mode is dominant and occurs
in the actuation direction (piston mode). More details on the
design of such stages can be found in [41]. A free-body dia-
gram for the mechanism is shown in the inset image in Fig. 1. It
translates to the second-order differential equation (“x” denotes
x-direction)

mxẍx(t) + cxẋx(t) + kxxx(t) = fx(t) , (1)

where mx (kg) is the mass of the sample platform and at-
tached payload, cx (N s m−1) is the damping coefficient, and
kx (N m−1) is the spring constant.

fx
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Figure 1: Custom flexure-guided nanopositioning stage.
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Figure 2: Frequency response: measured data and fitted model (3).

The piezoelectric actuator is modeled as a force transducer,
generating a force proportional to the applied voltage [14]. The
applied force from the piezoelectric actuator fx (N) is

fx(t) = βua(t) + du(t) , (2)

where β (N V−1) is the effective gain of the piezoelectric actu-
ator from voltage to force, and ua(t) (V) is the applied voltage.
The piezoelectric actuator will introduce hysteresis and creep
when driven by a voltage signal. It is a reasonable assumption
to consider this behavior as a bounded disturbance added to the
input, represented by the term du(t) [42].

Denoting the output y = xx, the transfer-function for the
nanopositioning stage from the voltage input ua is

G(s) =
y(s)

ua(s)
=

b0
s2 + a1s+ a0

=
b0

s2 + 2ζω0s+ ω0
2
, (3)

where b0 = β/m (m s−2 V−1), a0 = k/m (s−2), a1 = c/m
(s−1), ζ = c/2

√
mk, and ω0 =

√
k/m (s−1).

The frequency response for the x-axis is recorded using a
SR780 Dynamic Signal Analyzer from Stanford Research Sys-
tems using 200-mV RMS bandwidth-limited white noise exci-
tation. It is displayed in Fig. 2. The model (3) is fitted to the
frequency response data using the MATLAB System Identifica-
tion Toolbox, and the resulting parameter values are presented in
Tab. 1. The response of the model (3) using these parameters is
also displayed in Fig. 2 for comparison, where good agreement
is achieved up to approximately 2 kHz.

Table 1: Identified parameters for the model (3).

Parameter Value Unit
b0 2.17·106 µm s−2 V−1

a0 1.96·107 s−2

a1 144 s−1

ζ 16.3·10−3 1
ω0 2π · 704 s−1
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Figure 3: Relative change due to amplitude for a 10-Hz sinusoidal voltage signal.

2.2. Uncertainty
As can be seen from Fig. 2, the response of the first vibration

mode is well approximated by the model (3), and it is sufficient
to describe the dominant dynamics of the system. In order to
assess the robustness properties of the control scheme, the un-
certainties of the system must be accounted for.

In Fig. 2, vibration modes above the dominant (first) vibra-
tion mode can be seen. Higher-order vibration modes are likely
to have shapes and directions that can make them difficult to
control using the mounted actuator (along the x-direction). The
control law therefore needs sufficient attenuation at higher fre-
quencies to avoid excitation of the higher order vibration modes.

Eq. (3) also has uncertainty with regards to the parameters.
Most susceptible to change is the effective gain β, and β is
mainly determined by the piezoelectric material used in the ac-
tuator, amount of polarization, and driving voltage amplitude; as
the amount of displacement generated changes with voltage am-
plitude due to hysteresis. This is demonstrated in Fig. 3, where
the relative change of the low-frequency gain b0/a0 is recorded
as a function of input voltage amplitude. The relative change in
gain is found to be up to 80%≈ -2 dB at an amplitude of 100 V
compared to the gain at 50 mV.

The peak amplitude response of the first and higher order vi-
bration modes did, however, not seem to change as a function of
input voltage amplitude. It is pointed out that this is difficult to
measure over a large domain of voltage amplitudes, as fairly low
input amplitudes lead to excessively large displacements when
the system is excited using frequencies close to the first reso-
nance frequency. A reasonable assumption in this case would
then be that the uncertainty in gain diminishes when approach-
ing the first resonance from below.

To assess the robustness of the proposed control scheme, the
uncertainty of the system model is taken into account as a mul-
tiplicative perturbation to the nanopositioner dynamics,

Gp(s) = G(s)
[
1 + wG(s)∆G(s)

]
; |∆G(jω)| ≤ 1 ∀ ω . (4)

The uncertainty weight wG(s) is determined experimentally.
An over-bounding transfer-function is proposed, incorporating
the gain uncertainty in Fig. 3 and the measured uncertainty due
to the missing vibration modes in (3). The measured uncer-
tainty and proposed overbounding uncertainty weight are shown
in Fig. 4.
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Figure 4: Open-loop uncertainty weight wG(s).
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Figure 5: System diagrams: (a) DSP realization. (b) BBD realization.

3. Control Structure

The control scheme combines plug-in RC and a damping
and tracking control law, consisting of an integral (I) or a pro-
portional-integral (PI) control law, and the anti-aliasing and re-
construction filters. This is shown in Fig. 5, which displays the
structure used for the digital and the analog implementation.

3.1. Repetitive Control (RC)
RC will track or reject arbitrary periodic signals of a fixed

period τp, by embedding a model of the reference signal r or dis-
turbance signal d in the control law. Such a model can be gen-
erated in a computationally efficient manner using a time-delay
inside of a positive feedback loop [7]. The transfer-function for
the RC configuration shown in Fig. 6a is given as

w

ε
(s) = Γ (s) =

R(s)e−τps

1−Q(s)e−τps
, (5)

whereQ(s) is a unity-gain low-pass filter, andR(s) is an output
filter, defined below. The filter Q(s) is used to limit the band-
width of the signal model. The low-pass filterQ(s) shifts all the
poles into the complex left half-plane with an amount dependent
on frequency, degrading the nulling property of RC at the fun-
damental and harmonic frequencies of the reference. Steps to
improve on this situation are discussed in Section 4.2.2. By im-
plementing Q(s) as a linear-phase FIR filter, this problem can
be avoided [43, 34, 19], but is not an option for an analog circuit.

3



R(s)
Output Filter

e–Tps

Time Delay

Q(s)
Low Pass Filer

ε w

Γ(s) e–Tps

S(s)(1-Q(s)e–Tps)

Q(s)-T(s)R(s)

r

e –

–

(a) (b)

Figure 6: (a) Plug-in RC scheme. (b) Equivalent representation of (9).

By inspection of Fig. 5, the closed-loop sensitivity function
for the overall system is found as

e

r
(s) = S(s) =

1

1 + Ḡ(s)C(s) + Ḡ(s)C(s)Γ (s)
=

1

∆(s)
,

(6)
where Ḡ(s) = Wr(s)G(s)Wa(s). The stability of the closed-
loop system is determined by the denominator

∆(s) = 1 + Ḡ(s)C(s) + Ḡ(s)C(s)Γ (s) . (7)

Consider the sensitivity S̄(s) and complementary T̄ (s) sen-
sitivity function excluding the RC scheme

S̄(s) =
1

1 + C(s)Ḡ(s)
and T̄ (s) = C(s)Ḡ(s)S̄(s) . (8)

By inserting the expression for Γ (s), multiplying the numerator
and denominator of 1/∆(s) by S̄(s), and rearranging, the sen-
sitivity function for the closed-loop system with RC becomes

S(s) =
1

∆(s)
=

S̄(s)(1−Q(s)e−τps)

1− (Q(s)− T̄ (s)R(s))e−τps
. (9)

With reference to Fig. 6b, it can be seen that given a bounded
reference r(t) and stable transfer-functions S̄(s) and Q(s), the
small-gain theorem provides the criterion for the stability of the
closed-loop system as [27]∥∥Q(s)− T̄ (s)R(s)

∥∥
∞ < 1 = 0 dB , (10)

where it is noted that |e−jτpω| = 1 ∀ ω ∈ R.
The output filter R(s) is constructed as

R(s) = WT
−1(s)Q(s) , (11)

introducing a stable all-pole filter WT (s). Using a unity-gain
low-pass filter Q(s), the criterion∥∥1−WT

−1(s)T̄ (s)
∥∥
∞ < 1 = 0 dB (12)

can be used for selecting an appropriate filter WT (s). It will
be chosen to match the response of T̄ (s) sufficiently to satisfy
the stability criterion. The selection of WT (s) is described in
Sec. 4.2.1. By this particular choice, WT (s) and Q(s) being
all-pole filters, R(s) and Q(s) can be realized using a single
filter with two outputs, as shown in Sec. 5.3.4.

To assess the robustness of the RC, a multiplicative pertur-
bation for the closed-loop complementary sensitivity is used:

T̄p(s) = T̄ (s)(1 + wT (s)∆T (s)); 0 < |∆T (jω)| ≤ 1 ∀ ω
(13)

Incorporating the uncertainty weight wT (s) into the criterion
(10) and applying the triangle inequality, a robust stability cri-
terion is obtained:∣∣Q(jω)− T̄ (jω)R(jω)

∣∣ < 1−
∣∣T̄ (jω)wT (jω)R(jω)

∣∣ . (14)

An estimate of the uncertainty weight wT (s) can be found
using the uncertainty weight wG(s). Assuming that the uncer-
tainty is due only to the plant, then, using S̄(s) + T̄ (s) = 1,

wT (s)∆T (s) =
S̄(s)wG(s)∆G(s)

1 + T̄ (s)wG(s)∆G(s)
,

and by using (21) and the reverse triangle inequality, the closed-
loop uncertainty weight wT (s) is bounded from above by

|wT (jω)| ≤ |S̄(jω)wG(jω)|
1− |T̄ (jω)wG(jω)|

≤ N · |S̄(jω)wG(jω)| ,

(15)
where N = (1 − ‖wG(s)T̄ (s)‖∞)−1. The bound in (15) can
be conservative. In this work, settingN = 1 gave a good match
to the measured uncertainty, and an estimate was found as

|wT (jω)| ≈ |S̄(jω)wG(jω)| . (16)

3.2. Damping and Tracking Control Law
The nanopositioning stage is a lightly damped structure; ref.

Fig. 2. Inspecting the stability criterion (10) one can expect that
peaks in the magnitude response of T̄ (s) can reduce the appli-
cable bandwidth for RC, depending on how well the output filter
R(s) is able to match the inverse closed-loop dynamics. Intro-
ducing a robust damping and tracking control law increases the
robustness and bandwidth for the overall control scheme.

A simple, effective, and robust damping and tracking con-
trol law for a lightly damped structure can be obtained by mod-
ifying and optimally tuning an integral (I) or a proportional-
integral (PI) control law [15]. Since both the BBD and DSP
implementation utilizes sampling, and reconstruction and anti-
aliasing filters must be present in order to mitigate aliasing ef-
fects. As the external clock signal driving the BBD bleed into
the output signal, the reconstruction filter also serves to atten-
uate the clock signal noise. For the DSP implementation the
reconstruction filter reduces quantization noise. By including
these filters, an extra degree of freedom is added for the tuning
of the control law, i.e., the cut-off frequency of the filters. As
it turns out [15], the low-pass filters can approximate the effect
that other damping and tracking control laws [14, 9, 10, 11, 12]
introduces. Thus, by also adjusting the cut-off frequency ωc,
damping can be introduced and the overall bandwidth increased.
Since reconstruction and anti-aliasing filters must be present,
this particular control law structure provides a minimal physi-
cal realization, which also uses the filters to good effect. The
integral action also serves to suppress the hysteresis and creep
nonlinearities.

The digital implementation uses a PI control law and two
second-order low-pass Butterworth filters, whereas the analog
implementation uses an I control law and two first-order low-
pass filters, as discussed in Sec. 4.3.
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The I and PI control laws are given as,

C(s) =
ki
s

and C(s) =
kps+ ki

s
,

where kp and ki are the proportional and integral gains. The re-
construction and anti-aliasing filters are here taken to be second-
order low-pass Butterworth filters

Wa(s) = Wr(s) =
ωc

2

s2 +
√

2ωcs+ ωc2
, (17)

for the digital implementation, and first-order low-pass filters

Wa(s) = Wr(s) =
ωc

s+ ωc
, (18)

for the analog implementation. For these filters, ωc is the cut-
off frequency. For convenience they are chosen to be identical
when tuning the control law. The modified I or PI control law
are in either case denoted

C̄(s) = Wa(s)C(s)Wr(s) . (19)

The procedure for obtaining the optimal tuning of the control
law applied to a flexible structure is described in Sec. 4.1.

4. Control Law Tuning and Analysis

4.1. Damping and Tracking Control Law
As discussed in [15], a practical method to find optimal val-

ues for the cut-off frequency and the integral gain is to minimize

JC(ki, ωc) =
∥∥1−

∣∣T̄ (ki, ωc; jω)
∣∣∥∥

2
, (20)

where ‖·‖2 denotes theL2-norm, truncated as needed. The min-
imization of (20) attempts to produce the flattest possible re-
sponse for the complementary sensitivity function, i.e., an ap-
proximate Butterworth filter response. As larger values of kp
resulted in poorer closed-loop response, this gain value is set to
a fixed low value of kp = 1 V/µm, for case of the PI control law.
Evaluating the cost-function (20)

[ki
?, ωc

?] = arg min
ki,ωc

[JC(ki, ωc)]

s.t. Re {λi} ∈ R− ∧ ki ∈ R+ ∧ ωc ∈ R+/{0} ,

where λi are the eigenvalues of the closed-loop system, resulted
in the parameters presented in Tab. 2. The optimization prob-
lem can be solved in MATLAB using the Optimization Toolbox,
e.g. with fminsearch, fminunc, fmincon, or by an exhaus-
tive search. The latter is illustrated by the plot of the surface of
the cost-function in the case when using the PI control law in a
neighborhood of the optimal values; shown in Fig. 9.

The resulting frequency responses for the complementary
sensitivity T̄ (s) = y

r (s) and sensitivity function S̄(s) = e
r (s)

for the two configurations of I or PI control law and first-order
or second-order reconstruction and anti-aliasing filters are dis-
played in Figs. 7 and 8.
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Figure 7: Frequency response for T̄ (s) and S̄(s), for the PI control law and two
second-order filters (digital implementation).
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Figure 8: Frequency response for T̄ (s) and S̄(s), for the I control law and two
first-order filters (analog implementation).

Robust stability with regards to the uncertainties displayed
in Fig. 4 is determined by evaluating the criterion [44]

‖wG(s)T̄ (s)‖∞ < 1 = 0 dB , (21)

and the results for the case of the PI control law (digital) are
shown in Fig. 10. Apparently, the control law allows for large
uncertainty in high-frequency dynamics. This means that the
presence of higher order modes will not interfere with the sta-
bility. The results are very similar for the I control law (analog).

Table 2: Optimal control law parameters.

ki
? ωc

?

PI control law (digital impl.) 8380 V/sµm 2π · 744 rad/s
I control law (analog impl.) 11700 V/sµm 2π · 495 rad/s

4.2. Repetitive Control
4.2.1. Choosing R(s) and Q(s)

Considering (12),WT (s) = T̄ (s) is the ideal choice, as this
will produce the minimum of (12). Since RC performance is in-
herently robust against uncertainty due to the nulling property,
a sufficient choice forWT (s) is a filter that attenuates T̄ (s) suf-
ficiently to satisfy (12).
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The complementary sensitivity function T̄ (s) has relative
degree nr = 6 for the digital implementation and nr = 5 for the
analog implementation. As the frequency response for the com-
plementary sensitivity function T̄ (s) resembles that of a But-
terworth filter for the two implementations, WT (s) is chosen to
be a Butterworth filter of order nr with DC-gain 1/kT , and it
is then assumed that WT (s) ≈ T̄ (s). An optimal choice for
the cut-off frequency ωT and DC-gain kT for WT (s) is found
minimizing the cost-function

JT (kT , ωT ) = sup{|Q(jω)− T̄ (jω)R(ωT , kT ; jω))|
+ |T̄ (jω)wT (jω)R(ωT , kT ; jω))| : ω ∈ R+}, (22)

where R(ωT , kT ; jω) = WT (ωT , kT ; jω)−1Q(jω). The cost-
function must satisfy JT (k?T , ωT

?) < 1 in order for the sys-
tem to be robustly stable. The closed-loop uncertainty weight
wT (s), using experimental data and the overbounding approxi-
mation, is shown in Fig. 12 for the PI control law (digital). The
overbounding approximation is used for the optimization. The
results are similar for the I control law (analog).

The filter Q(s) must be chosen before performing the op-
timization. It is chosen to be a unity-gain Butterworth filter of
order nr, making R(s) = WT

−1Q(s) a proper filter. By this
particular choice, WT (s) and Q(s) being all-pole filters, R(s)
and Q(s) can be realized using a single filter with two outputs,
as shown in Sec. 5.3.4.

By inspection of Fig. 2, a cut-off frequency for Q(s) is
chosen in order to attenuate the second and higher order vi-
bration modes, in order to satisfy (14). A cut-off frequency
ωQ = 2π · 2000 rad/s provided sufficient attenuation. Mini-
mizing (22) resulted in the parameters presented in Tab. 3. The
surface of the cost-function for the case when using the PI con-
trol law in a neighborhood of the optimal values is shown in
Fig. 11.

The evaluation of (10) and (14) is shown in Fig. 13 for the
case of the PI control law, and demonstrates that the choice of
ωQ and the optimal values for kT and ωT provide robust stabil-
ity of the closed-loop system for the chosen uncertainty weight.
The results are similar for case of the I control law.

Table 3: Optimal parameters for WT (s).

kT
? ωQ

?

PI control law (digital impl.) 0.41 V/sµm 2π · 580 rad/s
I control law (analog impl.) 0.24 V/sµm 2π · 530 rad/s

4.2.2. Tuning of τ̃p
Inspecting the sensitivity function (9), note that the numer-

ator contains the expression

Z̃(s) = 1−Q(s)e−τ̃ps ,

which evaluates to

L−1
[
(1−Q(s)e−τ̃ps)r(s)

]
= r(t)− r̃(t− τ̃p)

when r(t) = 0 ∀ t < 0 and r(t) = r(t + τ̃p). Thus, disre-
garding the initial value response of the system, the reference is
perfectly nulled in the error after one period τp of the reference
and perfect tracking is obtained only if Q(s) = 1. For the ac-
tual implementation r̃(t) = Q(t) ∗ r(t) 6= r(t). Since the filter
Q(s) alters the reference, perfect tracking can not be obtained.
The residual error depends both on Q(s) and the time-delay τ̃p.
Tracking performance can be improved by adjusting τ̃p.

By filtering the intended reference by Z̃(s), it is possible
to numerically evaluate the amount of suppression, or nulling,
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Figure 11: Optimal RC tuning.
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Figure 13: Evaluation of stability criteria (10) and (14) for the PI control law.

of the reference. By adjusting τ̃p = τp − δ by varying δ, an
optimal δ that produces the best tracking performance can be
found minimizing

J(δ) =
∥∥∥L−1 (Z̃(s, δ)

)
∗ r(t)

∥∥∥
2
, t ∈ [τpm, τp(m+ 1)]

where δ ∈ (0, τp), and m is an positive integer to make sure
τpm is large enough for the transient response of Q(s) to have
died out. Results are presented in Tab. 4. Note that on a digi-
tal platform, it is possible to implement time-delays with a non-
integer multiple of the sampling time using Thiran-approxima-
tion [45]. For the analog implementation, since the exact value
of τ̃p is dependent on the tolerances of components used, the
simplest solution is to adjust the fundamental frequency of the
reference in order to minimize the stationary root-mean-square
error (RMSE).

Table 4: Optimal δ given fp using 6th-orderQ(s) with ωQ = 2π · 2000 rad/s.

fp δ?

25 Hz 3.07709 · 10−4 s
50 Hz 3.08076 · 10−4 s
100 Hz 3.08384 · 10−4 s
200 Hz 3.08982 · 10−4 s
400 Hz 3.09129 · 10−4 s

4.3. Some Remarks on Control Law Order and Implementation
Several practical factors were taken into account when choos-

ing between a PI and I control law, and the order of the anti-

aliasing and reconstruction filters. For the digital implementa-
tion, two second-order programmable filters were available for
the experimental set-up, dictating the minimum order for these
filters. Implementing arbitrary linear filters does not cost any-
thing in terms of component count on a DSP system, thus a PI
control law could be used. This meant that T̄ (s) would have a
relative degree of nr = 6, rather than nr = 7; reducing the
order of the required R(s) and Q(s) filters. For the analog im-
plementation, choosing an I control law meant that the compo-
nent count would be minimal as it would remove the need for
a summation stage. By choosing a PI control law the R(s) and
Q(s) filters could have been fourth-order filters, but an opera-
tional amplifier section was available for the filter circuit that
otherwise would not have been used; making it possible to im-
plement a fifth-order filter at an overall lower component count.

With the chosen control structure, the minimal relative de-
gree for T̄ (s) is nr = 4. The combination of two first first-
order low-pass filters and a PI control law will produce this.
As the anti-aliasing and reconstruction filters must be present
as a part of the control system, any other control law synthe-
sis should incorporate these into the plant dynamics, in order
to reduce model uncertainty and to increase performance. A
standard model matching control law, such as model reference
control (MRC), would in comparison produce a relative degree
of nr = 5 for T̄ (s), if integral action is included. Here, how-
ever, two fifth-order filter, as well as an integrator for the integral
action, would be needed to implement the control law, thus in-
creasing the number of needed integrators from one to eleven.
Similarly,H∞ orH2 control law synthesis, will produce a con-
trol law filter of minimum fourth-order, but an implementable
control law filter would be of higher order, depending on what
the weights used in the synthesis. Similarly, any of the damping
and tracking schemes, other than the one chosen in this work,
as surveyed in [15], will increase the order of the control law
C(s). Thus, the order of the R(s) and Q(s) filters might not
increase much, but the control law used to produce an approx-
imate Butterworth (maximally flat) response for T̄ (s) will be
of significantly higher order and/or require a higher component
count. It should also be noted that the R(s) and Q(s) filters
in the implementation are constructed in such a way that they
can be implemented as a single filter with two outputs, further
reducing implementation complexity and component count.

5. Experimental Results and Discussion

The performance and robustness of the control scheme and
the digital and the analog implementations was validated by ex-
periments. As it was simpler to adjust time-delay and scaling
for maximum dynamic range when using the digital implemen-
tation, this was used for most of the results. The dynamic range
in the case of the digital implementation was maximized by scal-
ing input and output signals to take full advantage of the reso-
lution of the analog-to-digital converter (ADC) and digital-to-
analog converter (DAC). In the analog case, the dynamic range
was maximized by adjusting the scaling of the signals going in
and out of the bucket brigade device (BBD).
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5.1. Description of the Experimental System
The system to which the both the digital and the analog im-

plementation was applied consisted of an ADE 6810 gauge and
ADE 6501 capacitive probe from ADE Technologies for mea-
suring displacement, a Piezodrive PDL200 voltage amplifier,
and the custom-made nanopositioner (see Fig. 1). The capac-
itive displacement measurement has a sensitivity of ks = 1/5
V/µm and the voltage amplifier has a gain of 20 V/V.

5.2. Digital Implementation
Digital implementation used a dSPACE DS1103 hardware-

in-the-loop system, programmed using MATLAB and Simulink
via the Simulink Coder. Two Stanford Research Systems (SRS)
SIM965 programmable filters were used as anti-aliasing and
reconstruction filters, and two SRS SIM983 scaling amplifiers
were used to scale the input and output signals from the DS1103
system. For numerical integration, the fourth-order Runge-
Kutta scheme was used, and a sampling time of Ts = 10−5

(fs = 100 kHz) was used for all the experiments.
A modified triangle-wave was used as the reference: of

the initial amplitude α of a regular triangle-wave, the fraction
h = λ/α was left linear, and the signal near the extrema was re-
placed by a spline. This was done to reduce the spectral content
to avoid saturations at high frequencies and amplitudes. In the
implementation, a second-order spline and h = 90% was used.

5.3. Analog Implementation
5.3.1. Rationale

For a digital implementation, to obtain high accuracy and
low noise, the ADCs and DACs used must feature high resolu-
tion and high sampling frequency. High resolution is required
for a low bound on the achievable accuracy and to minimize
quantization noise. The sampling frequency must be sufficiently
high with respect to the bandwidth of dominant dynamics of the
plant, and to minimize the power spectral density of the quan-
tization noise. Thus, the DSP platform used must handle high
data rates and support floating-point arithmetic or large word
size fixed-point arithmetic. Programming the required filtering
algorithms can also be time-consuming, and for some platforms
(notably field-programmable gate arrays) proprietary compilers
are required. The implementation can be simplified by using
ready-made hardware-in-the-loop systems, as has been done in
this work, albeit at a higher overall cost for the system.

The analog implementation uses analog filters and a BBD
for the realization of RC. Low-noise BBDs can match 16-bit
ADCs and DACs in terms of noise performance. In terms of
required equipment, this is an inexpensive and simpler alterna-
tive to DSP. The main noise source when using a BBD is the
external clock signal. A reconstruction filter with sufficient at-
tenuation at and above the driving clock signal frequency is re-
quired. This can therefore preclude the usage of BBD based
RC schemes for very high-bandwidth positioning stages, and for
very low-frequency reference signals. The BBD implementa-
tion is an exceptionally cheap solution that sometimes can be
used to replace more expensive DSP solutions.

G(s)

r
y

ICTRL

Positioning Stage

ua

w ε

ε
VQ Vd

DELAY

Vd
VQ
w

SVF

Figure 14: Interconnection of the different components of the implemented cir-
cuits, cf. Figs. 16a, 16b, and 16c.

5.3.2. Bucket Brigade Devices (BBDs)
The BBD is used to realize the necessary time-delay. In a

BBD the input signal is time-sampled and passed into a series of
capacitors and transistor switches. The charge in each capacitor
stage is passed into the subsequent stage at a rate determined
by an external clock signal [36, 37, 38]. This delays the input
signal. The BBD is a hybrid device that uses sampling, but not
quantization. Low-noise BBDs from the MN3000-series from
Panasonic can achieve a signal-to-noise ratio, or dynamic range,
from 80 to 90 dB. Using terminology from the analysis of ADCs,
this equates to 13 or more effective number of bits (ENOBs).
This is comparable to the actual performance when using 16-
bit ADCs [46], and also corresponds to the performance of the
dSPACE DS1103 system. The dynamic range for a BBD can
in some cases be improved by using companding (compressing
and expanding a signal before and after some operation) [38],
but this has not been applied in the presented implementation.
Here the dynamic range has been maximized by linearly scaling
the signals going in and out of the BBD. An alternative to BBDs
is charge coupled device (CCD) delay lines [37, 47]. However,
BBDs for audio applications are still in production and available
for purchase at the time of writing.

5.3.3. Overview
The analog implementation of the control scheme consists

of three parts: the time-delay; the integral control law and anti-
aliasing and reconstruction filters; and theQ(s) andR(s) filters.
The interconnection between these parts is shown in Fig. 14,
and the actual implementation is shown in Fig. 15. In addition
to the BBD, the necessary filters were implemented using stan-
dard operational amplifier circuits (the OPA227 was used in all
circuits). An Agilent 33220A function generator was used to
generate a reference, and a Tektronix TDS 3014C oscilloscope
was used to record the results.

5.3.4. Realization of State-Variable Filter
The topology for a state-variable filter can be which imple-

ments the general stable, proper transfer-function

Y (s)

U(s)
=
b0s

n + b1s
n−1 + ...+ bn−1s+ bn

sn + a1sn−1 + ...+ an−1s+ an
,

can be found following the development in [48]. Fig. 16a dis-
plays the fifth-order filter required to implementQ(s) andR(s).
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Figure 16: Circuits for the realizations of the different parts in Fig. 14.

As R(s) = WT
−1(s)Q(s), and since WT (s) and Q(s) are all-

pole filters, Q(s) and R(s) can therefore be realized using a
single filter with two outputs.

The network analysis of the topology in the time-domain
closely resembles a system on controllable canonical form, and
thus it is straight-forward to find the mapping from the coeffi-
cients {ai} and {b0, bi}, to the resistances {Ri}, {Rz0, Rzi},
i ∈ {1, 2, 3, 4, 5}. Denoting the time-constant for each integra-
tor in the filter

τi = RiCi , (23)

the resistances {Ri} determining the poles are found using:

a1 =
1

τ1
, a2 =

a1
τ2

, a3 =
a2
τ3

, a4 =
a3
τ4

, a5 =
a4
τ5

The zeros of the filter are determined by the resistances of
{Rz0, Rzi}. Defining

Gp = 1/Rz1 + 1/Rz3 + 1/Rz5 + 1/Rg1 ,

Gn = 1/Rz2 + 1/Rz4 + 1/Rz0 ,

Kp = (1 +Rf1Gn)/Gp , and Kn = −Rf1 ,

Figure 15: Implemented RC scheme.

the required resistances can be found solving:
Kp/Rz1 + (Rbf/Rbi)τ1 (b5 − a5b0)
Kn/Rz2 + (Rbf/Rbi)τ1τ2 (b4 − a4b0)
Kp/Rz3 + (Rbf/Rbi)τ1τ2τ3 (b3 − a3b0)
Kn/Rz4 + (Rbf/Rbi)τ1τ2τ3τ4 (b2 − a2b0)
Kp/Rz5 + (Rbf/Rbi)τ1τ2τ3τ4τ5 (b1 − a1b0)

Kp/Rz0 + (Rbf/Rbi)b0

 = 0 .

(24)
In the general case, depending on the exact values for the poles
and zeros, it might be necessary to modify the output summation
stage generating the signal w, in order to find a realizable filter.

5.3.5. Realization of Modified Integral Control Law
The modified I control law is implemented as shown in

Fig. 16b. The anti-aliasing and reconstruction filters are first-
order low-pass, and the cut-off frequency ωc is determined by
adjusting Rf1 and Rf2 to satisfy

ωc = 1/Rf1Cf1 = 1/Rf2Cf2 . (25)

The integral control law gain is determined, assumingRe1 =
Re2 = Ref = Reg and Rs1 = Rs2 and Rsf = Rsg , by adjust-
ing Rkf to satisfy

ki = Rkf/RkiRiCi . (26)

5.3.6. Realization of Time-Delay
The circuit implementing the time-delay is shown in Fig. 16c.

The time-delay τp in the BBD is determined as

τp = N/2fcp , (27)

where N is the number of stages in the BBD and fcp is the fre-
quency of the external clock signal [37]. For the BBD used
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in the implementation, Panasonic MN3007, N = 1024. As
the BBD is a unipolar device with non-unity gain, the signal
must be shifted and scaled before and after passing through the
BBD. The shifting (bias) and scaling is adjusted using Roif ,
Roi, Roof , and Roo. The output of the BBD has a first-or-
der low-pass filter with a cut-off frequency of approximately
(2π · 5 · 103 · 330 · 10−12)−1 = 96.5 kHz to remove some of the
clock signal noise. The frequency fcp can be adjusted monitor-
ing either the CP1 or CP2 output of the MN3101 clock generator
on an oscilloscope, while adjusting the resistance Rox2.

5.4. Results and Discussion
One result from the experiments when using the digital im-

plementation is presented in Fig. 17. Here a 200 Hz modified
triangle-wave is used. Fig. 17a shows the initial transient re-
sponse of the measured displacement and error, Fig. 17b the
steady-state measured displacement, and Fig. 17c the steady-
state measured error. In Fig. 17d the steady-state control input
u is shown. A summary of all the experiments performed using
the digital implementation is presented in Tab. 5.

The results of the experiments in Tab. 5 are rated using
both the maximum error (ME) and the root-mean-square error
(RMSE), both in absolute terms with respect to the measured
displacement, and relative to the maximum value of the refer-
ence for ME, and the RMS value of the reference for RMSE.

Tracking results when using the analog implementation is
presented in Fig. 18. The main problem with this implementa-
tion is that the state-variable filter topology has high sensitivity
to the component values in the summation stage generating the
zeros. The digital implementation is much more precise in terms
of achieving specified filter response. An equivalent of the ana-
log implementation was therefore implemented on the dSPACE
system to serve as a reference to be matched. Tracking results
using the digital equivalent is shown in Fig. 18a, and tracking
results when using the actual analog implementation is shown
Fig. 18b. As can be seen, it closely matches the digital equiv-
alent in terms of tracking performance. As a regular triangle-
wave was used, the maximum error is larger than if the modi-
fied triangle-wave had been used.

With regards to the RC performance, as can be seen from
Tab. 5, the closed-loop error using references with low funda-
mental frequency yields errors close to the closed-loop measure-
ment noise, i.e. in practical terms, perfect tracking is achieved.
The performance depend mostly on the bandwidth of the fil-
ter Q(s). A larger kT results in amplification of measurement
noise. Some of the error at low fundamental frequencies is due
to the quantization noise, as the DAC noise floor is reached
within the bandwidth of the RC. The gain kT also determines
the time-constant for the transient response envelope, thus larger
kT results in faster convergence to steady-state.

In Fig. 17a the transient response and convergence to steady-
state is shown. There is some saturation in the measurement,
leading to longer convergence time. From Fig. 17c it can be
seen that the the maximum error occurs at the extrema of the
reference, thus, increasing the linear proportion of the reference
will also increase the maximum error. The voltage range of the
signal in Fig. 17d should be noted. Here the full range of the

Table 5: Norms of the measured error ε in steady-state (digital impl.), for various
configurations and references. fp and 2λ denotes the fundamental frequency
and linear range of the reference signal.

fp
(Hz)

2λ
(µm) kT

fQ
(kHz)

ME
abs.
(µm)

ME
rel.
(%)

RMSE
abs.
(µm)

RMSE
rel.
(%)

When using optimally tuned PI control law (without RC scheme):
25 27.0 – – 1.7 12 1.0 12
200 27.0 – – 16 120 9.8 110

When using optimally tuned PI control law and RC scheme:
25 13.5 0.450 2 0.0034 0.048 0.00067 0.016
25 27.0 0.350 2 0.0048 0.033 0.0011 0.013
25 27.0 0.450 2 0.0072 0.050 0.0017 0.020
50 27.0 0.450 2 0.011 0.077 0.0028 0.032
100 27.0 0.450 2 0.031 0.22 0.010 0.12
200 13.5 0.450 2 0.61 0.91 0.025 0.59
200 27.0 0.450 2 0.12 0.86 0.047 0.55
400 13.5 0.450 2 0.12 1.9 0.064 1.6

amplifier,±110 V, is used and provides a hard limit for the spec-
tral content and the range of the reference, as well as the band-
width of the control law. Increasing either one of these proper-
ties would have resulted in saturation in the amplifier.

The achieved performance depend mostly on the bandwidth
of the filter Q(s), as discussed in Sec. 4.2.2. To increase per-
formance, a zero-phase filter can be used. For a digital imple-
mentation, this is possible both for ILC [22] and RC [19]. It is
not possible for an analog implementation. As the bandwidth of
Q(s) in this work is limited by higher order non-modeled vibra-
tion modes, it is likely not possible to improve the performance
without using model matching and subsequently increase the or-
der of the control law filters.

6. Conclusions

It has been demonstrated through experiments that, by us-
ing control scheme combining a damping and tracking control
law and continuous-time plug-in repetitive control, it is possi-
ble to achieve a maximum error of less than 1% relative to the
reference, at reference signal frequencies exceeding 25% of the
first resonance frequency of a nanopositioning stage. Analog
and digital implementations were presented. The analog imple-
mentation was feasible due to the low order of the scheme, and
provides an inexpensive realization with high performance. The
low order also enables fast and efficient digital implementation.
The control scheme is straight-forward to tune using optimiza-
tion techniques, and is applicable for tracking control on flexi-
ble smart structures in general. The proposed scheme is imple-
mentable on existing hardware configurations for nanoposition-
ing, as it requires very small, or no, modifications to a standard
configuration.
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Figure 17: Modified triangle-wave reference at 200 Hz with 14.25 µm amplitude (27 µm linear range).
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Figure 18: Performance of the analog RC implementation. Regular triangle-
wave reference at 50 Hz with 15 µm range.
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