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Fracturing and refreezing of sea ice in the Kara sea are investigated using complex
network analysis. By going to the dual network, where the fractures are nodes and their
intersections links, we gain access to topological features which are easy to measure and
hence compare with modeled networks. Resulting network reveal statistical properties
of the fracturing process. The dual networks have a broad degree distribution, with a
scale-free tail, high clustering and efficiency. The degree–degree correlation profile shows
disassortative behavior, indicating preferential growth. This implies that long, dominating
fractures appear earlier than shorter fractures, and that the short fractures which are
created later tend to connect to the long fractures. The knowledge of the fracturing
process is used to construct growing fracture network (GFN) model which provides
insight into the generation of fracture networks. The GFN model is primarily based on the
observation that fractures in sea ice are likely to end when hitting existing fractures. Based
on an investigation of which fractures survive over time, a simple model for refreezing
is also added to the GFN model, and the model is analyzed and compared to the real
networks.
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1. INTRODUCTION
Fracturing and refreezing of sea ice in the Kara Sea is a complex
process, depending on temperature, wind, currents, freshwater
influx from two large rivers, salinity and even the Coriolis force.
The system has earlier been studied by Korsnes et al. [1], who
found a scale-free area distribution of ice floes.

In this paper, we focus on the network of fractures in sea ice,
how the fractures are created, and how they relate to each other.
The aim of the present study is to acquire a general understanding
of such fracturing.

Sea ice fracture networks are easily accessible, and the pro-
cesses occur on a time scale which is good for studying the
dynamics. Understanding sea–ice fracturing may help to under-
stand other two-dimensional fracture systems. Fractures in sea ice
are also an important factor in sea ice decrease during spring and
summer, as ice that breaks up creates open areas which in turn
absorbs more heat, speeding up the melting process [2]. The cov-
erage of the ice cap is in turn a considerable factor in the Earths
climate [3].

The Kara Sea is chosen for this study mainly for its complex
dynamics in the coldest winter months, when areas are frac-
tured and refrozen multiple times, so the fracturing process can
be observed repeatedly. The degree of refreezing will depend on
weather conditions and ice drift.

The presented data is based on the work done by Korsnes et al.
[1], where synthetic aperture radar (SAR) images were used to
find the size distribution of ice floes in an area in the Kara sea
between January 1st, and March 29th 1994. At this time of year,
sea ice covers the entire area.

During the last decade, modern network theory [4–6] has
given important knowledge of how networks are structured, and
how the structure emerges from network growth. Knowledge of
social networks of individuals [7, 8], can be used to better under-
stand how individuals interact. In the same way, the structure
of the Internet on router level [9] is a product of how routers
communicate, and properties of the connections between them.
Metabolic networks shows how different metabolites react to
each other [10], and together contribute to the complex behavior
of cells.

In network theory, networks are represented by nodes and
links, where the links may represent social, chemical, or physi-
cal interactions between the nodes. An important achievement
of modern network theory has been within the understanding
of how such networks grow from simple structures into com-
plex networks, and how the growth process influences the final
network [11].

The focus of the present work is to understand how a fracture
in a severely fractured material relates to surrounding fractures.
Fractures in homogeneous materials are well known [12], but
when multiple fractures are already present, the material is no
longer homogeneous. New fractures are in varying degree lim-
ited by existing fractures, meaning that the interaction between
fractures become important.

In two-dimensional fracture networks, one may study the
fracture network itself in the framework of modern network
theory [13, 14]. However, this become problematic for three-
dimensional fracture networks where the fractures are intersect-
ing sheets. In order to describe fracture systems in the same
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way irrespectively of being two or three-dimensional, a different
equivalent network must be constructed.

The dual network has exactly the properties that makes it pos-
sible to study two and three-dimensional fracture systems on the
same footing. Let each fracture be a node and each intersection
between fractures be a link between their respective nodes.

The dual network of fractures in rocks was studied in Andresen
et al. [15]. Earlier, the dual network has been used to study the
complexity of cities [16, 17]. These authors demonstrate that the
complexity of a city is linked to the dual network constructed
from its streets. They link the complexity to the number of times
on the average a stranger will have to ask for directions to get from
one point to another—and this number is associated to the num-
ber of intersections between streets one has to pass, which is the
number of links on the dual lattice. Hence, complexity is directly
linked to the standard distance measure on the dual network.

The complexity of a fracture network will influence its trans-
port properties. This is in particular relevant for fractures in
rock fractures in which transport of hydrocarbons, water and
pollutants are important practical problems.

The present paper, however, focuses on the fracture–fracture
interactions, and the object of our study is the network of frac-
tures in sea ice on a geographical scale within the context of
modern network theory.

Whereas other work has focused on the geometrical proper-
ties of fracture networks of sea ice, in particular in connection
with fractal scaling properties [18] our study is concerned with
topological properties. Hence, they complement each other.

The present work suggests a model based on the dual network
view on fractures. The model is similar to the discrete fracture
network (DFN) model presented by Darcel et al. [19], but it seems
better to reproduce correlations between intersecting fractures,
as investigated by Andresen et al. [15] for the DFN model. The
model is based on the observation that fractures in sea ice often
end when hitting existing fractures.

We find in the following differences between the sea ice net-
works considered here and the rock outcrop fractures studied by
Andresen et al. [15]. The sea ice is on the scale of the length

of the cracks, two-dimensional. The outcrop fractures repre-
sent on the other hand a two-dimensional cut through a set of
three-dimensional sheetlike fractures in the rock. Hence, the two
fracture systems are fundamentally different.

In the next section we describe the work flow from satellite
images of fractured sea ice to the constructed dual lattice. In
section 3, we analyze the topological data that ensue from the
dual lattices constructed from the satellite images. Based on these
data, we introduce a model for growth of fractures in ice which
compares well with the data. We sum up our results in the last
section.

2. FROM FRACTURES TO NETWORK
Our analysis is based on Synthetic Aperture Radar (SAR) images,
as shown in Figure 1. The SAR images were taken by the ESA
ERS-1 satellite in three-day intervals between January 1st and
March 30th 1994. It is difficult to see leads on radar images, so
to find the fracture network, Korsnes et al. [1] used an algo-
rithm that recognizes areas of texture between two images, and
finds areas which have been rigid in the time span between the
images. Figure 1 shows how rigid areas are created from two suc-
cessive SAR images. The rigid areas have common translation and
rotation between the images, and are considered ice floes. From
this we find the fractures by using a skeleton algorithm [20], and
then decide which fractures continue through each intersection,
by manually applying the decision rules listed below. In addition
to the SAR images, we analyze two optical images taken over the
East Siberian sea in early June 2000 and 2006, shown in Figure 2.
It should be noted that the procedure we use for identifying the
cracks limits us to only detecting active cracks.

2.1. CONSTRUCTING THE DUAL NETWORK
Figure 3 shows how the dual network is created, where each
fracture is a node, and crossing or meeting fractures are linked
together. The main challenge in this process is determining what
is a fracture, in a large system, it is not always obvious which of
the fractures that goes into an intersection that comes out on the
other side. We use the following rules in the decision process:

A B C

FIGURE 1 | Panels (A,B) show two successive SAR radar images taken over the Kara sea on January 28th and 31st 1994. Panel (C) shows the identifies
ice floes using the method described in Korsens et al. [1].

Frontiers in Physics | Interdisciplinary Physics April 2014 | Volume 2 | Article 21 | 2

http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics
http://www.frontiersin.org/Interdisciplinary_Physics/archive


Vevatne et al. Fracture networks in sea ice

FIGURE 2 | Optical images of fracture networks, taken over the East Siberian sea. (A) Date: June 7th 2000. (B) Date: June 5th 2006. Images courtesy of
U.S.G.S [21].

FIGURE 3 | Example of creation of the dual network from a system of

fractures. The fractures are followed through intersections, and define
nodes in the dual network, nodes made by ridges that meet or cross each
other get a link. (A) A small system of fractures and its dual network (B).
The color and numbering of the node in (B) corresponds to the color and
the numbering of the fracture in (A).

1. If the intersection has three meeting leads, the most straight
combination is typically the one that continues. The last one
then stops.

2. If the intersection has more than three meeting leads, first look
for the primary lead. That is the lead that came first, and which
spans a larger part of the network than the rest. We identified
the primary lead by having the same opening on both sides of
the junction and not changing direction.

3. After the primary lead has been recognized, consider, by look-
ing at direction, width, and the shape of the ice floes whether
more of the leads continue.

Figure 4 shows an example of how the dual network is created
from SAR images.

3. ANALYSIS
3.1. BASIC NETWORK PROPERTIES
Clustering is a measure of connectivity on a local scale. The
local clustering coefficient, Ci, is defined as the number of links

FIGURE 4 | (A) Recognized fractures from Figure 1C. (B) Dual network of
the system of fractures in (A), plotted with a force-directed algorithm [22]
using the software tool Tulip 4.4.0. In the dual network, the fractures are
interpreted as nodes, and links are made between intersecting fractures.

between the nearest neighbors of a node, divided by the num-
ber of potential links between them. The clustering coefficient
for the entire network, C, is the average of the local clustering
coefficients [6]

C = 1

N

N∑

i = 1

Ci = 1

N

N∑

i = 1

2Enn, i

ki(ki − 1)
, (1)

where N is the total number of nodes in the network, ki is the
degree of node i, and Enn is the number of links between the near-
est neighbors of a node. The clustering coefficient can take values
on the interval 0 ≤ C ≤ 1.

For comparison, we construct rewired and random networks,
as explained below, with the same number of nodes and links as
the found networks. In the local rewiring algorithm [23], links
are rewired the following way: two links A → B and C → D are
picked at random, and rewired to connect A → C and B → D. If
the links A → C or B → D already exists, no changes are made,
i.e., A → B and C → D are still connected. To create a rewired
network, the local rewiring algorithm is run until network prop-
erties converge. During rewiring, the degree distribution stays
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unchanged. Random networks are made by placing the given
number of links randomly between the given number of nodes.

Efficiency is a measure of global connectivity. The efficiency is
defined by Boccaletti et al. [6]

E = 1

N(N − 1)

∑

i,j ∈ N,i �= j

1

dij
, (2)

where di,j is the minimal number of links used to traverse between
nodes i and j.

In Table 1 values for clustering coefficients and efficiency for
the different images are given. Table 2 shows average values for

clustering coefficients and efficiency for networks created from
SAR images, optical images, rock fractures [15] and the fracture
network model explained later. The networks are characterized
by a high clustering coefficient, and high efficiency. Both cluster-
ing and efficiency is higher than in the rock fracture networks
investigated by Andresen et al. [15]. The high values found for
both clustering and efficiency, gives the ridge networks properties
of Small-World networks [24], where the characteristic distance
between two nodes in the network is small compared to network
size, while the network remains regular at a local level. Examples
of Small-World networks range from social networks [7] to the
Internet [9]. In Small-World networks, however, the characteristic

Table 1 | Network properties for different samples of SAR and optical (Esimer) images.

Name N L kmax kavg C CRW CRA E ERW ERA

SAR-B11 321 610 17 3.80 0.361 0.0122 0.0107 0.170 0.249 0.240

SAR-B12 354 652 18 3.68 0.396 0.0103 0.0098 0.146 0.241 0.230

SAR-B13 369 624 20 3.38 0.404 0.0093 0.0078 0.140 0.222 0.212

SAR-B14 187 290 18 3.10 0.314 0.0250 0.0146 0.220 0.241 0.227

SAR-B17 329 574 24 3.49 0.347 0.0142 0.0091 0.175 0.237 0.223

SAR-B18 367 607 17 3.31 0.337 0.0092 0.0073 0.151 0.219 0.208

SAR-C10 356 567 14 3.19 0.453 0.0088 0.0075 0.093 0.210 0.202

SAR-C11 284 433 20 3.05 0.314 0.0144 0.0080 0.173 0.217 0.203

SAR-C12 258 413 16 3.20 0.341 0.0174 0.0106 0.144 0.225 0.218

SAR-C13 306 527 16 3.44 0.366 0.0115 0.0095 0.157 0.234 0.224

SAR-C14 120 196 15 3.27 0.268 0.0433 0.0243 0.252 0.275 0.266

SAR-C17 307 539 27 3.51 0.299 0.0154 0.0093 0.182 0.242 0.228

SAR-C18 195 315 13 3.23 0.249 0.0178 0.0121 0.191 0.245 0.234

SAR-C19 231 403 23 3.49 0.362 0.0293 0.0137 0.212 0.261 0.241

SAR-C20 178 315 22 3.54 0.334 0.0313 0.0175 0.232 0.277 0.259

SAR-C21 309 584 22 3.78 0.369 0.0173 0.0104 0.198 0.258 0.241

Esimer 1 373 810 21 4.34 0.379 0.0132 0.0107 0.180 0.265 0.257

Esimer 2 402 846 40 4.21 0.362 0.0175 0.0090 0.199 0.266 0.248

We show the number of nodes N, the number of links L, maximum degree kmax, average degree kavg, the clustering coefficient C, the clustering coefficient for

rewired networks CRW , the clustering coefficient for random networks CRA, the efficiency E, the efficiency for rewired networks ERW , and the efficiency for random

networks ERA for all the samples.

Table 2 | Comparison of average network properties between fracture networks and models.

SAR Optical Rock GFN1 GFN2 GFN3 GFN4 GFN5

N 279 388 857 300 1000 300 300 300

T 300 1000 300 600 600

p 0 0 0.1 0.1 0.2

C 0.34 0.37 0.18 0.34 0.36 0.34 0.23 0.24

CRW 0.018 0.015 0.007 0.038 0.017 0.040 0.029 0.031

CRA 0.011 0.010 0.002 0.110 0.003 0.012 0.010 0.011

E 0.177 0.190 0.065 0.25 0.21 0.25 0.22 0.23

ERW 0.241 0.265 0.113 0.271 0.237 0.277 0.245 0.256

ERA 0.229 0.253 0.111 0.238 0.197 0.247 0.221 0.236

αl 2.6 2.6 3.30 2.99 3.29 3.30 3.30

αk 3.7 3.6 2.3 2.63 2.60 2.62 2.80 2.80

The real fracture networks include sea ice networks and rock outcrops [15]. The Growing Fracture Network model explained in the text is run with various parameters

N, p, and T .
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path length scales at most as log(N), where N is the total number
of nodes. Due to the small size of the investigated networks, this
property is not checked here.

3.2. SCALING AND GROWTH
The node degree distribution f (k), where the degree k is the
number links from a node, is a central network property. The
cumulative distribution function, F(k), is the probability that a
node has degree lower than or equal to k. Figure 5 shows the
cumulative degree distribution, as well as the cumulative distri-
bution of fracture lengths, F(l). Both distributions are consistent
with scale-freeness, with average slopes αk and αl shown in
Table 2.

To investigate the frequency of different degree–degree com-
binations, Maslov and Sneppen [23] introduced the correlation
matrix

C(k1, k2) = P(k1, k2)

Pr(k1, k2)
, (3)

where P(k1, k2) is the probability that a node of degree k1 is linked
to a node of degree k2. Pr(k1, k2) is the same for the average of
rewired versions of the network. Each rewired network was made
by a local rewiring algorithm [23] that ran until convergence of
the clustering coefficient.

C(k1, k2) is symmetric, since the links in the dual network are
undirected. To test the statistical significance of the correlation
matrix Maslov and Sneppen [23] also introduced the significant

FIGURE 5 | (A,C,E) Cumulative degree distribution for networks created
from SAR images, optical images and GFN model respectively. (B,D,F)

Cumulative length distribution for networks created from SAR images,
optical images and GFN model, respectively.

correlation matrix

Z(k1, k2) = P(k1, k2) − Pr(k1, k2)

σr(k1, k2)
, (4)

where σr(k1, k2) is the standard deviation of Pr(k1, k2) for an
ensemble of 1000 rewired networks. Z(k1, k2) can be both positive
and negative. Z(k1, k2) ∼ 0 indicates no significant correlation
and |Z(k1, k2)| >> 0 indicates statistically robust results.

Figure 6 shows correlation and significant correlation profiles
for networks created from SAR images, optical images, and from
an instance of the fracture network model explained in the next
section. The networks have strong correlations in the degree of
neighboring nodes. That is, we see a strong tendency for nodes of
high connectivity to connect to nodes of low connectivity and vice
versa. Networks with this property are called disassortative. The
strong correlations support the view that new fractures depend
heavily on the existing network, and that the growth process is
similar to that of the preferential growth mechanism [11].

Many real-world networks are created from a growth process
that includes preferential growth [4, 11], in which new nodes are
more likely to couple to existing nodes of high degree. Preferential
growth leads to a scale-free degree distribution, and networks
where a few major hubs maintain a high global efficiency.

In our case it is more natural to link preference for new nodes
to the length of existing fractures, so that new fractures emerge
from existing fractures with a probability proportional to the
length of the existing fractures. In this model, the scale-free nature
of the networks are not a consequence of preferential growth as
in many other scale-free networks, but rather a consequence of
geometrical properties.

If a square is split in four pieces, and then each piece is split
again, indefinitely, the length distribution for the lines used to
split the squares must be scale-free. This geometrical property
is what gives the scale-free length distribution, not preferential
growth itself.

Figure 7 shows fracture length as a function of degree for one
of the investigated samples. All samples give similar results, show-
ing that length and degree are strongly correlated, but that the
points do not fall neatly on a line, as they would in a regular grid.
This correlation is intuitively easy to understand by noting that
longer cracks meet more cracks than shorter cracks. Hence, the
corresponding node in the dual network has higher connectiv-
ity. Some areas of the fracture system are much more fractured
than others, giving some long fractures with few intersections,
and some short fractures with many intersections.

3.3. GROWING FRACTURE NETWORK MODEL
A proper analysis of the rheology of sea ice has been given by
Girard et al. [25]. However, we propose here a fracture model
that retains some of the qualitative features seen the competition
between fracturing and refreezing of sea ice:

1. Start with one initial straight fracture spanning from one edge
to the opposite edge. The direction of the initial fracture is
arbitrary.

2. Choose one of the existing fractures with a probability propor-
tional to the length of this fracture.
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FIGURE 6 | Correlation profiles C (k1, k2) and significant correlation

profiles Z (k1, k2) showing. Results are smoothed. The white areas are
degree–degree combinations that never were realized. (A,B) Average for the

16 SAR images from the Kara sea. (C,D) Average for 20 samples of the
Growing Fracture Network model, with parameters N = 300 and p = 0.1, run
for 1000 time steps. (A) C-SAR, (B) Z-SAR, (C) C-GFN model, (D) Z-GFN model.

3. Pick a random point on the chosen fracture.
4. Choose an angle with which a new fracture will propagate

from the existing fracture. This angle can be drawn from a
distribution, to favor certain angles.

5. Propagate a new fracture in the found direction, and each
time it hits an existing fracture, continue propagation with a
probability p.

6. If the number of fractures is larger than a number N, remove a
fracture. Which fracture to choose is inversely proportional to
fracture length.

7. Iterate points 2–6.

Point 6 in the model, is intended as a very simple Poisson model
for refreezing. It is very crude, as it does not allow for partial
refreezing of leads, and should therefore only be taken as a process
that messes up the fracture system. Figure 8 shows the fracture
network model with p = 0.1, and N = 300 at six different time
steps.

A popular model for fractures is the discrete fracture network
model (DFN) [19], which is based heavily on the fractal nature of
fracture systems. In the DFN, the system is divided into smaller
parts, where each part has a different density of fractures. The
DFN captures the scale-free degree distribution of fractures, but

the correlation profile is assortative [15], as opposed to the net-
works it aims to model. In an assortative network, nodes of similar
connectivity tend to be connected to each other. The fracture
network model proposed here, is intended to mimic the growth
process of two-dimensional fracture networks, giving a much
more correct correlation profile.

Some basic network properties of the model are listed in
Table 2, showing that clustering and efficiency of the model are
comparable to the sea–ice fracture networks. Both the length
and degree distributions for the model are consistent with scale-
freeness for the range of scales where edge effects are negligible,
see Figure 5. The slope of the length distribution, αl, is compara-
ble to that of the sea–ice fracture networks, while the slope of the
degree distribution , αk, is considerably smaller than in the sea–ice
fracture networks. By comparing images of the model (Figure 8)
with the sea–ice images (Figure 2), we see that the model is con-
siderably more homogeneous than the sea–ice networks, which
may explain the difference in the degree distributions. For the
model, αl and αk are much more similar than in the sea–ice net-
works, which supports this view, as in a completely homogeneous
network, the two distributions would be equal. Figure 6 shows the
degree–degree correlation profile of some sea–ice networks and
an instance of the model, displaying the disassortative behavior
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FIGURE 7 | Fracture length l, plotted as a function of node degree, k,

for a sample network made from a SAR image.

of the model, which mimics the sea–ice networks very well. This
behavior is the main feature of the model, which supports the
correctness of the underlying mechanism.

4. CONCLUSIONS
We have studied how sea–ice fractures depend on each other by
constructing the dual network where fractures are represented by
nodes and intersections are links. The data are based on satellite
images. We measure the different parameters that characterize the
topology of networks.

Fractures in sea ice can propagate hundreds of kilometers if
they remain uninterrupted, however, if a single existing fracture
comes in the way, that may suffice to terminate the propaga-
tion. This basic observation illustrates the difference between
fracturing in a homogeneous material, and fracturing in a frac-
tured material. Thus the fractures interact very strongly, and early
fractures more easily grow long.

The sea ice fracture network in the Kara Sea has been shown
to have a scale-free distribution of fracture lengths. The dual
network is also a scale-free network, with a scale-free degree dis-
tribution. The scale-free structure comes from a simple geometric
relation, namely that as more fractures appear, there is less and
less space for new fractures. This leads to a scale-free length dis-
tribution, and since the degree of a node is strongly correlated
with fracture lengths, the degree distribution is also scale-free.
The complex behavior of the ice, including refreezing and split-
ting of leads due to relative movements, tend to destroy the leads
with many intersections, making the degree distribution steeper
than one would otherwise expect.

Furthermore, the structure of the dual network is such that
the degree–degree correlations are disassortative, meaning that
nodes of a high degree tend to connect to nodes of low degree
and vice versa. This structure supports the idea that long frac-
tures are created early, while smaller fractures branch off from
the longer ones at later stages. The branching ensures the net-
work is connected, and that fractures relate strongly with each
other. New fractures typically start and end at existing fractures.

FIGURE 8 | Images taken of the growing fracture network model at

different times. For all images, the continuation parameter p is set to 0.1.
(A) Image taken after 100 time steps. (B) Image taken after 200 time steps.
(C) Image taken after 300 time steps, after 300 time steps, the refreezing
process keeps the number of fractures at 300. (D) Image taken after 400
time steps. (E) Image taken after 1000 time steps. (F) Image taken after
3000 time steps.

The growth results in a network with a high clustering coeffi-
cient, and high efficiency. The characteristic path length should,
as a consequence of the growth process, grow as the logarithm of
the number of fractures, classifying the network as a small-world
network.

The Growing Fracture Network model differs from existing
models [15, 19] mainly in the disassortative behavior of the cor-
relation profile. Refreezing is included in the model as a Poisson
refreezing process. The model reproduces fracture networks with
realistic clustering, efficiency, and distribution of fracture lengths.
It also reproduces the observed disassortative degree–degree cor-
relation profiles. The degree distribution of the model, however,
does not decay as quickly as in the present observed sea–ice
fracture networks, indicating that the model creates overly homo-
geneous networks. It seems therefore not to capture all of the
complexity in the Kara Sea system. This may, in part, be attributed
to a crude model for refreezing.

Further investigation of the present fracture network model
may contribute to better knowledge of formation of the networks.
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