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We propose a mapping from fracture systems consisting of intersecting fracture sheets
in three dimensions to an abstract network consisting of nodes and links. This makes it
possible to analyze fracture systems with the methods developed within modern network
theory. We test the mapping for two-dimensional geological fracture outcrops and find
that the equivalent networks are small-world and dissasortative. By analyzing the Discrete
Fracture Network model, which is used to generate artificial fracture outcrop networks,
we also find small world networks. However, the networks turn out to be assortative.
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1. INTRODUCTION
Topological analysis of networks has had an explosive growth
over the last decade (Barabási and Stanley, 2003). A large num-
ber of new concepts and quantitive tools for describing networks
have been introduced, making it possible to describe and classify
complex network structures at a level that never earlier has been
achieved (Albert and Barabási, 2002; Boccaletti et al., 2006). There
is one class, though, of networks that has resisted this kind of
analysis: Fracture networks. These consist of intersecting fracture
sheets, making both the concepts of links and nodes far from obvi-
ous. Fracture networks, however, are extremely important from a
technological point of view. For example, in carbonate petroleum
reservoirs, the oil is transported through fracture networks as the
permeability of the porous matrix is too low (Van Golf-Racht
et al., 2007). Another example is the extraction of shale gas though
hydrofracturing (Mooney, 2011).

We propose a transformation from fracture network to an
equivalent network consisting of nodes and links. This makes
it possible to qualitatively and quantitatively characterize the
topology of fracture networks.

An important consequence of this is that it is possible to com-
pare models that generate artificial networks with real networks
quantitatively.

Fracture outcrop networks have been studied from a network
point of view by Valentini et al. (2007a,b). Fracture outcrops are
fracture lines visible on the surfaces of geological formations.
The outcrop fracture lines are one-dimensional cuts through
the two-dimensional fracture sheets. Valentini et al. treats frac-
ture lines as links and their crossing points as nodes. This gives
a more narrow degree distribution than the transform pro-
posed in this paper. However, Valentini et al. also conclude that
fracture networks are small-world networks (Valentini et al.,
2007a). In three dimensions where the fractures are sheets, the
transformation we propose is necessary to define the topology
network.

Our analysis is somewhat related to the information measure
for cities introduced by Rosvall et al. (2005).

We analyze in the following fracture data from eight out-
crops found in south-east Sweden. A detailed description of the
bedrock composition and geological history are given in (Darcel
et al., 2006; Åström, 2007; Ström et al., 2008). We show one of
the outcrop fracture networks in Figure 1A. As we shall see, the
equivalent network (shown in Figure 1B) constructed from the
original network has small-world character. Furthermore, it is
disassortative.

We then go on to analyze artificial fracture networks gener-
ated with the Discrete Fracture Network (DFN) model (Darcel
et al., 2003). Examples of DFN generated fracture systems are
given in Figure 2. The equivalent networks constructed from the
original networks generated by this model also show small-world
behavior. However, they are assortative.

2. METHOD
The eight outcrops covers between 250 and 600 m2. All visible
fractures with length over 0.5 m have been recorded in the data
sets. We prepare the data sets as follows. When tracing the fracture
lines, they may appear disconnected or doubled due to topogra-
phy or ground weathering. An illustration of a outcrop is shown
in Figure 3A. We therefore use a reconnection procedure (Darcel
et al., 2009). That is, we first project fracture traces on a flat sur-
face to reduce the perturbation due to rock surface topography.
Then scattered segments that are likely to belong to the same trace
are reconnected to one single segment accounting for orientation
and distance consistency. We focus on traces with a dashed-line,
disconnected step or layered patterns. We then straighten all the
fractures lines. The result is shown in Figure 3B.

We have now come to the central idea of this paper. In
Figure 3C, each fracture line has been associated with a node.
Whenever two fracture lines cross, we place a link between the
nodes representing the two fracture lines. In Figure 3D, we show
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Andresen et al. Topology of fracture networks

FIGURE 1 | (A) Fracture network of outcrop AMS000025 (B) Equivalent
network based on the original network shown in (A).

FIGURE 2 | Examples of fracture systmes generated with DFN model

for varying parameters αl and D2.

A B C D

FIGURE 3 | Clock-wise from upper left. (A) Representation of fracture
outcrop network. (B) Reconnected fracture network. (C) Equivalent
network placed on top of fracture outcrop network. (D) Equivalent network
representation of (B).

the equivalent network consisting of nodes representing the frac-
ture lines and links representing crossing fracture lines (Andresen,
2008).

We note that this equivalent network is as simple to construct
in a three-dimensional system of fracture sheets: each fracture sheet
is represented by a node and whenever two sheets cross each other,
a link is placed between the equivalent nodes.
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FIGURE 4 | Cumulative degree distribution P(> k) for: (A) Networks

generated from the eight outcrop data sets. Insert shows the average
compared to a power law fit ( exponent −2.3) and an exponential fit. (B)

DFN model. Values for the expoents of the fits are given in Table 2.

3. RESULTS
Arguably the most central property of any complex network is the
degree distribution P(k). The degree, k, of a node is the number of
other nodes that it is linked to. The equivalent networks generated
from the outcrop networks show a broad degree distribution. We
plot the cumulative distribution, P(> k) in Figure 4. When P(k)
follows a power-law the network is scale free (Albert and Barabási,
2002). We plot the data on a log-log scale and fit the average to
the power law P(k) ∼ k−2.2. The scaling ensues over one decade.
We note, however, as shown in the insert, that with such a short
range, an exponential fit would also match. In the case of the DFN
data the goodness of the power law fit is dependent on model
parameters.

The clustering is a local measure of how well a network is con-
nected on a local neighbor-to-neighbor scale. The global cluster-
ing coefficient, C, is defined (Watts and Strogatz, 1998; Newman,
2003) as the average over all the local clustering coefficients, Ci,
for each node

C = 1

N

i = N∑

i = 1

Ci = 1

N

i = N∑

i = 1

2ENN, i

ki(ki − 1)
, (1)

where ki is the degree of node i, N is the total number of nodes
and ENN, i is the number of links between the nearest neighbors of
node i. The clustering coefficient falls in the interval 0 ≤ C ≤ 1,
and a high value indicates that there is a high chance that two
neighbors of a node is connected to each other. This makes the
network highly connected on a local scale, making it easy for
nodes to efficiently interact on this scale.

In order to determine whether the clustering coefficients found
for the networks are large for their number of nodes and links,
we compare them to rewired and random versions of the same
networks. In rewiring (Mathias and Gopal, 2001) two pairs of
connected nodes are selected at random, and the links inter-
changed so that two new pairs of connected nodes are created.
The procedure is repeated until all links are moved. This pre-
serves the degree distribution since all nodes retain their initial
degree, but it removes any correlation between the degrees of the
connected nodes. For the random version all links are removed
and redistributed randomly between the nodes. This produces a
new degree distribution that is generally not broad. In all cases the
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quoted values for these networks are averaged over 1000 realiza-
tions. As can be seen from Table 1, the equivalent networks have
an average clustering coefficient of 0.18 which is more than an
order of magnitude larger than for comparable rewired networks,
and two orders of magnitude larger than for purely random
versions. Hence, they are well connected on a local scale.

The efficiency, E, is a global measure for how well the differ-
ent parts of the network are connected, and how easily nodes
in different parts of the network can interact. The measure is
defined using the shortest distance, dij, between two nodes i and j
(Boccaletti et al., 2006)

E = 1

N(N − 1)

∑

(i, j) ∈ N, i �= j

1

dij
, (2)

where dij = ∞ if node i and j are not connected. E falls in the
interval 0 ≤ E ≤ 1, and a high value indicates that it is easy for
nodes far apart in the network to interact since there on average
is just a few links between any two nodes.

In Table 1 we present E for all the equivalent networks and
their average is 0.065, which is smaller than for the rewired
(ERW ) and random (ERA) versions both having an average of 0.11.
However the efficiency (E) is only smaller by a factor of about 2,
making E and ERW/RA of the same order. We would expect the
rewired and random networks to have a high efficiency, several
orders of magnitude larger than ordered networks, because they
have a large portion of long-range links. The fact that the equiva-
lent networks have an efficiency comparable to that of the rewired

and random versions means that compared to ordered networks
they have a large efficiency. We will discuss the impact of C and E
for the equivalent networks in more detail below.

It is also interesting to study any correlations between the
degrees of linked nodes. Does high degree nodes link predomi-
nantly to low degree nodes or high degree nodes? (Maslov and
Sneppen, 2002) introduced a correlation matrix

C(k1, k2) = P(k1, k2)

PR(k1, k2)
, (3)

where P(k1, k2) is the probability that a node of degree k1 is
linked to a node of degree k2 for the network to be investi-
gated. PR(k1, k2) is the same probability of a rewired version of
the network. If C(k1, k2) = 1 for all (k1, k2) then there is no
degree correlations in the linking between nodes. If C(k1, k2) > 1
for some values of (k1, k2) then there is an over-representation
of links between nodes of degree k1 and k2 in the investigated
network compared to that of a rewired version of the network.
If C(k1, k2) < 1 there is an under-representation. Note that the
matrix C(k1, k2) is symmetric.

In Figure 5 we have plotted the average of the matrix C(k1, k2)

for all outcrops, where PR(k1, k2) is averaged over 10000 realiza-
tions. We observe an over-representation of small degree nodes
linking to higher degree nodes, and an under-representation of
equal degree nodes linking to each other. Such networks are dis-
assortative, and are abundant in naturally occurring networks
(Amaral et al., 2004; Hansen and Hansen, 2007).

Table 1 | List of the number of nodes (fractures), links, maximum degree kmax, average degree k̄ , clustering coefficient C, clustering coefficient

for rewired networks CRW , clustering coefficient for random networks CRA, efficiency E , efficiency for rewired networks ERW , and efficiency for

random networks ERA for all the outcrop samples.

Sample Nodes Links kmax k̄ C CRW CRA E ERW ERA

AMS000025 787 858 23 2.18 0.170 0.0048 0.00178 0.046 0.104 0.101

AMS000026 716 520 20 1.45 0.088 0.0033 0.00087 0.019 0.048 0.032

AMS000205 973 1188 32 2.44 0.193 0.0043 0.00174 0.032 0.122 0.118

AMS000206 737 487 11 1.32 0.120 0.0013 0.00067 0.004 0.033 0.020

AMS000208 955 1297 31 2.72 0.226 0.0067 0.00213 0.079 0.138 0.138

AMS000209 955 1162 27 2.43 0.177 0.0050 0.00178 0.068 0.119 0.118

AMS100234 946 1549 44 3.27 0.236 0.0138 0.00291 0.133 0.164 0.172

AMS100235 785 1392 44 3.55 0.243 0.0180 0.00394 0.141 0.176 0.192

Average 857 1057 29 2.42 0.182 0.0072 0.00198 0.065 0.113 0.111

Table 2 | List of degree distribution power-law exponents αk , clustering coefficient C, clustering coefficient for rewired networks CRW ,

clustering coefficient for comparable random networks CRA, efficiency E, efficiency for rewired networks ERW , and efficiency for comparable

random networks ERA for various fracture length power-law exponents αl .

αl αk C CRW CRA E ERW ERA

2.00 2.2 0.08 0.019 0.047 0.028 0.042 0.11

2.25 1.7 0.11 0.013 0.031 0.027 0.049 0.11

2.50 1.4 0.17 0.013 0.019 0.037 0.083 0.10

2.75 1.2 0.26 0.014 0.014 0.050 0.134 0.09

3.00 0.9/1.31 0.31 0.013 0.008 0.050 0.154 0.07
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The characteristic path length, L is defined as the average
distance between any pair of nodes of a network,

L = 1

N(N − 1)

∑

(i, j) ∈ N, i �= j

dij. (4)

Having a large clustering coefficient indicates a large local con-
nectivity, and a small characteristic path length indicates a large
global connectivity. When both of these criteria are fulfilled, we
have a small-world network (Watts and Strogatz, 1998). Networks
consisting of more than one disjoint part will have dij = ∞
for at least one pair of nodes. Hence, the characteristic path
length is not a good measure for the global connectivity of
such networks. However a small value of dij for most pairs of
nodes will give a large average value for 1/dij which is mea-
sured by the efficiency. Therefore a large E is comparable to a
small L for describing the global connectedness. Since the frac-
ture networks found in the outcrops have been shown to have
a clustering coefficient significantly larger than rewired and ran-
dom versions, and an efficiency of the same order as the rewired
and random networks we conclude that these are small-world
networks.

We now turn to analyzing the DFN model (Darcel et al., 2003).
It is based on the observation that the length of fracture lines in
outcrops, l, are distributed according to a power law (Renshaw,
1999; Bonnet et al., 2001)

p(l) ∼ l−αl , (5)

with αl typically in the range 1.7–3.2 (Bonnet et al., 2001).
The outcrops can be divided into two groups: one with αl = 3
(ASM000205 and ASM000206) and one with αl = 2.3 ± 0.2 (the
rest) (Davy et al., 2010). The angular distribution of the direc-
tions of the fractures depends on stress history of the fracture
system. We assume here the simplest, i.e., a uniform distribution.
(Åström, 2007) has measured the angle distribution for some of
the data sets we consider here. They are not uniformly distributed.
However, there are clear correlations between fracture length and
direction in the data sets. This is not captured by a single angle
distribution function. Introducing a non-uniform angle distri-
bution in the DFN model does not have a significant impact.
Lastly, the position of the fractures must be specified. The DFN
model uses a hierarchical construction (Schertzer and Lovejoy,
1987; Meakin, 1991) to place the midpoints of the fractures on
a fractal set characterized by a fractal dimension D2. D2 lies for
natural fracture in the range 1.5 to 2.0 (Bonnet et al., 2001). The
outcrop data has D2 ≈ 2 Åström (2007). In order to generate
the fractal set on which the midpoints of the fracture lines are
placed, one uses the hierarchical algorithm described by Schertzer
and Lovejoy (1987) and (Meakin, 1991): Starting with a square,
this is divided into l2 subsections. Each subsection is assigned a
probability Pi (i.e. a number between 0 and 1) where i runs from
1 to l2. This procedure is then repeated for each subsection, which
is divided into l2 sub-subsections, and new probabilities Pi are
assigned to each sub-subsection. Repeating this procedure n times
splits the original square into l2n subsquares, each chracterized

by Pi1 Pi2 · · · Pin giving the probability that a fracture line mid-
point is placed in that subsquare. By tuning the probabilitites Pi,
the desired fractal dimension D2 is set, see (Davy et al., 2010) for
details.

The results of analyzing the equivalent networks of the DFN
model networks are given in Table 2. The data are based on 1000
networks of comparable size to those in the outcrop fracture data
sets. From the table, we see the same trends as those observed in
Table 1 for the eight Outcrop fracture data sets and it is possi-
ble to find a combination of αl and D2 to make match between
them. However, we show in Figure 6 the averaged degree cor-
relation matrix. This indicates an assortative network structure:
nodes of equal coordination number tend to be connected. This
is the opposite of what is observed for the outcrop data sets, see
Figure 5. Hence, the topology of the artificial networks is quite
different from the natural ones. This implies that the topology

1A kink in the slope around k = 60 gives 0.9 when fitting for smaller values of
k and 1.3 for larger values.
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of the fracture network themselves, artificial and real, are
quite different. This difference is not visible from direct
observation.

In the study by Åström (2007), the outcrop data set is com-
pared with models based on the physical process behind the
network. The analysis is performed not on the dual network, but
on the fracture network directly. Åström concludes that there are
significant discrepancies between the models and the data. These
discrepancies are geometrical rather than topological in contrast
to the present analysis.

Hence, by constructing the equivalent networks, we have
access to the entire analysis toolbox of modern network the-
ory for fracture networks. As we have shown in the analysis

presented, this makes it possible to test fracture network
models on a quantitative level beyond what has been possible
earlier.
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