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Abstract

Early diagnosis and fault-tolerant control are essential for safe operation of floating platforms where mooring
systems maintain vessel position and must withstand environmental loads. This paper considers two critical
faults, line breakage and loss of a buoyancy element and employs vector statistical change detection for
timely diagnosis of faults. A structural reliability index is applied for monitoring the safety level of each
mooring line and, a set-point chasing algorithm accommodates the effects of line failure, as an integral
part of the reliability-based set-point chasing control algorithm. The feasibility of the fault-tolerant control
strategy is verified in model basin tests.

Keywords: Fault diagnosis, Fault-Tolerant Control, Position Mooring, Structural Reliability, Change
Detection, Optimal Set-point Chasing

Nomenclature
DP Dynamic Positioning
FPSO Floating production

storage and offloading
LF Low frequency
WF Wave frequency
MSS Marine system simulator
IMO International Maritime Organisation
PM Position mooring with

thruster assistance
COT Centre of turret
COG Centre of gravity
HRS Hydro-acoustic reference system
MRU Motion reference units
EFF Earth-fixed frame
BFF Body-fixed frame
TP Terminal point
MLE Maximum likelihood estimation

1. Introduction

Increasing safety and efficiency of the work-over
operation on floating platforms is attracting more
and more attention. In offshore operations, marine

vessels are often required to be kept at a position
by thrusters, known as a DP system. References
to DP systems can be found in [1], [2] and [3] etc.
For dynamic positioning of surface vessels moored
to the seabed, this is referred to as a PM system.
The main objective of the PM system is to keep
the vessel at a certain position, while the second-
ary objective is to prevent line breakage by keeping
the vessel within a limited region. Several studies
have appeared about thruster-assisted PM systems,
including [4], [5], [6] and [7], and reliability issues
were addressed together with the DP control as-
pects in [8]. The reactions in the event of faults and
the ability to maintain safe control even in case of
failure of part of a mooring system has only been
sparsely dealt with in earlier studies and this will
be the main subject of this paper.

Fault-tolerant control of marine vessels presents
a challenging issue. Regulations normally define
different system levels by hardware redundancies
and prevent system failure by replacing faulty hard-
ware [9]. Risk analysis is also performed to evalu-
ate the effect of faults,which is traditionally based
on the reliability characteristics of mechanical com-
ponents, with studies of risk of fatigue damage or
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line breakage under extreme conditions [10], [11],
[8]. Human interactions are still the significant
factors to handle instantaneous faults. However,
the uncertainty of human interaction is high. A re-
view of the accident databases shows that human
error is the dominant factor in maritime accidents
[12]. To prevent risk and to reduce costs, faults
should be isolated and handled automatically by
a fault-tolerant control capability of the position
mooring control system. One of the approaches
to detect faults is the structural analysis technique
[13]. Once a fault has been found in a component
of the system, the controller is to be re-designed
such that the faulty effect can be attenuated. The
control re-configuration strategy may be designed
dependent on the type of the fault and thus imple-
mented as needed.

Systematic fault diagnosis and tolerant control
for station-keeping of a marine vessel was found in
[14]. A structural analysis technique is utilised to
generate the residual for the fault diagnosis in [14]
and control re-configuration design was applied to
alleviate the effects of thruster failure. For sensor
failure, such as temporary loss of sensor data, fault-
tolerant sensor fusion was demonstrated in [15].
These strategies were validated in sea trials. For
PM systems, the tension compensation with feed-
forward control in the case of line breakage was
suggested in [4]. The structural analysis was fur-
ther applied on the PM problem in [16] and an
off-line fault-accommodation strategy was designed
with the switch between a bank of controllers in
the event of mooring line breakage [7]. System-
wide fault-tolerant control of a PM system was
demonstrated in [17] where active fault isolation
was used to isolate faults that are otherwise only
detectable. This fault-handling control was based
on thruster usage with the reference position main-
tained, also when accommodating the effects of line
failure. An optimal set-point chasing algorithm was
proposed in [18], where it was suggested to move
the reference position to an optimal position where
a tension-based cost function achieves a minimum
value. This paper investigates diagnosis of several
mooring system failures, including loss of underwa-
ter buoyancy elements, and the paper shows how
diagnosis is combined with reliability-based fault-
tolerant control. The diagnosis principles employed
in this paper are based on early results reported in
[19] which are further refined and combined into a
total fault-tolerant control scheme in this paper.

Reliability of a marine structure was initially

combined with a control algorithm by [20] for an off-
shore drilling platform with a rigid riser. Extension
to a moored structure was dealt with in [21], [22]
and [23], where an explicit account of external en-
vironment was done through a reliability index. For
mooring systems, [22] utilised the structural reliab-
ility index for off-line calculation of thrust needed.
A reliability-based control algorithm was further
proposed in [23], making the reliability index an
intrinsic part of a controller. This algorithm could
handle one critical mooring line - the one with the
smallest reliability index. The structural reliability
index was further proposed into a set-point chasing
algorithm in [11] to reduce the risk of mooring line
breakage in an extreme environmental situation and
fault-tolerance aspects were also considered. This
paper aims to combine the structural reliability in-
dex into the fault-accommodation strategy sugges-
ted in [18]. In the case of mooring line breakage, the
fault-tolerant control helps to prevent the structural
reliability index of the mooring line from a critical
index.
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Figure 1: Architecture of fault-tolerant control using set-
point for fault-handling

Fig. (1) shows the fault-tolerant control archi-
tecture for the PM system. Once there is a fault
in the system, the residual generator diagnoses the
fault with the measured signals and control input.
Related residuals for a specific fault would be pro-
duced accordingly, which are then delivered to the
change detection algorithm. The change of the re-
siduals is then found by the dedicated detector.
The generated hypothesis flags are supervised to de-
cide the remedial actions. If the remedial decision
is made, the design of observer and controller is
adjusted based on the system model in the faulty
case. The set-point chasing algorithm further pro-
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duces the suitable reference position for the PM
system to ensure system safety. This paper con-
cerns the change detection and set-point generation
illustrated in Fig. (1).

The paper is structured as follows. Residual gen-
eration is first obtained through structural analysis
of the nonlinear system. Properties of residuals are
then studied and whitening is applied to meet the-
oretical pre-conditions. Section 3 analyses probab-
ility distributions for the experimental data and a
change detection algorithm is designed. Fault tol-
erant control with an optimal set-point chasing al-
gorithm is then described and simulations and ex-
perimental results appear in Section 5, showing con-
vincing agreement between model and experiments.
Conclusions finish the paper.

2. Structural analysis

Modelling of the PM system is defined as the set
of the constraints, shown in Appendix A. A typ-
ical PM system is shown in Fig. (2). It should be
noticed that the numbers of thrusters, sensors and
measurement units depend on the class of DP sys-
tem. Detailed class regulations are found in [24]
and [25]. The modelling here presents the normal
behaviour of the PM system, and structural ana-
lysis is used to find the over-determined subsystem.
It finds a complete matching with respect to un-
known variables and uses non-matched constraints,
if these exist, as the analytical redundancy rela-
tions, also known as the parity relations or residual
vectors.

Figure 2: A typical PM system. By courtesy of Berntsen
[23]

SaTool is a software developed for the structural

analysis technique. With SaTool, a set of parity
relations is generated as the result of structural
analysis in symbolic form. Occurrence of a fault
is considered as a deviation from the constraints.
This deviation will affect a parity relation if this
parity relation is built from the constraints. The
parity relations can then be used as residual gener-
ators for fault detection in the system. Among the
analytical redundancy relations that exist for the
system, Eqs. (1) - (3) are sensitive to faults on the
ith mooring line:

The analytical redundancy relation arr1 is a vector
expressing x, y linear acceleration balance, arr2 is a
scalar with angular acceleration balance and arr5+i
where i = 1, 2, .., 6 is a vector expressing the balance
between estimated and measured tensions in the six
mooring lines. For brevity, other residuals, which
are not related to mooring lines, are not included
here.

The parity relations 4 to 6 below, are found by
inserting the constraints listed in Appendix A in
the symbolic expressions 1 to 3 and introducing,
for brevity, prel , pmH1 −R(q1)lH1, the analytical
form of residuals become Eqs. (4)-(6).

In Eqs. (4)-(6), r1 and r2 are the x and y com-
ponents of arr1 . The impact on yaw acceleration
arr2 is minor for a loss of a buoyancy element or
breakage of line j, would affect the residual vector
components [r1, r2, ..., r5+j ].
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Figure 3: Time history, autocorrelation, PDF and CDF for
raw residual r1 with loss of buoyancy element at t = 580s.
The PDF is shown before and after loss of the MBLE. A
Gaussian probability plot is used for the CDF.

In Eqs. (4)-(6), ψ1, ψ2, ψ3 are the yaw angle meas-
urements, ψ, ψ̇ are the yaw angle and yaw rate,
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arr1 = c1(a1(u1), a2(u2), c6(m3(ψ3),m9(m3),m6(pmH1)),m3(ψ3),

c2i+5(c6(m3(ψ3),m9(m3),m6(pmH1)),m3(ψ3),

c2i+6(c6(m3(ψ3),m9(m3),m6(pmH1)),m3(ψ3))),m12(wm2), d3(m3(ψ3))),

(1)

arr2 = c2(a3(u3), c6(m3(ψ3),m9(m3),m6(pmH1)),m3(ψ3),

c2i+5(c6(m3(ψ3),m9(m3),m6(pmH1)),m3(ψ3),

c2i+6(c6(m3(ψ3))),m12(wm2), d3(m3(ψ3)),m3(ψ3),m9(m3),m6(pmH1)), d4(d3(m3(ψ3))))

(2)

arr5+i = m13+j(Tmj , c2i+5(c6(m3(ψ3),m9(q3),m6(pmH1)),m3(ψ3),

c2i+6(c6(m3(ψ3),m9(q3),m6(pmH1)),m3(ψ3)))).
(3)

[
r1
r2

]
= M−1 (HxyT[g1(u1, u2, . . . , uk), g2(u1, u2, . . . , uk), g3(u1, u2, . . . , uk)]>

)
+ M−1

[gxw(wm1) gyw(wm1)]> +

n∑
j=1

Axy
mo(prel, ψ1),Txy

moj(gmo(prel, ψ1, gmb(prel, ψ1)))


−M−1

(
DA−1ve [

∂

∂t
(prel − cm)

∂

∂t
(ψ1)]>

)
− ∂

∂t

∂

∂t
(prel)

(4)

[
r3
]

= I−1zz
(
HψT[g1(u1, u2, . . . , uk), g2(u1, u2, . . . , uk), g3(u1, u2, . . . , uk)]> + gψw(wm1)

)
+ I−1zz

 n∑
j=1

Aψ
mo(prel, ψ1)Tψ

moj(gmo(prel, ψ1, gmb(prel, ψ1)))

 (5)

 r6
...
r11

 = Tm − gmo(prel, ψ1, gmb(prel, ψ1)) (6)

pG1,pG2,pH1 are the position measurements, p, ṗ
are vessel position and velocity, q1,q2,q3 are the
vertical reference measurements, z, φ, θ are vessel
heave, roll and pitch, wm1,wm2, cm are wind and
current measurements, vw,vc are wind and current
velocity, Twave is the wave force, Tmoj is the moor-
ing line tension, Tmbi is the MLBE force, Tmj is
the mooring line tension measurement in line i, v
is the vessel velocity, vm is velocity measurement,
u1, u2, . . . uk are thruster input, T1, T2, T3 are the
thruster forces. The detailed modelling for a PM
system is described, e.g. in [26].

2.1. Detectability and isolability

If a fault affects the residual vector, the fault
is structurally detectable. If a particular fault
has a unique pattern in the residual vector’s ele-
ments, it is structurally isolable. In the pres-
ence of only one fault, isolable constraints are

(m1,m2,m3,m7,m8,m9,m10,m11,m13+j). The
rest are detectable. Considering the faults on the
mooring line, violations of constraints c2i+5 and
c2i+6 are detectable and their residual vectors are
unique from those of the other cases. On breakage
of a line, the measured tension on m13+j becomes
zero. In contrast, with loss of a buoyancy element,
the tension will increase. One can hence distinguish
between these two faults by detecting the tension
change of the measurement. The constraints m13+j

are isolable and thus the fault on tension measure-
ment equipment can be distinguished from the fault
on the mooring line.

If two or more faults are present simultaneously,
fault isolation, and therefore also fault accommod-
ation, becomes more complex and active fault isol-
ation [27] may be required. This was demonstrated
on the PM system in [17].
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Figure 4: Time history, autocorrelation, PDF and CDF for
raw residual r5 with sudden loss of a buoyancy element
(MBLE) at t = 580s. The PDF plot shows histograms of
probability density before and after loss of the MBLE. The
CDF is the one before the fault (H0) plotted in a Gaussian
probability plot.

2.2. Properties of residuals

The time-histories, autocorrelation and distribu-
tions of the residuals r1 and r5+i before and after
a fault are shown in Figures 3 and 4. A similar
analysis of residual r2 was also made. In the ex-
periment, the wave-making starts at t = 150s and
a buoyancy element loss at line no.4 is injected at
time t = 580s. Vessel data and experiment details
are described in Section 5.1. The auto-correlation
functions for r1 and r5 for the no-fault condition
(H0) and the PDFs p(r,H0) are calculated for the
interval [180, 550]s. The amplitude distributions
before and after the fault are reasonably close to be-
ing Gaussian. The autocorrelation functions show
considerable correlation, caused by the wave im-
pact. This is undesired for change detection since
the theory requires independent increments of the
residuals (whiteness). Signal whitening is therefore
required.

2.3. Whitening of residuals

If the discrete time scalar residual ri(kTs) was
generated through an auto regressive moving aver-
age (ARMA) model by a scalar process e(kTs) with
independent increments, where k is increments in
time and Ts the sampling time,

ri(kTs) =
C(q)

F (q)
e(kTs) (7)

where F (q) = a1q
1 + a2q

2 + · · · + anq
n, and

C(q) = c1q
1 + a2q

2 + · · ·+ anq
m are polynomials in

the delay operator q, then, provided C(q) is Hur-
witz, the original residual, ri(k) for brevity, would
be whitened to rwi (k) by

rwi (k) =
F (q)

C(q)
ri(k) (8)

Standard identification methods can be used to
determine the polynomials in the ARMA model
Eq. (7). However, C(q) need be restricted to have
eigenvalues within the unit circle. The orders of
F (q) and B(q) are determined as part of the iden-
tification. The main issue in this procedure is that
a model as Eq. (7) requires e(k) to be stationary,
but waves of a short-crested sea are not station-
ary. Furthermore, there are non-linear phenomena
involved in forming the mooring line tensions, so a
linear whitening process will not suffice. Therefore,
the whitening can at best be approximate.

When applying the whitening procedure, the dis-
tribution of the raw whitened residual, shown in
Fig. (6) appears to have a mixed distribution where
the bulk of samples are Gaussian but the tails are
differently distributed; the tails have some resemb-
lance to outliers. One approach would be to at-
tempt to fit a distribution to the H0 data and de-
velop dedicated detection. Another is to borrow an
idea from robust statistics [28], where a nonlinear
transformation, a Huber compression, is applied to
data, rwi to give rwli

rwli (k) = rwi (k)
1

1 + γ(k)
(9)

γ(k) = |r
w
i (k)

rwi
|

where

rwi = kσσ(rwli ) (10)

is an iterative procedure to determine the standard
deviation of rwli from a window of antecedent data.
The factor of kσ is an engineering design choice, de-
termining the level where the tail of the distribution
should be compressed, here kσ = 3 was selected.

Results of the whitening and subsequent Huber
compression are shown in Figs. (5) and (6). It is
noted that the accepted theoretical procedure is to
first determine a nonlinear function that brings the
distribution back to Gaussian and then to whiten
the signals. In this case, the raw residuals appeared
to be Gaussian but not white, and the nonlinear
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transformation was applied after whitening. The
autocorrelation function of the compressed resid-
uals were found to be reasonably independent, as
shown in Fig. (7)
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Figure 5: Autocorrelation of whitened residuals r1 and r5 in
a fault-free situation

In Fig. (5), the correlation of residuals r1 and r5
in a fault-free situation reduces after the whiten-
ing process, compared with the residual without
a whitening process, shown in Fig. (3) and (4).
However, the whitened signals do not approximate
the Gaussian distribution. From Fig. (6), the up-
per and lower tails of the residual CDF (blue point
line) are not confirmed very well with the Gaussian
distribution.

Fig. (6) and (7) also shows the effect of applying
the Huber compression. In Fig. (6), the whitened
signals are shown as the blue line, while the res-
ult of the compression is shown in green. It is
clear that the result of compression is a better fit
to Gaussian distribution, which is a straight line in
the probability plot. Fig. (7) shows the autocorrela-
tion function of the signals with Huber compression,
implying that signal correlation has not changed.
Even though the autocorrelation does not show in-
dependent increments of the residual, this is the
best result that could be achieved by using a fixed
whitening filter on the the non-stationary signal at
hand. The change in residuals with loss of buoy-
ancy element are by far the smaller compared to
changes appearing when line breakage takes place.
Both phenomena are strongly detectable in the re-
siduals Eqs. (4)-(6). This is confirmed by the model
tests, shown in Figs. (3) and (4).
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Figure 6: Time histories and cumulative probability distri-
butions of residuals rw1 and rw5 before and after Huber Com-
pression in condition H0
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Figure 7: Autocorrelation of compressed residuals rw1 and
rw5 for condition H0

From the above observations, the following pro-
cedure is adopted for analysis of residuals: residuals
are first compressed, thereafter whitening is applied
to each component and finally change detection is
applied. The residual can be assumed to have a
Gaussian distribution before and after the change,
and the detection aims to find a shift in mean value.

3. Change detection

Having established a residual vector with desired
properties (Gaussian and independent samples),

6



change detection is a standard problem from de-
tection theory [29, 30]. The result is repeated here
for convenience.

The vector-based hypothesis test problem is for-
mulated as:

H0 : z(i) = µ0 + w(i) i = 1, . . . , k

H1 : z(i) = µ1 + w(i) i = 0, . . . , k,

where w(i) is a Gaussian-distributed vector with
independent increments and variance Q, and µ0

and µ1 are mean value vectors before and after the
change, respectively. A special case, which applies
here, is that the direction of change is known but
the magnitude of change is unknown. Let Γ be
the known direction of change, and v an unknown
scalar, then

H1 : µ1 = µ0 + Γv. (11)

The generalised likelihood ratio test (GLRT) on
a sequence of k samples will decide H1 if

LG =

k∑
i=1

p(z(i); v̂,H1)

p(z(i);H0)
> γ0;

where v̂1 is the maximum likelihood estimate
(MLE) of µ1, and γ0 is a threshold selected to give
a desired (low) probability of false alarms.

The MLE of v is found where the gradient of
lnLG is zero and as

∂ lnLG
∂v

= Γ′Q−1
k∑
i=1

(z(i)−µ0)−kΓ′Q−1Γv, (12)

the MLE estimate of v is,

v̂ =
Γ′Q−1 1

k (
∑k
i=1 z(i)− µ0)

Γ′Q−1Γ
. (13)

Using g = ln(LG) as test statistic, the explicit
form of the detector is, see [13],

g(k) =(
Γ′Q−1

1

k

k∑
i=1

(z(i)− µ0)

)2

(Γ′Q−1Γ)−1

(14)

If at the sample k the g(k) is larger than the
chosen threshold γ, where γ = ln(γ0) above, then
the hypothesis H1 is accepted.

In an on-line implementation, a moving window
of the latest M samples is considered and the test

statistic for line j is, using Γj for the known direc-
tion caused by fault on this line,

gj(k) =(
Γ′jQ

−1 1

M

k∑
i=k−M

(z(i)− µ0)

)2

(Γ′jQ
−1Γj)

−1

(15)

and the estimate of the magnitude of change is

v̂j =
Γ′jQ

−1 1
M (
∑k
i=k−M z(i)− µ0)

Γ′jQ
−1Γj

. (16)

The detector in Eqs. (15)-(16) are used in the
sequel for the processing of experiment data.

3.1. Alternative change detection schemes

CUSUM based change detection is efficient in
detecting a change of known magnitude and the
CUSUM approach was employed in [18] on the pos-
ition mooring application, and it was shown to give
very convincing results for the known magnitude
events, which are: loss of a buoy, or a line break-
age. This paper uses the vector based GLR test,
as the GLR has the ability to detect a change of
unknown magnitude. This implies that also partial
loss of buoyancy can be detected.

Fault isolation is achieved in the vector-based ap-
proach through the known direction of change for
each particular fault. Since a fault in mooring line j
will manifest itself in the vector r = [r1, r2, ...r5+j ]

′.
The directions of change Γj differ in one component
and isolation could be achieved in two ways.

One way could be to model the change as

H∞ : zi = µ1 + µ0 + wi (17)

and consider µ1 as the unknown parameter to be
estimated within the GLR. Isolation would then be
achieved by projection of the estimate µ̂1 on each
of the possible failure directions Γj and finding the
index jf of the faulty line as,

jf = max
j∈n

(µ̂1 · Γj) (18)

The approach used here is to run parallel vector
detectors Eqs. (16) and (15) and isolate by

jf = max
j∈n
{gj(k)|gj(k) > γ} (19)

The two vector-based methods have fairly similar
performance in this application.
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3.2. Threshold determination

In theory, asymptotic analysis of the GLRT de-
tector, i.e. analysis of the distribution of the test
statistics g(k), could provide the threshold γ that
would give a certain false alarm probability [30].
However, with a limited size of samples in the
GLRT, asymptotic results are not accurate and the
empirical distribution of g(k) need be examined.

Selection of γ to obtain a sufficiently low false-
alarm rate PFA, depends on the statistics of g(k)
under the assumption H0. Fig. (8) shows g(k) for
the vector residual. The information from three
signals is combined to indicate the loss of buoy-
ancy element. It is shown that at t = 580, the test
statistics is changed sharply. The red line shows
the threshold that triggers an alarm to indicate the
loss of a buoyancy element. The asymptotic distri-
bution of GLRT statistics at H0 is then selected to
calculate the threshold for the detector.
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Figure 8: Features of test statistics g4(k) for the vector resid-
ual: time history, histogram and approximating PDF, auto-
correlation and CDF plotted as a Gaussian probability plot.

Fig. (8) shows the autocorrelation function for
the test statistics g(k) for the vector-based GLRT
detector using a window length of 400 samples.
The autocorrelation is calculated from data with
no fault injected, when the H0 assumption is valid.
The test statistics are clearly correlated. It is evid-
ent that the theoretical IID assumption for the
GLRT statistics is not fulfilled. Hence the distribu-
tion of the test statistics for the no-fault condition
(H0) will needs to be learned from data in order to
find a threshold that gives a desired (low) probab-
ility for false alarms.

The distribution of the GLRT test statistics is
approximated quite well with a Weibull distribu-
tion. The PDF and CDF of data and the approx-
imating distribution are shown in Fig. (8). The
vector residual is approximately Gaussian, which is
to be expected when the residuals are dominated
by wave frequency vessel motions. Second order,
slowly varying, wave forces exist and create non-
linearity in the vessel motions, but this was not
a dominating component in the experiments. The
statistics of a GLRT on Gaussian signals exist as
theoretical, asymptotic expressions [30], with a win-
dow size reasonable for implementation (window
size is 150 samples). Admittedly, the building of
the GLRT statistic itself is also a nonlinearity pro-
cess.

The threshold γ is selected to obtain a sufficiently
low false-alarm rate PFA with the Weibull distribu-
tion of the GLRT statistic as:

PFA =

∫
g:LG(z(k))>γ

pW (g;H0)dg; (20)

where pW (g;H0) is the PDF of the Weibull dis-
tribution for the GLRT statistics under H0.

As shown in Fig. (8), the estimation of the
Weibull parameters v0g and β0g is obtained under
H0 as pW (g;H0). The threshold for a desired (low)
false alarm probability PFA is then obtained from,

1− PFA = 1− exp

(
−
(
γ

vog

)β0g
)

(21)

Subsequently, the threshold γ is determined from
the desired false alarm probability as,

γ = v0g(− lnPFA)
1
β0g (22)

The false alarm probability is set to a very low
value and the threshold is calculated threshold from
22. The threshold is shown as the dotted line in
Fig. (8). After the fault on the mooring line is de-
tected, the fault-tolerant strategy is then activated.
The target of fault-tolerant control here is to pre-
vent the structural index of the other mooring lines
from a critical value after one line breakage or loss
of a buoyancy element.

3.3. Physical failure mechanisms

Regarding degradation and subsequent breakage
of a mooring line, fatigue or corrosion damage are
typical causes for breakage. As mooring lines are
most often heavy chains, line breakage occurs due
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to fatigue of one chain element combined with in-
stantaneously high stress in adverse weather condi-
tions. Breakage is therefore essentially an abrupt
event that is hardly visible in the mooring system
dynamics before the event. Gradual loss of buoy-
ancy of a buoyancy element is, by contrast, an in-
cipient mechanism.

The breakage of a line or sudden loss of a buoy-
ancy element gives rise to a fairly abrupt change
in residuals with a shift in mean value as a con-
sequence. If a leakage causes a buoyancy element
to gradually lose buoyancy, this will be reflected in
a change in residuals that start departing from zero
mean. When filled to neutral buoyancy, the resid-
uals take equivalent values as for the loss of buoy.
When completely water filled, the dead weight of
the buoy enters into the catenary equation.

3.4. Detection behaviour for incipient faults

Assuming a leakage develops linearly, it starts at
sample i0 and neutral buoyancy is reached after m
samples. Then the residual would develop as fol-
lows, while i0 ≤ i ≤ i0 +m,

Hleak : z(i) = µ0 + Γ (i−i0)
m ν + w(i) (23)

A specific test could be developed for this partic-
ular case, but a real leak could develop other than
linearly over time. Therefore, it is interesting to in-
vestigate how the detector developed above for the
abrupt fault will behave in the case of an incipi-
ent loss of buoyancy. Assuming m�M , otherwise
detection behaviour would resemble that of the ab-
rupt change, then, while i0 +M < k < i0 +m,

g(k) =(
Γ′Q−1

1

M

k∑
i=k−M

(Γ
(i− i0)

m
ν + w(i))

)2

Γ′Q−1Γ

(24)

The distribution of g(k) under Hleak will there-
fore develop from that under H0 to that for H1

when (i−i0)
m = 1 by which time buoyancy is neut-

ral. The detector Eq. (15) will give a series of alerts
until the leak is sufficiently large to trigger a per-
manent alarm. Using the magnitude of the change
Eq. (16), the change in physical buoyancy follows
from the equations of motion, see Appendix A, from
which the change in buoyancy could be calculated
and used for real-time warning.

A simpler solution in practice could be to base
warning / alarm logic on the estimated magnitude
of change since an incipient fault will manifest itself
as a gradual change towards a full loss of a buoy-
ancy element, and beyond as it eventually becomes
completely filled with water. Hypothesis testing
combining model-based FDI with statistical change
detection and testing with methods from artificial
intelligence could be employed to avoid nuisance
alarms on-board. Such methods were covered in the
survey by [31] and a study of data driven diagnosis
showed design for isolability of different types of
faults in automotive engines [32]. The same authors
suggested an explicit comparison of the probability
distribution of the residual, estimated online using
current data, with no-fault residual distributions in
[33] and found that tiny faults, i.e. also incipient
ones, could be diagnosed in conditions where tradi-
tional methods would fall short.

4. Fault-tolerant control

This section will summarize the properties of the
fault-tolerant set-point-chasing control algorithm,
first introduced in [18] and its properties will be in-
vestigated and documented from model tests where
faults were imposed.

The set-point chasing algorithm recalculates an
optimal set-point for the mooring system, within
an allowed range, to protect the mooring lines from
breakage or, if one or more lines have failed, calcu-
late the optimal set-point that protects all remain-
ing lines. Weather conditions and mooring system
dynamics are incorporated through estimation of
the distribution of line tensions and calculation of
an associated risk factor, [11].

4.1. Controller design

The control objective is to maintain the vessel’s
position in a limited region and keep the vessel on
the desired heading such that the external environ-
mental load is minimised. Another objective is to
avoid line breakage and keep the mooring system
in a safe state. An optimal position algorithm is
designed to meet the second objective. The control
architecture for the PM system is shown in Fig. (1).

The control action for the PM also aims to
counteract the low-frequency part of vessel motion
caused by current and wind as well as second order
mean and slowly varying wave loads. The specific
function of control action in PM can be found in
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[34]. For the controller design, it is common to use
multi-variable PID control in PM systems with the
structure:

τ thr = −Kdν̂e −KpR
T (ψ)η̂e

−KiR
T (ψ)

∫
η̂edt (25)

where η̂e = η̂ − ηd and ν̂e = ν̂ − νd are the
position and velocity errors; ηd and νd the de-
sired position and velocity vectors; and Kd, Ki and
Kd ∈ R3×3 are the non-negative controller gain
matrices. ψ is the measured heading angle and
R(ψ) is the rotation matrix from the body-fixed
to the Earth-fixed frames. For the detailed design
of the controller and observer, refer to Appendix B.

4.2. Set-point chasing algorithms

To prevent failure of mooring lines in PM sys-
tems, position-moored vessels are kept within a
small region, which is normally defined as a circle
with a specific radius. This radius is one of the crit-
ical factors in order to ensure mooring-line safety
[35] [36]. A reliability index has been used to eval-
uate this region for moored, interconnected struc-
tures [22] and a reliability-index-based controller
has been designed to maintain the safety of one
critical mooring line [23]. The present paper ex-
tends previous results by diagnosis and testing of a
strategy for fault tolerance against mooring system
failures.

4.2.1. Structural reliability

The basic idea of the fault-tolerant control on
PM systems is to make sure that the probability of
mooring-line failure is kept below a predefined ac-
ceptable level. The failure probability for a moor-
ing line is expressed in terms of a reliability index,
the so-called δ-index, which is described in classical
texts, see e.g. [37]. Control schemes based on a reli-
ability index were investigated for risers and moor-
ing systems in [20] and [22]. The index quantifies
the probability of mooring-line failure and can be
expressed as :

δi(t) =
Tci − Texi

σci
i = 1, . . . n (26)

where Tci is the critical strength of the ith moor-
ing line, Texi is the extreme value of the mooring-
line tension (also including the slowly-varying mean

value). The extreme value of the tension associated
with the wave frequency (first order) response is in
the present study evaluated over a 30 minutes win-
dow, based on 1 s samples. The standard deviation
of the critical strength is σci. In practice, σci should
be based on tests, or alternatively obtained from
data sheets provided by the manufacturer. Specify-
ing a permissible lower bound (i.e. critical value)
for the reliability index δi, further denoted by δci,
also implies the condition δi < δci represents a situ-
ation where the probability of line failure becomes
intolerably high. The fault-tolerant control aims to
avoid that this index becomes lower than the crit-
ical value.

The index shown in Eq. (26) expresses the risk of
breakage caused by extreme tension in a mooring
line. With a maximum allowed failure probability,
the corresponding extreme value of the tension can
be calculated from the cumulative distribution of
the extreme value. A procedure for on-line estima-
tion of the extreme value was discussed in [11].

Around a working point, mooring-line tension Ti
can be expressed as a function of the distance, ∆r,
and direction, β, to a mooring system neutral point
where all tensions are equal in calm weather, see [4]
and [18]:

Ti = Toi + ci∆h

= Toi − ci∆r cos(90◦ − β − βio)
= Toi − ci∆r sin(β + βio). (27)

Here Toi is the tension at the working point
(xo, yo), and ci is the incremental stiffness tension
at the present working point.

4.2.2. Optimal position-chasing

Based on the structural reliability indices, an ob-
ject function covering all mooring lines is:

L =

n∑
i=1

wi(δci − δi)2, (28)

where δci is the critical value of the reliability index
for line i and δi is an estimate of the instantaneous
reliability index for the line, wi is the weighting for
each line.

Solving the equations where the partial derivat-
ive of Eq. (28) with respect to the optimal incre-
ment of the vessel position and its direction are set
to zero, identifies the minimum value of the object
function. The optimal increment of vessel position
and direction are [18]:
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∆r =
K11 sinβ +K12 cosβ

K21 sin2 β +Kb +K23 cos2 β

Kb = 2K22 sinβ cosβ

β = tg−1
K11K23 −K12K22

K21K12 −K11K22
(29)

where the calculations of the parameters K11 −
K23 are shown in the Appendix C. Finally, the
updated vessel position and heading becomes:

η = ηo + ∆r[cosβ sinβ 0]ᵀ (30)

The quadratic object function of Eq. (28) is par-
ticularly convenient because an analytical optimum
exists. Other functions than quadratic could be
used, if this was desired, and the resulting set-point
would then be achieved by numerical methods for
most object functions.

Through the optimization, the set-point chasing
algorithm uses physical properties of the passive
mooring lines and will not use excessive thruster
power to maintain an equilibrium point that is not
natural after a fault has occurred. The set-point
chasing algorithm achieves a balance between the
new natural equilibrium, where risks for all remain-
ing mooring lines are kept within the safety limits
and the need of having the position reference within
a specified area, if both aims are physically possible.

5. Simulation and experimental results

5.1. Overview of simulation and experiment

The simulations were carried out using the Mar-
ine Systems Simulator (MSS) [38] developed at
Marine Cybernetics Group, NTNU. The MSS is
the platform developed in the Matlab/Simulink en-
vironment for simulating the moored vessel mo-
tion and for implementing the fault-tolerant control
strategy in Section 5. The model of CyberShip3
(CS3) is selected for both the experiment and sim-
ulation. Six mooring lines are added in the turret
of this vessel. The vessel is shown in Fig. (9). The
main characteristics are shown in Table 1. The ex-
periments were performed at the MCLab, which is
a 6.45 by 40 m test basin specifically designed for
testing control strategies on marine vessels.

The simulation was carried out using a JON-
SWAP model for sea-state energy distribution. The
significant wave height Hs was 0.06m equivalent to
2.2m in full scale, which was the maximum irregu-
lar sea the wave maker could provide, and the wave

Table 1: Main characteristics of CS3

Model Unit
length overall 2.275 [m]
length between particulars 1.974 [m]
breadth 0.437 [m]
draught 0.153 [m]
weight 74.2 [kg]
azimuth thrusters (three) 27 [W]
tunnel thruster 27 [W]

peak period was 0.15s in model scale. Current in-
creased from 0 to 0.5m/s (full scale equivalent) from
time 370 to 520s and the wind speed is equivalent to
8m/s in full scale. It is noticed that the loads from
the current and wind in the experiment is modelled
by a pulley system shown in Fig. (9(c)).

Strain GaugeMooring Line

Line breaker Lightballs

(a) CyberShip III (CS3)

Water 
resistant 
grease

Constantane coilPlastic tube

Mooring line
nylon

Heat insulating cover
Constantane

Plastic tube Grease

(b) Line breakerShip
Weight

Roller
(c) Pulley system

Figure 9: CyberShip III with pulley system

The dimensions of CyberShip3 (CS3) are listed
in Table 1 and the experimental set-up is shown in
Fig. ( 9). In front of the bow of vessel, six lines are
connected to the turret and a line breaker, shown
in Fig. ( 9(b)), is attached to each line. Fig. ( 10)
illustrates the mooring system arrangement. The
mooring system model in the experiment was sim-
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Figure 10: Mooring line position setting

TurretTank wall

Mass Strain gauage
Tank bottom

water surface

Figure 11: Mooring line arrangement in experiment

ilar to that of [39] shown in Fig. (11). A pulley
system shown in Fig. (9(c)) was used to simulate
the effect of mean loads due to the wind and cur-
rent in the experiments.

As shown in Figs. (9) and (11), six cables were
connected to the vessel through the turret at the
bow to simulate the effect of the catenary system.
With this setting, it is convenient to replace the
line after one line is broken. Each cable has one
end fixed to the turret and the other to the wall of
the basin; a mass was suspended between these two
points. Strain gauges were attached to the lines to
measure the tensions during the experiment. The
measurement of the line force was used to calcu-
late the reliability index. The alloy constantane
was used for the heating element, giving the coil

Buoyancy element

Mass
Figure 12: Mooring line buoyancy element

a resistance of 0.4Ω. Applying a current of 2A to
the element melted the 0.6mmo nylon line, which
passes through the coil, in about one s when sub-
merged under water. Water-proof grease prevented
water from entering the interior of the coil and an
outer rubber cover provided some heat insulation
between the heating element and water.

5.2. Fault-tolerant control with loss of buoyancy
element

The vessel and mooring system performance with
the fault-tolerant control strategy is simulated with
the case that the no.4 line loses a buoyancy element.
The simulation result of the loss of buoyancy ele-
ment is shown in Fig. (13). The experiment for this
case needs more efforts. Vessel position with simu-
lation is shown in Fig. (13(a)). Structural reliabil-
ity indices are shown in Fig. (13(b)). Fig. (13(c))
shows the thruster RPM. Only two thrusters are
used here.

The loss of buoyancy element in line no. 4 hap-
pens at time t = 700s. It is shown that line no.1
is already in danger of line failure: a index of less
than the critical value δc = 4 and loss of a buoyancy
element may make it worse. The index of line no.6
almost comes into the critical value. These two lines
are the ones heavily loaded and both of these should
be protected from risk of failure. After the detec-
tion of the failure event by the vector detector, the
structural-reliability-based fault-tolerant control is
activated. It is shown that the index of line no.1 is
then kept beyond the critical value while the indices
of the other lines are far from the critical value.
Notice that loss of buoyancy element in line no. 4
increases the line tension, which reduces its index.

5.3. Fault-tolerant control with line breakage

This section compares the vessel and mooring
system performance with the fault-tolerant control
strategy in simulation and experiment. The line
breakage result is shown in Fig. (14). Vessel posi-
tion in the simulation and experiment are shown in
Figs. (14(a)) and (14(b)). Structural reliability in-
dices and thruster RPM are shown in Figs. (14(c)),
(14(d)), (14(e)) and (14(f)).

The overall comparison shows that vessel motion
responses are very similar. However, the thruster
activity is more fluctuating in the experiment than
in simulations. One reason is the mounting of moor-
ing lines in the experiment could be seen as a pen-
dulum. There was some vibration of this pendulum
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Figure 13: Simulation with loss of buoyancy element in line
4

in the experiment that created excess fluctuations
on the body rates and hence excess thruster activ-
ity. Furthermore, there is little difference between
the two sets of thruster data. The reason is that
only the two aft thrusters were active during this
experiment for reasons of an equipment defect. The
fore thruster, that was unavailable, has a rather
minor impact on vessel motions under the experi-
ment conditions.

Line no.1 is broken at time t = 700s. Figs. (14(c))
and (14(d)) show that the index of line no.1 is
already below the critical value δc = 4 before
t = 700s. It is apparent that the risk of line break-
age increases and thus the line breakage is induced
at the time t = 700s. Once the line is broken, the
fault-tolerant control strategy is initiated to accom-
modate the effect of the fault. The most loaded line,
no.6, comes to be beyond the critical index, while
the other lines no.2-5 are also in a safe state and the
indices of all these lines have good margins to the
critical value. Both simulation and the experiment
results confirm this observation.

6. Conclusion

This paper analysed fault diagnosis related to the
mooring lines that are the key parts of a position-
mooring system for a vessel. Diagnostic results were
used to obtain fault-tolerant control. Fault accom-
modation was achieved in the control through a
structural-reliability-based strategy that was shown
to deal efficiently with line failure or loss of a buoy-
ancy element. Fault diagnosis was shown to be feas-
ible using vector-based change detection. Proper-
ties of residuals were investigated and both whiten-
ing and nonlinear compression were found neces-
sary to meet the theoretical conditions for change
detection in order to get correct probabilities of
false alarms from the theoretical change detection
method. Having obtained diagnostic results, a re-
liability index was used to calculate a shift in set-
point for the mooring system with the feature that
all intact lines were kept in a safe state, even with
more than one line failure, provided that thrusters
could remain within their limits of control author-
ity. The combination of diagnosis and structural
reliability index based control was shown to consid-
erably improve the safety of the mooring system.
The approach was convincingly validated by model
tank experiments.
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(f) Thruster RPM from experiment

Figure 14: Vessel motion and structural reliability index with fault-tolerant control in simulations (left) and experiment (right)

14



Acknowledgement

The support of this research from the Research
Council of Norway through the CeSOS and AMOS
Centres of Excellence (grant 223254 for AMOS),
are gratefully acknowledged. Mr. Torgeir Wahl, is
gratefully acknowledged for his support during the
experiments.

Appendix A. Modelling of PM system

With the structural analysis technique, the model
of a system is considered as a set of constraints
C = {a1, . . . , ai, c1, . . . ci, d1, . . . , di,m1, . . . ,mi}
that are applied to a set of variables X = X∪K. X
denotes the set of unknown variables, K = Ki∪Km

known variables: measurements (Km), control in-
put (Ki) etc. Variables are constrained by the
physical laws applied to a particular unit. With k
thrusters and n mooring lines, the constraints are:

a1 : T1 = gt(u1, u2, . . . , uk)

a2 : T2 = gl(u1, u2, . . . , uk)

a3 : T3 = gl(u1, u2, . . . , uk)

c1 : Mv̇ = HxyT[T1, T2, T3]>

+ [gxw(vw) gyw(vw)]>

+

n∑
j=1

Axy
mo(p, ψ)Txy

moj(Tmoj)

− D[v ψ̇]> + T(1,2)
wave

c2 : Izzψ̈ = HψT[T1, T2, T3]>

+

n∑
j=1

Aψ
mo(p, ψ)Tψ

moj(Tmoj)

+ gψw(vw) + T(3)
wave

c3 : ṗ = Ave(ψ)v + vc

c4 : pG1 = p + R(φ, θ, ψ)lG1

c5 : pG2 = p + R(φ, θ, ψ)lG2

c6 : pH1 = p + R(φ, θ, ψ)lH1

c2i+5 : Tmoj = gmo(p, ψ,Tmbi)

c2i+6 : Tmbi = gmb(p, ψ)

d1 : v̇ =
∂

∂t
v

d2 : ṗ =
∂

∂t
p

d3 : ψ̇ =
∂

∂t
ψ

d4 : ψ̈ =
∂

∂t
ψ̇

m1..m3 : ψ1..3 = ψ

m4 : pmG1 = pG1

m5 : pmG2 = pG2

m6 : pmH1 = pH1

m7..m9 : q1..3 = [z φ θ]

m10 : vm = v

m11,12 : wm1,m2 = vw

m13 : cm = vc

m13+j : Tmj = Tmoj ,

where ai are the constraint of the thruster in-
put, ci algebraic constraints, di differential con-
straints, mi measurements, and M is the mass mat-
rix including added mass, D is the damping mat-
rix, Izz is the inertia moment for yaw, T is the
thruster configuration matrix, Hxy is the projec-
tion matrix for surge and sway, Hψ is that for yaw,
Axy
mo,A

ψ
mo is a transformation matrix for horizontal

mooring line tension from Earth-fixed to body-fixed
frame, Ave(ψ) is a transformation matrix for ves-
sel velocity from Earth-fixed to body-fixed frame,
R(φ, θ, ψ) is the transformation from position refer-
ence system to vessel coordinate origin, and gxw(vw),
gyw(vw),gψw(vw) are the wind forces in surge, sway
and the moment in yaw. Wave induced forces on

the hull are represented by T
(1,2)
wave, and their mo-

ment by T
(3)
wave. Wave and current forces on the

mooring line themselves have been disregarded, in
accordance with assumptions made in [40].

Categorising variables in the constraints as be-
longing to the sets X unknown, Ki input and meas-
urements Km, the variables are be separated as:

X = {T1, T2, T3,Tmbi,Tmoj ,Twave,pG1,

pG2,pH1,v, v̇, ψ, ψ̇, ψ̈, ,p, ṗ, θ, φ,

vc,vw}
Ki = {u1, u2, . . . , uk}
Km = {ψ1, ψ2, ψ3,p

m
G1,p

m
G2,p

m
H1,q1,

q2,q3,vm, ,wm1,wm2, cm,Tmj}.
The modelling here presents the normal beha-

viour, and diagnostic algorithms will be designed
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to detect deviation from normal, where the occur-
rence of full or partial failure of mooring lines can
be detected and counteracted by thruster-assisted
position control.

Appendix B. Design of control plant model

The process plant model is detailed and accurate,
which is used here to do the structural analysis for
the PM system. The detailed design of the process
plant can refer to [26], [41] and [11]. The control
plant model is a simplified model used for design
and analysis of the observer and controller.

The slowly varying environmental forces due to
wind, current and waves are modelled as a bias term
b in a first-order Markov process:

ḃ = −T−1b + Ψn (B.1)

where b ∈ R3 is the vector of bias force and mo-
ment, n ∈ R3 is the vector of white noise, T ∈ R3×3

is the diagonal matrix of positive bias time con-
stant, and Ψ ∈ R3×3 is the diagonal matrix scaling
the amplitude of n. This model is usually used
to describe slowly varying environmental force and
moment due to second-order wave drift, current,
wind and un-modelled dynamics.

The WF model used is a second-order linear
model driven by white noise:

ξ̇ω = Aωξω + Σωωω (B.2)

ηw = Γωξω (B.3)

where ξω ∈ R6 is the state of the WF model, and
Aω ∈ R6×6 is assumed to be stable and describe
the first-order WF-induced motion as:

Aω =

[
03×3 I3×3

−Ω2 −2ΛΩ

]
(B.4)

and Ω = diag(ω01, ω02, ω03) is the diagonal mat-
rix containing the dominating frequencies of the re-
sponse of the vessel subjected to the first-order wave
loads; and Λ = diag(λ1, λ2, λ3) is the diagonal mat-
rix containing the damping ratios.

Assuming anchor lines are fixed un-stretched
lengths, the generalised mooring-line forces at a
working point are approximated by a linearised
static restoring and damping:

τmo = −Rᵀ(ψ)Gmo(η − η0)−Dmov (B.5)

The stiffness matrix Gmo is approximated by the
first-order expansion of the static force at the pos-
ition η0 = 0, and the damping matrix Dmo is cal-
culated by a least squares fit [42].

Non-linear damping components DNL(νr, γr)νr
and CRB(ν)ν, CA(νr)νr in the low-frequency dy-
namics are usually small since the floater velocity
is quite small for the station keeping motion. Then
the LF model together with the kinematics can be
simplified to:

η̇ = R(ψ)ν

Mν̇ = Rᵀ(ψ)b−Rᵀ(ψ)Gmoη + τ thr −Dν

ḃ = −T−1b + Ψn (B.6)

where η = [x y z]ᵀ ∈ R3 is the LF position in
the Earth-fixed frame (x, y, z are the north, south
and yaw, respectively) and v = [u v r]ᵀ ∈ R3 is
the LF velocity in the body-fixed frame (u, v, r are
velocities in surge, sway and yaw). The damping
matrix D = DL+Dmo includes the mooring system
damping Dmo.

The output of the control plant model y ∈ R3 is
position and heading of the vessel, a superposition
of the WF and LF motions:

y = η + Γωξω + v (B.7)

where v ∈ R3 is zero-mean Gaussian noise.

Appendix B.1. Observer design

Following [3], a non-linear passive observer is
found using the control plant model,

˙̂
ξω = Aωξ̂ω + K1ỹ

˙̂η = R(ψ)ν̂ + K2ỹ

M ˙̂ν = Rᵀ(ψ)b̂−Dν̂ −Rᵀ(ψ)Gmoη̂

+τ thr + K3R
ᵀ(ψ)ỹ

ḃ = −T−1b + +K4ỹ

ŷ = η̂ + Γωξ̂ω (B.8)

where ỹ = y − ŷ is the estimation error; and
K1,K2,K3,K4 are observer gain matrices, see [3].
The stability analysis and tuning for the observer
are very similar to those addressed in [3] except
for two new terms: the damping term Dmo and
the stiffness term Gmo. For increasing damping
and stiffness, the system would become more stable
and the specific passive observer stability analysis
is described in [3].

Appendix B.2. Controller design

The controller’s objective is to maintain the ves-
sel’s position and keep the mooring system in a
safe state. The control action counteracts the low-
frequency part of vessel motion from current, wind
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and second order mean and slowly varying wave
loads. Control at the wave frequency motion is
avoided. A multi-variable PID controller is em-
ployed:

τ thr = −KiR
T (ϕ)

∫ t

0

η̂(τ )edτ

−KpR
T (ϕ) η̂e −Kd ν̂e (B.9)

where η̂e = η − ηd; ν̂e = ν − νd; ηd and νd are
the desired position and velocity vectors respect-
ively; and Kd, Ki and Kd ∈ R3×3 are non-negative
control gain matrices. ψ is the measured heading.
The wind feed-forward controller, acceleration feed-
back, and roll-pitch damping could be used in ad-
dition. The functionality of different control modes
refers to [7] and combination with reliability index
monitoring was considered in [43].

Appendix C. Set-point chasing algorithm

The algorithm for set-point chasing was derived
in [18], the main result is repeated here for com-
pleteness and convenience. The set-point is cal-
culated based on the quadratic cost function in
Eq. (28). The optimal increment of the vessel pos-
ition and its direction are,

∆r =
K11 sinβ +K12 cosβ

K21 sin2 β +Kb +K23 cos2 β

Kb = 2K22 sinβ cosβ

β = tg−1
K11K23 −K12K22

K21K12 −K11K22
(C.1)

where the time-varying parameters K11 to K23

depend on the mooring-line angles βi0, physical
parameters and the reliability indexes as follows:

K11 = κ1(δc1 − δ1) cosβ1o + κ2(δc2 − δ2) cos

β2o + · · ·+ κn(δcn − δn) cosβno

K12 = κ1(δc1 − δ1) sinβ1o + κ2(δc2 − δ2) sin

β2o + · · ·+ κn(δcn − δn) sinβno

K21 = ϑ1 cos2 β1o + ϑ2 cos2 β2o

+ · · ·+ ϑn cos2 βno

K22 = ϑ1 sinβ1o cosβ1o + ϑ2 sinβ2o cosβ2o

+ · · ·+ ϑn sinβno cosβno

K23 = ϑ1 sin2 β1o + ϑ2 sin2 β2o

+ · · ·+ ϑn sin2 βno (C.2)

where κi and ϑi are material parameters for line i.
For detailed deduction and description about the
parameters refer to [11].
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