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Abstract

The theme of this Master Thesis is modeling and simulation of the musculoskeletal system. The purpose

is to explore new ways to diagnose the human body, and do so effectively by automation. This Master

Thesis investigates the problem of automatic segmentation to obtain geometry of bone, muscle, ligaments

and tendons. In addition, it includes a research on how to generate simulation input in a Knowledge Based

Engineering System (KBE).

The scope has been to generate simulation input from a medical image. Simulation input includes bone,

muscle, ligament and tendon geometry as well as mechanical properties for these tissues. Due to extent and

complexity this Master Thesis has focused on extraction of bone data from the medical image and geometry

generation as the simulation input.

A segmentation program has been developed in Matlab to obtain bone as the only tissue from medical

images. The medical images used in this Master Thesis have been taken with CT. Another program has been

developed in a KBE framework, Technosoft’s Adaptive Modeling Language.

The segmentation program is able to segment bone tissue and present the result in 3D. However, it requires

user input to control the segmentation process. The AML program generates geometry for tibia, femur,

pelvis and the spine. It also generates cartilage to represent the intervertebral discs.

The developed programs are platforms for further research and development, and has proven Matlab and

AML as viable tools for continued work.
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Sammendrag

Denne Master oppgaven omhandler modellering og simuelring av menneskets muskel-og skjelettsystem. Hen-

sikten er å utforske nye metoder for undersøkelser av menneskroppen, og effektivisere disse ved automatiser-

ing. Masteroppgaven utforsker utfordringer ved bruk av segmentering for å oppn̊a geometriske framstillinger

av ben, muskler, leddb̊and og sener. Oppgaven inkluderer ogs̊a undersøkelser av hvordan man kan generere

inndata for simulering i et ”Knowledge Based Engineering”-system (KBE).

Omfanget av oppgaven har vært å genere inndata for simulering med utgangspunkt i medisinske bilder.

Simuleringsdata innkluderer geometri for ben, muskler, leddb̊and og sener samt mekaniske egenskaper for

disse vevtyper. P̊a grunn av omfang og kompleksitet er oppgaven avgrenset til å dekke uthenting av bendata

fra bildematerialet og generere geometri til inndata for simulering.

Et segmenteringsprogram er utviklet i Matlab for å avgrense uthenting fra det medisinske bildemateriale til

kun å være benvev. Det medisinske bildematerialet benyttet i denne Master oppgaven har blitt tatt med CT.

I tillegg til nevnte program er det ogs̊a utviklet et program innen KBE rammeverket, Technosoft’s Adaptive

Modeling Language.

Segmenteringsprogrammet gjør det mulig å synliggjøre kun benvev og presentere resultatet i 3D. Imidlertid

er segmenteringsprosessen ikke helt automatisert og vil kreve manuell kontroll. AML programmet genererer

geometry for leggben, l̊arben, bekken og ryggrad. Programmet genererer ogs̊a brusk for å visualisere skiver i

ryggraden.

Begge programmene som har blitt utviklet i denne Masteroppgaven er utgangspunkt for videre forskning og

utvikling og har bevist at b̊ade Matlab og AML er gode verktøy for videre arbeid.
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Chapter 1

Introduction

1.1 Background

This master’s thesis is part of a coalition of project and master’s thesis’ at the Department of Engineering

Design and Materials, with Professor Ole Ivar Sivertsen as supervisor and coordinator. The objective of the

work is to develop a software application in the KBE framework AML, for structural and dynamic analysis

of an arbitrary human body. The analysis can be used in simulations where professional athletes, patient

rehabilitation, development of prostheses and military applications are the target groups. The first step in

achieving this is to generate the simulation input.

The musculoskeletal system is outside the area of expertise for the Department of Engineering Design and

Materials. However, the musculoskeletal system is a biomechanism, and as the Department of Engineering

Design and Materials expertise on mechanisms this field of study can also be covered. The musculoskeletal

system is despite this a complex mechanism, and to model it is an extensive task.

Currently, there are other projects which are working towards similar objectives. The main differences

between these projects are the automation of simulation input generation. The processes required in terms

of making accurate simulations is embedded in the combined use of medical images, infrared markers to map

motion and OpenSim. The processes are mainly manual, and the work needed to produce the subject-specific

simulations is quite comprehensive and time consuming.

As a preparation to this master’s thesis, a study of the human body, Gjelsvik [2015], was conducted. The

study was carried out during spring 2015.

2



CHAPTER 1. INTRODUCTION 3

1.2 Problem Outline and Scope

This master’s thesis is exploring solutions to create a system that automatically generates simulation input

of an arbitrary human body.

The scope has been to generate simulation input from a medical image. Simulation input includes bone,

muscle, ligament and tendon geometry as well as mechanical properties for these tissues. Due to extent and

complexity this Master Thesis has focused on extraction of bone data from the medical image and geometry

generation as the simulation input.

Mechanical properties of connective tissues are important for simulation purposes. However, for the work

conducted in this master’s thesis this has not been prioritized. They can rather be seen as input in class

definitions in the program developed, but must be further implemented to have value as simulation input.

During the work with this thesis, the complexity and extent of the subject have been revealed. In consultation

with supervisor, it was also agreed upon to prioritize problem 2 and 4 at the expense of problem 3 and 5,

of the problem outline. The focus in this master’s thesis has therefore been on segmentation of bone and

geometry generation based on text input. As a consequence, a proposition for muscle simulation input will

not be covered in this thesis.

1.3 Structure

Chapter 2 presents related work, theory regarding medical terms in anatomical studies, medical imaging

and Knowledge based engineering. Chapter 3 presents the tools used in the research and development of

programs during work with this thesis. Chapter 4 describes the development process and Chapter 5 presents

the result of the program developed. Chapter 6 discusses the result and Chapter 7 concludes. Chapter 8

presents thoughts on further work.



Chapter 2

Theory

The first section of this chapter will review projects in which could be related to the work conducted in this

master’s thesis. The second section will carry out a short introduction to the topology of the human body

and terminology in anatomical studies. This will be useful for later referencing. The third section explores

medical images as a method for obtaining data for generating simulation input, and the last section introduce

Knowledge-Based Engineering.

2.1 Related Projects

There has in recent years been conducted studies and carried out several projects in which could be related

to the topic of this thesis. The work done in the different areas presents clear advantages of the development

of computational simulation models in terms of understanding the important physiological principles of the

human body. However, there are still challenges that have to be overcome before adequate treatment of

patients can be facilitated by the use of these models.

The projects to be outlined in this section are all ongoing projects, except the final one, MultiSim, which is

still in its developing phase.

2.1.1 OpenSim

In 2007 Delp and Thelen [2007] developed a freely available, open–source software system named OpenSim.

The reason for developing such a system is to provide a platform where users can develop models of muscu-

4



CHAPTER 2. THEORY 5

loskeletal structures, and where they can create and analyze dynamic simulations of movements. OpenSim

can compile and run on regular operating systems, as its software is written in ANSI C++, and the graphical

user interface in Java.

The biomechanics community can, by the assistance of OpenSim, build a collection of simulations which can

be exchanged, tested, analyzed, and enhanced through a multi-institutional cooperation effort. However,

limitations arise when trying to produce a coordinated movement, which seems to be one of the major

challenges in this field. Additionally, there are also made many assumptions in the development of these

models, where some are based on restricted experimental evidence. Nevertheless, OpenSim clearly provides

new opportunities. Testing and reproduction of simulation-based studies offers important research advantages

taking place also outside the laboratory, which is crucial if biomechanical simulations are to establish a

scientific basis for treatment planning. Development and maintenance of OpenSim is being managed on

Simtk.org, which operates as a public storage for data, models, and computational tools, connected to

physics-based simulations of biological structures.

2.1.1.1 NMS Builder

NMS Builder which is a project tool in NMS Physiome; a research project funded by the European Com-

mission, is a tool package for developing OpenSim musculoskeletal models (NMSPhysiome [n.d.]). It is a

user-friendly tool that develops models from patient-specific biomedical data, utilizing OpenSim to conduct

the dynamic simulations of motion (NMSBuilder [n.d.]). Consequently, the NMS Builder makes it possible

for researchers to import data containing images, motion analysis data etc., process the data to construct a

full scale musculoskeletal model, create OpenSim models and run simulations, and visualize the data.

2.1.2 The Virtual Physiological Human

In 2006 a project named STEP – A Strategy for the EuroPhysiome was initiated under support from the

European Commission. The aim of the project was to develop an integrated European approach to the

multi-scale modelling of the human physiome (defines the functional behavior of the physical state of an

individual). The establishment of this project resulted, in early 2007, in a roadmap outlining how European

work should be conducted in terms of delivering the Virtual Physiological Human (VPH) (Viceconti and

Waters [2007]). VPH represents a framework based on a technological and methodological approach, enabling

a collaborative study of the human body. As a result, through VPH one can derive predictive hypotheses

from shared observations of the human body, represented as a single compound system. VPH offers the

required infrastructure supporting scientists in all different fields to communicate and to share data and

technologies. However, there are some challenges that needs to be overcome before the VPH can be fully
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realized. First of all, the human body is very complex. It comprises multiple interconnections and interactions,

and even though sufficient amount of knowledge is becoming available (from genes to whole systems), there

are still many physiological functions that have still not been understood. Additionally, the absolute scale

of data which is to be generated, processed and exchanged is dependent on a vast storage and software

tools that presently are not extensively available. VPH therefore has to define access to resources and

computing power accessible from already developed computing centers. Additionally, since the VPH scope is

multidisciplinary by definition, and only a few number of journals are capable of accepting physiome-related

papers, dissemination is also something that must be handled.

On the road to success the VPH Institute for Integrative Biomedical Research has been developed (VPHIn-

stitute [n.d.]), which is an international non-profit organization. The institute, incorporated in Belgium, has

one mission, and that is to ensure that the VPH is being fully implemented, widely adopted and used in an

effective manner in research as well as in health centers.

2.1.3 Finite Elements for Biomechanics

FEBio – Finite Elements for Biomechanics, a project partially supported by a grant from the U.S. National

Institute of Health, is an implicit, non-linear finite element solver that is designed for biomechanics application

purposes. The FEBio software was initially developed at the Musculoskeletal Research Laboratories at the

University of Utah. Nowadays, the development, distribution and support of the software is a joint effort

between the University of Utah and the Musculoskeletal Biomechanics Laboratory at Columbia University

(FEBio [n.d.]). The theory behind FEBio is available in a theory manual written by Maas and Ateshian

[2015]. In the manual FEBio is described as a software developed to supports two different analysis types,

quasi-static and quasi-static poroelastic. In the first type it is the static response of the system that is wanted

(inertial terms are ignored), and in the second type one solves a linked solid-fluid problem. The quasi-static

poroelastic analysis is therefore useful when modeling tissues containing sufficient amounts of water. In

terms of modeling the complex biological tissue behavior there are multiple non-linear constitutive models

available, namely isotropic and anisotropic. The isotropic models have a non-linear stress-strain response,

while the opposite case are materials showing anisotropic behavior, at least in one direction. The anisotropic

models are suitable to use when modeling biological tissues containing fibers, such as muscles and tendons.

In addition to these models FEBio comprises a rigid body material model. A model in which is useful when

modeling structures where deformation is unimportant. FEBio also supports an extensive range of boundary

conditions to model interactions between biological tissues, as they can interact in several complex ways.

The models contain already preset displacements, pressure forces and nodal forces. Deformable models are

possible to connect to rigid bodies, assisting the user to model preset rotations and torques, where the rigid

bodies in the next step can be attached with rigid joints. Further information regarding the FEBio software
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is available in this theory manual, assisting the user to better understand how the program works, and how

to utilize it in terms of creating biomechanical simulations.

2.1.4 MultiSim

MultiSim is a program aiming to develop a new generation of analytical models (MultiSim [n.d.]). The

vision of the program is to establish a modeling framework of the human musculoskeletal system, however,

planned to work as a platform to address multiple engineering challenges. The platform should include

models skilled to manage compound multi-scale problems, variables and states which are not yet observable,

and uncertainties. The main focus of the program is to develop a platform for managing musculoskeletal

disorders, which today is not available. However, if this project can be realized it will enable computational

simulations to overcome the challenges stated above, and which biological systems faces today.

2.2 The Human Musculoskeletal System

The following section describes the musculoskeletal system, where the source is Neumann [2010] if not oth-

erwise is stated.

The human musculoskeletal system is a biomechanical system which enables movement in humans. The main

elements are bones, muscles, tendons, ligaments and cartilage, which are all different types of connective

tissue. The skeleton comprises 206 bones connected in joints. There are two classes of joints, mainly

distinguished by their ability to allow considerable motion. The type of joint that allows motion, and

thus is an important part of the muscoloskeletal system, is the synovial joint. The bones in the synovial

joints are moved and restricted by muscles, tendons and ligaments. For a more detailed visualization of this,

see Figure 2.1. There are other elements associated with these joints, but they are outside the scope of this

study. Tendons are the connective tissue between muscles and bones, whereas ligaments are the connective

tissue between bones. Cartilage is another connective tissue, positioned between bones to prevent excessive

tear due to contact interactions.

In the study Gray’s Anatomy for Students, conducted by Drake and Gray [2005], a system of specified

positions in the human anatomy have been defined. A summary of the terminology can be found listed in

Table 2.1. Three planes are defined for referencing planes in anatomical studies, and the planes are illustrated

in Figure 2.2.
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Figure 2.1: A synovial joint and its elements, represented by the knee joint and its two bony members, the
femur (top) and the tibia (bottom). (Neumann [2010], p. 30)

Table 2.1: Terminology in anatomical studies. (Drake and Gray [2005])

Word Definition

Anterior Position at the front of the body.
Posterior Position at the back of the body.
Superior Position above another part of the body.
Inferior Position below another part of the body.
Proximal Position closer to the trunk of the body.
Distal Position further away from the trunk of the body.
Medial Position closer to the midline of the body.
Lateral Position further away from the body.
Cranial Position towards the top of the skull.
Caudal Position towards the bottom of the body.
Paired Structures that is present on both sides of the body.

2.2.1 Topology of Bones

Bones are the main structural element in the musculoskeletal system and are the main focus in this master’s

thesis. In the following chapters, the latin name is being used consequently to describe different kinds of

bones. A reference list of the axial human skeleton is illustrated in Table 2.2. Table 2.4 illustrates the lower

extremity and Table 2.3 the upper extremity. Paired bones are listed once. Figure 2.3 illustrates the human

skeleton, including labeled numbers that corresponds to the numbering represented in the tables.
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Figure 2.2: The saggital, frontal and horizontal planes as described and illustrated in Neumann [2010].
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Figure 2.3: Illustration of the human skeleton. Numbers refer to Table 2.2, 2.3 and 2.4. Illustration adapted
from (CandelaOpenCourses)
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Table 2.2: Topology of axial skeleton. Numbers refer to Figure 2.3.

No. Latin name Comment

1 Cranium The cranium consists of several bones, but as the head is
merely a mass in the context of biomechanical modeling,
this report do not elaborate on the cranium features.

2 Mandibula No Comment
5 Sternum No Comment
6 Ribs There are twelve ribs and they are numbered 1-12 from top

to bottom. The ribs are attached to the thoracic vertebrae
with corresponding numbers. The two lower ribs are not
attached to the sternum.

7 Cervical Vertebrae There are seven cervical vertebrae and they are arranged
from 1-7 from top to bottom.

8 Thoracic Vertebrae There are twelve thoracic vertebrae and they are arranged
from 1-12 from top to bottom.

9 Lumbar Vertebrae There are five lumbar vertebrae and they are arranged from
1-5 from top to bottom.

10 Pelvis No Comment
11 Sacrum No Comment
12 Coccyx No Comment

Table 2.3: Topology of upper extremity. Numbers refer to Figure 2.3.

No. Latin name Comment

3 Clavicle No Comment
4 Scapula No Comment
13 Humerus No Comment
14 Ulna No Comment
15 Radius No Comment
16 Carpals There are five carpals in each hand
17 Metacarpals There are five metacarpals in each hand
18 Phalanges There are five phalanges in each hand. The phalanges are

divided in three bones; the proximal, medial and distal pha-
lanx.

Table 2.4: Topology of Lower Extremity. Numbers refer to Figure 2.3.

No. Latin name Comment

19 Femur No Comment
20 Patella No Comment
21 Tibia No Comment
22 Fibula No Comment
23 Tarsals The tarsals are a collection of bones in the middle of the foot

connecting the legbones (Tibia and Fibula), heel(Calcaneus)
and toes(metatarsals and phalanges).

24 Metatarsals There are five metatarsals in each foot
25 Phalanges There are five phalanges. The four outer phalanges are di-

vided in three bones; the proximal, medial and distal pha-
lanx. The inner phalanx is divided in two; the proximal and
medial phalanx

26 Calcaneus No Comment
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2.3 Medical Imaging

The following section is based on a dialog with Marius Widerøe, see Appendix A.

CT and MRI are two methods for capturing medical images of the human body. CT uses electromagnetic

radiation to light a subject which creates a shadow on a receiver behind the subject. Bones absorbs more

electromagnetic waves than soft tissue, and appears brighter in the image than other tissues, see Figure 2.4.

From a health perspective, MRI is a preferred method to capture medical images due to less radiation. MRI

is recognized for being a preferred method for capturing images of soft tissues. The reason is that MRI offers

ways of weighting different types of tissues. The Figure 2.5, shows how types of tissues are displayed with

different light intensity.

CT-images, on the other hand, is preferred for capturing images of skeleton. This thesis will analyze segmen-

tation of bone structure from medical images, which means “extract bone structure” from the images.

When capturing images of the human body using CT or MRI, the patient will be lying down. In this position

the body is less loaded than when standing up. When lying down, the gravity will give less effect on the

layout of the patient’s body.
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Figure 2.4: CT-image of the brain. The white matter is bone tissue (Neurologica).

Figure 2.5: Illustration of T1, PD and T2-weighted images of the same section in the brain (BrainLab).
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2.4 Knowledge Based Engineering

Knowledge based engineering (KBE) is a design philosophy that aims to automate engineering tasks that

are repetitive and time consuming. This philosophy has been successfully adapted and implemented in Aker

Solutions’ KBeDesign Department (Stensvold), and have led to dramatically reduced time for developing

offshore platforms and boat hulls. The software framework this department has been utilizing in terms of

developing their application is called AML (Adaptive Modelling Language), developed by Technosoft.

There are several software systems that implements KBE. Common for all of them is that they use an object

oriented programming language. This is because a KBE system usually represents the real world, which

again consists of objects. An object in a KBE system is represented by a class definition. The real world

also has events that happens to objects. In a KBE sense, events are called methods and functions.



Chapter 3

Methodology

3.1 Technosoft’s AML

Technosoft’s AML (Adaptive Modeling Language) is a KBE framework. The program developed in this

master thesis is based on a AML mechanism program developed by Ole Ivar Sivertsen. The Department of

Design and Materials has knowledge of AML and user licences for the software. Therefore, it was convenient

to continue with AML as the KBE implementation tool. AML has also been proven in the industry as a

world class KBE system. As an example, Aker Solutions’ KBeDesign has been recognized as an industry

leading arena within fast design of offshore platforms using AML (Stensvold).

3.1.1 Boolean and Native Geometric Classes

AML has classes which can directly be used to create simple objects such as boxes, cylinders, spheres and

elbows. See Figure 3.1.

To create complex geometries one can perform operations making it possible to create new objects. These

operations are called Booleans and include, difference, intersection and union. See Figure 3.2.

3.1.2 Runtime Environment

AML has support for multiple operating systems, but due to availability, Microsoft Windows was chosen.

The specific version used for developing and running AML programs was Windows 7 x64 on a 2-core 2.93 ghz

15
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(a) Box-object (b) Cylinder-object (c) Sphere-object (d) Elbow-object

Figure 3.1: Objects made by native classes in AML.

(a) A cylinder positioned through a box. (b) A box with a hole after ”difference” Boolean operation.

Figure 3.2: Example of Boolean operation in AML. A difference-object has been created by ”differencing” a
cylinder from a box.
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system with 8gb of RAM. The AML version 5.85 was used with the newest patches installed. In addition,

AMSketcher was installed to improve the environment that geometric objects was designed in.

3.1.3 Editor

XEmacs is a open source editor based on GNU’s Emacs. Technosoft has customized it to work with AML,

and it is included when installing AML. The editor supports AML syntax and custom key bindings. The

interface has also been edited for easy access to buttons that runs AML, compile and load files, and open

AML GUI. When AML is executed and is running, the AML buffer handles commands. Commands can

be used for compiling programs, creating models and drawing them. With key bindings, one can perform

advanced text operations. However, it is possible to write AML code in any text editor and use XEmacs for

compiling only. This can be done by structuring code in the way described in Section 3.1.4, and enter the

command:

(compile-system :name-of-system)

Where name-of-system is the name of the system that has been defined.

3.1.4 Source Code Management

For structuring code and simplifying files, a system can be defined. To define a system a system.def file is

created and must contain the following outline:

(in-package :AML)

(define-system :system-name

:files ’(

"name-of-file.aml"

)

)

The class definitions and methods are written in .aml-files and included in a folder called ”sources”. This

folder has to be in the same folder as the system.def-file. To compile the system, a line has to be added in

the logical.pth file in the AML directory:

:system-name C:\\path-to-folder-of-system.def\

To compile this system, enter the following in XEmacs:

(compile-system :name-of-system)
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For more details see TechnoSoft [2010]’s Reference Manual.

3.2 Segmentation Tool

CT-images were downloaded from https://mri.radiology.uiowa.edu/visible_human_datasets.html, in

a DICOM-file format. Further information regarding these files is available in Section 3.2.1. CT-images were

used due to limited availability of high quality MRI-images. To view these files a DICOM-viewer had

to be downloaded. The DICOM-viewer, OsiriX Lite, was chosen as it is freely available to download at

http://www.oririx-viewer.com. The functionality this program provides is to open DICOM-files and view

the medical images the files contains. The images can be scrolled through easily and opened as a 3D image.

The 3D image can be segmented in multiple ways. An interesting feature is that the segmented result can

be exported to 3D objects, which includes STEP-files. STEP-files are a supported input format of AML.

However, a prerequisite for the project was to use a software that automatically generates simulation input.

OsiriX does not meet this requirement, and therefore other solutions were investigated.

It was discovered that a toolbox for Matlab (see Section 3.2.2), contained functions for manipulating DICOM-

files. This opened up an opportunity to develop a custom program to handle segmentation. Matlab is also

known for its fast matrix operations, and since CT-images are distributed to multiple DICOM-files where

each image can be imported as a matrix, this functionality was seen as an advantage.

3.2.1 DICOM

Digital Imaging and Communication in Medicine (DICOM) is an ISO standard released in 1993 for storing

medical images and relevant information. DICOM writes on their website that ”DICOM is implemented in

almost every radiology, cardiology imaging, and radiotherapy device (X-ray, CT, MRI, ultrasound, etc.).”

DICOM is a framework that incorporates different aspects of the medical imaging workflow, such as jour-

nal keeping and billing. However, for this thesis, the important information that is available from the

files is the image information. This is important for automatic segmentation of the body. Documenta-

tion can be downloaded or viewed through the following link: http://dicom.nema.org/standard.html.

There are not many sample data sets available for download, but the ones used in this thesis can be

downloaded from http://www.osirix-viewer.com/datasets/ and https://mri.radiology.uiowa.edu/

visible_human_datasets.html.

https://mri.radiology.uiowa.edu/visible_human_datasets.html
http://www.oririx-viewer.com
http://dicom.nema.org/standard.html
http://www.osirix-viewer.com/datasets/
https://mri.radiology.uiowa.edu/visible_human_datasets.html
https://mri.radiology.uiowa.edu/visible_human_datasets.html
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3.2.2 Image Processing Toolbox

To process DICOM-files in Matlab, the Image Processing Toolbox was applied. The toolbox is used for

extracting image information and for importation of the medical images. The image information used in this

program was:

1. Pixel Width

2. Pixel Height

3. Slice Thickness (The volume of data in a slice)

4. Samples Per Pixel (Data in each pixel)

For more information on the Image Processing Toolbox, see http://se.mathworks.com/products/image/

index.html.

http://se.mathworks.com/products/image/index.html
http://se.mathworks.com/products/image/index.html


Chapter 4

Development

4.1 Segmentation tool

The segmentation tool developed in this master’s thesis is a small program written in Matlab R2015B. The

program imports a DICOM library, extracts the individual sections, collects the sections in a 3D matrix, and

exploits an isosurface method to create a continuous surface. See Figure 4.1 for execution flow. The steps

will be described and explained in Section 4.1.1-4.1.6

Figure 4.1: Flowchart of Segmentation tool. The orange rounded squares signal user input steps. The blue
squares signal automatic steps.

4.1.1 DICOM Input

The input is a set of .dcm-files (DICOM-files) obtained from CT-images. The files have to be placed in an

empty folder and given names similar to the following example. For a set of 20 DICOM-files, either of the

following notations work as a valid naming format:

hip-0000.dcm, hip-0001.dcm, ..., hip-0019.dcm

hip.1.dcm, hip.2.dcm, ..., hip.20.dcm

hip40.dc, hip41.dcm, ..., hip60.dcm

20
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Figure 4.2: Window prompted to the user for input of a DICOM library to the segmentation program.

This shows flexibility in the naming format, and is valid as long as the files end with a number and have

names that increase by one.

To obtain the best results with this program, there are certain prerequisites for how the image is being

extracted. If the image has been captured with MRI, the signal weighting is important for how the different

tissues are viewed. For instance, T1 signal weighting makes bone the brightest tissue in the image, and also

gives good contrast. This is important for a precise segmentation.

When the program is executed, the user will be prompted with an ”open file”-window. The user selects one

of the files and press ”open” to import all files within this folder. See Figure 4.2.

4.1.2 DICOM Information Extraction

The DICOM format includes metadata about the patient, when and where the image was taken, etc. This

information is, however, usually censored in the sample DICOM sets available on the Internet. Regardless of

this, the available information is crucial for segmentation, as it contains information on how the image has

been captured. Image resolution, slice thickness and color scale are all relevant for manipulating the images,

and to obtain the final segmented 3D picture. The following sections will explain why this is important.
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4.1.3 3D Matrix Generation

The medical images are obtained from a scan where one single DICOM-file has one section of the total image.

Therefore, the DICOM-files has to be sorted and assembled in a 3D matrix to obtain a 3D image. A matrix

with 3 dimensions is allocated in RAM based on the image resolution and the number of sections. The final

matrix is represented in Figure 4.3.

Figure 4.3: Illustration of how the 3D matrix with medical images are structured. Each section is a matrix
which is pixel-width X pixel-height. The number of sections is determined by the number of DICOM-files
imported.

4.1.4 Linear Combination

When some of the DICOM-files are opened, some of the medical images will appear completely black. This

is because the pixel values are skewed towards a value of zero with just small differences from minimum value

to maximum value. This is adjusted by applying a linear combination function on the 3D matrix. First the

minimum and maximum value is found in the 3D matrix, then the values are distributed on a 16bit gray

scale from 0 to 65536. An example result of this is shown in Figure 4.4.

4.1.5 Select Lower Threshold

An important part of the segmentation tool is the lower threshold selection. This section is a manual sequence,

where the user is required to enter a number between 0 and 65536. If the image is of the recommended type,
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Figure 4.4: Linear combination of pixel values in an image which appears black. The pixel values are
distributed on a 16 bit gray scale from 0 to 65536.

namely a T1 MRI-image or CT-image, bones will have the highest pixel value. Therefore, when the lower

threshold is increased towards 65536, muscle, skin and other soft tissue will disappear from the image, and

bone will be the only visible tissue left. Figure 4.5 illustrated an example of this.

Figure 4.5: When the lower threshold is increased in a T1 weighted MRI-image or CT-image, soft tissue will
disappear, while bone tissue will remain visible.

4.1.6 Isosurface Generation

The matrix one will end up with consists of sections where bone is the only visible tissue. There is, however,

no connections between the sections. The sections are 2D planes, where the last phase of the program is

to create a face between the sections. This has been conducted with isosurface generation and isocaps.

Matlab includes functions for isosurface generation and for adding of isocaps, to make a surface on the end

of geometry. The geometry is then visualized in 3D, and represented in the Matlab figure viewer. See Figure

4.6.
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Figure 4.6: Segmented skull with applied isosurface and isocaps, viewed in the Matlab figure viewer.
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4.2 Musculoskeletal Program - AML Development

4.2.1 Intention

This master’s thesis has been working towards software that automatically generates simulation input from

medical images as input data. Simulation input is geometry, mechanical properties and muscle power output.

The objective has been to develop a KBE application in Technosoft’s AML program that automatically

generates:

• Geometry of an arbitrary human skeleton.

• Geometry of muscles, tendons, ligaments and cartilage, and positioning of these tissues on the human

skeleton geometry.

• Mechanical properties for the tissues based on medical images as input data.

• Muscle power output based on available information and medical images as input data.

The program developed and described in this section will propose an approach on how to automatically

generate skeleton and cartilage geometry.

4.2.2 Starting point

The program is inspired and partially derived from Ole Ivar Sivertsen’s Mechanism Program. The program

comprised a model of the human skeleton, mainly two dimensional, except for the feet, which was two

dimensional in a plane orthogonal to the rest of the body. An attempt was therefore made to improve the

topology and geometry of this model. Examples of conducted improvements on the model:

• Topology is closer to reality:

– Clavicle is now connected to the sternum

– Feet have more bones

– Shoulder blades are added

– Spine has been divided into 24 sections

• Bones is modeled closer to reality:

– Added neck to femur bone
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– The clavicle has an arc

– Spine has added depth

See Figure 4.7 for the results illustrating these improvements.

(a) Model of human skeleton. The model is mainly in
2D and there are some topology issues. For instance,
the clavicle is directly connected to the spine.

(b) A refined model of the human skeleton. The de-
tails of the model have increased. There is now an
individual cylinder for every vertebrae in the spine.
The clavicle now originates from the sternum.

Figure 4.7: Models in Ole Ivar Sivertsen’s Mechanism Program

Despite these improvements, the deviation between the rendered model and reality was concluded to be

too high. This is because the original program was made for mechanical mechanisms. Human joints have

mechanical joint analogies, but is not similar in composition. It was decided that a standalone program,

focusing on the human musculoskeletal system, was more fitted for the task. However, the Mechanism

Program and the Musculoskeletal Program share the same basic structure and similar input methods. Sections

4.2.3 and 4.2.4 describes the Musculoskeletal Program in detail. For an overview of the program, see Figure

4.8.

4.2.3 Program Input

The program creates models based on input that has been written prior to execution. The models are defined

in text files with a specific format and they are described in Section 4.2.3.1-4.2.3.3. The text files are stored

in a folder called ”models” within the system folder. See Figure 4.10 for an example directory. For the pelvis,

femur and tibia there are properties in the program during runtime that can alter different parameters, such

as femur shaft radius and pelvis height. See Figure 4.9.
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Figure 4.8: Flowchart of Musculoskeletal Program. Input is created as text files. The program generates
geometry and calculates properties which are the basis for simulation input. The dashed arrows and boxes
represent features that are not implemented.

Figure 4.9: Runtime properties for the femur. Similar property fields exists for tibia and pelvis.
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4.2.3.1 Point List

The input file points.txt contains a list of coordinates. The coordinates are cartesian and in the following

order:

(x-coordinate y-coordinate z-coordinate)

The points are referred to in the other input files and can be used to define heights, widths and radii for

geometric objects. Additionallt, the points can be used to create help objects like vectors and coordinate

systems. A list of points could be written: (See Figure 4.12 for result)

-1.0 0.0 -1.0

1.0 1.0 0.0

0.0 -1.0 -1.0

0.0 2.0 -1.0

1.0 1.0 1.0

The point list can also be modified during runtime by opening ”Point list” in Main Properties.

4.2.3.2 Bone List

The file bones.txt defines bones in the model. How the bones are generated is described in Section 4.2.4. One

line in the input file defines one bone in the model. The format of the definition is on the form:

(Bone name) (Final element class) (List of points) (Bone type)

The bone name is visible in the tree hierarchy in the program. The final element class is not implemented in

this version of the program, but is included for future use. A given point in list of points refers to a specific

point in the points.txt input file. The numbering convention is zero-indexed which means that 0 refers to the

first point in points.txt. The last element is the bone type which decides how the points are used to generate

geometry. For instance, the first three vertebrae in the lumbar region of the spine could be written as:

"Lumbar5" "FE-vertebral" "(0 2)" "vertebral"

"Lumbar4" "FE-vertebral" "(3 5)" "vertebral"

"Lumbar3" "FE-vertebral" "(6 8)" "vertebral"

In the first line, ”0” refers to the first element i points.txt and ”2” to the third point.
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4.2.3.3 Cartilage List

The file cartilage.txt is similar to bones.txt and defines cartilage in the model. The format is:

(Cartilage name) (Final element class) (List of points) (Cartilage type)

The cartilage name is visible in the tree hierarchy in the program. The final element class is not implemented

in this version of the program, but is included for future use. A given point in list of points refers to a specific

point in the points.txt input file. The numbering convention is zero-indexed which means that 0 refers to

the first point in points.txt. The last element is the cartilage type which decides how the points are used to

generate geometry. The first two intervertebral discs in the lumbar region of the spine could be written as:

"L5-L4" "FE-intervertebral-disc" "(0 2 3 5)" "intervertebral-disc"

"L4-L3" "FE-intervertebral-disc" "(3 5 6 8)" "intervertebral-disc"

4.2.3.4 Models Library

Models are made by creating points.txt, bones.txt and cartilage.txt files. The files are stored in a folder

named with the model name. The folder is then placed in the ”models” folder in the directory where the

system is located. See Figure 4.10. A system can have multiple models, which can be selected in a drop

down menu when the program is executed. See Figure 4.11 for an illustration of this.

Figure 4.10: Example of file directory. The ”models” folder contain folders which in turn contain input files.

Figure 4.11: Dropdown Menu in Program. When the program is executed and the user edits the ”start-ui”-
object, a list of the available models are shown.
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4.2.4 Geometric Rules

4.2.4.1 Geometry Collection and Part

The methods for generating bone and cartilage geometry are similar, but divided in separate class definitions

in the file ”geometry.aml”. In the remaining part of this section the word ”tissue” represents either ”bone”

or ”cartilage”. Both tissues will be found represented in one class called ”tissue-collection”, and in another

class called ”tissue-part”. The collection class holds a list of every element in the tissue input file. The

class inherits from the class series-object. Series-object enables multiple objects to be initialised based on a

quantity. The quantity is the sum of elements in the tissues list. The object class initialised is set in class-

expression. The class-expression is either bone-part or cartilage-part. The tissue-part is where the specific

tissue is instantiated. Consequently, if a bone in the input list is specified as a vertebral, the class bone-part

will instantiate an object of class vertebral.

4.2.4.2 Triads

The program reads a point.txt file to points-list in the class musculoskeletal-program. This list is then used

to create coordinate-system-objects. The coordinate-system-objects are called ”triads” and are oriented in x,

y and z -direction relative to the global coordinate system, which have origin in x=0, y=0, z=0. See Figure

4.12 for an illustration of how the nodes are represented in the ”AML Main Modeling Form”.

4.2.4.3 vertebral.aml

The bones comprising the spine is called ”vertebrae”. In reality, all vertebrae have different geometries, but

most of them have similar topology. See Figure 4.13. In this program, the vertebrae are modeled identically.

However, the scale of the models differs. This is done by connecting the distance between the two points that

defines a vertebral, with the size of it. The vertebral is aligned to the first point so that the point is in the

center of the bottom face. Then the vertebral is rotated, so that the axial of the main body follows a vector

in which has been drawn from point 1 to point 2. See Figure 4.14. A vertebral declaration in bones.txt have

the form:

"Lumbar5" "FE-vertebral" "(0 1)" "vertebral"

Vertebral objects are modeled by applying Boolean operations on native geometric objects. They are built as

a union-object of 4 cylinders and a difference-object. See Section 3.1.1 for definitions. The difference-object

is a result of two cylinders with different radii that are subtracted from each other. All parts are then united
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Figure 4.12: Triads defined by points.txt. The triads are used by classes to define geometry. The triad with
a box in the center is representing origin in the global coordinate system.

Figure 4.13: The human spine, with 24 vertebrae and sacrum and coccyx. The vertebrae are divided in
three classes, the lumbar, thoracic and cervival vertebrae. Each vertebral has different geometry, but similar
topology.
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Figure 4.14: Vertebral objects are defined by two points. The orientation and alignment is found by calcu-
lating a vector from the first to the last point, which is declared in the bone definition.

to one final part, as indicated in Figure 4.15.

Figure 4.15: Vertebral geometry from the AML program.

4.2.4.4 intervertebral-disc.aml

Intervertebral discs are the cartilage between vertebrae in the spine. They are modeled as elbow-objects, as

represented in Figure 3.1d, and are defined by four points. Two points determines the start and end point.

The center of the bottom face will be aligned with the start point, and the center of the top face with the end

point. Vectors are calculated from the second point to the first point and from the third point to the fourth

point. These vectors are normals to the bottom and top faces. See Figure 4.16. A vertebral declaration in

bones.txt has the form:

"L5-L4" "FE-intervertebral-disc" "(0 1)" "intervertebral-disc"
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Figure 4.16: Intervertebral disc geometry. Top and bottom face are aligned with point 2 and 3 respectively.
Vectors from point 3 to 4 and from point 2 to 1 are normals to the top and bottom faces respectively.
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4.2.4.5 femur.aml

The femur is the thigh bone and is defined by five points. The points are represented in Figure 4.17b as

yellow and red lines. The two lower points are center points for ellipsoids which represents the femur condyles.

The point between the condyles is a start point for the femur shaft which ends in the leftmost top point.

The femur shaft is represented with a cylinder-object. The leftmost top point is the center for the ”greater

trochanter”, and also the start point for the femur neck. The end point for the femur neck is in the rightmost

top point, which is also the center for the femur head. See Figure 4.17a for femur landmark names.

(a) Femur bone with landmark names. Illustration by
GetBodySmart.com. (b) Femur bone and triads that define the bone.

Figure 4.17: Illustration of similarities between femur in AML geometry and ”real” geometry.

4.2.4.6 pelvis.aml

The pelvis is a complex structure, which can be found illustrated in Figure 4.18. The pelvis-object class in

the Musculoskeletal Program is merely a representation. The process of creating the pelvis in AML was as

follows: (See Figure 4.19 for visualization of the steps)

1. Add box-object

2. Add ellipsoid-object

3. Add difference-object and add (1) and (2) to the object-list

4. Add ellipsoid-object that surrounds the hollow part of the box.

5. Add intersection-object and add (3) and (4) to the object-list
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6. Add cylinder-object, truncated-cone-object and two ellipsoid-objects

7. Add difference-object and add (5) and (6) (in that order) to the object-list

The size of the pelvis model is based on two points. One point is center for the left femur head, and the

other point is center for the right femur head. See Figure 4.20.

Figure 4.18: Illustration of the pelvis by Singapore.

4.2.4.7 tibia.aml

The tibia, represented in Figure 4.21a, comprises a cylinder as the tibia shaft and spheres in both ends. The

top sphere, which represents the head of the tibia, is made of a difference-object of a sphere that is hollowed

by another sphere. The hollow part can be adjusted during runtime to fit a femur object. The tibia is defined

by two points, and a visualization of it can be found in Figure 4.21b.

4.2.5 Spine Point Generator

A spine point generator was programmed in Matlab to easier make changes to the spine model in the

Musculoskeletal Program. During development of the spine model, it became apparent that it was easier

to have a script when creating point lists, instead of writing them manually. The output is a points.txt file
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(a) 1: Box-object (b) 2: Ellipsoid-object (c) 3: Difference-object of 1 and 2

(d) 4: Ellipsoid-object
(e) 5: Intersection-object of 3 and
4

(f) 6: Ellipsoid-objects to make hol-
lows for femur head and cylinder
and cone objects to make pelvis
inlet and connection point for the
sacrum.

(g) 7: Difference-object of 6 and 5. This is the
final representation of the pelvis.

Figure 4.19: The native geometric classes and Boolean operations to create a representation of the pelvis.
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Figure 4.20: The two points in the illustration represents the center of the femur head. the pelvis size and
position is determined by these points.

(a) Tibia with labels. Illustration by Aireurbano (b) Tibia generated in AML from two points

Figure 4.21: A comparison between tibia in ”real” geometry and in the AML representation.
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containing 74 points, corresponding to a bones.txt file (see complete file in Appendix B.2) previously written.

The input parameters are height, lumbar angle, thoracic angle and cervical angle. See Figure 4.22 for an

illustration of how the angles are defined. The program is able to generate a range of spine layouts, for

some examples see Figure 4.23. However they are restricted to angles in the sagittal plane. See Figure 2.2.

Therefore, the disease scoliosis is not in the domain of this program, whereas kyphosis and lordosis are. See

Figure 4.24 for illustration of the forementioned diseases.



CHAPTER 4. DEVELOPMENT 39

Figure 4.22: According to Neumann [2010], the spine with perfect cervical, thoracic and lumbar angles.
Illustration by Neumann [2010].
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(a) An unlikely spine, with close to
0 degrees in all vertebrae sections.

(b) A normal spine, with 45 degrees
in lumbar region, 40 degrees in tho-
racic region and 30 degrees in cer-
vical region.

(c) A bad spine, with symptoms of
exaggerated lordosis and kyphosis.

Figure 4.23: Examples of spines generated from points made by the Spine Point Generator
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(a) Lateral and anterior view of a normal
spine. (b) Scoliosis (c) Kyphosis (d) Lordosis

Figure 4.24: Figure 4.24a shows a normal spine and Figure 4.24b, 4.24c and 4.24d shows different spinal
diseases. The Spinal Point Generator can generate input for Kyphosis and lordosis, but are unable to
generate angles in the frontal plane. Illustrations by PT.
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Results

This chapter reviews the results obtained from the segmentation tool written in Matlab and the Muscu-

loskeletal Program written in Technosoft’s AML.

5.1 Segmentation Tool

The Segmentation Tool was written to segment bone structure from medical images and visualize the results

in 3D. This section reviews the results of segmenting four sets of CT-images from four parts of the body;

hip, pelvis, torso and head. The objective of the segmentation was to obtain a visualization of the bone

structure in each CT-image. Each segmentation is introduced with image information and execution time.

Subsequently, the user interaction and the final results will be reviewed and described. All CT-images used in

this section are obtained from https://mri.radiology.uiowa.edu/visible_human_datasets.html. They

are images of a human male positioned in HFS. HFS is the term for ”head-first supine”, meaning that the

person is on his back with the head first into the machine (NEMA [2015], section C.7.3.1.1.2).

5.1.1 Segmentation Data and Image Information

Table 5.1 summarizes the DICOM data, utilized to generate images in the Segmentation Tool. Slice thickness

is the width of a section. It adds the volume dimension to an image. This is used to space each section in

the final 3D visualization. Color type is the way the image data is represented. The program only supports

gray scale. The color depth is the number of bits available to represent pixel values. A higher number can

represent more colors and therefore represent data with higher precision. Pixels gives a value of how many
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individual data samples are captured during imaging and is given as ”width x height”. Patient positioning

is the way the patient is positioned during image capture.

Table 5.2 summarizes the values used in the Segmentation Tool to generate a result. The number of sections

is found by counting the number of files given as input. All values below the selected threshold will be set

to 0 and effectively be deleted from the matrix. The Execution time is a measure of performance in seconds

for the program. The ratio executiontime
numberofsections gives an indication of performance and varies from 0.13 for the

head to 0.2 for the torso segmentation.

Table 5.1: Data extracted from the DICOM files of the hip, head, pelvis and torso. The extraction is made
in the Segmentation Tool.

DICOM information Hip Head Pelvis Torso

Slice Thickness 1mm 1mm 1mm 1mm
Color Depth 16bit 16bit 16bit 16bit
Color Type Grayscale Grayscale Grayscale Grayscale
Pixels 512px X 512px 512px x 512px 512px x 512px 512px x 512px
Patient Position HFS HFS HFS HFS

Table 5.2: Data from segmentation of hip, head, pelvis and torso in the Segmentation Tool.

Segmentation Data Hip Head Pelvis Torso

Number of sections 400 245 140 460
Selected Threshold 35000 27000 30000 27000
Execution Time 80s 32s 25s 93s

5.1.2 Threshold Selection

The desired result of the segmentation is a 3D visualization of bone tissue only. During execution of the

program, the user is prompted to input a threshold value which determines what values to erase from the

result. All values below the threshold is deleted and a 2D image of the result is displayed. See Figure 5.1

and 5.2 for examples of threshold selection. Figure 5.1b shows an example of a clean segmentation, where

the two white rings, which are femur bones, are the only visible objects. Figure 5.1d, 5.2b and 5.2d are

slightly more difficult to classify as successful segmentations. However, when compared to their unsegmented

counterparts in Figure 5.1c, 5.2a and 5.2c respectively, the selected threshold was approved to use in the

isosurface generation. In Figure 5.2d there is an anomaly present along the edge of the scan area. This is

analysed to be the soft tissue of the patient’s arm crossing the edge, and this is clearly an issue as this is not

bone tissue.
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(a) Selected threshold value at 0 (b) Selected threshold value at 35000

(c) Selected threshold value at 0 (d) Selected threshold value at 27000

Figure 5.1: 2D images of sections where a threshold value has been applied. Figure 5.1a and 5.1b represents
how the hip looks and Figure 5.1c and 5.1d represents how the head looks in this process. Figure 5.1a and
5.1c are unsegmented, while Figure 5.1b and 5.1d are segmented. The images are from the horizontal plane.
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(a) Selected threshold value at 0 (b) Selected threshold value at 30000

(c) Selected threshold value at 0 (d) Selected threshold value at 27000.

Figure 5.2: 2D images of sections where a threshold value has been applied. Figure 5.2a and 5.2b represents
how the pelvis looks and Figure 5.2c and 5.2d represents how the shoulder looks in this process. Figure 5.2a
and 5.2c are unsegmented, while Figure 5.2b and 5.2d are segmented. The images are from the horizontal
plane. Along the edge of the scan area in 5.2d, there is an anomaly which cause unwanted geometry in the
final model. The anomaly is caused by arms crossing the border of the scan area.
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5.1.3 Isosurface Results

After the user has set the threshold value, an isosurface is applied on the matrix and the result is visualized

as a 3D matrix in Matlab. The result of the isosurface generation of the segmented hip, head, pelvis and

shoulder is represented in Figure 5.3, 5.5, 5.7 and 5.8 respectively. In the figures, the horizontal plane has

unit pixels, and the vertical axis has unit sections, where one section represent one image. The blue geometry

represents bone and the colorful fields at the edge of the images are the isocaps. This represents where solid

bone exits the scan-area.

In Figure 5.3, the femur and lower part of the pelvis are displayed. The coccyx (tailbone) and fingertips can

be shown posterior and anterior to the pelvis, respectively.

In Figure 5.4 the same fields are observed. However, they form circles with a hollow inside. This is where

the bone marrow has been deleted from the matrix due to lower pixel value than cortical (hard) bone.

The result of segmenting a CT-scan of the head is represented in Figure 5.5. The surface has some discon-

tinuous areas at the forehead. The image resolution is 512px x 512px, see Table 5.1. The low resolution may

be a source for this error. However, this could also be a result of setting the threshold value too high.

A blue spot is observed next to the jaw to the right, as can be observed in Figure 5.6. This is an anomaly,

and it is unknown what it might be, but an initial guess is that it is a part of the clavicle.

Figure 5.7 illustrates the result of segmentation of pelvis. The hands of the patient is visible. This is because

the scan procedure is performed in a tight tube so the arms are place along side the body.

In Figure 5.8, a segmented torso is viewed. The ribs are observed as ”hanging” in mid-air. This is due to

the cartilage between the rib cage and sternum having a non-boney composition. Disturbance at the border

of both sides is observed and is highlighted in Figure 5.9. It can be observed that the humerus is exiting

the scan-area close to the disturbance, and the disturbance is analysed to be the soft tissue of the over arm

exiting the scan-area.
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Figure 5.3: Isometric view of the generated isosurface of a segmented hip. Fingertips and tail bone is also
present in the illustration.
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Figure 5.4: Isometric bottom-up view of the generated isosurface of a segmented hip. A hollow bone is the
result of segmentation since bone marrow has lower pixel value than cortical bone.
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Figure 5.5: Isometric view of the generated isosurface of a segmented head.
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Figure 5.6: An anomaly is observed and highlighted in the illustration. It might be an object present during
scan or bone from the clavicle.
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Figure 5.7: Isometric view of the result of segmentation of pelvis and hands.
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Figure 5.8: Isometric view of the result of segmentation of a torso. Disturbances are present in the result
and are highlighted in Figure 5.9.
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Figure 5.9: Close up of right shoulder of the patient. The red ring highlights an anomaly that is analysed to
arise when soft tissue exits the scan-area.
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5.2 Musculoskeletal Program

The AML Musculoskeletal Program was developed to create bone geometry from text files. The text files

can either be written manually or generated by software such as the ”Spine Point Generator”. The following

sections will review the results of different input to the program, and outline what can be done to optimize

the result.

A model is instantiated by selecting from a drop down menu, illustrated in Figure 5.10. The menu is displayed

by editing the ”start-ui” object in the program tree. See Figure 5.11. Models that have been added to the

Model Library, will be available in the drop down menu. When a model is selected, the mechanism-object

will be populated with new objects. These objects are determined by the input files for that distinct model.

The object tree in Figure 5.11a shows a model that is comprised of tibia, femur, pelvis and spine. Figure

5.11b shows the accompanying object tree of cartilage. Cartilage is only available for the spine.

Figure 5.10: Main Properties are shown when right clicking ”start-ui” and selecting ”edit”. The drop down
menu which is active in the image holds the different models that are available.
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(a) Object tree showing a list of bones in
the selected model.

(b) Object tree showing a list of cartilages
in the model.

Figure 5.11: Illustrations of object trees when a model has been selected. The bones and cartilage list
contains one object per row in the bonest.txt and cartilage.txt input files.
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5.2.1 Input and properties

Two models of the femur bone is illustrated in Figure 5.12. The models share the same bones.txt-file:

"Femur-Left" "FE-Femur" "(0 1 2 3 4)" "femur"

The points.txt file is the reason for the difference in geometry. The file that resulted in Figure 5.12a is listed

below:

-1.4 0.0 0.0

1.4 0.0 0.0

0.0 0.5 1.0

-4.0 30.0 -1.0

1.0 31.5 -1.0

Where the coloumns are x, y and z coordinates respectively. The file that resulted in Figure 5.12b is listed

below:

-1.4 0.0 0.0

1.4 0.0 0.0

0.0 0.5 1.0

-6.0 20.0 -1.0

3.0 22.5 -1.0

The first two rows are identical. In the fourth row, the x and y coordinates are changed. The result is that

the model in Figure 5.12a is higher and narrower than the model in Figure 5.12b. The input file points.txt

determines the centers of condyles, greater trochanter and femur head (see Figure 4.17a for femur landmarks).

The femur shaft and neck are extruded between these points.

Figure 5.13 illustrates the properties that are available at runtime to further adjust the model. Femur head,

neck and body radius can be adjusted and the condyles can be made longer, wider or heigher. The result of

increasing the femur head and neck during runtime is illustrated in Figure 5.14.

The runtime adjustments can be exploited to fit joint elements together. The process of adjusting the knee

joint is illustrated in Figure 5.15. The pelvis also have options for runtime adjustments, but these are limited

to height and depth. See Figure 5.16. In Figure 5.16a the height of the pelvis is 14 cm and in Figure 5.16b

the height is 18 cm. However, the center of the hip bowl and the width is unchanged and is set by the

points.txt-file.
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(a) Femur bone model. Height: 32 cm (b) Femur bone model. Height: 23 cm

Figure 5.12: Illustration showing that different point.txt files result in different femur bone geometry.

Figure 5.13: Geometry in the Musculoskeletal Program have properties that can be adjusted during runtime.
The properties for the femur geometry is illustrated above.
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(a) Femur head radius: 1.4 cm
Femur neck radius: 1 cm

(b) Femur head radius: 2 cm
Femur neck radius: 1.5 cm

Figure 5.14: Femur geometries with different neck and head radii. The radii were adjusted during runtime.
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Figure 5.15: Adjustments of the knee during runtime. The condyle of the tibia can be adjusted to match
that of the femur condyles.

(a) Pelvis bone model. Height: 14 cm (b) Pelvis bone model. Height: 18 cm

Figure 5.16: Pelvis geometries with different heights. The height where adjusted during runtime.



CHAPTER 5. RESULTS 60

The Spine Point Generator was developed to shorten development time of the geometry for vertebrae and

intervertebral discs. Points generated by the Spine Point Generator is illustrated in Figure 5.17a. The

points.txt-file is listed in Appendix B with title ”points.txt-file for a spine”. The geometry created from

the input is shown in Figure 5.17b. The labels corresponds to the bone-names defined in the input file

bones.txt-file.

(a) Illustration of the points that define the bone and car-
tilage geometries in Figure 5.17b.

(b) Model of the spine and sacrum. The bright yellow
geometries represent intervertebral discs.

Figure 5.17: Model of the spine. The points.txt-file is made in Spine Point Generator.

A model comprised of the femur, tibia, pelvis, sacrum and spine is shown in Figure 5.18. The rest of the

body is not yet defined in the program. The left and right femur are instances of the same class definition.

The same principle applies to the tibia. To make the joints fit together, the knee and hip joint were adjusted

during runtime. The tibia condyle was adjusted to fit the femur condyles. The femur head radius was
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decreased to fit the hip bowl of the pelvis.

The Spine Point Generator generated the points for the spine in this model. To make the spine originate

from the pelvis, a point that was offset 5 cm posterior and 1 cm above the center of the pelvis was set as the

start point in the Spine Point Generator.

(a) Posterior view (b) Isometric view (c) Lateral view

Figure 5.18: A model comprised of the femur, tibia, pelvis, sacrum and spine. The knee joint was adjusted
during runtime to fit the femur condyle with the tibia condyle. The femur head was adjusted to fit the hip
bowl on the pelvis.



Chapter 6

Discussion

6.1 Segmentation Tool

The objective of the desired software was to automatically segment medical images and create input, either

as 3D objects or as text input, to a KBE modeling environment. As of today, the segmentation tool is able

to segment bones from CT-images and visualize the bones as isosurfaces within Matlab. The segmentation is

however, not automatic, and manual input of a lower threshold value is required. The output of the program

is pure visual and can not be directly exported to the Musculoskeletal Program for further manipulation.

During development, a function was found online (see URL at Sandberg) that exports to .obj, which is a

3D file format. However, this format is not supported by AML and further investigation was put on hold.

Nevertheless, this function can be a starting point for development of a new function that exports to either

IGES, STEP, DXF or STL. These formats are supported by AML.

In the CT-images that were tested, bone marrow had lower pixel value than cortical (hard) bone. The result

is that bone marrow is invisible after segmentation. If the result is to be used to generate a surface geometry,

this is not a problem. However, for generating a solid geometry, the difference between mechanical properties

in cortical bone and bone marrow will influence the results.

There were several types of disturbances in the results. In the segmented torso, an anomaly on the edge of

the scan-area was observed. The humerus can be seen exiting the scan-area in the proximity of the anomaly

and the anomaly was analysed to be the soft tissue of the overarm causing an increase in signal strength at

the scan-area border.

Another kind of disturbance was observed in the head segmentation, but an analysis of what might be causing
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it has not been successful. The last type of disturbance is other body parts entering the scan-volume. This

was observed in the pelvis and hip segmentation. If the desired result was geometry of the lower body, the

finger tips would have to be removed.

6.2 Musculoskeletal Program

The Musculoskeletal Program can generate complex geometry that is based on points in 3D space. A single

class definition can be used to generate infinitely results by changing the points that is used as input.

The presented bone-objects has similar topology to that of their human counterpart, but the geometry of

their structures can be enhanced. However, for simulation, this level of accuracy might be preferable as

simulation time increases with complexity.

The tibia, femur and pelvis can be modified during runtime to fit better together. In the properties of the

tibia, the condyle can be adjusted to fit the femur condyle counterpart. The femur head radius can also be

adjusted to fit the acetabulum (hip bowl).

The Musculoskeletal Program is lacking support for muscles, tendons and ligaments, neither as geometry

nor as representation in another form. Simulation is dependent on input that have relations between the

geometric entities. These relations are muscles, tendons and ligaments that enables motion and prevents

joints from disassembling.

The program has two interfaces for input: Either by writing text files that is used to generate geometry or

refining of the geometry during runtime. The objective of the final program was to generate geometry that

did not need further refining. Therefore, the adjustments needed, such as adjusting femur head radius and

pelvis height, which were shown in Section 5.2, should be moved from runtime adjustments to text file input.
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Conclusion

The objective of this master’s thesis was to investigate available software programs for use in segmentation

of medical images, and use the results as input to generate geometry for simulation input.

In this work, OsiriX was found useful as a segmentation program. However, by exploiting Matlab’s Image

Processing Toolbox, a program was developed to segment medical images. This program can be further

developed to automatically perform segmentations.

Technosoft’s AML was chosen as the framework to develop a program that generates 3D geometry. This

was a natural choice of KBE framework due to experience in the Department of Engineering Design and

Materials. AML has also been successfully used by Aker Solutions to generate rigs and tankers Steensen

[2008].

As discussed, there are still improvements that needs to be made, and therefore there is a potential for

further development. However, Matlab has proven to be a useful tool when manipulating DICOM-files.

The Musculoskeletal Program, developed in AML, also shows the possibilities of the platform. With more

resources the possibilities could be further explored and exploited.

Although, the segmentation results show anomalies, these are not caused by deviations due to malfunction,

but can be traced back to the way the images were captured.

The conclusion is that the developed programs are platforms for further research and development, and the

thesis has proven Matlab and AML as viable tools for continued work.
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Further work

8.1 Segmentation Tool

As discussed, a method for exporting a 3D object can be implemented in the Segmentation Tool. Sandberg

has developed a method for exporting .obj, and either by modification or further conversion, this might lead

to a method for exporting to IGES, STEP, DXF or STL.

To prevent bone marrow disappearing when bone is segmented, an alternative method for segmenting must

be implemented. As discussed, this is not necessary for surface geometry.

For creating geometry of other tissues, MRI with other modulation might be used. With P2 and PD modu-

lation, soft tissue are represented with a brighter color than bone.

8.2 Musculoskeletal Program

As of today, the program only supports input of femur, tibia, pelvis, vertebrae and intervertebral discs. This

limits the domain of the program to visualization, and is therefore not sufficient for simulation input. For

further work, the geometry classes have to be supplemented with geometry rules for the rest of the human

bones and cartilage. Classes and methods for muscle, tendons and ligaments must also be implemented.

To meet the objective of a program that automatically generates geometry, all inputs have to be given as

text files; not by refining during runtime. It is recommended that the segmentation program is developed

further so that it can generate input files for the Musculoskeletal Program. In this way, there will be no need
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for refinement in the program and both systems can be tailor made for each other.

To increase the detail level in the geometry generated by the program, additional points could be exploited

and a shape file could be implemented. The function of a shape file is to make detailed adjustments to the

geometry. By adding such functionality, geometric accuracy could be increased to enhance the simulation

accuracy, or it could be decreased to reduce the computation time.

AML supports nurbs and splines, which could be useful when generating more detailed geometry. Skaare

[2015] uses these classes, which are used for generating cylinders with bends and other ”organic” forms.
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Appendix A

Mail converation with Marius

Widerøe

The following mail dialog is in norwegian. The purple text is the part where questions are answered.
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Hei, 
 
Beklager at det tok alt for lang tid å svare. Ble syk og du havnet litt langt ned i 
mailbunken. 
Jeg har lagt inn svar under hvert spørsmål under. 
Jeg kopierer inn Toril Sjøbak i denne mailen. Hvis dere ønsker å gå videre med MR 
så kan hun kanskje hjelpe dere med det praktiske. Det er mulig hun også har noen 
eksempler dere kan se. 
 
Marius Widerøe 
MD, PhD 
Associate Professor 
Manager of MR Core Facility 
 
MR-Center 
Department of Circulation and Medical Imaging 
Norwegian University of Science and Technology 
Postboks 8905, N-7491 Trondheim, Norway 
 
Phone: +47 73 55 13 54 Mobile: +47 40 23 19 23 
e-mail: marius.wideroe@ntnu.no 
 
 
________________________________________ 
Fra: Carl Otto Gjelsvik 
Sendt: 21. september 2015 12:47 
Til: Marius Widerøe 
Emne: VS: Søker informasjon om MR til masteroppgave 
 
Hei! 
 
 
Har du fått sett på spørsmålene? 
 
-- 
 
Med vennlig hilsen 
 
Carl Otto Gjelsvik 
________________________________ 
Fra: Carl Otto Gjelsvik 
Sendt: 9. september 2015 11:31 
Til: Marius Widerøe 
Emne: SV: Søker informasjon om MR til masteroppgave 
 
 
Hei, 
 



Takk for raskt svar! 
 
 
 
For å utføre analysen er vi interessert i å ta utgangspunkt i en detaljert modell av 
skjelett, muskler og muskelfester. 
 
1. Er MR riktig teknologi for å oppnå dette? 
Den kan være et godt utgangspunkt for det. Røntgen og CT er bedre på skjelett enn 
MR, men MR er best på bløtvev. 
 
2. Er det mulig å ta en full kropp-scan med MR og eventuelt hvor lang tid tar det 
Det er mulig å skanne en hel kropp, men ikke på enn gang. Man må skanne endel av 
gangen. Litt avhengig av hva dere er ute etter så vil det også være en fordel å bruke 
forskjellige innstillinger for forskjellige deler av kroppen for å optimalisere mengden 
informasjon dere får fra bildene. 
Hvor lang tid det tar avhenger av hvor detaljerte bilder dere trenger, hva slags 
informasjon dere er ute etter i bildene. Jeg vil tippe at vi fort snakker om en time eller 
to. 
 
3. Hva slags bilde-oppløsning er mulig? 
Det kommer an på hvilken kroppsdel det skal tas bilde av, hva slags informasjon 
dere vil ha og ikke minst tidsbruk. Høyere oppløsning tar lengre tid. Normale bilder 
har oppløsning på 1x1mm med snittykkelse på, ca 5mm. Vi kan komme ned i 
1x1x1mm men det krever mye tid og er ikke mulig alle deler av kroppen. 
 
For å få et nøyaktig utgangspunkt for simulasjonene tenker vi at det hadde vært 
optimalt hvis scannen ble gjort stående. 
 
4. Er stående MR mulig? 
nei. Den som skannes må ligge 
 
5. Hvor forskjellig er posisjonen på et skjelett som ligger fra et som står? 
Det vil være noe forskjell i hvordan musklene "henger" på kroppen - du kan tenke på 
hvordan tyngdekraften virker på musklene i stående versus liggende stilling. Det vil 
også være litt forskjell på hvordan leddene er belastet, spes i beina og i ryggen. Det 
trenger imidlertid ikke ha så mye å si for simuleringen vi jeg tro. 
 
For å utføre analyser og simuleringer på dataen må vi først oversette den til noe vi 
kan jobbe med. 
 
6. Hvordan er prosessen fra scan til dataskjerm? Kan man velge hva slags vev man 
er interessert i og utelukke andre ting? 
Bildene lagres normalt i et dataformat som heter dicom. Fra det kan det lages 3D 
rekonstruksjoner. Det finnes mye software for bildeanalyse i etterkant, men jeg vet 
ikke om noe software for automatisk gjenkjenning av muskler og skjelett, men det 
finnes sikker tilgjenglige algoritmer for dette. Det går på segmentering av bildene. For 
optimal automatisk segmentering er det viktig at bildene er tatt opp med inntillinger 



som gjør at det blir mest mulig kontrast mellom de vevene dere ønsker å skille fra 
hverandre. 
 
7. Vet du hva slags format man får dataen på? Er det eventuelt mulig å få ut rådata i 
tillegg? 
Se svar over. Det er mulig å få ut rådata også men da kreves det rekonstruksjon av 
disse. For ditt formål så vil jeg nok betrakte dicom bildene som råe nok.. 
8. Hva slags informasjon har man tilgang på fra en MR-maskin? Kan man se 
tettheten i vevet? 
Signal og kontrast i bildene gjenspeiler i hovedsak tettheten av protoner samt det 
kjemiske miljøet protonene befinner seg i. Det er ikke mulig å måle tetthet i vevet 
direkte, men man kan få noe indirekte mål på celletetthet. Ved å justere på 
innstillingene ved opptaket av bildene kan måan optimalisere kontrasten mellom vev 
med ulike egenskaper. 
Det er også mulig å få ut annen informasjon som vanndiffusjon og perfusjon i vevet 
samt molekylær (hovedsaklig metabolitter) informasjon,  men da men mye  lavere 
oppløsning. 
 
Takk! 
 
Med vennlig hilsen 
 
Carl Otto Gjelsvik 
 
________________________________ 
Fra: Marius Widerøe <marius.wideroe@ntnu.no> 
Sendt: 9. september 2015 10:15 
Til: Carl Otto Gjelsvik 
Emne: Sv: Søker informasjon om MR til masteroppgave 
 
Hei, 
 
Jeg kan godt svare på noen spørsmål, men jeg har ikke tid til å møtes før i neste uke. 
Hvis du beskriver litt mer hva du er ute etter og evt de spørsmål du har per mail så 
kan jeg gi deg raskt svar på det. Så kan vi evt møtes senere for mer utdyping. 
 
mvh 
 
Marius Widerøe 
MD, PhD 
Associate Professor 
Manager of MR Core Facility 
 
MR-Center 
Department of Circulation and Medical Imaging 
Norwegian University of Science and Technology 
Postboks 8905, N-7491 Trondheim, Norway 
 



Phone: +47 73 55 13 54 Mobile: +47 40 23 19 23 
e-mail: marius.wideroe@ntnu.no 
 
 
________________________________________ 
Fra: Carl Otto Gjelsvik 
Sendt: 9. september 2015 10:07 
Til: Marius Widerøe 
Emne: Søker informasjon om MR til masteroppgave 
 
Hei! 
 
Mitt navn er Carl Otto Gjelsvik og jeg skriver masteroppgave ved Institutt for 
produktutvikling og materialer i høst. 
 
Prosjektet har som mål å finne en metode for å utføre analyser og simuleringer på en 
vilkårlig kropp. 
 
En av oppgavene er å foreslå en metode for å scanne en kropp og lage data til bruk i 
simulasjonen. 
 
Jeg har en del spørsmål rundt MR-prosedyren og hva slags data man får ut. 
 
Har du tid og mulighet til å svare på noen spørsmål, eller eventuelt videresende til 
noen som kan hjelpe meg? 
 
Med vennlig hilsen 
 
Carl Otto Gjelsvik	



Appendix B

Musculoskeletal Program - Files and

Input

B.1 Source code

Listing B.1: system.def

1 ;;;---------------------------------------------------------

2 ;;; System: Musculoskeletal-system

3 ;;; Purpose: Generate geometry of the human body from input

4 ;;;

5 ;;; Author : Carl Otto Gjelsvik

6 ;;;---------------------------------------------------------

7

8 (in-package :AML)

9

10 (defvar #MODEL-LIBRARY# "")

11 (setf #MODEL-LIBRARY#

12 (logical-path :mp "models")

13 )

14

15 (define-system :mp

16 :files ’(

17 "bone.aml"

18 "cartilage.aml"

74
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19 "femur.aml"

20 "pelvis.aml"

21 "sacrum.aml"

22 "tibia.aml"

23 "intervertebral-disc.aml"

24 "vertebrae.aml"

25 "geometry.aml"

26 "draw.aml"

27 "io.aml"

28 )

29 )

Listing B.2: bone.aml

1 (define-class bone-object

2 :inherit-from (coordinate-system-class)

3 :properties(

4 part-topology-list nil

5 color ’khaki4

6 inner-bone-density nil

7 outer-bone-density nil

8 average-stiffness nil

9 )

10 )

11

12 (define-class default-bone-object

13 :inherit-from (bone-object cylinder-object)

14 :properties (

15 part-topology-list nil

16 start-point (nth

17 (nth 0 ^part-topology-list) ^points-list)

18 end-point (nth

19 (nth 1 ^part-topology-list) ^points-list)

20 height (vector-length

21 (subtract-vectors ^end-point ^start-point)

22 )

23 diameter (* 3 ^height)

24 orientation (list (align

25 (center-of-face (the superior) 0)

26 (normal-to-face (the superior) 0)
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27 nil

28 (^start-point)

29 (subtract-vectors ^end-point ^start-point)

30 nil

31 :move? t :align? t :orient? nil

32 )

33 )

34 reference-coordinate-system

35 (the superior superior self)

36 )

37 )

38 )

39

40 (define-class cylinder-bone

41 :inherit-from

42 (bone-object cylinder-object coordinate-system-class)

43 :properties(

44 draw-axes? nil

45 )

46 )

47

48 (define-class ellipsoid-bone

49 :inherit-from

50 (bone-object ellipsoid-object coordinate-system-class)

51 :properties(

52 draw-axes? nil

53 )

54 )

55 (define-class sphere-bone

56 :inherit-from

57 (bone-object sphere-object coordinate-system-class)

58 :properties(

59 draw-axes? nil

60 )

61 )

Listing B.3: cartilage.aml

1 (define-class cartilage-object

2 :inherit-from (object)
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3 :properties(

4 part-topology-list nil

5 color ’khaki3

6 density nil

7 stiffness nil

8 )

9 )

10

11 (define-class default-cartilage-object

12 :inherit-from (cartilage-object cylinder-object)

13 :properties(

14 part-topology-list nil

15 start-point (nth

16 (nth 0 ^part-topology-list)

17 ^points-list

18 )

19 end-point (nth

20 (nth 1 ^part-topology-list)

21 ^points-list

22 )

23 height (vector-length

24 (subtract-vectors ^end-point ^start-point)

25 )

26 diameter (* 3 ^height)

27 orientation (list (align

28 (center-of-face (the superior) 0)

29 (normal-to-face (the superior) 0)

30 nil

31 (^start-point)

32 (subtract-vectors ^end-point ^start-point)

33 nil

34 :move? t :align? t :orient? nil

35 )

36 )

37 reference-coordinate-system

38 (the superior superior self)

39 )

40 )
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Listing B.4: femur.aml

1 (define-class femur-object

2 :inherit-from (bone-object)

3 :properties(

4 property-objects-list

5 (list

6 "Femur Properties"

7 (the superior femur-head-radius self)

8 (the superior femur-neck-radius self)

9 (the superior femur-body-radius self)

10 (the superior femur-condyle-length self)

11 (the superior femur-condyle-height self)

12 (the superior femur-condyle-width self)

13 )

14 (femur-head-radius :class

15 ’editable-data-property-class

16 label "Femur Head Radius"

17 formula (default 1.4)

18 )

19 (femur-neck-radius :class

20 ’editable-data-property-class

21 label "Femur Neck Radius"

22 formula (default 1)

23 )

24 (femur-body-radius :class

25 ’editable-data-property-class

26 label "Femur Body Radius"

27 formula (default 1.5)

28 )

29 (femur-condyle-length :class

30 ’editable-data-property-class

31 label "Condyle Length"

32 formula (default 4.5)

33 )

34 (femur-condyle-height :class

35 ’editable-data-property-class

36 label "Condyle Height"

37 formula (default 4)

38 )
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39 (femur-condyle-width :class

40 ’editable-data-property-class

41 label "Condyle Width"

42 formula (default 3.5)

43 )

44 femur-condyle1-position

45 (nth (nth 0 ^part-topology-list) ^points-list)

46 femur-condyle2-position

47 (nth (nth 1 ^part-topology-list) ^points-list)

48 femur-body-bottom

49 (nth (nth 2 ^part-topology-list) ^points-list)

50 knuckle-position

51 (nth (nth 3 ^part-topology-list) ^points-list)

52 femur-head-position

53 (nth (nth 4 ^part-topology-list) ^points-list)

54 )

55 :subobjects(

56 (femur-neck :class ’cylinder-bone

57 height (vector-length

58 (subtract-vectors

59 ^^femur-head-position

60 ^^knuckle-position))

61 diameter (* 2 ^^femur-neck-radius)

62 orientation (list (align

63 (center-of-face (the superior) 0)

64 (normal-to-face (the superior) 0)

65 nil

66 (^knuckle-position)

67 (subtract-vectors

68 ^femur-head-position

69 ^knuckle-position)

70 nil

71 :move? t :align? t :orient? t

72 )

73 )

74 reference-coordinate-system

75 (the superior superior self)

76 )

77 (femur-body :class ’cylinder-bone
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78 height (vector-length

79 (subtract-vectors

80 ^^knuckle-position

81 ^^femur-body-bottom))

82 diameter (* 2 ^^femur-body-radius)

83 orientation (list (align

84 (center-of-face (the superior) 0)

85 (normal-to-face (the superior) 0)

86 nil

87 (^femur-body-bottom)

88 (subtract-vectors

89 ^knuckle-position

90 ^femur-body-bottom)

91 nil

92 :move? t :align? t :orient? t

93 )

94 )

95 reference-coordinate-system

96 (the superior superior self)

97 )

98 (condyle1 :class ’ellipsoid-bone

99 x-diameter ^^femur-condyle-width

100 y-diameter ^^femur-condyle-height

101 z-diameter ^^femur-condyle-length

102 orientation (list (translate

103 ^^femur-condyle1-position))

104 )

105 (condyle2 :class ’ellipsoid-bone

106 x-diameter ^^femur-condyle-width

107 y-diameter ^^femur-condyle-height

108 z-diameter ^^femur-condyle-length

109 orientation (list (translate

110 ^^femur-condyle2-position))

111 )

112 (femur-head :class ’sphere-bone

113 diameter (* 2 ^^femur-head-radius)

114 orientation (list (translate

115 ^^femur-head-position))

116 )
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117 (bend :class ’sphere-bone

118 diameter (* 2 ^^femur-body-radius)

119 orientation (list (translate

120 ^^knuckle-position))

121 )

122 (bottom :class ’sphere-bone

123 diameter (* 2 ^^femur-body-radius)

124 orientation (list (translate

125 ^^femur-body-bottom))

126 )

127 )

128 )

Listing B.5: pelvis.aml

1 (define-class pelvis-object

2 :inherit-from (bone-object union-object)

3 :properties(

4 property-objects-list

5 (list

6 "Pelvis Properties"

7 (the superior pelvis-height self)

8 (the superior pelvis-depth self)

9 )

10 (pelvis-height :class ’editable-data-property-class

11 label "Height"

12 formula (default ^size)

13 )

14 (pelvis-depth :class ’editable-data-property-class

15 label "Depth"

16 formula (default ^size)

17 )

18 left-femur (nth

19 (nth 0 ^part-topology-list) ^points-list)

20 right-femur (nth

21 (nth 1 ^part-topology-list) ^points-list)

22 size (* 0.7 (vector-length

23 (subtract-vectors

24 ^left-femur

25 ^right-femur)))
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26 pelvis-width (* 1.95 ^size)

27 object-list (list (the ))

28 )

29 :subobjects (

30 (difference-object1 :class difference-object

31 display? nil

32 object-list (list

33 ^^box-object1

34 ^^ellipsoid-object1))

35 (box-object1 :class box-object

36 display? nil

37 width ^^pelvis-width

38 height ^^pelvis-height

39 depth ^^pelvis-depth

40 )

41 (ellipsoid-object1 :class ellipsoid-object

42 display? nil

43 x-diameter (* ^^pelvis-width 0.75)

44 y-diameter (* ^^pelvis-height 1.6)

45 z-diameter (* ^^pelvis-depth 1.5)

46 orientation (list

47 (translate

48 (list 0

49 (* 0.5

50 ^^pelvis-height)

51 (* 0.25

52 ^^pelvis-width))))

53 )

54 (intersection-object1 :class intersection-object

55 display? nil

56 object-list (list

57 ^^difference-object1

58 ^^ellipsoid-object2)

59 )

60 (ellipsoid-object2 :class ellipsoid-object

61 display? nil

62 x-diameter (* ^^pelvis-width 0.95)

63 y-diameter (* ^^pelvis-height 2.8)

64 z-diameter (* ^^pelvis-depth 1.8)
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65 orientation (list

66 (translate

67 (list 0

68 (* 1 ^^pelvis-height)

69 (* 0.5 ^^pelvis-depth))))

70 )

71 (cylinder-object1 :class cylinder-object

72 display? nil

73 diameter (* 0.8 ^^pelvis-height)

74 height (* 2 ^^pelvis-depth)

75 orientation (list

76 (translate

77 (list 0 (* 0.1 ^^pelvis-height) 0))

78 (rotate -30 :x-axis)

79 (translate

80 (list 0 0 (* 0.1 ^^pelvis-width))))

81 )

82 (difference-object2 :class difference-object

83 shade? ’t

84 render ’shaded

85 object-list (list

86 ^^intersection-object1

87 ^^cylinder-object1

88 ^^truncated-cone1

89 ^^ellipsoid-object3

90 ^^ellipsoid-object4)

91 orientation (list

92 (align

93 (center-of-object ^^ellipsoid-object3)

94 ’(0 1 0)

95 ’(0 1 0)

96 (^^left-femur)

97 ’(0 1 0)

98 ’(0 1 0)

99 :move? t :align? nil :orient? nil)

100 )

101 )

102 (truncated-cone1 :class truncated-cone-object

103 display? nil
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104 start-diameter (* 0.6 ^^size)

105 end-diameter (* 0.8 ^^size)

106 height (* 0.4 ^^size)

107 orientation (list

108 (translate

109 (list 0

110 (* 0.5 ^^pelvis-height)

111 (* -0.25 ^^pelvis-depth)

112 )

113 )

114 )

115 )

116 (ellipsoid-object3 :class ellipsoid-object

117 display? nil

118 x-diameter (* ^^pelvis-width 0.105)

119 y-diameter (* ^^pelvis-height 0.33)

120 z-diameter (* ^^pelvis-depth 0.24)

121 orientation (list

122 (rotate -18 :x-axis)

123 (rotate 25 :z-axis)

124 (translate

125 (list

126 (* -0.365 ^^pelvis-width)

127 (* 0.05 ^^pelvis-height)

128 (* 0.35 ^^pelvis-depth))))

129 )

130 (ellipsoid-object4 :class ellipsoid-object

131 display? nil

132 x-diameter (* ^^pelvis-width 0.105)

133 y-diameter (* ^^pelvis-height 0.33)

134 z-diameter (* ^^pelvis-depth 0.24)

135 orientation (list

136 (rotate -18 :x-axis)

137 (rotate -25 :z-axis)

138 (translate

139 (list

140 (* 0.365 ^^pelvis-width)

141 (* 0.05 ^^pelvis-height)

142 (* 0.35 ^^pelvis-depth))))
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143 )

144 )

145 )

Listing B.6: sacrum.aml

1 (define-class sacrum-object

2 :inherit-from (cone-object bone-object)

3 :properties (

4 part-topology-list nil

5 orientation (list (align

6 (center-of-face (the superior) 1)

7 (normal-to-face (the superior) 1)

8 nil

9 (^point1)

10 (subtract-vectors ^point2 ^point1)

11 nil

12 :move? t :align? t :orient? t

13 )

14 )

15 color ’khaki4

16 reference-coordinate-system

17 (the superior superior self)

18 point1 (nth

19 (nth 0 ^part-topology-list) ^points-list)

20 point2 (nth

21 (nth 1 ^part-topology-list) ^points-list)

22 point3 (nth

23 (nth 2 ^part-topology-list) ^points-list)

24 point4 (nth

25 (nth 3 ^part-topology-list) ^points-list)

26 height (vector-length

27 (subtract-vectors ^point2 ^point1))

28 height-t5 (vector-length

29 (subtract-vectors ^point4 ^point3))

30 diameter (* 1.2 ^height-t5)

31 )

32 )

Listing B.7: tibia.aml
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1 (define-class tibia-object

2 :inherit-from (bone-object)

3 :properties(

4 property-objects-list

5 (list

6 "Tibia Properties"

7 (the superior tibia-body-radius self)

8 (the superior femur-condyle-length self)

9 (the superior femur-condyle-height self)

10 (the superior femur-condyle-width self)

11 (the superior tibia-bottom-radius self)

12 )

13 (tibia-bottom-radius :class

14 ’editable-data-property-class

15 label "Tibia Bottom Radius"

16 formula (default 4)

17 )

18 (tibia-body-radius :class

19 ’editable-data-property-class

20 label "Tibia Body Radius"

21 formula (default 1.5)

22 )

23 (femur-condyle-length :class

24 ’editable-data-property-class

25 label "Femur Condyle Length"

26 formula (default 6)

27 )

28 (femur-condyle-height :class

29 ’editable-data-property-class

30 label "Femur Condyle Height"

31 formula (default 5)

32 )

33 (femur-condyle-width :class

34 ’editable-data-property-class

35 label "Femur Condyle Width"

36 formula (default 6)

37 )

38 tibia-bottom-position (nth

39 (nth 0 ^part-topology-list) ^points-list)
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40 tibia-condyle-position (nth

41 (nth 1 ^part-topology-list) ^points-list)

42 )

43 :subobjects(

44 (tibia-body :class ’cylinder-object

45 height (vector-length

46 (subtract-vectors

47 ^^tibia-condyle-position

48 ^^tibia-bottom-position))

49 diameter (* 2 ^^tibia-body-radius)

50 orientation (list (align

51 (center-of-face (the superior) 0)

52 (normal-to-face (the superior) 0)

53 nil

54 (^^tibia-bottom-position)

55 (subtract-vectors

56 ^^tibia-condyle-position

57 ^^tibia-bottom-position)

58 nil

59 :move? t :align? t :orient? t

60 )

61 )

62 reference-coordinate-system

63 (the superior superior self)

64 )

65 (condyle :class ’difference-object

66 object-list (list ^con ^cutcon))

67 (con :class ’sphere-object

68 display? nil

69 diameter (* 1.1 ^^femur-condyle-width)

70 orientation (list

71 (translate ^^tibia-condyle-position))

72 )

73 (cutcon :class ’ellipsoid-object

74 display? nil

75 x-diameter ^^femur-condyle-width

76 y-diameter ^^femur-condyle-height

77 z-diameter ^^femur-condyle-length

78 orientation (list (translate
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79 ^^tibia-condyle-position)

80 (translate

81 (list 0

82 (/ (the diameter

83 (:from (the con))) 1.5) 0)))

84 )

85 (bottom :class ’sphere-object

86 diameter ^^tibia-bottom-radius

87 orientation (list

88 (translate ^^tibia-bottom-position))

89 )

90 )

91 )

Listing B.8: vertebrae.aml

1 ;;;---------------------------------------------------------

2 ;;; System: Musculoskeletal-system

3 ;;; Purpose: Class-definitions of vertebrae

4 ;;;

5 ;;; Author : Carl Otto Gjelsvik

6 ;;;---------------------------------------------------------

7

8 (define-class vertebrae-cylinder

9 :inherit-from (bone-object cylinder-object)

10 :properties (

11 display? nil

12 )

13 )

14 ; The following two classes defines the

15 ; geometry for each spinular bone.

16 (define-class spinal-cord-section

17 :inherit-from (difference-object)

18 :properties (

19 inner-diameter 1

20 outer-diameter 2.5

21 height 1.0

22 display? nil

23 object-list (list (the bone) (the hole))

24 )
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25 :subobjects (

26 (bone :class ’vertebrae-cylinder

27 height ^^height

28 diameter ^^outer-diameter

29 solid? t

30 display? nil

31 orientation (list (rotate 0.0 :x-axis))

32 )

33 (hole :class ’vertebrae-cylinder

34 height ^^height

35 diameter ^^inner-diameter

36 solid? t

37 display? nil

38 orientation (list (rotate 0.0 :x-axis))

39 )

40 )

41 )

42

43 (define-class vertebrae-object

44 :inherit-from (union-object)

45 :properties(

46 point1 (nth (nth 0 ^part-topology-list) ^points-list)

47 point2 (nth (nth 1 ^part-topology-list) ^points-list)

48 orientation (list (align

49 (center-of-face (the superior) 0)

50 (normal-to-face (the superior) 1)

51 nil

52 (^point1)

53 (subtract-vectors ^point2 ^point1)

54 nil

55 :move? t :align? t :orient? t

56 )

57 )

58 reference-coordinate-system (the superior superior self)

59 height (vector-length (subtract-vectors ^point2 ^point1))

60 diameter (* 1.2 ^height)

61 spinal-cord-section-height (/ (^height) 2)

62 spinal-cord-section-outer-diameter (* (/ 5 6) (^height))

63 spinal-cord-section-inner-diameter
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64 (/ (^spinal-cord-section-outer-diameter) 2)

65 spinal-trans-x 0.0

66 spinal-trans-y (* 0.25 ^height)

67 spinal-trans-z (* -0.80 ^height)

68 articular-process-height (* 0.7 ^height)

69 articular-process-diameter (* 0.25 ^height)

70 articular-trans-x (* 0.65 ^height)

71 articular-trans-y (* 0.25 ^height)

72 articular-trans-z (* -1.0 ^height)

73 spinious-process-height (* 0.7 ^height)

74 spinious-process-diameter (* 0.2 ^height)

75 spinious-trans-x (* 0.0 ^height)

76 spinious-trans-y (* 0.0 ^height)

77 spinious-trans-z (* -1.4 ^height)

78 display? t

79 color ’khaki4

80 render ’shaded

81 object-list (list (the front-section) (the cord-section)

82 (the left-articular-process)

83 (the right-articular-process) (the spinious-process)

84 )

85 )

86 :subobjects (

87 (front-section :class ’vertebrae-cylinder

88 height ^^height

89 diameter ^^diameter

90 orientation (list (rotate 90.0 :x-axis))

91 display? nil

92 )

93 (cord-section :class ’spinal-cord-section

94 inner-diameter ^^spinal-cord-section-inner-diameter

95 outer-diameter ^^spinal-cord-section-outer-diameter

96 height ^^spinal-cord-section-height

97 orientation (list

98 (rotate 90.0 :x-axis)

99 (translate (list

100 (^^spinal-trans-x)

101 (^^spinal-trans-y)

102 (^^spinal-trans-z))
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103 )

104 )

105 display? nil

106 )

107 (left-articular-process :class cylinder-object

108 height ^^articular-process-height

109 diameter ^^articular-process-diameter

110 orientation (list

111 (rotate -5 :x-axis)

112 (rotate 60 :y-axis)

113 (translate (list (* -1

114 (^^articular-trans-x))

115 (^^articular-trans-y)

116 (^^articular-trans-z)))

117 )

118 display? nil

119 )

120 (right-articular-process :class cylinder-object

121 height ^^articular-process-height

122 diameter ^^articular-process-diameter

123 orientation (list

124 (rotate -5 :x-axis)

125 (rotate -60 :y-axis)

126 (translate (list

127 (^^articular-trans-x)

128 (^^articular-trans-y)

129 (^^articular-trans-z)))

130 )

131 display? nil

132 )

133 (spinious-process :class cylinder-object

134 height ^^spinious-process-height

135 diameter ^^spinious-process-diameter

136 orientation (list

137 (rotate -40 :x-axis)

138 (translate (list

139 (^^spinious-trans-x)

140 (^^spinious-trans-y)

141 (^^spinious-trans-z)))
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142 )

143 display? nil

144 )

145 )

146 )

Listing B.9: intervertebral-disc.aml

1 ;;;---------------------------------------------------------

2 ;;; System: Musculoskeletal-system

3 ;;; Purpose: Class-definitions of intervertebral discs

4 ;;;

5 ;;; Author : Carl Otto Gjelsvik

6 ;;;---------------------------------------------------------

7

8 ; Lumbar and cervical section

9 (define-class intervertebral-disc-object

10 :inherit-from (cartilage-object elbow-object)

11 :properties(

12 part-topology-list nil

13 point1 (nth (nth 0 ^part-topology-list) ^points-list)

14 point2 (nth (nth 1 ^part-topology-list) ^points-list)

15 point3 (nth (nth 2 ^part-topology-list) ^points-list)

16 point4 (nth (nth 3 ^part-topology-list) ^points-list)

17 vector1 (subtract-vectors ^point2 ^point1)

18 vector2 (subtract-vectors ^point4 ^point3)

19 katet (vector-length(subtract-vectors ^point3 ^point2))

20 angle (angle-between-2-vectors ^vector1 ^vector2)

21 halfangle (/ ^angle 2)

22 elbow-radius (/ (/ ^katet 2) (sind ^halfangle))

23 boneheight (vector-length

24 (subtract-vectors ^point4 ^point3))

25 diameter (* 1.2 ^boneheight)

26 orientation (list (align

27 (center-of-face (the superior) 1)

28 (normal-to-face (the superior) 1)

29 nil

30 (^point2)

31 (subtract-vectors ^point2 ^point1)

32 nil
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33 :move? t :align? t :orient? t

34 )

35 )

36 reference-coordinate-system (the superior superior self)

37 )

38 )

39

40 ; Thoracic section

41 (define-class thoracic-cartilage-object

42 :inherit-from (cartilage-object elbow-object)

43 :properties(

44 part-topology-list nil

45 point1 (nth (nth 0 ^part-topology-list) ^points-list)

46 point2 (nth (nth 1 ^part-topology-list) ^points-list)

47 point3 (nth (nth 2 ^part-topology-list) ^points-list)

48 point4 (nth (nth 3 ^part-topology-list) ^points-list)

49 vector1 (subtract-vectors ^point2 ^point1)

50 vector2 (subtract-vectors ^point4 ^point3)

51 katet (vector-length(subtract-vectors ^point3 ^point2))

52 angle (angle-between-2-vectors ^vector1 ^vector2)

53 halfangle (/ ^angle 2)

54 elbow-radius (/ (/ ^katet 2) (sind ^halfangle))

55 boneheight (vector-length

56 (subtract-vectors ^point4 ^point3))

57 diameter (* 1.2 ^boneheight)

58 orientation (list

59 (rotate 180 :y-axis)

60 (align

61 (center-of-face (the superior) 1)

62 (normal-to-face (the superior) 1)

63 nil

64 (^point2)

65 (subtract-vectors ^point2 ^point1)

66 nil

67 :move? t :align? t :orient? t

68 )

69 )

70 reference-coordinate-system

71 (the superior superior self)
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72 )

73 )

Listing B.10: geometry.aml

1 ;;;---------------------------------------------------------

2 ;;; System: Musculoskeletal-system

3 ;;; Purpose: Class definitions that generates instances

4 ;;; of geometric objects

5 ;;; Derived from Mechanism Program by Ole Ivar Sivertsen

6 ;;; Author : Carl Otto Gjelsvik

7 ;;;---------------------------------------------------------

8

9 (define-class points-class

10 :inherit-from (coordinate-system-class)

11 :properties(

12 length 10

13 colors ’(red green blue)

14 transformation-matrix

15 (default ’(

16 (1.0 0.0 0.0 0.0)

17 (0.0 1.0 0.0 0.0)

18 (0.0 0.0 1.0 0.0)

19 (0.0 0.0 0.0 1.0)

20 )

21 )

22 )

23 )

24

25 (define-class link-coordinate-systems

26 :inherit-from (series-object coordinate-system-class)

27 :properties(

28 label nil

29 draw-box? nil

30 draw-label? t

31 draw-axes? t

32 Quantity (length ^^bone-data-list)

33 series-prefix ’coordinate-system

34 class-expression ’coordinate-system-class

35 init-form ’(
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36 origin

37 (nth

38 (nth 0

39 (nth 2

40 (nth !index ^bone-data-list)

41 )

42 )

43 ^points-list

44 )

45 vector-i

46 (subtract-vectors

47 (nth

48 (nth 1

49 (nth 2

50 (nth !index ^bone-data-list)

51 )

52 )

53 ^points-list

54 )

55 (nth

56 (nth 0

57 (nth 2

58 (nth !index ^bone-data-list )

59 )

60 )

61 ^points-list

62 )

63 )

64 vector-j (cross-product

65 (nth 3

66 (nth !index ^bone-data-list )

67 )

68 (subtract-vectors

69 (nth

70 (nth 1

71 (nth 2

72 (nth !index ^bone-data-list)

73 )

74 )
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75 ^points-list

76 )

77 (nth

78 (nth 0

79 (nth 2

80 (nth !index ^bone-data-list)

81 )

82 )

83 ^points-list

84 )

85 )

86 )

87 label (nth 0

88 (nth !index ^bone-data-list)

89 )

90 length 0.2

91 )

92 reference-coordinate-system

93 (the superior superior self)

94 )

95 )

96 (define-class cartilage-coordinate-systems

97 :inherit-from (series-object coordinate-system-class)

98 :properties(

99 label nil

100 draw-box? nil

101 draw-label? t

102 draw-axes? t

103 Quantity (length ^^cartilage-data-list)

104 series-prefix ’coordinate-system

105 class-expression ’coordinate-system-class

106 init-form ’(

107 origin (nth

108 (nth 0

109 (nth 2

110 (nth !index ^cartilage-data-list)

111 )

112 )

113 ^points-list
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114 )

115 vector-i (subtract-vectors

116 (nth

117 (nth 1

118 (nth 2

119 (nth !index ^cartilage-data-list)

120 )

121 )

122 ^points-list

123 )

124 (nth

125 (nth 0

126 (nth 2

127 (nth !index ^cartilage-data-list)

128 )

129 )

130 ^points-list

131 )

132 )

133 vector-j (cross-product

134 (nth 3

135 (nth !index ^cartilage-data-list)

136 )

137 (subtract-vectors (nth

138 (nth 1

139 (nth 2

140 (nth !index ^cartilage-data-list)

141 )

142 )

143 ^points-list

144 )

145 (nth

146 (nth 0

147 (nth 2

148 (nth !index ^cartilage-data-list)

149 )

150 )

151 ^points-list

152 )
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153 )

154 )

155 label (nth 0 (nth !index ^cartilage-data-list))

156 length 0.2

157 )

158 reference-coordinate-system

159 (the superior superior self)

160 )

161 )

162 (define-class bone-part

163 :inherit-from (series-object coordinate-system-class)

164 :properties(

165 property-objects-list

166 (list

167 "Femur Properties"

168 (the superior outer-bone-density self)

169 (the superior inner-bone-density self)

170 (the superior average-stiffness self)

171 )

172 (outer-bone-density :class ’editable-data-property-class

173 label "Outer Bone Density"

174 formula (default 1)

175 )

176 (inner-bone-density :class ’editable-data-property-class

177 label "Inner Bone Density"

178 formula (default 0.5)

179 )

180 (average-stiffness :class ’editable-data-property-class

181 label "Average Stiffness"

182 formula (default 1.5)

183 )

184 part-topology-list nil

185 the-ref-property nil

186 label nil

187 Quantity 1

188 series-prefix ’bonepart

189 bone-type nil

190 class-expression ’(case ^bone-type

191 ("vertebrae" ’vertebrae-object)
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192 ("sacrum" ’sacrum-object)

193 ("pelvis" ’pelvis-object)

194 ("femur" ’femur-object)

195 ("tibia" ’tibia-object)

196 (nil ’default-bone-object)

197 )

198 init-form’(

199 part-topology-list ^^part-topology-list

200 outer-bone-density ^^outer-bone-density

201 inner-bone-density ^^inner-bone-density

202 average-stiffness ^^average-stiffness

203 )

204 )

205 )

206

207 (define-class cartilage-generator

208 :inherit-from (series-object coordinate-system-class)

209 :properties(

210 part-topology-list nil

211 the-ref-property nil

212 label nil

213 Quantity 1

214 series-prefix ’cartilagepart

215 cartilage-type nil

216 class-expression ’(case ^cartilage-type

217 ("intervertebral-disc"

218 ’intervertebral-disc-object)

219 ("thoracic-cartilage"

220 ’thoracic-cartilage-object)

221 (t ’default-cartilage-object)

222 )

223 init-form’(

224 part-topology-list ^^part-topology-list

225 )

226 )

227 )

228 (define-class bone-collection

229 :inherit-from (

230 series-object
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231 coordinate-system-class

232 cylinder-object

233 )

234 :properties(

235 draw-box? nil

236 draw-label? nil

237 the-ref-property nil

238 Quantity (length ^^bone-data-list)

239 series-prefix ’bone

240 bone-type nil

241 class-expression ’bone-part

242 init-form ’(

243 part-topology-list (nth 2

244 (nth !index ^bone-data-list )

245 )

246 bone-type (nth 4

247 (nth !index ^bone-data-list )

248 )

249 the-ref-property (list (the superior))

250 label (nth 0 (nth !index ^bone-data-list))

251 )

252 )

253 )

254 (define-class cartilage-collection

255 :inherit-from (series-object coordinate-system-class)

256 :properties(

257 draw-box? nil

258 draw-label? nil

259 the-ref-property nil

260 Quantity (length ^^cartilage-data-list)

261 series-prefix ’cartilage

262 class-expression ’cartilage-generator

263 init-form ’(

264 part-topology-list (nth 2

265 (nth !index ^cartilage-data-list )

266 )

267 cartilage-type (nth 4

268 (nth !index ^cartilage-data-list )

269 )
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270 the-ref-property (list (the superior))

271 label (nth 0

272 (nth !index ^cartilage-data-list )

273 )

274 transformation-matrix-list

275 (loop for ix in

276 (remove-duplicates

277 (nth 2

278 (nth !index ^cartilage-data-list)

279 )

280 )

281 do

282 collect (list

283 ’(1.0 0.0 0.0 0.0)

284 ’(0.0 1.0 0.0 0.0)

285 ’(0.0 0.0 1.0 0.0)

286 (append

287 (nth ix ^points-list)(list 1.0))

288 )

289 )

290 reference-coordinate-system

291 (the superior superior self)

292 )

293 )

294 )

295

296 (define-class mechanism-triads

297 :inherit-from (series-object coordinate-system-class)

298 :properties(

299 draw-box? nil

300 draw-label? nil

301 length 0.2

302 Quantity (length ^^points-list)

303 series-prefix ’triad

304 class-expression ’points-class

305 init-form ’(

306 transformation-matrix (list

307 ’(1.0 0.0 0.0 0.0)

308 ’(0.0 1.0 0.0 0.0)
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309 ’(0.0 0.0 1.0 0.0)

310 (append (nth !index ^points-list)(list 1.0))

311 )

312 orientation (list

313 (apply-matrix ^transformation-matrix)

314 )

315 reference-coordinate-system

316 (the superior superior self)

317 )

318 )

319 )

320 (define-class mechanism-model-class

321 :inherit-from (series-object coordinate-system-class)

322 :properties (

323 )

324 :subobjects(

325 (bones :class ’bone-collection

326 )

327 (cartilages :class ’cartilage-collection

328 )

329 (coordinate-systems :class ’link-coordinate-systems

330 )

331 (triads :class ’mechanism-triads

332 )

333 )

334 )

Listing B.11: draw.aml

1 ;;;---------------------------------------------------------

2 ;;; System: Musculoskeletal-system

3 ;;; Purpose: Class definitions that draws/undraws geometry

4 ;;; and labels

5 ;;; Derived from Mechanism Program by Ole Ivar Sivertsen

6 ;;; Author : Carl Otto Gjelsvik

7 ;;;---------------------------------------------------------

8

9 (define-class edit-coordinates-class

10 :inherit-from (object)

11 :properties (
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12 sub-folder-list nil

13 sub-folder-hash-table (let* (

14 (ht (make-hash-table))

15 )

16 (loop for folder-info in ^sub-folder-list

17 for folder-id = (nth 1 folder-info)

18 do

19 (setf (gethash folder-id ht) folder-info)

20 )

21 ht

22 )

23 (pop-up-selection :class ’option-property-class

24 labels-list (loop for pair in ^^sub-folder-list

25 collect (nth 0 pair)

26 )

27 options-list (loop for pair in ^^sub-folder-list

28 collect (nth 1 pair)

29 )

30 mode ’menu

31 formula (nth 0 !options-list)

32 )

33 mechanism-info (gethash ^pop-up-selection

34 ^sub-folder-hash-table)

35 mechanism-class (nth 2 ^mechanism-info)

36 mechanism-label (nth 0 ^mechanism-info)

37 nrows nil

38 )

39 )

40 (define-method property-classification-list

41 edit-coordinates-class ()

42 (let* ((link-objects (the mechanism bones))

43 (cartilage-objects (the mechanism cartilages))

44 (node-label-objects (the superior node-label))

45 (bone-label-objects (the superior bone-label))

46 (cartilage-label-objects (the superior cartilage-label))

47 )

48 (list

49 (list "Main Properties"

50 (remove nil
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51 (list

52 "User Input"

53 ’(pop-up-selection (automatic-apply? t))

54 (the superior points-list self)

55 :blank

56 "Draw/Undraw"

57 (list ’nrows

58 (list ’label "Draw Bones"

59 ’button1-action ‘’(

60 draw-bones ,link-objects :undraw? nil)

61 ’button3-action ‘’(

62 draw-bones ,link-objects :undraw? t)

63 )

64 ’ui-access-button-class

65 )

66 (list ’nrows

67 (list ’label "Draw Cartilages"

68 ’button1-action ‘’(

69 draw-cartilages ,

70 cartilage-objects :undraw? nil)

71 ’button3-action ‘’(

72 draw-cartilages ,

73 cartilage-objects :undraw? t)

74 )

75 ’ui-access-button-class

76 )

77 (list ’nrows

78 (list ’label "Draw Bone Names"

79 ’button1-action ‘’(

80 draw-bone-labels ,

81 bone-label-objects :undraw? nil)

82 ’button3-action ‘’(

83 draw-bone-labels ,

84 bone-label-objects :undraw? t)

85 )

86 ’ui-access-button-class

87 )

88 (list ’nrows

89 (list ’label "Draw Cartilage Names"
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90 ’button1-action ‘’(

91 draw-cartilage-labels ,

92 cartilage-label-objects :undraw? nil)

93 ’button3-action ‘’(

94 draw-cartilage-labels ,

95 cartilage-label-objects :undraw? t)

96 )

97 ’ui-access-button-class

98 )

99 (list ’nrows

100 (list ’label "Draw Point Numbers"

101 ’button1-action ‘’(

102 draw-node-labels ,node-label-objects :undraw? nil)

103 ’button3-action ‘’(

104 draw-node-labels ,node-label-objects :undraw? t)

105 )

106 ’ui-access-button-class

107 )

108 )

109 )

110 )

111 )

112 )

113 )

114 (define-method draw-bones bone-collection (&key (undraw? nil))

115 (if undraw?

116 (undraw !bones)

117 (draw !bones)

118 )

119 )

120 (define-method draw-cartilages cartilage-collection

121 (&key (undraw? nil))

122 (if undraw?

123 (undraw !cartilages)

124 (draw !cartilages)

125 )

126 )

127 (define-class mechanism-text-object-class

128 :inherit-from (series-object coordinate-system-class)
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129 :properties(

130 draw-label? nil

131 draw-box? nil

132 quantity (length ^^points-list)

133 series-prefix ’node

134 class-expression ’text-object

135 init-form ’(

136 coordinates (list (nth 0 (nth !index ^^points-list))

137 (+ (nth 1 (nth !index ^^points-list)) 0.06)

138 (nth 2 (nth !index ^^points-list))

139 )

140 height 1.0

141 text-string (format nil "~a" !index)

142 reference-coordinate-system (the superior superior self)

143 )

144 )

145 )

146 (define-class part-text-object

147 :inherit-from (text-object)

148 :properties (

149 part-topology-list nil

150 lastpoint nil

151 color nil

152 view-normal? t

153 )

154 )

155

156 (define-class bone-text-object-class

157 :inherit-from (series-object coordinate-system-class)

158 :properties(

159 draw-label? nil

160 draw-box? nil

161 part-topology-list nil

162 quantity (length ^^bone-data-list)

163 series-prefix ’bone-label

164 class-expression ’part-text-object

165 init-form ’(

166 part-topology-list (nth 2

167 (nth !index ^bone-data-list ))



APPENDIX B. MUSCULOSKELETAL PROGRAM - FILES AND INPUT 107

168 lastpoint (- (length ^part-topology-list) 1)

169 coordinates (list (progn (+ 5 (nth 0

170 (nth (nth 0 ^part-topology-list) ^^points-list))))

171 (progn (/ (+ ((nth 1 (nth (nth 0 ^part-topology-list)

172 ^^points-list)))((nth 1 (nth

173 (nth ^lastpoint ^part-topology-list)

174 ^^points-list)))) 2))

175 (progn (+ 5 (/ (+ ((nth 2 (nth

176 (nth 0 ^part-topology-list) ^^points-list)))

177 ((nth 2 (nth (nth ^lastpoint ^part-topology-list)

178 ^^points-list)))) 2)))

179 )

180 height 1.0

181 text-string (nth 0 (nth !index ^bone-data-list ))

182 color ’red

183 reference-coordinate-system (the superior superior self)

184 )

185 )

186 )

187 (define-class cartilage-text-object-class

188 :inherit-from (series-object coordinate-system-class)

189 :properties(

190 draw-label? nil

191 draw-box? nil

192 part-topology-list nil

193 quantity (length ^^cartilage-data-list)

194 series-prefix ’cartilage-label

195 class-expression ’part-text-object

196 init-form ’(

197 part-topology-list (nth 2

198 (nth !index ^cartilage-data-list ))

199 lastpoint (- (length ^part-topology-list) 1)

200 coordinates (list (progn (+ 5 (nth 0 (nth

201 (nth 0 ^part-topology-list) ^^points-list))))

202 (progn (/ (+ ((nth 1 (nth (nth 0 ^part-topology-list)

203 ^^points-list)))((nth 1 (nth

204 (nth ^lastpoint ^part-topology-list)

205 ^^points-list)))) 2))

206 (progn (+ 5 (/ (+ ((nth 2 (nth
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207 (nth 0 ^part-topology-list)

208 ^^points-list)))((nth 2

209 (nth (nth ^lastpoint ^part-topology-list)

210 ^^points-list)))) 2)))

211 )

212 height 1.0

213

214 text-string (nth 0 (nth !index ^cartilage-data-list ))

215 color ’white

216 reference-coordinate-system (the superior superior self)

217 )

218 )

219 )

220 (define-method draw-node-labels

221 mechanism-text-object-class (&key (undraw? nil))

222 (if undraw?

223 (undraw !node-label)

224 (draw !node-label)

225 )

226 )

227 (define-method draw-bone-labels

228 bone-text-object-class (&key (undraw? nil))

229 (if undraw?

230 (undraw !bone-label)

231 (draw !bone-label)

232 )

233 )

234 (define-method draw-cartilage-labels

235 cartilage-text-object-class (&key (undraw? nil))

236 (if undraw?

237 (undraw !cartilage-label)

238 (draw !cartilage-label)

239 )

240 )

Listing B.12: io.aml

1 ;;;---------------------------------------------------------

2 ;;; System: Musculoskeletal-system

3 ;;; Purpose: User input and GUI
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4 ;;;

5 ;;; Derived from Mechanism Program by Ole Ivar Sivertsen

6 ;;; Author : Carl Otto Gjelsvik

7 ;;;---------------------------------------------------------

8

9

10 (define-class musculoskeletal-program

11 :inherit-from (object)

12 :properties(

13 library-root-path

14 "D:\\Technosoft\\AML\\AML5.85_x64\\workspace\\

15 musculoskeletal-program\\models"

16 valid-root-path (directory? ^library-root-path)

17 sub-folder-list (if ^valid-root-path

18 (file-popup-list (the superior)) nil)

19 pop-up-selection

20 (the pop-up-selection (:from ^start-ui))

21 mechanism-class

22 (the mechanism-class (:from ^start-ui))

23 mechanism-label

24 (the mechanism-label (:from ^start-ui))

25 selected-mechanism

26 (nth (- ^pop-up-selection 1) ^sub-folder-list)

27 directory-path (nth ^pop-up-selection

28 (rest(directory

29 "D:\\Technosoft\\AML\\AML5.85_x64\\workspace\\

30 musculoskeletal-program\\models"

31 )))

32 loaded-points-list

33 (if

34 (or

35 (equal ^valid-root-path nil)

36 (equal ^sub-folder-list nil)

37 )

38 ^default-points-list

39 (read-selected-points-list (the superior))

40 )

41 points-quantity (length ^loaded-points-list)

42 (points-list :class ’data-matrix-property-class
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43 mode ’pop-up

44 default-data-type ’not-a-string

45 label "Points List"

46 columns-labels-list (list

47 "X-coord"

48 "Y-coord"

49 "Z-coord"

50 )

51 rows-labels-list

52 (loop for row from 1 to ^^points-quantity

53 collect (format nil "Node ~a"

54 (- row 1)

55 )

56 )

57 formula ^loaded-points-list

58 )

59 bone-data-list

60 (if

61 (or

62 (equal ^valid-root-path nil)

63 (equal ^sub-folder-list nil)

64 ) ^default-bone-data-list

65 (read-selected-bone-data-list (the superior)

66 )

67 )

68 cartilage-data-list

69 (if

70 (or

71 (equal ^valid-root-path nil)

72 (equal ^sub-folder-list nil)

73 )

74 ^default-cartilage-data-list

75 (read-selected-cartilage-data-list (the superior)

76 )

77 )

78 save-sub-directory-name "test-model"

79 save-directory-path (create-directory

80 (format nil "~a~a~a"

81 (append !library-root-path) ’"\\"
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82 (append !save-sub-directory-name))

83 )

84 display-tree (with-open-file

85 (file (logical-path !directory-path "tree.txt")

86 :direction :output

87 :if-exists :overwrite

88 )

89 (print-tree

90 (the superior)

91 :show-class? t :expand? nil :stream file)

92 )

93 default-points-list ’(

94 (0.0 0.0 0.0)

95 (0.0 0.15 0.0)

96 (0.3 0.0 0.0)

97 (0.3 0.375 0.0)

98 (0.6 0.6 0.0)

99 )

100

101 default-bone-data-list ’(

102 ("input-link" "FE-input-link" (0 1) (0.0 0.0 1.0))

103 ("coupler-link" "FE-coupler-link" (1 3 4) (0.0 0.0 1.0))

104 ("output-link" "FE-output-link" (2 3) (0.0 0.0 1.0))

105 ("Ground" nil (0 2) nil)

106 )

107 default-cartilage-data-list ’(

108 ("input-link" "FE-input-link" (0 1) (0.0 0.0 1.0))

109 ("coupler-link" "FE-coupler-link" (1 3 4) (0.0 0.0 1.0))

110 ("output-link" "FE-output-link" (2 3) (0.0 0.0 1.0))

111 ("Ground" nil (0 2) nil)

112 )

113 )

114 :subobjects(

115 (start-ui :class ’edit-coordinates-class

116 sub-folder-list ^^sub-folder-list

117 )

118 (mechanism :class ’Mechanism-model-class

119 )

120 (mechanism-label :class ’text-object
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121 height 5

122 coordinates ’(0 -0.06 0)

123 text-string (format nil "~a" (nth 0 ^^selected-mechanism))

124 )

125 (node-label :class ’mechanism-text-object-class

126 )

127 (bone-label :class ’bone-text-object-class)

128 (cartilage-label :class ’cartilage-text-object-class)

129 )

130 )

131

132

133 (define-method file-popup-list musculoskeletal-program ()

134

135 (loop for line in (rest

136 (rest

137 (directory

138 "D:\\Technosoft\\AML\\AML5.85_x64\\workspace\\

139 musculoskeletal-program\\models"

140 )

141 )

142 )

143 do

144 for x = (string-to-delimited-token-list line

145 :delimiter #\\

146 :string-token? t

147 :blank-token? nil

148 )

149 for ix from 1 to ( - (length

150 (directory

151 "D:\\Technosoft\\AML\\AML5.85_x64\\workspace\\

152 musculoskeletal-program\\models"

153 )) 2)

154 for name = (first (last x))

155 for class-name = (read-from-string

156 (concatenate name "-class"))

157 for class-exists? = (find-class class-name)

158 collect (list name ix (when class-exists?

159 class-name)))
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160 )

161

162 (define-method read-selected-points-list

163 musculoskeletal-program ()

164 (with-open-file (file (format nil "~a~a"

165 (append !directory-path) ’"\\points.txt")

166 :direction :input

167 )

168 (loop for line = (read-line file nil nil)

169 while line

170 for points = (read-from-string (format nil "(~a)" line))

171 collect points

172 )

173 )

174 )

175 (define-method read-selected-bone-data-list

176 musculoskeletal-program ()

177 (with-open-file (file (format nil "~a~a"

178 (append !directory-path) ’"\\bones.txt")

179 :direction :input

180 )

181 (loop for line = (read-line file nil nil)

182 while line

183 for x = (string-to-delimited-token-list line

184 :delimiter #\tab

185 :string-token? nil

186 :blank-token? nil

187 )

188 for bone = (list (nth 0 x)

189 (nth 1 x)

190 (read-from-string (nth 2 x))

191 (read-from-string (nth 3 x))

192 (nth 4 x)

193 )

194 collect bone

195 )

196 )

197 )

198 (define-method read-selected-cartilage-data-list
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199 musculoskeletal-program ()

200 (with-open-file (file (format nil "~a~a"

201 (append !directory-path) ’"\\cartilage.txt")

202 :direction :input

203 )

204 (loop for line = (read-line file nil nil)

205 while line

206 for x = (string-to-delimited-token-list line

207 :delimiter #\tab

208 :string-token? nil

209 :blank-token? nil

210 )

211 for cartilage = (list (nth 0 x)

212 (nth 1 x)

213 (read-from-string (nth 2 x))

214 (read-from-string (nth 3 x))

215 (nth 4 x)

216 )

217 collect cartilage

218 )

219 )

220 )

B.2 Example Input Files

The following text files is input for the model which can be seen in Figure 5.18.

Listing B.13: points.txt

-11.4 0.0 0.0

-9.4 0.0 0.0

-10.4 0.5 1.0

-15.0 45.0 -1.0

-11.0 46.5 -1.0

-10.0 -40.0 0.0

-10.0 -3.0 0.0

9.4 0.0 0.0

11.4 0.0 0.0
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10.4 0.5 1.0

15.0 45.0 -1.0

11.0 46.5 -1.0

10.0 -40.0 0.0

10.0 -3.0 0.0

0.000000 46.000000 -10.000000

0.000000 55.350000 -6.260000

0.000000 56.078651 -5.863603

0.000000 57.320678 -5.289171

0.000000 58.605108 -4.817110

0.000000 59.397994 -4.573399

0.000000 60.668350 -4.269238

0.000000 61.958403 -4.064102

0.000000 62.783904 -3.982797

0.000000 64.027148 -3.937006

0.000000 65.270392 -3.982797

0.000000 66.095589 -4.067141

0.000000 67.262141 -4.257044

0.000000 68.412568 -4.528017

0.000000 69.204551 -4.774645

0.000000 70.252671 -5.168640

0.000000 71.272400 -5.631176

0.000000 71.804301 -5.847060

0.000000 72.770093 -6.214281

0.000000 73.745978 -6.553772

0.000000 74.290657 -6.735015

0.000000 75.247982 -7.030569

0.000000 76.213125 -7.299502

0.000000 76.768328 -7.445353

0.000000 77.712098 -7.671859

0.000000 78.661604 -7.872968

0.000000 79.225036 -7.982824

0.000000 80.150464 -8.143250

0.000000 81.079745 -8.279599

0.000000 81.649073 -8.353005

0.000000 82.551698 -8.450638

0.000000 83.456488 -8.525592

0.000000 84.029359 -8.562246

0.000000 84.905065 -8.600668
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0.000000 85.781446 -8.617864

0.000000 86.355487 -8.617612

0.000000 87.200525 -8.600665

0.000000 88.044937 -8.563983

0.000000 88.617775 -8.526828

0.000000 89.428776 -8.458582

0.000000 90.238037 -8.372111

0.000000 90.807301 -8.298206

0.000000 91.581290 -8.182930

0.000000 92.352604 -8.050940

0.000000 92.915940 -7.940591

0.000000 93.650347 -7.782713

0.000000 94.381317 -7.609621

0.000000 94.936393 -7.463284

0.000000 95.629061 -7.267361

0.000000 96.317695 -7.057697

0.000000 96.862214 -6.875978

0.000000 97.511406 -6.646663

0.000000 98.156117 -6.405036

0.000000 98.595847 -6.266389

0.000000 99.260853 -6.076487

0.000000 99.931715 -5.908444

0.000000 100.381856 -5.808651

0.000000 101.060882 -5.677430

0.000000 101.743838 -5.568496

0.000000 102.200964 -5.508315

0.000000 102.888842 -5.436774

0.000000 103.578693 -5.387779

0.000000 104.039325 -5.367667

0.000000 104.730821 -5.356352

0.000000 105.422317 -5.367667

0.000000 105.882949 -5.387779

0.000000 106.572800 -5.436774

0.000000 107.260678 -5.508315

0.000000 107.717804 -5.568496

0.000000 108.400760 -5.677430

0.000000 109.079786 -5.808651

0.000000 109.529927 -5.908444

0.000000 110.200789 -6.076487
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0.000000 110.865795 -6.266389

Listing B.14: bones.txt

"Femur-Left" "FE-Femur" "(0 1 2 3 4)" "femur"

"Tibia-Left" "FE-Tibia" "(5 6)" "tibia"

"Femur-Right" "FE-Femur" "(7 8 9 10 11)" "femur"

"Tibia-Right" "FE-Tibia" "(12 13)" "tibia"

"Pelvis" "FE-Pelvis" "(4 11)" "pelvis"

"S1" "FE-Sacrum" "(14 15 16 18)" "sacrum"

"L5" "FE-Lumbar-bone" "(16 18)" "vertebrae"

"L4" "FE-Lumbar-bone" "(19 21)" "vertebrae"

"L3" "FE-Lumbar-bone" "(22 24)" "vertebrae"

"L2" "FE-Lumbar-bone" "(25 27)" "vertebrae"

"L1" "FE-Lumbar-bone" "(28 30)" "vertebrae"

"T12" "FE-Thoracic-bone" "(31 33)" "vertebrae"

"T11" "FE-Thoracic-bone" "(34 36)" "vertebrae"

"T10" "FE-Thoracic-bone" "(37 39)" "vertebrae"

"T9" "FE-Thoracic-bone" "(40 42)" "vertebrae"

"T8" "FE-Thoracic-bone" "(43 45)" "vertebrae"

"T7" "FE-Thoracic-bone" "(46 48)" "vertebrae"

"T6" "FE-Thoracic-bone" "(49 51)" "vertebrae"

"T5" "FE-Thoracic-bone" "(52 54)" "vertebrae"

"T4" "FE-Thoracic-bone" "(55 57)" "vertebrae"

"T3" "FE-Thoracic-bone" "(58 60)" "vertebrae"

"T2" "FE-Thoracic-bone" "(61 63)" "vertebrae"

"T1" "FE-Thoracic-bone" "(64 66)" "vertebrae"

"C7" "FE-Clavi-bone" "(67 69)" "vertebrae"

"C6" "FE-Clavi-bone" "(70 72)" "vertebrae"

"C5" "FE-Clavi-bone" "(73 75)" "vertebrae"

"C4" "FE-Clavi-bone" "(76 78)" "vertebrae"

"C3" "FE-Clavi-bone" "(79 81)" "vertebrae"

"C2" "FE-Clavi-bone" "(82 84)" "vertebrae"

"C1" "FE-Clavi-bone" "(85 87)" "vertebrae"

Listing B.15: cartilage.txt

"S1-L5" "FE-cartilage" "(14 15 16 18)" "intervertebral-disc"

"L5-L4" "FE-cartilage" "(16 18 19 21)" "intervertebral-disc"

"L4-L3" "FE-cartilage" "(19 21 22 24)" "intervertebral-disc"

"L3-L2" "FE-cartilage" "(22 24 25 27)" "intervertebral-disc"
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"L2-L1" "FE-cartilage" "(25 27 28 30)" "intervertebral-disc"

"L1-T12" "FE-cartilage" "(28 30 31 33)" "thoracic-cartilage"

"T12-T11" "FE-cartilage" "(31 33 34 36)" "thoracic-cartilage"

"T11-T10" "FE-cartilage" "(34 36 37 39)" "thoracic-cartilage"

"T10-T9" "FE-cartilage" "(37 39 40 42)" "thoracic-cartilage"

"T9-T8" "FE-cartilage" "(40 42 43 45)" "thoracic-cartilage"

"T8-T7" "FE-cartilage" "(43 45 46 48)" "thoracic-cartilage"

"T7-T6" "FE-cartilage" "(46 48 49 51)" "thoracic-cartilage"

"T6-T5" "FE-cartilage" "(49 51 52 54)" "thoracic-cartilage"

"T5-T4" "FE-cartilage" "(52 54 55 57)" "thoracic-cartilage"

"T4-T3" "FE-cartilage" "(55 57 58 60)" "thoracic-cartilage"

"T3-T2" "FE-cartilage" "(58 60 61 63)" "thoracic-cartilage"

"T2-T1" "FE-cartilage" "(61 63 64 66)" "thoracic-cartilage"

"T1-C7" "FE-cartilage" "(64 66 67 69)" "intervertebral-disc"

"C7-C6" "FE-cartilage" "(67 69 70 72)" "intervertebral-disc"

"C6-C5" "FE-cartilage" "(70 72 73 75)" "intervertebral-disc"

"C5-C4" "FE-cartilage" "(73 75 76 78)" "intervertebral-disc"

"C4-C3" "FE-cartilage" "(76 78 79 81)" "intervertebral-disc"

"C3-C2" "FE-cartilage" "(79 81 82 84)" "intervertebral-disc"

"C2-C1" "FE-cartilage" "(82 84 85 87)" "intervertebral-disc"

The following text file is input for the model which can be seen in Figure 5.17.

Listing B.16: points.txt-file for a spine

0.0000 0.0000 -0.0000

0.0000 9.3500 3.7400

0.0000 10.4150 4.3193

0.0000 12.2302 5.1589

0.0000 14.1075 5.8488

0.0000 15.2663 6.2050

0.0000 17.1230 6.6496

0.0000 19.0084 6.9494

0.0000 20.2149 7.0682

0.0000 22.0320 7.1351

0.0000 23.8490 7.0682

0.0000 25.0551 6.9449

0.0000 26.7601 6.6674

0.0000 28.4414 6.2714

0.0000 29.5990 5.9109
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0.0000 31.1308 5.3351

0.0000 32.6212 4.6591

0.0000 33.3986 4.3435

0.0000 34.8101 3.8068

0.0000 36.2364 3.3106

0.0000 37.0325 3.0457

0.0000 38.4317 2.6138

0.0000 39.8423 2.2207

0.0000 40.6537 2.0076

0.0000 42.0331 1.6765

0.0000 43.4208 1.3826

0.0000 44.2443 1.2220

0.0000 45.5968 0.9876

0.0000 46.9550 0.7883

0.0000 47.7871 0.6810

0.0000 49.1063 0.5383

0.0000 50.4287 0.4287

0.0000 51.2660 0.3752

0.0000 52.5459 0.3190

0.0000 53.8267 0.2939

0.0000 54.6657 0.2943

0.0000 55.9008 0.3190

0.0000 57.1349 0.3726

0.0000 57.9721 0.4269

0.0000 59.1574 0.5267

0.0000 60.3402 0.6531

0.0000 61.1722 0.7611

0.0000 62.3034 0.9296

0.0000 63.4307 1.1225

0.0000 64.2541 1.2838

0.0000 65.3274 1.5145

0.0000 66.3958 1.7675

0.0000 67.2070 1.9814

0.0000 68.2194 2.2677

0.0000 69.2259 2.5741

0.0000 70.0217 2.8397

0.0000 70.9705 3.1749

0.0000 71.9128 3.5280

0.0000 72.5555 3.7307
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0.0000 73.5274 4.0082

0.0000 74.5079 4.2538

0.0000 75.1658 4.3997

0.0000 76.1582 4.5914

0.0000 77.1564 4.7507

0.0000 77.8245 4.8386

0.0000 78.8298 4.9432

0.0000 79.8381 5.0148

0.0000 80.5113 5.0442

0.0000 81.5220 5.0607

0.0000 82.5326 5.0442

0.0000 83.2058 5.0148

0.0000 84.2141 4.9432

0.0000 85.2195 4.8386

0.0000 85.8876 4.7507

0.0000 86.8857 4.5914

0.0000 87.8781 4.3997

0.0000 88.5360 4.2538

0.0000 89.5165 4.0082

0.0000 90.4885 3.7307

B.3 Spine Input Generator - Source Code

To generate points for spine models, the following program was developed in matlab.

Listing B.17: spine points generator.m

1 %-----------------------------------------------------------

2 % System: spine_point_generator

3 % Purpose: Shorten time when making model for

4 % Musculoskeletal Program.

5 %

6 % Author: Carl Otto Gjelsvik

7 %-----------------------------------------------------------

8 %Set height of the person

9 height = 187;

10 %Edit spineHeight to overwrite the spine height.

11 spineHeight = 0.38*height;
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12 cArcLength = 0.2276*spineHeight;

13 tArcLength = 0.5195*spineHeight;

14 lArcLength = 0.273*spineHeight;

15 cSectionAngle = 30;

16 tSectionAngle = 40;

17 lSectionAngle = 45;

18 numberOfCSections = 7;

19 numberOftTSections = 12;

20 numberOfLSections = 5;

21 cRadius = cArcLength*180/(pi*cSectionAngle);

22 tRadius = tArcLength*180/(pi*tSectionAngle);

23 lRadius = lArcLength*180/(pi*lSectionAngle);

24 %enter a startpositon to connect with other models.

25 startposition = [0.0, 0.0*height, -0.0*height];

26 A = zeros(60,3);

27 A(1,:,:) = [startposition(1),

28 startposition(2),

29 startposition(3)];

30 A(2,:,:) = [A(1,1)+0,

31 (A(1,2)+(height*0.05)),

32 (A(1,3)+(0.02*height))];

33 lengthOfCartilage = (lArcLength/(numberOfLSections-1))*0.25;

34 lengthOfBone = (lArcLength/(numberOfLSections-1))*0.75;

35 k = 1;

36 l = 1.1;

37 for i=1:3:15

38 length = l*lengthOfBone;

39 A(2+i,1:3) = nextPoint(lSectionAngle,

40 lRadius,

41 numberOfLSections,

42 -((length/2)+lengthOfCartilage),

43 -length/2,

44 A(i+1,:,:),

45 k);

46 A(3+i,1:3) = nextPoint(lSectionAngle,

47 lRadius,

48 numberOfLSections,

49 -(length/2),

50 0,
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51 A(i+2,:,:),

52 k);

53 A(4+i,1:3) = nextPoint(lSectionAngle,

54 lRadius,

55 numberOfLSections,

56 0,

57 length/2,

58 A(i+3,:,:),

59 k);

60 k = k+2;

61 l = l - 0.05;

62 end

63 lengthOfCartilage = (tArcLength/(numberOftTSections-1))*0.25;

64 lengthOfBone = (tArcLength/(numberOftTSections-1))*0.75

65 k = 1;

66 l = 1.2;

67 for i=1:3:36

68 length = l*lengthOfBone;

69 A(17+i,1:3) = nextThoracicPoint(tSectionAngle,

70 tRadius,

71 numberOftTSections,

72 -((length/2)+lengthOfCartilage),

73 -length/2,

74 A(i+16,:,:),

75 k);

76 A(18+i,1:3) = nextThoracicPoint(tSectionAngle,

77 tRadius,

78 numberOftTSections,

79 -(length/2),

80 0,

81 A(i+17,:,:),

82 k);

83 A(19+i,1:3) = nextThoracicPoint(tSectionAngle,

84 tRadius,

85 numberOftTSections,

86 0,

87 length/2,

88 A(i+18,:,:),

89 k);
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90 k = k+2;

91 l = l - 0.0364;

92 end

93 lengthOfCartilage = (cArcLength/(numberOfCSections-1))*0.25;

94 lengthOfBone = (cArcLength/(numberOfCSections-1))*0.75;

95 k = 1;

96 for i=1:3:21

97 A(53+i,1:3) = nextPoint(cSectionAngle,

98 cRadius,

99 numberOfCSections,

100 -((lengthOfBone/2)+lengthOfCartilage),

101 -lengthOfBone/2,

102 A(i+52,:,:),

103 k);

104 A(54+i,1:3) = nextPoint(cSectionAngle,

105 cRadius,

106 numberOfCSections,

107 -(lengthOfBone/2),

108 0,

109 A(i+53,:,:),

110 k);

111 A(55+i,1:3) = nextPoint(cSectionAngle,

112 cRadius,

113 numberOfCSections,

114 0,

115 lengthOfBone/2,

116 A(i+54,:,:),

117 k);

118 k = k+2;

119 end

120 write_coords(A);

Listing B.18: nextPoint.m

1 %-----------------------------------------------------------

2 % System: spine_point_generator

3 % Function for finding next point in spine generator

4 %

5 % Author: Carl Otto Gjelsvik

6 %-----------------------------------------------------------
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7 function [ y ] = nextY(

8 arcangle,

9 radius,

10 sectionCount,

11 arcLengthToPrevious,

12 arcLengthToPoint,

13 prev,

14 i)

15

16 mtemp = -sectionCount+(i);

17 mdegrees = mtemp*(arcangle/((sectionCount-1)*2));

18 pdegrees = mdegrees+(180*arcLengthToPrevious)/(radius*pi);

19 degrees = mdegrees+(180*arcLengthToPoint)/(radius*pi);

20 dy = abs(radius*sind(pdegrees)-radius*sind(degrees));

21 dz = radius*cosd(degrees)-radius*cosd(pdegrees);

22 y = [0.0, prev(1,2)+dy, prev(1,3)+dz];

23

24 end

Listing B.19: nextThoracicPoint.m

1 %-----------------------------------------------------------

2 % System: spine_point_generator

3 % Function for finding next point in spine generator

4 %

5 % Author: Carl Otto Gjelsvik

6 %-----------------------------------------------------------

7 function [ y ] = nextY(

8 arcangle,

9 radius,

10 sectionCount,

11 arcLengthToPrevious,

12 arcLengthToPoint,

13 prev,

14 i)

15

16 mtemp = -sectionCount+(i);

17 mdegrees = 180-(mtemp*(arcangle/((sectionCount-1)*2)));

18 pdegrees = mdegrees-((180*arcLengthToPrevious)/(radius*pi));

19 degrees = mdegrees-((180*arcLengthToPoint)/(radius*pi));
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20 dy = radius*sind(degrees)-radius*sind(pdegrees);

21 dz = radius*cosd(degrees)-radius*cosd(pdegrees);

22 y = [0.0, prev(1,2)+dy, prev(1,3)+dz];

23

24 end

Listing B.20: write coords.m

1 %-----------------------------------------------------------

2 % System: spine_point_generator

3 % Writing the coordinates to a point.txt file in the

4 % same folder as the script.

5 %

6 % Author: Carl Otto Gjelsvik

7 %-----------------------------------------------------------

8 function [ t ] = write_coords( A )

9

10 B = transpose(A);

11 fileID = fopen(’points.txt’,’w’);

12 fprintf(fileID,’%0.4f %0.4f %0.4f \n’,B);

13 fclose(fileID);

14 t = 1;

15

16 end



Appendix C

Source Code: Segmentation Tool

C.1 Source code

Listing C.1: system.m

1 %-----------------------------------------------------------

2 % System: Segmentation-tool

3 % Purpose: Segmentation of bone tissue and 3D display of result

4 %

5 % Toolboxes: Matlab Image Toolbox

6 %

7 % DICOM access reference:

8 % "http://se.mathworks.com/company/newsletters/

9 % articles/accessing-data-in-dicom-files.html"

10 %

11 % Author: Carl Otto Gjelsvik

12 %-----------------------------------------------------------

13

14 [FileName,PathName,FilterIndex] = uigetfile(’.dcm’);

15 dicomInfo = dicominfo(strcat(PathName, FileName));

16 nRows = dicomInfo.Rows;

17 nCols = dicomInfo.Columns;

18 SliceThickness = dicomInfo.SliceThickness;

19 nPlanes = dicomInfo.SamplesPerPixel;

20 nFrames = length(dir(strcat(PathName,’*.dcm’)));

21 format = getSequenceFormat(PathName);

126
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22 startFrame = getSequenceFirstFrame(PathName);

23 lastFrame = getSequenceLastFrame(PathName);

24 filename = FileName(1:length(FileName)-(4+format));

25 formatAsString = sprintf(’%d’, format);

26 %Allocates matrix X

27 X = repmat(int16(0), [nRows, nCols, nPlanes, nFrames]);

28 i = 1;

29 %Reads frames to matrix X.

30 for p=startFrame:lastFrame

31 fname = strcat(PathName,filename,sprintf(

32 [’%0’ formatAsString ’d’], p),’.dcm’);

33 X(:,:,nPlanes,i) = dicomread(fname);

34 i=i+1;

35 end

36 %High and low values in matrix

37 minPixels = min(X(:));

38 maxPixels = max(X(:));

39 %Linear combination -> increase information to full 16bit

40 %Easier to see contrast

41 b = minPixels;

42 m = 2^16/(maxPixels - b);

43 Y = imlincomb(double(m), X, double(-(m * b)), ’uint16’);

44 B = squeeze(Y(:,:,1,:));

45 a = 0;

46 threshold = 0;

47 while (a == 0)

48 threshold = input(’Enter lower threshold’);

49 C = B;

50 C(C<threshold) = 0;

51 figure

52 imshow(C(:,:,ceil(nFrames/3)));

53 a = input(’Enter 0 to choose a new

54 lower threshold or 1 to continue’);

55 end

56 B(B<threshold) = 0;

57 tic;

58 fprintf(’starter iso \n’);

59 figure;

60 data = smooth3(B);
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61 patch(isocaps(data,0.2),...

62 ’FaceColor’,’interp’,’EdgeColor’,’none’);

63 p1 = patch(isosurface(data,0.2),...

64 ’FaceColor’,’blue’,’EdgeColor’,’none’);

65 isonormals(data,p1)

66 view(3);

67 axis vis3d tight

68 camlight left;

69 colormap jet

70 lighting gouraud

71 fprintf(’Time to make isosurface %d \n’, toc);

Listing C.2: getSequenceFirstFrame.m

1 %-----------------------------------------------------------

2 % System: Segmentation-tool

3 % Purpose: Finding first frame in input list

4 %

5 % Author: Carl Otto Gjelsvik

6 %-----------------------------------------------------------

7

8 function [ x ] = getSequenceFirstFrame( PathName )

9

10 A = dir(strcat(PathName,’*.dcm’));

11 numbers = {length(A):1};

12 temp = ’’;

13 for i=1:length(A)

14 filename = A(i).name(1:length(A(i).name)-4);

15 fileNameLength = length(filename);

16 while true

17 if (isstrprop(filename(fileNameLength), ’digit’))

18 temp=strcat(sprintf(’%d’,str2double(filename(fileNameLength))),temp);

19 fileNameLength = fileNameLength - 1;

20 else

21 break;

22 end

23 end

24 numbers{i} = temp;

25 temp = ’’;

26 end
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27 x = min(str2double(numbers));

28 end

Listing C.3: getSequenceLastFrame.m

1 %-----------------------------------------------------------

2 % System: Segmentation-tool

3 % Purpose: Finding last frame in input list

4 %

5 % Author: Carl Otto Gjelsvik

6 %-----------------------------------------------------------

7

8 function [ x ] = getSequenceLastFrame( PathName )

9

10 A = dir(strcat(PathName,’*.dcm’));

11 numbers = {length(A):1};

12 temp = ’’;

13 for i=1:length(A)

14 filename = A(i).name(1:length(A(i).name)-4);

15 fileNameLength = length(filename);

16 while true

17 if (isstrprop(filename(fileNameLength), ’digit’))

18 temp=strcat(sprintf(’%d’,str2double(

19 filename(fileNameLength))),temp);

20 fileNameLength = fileNameLength - 1;

21 else

22 break;

23 end

24 end

25 numbers{i} = temp;

26 temp = ’’;

27 end

28 x = max(str2double(numbers));

29 end

Listing C.4: getSequenceFormat.m

1 %-----------------------------------------------------------

2 % System: Segmentation-tool

3 % Purpose: Finding format of file names

4 %
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5 % Author: Carl Otto Gjelsvik

6 %-----------------------------------------------------------

7

8 function [ x ] = getSequenceFormat( PathName )

9

10 A = dir(strcat(PathName,’*.dcm’));

11 format = (length(A):1);

12 temp = 0;

13 for i=1:length(A)

14 filename = A(i).name(1:length(A(i).name)-4);

15 fileNameLength = length(filename);

16 while true

17 if (isstrprop(filename(fileNameLength), ’digit’))

18 temp=temp+1;

19 fileNameLength = fileNameLength - 1;

20 else

21 break;

22 end

23 end

24 format(i) = temp;

25 temp = 0;

26 end

27 x=min(format);

28 end
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