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Abstract 

Aquatic organisms continuously acclimatize to fluctuations in environment parameters and 
contaminant insult. The aim of this thesis was to investigate effects of combined exposure to 
quantifiable measures of climate change (hypercapnia and hypoxia) and perfluorinated alkyl 
substances (PFASs) on oxidative stress, lipid homeostasis and endocrine disruption in fish. The thesis 
consists of four papers (Paper I-IV). In Paper I and II, Atlantic cod (Gadus morhua) juveniles was 
exposed to perfluorooctane sulfonic acid (PFOS) (0, 100 or 200 μg/L) 1 H/day for 5 days, followed by 
exposure to different concentrations of carbon dioxide (CO2) (848, 2735 or 7963 ppm). Sampling was 
performed 3, 6 and 9 days after initiated CO2 exposure. We observed interactions between PFOS and 
CO2 exposure on transcription of gill glutathione peroxidase 1 (GPx1), gill manganese superoxide 
dismutase (MnSOD) and liver phosphatidylethanolamine N-methyltransferase (PEMT) (Paper I). 
Peroxisome proliferator-activated receptor β (PPAR-β) was increased in cod liver by CO2, and the 
response was higher in the presence of PFOS (Paper I). In Paper II, PCA-biplots showed clustering of 
samples based on CO2 concentration, and the distribution of response parameters indicated that 
hypercapnia was the main driver of hormone responses. Changes in estradiol-17β (E2), testosterone 
(T) and 11-ketotestosterone (11-KT) levels and E2-responsive genes were increased by hypercapnia 
alone at day 3 and 9, and by combined exposure scenarios (Paper II). Hypercapnia increased 
cytochrome P450 1A (CYP1A) mRNA alone and in combination with PFOS (Paper II). In Paper III and 
IV, primary Atlantic salmon (Salmo salar) hepatocytes were exposed to perfluorooctane sulfonamide 
(PFOSA) (0, 25 and 50 μM) singly, and in combination with hypoxia-inducible compounds (cobalt 
chloride: CoCl2 and deferoxamine: DFO) for 24 and 48 h. We observed that combined exposure 
generally altered the transcription of antioxidant responses and lipid regulation, showing higher 
effect of hypoxia, compared to PFOSA (PCA-plots Paper III-IV). Hypoxic condition alone, and in 
combination with PFOSA, increased transcription of E2-responsive genes, CYP1A and CYP3A 
responses (Paper III). Transcription of PPAR-α, -β and –γ, and the ω6:ω3 ratio was increased by DFO 
and these responses were modulated in the presence of PFOSA (Paper IV). In addition, we observed 
a parallel increase of hypoxia-inducible factor 1α (HIF-1α), acyl coenzyme A oxidase (ACOX) and 
PPAR-γ, indicating a link between lipid metabolism and hypoxic responses (Paper IV). Changes in 
PPAR system and FA β-oxidation (ACOD and ACOX) suggests complex changes in the regulation of 
lipid homeostasis and FA metabolism, where PFASs modulated the responses produced by 
hypercapnia or hypoxia alone (Paper I and IV). Changes in the composition of ω6 and ω3 FAs in 
salmon hepatocytes and reduced PEMT transcription in cod liver were observed (Paper I and IV), 
indicating that climate change variables alone and in combination with PFASs may potentially alter 
membrane lipid composition and possibly produce overt physiological consequences. These studies 
indicate that parameters of climate change and PFASs affect sex steroids, E2-responsive genes and 
the CYP system, and that combined exposure generally produced higher response than single 
exposure (Paper II and III). These findings show that processes involved in endocrine signaling and 
biotransformation are very complex and hard to predict due to biphasic responses and possibly 
interaction between stressors. This thesis provides new and valuable insight on the combined effects 
of quantifiable parameters of climate change and environmental pollutants. Potential interaction 
between environmental stressors and the relevance of considering exposure duration were 
revealed, emphasizing the importance of investigating combined and chronic exposure scenarios. 
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Introduction 

Climate change 
Parameters in the environment are continuously fluctuating, but some parameters have been shown 
to change beyond the level considered normal, including increased temperature and carbon dioxide 
(CO2) concentration (Hardy, 2003). During the last decade, extensive research has focused on effects 
of climate change in the environment and biota. Ocean acidification is caused by increases in the 
release of CO2 into the atmosphere, mainly formed by burning of fossil fuels and deforestation 
(Oreskes, 2004). Exchange of CO2 between atmosphere and upper layers of water is constantly 
driven by concentration equilibrium constant. CO2 reacts with water to form carbonic acid (H2CO3), 
which further dissociates to bicarbonate (HCO3

-) or carbonate (CO3
2-) ions and hydrogen ions (H+) 

(equation 1), and this process lowers oceanic pH (Kikkawa et al., 2003).  

Equation 1. CO2 + H2O      ↔      H2CO3      ↔      HCO3
- + H+     ↔     CO3

2- + H+ 
  Carbon    Carbonic acid      Bicarbonate           Carbonate 

Contribution of CO2 to the carbon cycle from natural processes (i.e. volcanoes, wildfires, biotic 
respiration, etc.) is in steady balance, while anthropogenic emissions arise from stable carbon 
deposits/reservoirs, thus increasing global available CO2. Since the industrial revolution, atmospheric 
CO2 concentration has risen from 280 to 380 parts per million (ppm) (Turley et al., 2006), and 
approximately 40 % of this CO2 is taken up by the oceans, causing a reduction in oceanic pH by 0.1 
units (global average of 8.17 to 8.07) (Cao et al., 2007; Zeebe et al., 2008). Future scenarios predict a 
reduction in oceanic pH of 0.2-0.4 units by the end of this century and 0.4-0.9 units within year 2300 
(Caldeira and Wickett, 2003, 2005). Species are adapted to acclimatize within a specific range of  
temperature and pH that is considered normal within their habitat (Munday, 2014). Permanent 
changes, outside the species acclimatization range, force adaptation and may have major impacts on 
ecosystems and populations. Furthermore, Noyes and Lema (2015) reviewed how changes in 
temperature and pH, can affect the fate of environmental pollutants, altering bioavailability and 
toxicity. Wildlife acclimatizes to fluctuations in their environment, while at the same time deal with a 
multitude of environmental pollutants. The additional stress from pollutants may produce 
detrimental harm in biota by affecting the ability to further acclimatize or adapt to changes in the 
environment. On the other hand, organisms may have reduced ability to handle pollutant toxicity 
during acclimatization to environmental fluctuations (Noyes and Lema, 2015). However, little 
information is available on the combined effects of multiple environmental stressors in aquatic 
organisms, especially simultaneous exposure to alterations in environmental parameters and 
chemical pollutants.  

Environmental pollution 
Vast surveillance studies have investigated the occurrence of persistent organic pollutants (POPs), 
such as perfluorinated alkyl substances (PFASs) and carboxylic acids (PFCAs), and testing for their 
adverse effects in aquatic animals. PFASs and PFCAs have been manufactured since 1950s, as 
perfluorooctane sulfonyl fluoride (POSF) (Buck et al., 2012; Prevedouros et al., 2006), but remained 
undetected in biota and environment until recent years. The global extent of PFOS contamination in 
wildlife was first demonstrated by Giesy and Kannan (2001) and in humans by Kannan et al. (2004). 
PFASs are prone to long-range transportation (Zhao et al., 2012), because of their high persistence 
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and low degradation in the environment and biota, respectively (Cui et al., 2010). During production, 
the hydrolysis of POSF yields perfluorooctane sulfonic acid (PFOS) and its salts. Reaction of POSF 
with methyl or ethylamines yields the alkyl substituted sulfonamides: N-methyl perfluorooctane 
sulfonamide (NMeFOSA) and N-ethyl perfluorooctane sulfonamide (NEtFOSA), respectively, which 
can be dealkylated and generate the ultimate PFOS precursor namely - perfluorooctane sulfonamide 
(PFOSA). One of the most abundant PFAS species detected in environment and biota is PFOS 
(Kannan, 2011). Most PFASs are readily taken up by fish through diet or directly from the 
surrounding environment, but are not easily excreted. Due to the unique chemistry of PFOS, being 
neither lipophilic nor hydrophilic, it undergoes enterohepatic circulation and bioaccumulate 
effectively in organisms (Johnson et al., 1984; Slotkin et al., 2008), predominantly in liver or in 
complex with transporter proteins in blood (albumin) (Jones et al., 2003). The mechanism of toxicity 
by PFOS and PFOSA is not well documented, but they have been shown to produce effects on 
development, hormonal disruption, immunotoxicity, fatty acid (FA) regulation and hepatotoxicity 
(Lau et al., 2007; Lau et al., 2004; Wågbø et al., 2012), increased oxidative stress and lipid 
peroxidation possibly mediated by interruption of PPAR system (Liu et al., 2009; Takacs and Abbott, 
2007; Vanden Heuvel et al., 2006) (Figure 1).  

 

Oxidative stress responses 
Information of altered physiological responses is important in evaluating toxicity risks of 
contaminants or environmental changes. Alterations in oxidative stress responses provide 
information on changes in reactive oxygen species (ROS) generation or disruption of antioxidant 
regulation, which is potentially harmful for the organism (Sies, 1991). ROS is continuously generated 
by the mitochondrial electron transport chain, cytochrome P450 (CYP) activity in endoplasmatic 
reticulum and oxidase reactions in peroxisomes and cytosol (Halliwell and Gutteridge, 2007; 

PFOS & PFOSA
TOXIC EFFECTS

OXIDATIVE 
STRESS

ENDOCRINE 
DISRUPTION

HEPATO-
TOXICITY

CARCINO-
GENECITY

NEURO-
TOXICITY

REDUCED 
REPRODUCTION

PPAR
SYSTEM

REDUCED 
DEVELOPMENT

Figure 1. Experimental studies, in vivo and in vitro, have reported effects from perfluorooctane sulfonic acid
(PFOS) and perfluorooctane sulfonamide (PFOSA) exposure affecting biological and physiological functions,
potentially causing reduced health, development and reproduction dysfunction (Lau et al., 2007; Lau et al., 2004;
Liu et al., 2009; Takacs and Abbott, 2007; Vanden Heuvel, 1996; Wågbø et al., 2012; Zheng et al., 2009).
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Lushchak, 2011). A network of cytoprotective enzymes protecting cells against ROS, namely the 
antioxidant machinery, are encoded in antioxidants responsive element (ARE) and include 
superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Osburn and Kensler, 2008; 
Regoli and Giuliani, 2014). Antioxidants are induced by ROS and these enzymes remove ROS or 
oxidized cellular components efficiently (i.e. ROS scavenging). There are several isoforms of SOD, 
varying in their choice of cofactor (example, CuZnSOD and MnSOD), that catalyze dismutation of 
superoxide (O2

-) creating hydrogen peroxide (H2O2) and oxygen (Figure 3A). Glutathione peroxidase 
(GPx) catalyzes the transformation of H2O2 to water trough oxidation of monomeric glutathione 
(GSH) into glutathione disulfide (GSSG). This pathway is dependent on conversion of GSSG to GSH by 
glutathione reductase (GR) (Figure 3B). Decomposition of H2O2 to water and oxygen is catalyzed by 
catalase (CAT) (Kirkman and Gaetani, 1984) (Figure 3C).  

These antioxidants are important in ROS scavenging to avoid detrimental harm. ROS attacks and 
oxidizes cellular components, such as DNA, lipids and proteins, when levels exceed the scavenging 
capacity of the cell and this is called oxidative stress (Sies, 1991). Increased transcription and activity 
of antioxidants is directly related to increased ROS generation. Furthermore, a reduction in 
antioxidant levels may indicate that the stressor is affecting mechanisms regulating oxidative stress 
responses or the antioxidants themselves. Both of these scenarios may lead to oxidative stress and 
are therefore potentially harmful (Sies, 1991). Combined exposure of stressors that act upon this 
pathway of toxicity are more likely to produce adverse effects, since exceeding the antioxidant 
capacity is more likely to occur. Hypercapnia and hypoxia are known to increase ROS formation 
(Dean, 2010; Fan et al., 2008; Lushchak, 2011) and several studies have showed increased ROS 
formation or oxidative stress responses after exposure to PFOS or PFOSA (Arukwe and Mortensen, 
2011; Liu et al., 2009; Wågbø et al., 2012). Increased metabolism and respiration from 
acclimatization or xenobiotic biotransformation increase ROS generation, creating a potential for 
oxidative stress. Altered metabolism acquiring energy release from FAs, may promote peroxisome 

GSH

GSSG

GR GPx

H2O

H2O2

SOD

O2
-

H2O2

O2
-

O2+

+ 2 H+

H2O2 CAT

H2O O2+

Figure 3. Reactive oxygen species (ROS) are
continuously produced by oxygen metabolism in
peroxisomes and mitochondria and activity of
the antioxidant machinery is important to
remove ROS and avoid damage to cellular
components. The activity of a) superoxide
dismutase (SOD) is important for dismutation of
superoxide (O2

-), yielding hydrogen peroxide
(H2O2) and oxygen. H2O2 can be further
transformed by b) glutathione peroxidase (GPx)
or c) catalase (CAT) to form unreactive oxygen
species.

a)

b) c)
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α-linoleic acid
(ALA)

Stearidonic acid

Linoleic acid
(LA)

γ-linoleic acid
(GLA)

FAD6

Eicosatetraenoic acid Dihomo γ-linoleic acid
FAE

OMEGA 3’s OMEGA 6’s

Figure 4. Overview of omega 3’s and omega 6’s fatty acids and the steps 
of transformation are shown. Involvement of fatty acid desaturases 
(FAD) and elongases (FAE) is given by dotted lines and reversible steps 
are shown by two-way arrows.

Eicosapentaenoic acid (EPA) Arachidonic acid (ARA)
FAD5

Docosapentaenoic acid 
(DPA)

Docosatetraenoic acid 
FAE

Docosahexaenoic acid 
(DHA)

Docosapentaenoic acid 
(DPA)

FAD4

proliferation through activation of PPAR system, which may potentially produce oxidative stress 
(Devchand et al., 2004; Jansen et al., 2009). Analyzing lipid profiles or enzymes regulating FA 
homeostasis is a good way to detect alterations in FA composition. It has been reported that that 
PFOSA produce changes in lipid composition, specifically ω-FAs (Wågbø et al., 2012).  

Lipid homeostasis and PPARs 
Lipids constitute a major component 
of cellular membranes and serve as 
important signaling molecules, 
energy storage and are directly linked 
to the immune system (Sargent et al., 
1999; Sheridan, 1988; Tocher, 2003). 
Regulation of phospholipids in 
cellular membranes is tightly 
controlled and composition is specific 
for different membranes, specifying 
the stability and permeation 
(Wolfgang and Lane, 2006). The 
essential FAs, ω-3 (or n-3) and ω-6 (or 
n-6), are important components of 
cellular membranes. Transformation 
of these FAs is performed by several 
FA desaturases (FAD4, FAD5 and 
FAD6) and FA elongase (FAE) altering 
the level of saturation and length of 
the carbon chain, respectively (Figure 4). α-linolenic acid (ALA, 18:3n3) and linoleic acid (LA, 18:2n6) 
are essential FAs that must be obtained from diet. ALA function as an energy source, but can be 
transformed to eicosapentanoic acid (EPA, 20:5n3) and docosahexaenoic acid (DHA, 22:6n3), which 
have anti-inflammatory functions and are important components of cellular membranes (Wall et al., 
2010). LA is transformed to γ-linoleic acid (GLA, 18:3n6), arachidonic acid (ARA, 20:4n6) and 
docosapentaenoic acid (DPA, 22:5n6) that have inflammatory functions. The ω-3 and ω-6 FAs 
competitively bind to transformation enzymes, where ω-6 binds to FADs and FAE stronger than n ω-
3. Increased ω-6:ω-3 ratio is associated with inflammatory responses and adverse health effects. 
Components of ω-3 family are associated with proper receptor-mediation in membranes (Kogel et 
al., 2008). These FAs also serve as storage for energy released as NADPH and ATP. Changes in 
energetic demand, such as during environmental acclimatization, can affect ω-3 and ω-6 
composition.  

Another important component of cellular membranes are phospholipids where the ratio of 
phosphatidylethanolamine (PE) and phosphatidylcholine (PC) is essential for membrane integrity (Li 
et al., 2006). PC is predominantly produced by the CDP-choline pathway (Kennedy pathway), but in 
liver 30% of PC is produced by PE N-methyltransferase (PEMT) converting PE to PC (Reo et al., 2002; 
Vance, 2013). Stressor-induced alteration in PEMT activity affecting PC:PE ratio could produce 
harmful effects to membrane stability and hence liver function. Overall, the ability to regulate FA 
pools is essential for normal homeostasis, and peroxisome proliferator-activated receptors (PPARs) 
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are known to be critical regulators of lipid homeostasis by controlling the balance between burning 
and storage of long FAs (Shi et al., 2002). 

PPARs (α, β and γ) are important ligand-dependent nuclear receptors, regulating lipid composition, 
peroxisome proliferation, apoptosis, cell differentiation and cell cycle control (Blanquart et al., 2003; 
Dreyer et al., 1992; Shi et al., 2002). Many lines of evidence indicate that PPAR-α regulates lipid 
homeostasis by stimulating peroxisomal FA β-oxidation (Varga et al., 2011). In the liver, PPARα 
activation leads to upregulation of FA transporter protein and long-chain acyl CoA synthetase gene. 
This stimulates energy production and shortens long-chain FAs, thus preventing lipid accumulation 
and toxicity. Natural ligands for PPARα include LA, dodecahexanoic acid (ω-3) and EPA (Li and Glass, 
2004). PPAR-β have important roles in lipid metabolism and energy homeostasis and natural ligands 
are thought to be free FA (Li and Glass, 2004). PPAR-γ regulates glucose homeostasis and promotes 
adipocyte differentiation that is essential for the development of adipocyte tissue, and endogenous 
ligands for PPAR-γ include oxidized LA and 15-deoxy-Δ12,14prostagladin J2 (Li and Glass, 2004). Acyl 
coenzyme A oxidase (ACOX) and acyl coenzyme A dehydrogenase (ACOD) catalyzes the first step in 
FA β-oxidation in peroxisomes and mitochondria, respectively (Reddy and Hashimoto, 2001; 
Wanders et al., 2010). ACOX is involved in polyunsaturated FA (PUFA) biosynthesis and PPAR 
signaling pathway. Several PFASs are known to bind PPAR-α and -β agonistically, leading to further 
transcription of these genes, measured as messenger ribonucleic acid (mRNA), and down-stream 
effects (Fang et al., 2012; Shipley et al., 2004). Effects on PPAR signaling can potentially cause 
detrimental harm, because altered PPAR activity is associated with hepatotoxicity, adenomas and 
tumor formation (Guo et al., 2006; Lau et al., 2007; Tachibana et al., 2008). 

Endocrine disruption and biotransformation 
Endocrine disruptive compounds (EDCs) are chemicals that can interfere with the hormone system, 
and are associated with adverse effects in development, sex differentiation and reproduction. The 
hormone system is dependent on endogenous and exogenous signals for proper function, and 
during “critical stages in life”, such as juveniles and puberty, organisms are especially susceptible to 
EDC exposure (Arcand-Hoy and Benson, 1998; Frye et al., 2012). Changes in the environment have 
the potential to affect the endocrine system, and may possibly worsen the effects of EDCs (Baroiller 
and D'Cotta, 2001; Brown et al., 2015; Jenssen, 2006; Schreck et al., 2001). Hormones are signaling 
molecules important in a multitude of functions and consist of eicosanoids, amino acid derivatives 
and steroids, where the sex steroids include - estrogens (E), testosterone (T) and 11-
ketotestosterone (11-KT). Estrogens initiate estrogenic responses through activation of estrogen 
receptor α (ERα), which then form a homodimer-complex that can enter the nucleus, bind to 
estrogen response element (ERE) and activate estrogen responsive genes (Figure 5). Estrogen-
responsive genes include vitellogenin (Vtg), zona pellucida protein (ZP) or zona radiata protein (ZRP), 
which are commonly used as biomarker responses of endocrine disruption in fish (Arukwe and 
Goksoyr, 2003; Arukwe et al., 1997). PFOS has been shown to affect endocrine parameters, sexual 
development and reproduction in fish (Ankley et al., 2005; Fang et al., 2012; Mortensen et al., 2011; 
Wang et al., 2011), possibly through interaction with ER and androgen receptor (AR) (Benninghoff et 
al., 2011; Kjeldsen and Bonefeld-Jorgensen, 2013). Several biological pathways that include – the 
metabolism and synthesis by the cytochrome P450 (CYP) superfamily orchestrate the level of sex 
steroid in fish. CYP1 and CYP3 are known to oxidize E and T, respectively, a process necessary for 
further degradation by other enzymes (Young et al., 2005). Because CYPs have important functions 
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in hormone regulation, it is suggested that alterations in CYP activity by xenobiotic exposure may 
affect the endocrine system by affecting the level of sex steroids (Monostory and Dvorak, 2011).  

However, CYPs have an important role in metabolism of xenobiotics, performing the first step in 
phase I biotransformation (Ortiz de Montellano, 2005). CYPs are regulated by a ligand-dependent 
transcription factor, namely - aryl hydrocarbon receptor (AhR) (Ortiz de Montellano, 2005). In the 
cytosol, AhR is in a complex with other protein chaperones, including the heat shock protein (hsp) 
and upon ligand binding, AhR breaks free of this complex, translocate into the nucleus and 
heterodimerize with ARNT, binds to the xenobiotic responsive element (XRE) and that induces 
transcription of XRE responsive genes (Figure 5) (Gu et al., 2000). AhR is a promiscuous receptor that 
is activated by a multitude of xenobiotic chemicals and endogenous chemicals (Denison and Nagy, 
2003). It is suggested that CYP can transform PFOSA to PFOS in vivo (Tomy et al., 2003; Xu et al., 
2004), but less is known about any possible interaction with AhR (Chen et al., 2015). 
Biotransformation of xenobiotics is important to escalate the excretion rate and reduce toxicity of 
contaminants. Phase II biotransformation enzymes attach a hydrophilic group to their substrate 
making them more easily excreted, including glucuronidation by uridine diphosphate 
glucuronosyltransferase (UDPGT) or glutathione conjugation by glutathione-S-transferase (GST), 
which are also regulated through AhR (Dietrich and Kaina, 2010).  

 

EDCs and AhR-activating xenobiotics may produce interactive effects, possibly through crosstalk 
between ERs and AhR. Ligand-activated AhR can inhibit estrogen responsive gene expression, and it 
has been proposed that ERα may bind to AhR and increase transcription of xenobiotic responsive 
genes (Matthews and Gustafsson, 2006). Hypoxia has been shown to inhibit CYP1A1 mRNA and 
activity and the mechanism for this effect has been proposed to arise from competition between 
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Figure 5. Here is a description of the basic function of three nuclear receptors. 1; Estrogen (E) bind estrogen receptor α
(ERα), which then forms a homodimer complex that can enter the nucleus and induce transcription of estrogen
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hypoxia-inducible factor 1 alpha (HIF-1α) and AhR for their common co-factors - ARNT (Khan et al., 
2007; Shan et al., 1992; Zhang and Walker, 2007). During hypoxia, HIF-1α becomes stable and can 
enter the nucleus where it binds ARNT and induce transcription genes through hypoxia responsive 
element (HRE) (Figure 5) (Kumar and Choi, 2015). However, new research has proposed that the 
down-regulation of CYP1A during hypoxia is due to alterations in nitric oxide and oxidant status 
(Rahman and Thomas, 2012). Regardless, these reports suggest that a combination of environmental 
stressors that affect these pathways may potentially exert interactive effect and alter the level of sex 
steroid or the hormonal responses in fish.  

Multiple environmental stressor and their interactions 
Combined exposure scenarios are gaining increased attention, and exploring the potential of 
interactive effects between multiple environmental stressors is of great interest (Jenssen, 2006; 
Noyes and Lema, 2015; Noyes et al., 2009; Schiedek et al., 2007). Investigations of complex mixtures 
in experimental studies have shown that responses from multiple stressors may not be easily 
predicted due to potential interaction between stressors (Billick and Case, 1994). Principal 
component analysis (PCA) is a useful tool to interpret data that consist of many responses by several 
exposure conditions simultaneously. Spatial orientation of responses and individual samples in a 
PCA-plot show; which responses are affected in a similar manner, if exposure groups display 
exposure specific responses and if responses are associated with certain exposure treatments. 
However, the most effective method to investigate interactive effects of stressors is n-way analysis 
of variance (ANOVA), where n is the number of stressors you are comparing. For example, we use a 
two-way ANOVA to investigating interaction between CO2 and PFOS. The n-way ANOVA test the data 
for additivity, where a significant value (p<0.05) indicates interaction between stressors (Billick and 
Case, 1994). Folt et al. (1999) investigated interaction between three stressors (toxin, low food and 
temperature) in juveniles and adults of two species cladoceran zooplankton, Daphnia pulex and 
Daphnia pulicaria. They reported two-way and three-way interaction between stressors on 
reproduction and survival that varied between life stages and species, and that most interactions 
were antagonistic (Folt et al., 1999).  

Some of the ways that changes in environmental parameters and contaminants may increase toxic effects 

Bioavailability Acclimatization Additivity InteractionBiotransformation
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Figure 2. Combined exposure to multiple environmental stressors may alter toxic effects in an organism in several ways.
These include increased bioavailability of contaminants, increased stress load that may affect acclimatization processes or
the ability to metabolize and excrete contaminants, additivity of stressors or unpredictable effects when stressors interact.
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Organisms are continuously exposed to multiple environmental stressors, and the increasing 
concern of effects from climate change on biota have raised a question to how organism are 
affected by changes in environmental parameters in the presence of chemical pollutants. Some 
studies have already been conducted in this field (described below), and figure 2 show some 
potential effects of combined exposure that alter toxic responses compared to single exposure. 
Heugens et al. (2001) reviewed the combined exposure to toxicants and elevated temperatures. 
They reported that toxicants may increase the metabolic oxygen demand, and that higher 
temperatures will potentiate the toxic effect, because increased temperature reduces the partial 
pressure of oxygen (pO2) in water. They also reported that combined exposure to toxicants could 
increase adverse thermal effects at the thermal tolerance limit, due to reduced ability for 
acclimatization (Heugens et al., 2001). When multiple stressors affect the same mechanism we can 
expect increased toxicity from combined exposure, for examples temperature and a stressor that 
both produce changes in metabolic processes may combined increase effects on energy metabolism 
and respiration (Heugens et al., 2001). A study with marine bivalves reported that combined 
exposure to hypercapnia and metals (Cd and Cu) produced higher degree of oxidative stress 
responses than single treatment, and showed that increased toxicity was due to increased 
bioavailability of metals during hypercapnia (Ivanina et al., 2015). The PhD thesis by Marie Löf (2004) 
investigated combined effects of hypoxia and sediment contaminants in amphipod (Monopheria 
affinis), and reported that contaminants alone produced increased transcription of oxidative stress 
response, but no physiological damage. However, the combination of stressors produced 
physiological damage supporting the hypothesized potential of xenobiotics to alter the animals 
ability to cope with oxygen deficiency (Gorokhova et al., 2013). The same exposure treatments also 
produced reproduction dysfunction observed as embryo aberrations in amphipods (Löf, 2014). Many 
POPs have similar structure as endogenous hormones, and may affect the endocrine system by 
interaction with hormone transport proteins, affecting hormone metabolism or POPs can mimic or 
block the effects of endogenous hormones (Colborn et al., 1993; Jenssen, 2006). In the arctic, 
concentration of POPs is relatively high in marine mammals and birds and it is hypothesized that 
climate change pose additional stress because the endocrine system is important for acclimatization 
to environmental stress (Jenssen, 2006). Population viability in zebrafish (Danio rerio) exposed to 
elevated temperatures and pollution showed that combined exposure increases a male skew which 
can speed declines in zebrafish populations, and they investigated the role of CYP19 in this process, 
albeit clear connections were not observed (Brown et al., 2015). These findings support the concern 
of possible increased toxicity of combined exposure to environmental stressors. We address the 
importance of investigating oxidative stress responses, effects on lipid homeostasis and endocrine 
disruption from multiple environmental stressors in this thesis. Changes in environmental 
parameters and PFASs can individually affect the aforementioned toxic effects and it is therefore 
crucial to investigate combined effects. 
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Aims of the thesis 

Scientific understanding on the interactions between various classes of contaminants and different 
environmental factors, including quantifiable measures of climate change, in aquatic organisms are 
not well understood. However, there is a general speculation that increasing temperature raises 
contaminant toxicity, and decreasing salinity may increase metal toxicity and reduce the toxicity of 
certain contaminants. Hypoxia has been shown to produce stress on aquatic organisms, where 
coastal and estuarine animals are the most vulnerable species. Overall, the potential toxicological 
and molecular mechanisms behind these responses are not understood and studies on how these 
responses may be modified by quantifiable parameters of climate change are non-existent. 
Therefore, the aim of this thesis was to investigate the effects of quantifiable measure of climate 
change (ocean acidification and hypoxia), singly and also in combination with emerging 
environmental contaminant group, namely - perfluorinated alkyl substances (PFASs) in fish and 
represents a multiple stressor exposure scenario. The study was focused on investigating the 
physiological effects that may reduce general health condition, impairing development and 
reproduction. The general aim is further explained in the individual sub-aims (I-IV), and represented 
by the individual research papers and hypothesis as stipulated below. 

 

1. To study the effects of hypercapnia/hypoxia and PFASs on oxidative stress responses. Our 
hypothesis is that exposure of fish to quantifiable measures of climate change (elevated aquatic CO2 
levels or hypoxia) and PFASs, singly and also in combination, will produce changes oxidative stress 
parameters, and that these effects will be modulated due to interactions between these 
environmental stressors. This was investigated by measuring transcriptional changes and activity of 
antioxidants systems in an in vivo and in vitro experimental approach (paper I and III). 

2. To study the effects of hypercapnia/hypoxia and PFASs on lipid homeostasis. Our hypothesis is 
that acclimatization to changes in environmental parameters (hypercapnia and hypoxia) will produce 
effect on lipid homeostasis and potentially affect lipids important in cellular membranes, and that 
these effects will be modulated in the presence of PFASs. This was investigated by measuring 
transcriptional changes of PPARs and processes in lipid regulation, and analyzing lipid profiles in vivo 
and in vitro in fish (Paper I and IV). 

3. To study the effects of hypercapnia/hypoxia and PFASs on hormonal and biotransformation 
pathways of Atlantic cod and salmon hepatocytes. Our hypothesis is that in vivo and in vitro 
exposure of fish to hypercapnia or hypoxia will alter hormonal and biotransformation pathways, and 
that these effects will be potentiated in the presence of PFASs. In addition, these responses will 
represent valuable input in the understanding of molecular mechanisms of effect or mode of action 
for these multiple stressors. These effects were analyzed by measuring muscle tissue sex steroid 
levels and transcriptional expression of genes involved in hormonal responses, steroid- and 
xenobiotic metabolism and hypoxic stress (Paper II and III). 
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Discussion 

The emission of CO2 and other greenhouse gases due to anthropogenic activities are thought to be 
the main drivers of global climate change. The effects of climate change in the aquatic environment 
are observed as increases in average temperature and CO2 levels. An increase in water temperature 
produces reduction in pO2, and its availability to aquatic organisms. Cellular availability of O2 is 
crucial for cellular respiration that generates energy for metabolic and maintenance pathways, 
including development in aerobic organisms. In addition, it has been suggested that increasing 
temperatures or changes in CO2 levels, due to global climate change may modulate the toxicity of 
some environmental contaminants. For example, temperature and possibly CO2 dependent shifts in 
toxicity can be increased by direct interaction with metabolic pathways or through indirect 
processes such as changes in lipid stores during the developmental history of individuals.  Therefore, 
this thesis has studied the interactions between hypercapnia and hypoxia (quantifiable measures of 
climate change) and PFASs (PFOS and PFOSA) given singly and in combination on biological processes 
that may produce deleterious physiological effects that may reduce general health conditions, 
impairing development and reproduction in fish, using Atlantic salmon (Salmo salar) and Atlantic cod 
(Gadus morhua) as model species. Statistical analysis indicated that exposure duration is an 
important factor in stressors responses and interactive effects between hypercapnia and PFOS in 
Paper I, where combined exposure generally produced higher responses than single exposure to 
either stressor. In general, both studies revealed that changes in environmental conditions 
(hypercapnia and hypoxia) were the main drivers of toxicological and biological responses, and PCA-
biplots revealed that combined stressor treatment generally exceeded that of the most severe 
responses of a single stressor as shown in Paper II, III and IV. Thus, our data are in accordance the 
aforementioned studies that report that multiple environmental stressors generally produce higher 
toxicity than stressors individually (Brown et al., 2015; Gorokhova et al., 2013; Ivanina et al., 2015; 
Löf, 2014).  

Oxidative stress responses 
Reactive oxygen species (ROS) are important signaling molecules during hypoxia, required for 
stabilization of HIF-1α (Chandel et al., 1998; Chandel et al., 2000). Thus, increased ROS generation 
lead to increased level of stable HIF-1α which can heterodimerize with ARNT and induce 
transcription of genes important in hypoxic responses, such as vascular endothelial growth factor 
(VEGF). ROS generation by complex III (electron transport chain) in mitochondria is elevated during 
hypoxia, but the mechanism for sensing reduced O2 is not identified (Chandel et al., 2000). 
Hypercapnia initiates hypoxic responses and hence an increase in CO2 concentration may cause 
oxidative stress from elevated ROS generation. Several studies have shown increased transcription 
and activity of antioxidant machinery from hypercapnia and hypoxia exposure (Dean, 2010; Fan et 
al., 2008; Lushchak, 2011), including Paper I and III. Previous studies have reported increased 
oxidative stress response caused by several PFASs (Arukwe and Mortensen, 2011; Liu et al., 2009; 
Wågbø et al., 2012), but our data do not support these findings. We observed no oxidative stress 
response from single treatment of PFOS or PFOSA in Paper I and III, respectively. Increased 
activation of the antioxidant machinery is associated with increased levels of ROS, but does not 
identify the pathway of increased generation. Combined exposure regimes increased higher 
transcription of the antioxidant machinery than single exposure to hypercapnia in juvenile cod and 
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hypoxia by CoCl2 in salmon hepatocytes (Paper I and III, respectively), while hypoxia by DFO in 
salmon hepatocytes produced a similar response alone and in combination with PFOSA (Paper III). In 
salmon hepatocytes, combined hypoxia and PFOSA exposure produced higher transcription of CAT, 
GPx (by CoCl2) and GST and activity of GST than single treatment. DFO produced similar response in 
transcription of CAT, GPx and GR alone and in combination with PFOSA. There is some discrepancy 
between the chemicals used to induce hypoxia, and this should be considered in future studies. In 
Paper III, PCA-biplots support the observations that the most severe responses are produced by 
combined exposure regimes. Statistics, in Paper I, revealed interactive effects between PFOS and 
CO2 on GPx1 and MnSOD transcription in gills. Transcriptional changes of several antioxidants, GPx1 
(liver), CAT, CuZnSOD (only liver) and MnSOD, showed higher response in combined exposure 
compared to single exposure (Paper I). These responses were clearly dependent on exposure 
duration, where the two tissues (gill and liver) analyzed showed increased transcription of 
antioxidants at different points in time during the experiment. ROS can attack cellular components, 
i.e. lipids, proteins and DNA, when the level exceeds antioxidant scavenging capacity (Sies, 1991). 
Hence, there is an increased risk of approaching harmful ROS levels when exposed to a combination 
of stressors compared to single exposure treatment. Several antioxidant responses investigated 
herein showed statistical additive effects between stressors, while a few parameters indicated 
statistical interaction between hypercapnia and PFOS in cod (Paper I). Reports of interaction 
between stressors emphasize the importance of studies investigating combined exposure regimes, 
and these responses should be investigated further. The mechanisms leading to increased ROS levels 
by hypercapnia, hypoxia, PFOS and PFOSA are not well understood and the nature of interactions 
between stressors is therefore difficult to predict. Lipid peroxidation is one of the major outcomes of 
free radical-mediated injury to tissue and peroxidation of fatty acyl groups occur mostly in 
membrane phospholipids (Catalá, 2009).  

PPARs and lipid homeostasis 
It is suggested that PFASs can interfere with mitochondrial metabolism to increase peroxisome 
proliferation in vitro (Starkov and Wallace, 2002) and that PFOS mechanism of action could be 
through interaction with PPARs (Viberg and Eriksson, 2011). Starkov and Wallace (2002) suggested 
that perfluorinated acids can act as structural mimics of FAs, thereby inhibiting mitochondrial FA β-
oxidation. PPARs are ligand-dependent nuclear receptors activated by FAs. In vitro studies have 
shown that PFOS can bind PPARα agonistically and to a lesser degree PPAR-γ, while PPAR-β has not 
yet been tested (Takacs and Abbott, 2007; Vanden Heuvel et al., 2006). In Paper IV, we investigated 
the response of all PPAR isoforms to PFOSA and we observed a small but significant increase of 
PPAR-α transcription in salmon hepatocytes exposed to 50 μM PFOSA, while other PPAR-β and 
PPAR-γ were unaffected. Our data indicate that PFOSA act upon the PPAR system in the same 
manner that was reported of PFOS effects in the aforementioned in vitro studies. On the other hand, 
Paper I showed that PPAR-β was increased in liver from juvenile cod exposed for 9 days to 100 μg/L 
PFOS. However, because of the long exposure duration it is possible that this effect was due to other 
mechanisms than binding to PPAR. We propose that chronic in vivo exposure to PFOS can lead to 
alterations in FA composition, potentially increasing FAs that are appropriate activating ligands for 
PPAR-β.  

Several studies have investigated the role of PPAR-α in physiological processes during hypoxic 
conditions (Biscetti et al., 2009), such as involvement in angiogenesis (Rizvi et al., 2013) with results 
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showing both inductive and inhibitory effects. Hypoxia and hypercapnia shifts energy production 
from FA β-oxidation to glycolysis (Goda and Kanai, 2012; Liu et al., 2014), and acute and intermittent 
hypoxia was shown to increase lipid accumulation (Jun et al., 2013). PPARs regulate the balance 
between burning and storage of FAs and can affect cellular metabolism. Lipid accumulation is 
increased through activation of PPAR-γ, which also stimulates the use of glucose as energy source. 
Salmon hepatocytes exposed to hypoxia and PFOSA show parallel increase in transcription of HIF-1α, 
ACOX and PPAR-γ, suggestive of increased peroxisomal FA β-oxidation related to HIF expression 
(Paper IV), that is in conflict with liver PPAR-β expression in cod (Paper I). However, we also 
observed increased transcription of PPAR-α and PPAR-β by the same exposure regimes in salmon 
hepatocytes, emphasizing the complexity of the PPAR system. Alterations in PPAR transcription 
caused by environmental changes (i.e. hypoxia and hypercapnia), may possibly be due to increased 
energy demand, that increase metabolism, thus altering the FA composition and release of stored 
FAs. Long-term acclimation to hypercapnia switches glycolysis from aerobic to anaerobic metabolism 
in red muscle and heart of S. aurata after 4 days, but also there is evidence of enhanced oxidation of 
FAs to support ATP production under these conditions (Michaelidis et al., 2007). In Paper I, PPAR-β 
mRNA expression was reduced by combined exposure of hypercapnia and PFOS (100 μg/L) after 3 
days, but increased by hypercapnia and PFOS (200 μg/L) after 6 and 9 days. We see that combined 
exposure causes more alterations than single hypoxia or hypercapnia that could mean that the 
stress of the pollutant affects the energy balance in fish and contribute to the overall stress load. 
Expression of PPAR-β normally elevated to increase glycolysis and lipid accumulation, but we saw in 
Paper III that other PPARs involved in FA metabolism can also be activated simultaneously showing a 
complex system regulating energy utilization. 

In juvenile cod, gill ACOD mRNA expression was unaffected by hypercapnia alone, but increased by 
combined exposure of hypercapnia and PFOSA at day 3 (Paper I). This suggests a possible increase in 
mitochondrial FA β-oxidation. Adaptation to hypercapnia and hypoxia is however very dependent on 
species and also the tissue investigated. Switching from FA β-oxidation to glycolysis was observed in 
cardiomyocytes, increasing their oxygen utilization efficiency mediated through HIF-1 activation 
leading to increased expression of glucose transporters and glycolytic enzymes (Kaelin, 2002; 
Semenza, 2013), and PPAR-α/RXR-mediated suppression of mitochondrial FA β-oxidation (Belanger 
et al., 2007; Huss et al., 2001). Further, mitochondrial FA oxidative capacity was reduced by hypoxia, 
resulting in reduced mitochondrial lipid mobilization and utilization, causing consequent 
accumulation of intracellular lipid (Huss et al., 2001). Paper IV showed that hypoxia increased 
transcription of all PPAR isoforms (α, β and γ), and gene transcripts of HIF-1α, FAD5, FAD6, FAE and 
ACOX. Expression of PPAR-α and several PPARα target genes was decreased in rat heart during 
hypoxia by CoCl2 (Razeghi et al., 2001). There is a discrepancy between PPAR responses reported in 
these studies and those reported in Paper IV, and cellular mechanism of altered peroxisomal FA β-
oxidation in adaptation to hypoxia has been reviewed by Biscetti et al. (2009) reporting the 
complexity of PPAR regulation during angiogenesis. Physiological hypoxic responses were not 
explored in this thesis. However, we emphasize that membrane FA profile was significantly altered in 
salmon hepatocytes by several exposure combinations. In Paper IV, changes in FA profile and PPAR 
transcripts suggest a possible hypoxia mediated increase in the levels of endogenous ligands for 
PPAR isoforms.  
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Previously, histomorphological analysis revealed that peroxisomal proliferation from PFAS or PFCA 
exposure is accompanied by increased peroxisome-related enzyme activities such as ACOX and 
catalase (Pastoor et al., 1987; Permadi et al., 1992; Sohlenius et al., 1992; Vanden Heuvel, 1996) 
indicating increased ROS generation by FA β-oxidation in peroxisomes. Our data did not show 
significant responses of ACOX and CAT that parallel PPAR-α alterations in salmon hepatocytes 
exposed to PFOSA (Paper IV). This finding is consistent with results in cod, showing the absence of 
effect on ACOD and CAT by PFOS in vivo (Paper I). However, we observed an increase of PPAR-α, CAT 
and GPx transcription from hypoxia treatment in salmon hepatocytes (Paper IV). Interestingly, PPAR-
β and CAT are increased by hypercapnia after 6 days while ACOD was increased after 3 days in cod 
(Paper I). It is possible that mitochondrial FA β-oxidation produced changes in FA composition during 
the initial exposure duration, and that prolonged exposure initiated an onset of mechanisms 
increasing FAs metabolism to feed the energy demand of adaptation to hypercapnia.  

Lipids are the main components of cellular membranes, particularly phosphatidylcholine (PC). 
Alterations in PEMT activity may significantly alter membrane fluidity and structure. Steatosis was 
observed in PEMT deficient mice, caused by loss of membrane integrity due to decreased PC/PE 
ratio (Li et al., 2006). In Paper I, we observed that hypercapnia reduced transcription of PEMT in liver 
after 9 days of exposure, potentially affecting the PC/PE ratio. Interactive effect between CO2 and 
PFOS was revealed at day 3, but was not confirmed by post hoc test. However, our data indicate that 
PFOS does not affect membrane fluidity through direct effect on PEMT transcription, since no effect 
of PFOS alone was observed. Combined exposure produced the same effect as hypercapnia alone, 
supportive of no interaction between stressors in this pathway (Paper I). In paper IV, we observed 
changes in ω-6: ω-3 ratio in salmon hepatocytes after 48 hours. There was a 3.3- and 2.7-fold 
increase at 25 μM PFOSA singly or in combination with CoCl2, and 5.8- and 2.3-fold increase at DFO 
singly or in combination with 50 μM PFOSA. Both ω-6 and ω-3 PUFAs are important components in 
cellular membranes and alterations in composition may affect fluidity and permeability (Stillwell and 
Wassall, 2003; Yu et al., 2015). Other studies have shown that PFOS affects membrane permeability, 
leading to increased response of other compounds, when given in binary treatments, i.e. bisphenol A 
(BPA) in zebrafish (Danio rerio) (Keiter et al., 2012a), TCDD and E2 in carp leukocytes and reduced 
mitochondrial membrane potential (Hu et al., 2003). These studies showed indirect effects of PFOS 
exposure that may have ecotoxicological implications. It was suggested by Hu et al. (2003) that PFOS 
might act by non-specific detergent-like effects on the membrane, affecting membrane permeability 
and fluidity, and not by affecting specific transport protein systems. The mechanism of PFOS and 
PFOSA effects on membrane fluidity and permeability has not been investigated in this thesis, but is 
an important question for future studies. 

Endocrine disruption 
Alterations in environmental parameters, hypercapnia and hypoxia, is stressful for teleost species 
(Cech and Crocker, 2002; Fivelstad et al., 1999), and stress is generally associated with decreased sex 
steroid hormones and impaired reproductive responses (Clearwater and Pankhurst, 1997; Haddy 
and Pankhurst, 1999; Schreck et al., 2001; Wu, 2009). Physical parameters in surroundings 
contribute to regulation of the hormonal status in fish, giving rise to the concern that climate change 
may cause endocrine disruption. Paper II showed that hypercapnia alone produced a significant 
increase in estradiol-17β (E2) level, the most potent endogenous E, and transcription of E2-
responsive genes (ER-α, Vtg-α, Vtg-β, ZP-2 and ZP-3), suggesting a CO2 concentration dependent 
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response. These finding suggests that alteration in E2 levels are directly associated with potential 
biological effects in the hypercapnia exposed cod. The androgens analyzed in juvenile cod (Paper II), 
T and 11-KT, were also elevated (albeit not significant) by hypercapnia. Paper III showed that hypoxia 
increased the expression of E2-responsive transcripts in salmon hepatocytes similar to the effect 
observed by hypercapnia in juvenile cod. Production of VTG protein paralleled transcription of HIF-
1α and Vtg in hypoxia exposed hepatocytes, showing an apparent relationship between 
transcription and biological effect.  In Paper III, the effect of hypoxia was supported by the PCA-
biplot showing that hypoxia exposed individuals are different compared to control and the changes 
are related to increased estrogenic responses, oxidative stress responses and CYP gene transcript, 
with the exception of ERα and GR mRNA expression. A few studies have previously reported that 
hypoxia can increase sex steroid levels in fish (Shang et al., 2006; Wu et al., 2003), suggesting that 
the response is dependent on maturational stage and exposure conditions. Some studies have in fact 
shown that stress can accelerate reproduction processes in fish, but that is dependent on species, 
maturational stage and severity of stress (Schreck et al., 2001).  

PFASs are suspected endocrine disruptors, but the effect varies widely between the chemical 
species. Conflicting results have been reported in fish exposed to PFOS, showing increase (Cheng et 
al., 2012) and decrease (Hagenaars et al., 2008) of Vtg levels. Previous studies indicate that PFOS 
exert estrogenic effects in teleost species, observed as elevated expression of estrogen responsive 
genes (Du et al., 2013; Fang et al., 2012; Keiter et al., 2012b; Liu et al., 2007) and altered sex steroid 
levels (Ankley et al., 2005; Mortensen et al., 2011; Oakes et al., 2005). The estrogenic responses of 
PFASs are mediated through interaction with ERα and AR (Benninghoff et al., 2011; Kjeldsen and 
Bonefeld-Jorgensen, 2013). Paper III showed that PFOSA increased ERα transcription, but not the 
down-stream responses of Vtg and ZRP transcription in salmon hepatocytes. Paper II showed that 
PFOS increases transcription of several hepatic E2-inducible genes in an apparent time- and 
concentration- specific manner (albeit only significant alteration of Vtg-β and ZP-2) and higher E2 
levels after 9 days in juvenile cod. These findings, in vivo (Paper II) and in vitro (Paper III), are in 
accordance with previous studies showing that PFASs cause endocrine disruption by altering 
estrogenic responses (Ankley et al., 2005; Benninghoff et al., 2011; Kjeldsen and Bonefeld-Jorgensen, 
2013; Mortensen et al., 2011). Aforementioned studies showed a higher estrogenic response to 
PFOS, but shorter exposure duration and lower concentrations applied in the studies for this thesis 
could explain this discrepancy. However, the concentration of PFOS in Paper II are considerably 
higher than levels detected in the environment (Houde et al., 2011) with the exception of PFOS 
burdens in fish inhabiting highly polluted areas (Delinsky et al., 2010; Moody et al., 2002). The 
estrogenic responses detected in this study (Paper II and III) were observed a relatively long time 
after PFOS and PFOSA exposure, suggesting a possible influence of a yet to be identified mechanism 
other than interaction with ERα. Other factors can modulate E2-regulated genes, including pituitary 
factors (Vaisius et al., 1991), other hormones (Ding, 2005; Mori et al., 1998; Raingeard et al., 2009) 
and other nuclear receptors such as PPARs and thyroid hormone receptors (TRs) (Arukwe and 
Mortensen, 2011; Fang et al., 2012; Shipley et al., 2004) (also shown in Paper I and III). These other 
factors may be affected by PFOS, and indirectly alter estrogen responsive gene expression. 

Paper II showed that combined CO2 and PFOS exposure increased T and 11-KT compared to control 
and medium CO2, respectively. E2 levels are significantly increased by combined exposure compared 
to control, and by severe hypercapnia and high PFOS compared to hypercapnia alone. Taken 
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together, these findings showed that combined exposure produced a higher response than single 
exposure. Alterations in transcription of Vtg-α, Vtg-β and ZP-2 showed that combined effect of CO2 
and PFOS was time-dependent, displaying an apparent biphasic response, shifting between 
increased (day 3 and 9) and decreased (day 6). Several types of stress can sometimes cause 
endocrine responses that are biphasic with directionality that is dependent on the severity and 
dose/level of the stressors, as wells as duration (Schreck et al., 2001). There is a discrepancy 
between the in vivo and in vitro study, where Paper III showed that Vtg, ZRP and ERα are increased 
by combined exposure of hypoxia and PFOSA. However, in Paper III, Vtg protein is not affected by 
combined exposure, suggesting post-transcriptional modification of E2-responsive genes. In Paper II, 
we observed that at day 6, Vtg and ZP-2 mRNA was lower in combined exposure treatments 
compared to single exposure. However, ERα mRNA was increased by combined exposure at day 6, 
but we do not have data for sex steroid hormone levels at day 6. The simultaneous increase in (ERα) 
and decrease of E2-responsive genes (Vtg and ZP-2) could possibly be explained by crosstalk 
between ERα and AhR which has been shown to inhibit transcription of ERE (Bugel et al., 2013). In 
paper III, salmon hepatocytes (in vitro) showed an increase of ERα, Vtg and ZRP transcription that 
was similar between of hypoxia alone and in combination with PFOSA, suggesting a possible 
contribution of other organs in regulating the endocrine signal, observed in Paper II. It is possible 
that acclimatization to hypercapnia initiates hypoxic responses, observed as oxidative stress, which 
may affect the energy consumption in fish leading to changes in physiology. Previous studies have 
reported alterations in metabolism following hypercapnia exposure (Langenbuch and Portner, 2003; 
Lannig et al., 2010). Nuclear receptors interaction due to competition between HIF-1α and AhR for 
ARNT binding, may affect the level of crosstalk/hijacking of ERα by active AhR when exposed to a 
combination of environmental stressors involved in these pathways. Interaction between AhR and 
ER have been extensively studied and several hypothesis of the underlying mechanisms are 
proposed Matthews and Gustafsson (2006), and Matthews et al. (2005) reported in a previous study 
that activated AhR may recruit ERα to increase transcription of xenobiotic responsive genes. The in 
vivo and in vitro studies in this thesis showed a relationship between endocrine, oxidative and 
biotransformation responses, where quantifiable measures of climate change (hypercapnia or 
hypoxia) were the main drivers of effect compared to PFASs (PFOS or PFOSA).  

Biotransformation pathways 
Hypoxic conditions can ultimately affect hormonal status in fish through interference with 
steroidogenic enzymes (Cheek et al., 2009). CYP1 and CYP3 are central enzymes in steroid hormone 
metabolism and synthesis, regulating estrogen and testosterone (Scornaienchi et al., 2010; Young, 
2005). Elsewhere, hypoxia produced significant decrease in hepatic CYP1A mRNA, protein levels and 
enzyme activity (du Souich and Fradette, 2011; Rahman and Thomas, 2012) potentially created by 
competition between hypoxia and AhR in competition for ARNT (Fleming et al., 2009; Khan et al., 
2007; Wenger, 2002; Zhang and Walker, 2007). In Paper III, we observed contradicting effect to 
previous findings showing that DFO exposure produced increased transcription of CYP1A and CYP3A 
in salmon hepatocytes, while CYP1A1 (EROD) and CYP1A2 (MROD) activity were unaffected. Juvenile 
cod displayed altered transcription of CYPs where CYP1A was increased throughout the experiment, 
while CYP3A only increased (albeit non-significant) after 6 days during hypercapnia. The discrepancy 
between transcription and enzyme activity is acknowledged and it is suggested that reduced CYP1A 
activity may be a post-transcriptional effect (Fradette et al., 2007). Regardless, transcriptional 
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alterations of CYPs indicate an effect related to AhR binding and activation. However, CYP3A is 
thought to be involved in regulation of lipid metabolism through production of 25-
hydroxycholestrerol, the rate-limiting step in lipid metabolism (Honda et al., 2011) and a potent 
activator of ERα (Lappano et al., 2011). CYP3A activity was not analyzed in Paper III, but increased 
transcription of CYP3A by hypoxia indicated a possible pathway that increases the observed 
estrogenic responses. Several CYP3A isoforms exposed to hypoxic conditions showed increased 
CYP3A transcript levels independent of pregnane –X receptor (PXR) modulation (Fradette and du 
Souich, 2003), which is in accordance with Paper III showing that PXR is increased at a lower level 
than CYP3A. 

CYP1, 2 and 3 are important enzymes for xenobiotic biotransformation in fish liver (Monostory et al., 
1996) and previous studies have observed increase of CYP transcription by PFAS (Hickey et al., 2009; 
Yeung et al., 2007). PFOSA can be converted to PFOS in fish liver and this reaction is suggested to be 
performed by CYP enzymes (Tomy et al., 2003). In Paper II, CYP1A transcription is slightly elevated at 
day 3 (200μg/L) and 6 (100μ/L). Paper III did not show effects of PFOSA in CYP transcription or 
activity in salmon hepatocytes. Marine medaka embryos exposed to PFOS showed a time-dependent 
increase of ARNT and CYP1A transcription (Fang et al., 2012), while a study with carp leukocytes 
reported that PFOS does not interact with CYP1A1 (Hu et al., 2003). These studies and our data 
suggest that regulation and activation of CYPs by xenobiotic compounds are time and concentration 
dependent and hard to predict due to confounding exogenous and endogenous variables. The 
effects of hypercapnia on biotransformation pathways are not well studied. However, HIF-1α and 
CYP1A are used as biomarkers for environmental exposure to hypoxia and POPs where the mode of 
action is through the AhR, respectively (Rahman and Thomas, 2012). A recent study investigating 
interactive effects between PCB-126 and hypoxia suggested that hypoxia play a possible role in 
xenobiotic metabolism, where AhR activation and CYP1A1 transcription was inhibited by combined 
exposure (Vorrink et al., 2014). The same study showed that biological processes regulated by HIF-
1α were inhibited by PCB-126, potentially affecting adaptive responses during hypoxic conditions 
(Vorrink et al., 2014). We showed, in paper III, that CYP1A transcription was unaltered in combined 
treatment of hypoxia and PFOSA compared to control, suggesting that PFOS reduced the response of 
hypoxia in salmon hepatocytes. The same response in CYP1A mRNA expression was observed in 
juvenile cod (Paper II) after 3 days of exposure, while combined exposure produced similar response 
as hypercapnia alone after 6 and 9 days. However, CYP1A2 activity (MROD) was significantly 
increased by hypoxia and PFOSA together, but unaffected by single exposure to either stressor in 
vitro (Paper III). Our findings, in Paper III, and other studies have shown a decrease in CYPs when 
combining CYP activators and hypoxia compared to single exposure, suggesting potential interaction 
sites between these two signaling pathways and potentially between ERα as well (Bugel et al., 2010; 
Fleming et al., 2009). Combined treatment increased CYP3A similar to hypoxia or hypercapnia alone 
(Paper II and III), albeit not significant in juvenile cod, suggesting that hypoxic/hypercapnic responses 
in CYP3A transcription was unaffected by PFOS.  
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Summary 

Addressing the aims;  

1. Our data showed that hypercapnia and hypoxia increased the transcription of the antioxidant 
machinery in juvenile cod and salmon hepatocytes, respectively. Combined exposure regimes 
generally produced a higher response than hypercapnia and hypoxia alone. Statistics revealed 
interaction between CO2 and PFOS on transcription of antioxidants, GPx1 and MnSOD in cod gill.  
Responses in gill and liver were observed at different times and the significant importance of 
exposure duration in antioxidant response was revealed statistically. The lack of data on 
physiological changes would be valuable to investigate further, such as changes in antioxidants 
enzyme activity, malondialdehyde (MDA) assay (marker for oxidative stress) and analyzes of TBARS 
(product of lipid peroxidation).  

2. The measures of climate changes investigated herein produced effects on the PPAR system, 
observed as increased transcription of all PPAR isoforms by DFO in salmon hepatocytes and of 
PPARβ by increased CO2 in cod liver. The responses of hypercapnia or hypoxia were modulated 
variably in the presence of PFASs. PPAR isoforms were modified differently between combined 
exposure regimes, indicating complex changes in FA regulation. Altered FA β-oxidation from 
combined exposure treatment was suggested because of increased transcription of ACOX and ACOD 
in salmon hepatocytes and cod, respectively. Increased ω-6: ω-3 ratio was observed by combined 
and single exposure of hypoxia and PFOSA dependent on concentration in primary salmon 
hepatocytes. CO2 reduced PEMT transcription in cod liver alone and in the presence of PFOS. These 
findings indicate that stressors affect composition of lipids important for proper function in cellular 
membranes. Measuring membrane stability and fluidity would be useful to investigate if there is a 
link between transcriptional responses and altered lipid profiles to physiological effects and possibly 
detrimental harm. 

3. We observed that hypercapnia and hypoxia increased transcription of E2-responsive genes alone 
and in the presence of PFOS or PFOSA, respectively. E2 levels were increased by hypercapnia and 
combined exposure to PFOS produced higher response and also increased T and 11-KT level. 
Changes in CYP transcription were observed from hypercapnia and hypoxia exposure, and combined 
CoCl2 and PFOSA increased CYP1A2 activity. These findings indicate that regulation of endocrine 
signaling and biotransformation is complex, and that interaction between nuclear receptors ERα, 
HIF1α and AhR may be involved during combined exposure treatment. Changes in sex steroid levels 
can affect processes, such as sex differentiation, accelerate the onset of puberty in juvenile fish or 
impair reproduction. Our data showed that hypercapnia and hypoxia alone and in the presence of 
PFASs produced effects on endocrine responses that may cause adverse effects in cod and salmon. 
Hence, further investigation should be performed to verify potential risk of developmental and 
reproductive disruption with potential detrimental effects to fish from expected ocean acidification 
scenarios in the presence of environmental contaminants.   
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Potential implications and future perspectives 
Changes in PPAR system leading to higher metabolism may increase generation of ROS, suggesting a 
potential link between these two pathways. On the other hand, hypoxic responses and dealing with 
oxidative stress are energy demanding processes that may affect PPAR expression and regulation. 
Changes in lipid homeostasis and effects of oxidative stress (lipid peroxidation) can produce 
detrimental effects in cellular membrane, changing the lipid composition or affecting components in 
the membrane. Increased stress is generally associated with detrimental effects on development 
and reproduction affecting sex steroid system. Increased endocrine responses, such as production of 
Vtg, ZP and ZRP protein demand energy and could also affect regulation of FA regulation. Interaction 
between hypoxic responses and xenobiotic biotransformation is thought to occur through 
competition between HIF-1α and AhR for ARNT binding. However, crosstalk between ERα and AhR 
can affects steroidogenesis through transcriptional changes of xenobiotic or estrogen responsive 
genes. PFASs are thought to have endocrine disruptive toxicity by interacting with ERα, and CYP 
enzymes metabolize PFOSA possibly activated by PFOSA binding to AhR, suggesting effects on 
several pathways from PFASs exposure and the potential for interaction between ER and AhR.  
Hypoxic responses may further complicate the understanding of potential interactions. 

Combined exposure treatments generally produced a higher response than single exposure. 
Furthermore, parameters of climate change (hypercapnia and hypoxia) generally produce higher 
responses than PFASs (PFOS and PFOSA), and multivariate analysis show that exposure duration is 
an important factor when evaluating stressor responses. Statistical interaction between PFOS and 
CO2 were revealed for oxidative stress responses and regulation of membrane lipids. These findings 
indicate that combined exposure scenarios may produce vast changes in fish that are difficult to 
predict without combined experimental studies. However, investigating changes in physiological and 
biological function that may follow from the observed molecular alterations observed herein is 
necessary for a better understanding of possible adverse effect from the stressors investigated. Our 
data show that exposure duration significantly affected the effects of stressors in fish, suggesting 
that investigating chronic exposure to ocean acidification and multiple environmental stressors 
could provide valuable insight of toxicity by multiple environmental stressors in aquatic organisms in 
a future perspective.  
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In  the aquatic environments,  the predicted changes  in water  temperature, pO2 and pCO2 could  result in

hypercapnic  and  hypoxic  conditions  for  aquatic animals.  These  conditions  are  thought to  affect several

basic  cellular  and physiological mechanisms.  Yet,  possible  adverse  effects  of elevated  CO2 (hypercapnia)

on  teleost fish, as  well as combined  effects  with emerging and legacy environmental  contaminants  are

poorly  investigated.  In  this  study, juvenile  Atlantic cod (Gadus  morhua) were divided  into groups and

exposed  to  three different water  bath PFOS  exposure  regimes  (0 (control),  100  and  200  �g  L−1)  for 5  days

at  1 h/day, followed  by  three different  CO2-levels (normocapnia,  moderate (0.3%) and high (0.9%)). The

moderate  CO2 level  is the predicted near future (within  year 2300) level, while 0.9% represent severe

hypercapnia.  Tissue samples  were collected at 3,  6 and 9  days after initiated CO2 exposure. Effects  on

the  endocrine  and biotransformation  systems  were examined by  analyzing levels  of  sex  steroid hor-

mones  (E2,  T,  11-KT) and  transcript  expression of  estrogen  responsive  genes (ER˛, Vtg-˛, Vtg-ˇ, ZP2 and

ZP3).  In  addition,  transcripts for  genes  encoding  xenobiotic metabolizing  enzymes (cyp1a and  cyp3a) and

hypoxia-inducible  factor  (HIF-1˛)  were analyzed. Hypercapnia alone produced increased  levels  of  sex

steroid  hormones  (E2,  T,  11-KT)  with concomitant  mRNA level increase  of  estrogen  responsive  genes,

while  PFOS produced weak  and  time-dependent effects  on E2-inducible  gene transcription. Combined

PFOS  and hypercapnia exposure produced  increased  effects  on sex steroid levels  as compared  to hyper-

capnia  alone,  with transcript expression  patterns that  are indicative  of time-dependent  interactive effects.

Exposure  to  hypercapnia  singly or in combination  with  PFOS produced  modulations  of  the  biotransfor-

mation  and hypoxic responses  that  were apparently  concentration-  and time-dependent.  Loading plots

of  principal component  analysis  (PCA)  produced  a significant grouping  of  individual scores according to

the  exposure  scenarios at day  6 and 9. Overall, the PCA analysis  produced a unique  clustering of variables

that  signifies a positive correlation  between  exposure  to  high PFOS concentration  and mRNA expression

of  E2  responsive genes. Notably,  this  pattern was  not evident  for  individuals  exposed to  PFOS  concentra-

tions  in combination  with elevated  CO2 scenarios.  To  our knowledge, the  present study is  the  first  of  its

kind,  to  evaluate such  effects  using  combined  exposure to  a perfluoroalkyl  sulfonate and  elevated  levels

of  CO2 saturation,  representative of future oceanic  climate  change,  in  any fish species  or lower  vertebrate.

© 2014  Elsevier  B.V. All  rights reserved.

1. Introduction

Aquatic organisms are exposed to  several emerging environ-

mental stressors due to anthropogenic activities that include

∗ Corresponding author. Tel.: +47 99552728; fax: +47 73591309.

E-mail address: arukwe@bio.ntnu.no (A.  Arukwe).

release of  emerging contaminants and increased carbon dioxide

(CO2) emissions, climate change and ocean acidification (Schiedek

et  al., 2007). The concern for interactive effects between climate

change and environmental toxicants is also gaining increased

attention (Jenssen, 2006; Noyes et al., 2009; Schiedek et al., 2007),

yet studies of how elevated levels of dissolved CO2 (pCO2) could

modulate the physiological responses of aquatic species to environ-

mental contaminants are limited or non-existent. Anthropogenic

http://dx.doi.org/10.1016/j.aquatox.2014.06.017

0166-445X/© 2014 Elsevier B.V.  All  rights reserved.
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emissions of CO2 have increased dramatically since the industrial

revolution, resulting in a rise in  atmospheric CO2 concentrations of

approximately 280–380 ppm (Turley et al., 2006), and rates of  CO2

emissions are still rising (Canadell et al., 2007). Increased aquatic

CO2 saturation (environmental hypercapnia) and ocean acidifica-

tion are estimated to be a  result of 40–50% of  post-industrial CO2

emissions that have been taken up by the oceans (Sabine et al.,

2004; Zeebe et al., 2008). Compared to pre-industrial values, sur-

face ocean pH has already decreased by about 0.1 units, from a

global average level of 8.17–8.07 (Cao et al., 2007).

Considering the modeling of  various future scenarios of anthro-

pogenic CO2 emissions, pH levels are predicted to  be  reduced

further by 0.2–0.4 units by the end of this century and 0.4–0.9 units

within years up to 2300 (Caldeira and Wickett, 2003, 2005). Studies

on the consequences to calcifying marine organisms have dom-

inated, and the knowledge regarding the consequences of  ocean

acidification for teleosts, and especially marine species, is more

limited (Ishimatsu et al., 2008). It  is hypothesized that physiolog-

ical effects are mainly due to increased exposure to CO2 rather

than lower ambient pH (Ishimatsu et al., 2004). Teleost species

appear to  adapt well to prolonged elevation of  CO2 saturations

through acid–base regulation and  by increasing ventilation fre-

quencies, thereby avoiding internal acidosis (Ishimatsu et al., 2005,

2008). However, this can alter the  steady-state of  ions  in  body fluids

(Hayashi et al., 2004),  as well as increase energetic costs (Ishimatsu

et al., 2008). Evidence of  negative consequences on  fitness from

exposure to near future CO2 levels have been observed in  fish

(Munday et al., 2010), and  early life  stages may be  more sensitive

(Baumann et al., 2012; Forsgren et al., 2013). So far,  there have been

mixed results from several studies (Baumann et al., 2012; Frommel

et al., 2012; Munday et al., 2011). Long-term hypercapnia expo-

sure studies have indicated general health effects such as reduced

condition and growth (Ishimatsu et al., 2005, 2008).

Among emerging persistent organic pollutants (POPs), per-  and

polyfluorinated alkyl substances (PFAS) have gained increased

attention in recent years (Houde et al., 2011; Muir and Howard,

2006). PFAS are synthetically produced and used in  numerous

consumer products and for industrial purposes because of  their

unique physiochemical properties (Buck et al., 2012; Paul et al.,

2008). They are detected globally in  the environment and biota,

where perfluorooctane sulfonic acid (or sulfonate) (PFOS) is the

most concentrated PFAS (Kannan, 2011) due to its chemical per-

sistency and tendency to  bioaccumulate and biomagnify (Conder

et al., 2008). PFOS exposure has been associated with numerous

adverse health effects, including endocrine disruption (Lau et al.,

2007; Oakes et al., 2005). Sex steroid hormones (testosterone: T,

11-ketotestosterone: 11-KT and 17�-estradiol: E2) control funda-

mental processes related to sexual differentiation, gametogenesis,

reproduction and behavior in teleost species (Arcand-Hoy and

Benson, 1998; Young et al., 2005). For example, E2 modulates

gene expression through interaction with the estrogen receptor

(ER), where the ER�  isoform is the best studied subtype (Menuet

et al., 2005). Although a  role in male reproduction has been sug-

gested (Bouma and Nagler, 2001),  E2 is mostly associated with

female sexual development, reproduction responses and behavior

(Arcand-Hoy and  Benson, 1998; Young et al., 2005).

Hepatic synthesis of  proteins involved in oocyte development,

including egg yolk precursor proteins (vitellogenins; Vtgs) and  egg

shell proteins (zona pellucida proteins; ZP, also commonly called

zona radiata proteins), are among the best understood E2-mediated

responses in teleosts (Arukwe and  Goksøyr, 2003; Menuet et al.,

2005). E2 also autoregulates the expression of ER (Menuet et al.,

2005). Expression of these genes has become established biomark-

ers for estrogenic responses (Arukwe and Goksøyr, 2003; Yadetie

et al., 1999). Reproduction and the endocrine system of  fish might

be susceptible toward both endocrine disrupting chemicals (EDCs)

(Arcand-Hoy and Benson, 1998),  multiple climatic and environ-

mental stressors (Baroiller and D’Cotta, 2001; Schreck et al., 2001).

PFOS has previously been found to affect endocrine parameters,

sexual development and reproduction in fish (Ankley et al., 2005;

Fang et al., 2012; Mortensen et al., 2011; Oakes et al., 2005; Wang

et  al., 2011). However, to our knowledge there are no studies that

have examined in fish how elevated pCO2 might modulate the

response to PFOS exposure on hormonal and biotransformation

systems. Interestingly, the closely related environmental state of

lowered oxygen saturation (hypoxia) has been associated with such

effects in fish (Shang et al., 2006; Wu,  2009; Wu  et al., 2003).

External hypoxia and hypercapnia share some similarities as

both initially disturb the O2/CO2 balance in fish, and  exter-

nal hypercapnia has been suggested to cause internal hypoxia

(Michaelidis et al., 2007). Hypoxia produces the  stabilization

of hypoxia-inducible factor-1� (HIF-1�), which heterodimerizes

with HIF-1� (or aryl hydrocarbon receptor nuclear translocator:

arnt) to form HIF-1, a transcription factor that modulates the

expression of a variety of genes (Wenger, 2002). The  arnt is a  het-

erodimerization partner to the aryl hydrocarbon receptor (AhR),

a ligand-activated transcription factor that belongs to the helix-

loop-helix-PAS (bHLH-per-arnt-sim) family of gene regulatory

proteins. The AhR-arnt complex translocates to the nucleus where

it  transactivates transcription of genes containing XRE (xeno-

biotic responsive elements) in their upstream regions, including

increases in the expression of cytochrome P450s. Thus, both HIF-

1� and AhR compete for arnt, and consequently, hypoxia has been

shown to  decrease the expression of  cytochrome P450s (Zhang and

Walker, 2007; Khan et al., 2007),  which are involved in steroido-

genesis (both in metabolism and synthesis). Therefore, the aim

of  the present study was to investigate the potential endocrine

disrupting- and xenobiotic biotransformation effects of  hypercap-

nia and PFOS, given singly and also in combination. Our  hypothesis

is  that exposure of juvenile Atlantic cod to elevated CO2-levels will

produce alterations in the hormonal and xenobiotic biotransfor-

mation pathways, and that these effects will be  potentiated by

combined exposure with PFOS and be valuable in  deducing molec-

ular mechanisms of effect or mode of action. These effects were

analyzed by measuring muscle tissue sex steroid levels and  trans-

criptional expression of  genes involved in estrogenic responses,

steroid- and xenobiotic metabolism and hypoxic stress.

2.  Materials and methods

2.1. Chemicals and reagents

Perfluorooctane sulfonic acid (PFOS; linear, technical grade) was

purchased from Alfa Aesar (Karlsruhe, Germany). Tricaine mesy-

late (MS-222) was purchased from Norsk Medisinaldepot AS. TRIzol

reagent was purchased from Gibco-Invitrogen Life Technologies

(Carlsbad, CA, USA). iScriptTM cDNA synthesis kit,  iTaq  DNA poly-

merase, dNTP mix, iTaqTM Sybr® Green supermix with ROX and  EZ

Load 100 bp Molecular Ruler were purchased from Bio-Rad Labo-

ratories (Hercules, CA, USA). GelRedTM Nucleic Acid Gel Stain was

purchased from Biotium (Hayward, CA, USA). Enzyme immune-

assays for 17�-estradiol (Cat. No. 582251), testosterone (Cat. No.

582701) and 11-ketotestosterone (Cat. No. 582751) were pur-

chased from Cayman chemical company (Ann Arbor, MI,  USA).

2.2. Animals

Juvenile Atlantic cod (length 8.8  ±  0.7 cm, weight 4.4 ± 1.1 g)

were purchased from Atlantic Cod Juveniles (Rissa, Norway). Fish

were kept at the animal holding facilities at the Norwegian Uni-

versity of  Science and Technology (NTNU) Centre of  Fisheries and
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Aquaculture (Sealab) in circulating seawater from the Trondheim

fjord with a flow-through of  0.3 L min−1 kg−1 fish. The fish were

acclimatized to a water temperature of  10 ◦C and 12:12 h light:dark

photoperiod for  two weeks prior to the  exposure and received no

food during the acclimatization and  exposure periods.

2.3. Exposure and sampling

The fish were first exposed to nominal PFOS (i.e. 0, 100 and

200 �g PFOS/L seawater) concentrations for 1 h/day−1 over a 5-day

period in 3 different tanks of  120 fish per tank. After termination

of the PFOS exposure, fish from each group were further exposed

to three different CO2 exposure regimes (normocapnia, moderate

and severe hypercapnia) of 40 fish/CO2 exposure groups. This was

achieved by introducing gas mixtures containing, either 0 (normo-

capnia), 0.3% (moderate hypercapnia) or 0.9% (severe hypercapnia)

CO2 into the water. Tank water pH was measured continuously to

ensure a  correct and stable pCO2. Biological samples were collected

after 3, 6 and 9 days of  CO2 exposure. Fish were anesthetized using

tricaine mesylate (MS-222) prior to sampling. Length and weight

were measured before organs (including liver) and carcass were

collected for further analyses. At each sampling time, 5 individuals

were sampled from each exposure group for  parallel analysis of

PFOS burden, steroid hormone and gene expression (in here and

later the phrase gene expression is used synonymously to  gene

transcription, although it  is acknowledged that additionally, e.g.

translation and protein stability regulate gene expression) levels.

2.4. Chemical analyses

Accumulated burdens of  PFOS were analyzed in carcasses (head,

abdomen, brain and inner organs removed) of  fish from the  nor-

mocapnia PFOS exposure group. Concentrations were determined

by high-performance liquid chromatography coupled with tan-

dem mass spectrometry (HPLC/MS/MS). Data were processed using

Masslynx software (v4.0). Quantitative analysis was performed

using the isotope dilution method with MPFOS as internal standard,

a  five-point calibration curve (0–400 ng/mL) for the analyte (PFOS)

and a fixed concentration (20 ng/mL) of internal standard was

used. The procedure for sample work-up and HPLC–MS/MS anal-

ysis are previously described by Mortensen et al.  (2011) and Chu

and Letcher (2009). Water CO2 saturation during the  CO2 exposure

period was estimated based on measured pH using the CO2calc

application (Robbins et al., 2010), assuming a salinity of 33.8 ppm,

total alkalinity of 2223 �mol  kg−1, a  temperature of  10 ◦C and atmo-

spheric pressure of 10 dbar.

2.5. Steroid hormone extraction and analysis

In this study, steroid hormones were measured in muscle tissue

of exposed fish due to the  small size of the experimental fish that

made it difficult to obtain enough plasma sample for the analysis.

Measurement of sex steroids in whole-body homogenate has been

successfully applied in our laboratory previously (Arukwe et al.,

2008). In addition, alternative and non-invasive methods of ana-

lyzing steroid hormones in holding water has been successfully

applied in several fish species (Sebire et al., 2007, 2009; Scott and

Ellis, 2007; Felix et al., 2013).  The great interest in  the measure-

ment of steroid concentrations in water or tissue homogenates,

rather than in blood plasma is based on the concept that the pat-

tern of release of the steroid matched its pattern of  secretion in the

plasma (Sebire et al., 2007)  and it  has been shown that male and

female fish of many species release a wide range of  sex- and stress-

related steroids in free, glucuronidated and  sulphated forms into

the water (Sebire et al., 2007, 2009; Scott and Ellis, 2007; Felix et al.,

2013). Estradiol-17� (E2), testosterone (T) and 11-ketotestosterone

(11-KT) concentrations were measured in muscle tissue using

enzyme immunoassay (EIA) kits from Cayman Chemical Com-

pany (Ann  Arbor, MI,  USA). Muscle tissue was  homogenized in a

0.1 M  sodium-phosphate–buffer (pH 7.4) in a volume ratio of 1:4,

using a  Glass-Col homogenizer (Glass-Col, Terre Haute, IN,  USA)

with a glass tube and a Teflon pistil. Homogenate was centrifuged

(14,000 ×  g, 15 min, 4 ◦C). Supernatant (800 �L) was transferred

to glass tubes for steroid hormone extraction with organic sol-

vent. Briefly, the aqueous supernatant was thoroughly mixed with

diethyl ether (4 mL)  by vortexing, then the two phases were left to

separate. The aqueous phase was  frozen in an ethanol/dry ice bath,

the steroid-containing ether phase decanted into new glass tubes

and evaporated at 30 ◦C in a nitrogen atmosphere using a TurboVap

LV Concentration Workstation sample concentrator (Caliper Life

Sciences, Hopkinton, MA,  USA). Dry extracts were re-suspended in

300 �L  EIA buffer. Dissolved extracts were stored at −80 ◦C until

analysis. E2, T  and 11-KT were measured with EIA kits (Cayman)

according to the manufacturer’s protocol. Absorbance was read

at  405 nm using a Bio-Tek Synergy HT microplate reader (Bio-Tek

instruments, Winooski, VT, USA). Standard curves were prepared

in SigmaPlot, version 12.3 (Systat Software, 2012), using a 4-

parameter logistic fit plotting the %B/B0 (sample bound/maximum

bound) versus log concentrations.

2.6. Quantitative (real-time) PCR

Liver samples were homogenized in TRIzol reagent for  total

RNA isolation (Gibco-Invitrogen Life Technologies). Total cDNA was

generated from 1 �g total RNA using a  combination of oligo(dT)

and random hexamer primers from iScript cDNA synthesis kit,  as

described by the  manufacturer (Bio-Rad). Real-time PCR were per-

formed with gene-specific primers (Table 1), using the Mx3000P

real-time PCR system (Stratagene, La Jolla, CA) and MxProTM QPCR

software. Each 25-�L DNA amplification reaction contained 12.5 �L

iTaqTM SYBR® Green supermix with ROX (Bio-Rad), 0.83 �L cDNA

and 200 nm of each of  forward and reverse primers. The three-

step real-time PCR program included an enzyme activation step

at 95 ◦C (3 min) and 40 cycles of  95 ◦C (30 s), 60 ◦C (15 s) and 72 ◦C

(15 s).  Controls lacking cDNA template were included to determine

specificity of  target cDNA amplification. Cycle threshold (Ct) values

obtained from all target genes were converted into relative copy

number using the same pre-made standard plot of Ct versus log

copy number.

2.7. Statistical analyses

Statistical analyses were performed using SPSS Statistics soft-

ware, v20.0 (IBM, 2012). Datasets were, if  necessary, normalized

using natural log (ln) or square root transformations. Homoscedas-

tic datasets were investigated using one-way ANOVA followed

by Tukey’s post hoc  multiple comparison test. Heteroscedastic

datasets and/or datasets with missing values were examined using

the robust Welch test of equality of means and Games-Howell post

hoc test. The level of  statistical significance was set to  ̨ = 0.05.

As  the combination of the high internal variation, low n lowered

the statistical power to  detect differences during all-pairwise com-

parisons, borderline significance (0.10 < p  < 0.05) were included (as

previously discussed by Hackshaw and Kirkwood (2011)). Sin-

gle measurements or deviating individual responses that were

removed, as outliers from presented data were first identified using

box-and-whiskers plots and further evaluated with Grubbs test.

Multivariate data analysis was  performed using Simca-P+, v12.0

(Umetrics AB,  2008). Principal component analysis (PCA) models

were made separately for  each sampling day. Gene transcript levels

and steroid hormone levels, in  addition to estrogen/androgen ratio

and condition factor (CF = weight/length3 × 100), were included in
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Table  1
Primer pair sequences and  amplicon size used in the present study.

Target gene Primer sequence (5′–3′ order) Amplicon size (bp)

Forward Reverse

ER-�  CCTTGAGCTGTCCCTTCATGA GTCTTGTGCGAAGATGAGTTTCC  121

Vtg-�  AGACTGGCCTGGTCGTCAAA  GCGAGGATAGAGGCAGGGAT  121

Vtg-�  ACGTTCAACGAGCGCATCTT TGTTGGATGCCAGATCCTTCT  121

ZP-2  GCCACTCTTCCCAACATCGA CGGAGCCACAGGAAGTTACAG  124

ZP-3  CTTGGGACCGTGTTGGTGTT  CCGTCCGCACAGTACTTCCT  134

CYP1A  TGGAGATCTTCCGGCACTCT CAGGTGTCCTTGGGAATGGA  101

HIF-1�  GCTGCTGCCGTCAGACCTG  GCAGTCGTAGCGGGTGAGC  97

CYP3A  GGATCCCGGTGAAGGACATA  CAATGAGTCACAGCGGCTCTT  135

Table 2
LC–ESI(−)–MS/MS measurements of PFOS in carcass from fish exposed to the  various nominal PFOS concentrations and maintained in water with normal CO2 saturation for

3,  6 and  9 days, respectively.

Nominal conc. (�g  PFOS/L−1 water) Tissue conc. (ng  PFOS/g−1 ww,  mean ±  SEM) Total

Day  3  Day  6  Day 9

0  2.6 ±  0.1 2.5 ±  0.2 2.8 ±  0.2a 2.6 ±  0.1

100  1013 ±  122.7 736.3 ±  102.9 769.9 ±  63.1 840.0 ±  62.6

200  1693.4 ±  154.2 1754.2 ±  170.1 1425.7 ±  401.8b 1674.1 ±  93.5

a Each concentration is given as a mean of n =  5  individuals, except (n =  3).
b Each concentration is given as a mean of n =  5  individuals, except (n =  2).

the models. Variables were centered and scaled to unit variance,

and log transformed if  necessary. Outliers were identified using the

Hotelling T2 95% range and removed when the single observation

appeared to cause major effects on the overall model. Explained

variation (R2) and  predicted variation (Q2) were calculated for each

principal component (PC). Between various exposure scenarios,

significant differences in individual scores along each PC were ver-

ified by variance analysis on extracted component scores.

3. Results

3.1. Experimental validation

No significant (p  < 0.1) differences in  survival and growth

maintenance (length, weight, condition factor) between exposure

groups and sampling days were observed. Fasting and exposure-

related stress therefore did not appear to  exert any considerable

negative effect on the overall physiological condition of the  exper-

imental fish, which otherwise could have biased the  hormonal

responses assessed in the study. LC–ESI(−)–MS/MS analysis veri-

fied that PFOS readily accumulated during the  short-time exposure

regime, and that high burdens of  PFOS were maintained in the  fish

during the  post-exposure sampling period (Table 2).  No significant

(p < 0.1) alterations in PFOS burdens were observed throughout the

CO2 exposure period. However, the data presented in this paper will

be expressed on the  nominal PFOS concentration levels. At  onset of

the CO2 exposure scenarios, tank water pH (Fig. 1) decreased by

approximately 0.1 unit in all CO2 scenario tanks as fish were being

added, presumably due to  the added release of  CO2 by respiration.

During the exposure period, variation in water pH and estimated

CO2 saturation was negligible between the  three water tanks of

normal CO2 saturation. Within the moderately (0.3%) and highly

(0.9%) increased CO2 scenarios, this internal variation was slightly

higher. Mean pH  was measured to be  7.70 (0%), 7.20 (0.3%) and 6.73

(0.9%), corresponding to  a  drop in pH of  approximately 0.5 and 1.0

unit for the moderate and  high CO2 level scenarios, respectively.

3.2. Effects on sex steroid hormones and estrogenic responses

During steroid hormone analysis, samples from day 6 were split

between two EIA well plates required to  analyze each hormone,

due to  the high number of  individuals. As there were indications

of  poor comparability in  the exact concentrations given by the

two standard curves, day  6 results were omitted from the final

results. Further interpretations have focused on relative differences

between exposure groups within each sampling day, rather than

the absolute concentrations of steroid hormones.

Severe hypercapnia (0.9%) increased cellular E2 levels, com-

pared to the  control (i.e. no PFOS group) at day 3 and, in  an apparent

pCO2-dependent manner, at day 9 (Fig. 2A). Exposure to PFOS alone

had no significant effects on E2 levels, but at the combined expo-

sure with 0.9% CO2,  the seemingly concentration-dependent effects

produced by hypercapnia alone, was significantly increased at day

9  with 200 �g PFOS (Fig. 2A). Similarly, testosterone (T) levels

increased in an apparent pCO2-dependent manner during severe

hypercapnia at day 3 and  9,  although not statistically significant

Fig. 1. Daily measurement of experimental tank  water pH,  before and  during CO2

exposure periods. The  vertical line indicates the first measurement after fish were

added  to the tanks. CO2 was  introduced as CO2-enriched air, where normal CO2 tanks

were added with normal air and the  medium  and high CO2 tanks were added air

with  0.3 and 0.9% additional CO2. Line type corresponds to PFOS exposure scenario

(0,  100 and 200 �g  PFOS L−1) the fish  in each  tank were subjected to prior to  CO2

exposure.
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Fig. 2. Muscle tissue concentration of 17�-estradiol (E2: A),  testosterone (T: B) and  11-ketotestosterone (11-KT; C) in juvenile Atlantic cod (Gadus morhua) after exposure to

the  various combinations of PFOS (0,  100  and 200 �g L−1) and altered water CO2 saturation (0, 0.3 and 0.9% increase in CO2). Steroid hormones were analyzed in fish  sampled

at  day 3 and  9  into the  CO2 exposure period. Steroids were extracted from fish muscle and concentrations correspond to 533 mg tissue/mL extraction volume. Data are

given  as mean values ± standard error of the mean (SEM). Different letters indicate significant differences between exposure groups  (p  <  0.05). Asterisk (*) denotes borderline

significance  (0.10 <  p < 0.05), n  = 5 in all groups.

(Fig. 2B). PFOS exposure had  no significant effects on T  levels,

when given alone. Exposure to combined 100 �g PFOS and 0.3%

pCO2 produced a significant increase in  T levels at day 3,  while at

day 9, T levels resembled the observed effects of  severe hypercap-

nia (0.9%) exposure alone. Levels of  11-KT were not significantly

altered by any exposure scenario at day 3,  but were apparently

increased by severe hypercapnia (0.9%) at day 9 (Fig. 2C). PFOS

exposure alone did not produce significant effects on cellular 11-

KT levels. 11-KT measured after combined exposure to  increased

CO2 (both moderate and severe hypercapnia) and  PFOS resem-

bled effects of  CO2 exposure alone, with combined 0.9% CO2 and

100 �g PFOS L−1, significantly increasing 11-KT. The total estrogen-

to-androgen ratio (E2 to T + 11-KT) showed comparable effects to

the scenarios observed when these variables were measured indi-

vidually, but these were not statistically significant (Fig. 3).

Moderate hypercapnia (0.3% CO2) increased hepatic ER˛  mRNA

expression (Fig. 4) with borderline significance, compared to the

control group at day 6,  and severe (0.9%) compared to  mod-

erate hypercapnia, at day 9.  PFOS exposure had no significant

effects on ER  ̨ transcription during normocapnia exposure, while in

the combined PFOS and hypercapnia (both moderate and severe)

exposures, the ER  ̨ transcript were higher (albeit not significant)

than during hypercapnia exposures alone, at day 6  (Fig. 4). The

expression of  Vtg-  ̨ (Fig. 5A) and Vtg-  ̌ (Fig. 5B) mRNA showed

comparable expression patterns, displaying minor significant vari-

ations between the different exposure groups, except from the

group exposed to 100 �g PFOS L−1 alone which produced a border-

line significant increase of  Vtg-  ̌ transcripts at day  3. Although not

statistically significant, a tendency toward reduction of  transcrip-

tion with increasing PFOS concentration and hypercapnia were

observed for  both Vtg subunit genes at sampling day 6 (Fig. 5A

and B). These included increased transcript levels during elevated

CO2 saturation in the absence of PFOS, a  seemingly antagonistic

effect of combined PFOS and elevated CO2 exposure at day 6,  and

a time-and concentration-dependent effect of PFOS during normal

CO2 saturation where 100 �g PFOS L−1 increased transcript levels

at day 6 and  200 �g PFOS L−1 at day 9 (Fig. 5).

ZP-2 mRNA levels (Fig. 6A) were significantly increased by

severe hypercapnia (0.9% CO2) and 200 �g PFOS exposure con-

centrations at day 3, as compared to the  control group. At  day

6, an apparent reduction effect between PFOS concentrations and

elevated CO2 (moderate and severe hypercapnia) were observed.

At day 9, hypercapnia alone increased ZP-2 mRNA expression

with borderline significance, while exposure to 200 �g PFOS alone,

significantly increased ZP-2 transcript expression, compared to

the control group. Combined PFOS and CO2 exposures produced

increase of ZP-2 transcript levels, compared to the control, resem-

bling the effects of  hypercapnia alone. Borderline significance was

observed in the 200 �g PFOS with 0.9% CO2 exposure group. Trans-

criptional expression of ZP-3 (Fig. 6B) did not display any  significant

alterations following the exposure regimes except for day 9, where

transcript levels in the 100 �g PFOS/0.9% CO2 group exceeded the

mRNA levels in groups exposed to PFOS and 0.3% CO2 saturation

combined (Fig. 6B).  Overall, genes for the two ZP isoforms showed

differential response patterns, with ZP2 sharing similarity with Vtg

isoform genes, after exposure to PFOS singly or in combination with

hypercapnia.

3.3. Effects on xenobiotic and steroid metabolizing system and

hypoxic pathway

Exposure to hypercapnia alone increased cyp1a mRNA expres-

sion in a  concentration-dependent manner at both day  3, 6  and

9, compared to the control (Fig. 7A). This mRNA induction was

extensive at day 3, and gradually decreased thereafter with time.

Exposure to PFOS concentrations alone had no significant effects
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Fig. 3. The ratio of estrogen to androgen concentrations in the exposed juvenile

Atlantic  cod  (Gadus morhua) based on 17�-estradiol (E2), testosterone (T) and 11-

ketotestosterone (11-KT) presented in Fig. 2.

on cyp1A transcription, and  combined exposure to both PFOS

concentrations and hypercapnia (moderate and severe) produced

transcriptional changes that largely resembled those produced by

hypercapnia exposure alone (Fig. 7A). For cyp3a mRNA expression,

apparent concentration-dependent increases (albeit not signif-

icant) were observed after exposure to moderate and severe

hypercapnia at day 6 (and also day 9: Fig. 7B). These effects were

sustained in  the  presence of PFOS concentrations. The HIF-1  ̨ mRNA

expression (Fig. 8) was significantly increased by moderate and

severe hypercapnia in an apparent pCO2-dependent manner at day

6, as compared to the control (no PFOS, normal CO2). When CO2 and

PFOS exposure were combined, this pattern was no longer observed

(Fig. 8).

3.4. Multivariate data analysis

Loading plots of  principal component analysis (PCA) produced

significant grouping of individual scores according to the exposure

scenarios at days 6 and 9. At day 6 (Fig. 9A), observations from com-

bined PFOS + pCO2 exposure were situated opposite to the Vtg-  and

ZP-2 loadings along PC1. These individuals clustered according to

nominal PFOS concentration, with 200 �g PFOS + CO2 scoring sig-

nificantly higher than both the 100 �g PFOS + CO2 group (p = 0.041)

and the remaining single exposure groups (p  = 0.001). Scores from

single exposure to  either PFOS or hypercapnia were more scat-

tered, but in general, located closer around the  Vtg/ZP-2 loadings.

These patterns indicate that when exposures were combined,

PFOS and hypercapnia interacted negatively with increasing PFOS

Fig. 4.  Hepatic levels of mRNA of the gene encoding estrogen receptor � (ER-˛) in

juvenile Atlantic cod (Gadus  morhua) after exposure to the various combinations

of  PFOS (0, 100  and 200 �g L−1) and altered water CO2 saturation (0, 0.3 and  0.9%

increase  in CO2). Day 3, 6  and 9  corresponds to  days into the CO2 exposure period.

Messenger RNA  (mRNA)  levels were analyzed by real-time PCR. Data are  presented

as  percentage (%)  of control (i.e. the no  PFOS, normal CO2 group)  and  based on mean

values (n =  5) ±  SEM. Different letters indicate significant differences between expo-

sure  groups (p <  0.05). Asterisks (*) denote borderline significance (0.10 < p <  0.05).

concentration on the expression of  Vtg- and ZP-2 at this particular

day  of sampling. The other E2-inducible genes did not cluster with

Vtg/ZP-2, and ER˛, cyp1a,  cyp3a and HIf-1  ̨ loaded approximately

at the  opposite side of  the bi-plot. This could indicate some kind

of  negative correlation between the responses of Vtg/ZP-2 and ER˛,

cyp1a, cyp3a  after the various exposure regimes. However, ER  ̨ was

not very distinctly modeled in the  PCA, as  seen by the moderate

loading along both principal components (PCs).

At day 9 (Fig. 9B), scores from all three CO2 scenarios were signif-

icantly separated along the  first PC with increasing CO2 saturation

(p = 0.000–0.029), revealing both elevated levels of sex steroids

including E2 and cyp1a, and also a concomitant increase in tran-

scription of the  E2-responsive genes Vtg-˛,  Vtg-ˇ  and ZP-2 as CO2

saturation increased. The  highest CO2 saturation group (i.e. severe

hypercapnia) also scored significantly higher than both the nor-

mal  (p = 0.036) and moderately elevated CO2 groups (p = 0.039)

along PC3, signifying particularly high levels of  E2 as well as

higher expression of ER  ̨ and cyp1A. The E2 loading correlates pos-

itively with both the  Vtg/ZP-2 clustered along PC1 and ER˛  along

PC3. Within the  normocapnia group, the individuals exposed to
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Fig. 5. Hepatic levels of mRNA  of the gene encoding vitellogenin subunit � (Vtg-˛: A) and subunit � (Vtg-ˇ: B),  in juvenile Atlantic cod (Gadus  morhua) after exposure to  the

various  combinations of  PFOS (0, 100 and  200  �g L−1) and  altered water CO2 saturation (0, 0.3 and 0.9%  increase in CO2). Day  3,  6  and  9 corresponds to days into the CO2

exposure period. Messenger RNA (mRNA)  levels were analyzed by real-time PCR. Data are presented as percentage (%)  of control (i.e. the no PFOS, normal CO2 group) and

based  on mean values (n =  4–5) ±  SEM. Asterisk (*) denotes borderline significant difference (0.10 <  p  < 0.05) from control group (no PFOS, normal CO2).

200 �g PFOS L−1 scored significantly higher along PC1 (p = 0.001),

yet lower than the exposure groups exposed to  severe CO2 sat-

uration (p = 0.006). This clustering signifies a positive correlation

between exposure to  high concentrations of PFOS and  the expres-

sion of E2 responsive genes. Notably, this pattern was not evident

for individuals exposed to  PFOS in combination with elevated CO2

scenarios (Fig. 9B).

4. Discussion

Changes in water temperature, pO2 and pCO2 can induce

hypoxic and hypercapnic conditions in aquatic animals. These are

climatic conditions that are thought to  affect several basic cellular

and physiological mechanisms. Yet, possible adverse effects of ele-

vated CO2 (hypercapnia) in  combination of other environmental

stresses on teleost fish have scarcely been investigated. The con-

tinued elevation of  oceanic CO2 saturation is inevitable given the

anthropogenic emissions scenarios predicted for the  coming years

(Caldeira and Wickett, 2003, 2005). Increased knowledge of physi-

ological implications from environmental hypercapnia is therefore

needed for all aquatic organisms. Despite current acknowledg-

ment of  possible adverse population effects of endocrine disruptors

(Arcand-Hoy and Benson, 1998; Jenssen, 2006), studies on how

hypercapnia may  induce effects on  sex steroid hormone system and

possibly overt reproduction in aquatic organisms are apparently

absent from current scientific literature. Furthermore, combined

effects of elevated aquatic CO2 saturations and  emerging or legacy

POPs, including the highly bioaccumulative PFOS, also constitute

a knowledge gap in the  literature. To  our knowledge, the present

study is the  first of its kind to evaluate such effects using combined

exposure to  a PFAS and elevated levels of  CO2 saturation in any fish

species or  lower vertebrate.

4.1. Effects of hypercapnia

In the present study, pH in  the  normocapnia tank water was

slightly below what is considered normal values for  surface ocean

water (pH 8.1 ±  0.3; Turley et al. (2006)). When considering rela-

tive alterations in pH, the 0.5 unit decrease in pH in the moderate

hypercapnia exposure represents ocean acidification predicted to
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Fig. 6. mRNA  of the gene encoding zona pellucida protein 2  (ZP-2: A) and  3  (ZP-3: B) in hepatic tissue of juvenile Atlantic cod (Gadus  morhua) after exposure to the various

combinations  of PFOS (0, 100 and  200  �g  L−1) and  altered water CO2 saturation (0, 0.3 and  0.9% increase in CO2).  Day  3,  6  and  9 corresponds to  days into the CO2 exposure

period.  Messenger RNA  (mRNA)  levels were analyzed by real-time PCR. Data are presented as percentage (%)  of  control (i.e. the no PFOS, normal CO2 group) and based on

mean  values (n  = 5) ±  SEM. Different letters indicate significant differences between exposure groups (p <  0.05). Asterisk (*) denotes borderline significance (0.10 < p  <  0.05).

occur within year 2300 (further decrease of 0.4–0.9 pH units), while

the 1.0 unit pH decrease in the high CO2 scenario (severe hyper-

capnia) represents a  more extreme level of acidification (Caldeira

and Wickett, 2003, 2005). The  experimental fish were expected

to acclimatize to the altered CO2 saturation in terms of inter-

nal pH by the time sampling was initiated (i.e. 3 days into the

CO2 exposure), and at least toward the end of the entire expo-

sure period. This assumption was based on studies of  acid–base

regulatory capacity of several marine teleosts, including Atlantic

cod, exposed to comparable levels of  hypercapnia (Hayashi et al.,

2004; Larsen et al., 1997). The observed effects in  the present

study may therefore, to  a certain extent, represent environmentally

relevant consequences of prolonged external hypercapnia. Hyper-

capnia alone produced significant elevation of cellular E2 levels in

an apparent CO2 saturation-dependent response pattern. A similar

response was also apparent for  the  androgens analyzed, namely T

and 11-KT. The increased expression of E2-responsive transcripts

were in accordance with elevated levels of cellular E2, suggest-

ing that the  altered sex steroid levels may  directly be associated

with biological effects in the hypercapnia-exposed fish. Indeed,

this effect paralleled hypercapnia-dependent modulation of cyp1a

expression (cyp3a  at day 6 and 9), singly and also in combina-

tion  with PFOS. These patterns of effects were increasingly evident

throughout the CO2-exposure period, further emphasizing that the

observed effects on the sex steroid and biotransformation systems

may  represent long-term, rather than transient responses to alter-

ation in CO2 saturation. Although the effects of hypercapnia were

interesting, they were unexpected for  the following reasons. Firstly,

external hypercapnia is considered a stressor to  fish (Cech and

Crocker, 2002; Fivelstad et al., 1999),  and stress responses are gen-

erally  associated with a  decrease in  both sex steroid hormones and

impaired reproductive responses (Clearwater and Pankhurst, 1997;

Haddy and Pankhurst, 1999; Schreck et al., 2001). Secondly, both

field and laboratory studies have shown that hypoxia, a  condition

that is related to greater concentrations of CO2,  causes endocrine

disrupting effects, such as decreases in concentrations of sex  steroid

levels (Wu,  2009).  However, endocrine responses to stressors may

be  biphasic with directionality depending on the  severity of  the
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Fig. 7. Hepatic levels of cytochrome cyp1a (A)  and  cyp3a (B) mRNA  in juvenile Atlantic cod (Gadus  morhua) after exposure to the various combinations of PFOS (0, 100  and

200  �g L−1)  and  altered water CO2 saturation (0, 0.3 and  0.9%  increase in CO2). Day  3, 6 and 9  corresponds to days into the CO2 exposure period. Messenger RNA  (mRNA)

levels  were analyzed by real-time PCR.  Data are  presented as percentage (%) of control (i.e. the no PFOS, normal CO2 group) and based on mean values (n =  5) ± SEM. Different

letters  indicate significant differences between exposure groups (p <  0.05). Asterisk (*) denotes borderline significance (0.10 <  p  < 0.05).

challenge or exposure dose (Schreck, 2010). Stress has indeed also

been reported to accelerate reproduction processes in fish, appar-

ently dependent on the fish species, maturational stage and the

severity of stress (Schreck et al., 2001).  A few exceptions of  time-

and sex-specific elevations in  sex steroid levels in fish have also

been reported following hypoxia exposure (Shang et al., 2006; Wu

et al., 2003). However, any direct comparison between hypoxia

studies and the present study will be difficult to make, as it was not

possible to neither ascertain nor disprove any induction of  inter-

nal hypoxia due to  external hypercapnia in the present study. This

assumption is  supported by the  fact that HIF-1  ̨ transcript levels

were elevated in a CO2 saturation-dependent manner at day 6.

However, the transient nature and long lag-time from hypercap-

nia onset until HIF-1  ̨ transcriptional response were indicative of  a

secondary rather than primary response to altered CO2 saturation.

Furthermore, the exact impact of internal hypoxia on HIF-1  ̨ tran-

scription compared to regulation at the protein levels is  not well

understood (Dery et al., 2005; Rimoldi et al.,  2012; Rissanen et al.,

2006; Soitamo et al., 2001; Terova et al., 2008).

There is little research information about the response of  fishes

and other non-calcifying marine organisms to  increases in the level

of dissolved CO2 and reduced sea water pH that are predicted to

occur over the coming century. In the orange clownfish, Amphiprion

percula, elevated dissolved CO2 and reduced pH did not produce any

effect on the maximum swimming speed of  settlement-stage lar-

vae, but there was,  however, a  weak positive relationship between

length and  swimming speed in the same fish, suggesting that lev-

els of  ocean acidification likely to  be  experienced in the near future

might not, in isolation, produce significant growth and performance

effects of  larvae from benthic-spawning marine fishes (Munday

et  al., 2009). In another study, Forsgren et al. (2013), reported

that, while elevated CO2 did not effect either the occurrence of

spawning or clutch size, it  did increase embryonic abnormali-

ties, egg loss and significantly affected the  phototactic response of
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newly hatched larvae. On  the mechanistic side, the causal relation-

ship between external hypercapnia and elevated sex  steroid levels

and CYPs observed in the present study requires further inves-

tigation. Reduced steroid metabolism does not appear plausible

given that transcript levels of hepatic cyp1a and cyp3A – central

enzymes in steroid hormone metabolism (Scornaienchi et al., 2010;

Young et al., 2005) were either increased or  remained at con-

trol levels during hypercapnia exposure. In  mammalian systems,

potential crosstalk indicate that hypoxia or hypoxia mimics are

capable of reducing AhR activity measured as XRE reporter activity,

CYP1A mRNA induction or EROD activity (Wenger, 2002; Zhang and

Walker, 2007; Khan et al., 2007)). HIF-1�  and AhR compete for arnt,

and as a  result, hypoxia has been shown to decrease the expres-

sion of  cytochrome P450s (Zhang and Walker, 2007; Khan et al.,

2007), which are involved in steroidogenesis (both in metabolisms

and synthesis). Our findings support the hypothesis for  competition

between HIF-1� and AhR for a shared pool of  arnt  and consequently

interfere with the expression of AhR-regulated genes, in addition to

other mechanisms of crosstalk that may  also occur (Fleming et al.,

2009). The cytochrome P450 system is involved in steroidogenesis

(Arukwe and Goksøyr, 1997), and hypoxia may  impair fish repro-

duction through this pathway, among other possible mechanisms

of action.

Despite the classical roles in xenobiotic metabolism, the AhR

is involved in several developmental processes, and functional

interaction (or  crosstalk) between AhR, endocrine systems and

transforming growth factor � (TGF-�)  (a member of TGF-�  super-

family) has been reported (Gomez-Duran et al., 2009; Olufsen

and Arukwe, 2011). Although we do  acknowledge the potential

discrepancy between mRNA expression and changes in  protein

and/or enzymes levels for biotransformation systems, as well as

the presence of  additional enzymes, an effect of hypercapnia on

steroid synthesis rather than catabolism appears to  be  a  more

likely mode of  action. Sex steroid hormones are synthesized in

a shared pathway where T is  precursor for both E2 and 11-KT

(Young et al., 2005).  The apparent simultaneous increase in all

three steroids could indicate that the effects of  hypercapnia were

exerted upstream of T  synthesis in the steroidogenesis pathway

or higher up in the hypothalamus–pituitary–gonadal (HPG)-axis.

When the upper HPG-axis is considered, altered ion balance–as a

result of avoiding internal acidosis during external hypercapnia –

was recently suggested to interfere with normal neurotransmitter

function in the teleost brain (Hamilton et al., 2014; Nilsson et al.,

2012). Altered function of  �-aminobutyric acid type A receptors

(GABAAR) during near-future levels of  hypercapnia have already

been demonstrated and linked to  altered behavior in larvae and

juveniles of several teleost species (Hamilton et al., 2014; Nilsson

et al., 2012).  Interestingly, GABA-signaling is also involved in reg-

ulating the secretion of  gonadotropin-releasing hormone (GnRH)

(Zohar et al., 2010), which further regulate sex  steroid synthesis

through secretion of gonadotropin (Levavi-Sivan et al., 2010). The

various observed effects of GABA, both depolarizing and hyper-

polarizing GnRH neurons, are however not yet fully understood

(Herbison and Moenter, 2011). Although the liver is not a classi-

cal steroidogenic organ, but, there are several reports that have

suggested the production of  local and specialized hormones in the

liver. For example, the expression of cyp19 mRNA has previously

been detected in the liver of a  number of teleost species including

Atlantic halibut (Hippoglossus hippoglossus) (van Nes et al., 2005),

goby (Trimma okinawae) (Kobayashi et al., 2004),  Atlantic salmon

(Salmo salar) (Pavlikova et al., 2010) and aromatase activity has

been reported in  sea bass liver (Dicentrarchus labrax) (Gonzalez

and Piferrer, 2003). Hepatic aromatase expression is also well doc-

umented in rats (Purba et al., 1994; Yamaguchi et al., 2001; You

et al., 2001). Hepatic cyp19 mRNA expression and enzymatic activ-

ity during peak vitellogenesis could serve as an extragonadal source

Fig. 8. mRNA  of the gene encoding hypoxia-inducible factor 1� (HIF-1˛) in juvenile

Atlantic  cod (Gadus morhua) liver after exposure to  the  various combinations of PFOS

(0,  100 and  200 �g L−1)  and  altered water CO2 saturation (0,  0.3 and  0.9%  increase

in  CO2). Day  3, 6 and 9  corresponds to days into the CO2 exposure period. Mes-

senger  RNA (mRNA)  levels were analyzed by real-time PCR. Data are presented as

percentage (%)  of control (i.e. the no PFOS, normal CO2 group) and based on mean val-

ues  (n = 5) ±  SEM. Different letters indicate significant differences between exposure

groups  (p  < 0.05). Asterisk (*) denotes borderline significance (0.10 < p <  0.05).

of  estrogen for  the  induction of the high Vtg levels required during

that particular period of  rapid oocyte growth (Piferrer and Blazquez,

2005). Thus, hepatic estrogen was suggested to  act as  a  comple-

ment to ovarian estrogen in the stimulation of Vtg synthesis in

vitellogenic organisms (Assisi et al., 2000).

4.2. Effects of  PFOS

During normocapnia, PFOS exposure appeared to  increase tran-

scription of  several hepatic E2-inducible genes in a time- and

concentration dependent manner. Despite the general absence

of  statistical significance, transcripts of  ER�, Vtg-�,  Vtg-� and

ZP-2 peaked in fish exposed to100 �g PFOS L−1 at day 6 and to

200 �g PFOS L−1 at day 9. This gene induction seemed to occur

independently from E2, of which levels remained unaltered by

PFOS exposure. PFOS has previously been suggested to  be a  weak

ER ligand (Benninghoff et al., 2011; Cheng et al., 2010; Liu et al.,

2007),  but such a  direct interaction may  appear as a less plausible
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Fig. 9. Principal component analysis (PCA) bi-plot of sex steroid hormone levels (17�-estradiol, E2; testosterone, T;  11-ketotestosterone, 11-KT), the  estrogen-to-androgen

ratio  (E2/T, 11-KT), gene transcription (ER-˛; Vtg-˛/ˇ; ZP-2/3; cyp1a and cyp3a; HIF-1˛) and  condition factor (CF) of fish sampled at day  6  (A) and 9  (B) into the CO2 exposure

period.  Score letters correspond to exposure group, where A, B and  C  represent fish exposed to  0, 100  and  200 �g PFOS; D, E  and  F represent 0.3% CO2 combined with 0, 100

and  200 �g PFOS; and G, H and I represent 0.9% CO2 combined with 0, 100 and 200 �g PFOS, respectively. The  total PCA  model  consisted of  three principal components (PCs)

explaining  56.4% of  the total variance and  with cumulative Q2 =  −0.108. PC1 separated the exposure groups according to  CO2 saturation, indicating higher expression of the

E2-inducible  genes Vtg-˛/  ̌ and  ZP-2 and, secondly, elevated levels of sex steroid hormones including E2 in fish  exposed to 0.9% CO2 (red) compared to 0.3% (blue) and 0%

(normocapnia;  gray/green) respectively, regardless of PFOS exposure concentration. PC2 mainly modeled inter-group variation, while PC3  further separated the 0.9% CO2

groups (red) from the  others, indicative of higher levels of  ER-˛,  E2 and  cyp1a.  200 �g PFOS alone also scored higher along PC1, indicative of estrogenic effects as seen for

hypercapnia  exposure. (For interpretation of the  references to color in this figure legend, the reader is  referred to  the  web  version of  this article.)

explanation when taking into consideration the long lag-time

between PFOS-exposure and transcriptional responses. Several fac-

tors besides E2 might also modulate expression of  E2-regulated

genes, including pituitary factors (Vaisius et al., 1991), other hor-

mones or receptor cross-talks (Ding, 2005; Mori et al., 1998;

Nuñez et al., 1997). Several nuclear receptors have been sug-

gested to affect estrogenic gene expression. Among these are

peroxisome proliferator-activated receptors (PPARs) and thyroid

hormone receptors (TRs) that were affected by PFOS (Arukwe and

Mortensen, 2011; Fang et al., 2012; Shi et al., 2009; Shipley et al.,

2004). The present findings are in accordance with other studies

indicating estrogenic effects of PFOS in  teleost species, demonstrat-

ing altered, and mostly elevated expression of estrogen responsive

genes (Du et al., 2009; Fang et al., 2012; Keiter et al., 2012; Liu et al.,

2007). In addition, others have also reported altered sex steroid

levels (Ankley et al., 2005; Mortensen et al., 2011; Oakes et al.,

2005). Compared to these studies, the degree of  significant estro-

genic effects was generally lower in the present study. However,

the PFOS exposure was performed with shorter duration and lower

nominal concentration compared to most of the aforementioned

studies. Accumulated levels of  PFOS detected in exposed fish in the

present study were still considerably higher than what has been

detected in biomonitoring studies (Houde et al., 2011) and better

represent PFOS burdens detected in fish inhabiting specific highly

polluted areas (Delinsky et al., 2010; Moody et al., 2002).

4.3. The combined effects of  hypercapnia and PFOS

In combined exposure groups, steroid hormone levels appeared

to be mainly determined by CO2 saturation, while estrogenic gene

expression levels did not directly resemble individual exposure

scenarios neither to  hypercapnia nor PFOS. This was particularly

evident at day 6,  where an apparent antagonistic effect on Vtg- and

ZP-2 mRNA was observed. No such effect was observed for ER�, of

which increased mRNA levels was observed at combined PFOS and

hypercapnia exposure at sampling day 6. Low-copy mRNA tran-

scription may  indeed fluctuate considerably over time (Kaufmann

and van Oudenaarden, 2007). Nevertheless, the apparent inconsis-

tency between cellular levels of E2 and detected estrogenic effects

at  the  transcript level, as compared to hypercapnia exposure alone,

might suggest altered hepatic sensitivity toward E2 in  fish exposed

to combined hypercapnia and PFOS. The simultaneous decrease and

increase in expression of the various E2-responsive genes could

perhaps be explained by crosstalk between various nuclear recep-

tors, including AhR (Bugel et al., 2013). For example, variability

in  specific estrogen response element (ERE) sequences, flanking

sequences and the total number of  ERE-like sequences in promoters

of different E2-responsive genes may  produce differential affinity

for ER (Gruber et al., 2004) and differential potential for cross-

talk with other nuclear receptors (Scott et al., 1997). Compared

to the fish exposed to PFOS alone, individuals exposed to  both

PFOS and hypercapnia had  modulated estrogenic response, pos-

sibly yielding a different foundation for interactive effects by PFOS.

The presence or activity of other nuclear receptors might also have

been altered as  fish had to spend energy adapting to  hypercapnia,

possibly altering the potential for HIF-1� and AhR crosstalk. Accu-

mulated burdens of PFOS by the  time of sampling were not analyzed

in fish from the combined exposure groups. Any alterations in PFOS

toxicokinetics during hypercapnia cannot be ruled out. Yet, this is

not sufficient to explain the gene expression patterns observed in

combined exposure scenarios.

On the biotransformation pathways, the effects of hypercapnia

on organismal biotransformation pathways are not well stud-

ied. However, HIF-1� and  cyp1a are used as biomarkers for

environmental exposure to hypoxia and  POPs whose mode of

action is through the AhR (Rahman and Thomas, 2012). Expo-

sure of  Atlantic croaker (Micropogonias undulatus) to 2–4 weeks

hypoxia (1.7 mg/L dissolved oxygen) was shown to  produce
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significant decreases in liver cyp1a mRNA and protein levels

compared to fish held under normoxic conditions (Rahman and

Thomas, 2012). Elsewhere, hypoxia was also shown to decrease

CYP1A-mediated ethoxyresorufin-O-deethylase (EROD) activity in

zebrafish embryos (Fleming and  Di  Giulio, 2011) and cyp1a mRNA

levels in Atlantic cod liver (Olsvik et al., 2006). Mammalian in vivo

studies using rabbit, and rodent in vitro hepatocyte studies also

showed decreases in cyp1a and cyp1a2 mRNA and protein expres-

sion by hypoxia, whose effects on CYP1As are mediated through

HIF-1�, cellular cytokines and reactive oxygen species (ROS)

(Fradette et al., 2007; Fradette and  Du Souich, 2004). These studies

are direct opposite of  the effects of hypercapnia observed in the

present study showing persistent increase of cyp1a mRNA in all

sampling days. The  modulation of  xenobiotic-mediated increase or

decrease of  cyp1a expression by hypoxia is not surprising, given

that HIF-1� response to hypoxia and the  AhR-cyp1a response to

xenobiotics are mediated through the  same nuclear dimeric part-

ner, namely the  AhR nuclear translocator (Arnt). Our findings and

other studies showing decreases of CYPs suggest potential inter-

actions sites between these two pathways (Fleming et al., 2009)

and the ER pathway (Bugel et al., 2013). These interactions may

have potential adverse physiological and adaptation effects to these

environmental stressors, including hypercapnia and emerging con-

taminants.

4.4. Possible consequences on reproduction and overt physiology

In  the  present study, estrogenic effects were detected at the

cellular level as a  result of hypercapnia exposure, singly as well

as in combination with PFOS, in terms of  elevated levels of  E2

and E2-inducible gene expression. The  estrogen-to-androgen ratio

were maintained without major alterations as also androgen levels

(T, 11-KT) appeared to  increase during hypercapnia, but a corre-

sponding assessment of androgenic effects of elevated androgen

levels is complicated by the lack  of suitable biomarkers (Kloas

et al., 2009). Regardless of this, sex determination and/or differ-

entiation are, in many teleosts, suggested to be under endocrine

control (Devlin and Nagahama, 2002; Guiguen et al., 2010). Early

elevations in E2 are associated with female gonadal development

in several species (Guiguen et al., 2010; Piferrer, 2001) includ-

ing, Atlantic cod (Haugen et al., 2012). Androgens also might be

involved in directing oocyte development in female fish, as shown

for ZP transcription and oocyte growth in Atlantic cod (Kortner

et al., 2008, 2009a,b). Effects of hypercapnic exposure observed

in the present study may  therefore affect processes, such as sex

differentiation, accelerate the onset of  puberty in juvenile fish or,

at later developmental stages, interfere with normal gametogene-

sis. As these findings could suggest potential adverse effects for

fish stocks within the CO2 scenarios predicted for  the upcoming

years, the sex steroid disruptive effect of hypercapnia should be

further investigated to  verify the effects and  risks associated with

increased anthropogenic CO2 emissions. Until now, ocean acidifi-

cation studies have mainly been concerned about consequences

for invertebrates, and calcifying species in particular (Pörtner et al.,

2005). The  present study contributes to a  growing burden of  evi-

dence indicating that teleosts – despite their superior acid–base

regulatory capacity –  are more susceptible toward elevated pCO2

than previously assumed (Ishimatsu et al., 2005; Munday et al.,

2012).

PFOS exposure produced indications of estrogenic potential by

affecting gene expression responses in a seemingly E2-independent

manner. The observed transcriptional responses were however

weak compared to  exposure studies using well-known E2 mim-

ics, such as nonylphenol (Meucci and Arukwe, 2006). Although an

altered or untimely induction of  genes involved in the gametoge-

nesis might cause both excessive energy costs and, in worst case

scenario, reproductive failure (Arukwe and Goksøyr, 2003), such

consequences cannot be  predicted solely based on  low-abundance

mRNA measurements. Interestingly, exposure to hypercapnia and

PFOS in combination provided indications of  interactive effects at

the level of  gene transcription, although the results were not suf-

ficient to  significantly prove neither the presence nor absence of

such effects. In either case, these novel findings should evoke a

general concern for  possible combined effects of  near-future hyper-

capnia and various POPs present in the  marine environment. Given

that hypercapnia does, in fact, affect physiological and reproductive

functions in fish, as suggested in the present study, the interactive

endocrine disruptive effects of  the  numerous POPs in the  envi-

ronment require further and integrated investigations. Any kind

of combination effect with environmental hypercapnia could have

implications for the accuracy of current risk assessments of emerg-

ing and legacy POPs.
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Abstract

The relative importance of environmental hypoxia due to global climate change on organismal ability to adapt to chemical
insult and/or mechanisms of these responses is not well understood. Therefore, we have studied the effects of combined
exposure to perfluorooctane sulfonamide (PFOSA) and chemically induced hypoxia on membrane lipid profile and
homeostasis. Primary salmon hepatocytes were exposed to PFOSA at 0, 25 and 50 mM singly or in combination with either
cobalt chloride (CoCl2: 0 and 150 mM) or deferroxamine (DFO: 0 and 100 mM) for 24 and 48 h. CoCl2 and DFO were used to
induce cellular hypoxia because these two chemicals have been commonly used in animal experiments for this purpose and
have been shown to increase hypoxia-inducible factor 1-alpha (HIF-1a) and vascular endothelial growth factor (VEGF) levels.
Fatty acid (FA) profiles were determined by GC-MS, while gene expression patterns were determined by quantitative PCR.
Hypoxic condition was confirmed with time-related increases of HIF-1a mRNA levels in CoCl2 and DFO exposed cells. In
general, significant alterations of genes involved in lipid homeostasis were predominantly observed after 48 h exposure.
Gene expression analysis showed that biological responses related to peroxisome proliferation (peroxisome proliferator-
activated receptors (PPARs) and acyl coenzyme A (ACOX)) and FA desaturation (D5- and D6-desaturases: FAD5 and FAD6,
respectively) and elongation (FAE) were elevated slightly by single exposure (i.e. either PFOSA, CoCl2 or DFO exposure
alone), and these responses were potentiated in combined exposure conditions. Principal component analysis (PCA)
showed a clustering of peroxisome proliferation responses at transcript levels and FA desaturation against membrane FAs
levels whose changes were explained by PFOSA and chemically induced hypoxia exposures. Overall, our data show that
most of the observed responses were stronger in combined stressor exposure conditions, compared to individual stressor
exposure. In general, our data show that hypoxia may, singly or in combination with PFOSA produce deleterious health,
physiological and developmental consequences through the alteration of membrane lipid profile in organisms.

Citation: Olufsen M, Cangialosi MV, Arukwe A (2014) Modulation of Membrane Lipid Composition and Homeostasis in Salmon Hepatocytes Exposed to Hypoxia
and Perfluorooctane Sulfonamide, Given Singly or in Combination. PLoS ONE 9(7): e102485. doi:10.1371/journal.pone.0102485

Editor: Sanjoy Bhattacharya, Bascom Palmer Eye Institute, University of Miami School of Medicine, United States of America

Received April 11, 2014; Accepted June 18, 2014; Published July 21, 2014

Copyright: � 2014 Olufsen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This study was funded by the Norwegian Research Council project number 1964442/S40. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: arukwe@bio.ntnu.no

Introduction

Anthropogenic activities leading to the emissions of carbon

dioxide (CO2) and other greenhouse gases is thought to be the

main contributor to climate change [1]. In the aquatic environ-

ment, effects of climate change have already been observed as

increases in temperature and CO2 [2]. A consequence of increased

water temperature is reduction in partial pressure of oxygen (pO2),

and its availability to aquatic organisms [3,4]. Oxygen is crucial

for cellular respiration that generates energy for maintenance

processes and development in aerobic organisms [5]. Thus,

hypoxia (a quantifiable measure of climate change) may, singly

or in combination with emerging pollutants such as perflourinated

compounds (PFCs) produce deleterious physiological responses

that may reduce general health conditions and impaired

development in organisms [6].

Emerging compounds such as poly- and perfluoroalkyl

substances (PFASs), organophosphate flame-retardants, detergent

compounds, and several pharmaceutical substances have been

linked to several biological effects in organisms and are continu-

ously detected in the environment [7,8]. PFASs are manufactured

and used in various industrial and consumer products such as

fluorinated polymers, surfactants, insecticides and aqueous fire-

fighting foams [7]. In more than 50 years, 3M Company was the

major producer of perfluorooctane sulfonyl fluoride (POSF)

starting from 1949, but they have voluntarily phased out

production in 2002 [9]. POSF is the precursor to several PFCs,

whose reaction with methyl or ethylamides yields alkyl substituted

sulfonamides: N-methyl perfluorooctane sulfonamide (NMeFOSA)

and N-ethyl perfluorooctane sulfonamide (NEtFOSA), respective-

ly. Further dealkylation can generate perfluorooctane sulfonamide
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(PFOSA), which is randomly distributed in biota and has been

detected worldwide in fish, mammals, birds and humans at

concentrations in the range of 1–100 ng/g wet weight of tissue

[10,11]. The chemical properties of PFOSA make the compound

neither hydrophilic nor lipophilic and has been found to bind to

carrier proteins, such as albumin, in blood [12]. PFASs can appear

as both perfluorinated sulfonic (PFSAs) and carboxylic acids

(PFCAs) which have been shown to exert a variety of biological

effects, including – lipid homeostasis and peroxisome proliferation,

hepatomegaly, immunotoxicity, uncoupling of mitochondrial

oxidative phosphorylation, developmental toxicity, reduction of

thyroid hormone circulation, necrosis, down-regulation of hepatic

transporters and tumors [13,14,15,16]. In mammalian systems,

PFOSA was shown to undergo metabolic degradation at a slow

rate to form PFOS, and can also undergo enterohepatic

circulation, and mediate oxidative stress responses [17,18].

Energy homeostasis and its regulation is critical for normal

physiology and survival, and disruption of this balance often leads

to chronic disease state [19]. FAs in fish tissues are present in

different lipid classes and with different functions [20,21]. There

are two classes of essential long chain polyunsaturated fatty acids

(PUFAs) omega-3 (n-3s) and omega-6 (n-6s), based on the location

of the first double bond in the third (n-3) or sixth (n-6) position

from the methyl end of the aliphatic carbon chain [22].

Conversions of these essential fatty acids (FAs) are orchestrated

by several fatty acid desaturases (FADs) and elongase (FAE). Of

the n-3 PUFAs, a-linolenic acid (ALA: 18:3n-3) can be desaturated

and elongated to form eicosapentaenoic acid (EPA: 20:5n-3)

through the activity of FAD6, FAE and FAD5, further transfor-

mation involves FAD4 and FAE to docosahexaenoic acid (DHA:

22:6n-3) and is reversible. Whereas the n-6 PUFAs, linolelaidic

acid (LA: 18:2n-6) can be desaturated by FAD6 to c-linolenic acid
(GLA: 18:3n-6) and elongated by FAE to dihomo-c-linolenic acid
(DGLA: 18:3n-6) and further desaturation by FAD5 produces

arachidonic acid (ARA: 20:4n-6). ARA can thereafter through

steps involving FAD4 and FAE transform into docosapentaenoic

acid (DPA: 22:5n-6), and this last step is reversible.

Chemically-mediated changes in the composition of lipids will

affect many biological processes in the body, including lipogenesis,

lipid transport, deposition and storage, peroxisome proliferation,

and FA uptake in tissues and membrane fluidity [23]. Peroxisome

proliferator-activated receptors (PPARs) are known to be critical

regulators of lipid homeostasis by controlling the balance between

burning and storage of long FAs [24]. PPARs are ligand-

dependent transcription factors belonging to the nuclear hormone

receptor superfamily [24]. The acyl coenzyme A (ACOX)

catalyses the rate limiting-step in peroxisomal b-oxidation pathway

of FA, and is commonly used as a biomarker for peroxisomal

proliferation [24]. ACOX encoding gene in rats was regulated by

PPARs through a peroxisome proliferator response element

(PPRE) in the 59 upstream region of the gene[24]. Regulation of

peroxisome proliferation is controlled by PPARs and was first

identified having this function in frogs (Xenopus sp.) [25]. They
(PPARs) exert pleiotropic responses by regulating energy homeo-

stasis, adipose tissue differentiation and maintenance, cell prolif-

eration and tissue repair [26]. PPAR activities are consequently

changed in accordance with a wide variety of physiological

conditions, mediated through the ubiquitin-proteasome degrada-

tion system and extracellular signalling pathways and kinases that

lead to receptor phosphorylation [27]. Administration of food

containing PFOA induced peroxisome proliferation in Atlantic

salmon (Salmo salar) [28]. In rats the same treatment has shown

induced peroxisome proliferation and formation of benign liver

tumors [16].

In this study, we have investigated biological pathways related

to peroxisome proliferation, and lipid profile and homeostasis after

exposure to chemically induced hypoxia and PFOSA, given singly

and also in combination. Hypoxia was induced using cobalt

chloride (CoCl2) and deferoxamine mesylate (DFO), two chemi-

cals commonly used in animal experiments for this purpose and

have been shown to increase hypoxia-inducible factor 1-alpha

(HIF-1a) and vascular endothelial growth factor (VEGF) levels.

DFO induces hypoxia by chelating iron for excretion and

subsequently reducing the potential for oxygen transport [29]

and CoCl2 is known to inhibit iron-dependent hydroxylases,

resulting in an increase in HIF-1a protein accumulation, DNA

binding activity, and transactivation function including VEGF

induction [30,31]. Given that optimal physiological condition is

required for growth and development, optimal adaptation to

hypoxic stress may have detrimental consequences resulting from

inability to maintain physiological processes essential for normal

cellular functions. It may also produce diminished capacity to

handle fluctuation of other environmental factors that could

ultimately lead to reduction in general fitness [32,33,34] and

increase membrane (fluidity) passage for environmental contam-

inants. Our hypothesis is that exposure of salmon hepatocytes to

hypoxia, singly or in combination with PFOSA, will produce

significant changes in membrane lipid profile and biological

processes that regulate membrane lipid homeostasis, with overt

health, developmental, reproductive and physiological conse-

quences.

Materials and Methods

Chemicals and reagents
Highly pure (.98%) linear perfluorooctane sulfonamide

(PFOSA; CF3(CF2)7SO2NH2) isomer, as well as isotopically

labeled linear PFOSA-13C8 and linear PFOS-13C4 were purchased

from Wellington Laboratories (Guelph, ON, Canada). iScript

cDNA Synthesis Kit and iTaq SYBR Green Supermix with ROX

were supplied by BioRad Laboratories (Hercules, CA, USA). The

original TA Cloning Kit PCR 2.1 vector, INVaF’ cells, TRIzol
and Dulbecco’s Modified Eagle Medium (DMEM) with non-

essential amino acid and without phenol red, fetal bovine serum

(FBS), 0.4% trypan blue and L-glutamine were purchased from

Gibco-Invitrogen Life Technologies (Carlsbad, CA, USA). Di-

methyl sulfoxide (DMSO), penicillin-streptomycin-neomycin solu-

tion, collagenase (C0130-1G), bovine serum albumin (BSA), N-[2-

Hydroxyethyl]piperazine-N’-[2-Ethane Sulfonic Acid] (HEPES),

ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA),

ethyleneglycol bis-(b-aminoethylether)-N,N,N’,N’-tetraacetic acid

(EGTA), polyunsaturated fatty acid 1 and 2 (PUFA1 and PUFA2)

were purchased from Sigma-Aldrich Chemie GmbH (Munich,

Germany). Tricaine methane sulphonate (MS-222) was purchased

from Norsk Medisinaldepot AS. GelRed Nucleic Acid Gel Stain

was purchased from Biothium (Hayward, CA, USA). The ZR

Plasmid Miniprep-Classic was purchased from Zymo Research

(Orange, CA, USA).

Animals, exposure and sampling
All necessary permits were obtained from the Norwegian

Animal Research Authority for the described study, which

complied with all relevant regulations. Atlantic salmon (Salmo
salar) were purchased from Lundamo Hatcheries (hatch and

rearing centre located at Lundamo). Fish were kept at the animal-

holding facilities for Department of Biology (Sealab, NTNU) in

100-liter tanks with continuously running fresh water at 10uC and

flow rate of 40 L/h and natural photoperiod. Fish were

Combined Effects of Hypoxia and PFOSA on Lipid Homeostasis
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acclimatized for two weeks and starved three days prior to liver

perfusion.

Collagenase perfusion, isolation and culture of
hepatocytes
Prior to liver perfusion, all glassware and instruments were

autoclaved and solutions were filtration sterilized by using 0.22 mm
Millipore filter (Millipore AS, Oslo, Norway). Fish were anesthe-

tised using MS-222 (70 g/L) administered 15 minutes prior to

perfusion and euthanized after in accordance with regulations for

animal research and approved by Norwegian Food Safety

Authority (FOTS). Hepatocytes were isolated from 10 individuals

by a two-step perfusion technique with modifications as previously

described [35]. The cell suspension was filtered through a 150 mM
nylon monofilament filter and centrifuged at 706g for 5 min.

Hepatocyte from individual fish were used across all individual

exposure scenarios in such a way that all 10 fish were represented

in all exposures. Cells were washed three times with serum-

containing medium and finally resuspended in complete medium.

Following collagenase perfusion and isolation of hepatocytes,

viability of cells was determined by the trypan blue exclusion

method. A cell viability value of .90% was a criterion for further

use of the cells. Cells were plated on 35 mm TPP Tissue Culture

Plates (Techno Plastic Products AG, Switzerland) at monolayer

density of 2.16106 cells in 3 ml DMEM medium (without phenol

red) containing 0.5% (v/v) FBS, 1% (v/v) L-glutamine, 15 mM

HEPES and 1% (v/v) antibiotic-antimycotic.

Plating of cells and exposure
Medium was added to plate prior to the cells, avoiding

sedimentation of cells by rotating the tube every second plate.

Cells were cultured at 10uC in a sterile incubator for 24 hours

prior to exposure. After 24 hours pre-culture, growth medium was

removed and quickly replaced with exposure medium (twenty

wells for each exposure group); to 0.1% DMSO (control), 150 mM
CoCl2, 100 mM DFO, 25 mM PFOSA (singly and in combination

with either 150 mM CoCl2 or 100 mM DFO), 50 mM PFOSA

(singly and in combination with either 150 mM CoCl2 or 100 mM
DFO). This gave a total of 9 different exposure groups. Media and

cells were harvested separately, ten wells for each exposure group

at 24 and 48 h, post-exposure and snap-frozen immediately in

liquid nitrogen. Cells used for RNA analysis were lysed in Trizol

reagent for total RNA isolation according to the manufacturer’s

protocol (Invitrogen).

Assessment of cell viability
A pilot study using different concentration (10, 50, 100, 150 and

200 mM) of CoCl2 or DFO was performed in order to determine

optimal exposure concentrations for hypoxia-inducing chemicals.

Evaluation was performed using resazurin assay on cells exposed

for 24 and 48 h in 96-well plates (2.16105 cells in 300 ml). After
addition of rezasurin solution (10% of medium volume), cells were

incubated for 6h at 10uC on a gyratory shaker. Samples were

measured spectrophotometrically at 600 nm every 20 minutes.

Viability was also investigated for all exposure groups (see below).

Quantitative (real-time) PCR
Total cDNA for quantitative real-time polymerase chain

reaction (q-PCR) analysis was generated from 1 mg total RNA

from all samples using a combination of poly-T and random

primers from iScript cDNA synthesis kit as described by the

manufacturer (Bio-rad). RNA samples were evaluated for integrity

using agarose gel electrophoresis. Quantitative real-time PCR was

used for evaluating gene expression profiles for HIF1-a, FAD5,

FAD6, FAE, ACOX and PPAR (a, b and c). For each treatment,

expression of individual gene targets was analyzed using the

Mx3000P REAL-TIME PCR SYSTEM (Stratagene, La Jolla,

CA, USA). Each 25 ml qPCR reaction contained - 12.5 ml of

iTAQ SYBR Green Supermix with ROX (Bio-Rad), 1 ml of

cDNA, 200 nM of each forward and reverse primers and

remaining volume was autoclaved MQ-H2O. The three-step

real-time PCR program included an enzyme activation step at

95uC (5 min) and 40 cycles of 95uC (30 s), 55–65uC (30 s)

(depending on the primers used; see Table 1), and 72uC (30 s).

Controls lacking a cDNA template were included to determine the

specificity of target cDNA amplification. Cycle threshold (Ct)

values obtained were converted into mRNA copy number using

standard plots of Ct-value versus log copy number. The criterion

for using the standard curve is based on equal amplification

efficiency (usually 90%) with unknown samples and this is checked

prior to extrapolating unknown samples to the standard curve.

The standard plots were generated for each target sequence using

known amounts of plasmid containing the amplicon of interest, as

described previously by [36]. Data from each group were averaged

and expressed as percentage of control.

FA extraction and GC-MS analysis
Lipids were extracted from Atlantic salmon hepatocytes by

homogenization in chloroform: methanol (2:1) solution, added

with 0.01% of 2,6-di-tert-butyl-4-methylphenol (BHT) as an

antioxidant, according to the method of Folch et al [37]. FA

methyl esters (FAMEs) from total lipids were prepared by acid-

catalyzed transmethylation for 1 h at 100uC, using tricosanoic acid
(23:0) as internal standard. Methyl esters were extracted by c-

hexane, then dried by centrivap, weighed and suspended in c-

hexane (1% v/v). FAMEs analysis was performed using a

Shimadzu GC-MS 2010 gas chromatograph-mass spectrometer

and fitted with a fused silica capillary column (Supelco, Germany)

and helium was used as carrier gas. The injector, detector and

column temperatures were 250uC, 300uC and 200uC, respectively.
Relative percentage of the area was obtained by using the

following equation: Area% FAX= [AX/AR]6100, where:

FAX= fatty acid to be quantified, AX = area of the methyl

esters, X and AR= total area of the chromatogram. Peak areas

lower than 0.1% of the total area was not considered. We

identified FA methyl esters by comparing retention time of

samples and standards.

Statistics
Data are presented as mean percent of control with the same

exposure duration 6 standard error of mean (SEM). Normal

distribution was assessed using Shapiro-Wilks test and homogene-

ity of variance was tested with Levene’s test. Comparison of

different concentrations of PFOSA treatment, singly or in

combination with CoCl2 or DFO, groups and control group was

done using One-way ANOVA with post-hoc (Tukey) using SPSS.

We used Simca-P 12 to perform multivariate analysis making

principal component analysis (PCA) plots. All observations and

variables of concern were investigated and based on distribution

patterns and group formation we chose which groups to

investigate further. Variables investigated here were Q-PCR data.

Observations (exposure groups) must be independent when

investigated using PCA, so data was separated on terms of

exposure duration (24 and 48 h). PCA biplot presented herein

were produced by first component (PC1) and second component

(PC2) and percent of variation (R2X) is displayed for each plot.

Combined Effects of Hypoxia and PFOSA on Lipid Homeostasis
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Results

Evaluation of cell viability and validation of hypoxia
exposure
Our pilot study showed that increasing DFO and CoCl2

concentration above 100 and 150 mM, respectively, noticeably

reduced cell viability. Cell viability in the different exposure

regimes showed a cell survival rate above 65% (data not shown).

Gene expression analysis of HIF-1a was used to assess the hypoxic

condition of the hepatocytes showing significant increase of

mRNA expression, at 48 h compared to 24 h post-exposure, in

combined exposure scenarios and by DFO alone. CoCl2 exposure

induced HIF-1a after both 24 and 48 h, albeit not significant.

HIF-1a mRNA was not induced by exposure to PFOSA alone

(Fig. 1).

Modulation of membrane FAs composition
Changes in membrane FA composition were observed after

PFOSA, CoCl2 and DFO exposures and these effects were

dependent on PFOSA concentration, combined exposure with

individual DFO or CoCl2 and FA type (Table 2). After 24 h,

exposure to DFO alone produced a significant reduction in ALA

(18:3n-3) levels, and combined low (25 mM) PFOSA in combina-

tion with CoCl2 or DFO increased ALA levels in salmon

hepatocytes (Table 2). High PFOSA (50 mM) exposure, singly or

in combination with CoCl2 or DFO, increased membrane ALA

levels at 24 h exposure (albeit not significant). Exposure of

hepatocytes to PFOSA or in combination with hypoxic condition

significantly reduced membrane levels of ARA (20:4n6) and EPA

(20:5n-3) after 24 h (Table 2). All exposure conditions produced

increases in 22:6n-3 (DHA) after 24 h. Linoleic acid (LA: 18:2n-6)

was increased in all exposure groups with CoCl2 and by 25 mM
combined with DFO, while combined 50 mM PFOSA and DFO

Table 1. Primer pair sequences, accession numbers, amplicon size and annealing temperature conditions for genes of interest
used for real-time PCR.

Target
Gene Primer sequence*

Amplicon size
(basepairs)

Annealing temperature

(6C)

Forward Reverse

Hif-1a GCT CAG AAA GTC GGT TGT CC GCC AGC TCG TAG AAC ACC TC 152 60

FAD5 GAC CTA TAT TTC CAG CAT TAT CC TCA CTC ATC TAC AAA TAG TAT TCC 192 55

FAD6 CAT CTG ATT CTG ATT CCA TTC C CTC TGC TCC ACT CAC ACC 127 55

FAE GAC ACC CAC GGA AAC CAT TAC CTC TCC TAG CGA CAT TAC ATA CAG 111 55

PPARa GCT TCA TCA CCA GGG AGT TT TCA CTG TCA TCC AGC TCC AG 113 60

PPARb CAA TGG CTC GGA TCT CAA AT ACT CTA CTG GGC TGG AGC TG 124 60

PPARc CAC TGT GAT CTG CAC TGT ATG GCA TCA TGT GAC ATT 100 60

*Sequences are given in the 59239order
doi:10.1371/journal.pone.0102485.t001

Figure 1. Changes in transcript levels for hypoxia-inducible factor 1a (HIF-1a) in salmon hepatocytes exposed to PFOSA (25 and
50 mM), singly or in combination with, either CoCl2 (150 mM) or DFO (100 mM) for 24 and 48 h. Transcripts were analyzed using real-time
polymerase chain reaction (qPCR) and expressed as mean percentage (%) of control6 SEM (n= 5). Asterisk (*) denotes significant difference (p,0.05)
compared to control analyzed by Tukey’s test, while diamond (¤) denotes significant difference (p,0.05) with individual hypoxia treatment group
(CoCl2 or DFO) at respective time-interval.
doi:10.1371/journal.pone.0102485.g001
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reduced LA level after 24 h (Table 2). Membrane ALA and GLA

were reduced by DFO after 24 h, but were generally increased by

other exposure regimes (Table 2). Membrane FA showed different

composition pattern at 24 h, compared to 48 h (Table 2 and 3). At

48 h, ARA was significantly reduced in all exposure groups, except

PFOSA that produced an increase. Membrane ARA levels were

significantly reduced by CoCl2 and DFO exposure alone,

compared with PFOSA exposure that increased ARA levels.

Combined exposure with PFOSA and DFO or CoCl2 sustained

the hypoxic condition mediated decrease on membrane ARA

levels (Table 3). Membrane EPA levels were reduced by CoCl2
and DFO exposures at 48 h, and combined exposure with PFOSA

concentrations significantly increased these effects, except com-

bined DFO and 50 mM PFOSA, that produced a significant

reduction (Table 3). While 25 mM PFOSA significantly reduced

EPA levels, 50 mM PFOSA significantly increased membrane EPA

levels after 48 h exposure (Table 3). Membrane LA levels were

significantly increased by CoCl2 and DFO exposures alone or in

combination with PFOSA concentrations at 48 h. On the other

hand, membrane ALA and GLA were significantly reduced by

CoCl2 and DFO exposure alone at 48 h, and combined exposure

with 25 mM PFOSA significantly increased (DFO) and decreased

(CoCl2) ALA levels, and the opposite is true for GLA at 48 h

(Table 3). All exposure conditions reduced membrane DHA levels

except combined DFO and 25 mM PFOSA, and combined CoCl2
and 50 mM PFOSA (Table 3).

Modulation of transcripts involved in fatty acid
metabolism
The effects of PFOSA, given singly or in combination with

CoCl2 or DFO on FAD5, FAD6 and FAE, showed unique and

comparable patterns after 24 and 48 h exposure (Fig. 2). Exposure

to PFOSA concentrations increased transcription of FAD5, FAD6

and FAE mRNA at 48 h, while no significant effects were

observed after 24 h (Fig. 2). The combined exposure of PFOSA

and CoCl2 or DFO significantly increased FAD5, FAD6 and FAE

transcripts at 48 h, while no significant effects were observed after

24 h exposure (Fig. 2A, B and C, respectively). Acyl-coenzyme A

oxidase (ACOX) was not significantly affected by PFOSA

exposure both at 24 and 48 h (Fig. 3). On the contrary, CoCl2
and DFO significantly increased ACOX mRNA expression at

48 h, and combined exposure with PFOSA concentrations

significantly sustained these effects at the same time interval

(Fig. 3). No effects were observed either when CoCl2 and DFO

were given singly, or in combination with PFOSA concentrations

at 24 h (Fig. 3).

Modulation of transcripts involved in lipid peroxidation
Gene expression levels of PPAR (a, b and c) were investigated in

all exposure groups (Fig. 4) showing that exposure to PFOSA

concentrations elevated PPARa mRNA levels at 48 h exposure

(Fig. 4A). Exposure to CoCl2 alone did not affect PPARa, but
combined exposure with PFOSA produced significant increase

after 48 h exposure (Fig. 4A). On the other hand, exposure to

DFO alone significantly increased PPARa mRNA at 48 h, and

combined exposure with PFOSA concentrations sustained this

effect, but with reduced expression levels in combination with

25 uM PFOSA (compared DFO exposure, Fig. 4A). For PPARb
and PPARc, no effects were observed after exposure to PFOSA

concentrations either at 24 or 48 h (Fig. 4B). On the other hand,

CoCl2 and produced increases in PPARb and PPARc expressions,
when given alone, and combined exposure with PFOSA

concentrations significantly sustained these effects at 48 h

(Fig. 4B and C, respectively). Otherwise, no significant PPARb

and PPARc transcriptional changes were observed after 24 h

exposure in any exposure group (Fig. 4B and C).

Principal component analysis (PCA)
A principal component analysis was used in order to explore

observations and variables with correlative patterns. We chose to

incorporate molecular responses (mRNA) as variables and all

comparable observations. At biplot analysis after 24 h exposure,

we observed that all observations were located around neutral

point (t[1] = 0, t[2] = 0) and there is no distinct distribution pattern

among or between groups. Variables were located in the right side

arc of the plot, and mostly explained by principal component 1

(PC1: 49.5%), except PPARb that is located closer to PC2 (18.8%:

Fig. 5A). There was no association between observations and

variables, and further evaluation of variables was not pursued.

Biplot of samples exposed for 48 h showed distribution along PC1

(74,9%), where observations were clustered, although somewhat

overlapping, related to separate exposure treatments (Fig. 5B).

PC1 (74.9%) explained most variation in this dataset and neither

the observations nor parameters were drawn particularly to PC2

(11.2%). Control, single PFOSA (25 or 50 mM) and single 150 mM
CoCl2 are located along PC1 and on the left side of PC2.

Combined PFOSA (25 and 50 mM) and CoCl2 are located further

right in biplot compared to control and 25 mM PFOSA group is

generally located above PC1 towards PPAR (a and c) and ACOX.

Some individual exposures are less described by the model and are

located close to neutral point. All groups containing DFO were

located left of PC2, showing several observations that are close to

PC1 or below (Fig. 5B). Variables that were distributed in an arc

along the outer ring at right side of the biplot were mainly

explained by PC1. In a longer distance away from PC1, were

PPARs, with PPARc and PPARa above PC1 and PPARb below,

while FAD5, FAD6, FAE, ACOX and HIF-1a are closer to PC1.

Generally, PC2 describes very little of the variation in this biplot

(Fig. 5B).

Discussion

Previously, it has been shown in several studies that PFASs

modulate the PPAR system and membrane FA homeostasis [38],

and through these pathways induce peroxisome proliferation and

oxidative stress responses [28,38,39]. Changes in the global

climate are currently observed as increases in temperature and

CO2 that subsequently produce reduction in oxygen partial

pressure (pO2), and its availability to aquatic organisms. Oxygen is

crucial for aerobic organisms that depend on it for cellular

respiration, and because reduced environmental oxygen saturation

(hypoxia) and environmental contaminants represent multiple

environmental stressor. Hypoxia has been associated with effects

on hormonal and biotransformation systems [40,41,42], and the

relative importance of environmental hypoxia on organismal

adaptive abilities responding to chemical insult are not well

understood. Therefore, the present study was designed to

investigate molecular and physiological effects of hypoxia and

PFOSA, given singly and also in combination, on membrane FA

composition and associated effects on molecular processes that

regulate lipid homeostasis in fish, using a salmon hepatocyte

in vitro model. Cellular hypoxia was induced using DFO and

CoCl2, two chemicals that are frequently used to induce hypoxia

in in vitro models, but also have an apoptotic potential [30].

Modulation of membrane fatty acid composition
Hepatocytes adapt to reduction in oxygen levels by shifting

energy production from mitochondrial fatty acid b-oxidation to
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glycolysis during periods of cellular hypoxia [43]. As a result, the

activation of the HIF complex represents an early response to

hypoxia exposure. Consequently, HIF is a central adaptive change

in response to hypoxia through HIF-mediated reprogramming of

cellular metabolism. Thus, HIF plays an integral role in switching

energetic usage from aerobic to anaerobic metabolism to generate

more ATP in an oxygen independent manner, through the

regulation of glucose transporter 1 and several critical glycolytic

enzymes, and to inhibit mitochondrial oxidative phosphorylation

[44]. Glucose metabolism under hypoxic conditions and the role

of HIF has been extensively studied, but less is known on its role in

lipid metabolism in response to low oxygen and possible

interaction with environmental contaminants. Recently, it was

shown that acute and intermittent hypoxia induced liver lipid

accumulation, suggesting a prominent role for HIF in regulating

hepatic membrane lipid composition and metabolism [45,46].

Figure 2. Modulation of FAD5 (A), FAD6 (B) and FAE (C) in salmon hepatocytes exposed to CoCl2 (150 mM) or DFO (100 mM), singly
or in combination with PFOSA (25 and 50 mM). Transcripts were analyzed using real-time polymerase chain reaction (qPCR) and expressed as
mean percentage (%) of control 6 SEM (n = 5). Asterisk (*) denotes significant difference (p,0.05) compared to control analyzed by Tukey’s test,
while diamond (¤) denotes significant difference (p,0.05) with individual hypoxia treatment group (CoCl2 or DFO) at respective time-interval.
doi:10.1371/journal.pone.0102485.g002
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In the present study, we observed significant increase in

transcript levels for HIF-1a mRNA expression after hypoxia

(DFO and CoCl2) exposure, and this effect partially paralleled

modifications in hepatic membrane FA composition, in the

presence and absence of PFOSA. In addition, these effects did

not parallel changes in transcript levels for FAD5, FAD6 and FAE.

The relationship between increase in the composition of hepatic

membrane FA composition and increase in FAD5, FAD6, FAE

and HIF-1a expression is interesting amidst the ongoing contro-

versy regarding the role of HIF-2 as a pro-lipogenic factor [47].

The finding showing that HIF-2a deficient mice exhibited hepatic

steatosis, and the forced expression of hepatic HIF-1a, but not
HIF-2a, that stimulated lipid accumulation in mice [48] suggests

complicated roles of HIF-1a and HIF-2a in hepatic fat accumu-

lation and possible maladaptive pathologies [43].

Previously, we showed that PFOSA produced time- and

concentration-dependent alterations in the hepatic membrane

content of several classes of FAs in salmon hepatocytes [39,49,50].

Herein, we show that exposure of cells to hypoxic conditions

produced changes in hepatic membrane FA composition, similar

to the effect of PFOSA alone, and combined exposure to hypoxia

and PFOSA, further modulated the effects of hypoxic conditions

alone. Note that these effects were based on hypoxia-inducing

compound (DFO or CoCl2), exposure time and PFOSA concen-

tration. PUFAs with 20 and 22 carbons are vital components of

membrane phospholipids, and represent key steps in cell

signalling, and control the expression of many genes involved in

lipid synthesis and metabolism, thermogenesis, and cell differen-

tiation [51]. For example, eicosanoids, including prostaglandins,

thromboxanes and leukotrienes, belong to an extensive family of

oxygenated metabolites derived from 20-carbon PUFAs such as

ARA and EPA [52], which primarily act as potent local

modulators in cells [53]. In accordance with previous findings

[39,49,50] and as demonstrated in the present study, salmon liver

is capable of FAD6-desaturation of ALA to stearidonic acid

(18:4n3) followed by elongation and FAD5 desaturation to EPA, in

addition to FAD6 desaturation of Linoleic acid (18:2n-6) to c-
linoleic acid (18:3n6) followed by elongation to Dihomo-c-
linolenic acid (DGLA, 20:3n-6) and FAD5 desaturation to ARA

[54]. Our data show that hypoxic conditions reduced several n-3

PUFAs such as ALA, DHA and EPA, which were not in

accordance with the increased expression of FAD5, FAD6 and

FAE mRNA.

Furthermore, the availability of 20- and 22-carbon polyenoic

FAs is highly dependent on the activity of FAD6, which mediates

the rate-limiting step in the production of ARA [51]. The increase

in FAD5, FAD6 and FAE mRNA expressions, three enzymes of

the FA elongation pathway, paralleled the increase in membrane

trans-linolelaidic acid (18:2n-6t) and DHA levels (but not ARA).

This discrepancy may be explained by the fact that in fish, n-3

PUFAs are abundant and play significant roles in immune

function and apoptosis [55,56]. In addition, the major regulation

mechanism of FAD6 is assumed to be pre-translational [57], and

our findings provide evidence that hypoxia increases the activity of

the elongation machinery in order to adapt to membrane and

physiological requirements due to the shortage of these FAs.

Overall, the modulation of membrane FA composition observed in

the present study predominantly involved an increase in FA

methyl esters, indicating that hypoxia, given singly and also in

combination with PFOSA, may affect lipid metabolism in Atlantic

salmon. Over-production of ARA-derived eicosanoids may be

responsible for a number of pathophysical conditions in humans,

such as atherothrombotic and chronic inflammation diseases [58].

Thus, our data suggest that changes in membrane FA levels

compensated for lipid peroxidation through an increase by

elongation and desaturation activities in order to increase

membrane fluidity as a form for compensatory mechanism. This

speculation is supported by the fact that the b-oxidation pathway

was positively enhanced in the hepatocytes after exposure to

hypoxic conditions, singly and also in combination with PFOSA

concentration (see below). Elsewhere, it has been shown that

PFOSA, PFOA and PFOS reduced lipid synthesis and increase b-
oxidation in rat in vivo system, with inconsistent changes in other

enzymes involved in lipid metabolism [59]. The report showing

that erucic acid inhibited peroxisomal b-oxidation in rats [60],

provided strong support to our observed decrease of PUFAs and

increase of mRNA levels for FA elongation enzymes and ACOX1

by hypoxic conditions, as it has been shown that PUFAs may

repress peroxisomal b-oxidation [60]. Furthermore, it has been

suggested that alteration of mRNA levels by FAs and PPAR

activators is often disconnected [61]. For example, peroxisomal

proliferators and essential FA deficient diets has been shown to

elevate the mRNA levels for FAD5 and FAD6, while dietary

Figure 3. Transcriptional changes of ACOX mRNA in salmon hepatocytes exposed to CoCl2 (150 mM) or DFO (100 mM), in presence
and absence of PFOSA (25 and 50 mM). Transcripts were analyzed using real-time polymerase chain reaction (qPCR) and expressed as mean
percentage (%) of control 6 SEM (n= 5). Asterisk (*) denotes significant difference (p,0.05) compared to control analyzed by Tukey’s test.
doi:10.1371/journal.pone.0102485.g003
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PUFAs are known to repress these genes [57]. The peroxisomal

proliferator, Wy14643, was also shown to produce delayed

induction of FAD5 and FAD6 in rats, compared to the FA

oxidation genes [57], prompting the authors to suggest that an

induction of the desaturases could occur directly because of the

degenerated direct repeat 1 (DR1) element that was reported in

human FAD6 gene and binds PPARa [57].

In the present study, the hepatic membrane FA composition

both decreased and decreased (depending on FA type, exposure

condition and time) at 24 and 48 h, after exposure to hypoxic

conditions, singly and also in combination with PFOSA concen-

tration. Overall, the n-6:n-3 ratio was either slightly reduced (50%

at 25 mM PFOSA, singly or in combination with CoCl2) or

unchanged at 24 h exposure, while at 48 h exposure a respective

Figure 4. Modulation of PPAR-a (A), PPAR-b (B) and PPAR-c (C) mRNA in salmon hepatocytes exposed to CoCl2 (150 mM) or DFO
(100 mM), singly and in combination with PFOSA (25 and 50 mM). Transcripts were analyzed using real-time polymerase chain reaction (qPCR)
and expressed as mean percentage (%) of control 6 SEM (n= 5). Asterisk (*) denotes significant difference (p,0.05) compared to control analyzed by
Tukey’s test, while diamond (¤) denotes significant difference (p,0.05) with individual hypoxia treatment group (CoCl2 or DFO) at respective time-
interval.
doi:10.1371/journal.pone.0102485.g004

Combined Effects of Hypoxia and PFOSA on Lipid Homeostasis

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e102485



Combined Effects of Hypoxia and PFOSA on Lipid Homeostasis

PLOS ONE | www.plosone.org 11 July 2014 | Volume 9 | Issue 7 | e102485



3.3- and 2.7-fold increase at 25 mM PFOSA singly or in

combination with CoCl2, and respective 5.8- and 2.3-fold increase

at DFO singly or in combination with 50 mM PFOSA, were

observed. The observed selective hypoxia and PFOSA mediated

increase in the n-6:n-3 PUFA ratio suggests a possible adaptive

response towards acute hypoxic condition, representing a suggest-

ed mechanism for membrane defense against oxidative stress

[62,63] which we are currently investigating as well (Olufsen et al.

in prep). Further on a mechanistic standpoint, whether the

increase of the elongation enzyme genes that did not parallel

decreases in certain PUFAs in salmon hepatocytes is a direct

response of hypoxic conditions and PFOSA effects in activating

PPARa, or a secondary effect that was derived from altered

membrane FA patterns, remains to be elucidated. Regardless,

these data provide significant overview on the physiological

processes that are involved in the hepatic response to hypoxic

stress, given singly or in combination with environmental

contaminants, and emphasizes the potential negative impact of

high lipid consumption on fish tolerance to environmental hypoxia

[64].

Modulation of peroxisome proliferation pathway
PPARs are important regulators of lipid and lipoprotein

metabolism, glucose homeostasis, cellular differentiation and

inflammatory responses [65,66]. Therefore, any change in FA

profile may have physiological consequences for normal mem-

brane functioning [67]. Herein, we showed that hypoxia given

singly or in combination with PFOSA produced an apparent time-

dependent change in the transcriptional level of PPAR isoforms. It

should also be noted that these transcriptional increases paralleled

increases of HIF-1a, ACOX, FAD5, FAD6 and FAE mRNA in

the combined hypoxia and PFOSA exposure groups. The

relationships between these variables were also confirmed by the

PCA showing clustering of combined exposure groups and

distribution of samples after 48 h. Different distribution pattern

at 24 and 48 h in the PCA bi-plot, implies that changes in mRNA

responsiveness is time-dependent.

The role of PPARa in physiological processes such during

angiogenesis has been investigated under hypoxia condition [68]

and reviewed by [69], showing inductive and inhibitory effects

[69]. For example, mitochondrial FA oxidative capacity was

reduced by hypoxia, resulting in reduced mitochondrial lipid

mobilization and utilization, and consequent accumulation of

intracellular neutral lipid [70]. In another study, cardiomyocytes

increased oxygen utilization efficiency by switching from FA

oxidation to glycolysis under hypoxic conditions, and this shift of

metabolic substrate was achieved by HIF-1-induced increase of

the expression of glucose transporters and glycolytic enzymes

[71,72], and PPARa/RXR-mediated suppression of mitochon-

drial FA b-oxidation [70,73]. Using two different in vivo systemic

hypoxia models (CoCl2 and iso-volemic hemodilution), Razeghi

and co-workers [74] reported a decrease in the expression of

PPARa and several PPARa target genes including (pyruvate

dehydrogenase kinase 4 (PDK4), muscle carnitine palmitoyltrans-

ferase-I (mCPT-I), and malonyl-CoA decarboxylase (MCD) in rat

heart, and suggests a potential transcriptional mechanism for the

decrease in long chain fatty acyl-CoA oxidation during hypoxia

[74]. When the above mentioned reports are viewed with our data

showing increased HIF-1a expression that paralleled PPAR

isoforms, including PPARa – there are discrepancies as has been

reported previously [69], regarding the cellular mechanism of

peroxisomal b-oxidation towards hypoxia adaptation. It should be

noted that we observed significant alterations of membrane FA

profile towards hypoxia exposure. When the changes in mem-

brane FA profile and PPARs data are taken together, there is a

potential that hypoxia increased the level of endogenous ligands

for all PPARs in salmon hepatocytes. This argument is supported

by the observation showing no differences between PPAR

isoforms, which were all increased by hypoxia exposure alone or

in combination with PFOSA.

During normal physiological conditions, there is an inverse

relationship between PPAR isoforms, where PPAR-a and PPAR-b
show similar expression patterns [75], and share some endogenous

ligands [17,76], while PPAR-c have a dissimilar function and

other endogenous ligands [77]. In accordance with the present

findings, hypoxia has previously shown to induce PPAR-c
expression [78]. While the mechanism for this effect is unclear,

a possible mechanism to conserve energy during sub-optimal

conditions was proposed [79]. Overall, while DFO induces

hypoxia by chelating iron for excretion and subsequently reducing

the potential for oxygen transport [29], CoCl2 is a transition metal

that replaces iron in heme proteins, but does not bind oxygen,

contrary to iron, when incorporated to protoporhyrins [80]. The

entire iron replacement produces an oxygen sensor signal to the

cell that mimics a state of oxygen reduction [74,80]. The DFO and

CoCl2 mechanisms induced hypoxia gene marker in hepatocytes

and whether these represent a generalized mechanism in all cells

remains to be investigated. However, other hypoxia parameters

than HIF-1a, such as HIF-2a are responsible for PPAR regulation

[81], that could further explain the changes in FA profile observed

in the present study.

Regardless, we reported recently that PFOA, PFOS and

PFOSA modulated lipid homeostasis and PPAR transcription in

salmon in vivo and in vitro systems [39,50]. It has also been

suggested that certain POPs can interact with transcription factors

in a similar manner as FAs, acting as a PPAR agonist [82]. Given

that salmonid tissues are characterized by high concentrations of

PUFAs, making them prone to oxidative damage [83] and fish are

more protected from lipid peroxidation than mammals [83], the

present data provide significant insight on the effects of hypoxia on

cellular lipid homeostasis. Combined hypoxia and PFOSA

exposures increased PPAR isoforms, suggesting that these

emerging environmental stressors produced peroxisomal prolifer-

ation in salmon hepatocytes. Furthermore, PPARc could be

involved in the regulation of the peroxisomal b-oxidation pathway

in Atlantic salmon [84,85]. Long-chain FAs, which are exclusively

metabolized in the peroxisomes, exert an inhibitory effect on the

peroxisomal b-oxidation [60]. Therefore, the activation of the

elongation pathway could therefore explain the increased expres-

sion of ACOX1 that was observed after exposure to combined

hypoxia and PFOSA. ACOX catalyses the rate limiting-step in

peroxisomal b-oxidation pathway of FA, and is commonly used as

a biomarker for peroxisomal proliferation [86]. The role of

PPARc in fat accumulation, adipocyte differentiation and immune

Figure 5. Biplot of principal component analysis (PCA) showing the scattering of HIF-1a, FAD5, FAD6, FAE, ACOX and PPAR (a, b
and c) mRNA levels after either 24 h (A) or 48 h (B) of exposure. Salmon hepatocytes were exposed to CoCl2 (150 mM) or DFO (100 mM)
singly or in combination with PFOSA (25 and 50 mM) and gene expression was analyzed by qPCR. Letter denotes exposure treatment (A-Solvent
control; B-25 mM PFOSA; C-50 mM PFOSA; D-50 mM CoCl2; E-25 mM PFOSA+150 mM CoCl2; F-50 mM PFOSA+150 mM CoCl2; G-100 mM DFO; H-25 mM
PFOSA+100 mM DFO; I-50 mM PFOSA+100 mM DFO) and followed by a number (1–10) denoting the individual sample.
doi:10.1371/journal.pone.0102485.g005
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response, lipid and carbohydrate metabolism has been reported

[87]. Particularly, an antagonistic interaction between PPARa and

PPARc in the maintenance of lipid homeostasis [88] has been

suggested. Contrary to previous findings by Wågbø et al (2012)

showing distinct and apparent concentration-dependent transcrip-

tional increase of PPARc by PFOSA exposure of salmon

hepatocytes [85], the present study showed a comparable pattern

of expression between PPARc and PPARa after combined

exposure to hypoxia and PFOSA.

Increased oxidative stress and lipid peroxidation in salmon fed a

diet containing PFOS and PFOA was reported [49]. ROS

accumulation is a potentially harmful outcome of systemic hypoxia

[5,89,90], and increased peroxisome proliferation may worsen the

situation by adding to ROS load [91]. Lipid peroxidation

produces alteration in membrane lipid structure that may affect

membrane lipids and change in functionality [91,92]. Our data

demonstrate increased PPAR transcription in combined hypoxia

and PFOSA exposure, compared to single exposures, supporting

the significance of multiple stressor investigations.

In summary, alteration of FAD5, FAD6 and FAE gene

expression were generally more affected by hypoxia than PFOSA

and combined exposure produced stronger effects than hypoxia

alone. Regulation of lipid homeostasis is a very complex process

with a myriad of pathways in the energetic budget and link to the

immune system. Increased peroxisome proliferation may have

detrimental effects due to alteration of lipid homeostasis and

directly by increasing lipid peroxidation. Our data show that

PPARs (a, b and c) transcription were increased and these

responses were stronger in hepatocytes experiencing combined

hypoxia and PFOSA exposure. The combined effects of hypoxia

and PFOSA on lipid homeostasis and b-oxidation in salmon

hepatocytes suggest that these emerging multiple environmental

stressors evoke deleterious effects with potential overt physiological

consequences for development, reproduction and general health.
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The surface electromyographic (EMG) amplitude as an 
estimate of upper trapezius muscle activity 

1995 Martha Kold 
Bakkevig 

Dr. scient 
Zoology 

The impact of clothing textiles and construction in a 
clothing system on thermoregulatory responses, sweat 
accumulation and heat transport 

1995 Vidar Moen Dr. scient 
Zoology 

Distribution patterns and adaptations to light in newly 
introduced populations of Mysis relicta and constraints on 
Cladoceran and Char populations 

1995 
Hans 
Haavardsholm 
Blom 

Dr. philos 
Botany 

A revision of the Schistidium apocarpum complex in 
Norway and Sweden 

1996 Jorun Skjærmo Dr. scient 
Botany 

Microbial ecology of early stages of cultivated marine fish; 
inpact fish-bacterial interactions on growth and survival of 
larvae 

1996 Ola Ugedal Dr. scient 
Zoology Radiocesium turnover in freshwater fishes 

1996 Ingibjørg 
Einarsdottir 

Dr. scient 
Zoology 

Production of Atlantic salmon (Salmo salar) and Arctic 
charr (Salvelinus alpinus): A study of some physiological 
and immunological responses to rearing routines 

1996 Christina M. S. 
Pereira 

Dr. scient 
Zoology 

Glucose metabolism in salmonids: Dietary effects and 
hormonal regulation 

1996 Jan Fredrik 
Børseth 

Dr. scient 
Zoology 

The sodium energy gradients in muscle cells of Mytilus 
edulis and the effects of organic xenobiotics 

1996 Gunnar Henriksen Dr. scient 
Zoology 

Status of Grey seal Halichoerus grypus and Harbour seal 
Phoca vitulina in the Barents sea region 

1997 Gunvor Øie Dr. scient 
Botany 

Eevalution of rotifer Brachionus plicatilis quality in early 
first feeding of turbot Scophtalmus maximus L. larvae 

1997 Håkon Holien Dr. scient 
Botany 

Studies of lichens in spurce forest of Central Norway. 
Diversity, old growth species and the relationship to site and 
stand parameters 

1997 Ole Reitan  Dr. scient 
Zoology Responses of birds to habitat disturbance due to damming 

1997 Jon Arne Grøttum  Dr. scient 
Zoology 

Physiological effects of reduced water quality on fish in 
aquaculture 

1997 Per Gustav 
Thingstad  

Dr. scient 
Zoology 

Birds as indicators for studying natural and human-induced 
variations in the environment, with special emphasis on the 
suitability of the Pied Flycatcher 

1997 Torgeir Nygård  Dr. scient 
Zoology 

Temporal and spatial trends of pollutants in birds in 
Norway: Birds of prey and Willow Grouse used as 

1997 Signe Nybø  Dr. scient 
Zoology 

Impacts of long-range transported air pollution on birds with 
particular reference to the dipper Cinclus cinclus in southern 
Norway 



1997 Atle Wibe  Dr. scient 
Zoology 

Identification of conifer volatiles detected by receptor 
neurons in the pine weevil (Hylobius abietis), analysed by 
gas chromatography linked to electrophysiology and to mass 
spectrometry 

1997 Rolv Lundheim  Dr. scient 
Zoology Adaptive and incidental biological ice nucleators    

1997 Arild Magne 
Landa 

Dr. scient 
Zoology 

Wolverines in Scandinavia: ecology, sheep depredation and 
conservation 

1997 Kåre Magne 
Nielsen 

Dr. scient 
Botany 

An evolution of possible horizontal gene transfer from 
plants to sail bacteria by studies of natural transformation in 
Acinetobacter calcoacetius 

1997 Jarle Tufto  Dr. scient 
Zoology 

Gene flow and genetic drift in geographically structured 
populations: Ecological, population genetic, and statistical 
models 

1997 Trygve Hesthagen  Dr. philos 
Zoology 

Population responces of Arctic charr (Salvelinus alpinus 
(L.)) and brown trout (Salmo trutta L.) to acidification in 
Norwegian inland waters 

1997 Trygve Sigholt  Dr. philos 
Zoology 

Control of  Parr-smolt transformation and seawater tolerance 
in farmed Atlantic Salmon (Salmo salar) Effects of 
photoperiod, temperature, gradual seawater acclimation, 
NaCl and betaine in the diet 

1997 Jan Østnes  Dr. scient 
Zoology Cold sensation in adult and neonate birds 

1998 Seethaledsumy 
Visvalingam 

Dr. scient 
Botany 

Influence of environmental factors on myrosinases and 
myrosinase-binding proteins 

1998 Thor Harald 
Ringsby 

Dr. scient 
Zoology 

Variation in space and time: The biology of a House 
sparrow metapopulation 

1998 Erling Johan 
Solberg 

Dr. scient 
Zoology 

Variation in population dynamics and life history in a 
Norwegian moose (Alces alces) population: consequences of 
harvesting in a variable environment 

1998 Sigurd Mjøen 
Saastad 

Dr. scient 
Botany 

Species delimitation and phylogenetic relationships between 
the Sphagnum recurvum complex (Bryophyta): genetic 
variation and phenotypic plasticity 

1998 Bjarte Mortensen Dr. scient 
Botany 

Metabolism of volatile organic chemicals (VOCs) in a head 
liver S9 vial  equilibration system in vitro 

1998 Gunnar Austrheim Dr. scient 
Botany 

Plant biodiversity and land use in subalpine grasslands. – A 
conservtaion biological approach 

1998 Bente Gunnveig 
Berg 

Dr. scient 
Zoology 

Encoding of pheromone information in two related moth 
species 

1999 Kristian 
Overskaug 

Dr. scient 
Zoology 

Behavioural and morphological characteristics in Northern 
Tawny Owls Strix aluco: An intra- and interspecific 
comparative approach 

1999 Hans Kristen 
Stenøien 

Dr. scient 
Botany 

Genetic studies of evolutionary processes in various 
populations of nonvascular plants (mosses, liverworts and 
hornworts) 

1999 Trond Arnesen Dr. scient 
Botany 

Vegetation dynamics following trampling and burning in the 
outlying haylands at Sølendet, Central Norway 

1999 Ingvar Stenberg Dr. scient 
Zoology 

Habitat selection, reproduction and survival in the White-
backed Woodpecker Dendrocopos leucotos 

1999 Stein Olle 
Johansen 

Dr. scient 
Botany 

A study of driftwood dispersal to the Nordic Seas by 
dendrochronology and wood anatomical analysis 

1999 Trina Falck 
Galloway 

Dr. scient 
Zoology 

Muscle development and growth in early life stages of the 
Atlantic cod (Gadus morhua L.) and Halibut (Hippoglossus 
hippoglossus L.) 



1999 Marianne Giæver Dr. scient 
Zoology 

Population genetic studies in three gadoid species: blue 
whiting (Micromisistius poutassou), haddock 
(Melanogrammus aeglefinus) and cod (Gradus morhua) in 
the North-East Atlantic 

1999 Hans Martin 
Hanslin 

Dr. scient 
Botany 

The impact of environmental conditions of density 
dependent performance in the boreal forest bryophytes 
Dicranum majus, Hylocomium splendens, Plagiochila 
asplenigides, Ptilium crista-castrensis and Rhytidiadelphus 
lokeus 

1999 Ingrid Bysveen 
Mjølnerød 

Dr. scient 
Zoology 

Aspects of population genetics, behaviour and performance 
of wild and farmed Atlantic salmon (Salmo salar) revealed 
by molecular genetic techniques 

1999 Else Berit Skagen Dr. scient 
Botany 

The early regeneration process in protoplasts from Brassica 
napus hypocotyls cultivated under various g-forces 

1999 Stein-Are Sæther Dr. philos 
Zoology 

Mate choice, competition for mates, and conflicts of interest 
in the Lekking Great Snipe 

1999 Katrine Wangen 
Rustad 

Dr. scient 
Zoology 

Modulation of glutamatergic neurotransmission related to 
cognitive dysfunctions and Alzheimer’s disease 

1999 Per Terje Smiseth Dr. scient 
Zoology Social evolution in monogamous families: 

1999 Gunnbjørn 
Bremset 

Dr. scient 
Zoology 

Young Atlantic salmon (Salmo salar L.) and Brown trout 
(Salmo trutta L.) inhabiting the deep pool habitat, with 
special reference to their habitat use, habitat preferences and 
competitive interactions 

1999 Frode Ødegaard Dr. scient 
Zoology 

Host spesificity as parameter in estimates of arhrophod 
species richness 

1999 Sonja Andersen Dr. scient 
Zoology 

Expressional and functional analyses of human, secretory 
phospholipase A2 

2000 Ingrid Salvesen Dr. scient 
Botany 

Microbial ecology in early stages of marine fish: 
Development and evaluation of methods for microbial 
management in intensive larviculture 

2000 Ingar Jostein Øien Dr. scient 
Zoology 

The Cuckoo (Cuculus canorus) and its host: adaptions and 
counteradaptions in a coevolutionary arms race 

2000 Pavlos Makridis Dr. scient 
Botany 

Methods for the microbial econtrol of live food used for the 
rearing of marine fish larvae 

2000 Sigbjørn Stokke Dr. scient 
Zoology 

Sexual segregation in the African elephant (Loxodonta 
africana) 

2000 Odd A. Gulseth Dr. philos 
Zoology 

Seawater tolerance, migratory behaviour and growth of 
Charr, (Salvelinus alpinus), with emphasis on the high 
Arctic Dieset charr on Spitsbergen, Svalbard 

2000 Pål A. Olsvik Dr. scient 
Zoology 

Biochemical impacts of Cd, Cu and Zn on brown trout 
(Salmo trutta) in two mining-contaminated rivers in Central 
Norway 

2000 Sigurd Einum Dr. scient 
Zoology 

Maternal effects in fish: Implications for the evolution of 
breeding time and egg size 

2001 Jan Ove Evjemo Dr. scient 
Zoology 

Production and nutritional adaptation of the brine shrimp 
Artemia sp. as live food organism for larvae of marine cold 
water fish species 

2001 Olga Hilmo Dr. scient 
Botany 

Lichen response to environmental changes in the managed 
boreal forset systems 

2001 Ingebrigt Uglem Dr. scient 
Zoology 

Male dimorphism and reproductive biology in corkwing 
wrasse (Symphodus melops L.) 

2001 Bård Gunnar 
Stokke 

Dr. scient 
Zoology 

Coevolutionary adaptations in avian brood parasites and 
their hosts 

2002 Ronny Aanes Dr. scient 
Zoology 

Spatio-temporal dynamics in Svalbard reindeer (Rangifer 
tarandus platyrhynchus) 



2002 Mariann Sandsund Dr. scient 
Zoology 

Exercise- and cold-induced asthma. Respiratory and 
thermoregulatory responses 

2002 Dag-Inge Øien Dr. scient 
Botany 

Dynamics of plant communities and populations in boreal 
vegetation influenced by scything at Sølendet, Central 
Norway 

2002 Frank Rosell Dr. scient 
Zoology The function of scent marking in beaver (Castor fiber) 

2002 Janne Østvang Dr. scient 
Botany 

The Role and Regulation of Phospholipase A2 in Monocytes 
During Atherosclerosis Development 

2002 Terje Thun Dr. philos 
Biology 

Dendrochronological constructions of Norwegian conifer 
chronologies providing dating of historical material 

2002 Birgit Hafjeld 
Borgen 

Dr. scient 
Biology 

Functional analysis of plant idioblasts (Myrosin cells) and 
their role in defense, development and growth 

2002 Bård Øyvind 
Solberg 

Dr. scient 
Biology 

Effects of climatic change on the growth of dominating tree 
species along major environmental gradients 

2002 Per Winge Dr. scient 
Biology 

The evolution of small GTP binding proteins in cellular 
organisms. Studies of RAC GTPases in Arabidopsis 
thaliana and the Ral GTPase from Drosophila melanogaster 

2002 Henrik Jensen Dr. scient 
Biology 

Causes and consequenses of individual variation in fitness-
related traits in house sparrows 

2003 Jens Rohloff Dr. philos 
Biology 

Cultivation of herbs and medicinal plants in Norway – 
Essential oil production and quality control 

2003 Åsa Maria O. 
Espmark Wibe 

Dr. scient 
Biology 

Behavioural effects of environmental pollution in threespine 
stickleback Gasterosteus aculeatur L. 

2003 Dagmar Hagen Dr. scient 
Biology 

Assisted recovery of disturbed arctic and alpine vegetation – 
an integrated approach 

2003 Bjørn Dahle Dr. scient 
Biology Reproductive strategies in Scandinavian brown bears 

2003 Cyril Lebogang 
Taolo 

Dr. scient 
Biology 

Population ecology, seasonal movement and habitat use of 
the African buffalo (Syncerus caffer) in Chobe National 
Park, Botswana 

2003 Marit Stranden Dr. scient 
Biology 

Olfactory receptor neurones specified for the same odorants 
in three related Heliothine species (Helicoverpa armigera, 
Helicoverpa assulta and Heliothis virescens) 

2003 Kristian Hassel Dr. scient 
Biology 

Life history characteristics and genetic variation in an 
expanding species, Pogonatum dentatum 

2003 David Alexander 
Rae 

Dr. scient 
Biology 

Plant- and invertebrate-community responses to species 
interaction and microclimatic gradients in alpine and Artic 
environments 

2003 Åsa A Borg Dr. scient 
Biology 

Sex roles and reproductive behaviour in gobies and guppies: 
a female perspective 

2003 Eldar Åsgard 
Bendiksen 

Dr. scient 
Biology 

Environmental effects on lipid nutrition of farmed Atlantic 
salmon (Salmo Salar L.) parr and smolt 

2004 Torkild Bakken Dr. scient 
Biology A revision of Nereidinae (Polychaeta, Nereididae) 

2004 Ingar Pareliussen Dr. scient 
Biology 

Natural and Experimental Tree Establishment in a 
Fragmented Forest, Ambohitantely Forest Reserve, 
Madagascar 

2004 Tore Brembu Dr. scient 
Biology 

Genetic, molecular and functional studies of RAC GTPases 
and the WAVE-like regulatory protein complex in 
Arabidopsis thaliana 

2004 Liv S. Nilsen Dr. scient 
Biology 

Coastal heath vegetation on central Norway; recent past, 
present state and future possibilities 



2004 Hanne T. Skiri Dr. scient 
Biology 

Olfactory coding and olfactory learning of plant odours in 
heliothine moths. An anatomical, physiological and 
behavioural study of three related species (Heliothis 
virescens, Helicoverpa armigera and Helicoverpa assulta) 

2004 Lene Østby Dr. scient 
Biology 

Cytochrome P4501A (CYP1A) induction and DNA adducts 
as biomarkers for organic pollution in the natural 
environment 

2004 Emmanuel J. 
Gerreta 

Dr. philos 
Biology 

The Importance of Water Quality and Quantity in the 
Tropical Ecosystems, Tanzania 

2004 Linda Dalen Dr. scient 
Biology 

Dynamics of Mountain Birch Treelines in the Scandes 
Mountain Chain, and Effects of Climate Warming 

2004 Lisbeth Mehli Dr. scient 
Biology 

Polygalacturonase-inhibiting protein (PGIP) in cultivated 
strawberry (Fragaria x ananassa): characterisation and 
induction of the gene following fruit infection by Botrytis 
cinerea 

2004 Børge Moe Dr. scient 
Biology 

Energy-Allocation in Avian Nestlings Facing Short-Term 
Food Shortage 

2005 Matilde Skogen 
Chauton 

Dr. scient 
Biology 

Metabolic profiling and species discrimination from High-
Resolution Magic Angle Spinning NMR analysis of whole-
cell samples 

2005 Sten Karlsson Dr. scient 
Biology Dynamics of Genetic Polymorphisms 

2005 Terje Bongard Dr. scient 
Biology 

Life History strategies, mate choice, and parental investment 
among Norwegians over a 300-year period 

2005 Tonette Røstelien ph.d Biology Functional characterisation of olfactory receptor neurone 
types in heliothine moths 

2005 Erlend Kristiansen Dr. scient 
Biology Studies on antifreeze proteins 

2005 Eugen G. Sørmo Dr. scient 
Biology 

Organochlorine pollutants in grey seal (Halichoerus grypus) 
pups and their impact on plasma thyrid hormone and 
vitamin A concentrations 

2005 Christian Westad Dr. scient 
Biology Motor control of the upper trapezius 

2005 Lasse Mork Olsen ph.d Biology Interactions between marine osmo- and phagotrophs in 
different physicochemical environments 

2005 Åslaug Viken ph.d Biology Implications of mate choice for the management of small 
populations 

2005 Ariaya Hymete 
Sahle Dingle ph.d Biology Investigation of the biological activities and chemical 

constituents of selected Echinops spp. growing in Ethiopia 

2005 Anders Gravbrøt 
Finstad ph.d Biology Salmonid fishes in a changing climate: The winter challenge 

2005 
Shimane 
Washington 
Makabu 

ph.d Biology Interactions between woody plants, elephants and other 
browsers in the Chobe Riverfront, Botswana 

2005 Kjartan Østbye Dr. scient 
Biology 

The European whitefish Coregonus lavaretus (L.) species 
complex: historical contingency and adaptive radiation 

2006 Kari Mette 
Murvoll ph.d Biology 

Levels and effects of persistent organic pollutans (POPs) in 
seabirds, Retinoids and α-tocopherol –  potential biomakers 
of POPs in birds?  

2006 Ivar Herfindal Dr. scient 
Biology 

Life history consequences of environmental variation along 
ecological gradients in northern ungulates 

2006 Nils Egil Tokle ph.d Biology 
Are the ubiquitous marine copepods limited by food or 
predation? Experimental and field-based studies with main 
focus on Calanus finmarchicus 

2006 Jan Ove 
Gjershaug 

Dr. philos 
Biology 

Taxonomy and conservation status of some booted eagles in 
south-east Asia 



2006 Jon Kristian Skei Dr. scient 
Biology 

Conservation biology and acidification problems in the 
breeding habitat of amphibians in Norway 

2006 Johanna Järnegren ph.d Biology Acesta Oophaga and Acesta Excavata – a study of hidden 
biodiversity 

2006 Bjørn Henrik 
Hansen ph.d Biology 

Metal-mediated oxidative stress responses in brown trout 
(Salmo trutta) from mining contaminated rivers in Central 
Norway 

2006 Vidar Grøtan ph.d Biology Temporal and spatial effects of climate fluctuations on 
population dynamics of vertebrates 

2006 Jafari R 
Kideghesho ph.d Biology Wildlife conservation and local land use conflicts in western 

Serengeti, Corridor Tanzania 

2006 Anna Maria 
Billing ph.d Biology Reproductive decisions in the sex role reversed pipefish 

Syngnathus typhle: when and how to invest in reproduction 

2006 Henrik Pärn ph.d Biology Female ornaments and reproductive biology in the 
bluethroat 

2006 Anders J. 
Fjellheim ph.d Biology Selection and administration of probiotic bacteria to marine 

fish larvae 

2006 P. Andreas 
Svensson ph.d Biology Female coloration, egg carotenoids and reproductive 

success: gobies as a model system 

2007 Sindre A. 
Pedersen ph.d Biology 

Metal binding proteins and antifreeze proteins in the beetle 
Tenebrio molitor - a study on possible competition for the 
semi-essential amino acid cysteine 

2007 Kasper Hancke ph.d Biology 
Photosynthetic responses as a function of light and 
temperature: Field and laboratory studies on marine 
microalgae 

2007 Tomas Holmern ph.d Biology Bushmeat hunting in the western Serengeti: Implications for 
community-based conservation 

2007 Kari Jørgensen ph.d Biology Functional tracing of gustatory receptor neurons in the CNS 
and chemosensory learning in the moth Heliothis virescens 

2007 Stig Ulland ph.d Biology 

Functional Characterisation of Olfactory Receptor Neurons 
in the Cabbage Moth, (Mamestra brassicae L.) 
(Lepidoptera, Noctuidae). Gas Chromatography Linked to 
Single Cell Recordings and Mass Spectrometry 

2007 Snorre Henriksen ph.d Biology Spatial and temporal variation in herbivore resources at 
northern latitudes 

2007 Roelof Frans May ph.d Biology Spatial Ecology of Wolverines in Scandinavia  

2007 Vedasto Gabriel 
Ndibalema ph.d Biology 

Demographic variation, distribution and habitat use between 
wildebeest sub-populations in the Serengeti National Park, 
Tanzania 

2007 Julius William 
Nyahongo ph.d Biology 

Depredation of Livestock by wild Carnivores and Illegal 
Utilization of Natural Resources by Humans in the Western 
Serengeti, Tanzania 

2007 Shombe Ntaraluka 
Hassan ph.d Biology Effects of fire on large herbivores and their forage resources 

in Serengeti, Tanzania 

2007 Per-Arvid Wold ph.d Biology 
Functional development and response to dietary treatment in 
larval Atlantic cod (Gadus morhua L.) Focus on formulated 
diets and early weaning 

2007 Anne Skjetne 
Mortensen ph.d Biology 

Toxicogenomics of Aryl Hydrocarbon- and Estrogen 
Receptor Interactions in Fish: Mechanisms and Profiling of 
Gene Expression Patterns in Chemical Mixture Exposure 
Scenarios 

2008 Brage Bremset 
Hansen ph.d Biology 

The Svalbard reindeer (Rangifer tarandus platyrhynchus) 
and its food base: plant-herbivore interactions in a high-
arctic ecosystem 



2008 Jiska van Dijk ph.d Biology Wolverine foraging strategies in a multiple-use landscape 

2008 Flora John 
Magige ph.d Biology The ecology and behaviour of the Masai Ostrich (Struthio 

camelus massaicus) in the Serengeti Ecosystem, Tanzania 

2008 Bernt Rønning ph.d Biology Sources of inter- and intra-individual variation in basal 
metabolic rate in the zebra finch, (Taeniopygia guttata) 

2008 Sølvi Wehn ph.d Biology 
Biodiversity dynamics in semi-natural mountain landscapes 
- A study of consequences of changed agricultural practices 
in Eastern Jotunheimen 

2008 Trond Moxness 
Kortner ph.d Biology 

"The Role of Androgens on previtellogenic oocyte growth in 
Atlantic cod (Gadus morhua): Identification and patterns of 
differentially expressed genes in relation to Stereological 
Evaluations" 

2008 Katarina Mariann 
Jørgensen 

Dr. scient 
Biology 

The role of platelet activating factor in activation of growth 
arrested keratinocytes and re-epithelialisation 

2008 Tommy Jørstad ph.d Biology Statistical Modelling of Gene Expression Data 

2008 Anna Kusnierczyk ph.d Biology Arabidopsis thaliana Responses to Aphid Infestation 

2008 Jussi Evertsen ph.d Biology Herbivore sacoglossans with photosynthetic chloroplasts 

2008 John Eilif 
Hermansen ph.d Biology 

Mediating ecological interests between locals and globals by 
means of indicators. A study attributed to the asymmetry 
between stakeholders of tropical forest at Mt. Kilimanjaro, 
Tanzania 

2008 Ragnhild Lyngved ph.d Biology Somatic embryogenesis in Cyclamen persicum. Biological 
investigations and educational aspects of cloning 

2008 Line Elisabeth 
Sundt-Hansen ph.d Biology Cost of rapid growth in salmonid fishes 

2008 Line Johansen ph.d Biology 
Exploring factors underlying fluctuations in white clover 
populations – clonal growth, population structure and spatial 
distribution 

2009 Astrid Jullumstrø 
Feuerherm ph.d Biology Elucidation of molecular mechanisms for pro-inflammatory 

phospholipase A2 in chronic disease 

2009 Pål Kvello ph.d Biology 

Neurons forming the network involved in gustatory coding 
and learning in the moth Heliothis virescens: Physiological 
and morphological characterisation, and integration into a 
standard brain atlas 

2009 Trygve Devold 
Kjellsen ph.d Biology Extreme Frost Tolerance in Boreal Conifers 

2009 Johan Reinert 
Vikan ph.d Biology Coevolutionary interactions between common cuckoos 

Cuculus canorus and Fringilla finches 

2009 Zsolt Volent ph.d Biology 

Remote sensing of marine environment: Applied 
surveillance with focus on optical properties of 
phytoplankton, coloured organic matter and suspended 
matter 

2009 Lester Rocha ph.d Biology Functional responses of perennial grasses to simulated 
grazing and resource availability 

2009 Dennis Ikanda ph.d Biology 
Dimensions of a Human-lion conflict: Ecology of human 
predation and persecution of African lions (Panthera leo) in 
Tanzania 

2010 Huy Quang 
Nguyen ph.d Biology 

Egg characteristics and development of larval digestive 
function of cobia (Rachycentron canadum) in response to 
dietary treatments - Focus on formulated diets 

2010 Eli Kvingedal ph.d Biology Intraspecific competition in stream salmonids: the impact of 
environment and phenotype 



2010 Sverre Lundemo ph.d Biology Molecular studies of genetic structuring and demography in 
Arabidopsis from Northern Europe 

2010 Iddi Mihijai 
Mfunda  ph.d Biology 

Wildlife Conservation and People’s livelihoods: Lessons 
Learnt and Considerations for Improvements. Tha Case of 
Serengeti Ecosystem, Tanzania 

2010 Anton Tinchov 
Antonov ph.d Biology Why do cuckoos lay strong-shelled eggs? Tests of the 

puncture resistance hypothesis 

2010 Anders Lyngstad ph.d Biology Population Ecology of Eriophorum latifolium, a Clonal 
Species in Rich Fen Vegetation 

2010 Hilde Færevik ph.d Biology Impact of protective clothing on thermal and cognitive 
responses 

2010 Ingerid Brænne 
Arbo 

ph.d Medical 
technology 

Nutritional lifestyle changes – effects of dietary 
carbohydrate restriction in healthy obese and overweight 
humans 

2010 Yngvild Vindenes ph.d Biology Stochastic modeling of finite populations with individual 
heterogeneity in vital parameters 

2010 Hans-Richard 
Brattbakk 

ph.d Medical 
technology 

The effect of macronutrient composition, insulin 
stimulation, and genetic variation on leukocyte gene 
expression and possible health benefits 

2011 Geir Hysing 
Bolstad ph.d Biology Evolution of Signals: Genetic Architecture, Natural 

Selection and Adaptive Accuracy 

2011 Karen de Jong ph.d Biology Operational sex ratio and reproductive behaviour in the two-
spotted goby (Gobiusculus flavescens) 

2011 Ann-Iren Kittang ph.d Biology 

Arabidopsis thaliana L. adaptation mechanisms to 
microgravity through the EMCS MULTIGEN-2 experiment 
on the ISS:– The science of space experiment integration 
and adaptation to simulated microgravity 

2011 Aline Magdalena 
Lee ph.d Biology Stochastic modeling of mating systems and their effect on 

population dynamics and genetics 

2011 
Christopher 
Gravningen 
Sørmo 

ph.d Biology 
Rho GTPases in Plants: Structural analysis of ROP 
GTPases; genetic and functional studies of MIRO GTPases 
in Arabidopsis thaliana 

2011 Grethe Robertsen ph.d Biology Relative performance of  salmonid phenotypes across 
environments and competitive intensities 

2011 Line-Kristin 
Larsen ph.d Biology 

Life-history trait dynamics in experimental populations of 
guppy (Poecilia reticulata): the role of breeding regime and 
captive environment 

2011 Maxim A. K. 
Teichert ph.d Biology Regulation in Atlantic salmon (Salmo salar): The interaction 

between habitat and density 

2011 Torunn Beate 
Hancke ph.d Biology 

Use of Pulse Amplitude Modulated (PAM) Fluorescence 
and Bio-optics for Assessing Microalgal Photosynthesis and 
Physiology 

2011 Sajeda Begum ph.d Biology Brood Parasitism in Asian Cuckoos: Different Aspects of 
Interactions between Cuckoos and their Hosts in Bangladesh 

2011 Kari J. K. 
Attramadal ph.d Biology Water treatment as an approach to increase microbial control 

in the culture of cold water marine larvae 

2011 Camilla Kalvatn 
Egset ph.d Biology The Evolvability of Static Allometry: A Case Study 

2011 AHM Raihan 
Sarker ph.d Biology Conflict over the conservation of the Asian elephant 

(Elephas maximus) in Bangladesh 

2011 Gro Dehli 
Villanger ph.d Biology 

Effects of complex organohalogen contaminant mixtures on 
thyroid hormone homeostasis in selected arctic marine 
mammals 

2011 Kari Bjørneraas ph.d Biology Spatiotemporal variation in resource utilisation by a large 
herbivore, the moose 



2011 John Odden ph.d Biology The ecology of a conflict: Eurasian lynx depredation on 
domestic sheep 

2011 Simen Pedersen ph.d Biology Effects of native and introduced cervids on small mammals 
and birds 

2011 Mohsen Falahati-
Anbaran ph.d Biology Evolutionary consequences of seed banks and seed dispersal 

in Arabidopsis 

2012 Jakob Hønborg 
Hansen ph.d Biology Shift work in the offshore vessel fleet: circadian rhythms 

and cognitive performance 

2012 Elin Noreen ph.d Biology Consequences of diet quality and age on life-history traits in 
a small passerine bird 

2012  Irja Ida 
Ratikainen ph.d Biology Theoretical and empirical approaches to studying foraging 

decisions: the past and future of behavioural ecology 

2012 Aleksander Handå ph.d Biology Cultivation of mussels (Mytilus edulis):Feed requirements, 
storage and integration with salmon (Salmo salar) farming 

2012 Morten Kraabøl ph.d Biology Reproductive and migratory challenges inflicted on migrant 
brown trour (Salmo trutta L) in a heavily modified river 

2012 Jisca Huisman ph.d Biology Gene flow and natural selection in Atlantic salmon 

Maria Bergvik ph.d Biology Lipid and astaxanthin contents and biochemical post-harvest 
stability in Calanus finmarchicus 

2012 Bjarte Bye 
Løfaldli ph.d Biology Functional and morphological characterization of central 

olfactory neurons in the model insect Heliothis virescens. 

2012 Karen Marie 
Hammer ph.d Biology 

Acid-base regulation and metabolite responses in shallow- 
and deep-living marine invertebrates during environmental 
hypercapnia 

2012 Øystein Nordrum 
Wiggen ph.d Biology Optimal performance in the cold 
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