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We investigate numerically the dynamics of crack propagation along a weak plane using a
model consisting of fibers connecting a soft and a hard clamp. This bottom-up model has
previously been shown to contain the competition of two crack propagation mechanisms:
coalescence of damage with the front on small scales and pinned elastic line motion on
large scales. We investigate the dynamical scaling properties of the model, both on small
and large scale. The model results compare favorable with experimental results on stable
crack propagation between sintered PMMA plates.
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1. INTRODUCTION
The motion of a fracture front through a disordered medium is
for obvious reasons of great practical importance. Nevertheless, it
is a very complex problem which has kept material scientists and
mechanical engineers occupied for almost two centuries [1]. In
an attempt to simplify the problem, Schmittbuhl et al. [2] pro-
posed to study the motion of a fracture front moving along a
weak plane, thereby supressing the out of plane motion of the
front. In a seminal experimental study, Schmittbuhl and Måløy
[3] followed this idea up by sintering two sandblasted plexiglass
plates together and then plying them apart from one edge. The
sintering made the otherwise due to the sandblasting, opaque
plates transparent. Where the plates were broken apart again, the
opaqueness returned. Hence, it was possible to identify and follow
the motion of the front since the plates would be transparent in
front of the crack front and opaque behind it. There have been
a large number of studies on this system following this initial
work. Most of these studies have been theoretical or numerical
in character and they have mostly dealt with the roughness of the
crack front, see e.g., Ramanathan et al. [4], Delaplace et al. [5],
Rosso and Krauth [6] Schmittbuhl et al. [7] and Santucci et al.
[8]. See also the recent reviews by Bonamy [9] and Bonamy and
Bouchaud [10].

The roughness is only one aspect of the motion of the crack
front in this system. A first study of the dynamics of the front was
published by Måløy and Schmittbuhl in 2001 [11]. The velocity
distribution was measured and found to decay slower than an
exponential. This was followed by a study by Måløy et al. [12]
introducing the waiting time matrix technique making it possi-
ble to measure pixel by pixel the time the front sits still locally.
This revealed an avalanche structure where portions of the front
would sweep an area S with a velocity v before halting again. Both
the distribution of areas and velocities were power laws. In two

later papers, Tallakstad et al. [13] and Lengliné et al. [14], have
continued and refined this work.

The fluctuating line model, based on the idea that the crack
front moves as a pinned elastic line [2, 15], dominates the the-
oretical descriptions of the constrained crack problem. It is a
top-down approach where the motion of the crack front is derived
from continuum elastic theory. Its earliest use was to calculate the
roughness exponent controlling the scaling properties of the crack
front. If h(x, t) is the position of the crack front at time t and
position x along its base line, then one finds the height-height cor-
relation function 〈(h(x + �x) − h(x))2〉 scaling as |�x|2ζ where
ζ is the rougness exponent [2]. The most presise measurement
of the roughness exponent withing the fluctuating line model to
date is ζ = 0.388 ± 0.002 [6]. However, the experimental mea-
surements of ζ gave systematically a much larger value, namely
around 0.6—Schmittbuhl and Måløy [3] found ζ = 0.55 ± 0.05
and Delaplace et al. [5] ζ = 0.63 ± 0.03.

Santucci et al. [8] have reanalyzed data from a number of ear-
lier studies, including Delaplace et al. [5], finding that the crack
front has two scaling regimes: one small-scale regime described by
a roughness exponent ζ− = 0.60 ± 0.05 and a large-scale regime
described by a roughness exponent ζ+ = 0.35 ± 0.05. Hence,
there is a large scale roughness regime which is consistent with
the fluctuating line model. However, the small scale regime is too
rough.

Laurson et al. [16] has linked this regime to correlations in
the pinning strength below the Larkin lenght within the fluctu-
ating line model. This approach assumes that the physics behind
both scaling regimes is describable within the same top-down
model. Bonamy et al. [17] and Laurson et al. [16] have consid-
ered the crackling dynamics [18] of the fluctuating line model
finding behavior consistent with the experimental measurements
[11–14].
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A very different approach to explain the roughness of the
crack front has been proposed by Schmittbuhl et al. [7]. It is a
bottom-up approach based on a stress-weighted gradient perco-
lation process. This idea in turn has its origin in the proposal by
Bouchaud et al. [19] that the crack front does not advance not
only due to a competition between effective elastic forces and pin-
ning forces at the front, but also by coalescence of damage in front
of the crack with the advancing crack itself.

By refining the model proposed by Batrouni et al. [20] and
Gjerden et al. [21], consisting of fibers clamped between a hard
and a soft block and with a gradient in the breaking thresholds,
we have identified two scaling regimes for the roughness of the
advancing crack front [22]. On large scales we recover the rough-
ness seen in the reanalysis of experimental data by Santucci et al.
[8], ζ+ = 0.39 ± 0.04, consistent with the fluctuating line model.
On small scales, where the front advances mainly due to dam-
age coalescence, we find the growth to be consistent with gradient
percolation [23, 24]. As was shown by Hansen et al. [25], this
implies a roughness exponent ζ− = 2/3. This value is consistent
with the reanalysis of Santucci et al. [8].

We study in this paper the crackling dynamics in the fiber
bundle model [20–22]. We find quantitative consistency with
the experimental measurements. Hence, we demonstrate that this
simple model contains the observed experimental features of con-
strained crack growth. It contains the essential physics of the
problem. Since we have control over the crossover length scale
between the crack advancing due to crack coalescence and due to
pinning of the crack front as an elastic line, we analyse our results
in light of this.

In Section 2, we describe the model in detail. Section 3.1 con-
tinues the analysis from Gjerden et al. [22] of the roughness of
the crack front. In Gjerden et al. [22], we measured the roughness
locally using the average wavelet coefficient method [26, 27]. Here
we base our analysis on the variance of the front, again finding two
regimes: a small-scale regime consistent with ordinary gradient
percolation and a large-scale regime consistent with the fluctuat-
ing line model. In Section 3.2 we examine the velocity distribution
during the motion of the crack front. Our data are consistent with
the findings of Måløy et al. [12] and Tallakstad et al. [13]. Section
3.3 is devoted to an analysis of the geometry of the avalanches
that occur during the motion of the crack front. The last section
before the conclusion, Section 4 contains a tying up of loose ends
through a discussion of the results.

The main aim of this paper has been to demonstrate that the
simple model we use is capable of reproducing the experimental
data. Hence, this simple fiber bundle model seems to contain the
essential physics of the constrained crack problem.

2. MODEL AND METHOD
The model we base our calculations on is a refinement of the
fiber bundle model [28] used by Schmittbuhl et al. [7] and intro-
duced by Batrouni et al. the year before [20]. We illustrate the
model in Figure 1. L × L elastic fibers are placed in a square lat-
tice between two parallel clamps. One of the clamps is infinitely
stiff whereas the other has a finite Young modulus E and a Poisson
ratio ν. All fibers are equally long and have the same elastic
constant k.

Soft ClampHard Clamp

D

FIGURE 1 | A contraption illustrating the fiber bundle model defined

in Equations (1) and (2). When the handle is turned, the two clamps
are moved away from each other. The distance over which they are
moved is given by D. The hard clamp does not deform, whereas the soft
clamp does.

We measure the position of the stiff clamp with respect to its
position when all fibers carry zero force, D, see Figure 1. The force
carried by the fiber at position (i, j), where i and j are coordinates
in a cartesian coordinate system oriented along the two planes on
which the fibers are clamped, is then

f(i,j) = −k(u(i,j) − D), (1)

where u(i,j) is the elongation of the fiber at (i, j).
The fibers redistribute the forces they carry through the

response of the soft clamp. The redistribution of forces is accom-
plished by using the Green function connecting the force f(m,n)

acting on the clamp from fiber (m, n) with the deformation u(i,j)

at fiber (i, j), [29]

u(i,j) =
∑

(m,n)

G(i,j),(m,n)f(m,n), (2a)

G(i,j),(m,n) =
1 − ν2

πEa2

∫ a/2

−a/2
dx

∫ a/2

−a/2
dy

1

|�r(i,j) − �r(m + x,n + y)| . (2b)

where a is the distance between neighboring fibers. The integra-
tion in Equation (2b) is performed over the Voronoi cell around
each fiber. �r(i,j) is the position of fiber (i, j). �r(m+x,n+y) is the posi-
tion of a point (x, y) in the Voronoi cell surrounding the fiber at
(m, n).

The equation set, Equations (2) and (2b), is solved using a
Fourier accelerated conjugate gradient method [30, 31].

The Green function, Equation (2b), is proportional to (Ea)−1.
The elastic constant of the fibers, k, must be proportional to a2.
The linear size of the system is aL. Hence, by changing the lin-
ear size of the system without changing the discretization a, we
change L → λL but leave (Ea) and k unchanged. If we on the
other hand change the discretization without changing the linear
size of the system, we simultaneously set L → λL, (Ea) → λ(Ea)
and k → k/λ2. Based on these observations, we define a scaled
Young modulus
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e = Ea

L
. (3)

Hence, changing e without changing k is equivalent to changing
L—and hence the linear size of the system—while keeping the
elastic properties of the system constant [32]. This is a central
point in what follows.

The fibers are broken by using the quasistatic approach [33].
That is, we assign to each fiber (i, j) a threshold value t(i,j). They
are then broken one by one by identifying the fiber which satisfies
max(i,j) (f(i,j)/t(i,j)) when the forces fi,j have been calculated for
D = 1. This ratio is then equal to 1/D where D is the value at
which the fiber fails.

In the constrained crack growth experiments of Schmittbuhl
and Måløy [3], the two sintered plexiglass plates were plied apart
from one edge. In the numerical modeling of Schmittbuhl et al.
[7], an asymmetric loading was accomplished by introducing a
linear gradient in D. Rather than implementing an asymmetric
loading, we use here a gradient in the threshold distribution,
t(i,j) = gj + r(i,j), where g is the gradient and r(i,j) is a random
number drawn from a flat distribution on the unit interval.

In order to follow the crack front as the breakdown process
develops, we implement the “conveyor belt” technique [21, 34].
We illustrate this technique in Figure 2. Fiber bundle forms a rect-
angle of width L and length nL, where n > 1. However, we do not
consider all fibers at once, but a square of size L × L. This is the
red square in the figure. The square is initially placed at the bot-
tom of the L × nL strip and at regular intervals, the bottom row

No measurements

No measurements

Work area
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FIGURE 2 | The system we consider is a strip of width L and length nL.

We calculate the force distribution within the red square. This has size
L × L. At the beginning of the calculation, the lower edge of the red square
coincides with the lower edge of the strip. As the calculation proceeds, the
lower row contaning only failed fibers is removed from the red square and a
row on intact fibers is added at the top row. Hence, the red square moves
along the strip. The speed at which it moves is adjusted so that the crack
front remains roughly in the middle of the red square. When the red square
overlaps with the blue regions of length L/2 (bottom) and 3L/4 (top), no
measurements are made of the crack front.

in the square is removed and a new intact row is added at the top.
In this way, the square moves along the strip, eventually passing
from the bottom to the top. The speed at which the square moves
is adjusted so that the crack front, shown as a black rough curve
in the figure, stays roughly in the middle of the red square.

Only after the square has passed the L/2 first rows (marked in
blue in Figure 2) do we record the position of the front. This is to
ensure that the front has entered a steady-state regime. We also do
not record whence the red square is at a distance 3L/4 from the
top. This is indicated as the blue region at the top of the figure.
This is done to avoid boundary effects at this edge.

3. RESULTS
3.1. ROUGHNESS AND DYNAMICAL SCALING
In Gjerden et al. [22], we presented evidence for two scaling
regimes in the model we study here. For small values of the scaled
elastic constant e—or equivalently large length scales—we found
a roughness exponent ζ+ = 0.39 ± 0.04, which is consistent with
the flucutating line model. On small scale, we found that the
roughness exponent ζ− was consistent with the value 2/3, the
value expected in gradient percolation [25]. However, at these
small scales, the fracture is fractal and we determined its fractal
dimension to be 1.77 ± 0.02, which is consistent with that of the
percolation hull, 7/4 [24].

We note in this connection that in the limit of completely stiff
clamps, the system becomes equivalent to gradient percolation
[23, 24]. Our statement on the small scale behavior of the soft
clamp fiber bundle model is then that it is in the percolation
universality class even though the clamps are not stiff.

In this section, we present further results concerning the exis-
tence of two scaling regimes in the soft clamp fiber bundle model
beyond those that were presented in Gjerden et al. [22].

We identify the crack front by first eliminating all islands of
surviving fibers behind it and all islands of failed fibers in front of
it. We measure “time” n in terms of the number of failed fibers.
After an initial period, the system settles into a steady state. We
then record the position of the crack front j = j(i, n = 0) after
having set n = 0. We then define the position at later times n > 0
relative to this initial position,

hi(n) = j(i, n) − j(i, n = 0). (4)

This is the same definition as was used by Schmittbuhl and Måløy
in their experimental studies [3]. The front as it has now been
defined will contain overhangs. That is, there may be multiple val-
ues of hi(n) for the same i and n values. We only keep the largest
hi(n), i.e., we implement the Solid-on-Solid (SOS) front.

We define the average position of the front as

〈h(n)〉 = 1

L

L∑
i = 1

hi(n), (5)

and the front width as

w(n)2 = 1

L

L∑
i = 1

(hi(n) − 〈h(n)〉)2. (6)
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We assume that 〈h〉 grows linearly with the number of broken
fibers n, 〈h〉 ∝ n. In the following, we measure time in terms of
〈h〉 rather than n.

3.1.1. Small scales
We now set e = 3.1. This places us in the regime that was iden-
tified in Gjerden et al. [22] as the small scale one. Here the
fracture front has the fractal properties of the percolation hull.
In Gjerden et al. [22], we used the averaged wavelet coefficient
method to measure ζ−. In Figure 3, we show the width w, defined
in Equation (6) as a function of 〈h〉. When w is rescaled as w/gα−
and 〈h〉 as 〈h〉/gβ

−, we find data collapse for different values of the
threshold gradient g. Hence, we have

w(〈h〉, g) = gα−ω−
( 〈h〉

gβ−

)
, (7)

where ω− is a scaling function given by

ω−(q) =
{

qδ− if q → 0,
constant if q → ∞.

(8)

Hence, the front width saturates as 〈h〉 grows beyond a given scale.
Furthermore, we assume that w ∼ 〈h〉δ− for 〈h〉 much smaller
than this scale. We will determine δ− in a moment. Assuming the
percolation universality class on small scales, we expect the two
scaling exponents α and β to obey the relation α− = β− = ν(1 +
ν) = 4/7, where ν = 4/3, the percolation value. The derivation of
the relations between α−, β− and ν is given in Hansen et al. [25].

We now derive the value of δ− by relating 〈h〉 to the num-
ber of fibers below and including the front, A, by the fractal
dimension DA = 91/48 [35], 〈h〉DA ∼ A. Invoking Mandelbrot’s
area-perimeter relation, we may also relate the length of the

10-1

1

10-3 10-2 10-1 1 10 102 103

w
/g

α−

<h>/gβ−

10-1

1

10-2 1 102

FIGURE 3 | One-parameter scaling of the SD of the width of the front

as a function of the average position of the front as the front moves

forward from some initial (rough) configuration. The main figure shows
data collapse for α− = β− = 4/7, and the inset shows the same data
without rescaling. The straight line has slope 288/637 ≈ 0.45—see text.
The data are extracted from simulations with, from top-down in the inset,
g ∈ (0.05, 0.1, 0.2, 0.5). Each data set is based on 100 samples for L = 64
and n = 5, 10 samples for L = 128 and n = 5, and 10 samples for L = 256
and n = 2.

front, l to the number of fibers below and including the front,
l ∼ ADh/2, where Dh = 7/4 [24, 37]. Eliminating A between these
two expressions leads to l ∼ 〈h〉DH DA/2. We relate the length of
the front l to its width w by the relation l ∼ wDH (L/w) [22].
Eliminating l between these two relations gives

w ∼ 〈h〉δ− = 〈h〉DADH/(2DH−2) = 〈h〉288/637. (9)

Hence, we have that

δ− = 288

637
≈ 0.45. (10)

The straight line in Figure 3 has this slope.
By invoking Family-Vicsek scaling [36], a dynamical exponent

κ− may be defined. By setting W to be the width of the system in
the x direction, i.e., orthogonally to the direction of the gradient,
Family-Vicsek scaling takes the form

w(W, 〈h〉) = Wζ− f−
( 〈h〉

Wκ−

)
, (11)

where

f−(q) =
{

qζ−/κ− if q → 0,
constant if q → ∞.

(12)

We are here keeping the gradient g constant. Since the behavior of
the Family-vicsek scaling function f must be the same as the one
defined in Equation (8), we find the relation

ζ−
κ−

= δ−, (13)

leading to

κ− = 637

432
≈ 1.47. (14)

3.1.2. Large scales
Figure 4 shows the corresponding one-parameter scaling as in
Figure 3, but now for systems with a much lower e = 7.8 × 10−4,
placing us in the realm of the fluctuating line model [22]. We
define as for the small scale study scaling relations Equations (7),
(8), (11), and (12) corresponding relation, but where “−” has
been exchanged for “+.”

The two scaling exponents that produce data collapse are α+ =
β+ = 0.4. By a least squares fit, we determine

w ∼ 〈h〉δ+ = 〈h〉0.52 ± 0.05. (15)

This value is very close to the one seen for large e values, and
consistent with the experimental measurement of Tallakstad et al.
[13], who found 0.55 and Schmittbuhl et al. [38] who found 0.52.

By invoking Family-Vicsek scaling as for the small-scale case,
we may determine the dynamical exponent

ζ+
κ+

= δ+, (16)
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so that κ+ = 0.75 ± 0.07. This is consistent with the value
reported by Duemmer and Krauth for the fluctuating line model,
κ = 0.770 ± 0.005 [39].

The dynamical exponent reported by Måløy and Schmittbuhl
[11] for the PMMA system was κ = 1.2. This value sits between
the values we find for κ− and κ+.

3.1.3. Height fluctuations
It was observed by Santucci et al. [8] that the large-scale roughness
regime shows a gaussian distribution of the height fluctuations,

10-2

10-1

10-3 10-2 10-1 1 10 102

w
/g

α+

<h>/gβ+

10-1

1

10-2 1 102

FIGURE 4 | One-parameter scaling of w as a function of 〈h〉 with g as

the scaling parameter. The main figure shows data collapse for
α+ = β+ = 0.4. The inset shows unscaled data. The slope of the straight
line is 0.52. The parameter values are, from top-down in the inset,
g ∈ (0.007, 0.008, 0.01, 0.015, 0.02, 0.03). The data sets are based on
200–800 samples for L = 64 and n = 10.
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FIGURE 5 | Histogram of height fluctuations with respect to

�h(1) = |hi + 1(n) − hi (n)| for different elastic constants. The distribution
follows a gaussian when the system is soft and broadens when the system
stiffens. This is equivalent to changing the step size between
measurements of the crack front, as was done in Santucci et al. [8]. These
measurements are based on a single strip of with L = 128, and length
nL = 10 × 128. The data were recorded when the front was at 112 different
positions, spaced so far apart that they were statistically independent.

whereas in the small-scale it broadens to a non-gaussian distri-
bution, see Figure 3 in Santucci et al. We investigate this in our
model. We define the height fluctuations as �h(1) = |hi + 1(n) −
hi(n)|. By changing the elastic constant, L in our model while
keeping the step size constant, the result is equivalent to changing
the step size in the experiment, where they measured |h(x + δ) −
h(x)| for different values of δ. We show in Figure 5 the distribu-
tion of fluctuations for different elastic constant E. We observe
that for soft systems, the distribution is gaussian (i.e., follows
a parabola in the plot). As the system stiffens, the distribution
broadens.

3.2. LOCAL VELOCITY DISTRIBUTION
We examine the distribution of local velocities using the Waiting
Time Matrix (WTM) method [12]. The WTM method consists
of letting the fracture move across a matrix with all elements
initially equal to zero in discrete time steps. At every time step,
the matrix elements containing the front are incremented by one.
When the front has passed, the matrix contains the time the front
spent in each position measured in time steps. Hence, matrix
elements contaning low values correspond to rapid front move-
ments and large values correspond to slow, pinned movement.
One may then calculate the spatiotemporal map of velocities,
v(x, y), by inverting the waiting time recorded in each matrix ele-
ment. From this map we then calculate the global average velocity
〈v〉 and the distribution of local velocities P(v). Tallakstad et al.
find experimentally that this distribution follows a power law,

P(v/〈v〉) ∼ (v/〈v〉)−η, for v/〈v〉 > 1, (17)

with the exponent η = 2.55 ± 0.15 [12, 13].
The results from our simulations are shown in Figure 6 for

scaled elastic constant e = 1.6 × 10−4 and 7.8 × 10−4, which
places us in the large-scale regime. We use these values for e
throughout this section unless explicitly stated otherwise. The
slope in the figure is obtained through a linear fit and has the
value η+ = 2.53, where the subscript “+” indicates that this is in
the large-scale regime.

The data in this section is based on systems of width L = 64
and length nL = 5 × 64 or L = 128 and nL = 2 × 128. The wait-
ing time matrix was calculateed from 15460 (L = 64) or 12288
(L = 128) snapshots of the front position.

3.2.1. Space and time correlations
From the local velocities, still in the large-scale regime, we
calculate the normalized correlation functions in space, G(�x),
and time, G(�t)

G(�x) =
〈 〈[v(x + �x, t) − 〈v〉x][v(x, t) − 〈v〉x]〉

σ 2
x

〉
t

, (18a)

G(�t) =
〈 〈[v(x, t + �t) − 〈v〉t][v(x, t) − 〈v〉t]〉

σ 2
t

〉
x

. (18b)

σx/t and 〈 〉x/t denote standard deviation and average over x or t.
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FIGURE 6 | Distribution of local velocities scaled by the global

average velocity. Results are based on simulations of sizes L = 64, 128
with e = 1.56 × 10−4, 7.81 × 10−4, respectively, and loading gradient in
the range g ∈ [0.01 − 0.05]. A fit to the data for v > 〈v〉 yields a power
law behavior with an exponent of −2.53. The values of e correspond to
the fluctuating line regime.

The results for G(�x) are presented in Figure 7, where we fit
the data to the function

G(�x) = A

(
�x

x∗

)−τx

exp

(
− �x

x∗

)
, (19)

where x∗ = 0.1L and τx = 0.4. This functional form was pro-
posed by Tallakstad et al. [13] with τx = 0.53 ± 0.12. We note
that the cutoff in our data is much sharper than the proposed
functional form. This may be due to the small system sizes that
are available numerically.

In Figure 8, we show the results of the analysis of the temporal
velocity distribution. Again, we attempt to fit the data to a power
law with exponential cutoff,

G(�t) = B

(
�t

t∗

)−τt

exp

(
− �t

t∗

)
, (20)

with t∗ = 0.25/〈v〉 and exponent τt = 0.43. This functional form
was proposed by Tallakstad et al. [13], including the value τt =
0.43.

We note that the prefactor A in Equation (19) is, according
to Figure 7, proportional to

√
g, where g is the gradient in the

threshold distribution. Likewise, the prefactor B in Equation (20)
is, according to Figure 5, proportional to g

√
L.

3.3. CLUSTER ANALYSIS
In the following we analyze the geometrical structure of the areas
swept by the crack front during avalanches. We denote such an
area a cluster. Also here we use values of e.

Tallakstad et al. [13] define a pinning regime where v < 〈v〉
and a depinning regime where v > 〈v〉. As they did, we construct
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G
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x)
/√

g

Δx /L
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g=0.1,   L=32

g=0.025,   L=64
g=0.05,   L=64

g=0.0125, L=128
g=0.025, L=128

FIGURE 7 | Spatial correlation function G(�x). Data collapse is
obtained when �x is scaled with the system size and G(�x) is scaled
with

√
g. The line is a fit to a power law with exponential cutoff

G(�x) = A(�x/L)−0.4exp( − �x/0.1L). The system sizes and elastic
constant used are as in Figure 6.
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t)
/g

√L

Δt 〈v〉

g=0.05,   L=32
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g=0.025,   L=64
g=0.05,   L=64

g=0.0125, L=128
g=0.025, L=128

FIGURE 8 | Temporal correlation function D(�t). Best data collapse is
obtained when scaling �t by 1/〈v〉 and G(�t) by 〈v〉0.43g

√
L. The line is

a fit to a power law with exponential cutoff G(�t) = B(�t〈v〉)−0.43

exp( − �t〈v〉/0.25). The system sizes and elastic constant used are as in
Figure 6.

thresholded velocity maps VC in such a way that

VC =
{

1, for v ≥ C〈v〉
0, for v < C〈v〉 , (21)

in the depinning regime and

VC =
{

1, for v ≤ 〈v〉/C

0, for v > 〈v〉/C
, (22)
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Depinning Pinning
5.1=C2=C

3=C4=C

5=C01=C

FIGURE 9 | Part of the thresholded velocity matrix showing depinning

clusters on the left and pinning clusters on the right. The images are
from a system of size L = 128, g = 0.0125, and e = 7.8 × 10−4. White
areas are areas where the local velocities are either above C〈v〉 (depinning)
or below 1

C 〈v〉 (pinning). With the value of the e that has been used, we are
in the fluctuating line regime. Hence, the pinning is localized at the crack
front.

in the pinning regime. C is a constant in the range of 2–12
for depinning and 1.5 − 6 for pinning for our simulations. For
larger system sizes, larger C are possible. Examples of these
matrices are shown in Figure 9, where the structural difference
between depinning and pinning clusters can be seen. In the spirit
of de Saint-Exupéry we may characterize the pinning clusters
as “snakelike,” whereas the depinning clusters are “elephant-in-
snakelike” [40]. The following analysis uses only L = 64 and
L = 128, and are based on 250 and 100 samples, respectively.
g = 0.025 for the smaller systems, and g = 0.0125 for the larger
systems. For L = 64, e = 1.6 × 10−4, and for L = 128, e = 7.8 ×
10−4. The systems will for these e-values behave virtually
identical [22].

3.3.1. Size distribution of clusters
We denote the number of fibers in a cluster the area of the cluster
S. Both experiments [12, 13] and numerical simulations using the
fluctuating line model [17] on in-plane fracture, show a power
law distribution P(S) ∼ S−γ for S with exponent close to γ =
1.56 [13] or γ = 1.65 [17].

We show in Figure 10 the probability distribution of S both for
pinning and depinning for scaled elastic constant e = 1.6 × 10−4.
Our data is consistent with previous measurements, but due to
the limited size of the numerical simulations currently available,
the exponent cannot be accurately determined. One prominent
feature of the clusters is that due to the small system size, the pres-
ence of large clusters for low values of C suppresses the number
of smaller clusters, and for high values of C, the number of large
clusters is reduced by the filtering process in C. This is a pure finite
size effect. The experiments, which would correspond to a very
large simulation size, shows no such dependence on C. A direct
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C = 2 
C = 3 
C = 4 
C = 5 

FIGURE 10 | Probability distribution function of the size of clusters, S,

for a range of C values for both pinning (lower cluster of points) and

depinning clusters (upper cluster of points). The data for pinning
clusters are shifted down by 0.005 to visually separate the two regimes.
The slope of the line is γ = 1.6. L = 64, and e = 1.6 × 10−4.
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FIGURE 11 | Size distribution of clusters. Depinning clusters on top and
pinning clusters below. The longest data series (unfilled markers) are
experimental data obtained with permission from the authors [13]. The
shorter data series (filled markers) are numerical data from Figure 10. The
experimental data are unchanged from Tallakstad et al. [13], so S′ = S∗γ

and S∗ are as given in Tallakstad et al. [13]. Due to lack of direct physical
parameter comparison, the numerical data are scaled to match the
experimental data to verify similar behavior.

comparison between the experimental and our data is given in
Figure 11.

3.3.2. Aspect ratio of clusters
Next, we extract the linear extensions of the clusters in the growth
direction and orthogonally to it. This is done by enclosing each
cluster in a bounding box of size lx by ly. Although the appear-
ance differs greatly between pinning and depinning clusters, the
method for determining lx and ly are the same.
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1
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l y

lx

Depinning, stiff system
Pinning, stiff system

Depinning C=6-12
Depinning C=3-5

Pinning C=2-3
Pinning C=1

FIGURE 12 | Local scaling of the clusters. The lines are guides to the eye,
but the slopes are based on linear regression and the values are in
descending order 0.91, 0.67, 0.67, and 0.39. The data labeled stiff system
are from simulations using a Young’s modulus four orders of magnitude
greater than what is used in the rest of the simulations. L = 128,
g = 0.0125, and e = 7.8 × 10−4 and e = 7.8.

We now turn to examinining the relation between ly and lx. We
plot these against each other in Figure 12. This data is more well-
behaved than the probability distributions, so scaling relations are
more pronounced. The data are consistent with a relation of type

ly ∼ lHx , (23)

as studied both by Tallakstad et al. [13] and Bonamy et al. [17] in,
respectively, the experimental system and numerically using the
fluctuating line model.

We see a clear dependency of H on parameters such as e
and C. Considering the depinning case first for e = 7.8 × 10−4,
we divide the data between Chigh ∈ [6 − 12], a group containing
data from only the highest local velocities, and Clow ∈ [3 − 5],
containing lower local velocities. There is a clear visual difference
in behavior between the two groups: The group with the higher
C values, have the higher slope. We measure the corresponding

exponents to be H
high
d = 0.9 and Hlow

d = 0.65.
In the pinning regime we similarly divide between low and

high local velocity effects, except that the range of available C is
much smaller, so we find Chigh = 2, 3 and Clow = 1. This yields

the two exponents H
high
p = 0.65 and Hlow

p = 0.4.
It has been suggested that H is another measure of the rough-

ness exponent defined in Equation (11), ζ [12, 16, 17]. In order to
test this, we have added data both for pinning and depinning of a
stiff system (e = 7.8) in Figure 12. If the conjecture is right in this
case, we would expect a H exponent equal to 2/3. We have added
such slopes, and the result is consistent with this conjecture.

Another way to examine these scaling relations is to check
the relation between lx, ly and S. We expect to see a power law
relationship of type

li ∼ Sαi , (24)

since the size of the clusters are related through power laws. The
data are plotted in Figure 13, in which data for the highest local

1

10

102

1 10 102

l x
, l

y

S

Pinning lx ∝ S0.76

Depinning lx ∝ S0.60

Depinning ly ∝ S0.40

Pinning ly ∝ S0.30

FIGURE 13 | Linear size of both pinning and depinning clusters as a

function of cluster size. The simulation parameters are the same as for
Figure 12.

velocities are not included, C = Clow for both pinning and depin-
ning. In the depinning regime, we find the exponents αd

x = 0.6
and αd

y = 0.4. Eliminating S, we get a measure of H through

ly ∼ l
αy/αx
x = lHx , (25)

resulting in Hd = 0.65. In the pinning regime we find α
p
x = 0.75

and α
p
y = 0.3, yielding Hp = 0.4.

These results are to be compared to the experimental measure-
ments of Tallakstad et al. [13] giving αx = 0.62 ± 0.04 in pin-
ning and the depinning regime and αy = 0.41 ± 0.06 or 0.34 ±
0.05 in the depinning regime depending on how the bounding
box was defined. This leads to the value H = αy/αx = 0.66 or
0.55 depending on the bounding box used. Bonamy et al. [17]
found H = 0.65 ± 0.05 numerically using the fluctuating line
model.

4. DISCUSSION AND CONCLUSION
We have studied the fracture front in the soft clamp fiber bundle
model when a gradient in the threshold distribution is intro-
duced. The rescaled elastic constant e and the threshold gradient
g are the most important input parameters in the model. g effec-
tively controls the loading conditions and mimicks the plying
apart of the two sintered PMMA plates in the experiment of
Tallakstad et al. [13]. A high value for g amounts to a large angle
of contact between the materials, or slow loading conditions, and
vice versa. As long as 1/g is in a range where it allows the front to
develop but not extend out of the system, we see no change in any
scaling exponents we have investigated when g is changed. This
behavior echoes the experimental study where no dependence on
the loading conditions was found and the average propagation
velocity of the front spanned more than four and a half orders of
magnitude [13].

The parameter e, defined in Equation (3), controls the material
behavior. A small value for e may model a system of low modulus
of elasticity, but also a system at long length scales. Likewise, a
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Table 1 | Comparison between the exponents measured in the work

and those found experimentally.

Exponent This work Experiment

ζ+ 0.39(4) 0.35(5) [8]

ζ− 2/3 ≈ 0.667 0.60(5) [8]

κ+ 0.75(7)

κ− 637/432 ≈ 1.47

κ 1.2 [11]

τx ≈ 0.4 0.53(12) [13]

η ≈ 2.53 2.55(15) [13]

δ+ 0.52(5)

δ− 288/637 ≈ 0.45

δ ≈ 0.55 [13]

δ ≈ 0.52 [18]

Exponents indicated with substripts “+” or “−” refer to large-scale or small-

scale values. Exponents without subscripts reported from this work have

all been measured in the large-scale regime. Exponents without subscripts

reported by others (in the third column) have been measured without a

distinction between small and large scales.

large e may model a system of large elastic modulus, but also a
system at small length scales. We have in this paper associated the
different e values we have studied with the scales at which we study
the system.

A number of scaling exponents have been measured and com-
pared to their experimental counterparts. We summarize the
most important in Table 1.

In Section 3.3.2 we discussed shape of the clusters defined
through the avalanches. The following pucture emerges: For low
values of e, the fracture process is due to stress concentration lead-
ing to damage forming on the fracture front. This regime is clas-
sified by a roughness exponent of ζ+ = 0.39 ± 0.04. By studying
the shape of the clusters defined through the avalanche dynam-
ics, we find the same value for H. As e increases—corresponding
to decreasing the length scale at which the system is observed—
the clusters formed by the avalanche process changes shape and
are now characterized by an exponent H = ζ− = 0.67, while the
fracture front itself is still characterized by ζ+. As e is increased
further, damage begins to form ahead of the front, and the front
now grows due to damage coalescence. At this point, the rough-
ness exponent changes from 0.39 and grows into 0.67. At higher
e, both the burst process and the roughness of the front is now
characterized by the larger exponent H = ζ− = 0.67.
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