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I. ABSTRACT 

This thesis presents a simulation method for analyzing the coupled water entry problem of elastic 

bodies. The water entry problem is investigated using the software STAR CCM+ for 

computational fluid dynamics and Abaqus for finite element analyses. 

Relevant literature on theory and numerical methods on water impact and fluid-structure 

interactions has been reviewed. 

A model has been created in STAR CCM+ to analyze the water entry of rigid wedges. 

Convergence tests have been performed with respect to relevant parameters, and the method is 

verified through comparison with previous work. The agreement is good. The effect of viscosity 

and compressibility is investigated. 

A model has been created in Abaqus to analyze the structural response of the water impact. 

Convergence tests with respect to relevant parameters have been conducted, and the method is 

verified through comparison to theory. The agreement is very good. 

A co-simulation model with STAR CCM+ and Abaqus has been created. The hydroelastic water 

entry of deformable wedges is analyzed. The problem is analyzed with one-way coupling and 

two-way coupling. One-way coupling means that hydrodynamic pressures are exported to the 

structural model, and two-way coupling means that structural deformations are exported to the 

hydrodynamic model as well. Different coupling schemes are investigated, and numerical 

parameters governing the nature of the coupling are assessed. 

Results from the coupled numerical model have been compared to experimental data. The 

agreement is poor, due to failure in properly recreating the experimental environment in the 

numerical model. Recommendations for experimental verification of the model are presented.  

A parameter study has been conducted with respect to elasticity for the wedge impact, and the 

effect of structural nonlinearity has been assessed. It is found that the coupled solution for the 

structural response of a low-stiffness wedge exceeds the quasi-static response to an equivalent 

pressure. 

Recommendations for future work with FSI-simulations on the water entry problem are 

presented. 
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II. SAMMENDRAG 

Denne oppgaven presenterer en simuleringsmetode for å gjennomføre koblede, hydroelastiske 

analyser av legemer som treffer havoverflaten, såkalt «slamming». Problemet analyseres ved 

hjelp av numerisk strømningsmekanikk og elementmetoden. Programmene STAR CCM+ og 

Abaqus er brukt i analysene. 

Litteratur om både teori og numeriske metoder for slamming og for hydroelastisitet har blitt 

gjennomgått. 

En modell for å undersøke slamming av stive kiler har blitt laget i STAR CCM+. 

Konvergenstester med hensyn til relevante parametere har blitt gjennomført, og metoden 

verifiseres ved sammenligning med tidligere resultater. Overensstemmelsen er god. Effekten av 

kompressibilitet og viskositet for slammingproblemet blir også undersøkt. 

En modell for å undersøke strukturresponsen for elastiske kiler har blitt laget i Abaqus. 

Konvergenstester med hensyn til relevante parametere har blitt gjennomført, og metoden 

verifiseres ved sammenligning med analytiske uttrykk for strukturrespons. Overensstemmelsen er 

svært god.  

En koblet modell for å undersøke hydroelastisk slamming av fleksible kiler har blitt laget i STAR 

CCM+ og Abaqus. Slammingproblemet analyseres ved enveiskobling og ved toveiskobling av 

programmene. Enveiskobling innebærer at hydrodynamiske trykk beregnes i STAR CCM+ og 

brukes som last i en dynamisk elementanalyse i Abaqus. Toveiskobling innebærer at 

deformasjoner også overføres tilbake til den hydrodynamiske modellen. Forskjellige 

koblingsalgoritmer undersøkes, og de numeriske parameterne som styrer koblingsalgoritmen blir 

vurdert. 

Resultater fra toveiskoblede analyser blir sammenlignet med eksperimentelle målinger. 

Overensstemmelsen er dårlig, fordi den numeriske modellen ikke ble laget slik at den gjengir 

fysikken i eksperimentet korrekt. Det foreslås alternative eksperimenter for å verifisere metoden. 

En parameterstudie har blitt gjennomført, der elastisitetsmodulen til kilen varieres. Effekt av 

ikke-lineær respons undersøkes. Det konkluderes med at strukturresponsen som oppnås ved 

koblede hydroelastiske analyser overgår strukturresponsen funnet ved en kvasi-statisk 

responsanalyse basert på ekvivalente trykk fra de rigide impactsimuleringene. 

Anbefalinger til videre arbeid med hydroelastiske simuleringer presenteres avslutningsvis. 
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IV. PROJECT DESCRIPTION 

 

Master Thesis, Spring 2013 

for 

Olav Aagaard 

 

Hydroelastic Analysis of Flexible Wedges 

Hydroelastisk Analyse av Fleksible Kiler 

 

During the recent years, an increasing interest related to design and integrity of free fall lifeboats 

has been observed. Traditional calculation procedures for this type of hull structure have been 

insufficient and need to be further developed. The response consists both of quasi- static 

response, which is due to loads that are varying relatively slowly, and dynamic transient response 

caused by water impact and other effects. The flexibility of a lifeboat hull made out of composite 

material is much larger than the flexibility of a conventional steel ship structure. Therefore, the 

effect of hydroelasticity can be important.  

The objective of this master thesis is to investigate the hydroelastic response of the lifeboat 

structure as it enters the water. This will be addressed using a two-way coupled numerical 

simulation for the fluid-structure interaction. The work will consist of: 

1. A review of literature related to hydroelastic slamming as well as coupled fluid-structure 

simulations is to be performed and summarized. 

 

2. Based on item 1, a set of computer programs is to be selected for the numerical analysis. It 

is expected that different computer programs will need to be coupled in order to achieve 

the objective of a satisfactory hydro-elastic analysis. Familiarity with the selected software 

is to be gained.  

 

3. A reliable scheme for coupling of the selected software is to be developed. A simplified 

model of the free-fall lifeboat is to be established for the purpose of numerical load and 

response analysis. 

 

4. Systematic convergence tests of the mesh refinement and parameters related to the 

simulation procedures are to be performed for the model from item 3. 

 

5. Parameter studies in relation to the physical descriptors of the impact problem are to be 

performed for the numerical model. Comparison is to be made with response analyses 
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based on decoupled solutions for the load and response. Comparison is to be made with 

analytical solutions and experiments to the extent that such are available. 

 

The work may turn out to be more extensive than expected. Therefore, some items may be 

omitted after consultation with the teaching supervisor without having a negative impact on the 

evaluation.” 

The work scope may prove to be larger than initially anticipated. Subject to approval from the 

supervisor, topics may be deleted from the list above or reduced in extent.  

In the thesis the candidate shall present his personal contribution to the resolution of problems within 

the scope of the thesis work. 

Theories and conclusions should be based on mathematical derivations and/or logic reasoning 

identifying the various steps in the deduction. 

The candidate should utilise the existing possibilities for obtaining relevant literature. 

The thesis should be organised in a rational manner to give a clear exposition of results, assessments, 

and conclusions.  The text should be brief and to the point, with a clear language.  Telegraphic 

language should be avoided. 

The thesis shall contain the following elements:  A text defining the scope, preface, list of contents, 

summary, main body of thesis, conclusions with recommendations for further work, list of symbols 

and acronyms, references and (optional) appendices.  All figures, tables and equations shall be 

numbered. 

The supervisor may require that the candidate, in an early stage of the work, presents a written plan 

for the completion of the work.  The plan should include a budget for the use of computer and 

laboratory resources which will be charged to the department.  Overruns shall be reported to the 

supervisor. 

The original contribution of the candidate and material taken from other sources shall be clearly 

defined.  Work from other sources shall be properly referenced using an acknowledged referencing 

system. 

The thesis shall be submitted in 3 copies: 

 - Signed by the candidate 

 - The text defining the scope included 

 - In bound volume(s) 

 - Drawings and/or computer prints which cannot be bound should be organised in a separate 

folder. 
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1. INTRODUCTION 

1.1. General 

Free-fall lifeboats have shown a rapid development since their commercial dawn in 1978. They 

have many obvious advantages over the traditional lowered lifeboats. They can be deployed 

faster, and due to their path through the water after impact, they will quickly reach a position and 

velocity suited for an effective retreat from the platform or ship.  

 

Figure 1 – Free-fall lifeboat during test drop. (http://themaritimeblog.com/, 2009) 

In 2005 the Petroleum Safety Authority Norway (PSA) expressed concerns about the safety of 

the free-fall lifeboats in the Norwegian offshore industry. The reason for this was tests drops 

carried out at the platform Veslefrikk B, where damages were seen on the superstructure of the 

lifeboats (www.ptil.no, 2005). This led to investigations on the structural integrity of existing 

lifeboats, as well as a new DNV standard for free-fall lifeboats, the DNV-OS-E406. 

In the aftermath of these events, the impact of free-fall lifeboats has been extensively studied, 

both numerically and through experiments. They are typically thin plated, composite hull 

structures. The high pressure peaks during slamming can lead to deformations in order of 

magnitude up to several times the plate thickness. This makes the numerical analysis of free-fall 

lifeboats complicated. 

Conventional impact simulations assume that the hull remains rigid throughout the water entry. 

However, with large deformation, an interaction between hydrodynamic pressures and structural 
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deformations can be expected. This mutual dependency is called hydroelasticity. To analyze this, 

a proper fluid-structure interaction (FSI) analysis has to be carried out. 

In this thesis, a two-way coupled simulation method for slamming analyses is presented. The 

method is compared to experimental data, and the necessity of a fully coupled FSI-analysis is 

parametrically investigated and discussed.  

In chapter 1 previous work on slamming theory, numerical methods and experiments is 

presented. 

In chapter 2 the theoretical background for the simulation method in this thesis is presented, and 

put into a perspective by comparison with other widely used methods on slamming simulations. 

In chapter 3 the hydrodynamic model is described and verified with a comparison to previous 

work. 

In chapter 4 the hydroelastic model is presented, and then compared to hydroelastic experiments 

for verification. 

In chapter 5 a parametric study on the hydroelasticity phenomenon is conducted, and the 

necessity of a hydroelastic and structural nonlinearity is discussed.  

In chapter 6 the method and results are discussed. Chapter 7 contains the conclusion, and chapter 

8 presents recommendations for future work. 

1.2. Previous work 

The water entry problem has been studied by numerous scientists over the years. The earliest 

work commonly referred in literature is the work of von Karman (1929), where a potential theory 

solution to idealized cross sections is presented. His theory was later extended to account for the 

pile-up of water by Wagner (1932). 

During the 20
th

 century, scientists such as Dobrovol’skaya and Cointe have further developed the 

theory, and contributed to the refinement of the analytical solutions to the impact problem. With 

the introduction of modern computers and numerical methods, the impact problem has seen a 

renewed and rapid development. 

Zhao and Faltinsen (1993) present a nonlinear boundary element method, capable of analyzing 

arbitrary cross sections. The slamming problem is analyzed satisfying the nonlinear free-surface 

boundary condition, maintaining conservation of mass, energy and momentum. This method was 

later extended to three-dimensional problems by Faltinsen and Chezhian (2005). 

Methods based on solutions to the Navier-Stokes (NS)-equations have been developed. 

Particularly the smoothed particle hydrodynamics (SPH)-method and numerical solutions to the 

Reynolds Average Navier-Stokes (RANS)-equations have been extensively used (Faltinsen, 

2000). 
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Different methods for FSI-simulations have been developed over the last 15 years. Korobkin et 

al. (2006) present a solution to the coupled equations for the impact of a wedge. A generalized 

Wagner theory is coupled with a finite element (FE)-solution for the structure. Lu et al. (2000) 

also present a nonlinear boundary element method for the water entry problem, and a finite 

element method is applied for the coupled, structural response. Solutions for different angles are 

presented, and it is emphasized that different hydroelastic behaviors will be of importance, 

depending on the impact angle.  

Panciroli et al. (2013) present a fully coupled solution for a hydroelastic wedge entering water, by 

applying the SPH-method with an FE-code. The results are compared to experimental results, and 

show a reasonable agreement.  

Piro and Maki (2011) solve the problem using a RANS-formulation of the water entry, coupled 

with an FE-code. The fully coupled analysis is compared to a one-way coupled analysis. A quasi-

coupled analysis is presented, where structural effects on the pressure field are implicitly 

accounted for through artificial, acoustic cells emitting pressure waves on the fluid domain. This 

method shows excellent results, and has an advantage over a fully coupled analysis in that 

requirements to time steps and mesh size go down, and with it the computational cost. 

Wang and Guedes Soares (2012) performed water entry experiments with large, 3-D wedges. 

Results are compared to a one-way coupled generalized Wagner method, where the pressure is 

mapped onto an FE-model of the structure.  

In the above referred works, a considerable amount of work has been put in writing an 

appropriate coupling scheme. Lu et al. (2000) and Korobkin et al. (2006) develop entire codes for 

the FSI-problem. Piro and Maki (2011) use the freeware OpenFOAM and the commercial code 

Abaqus, coupled by developing a script for the coupling. 

Such tailored methods are inflexible and inaccessible for non-specialized users. Easily accessible 

commercial codes for FSI-simulations are therefore sought. In this thesis, the built-in co-

simulation engines in the CFD-code STAR CCM+ and the FEM-code Abaqus are used. The 

coupling schemes are fully integrated in both programs, and therefore easily accessible to the 

user. 

1.3. An assessment of the structural integrity of a free-fall lifeboats 

A structural integrity assessment of a free-fall lifeboat was conducted by Marintek (2006). The 

report from this work serves as a motivation for the numerical methods presented in this thesis. 

The lifeboat hull consists of a multilayer composite. A 3-D FE-model was made, and nonlinear 

FE-analyses were performed. The FE-model was verified by comparison to an onshore, static 

experiment. The lifeboat was loaded with sandbags, and deformations were measured. The load 

case was reproduced in the FE-model, and a good agreement was found between experiment and 

model results. 
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Based on results from measurements and calculations, the water entry is divided into four phases. 

They are the surface penetration phase, transient dynamic response phase, maximum 

submergence phase and surfacing phase. A potential theory-based load model is established and 

calibrated by comparison to model and full scale tests. These loads are then applied to the FE-

model. The responses during the transient dynamic response phase and particularly the maximum 

submergence phase are considered the most critical.  

In the full scale test, deformations and pressures are measured on different locations on the hull. 

Figure 2 shows measurements of the maximum pressure at the stern of the lifeboat. For the given 

wave condition, a pronounced pressure oscillation is observed, with a dominating frequency of 

approximately 18 Hz. The oscillations are believed to be associated with the collapsing of the 

cavity created shortly after full submergence of the lifeboat. This phenomenon has not been 

thoroughly studied, but the oscillations of the pressure may indicate either the presence of trapped 

air or a hydroelastic response of the stern (Marintek, 2006).  

 

Figure 2 – Measured pressure at the stern of the lifeboat. 

Figure 3 shows measured deformations from the experiment at different locations. Deformations 

are seen to be large in magnitude, with a highly oscillatory behavior. The high response 

oscillations are dominated by a frequency of approximately 5 Hz. 
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Figure 3 – Measured response at selected locations of the lifeboat. 

The report concludes that the lifeboat does in fact lose its carrying capabilities for the greatest 

expected submergences, and as a consequence of these findings, design changes were proposed 

and implemented.  

The large responses in the structure, oscillating at a relatively low frequency, would be better 

understood by conducting an FSI-analysis. The numerical methods used in the Marintek-report 

are based on the assumption that loads and responses can be assessed independently. However, 

for large responses, and in particular for oscillating responses, there is reason to believe that the 

loads and responses should display a mutual dependency, and the problem must be analyzed 

hydroelastically. For example, the oscillating frequencies found using the nonlinear FE-model are 

in fact seen to be in the region of 3 Hz, almost half the frequency seen in the measurements. It is 

concluded that this could be because the model fails to accurately account for changes in added 

mass.   

The large deformations and oscillating pressure documented in the Marintek-report warrants a 

more thorough analysis. According to Faltinsen (2000), “Hydroelastic slamming must be 

hydrodynamically analyzed from a structural point of view”. This implies employing an FSI-

analysis to the problem. The work presented in this thesis aims at finding a suitable method for 

such calculations.   
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2. THEORY 

2.1. Water entry 

2.1.1. Rigid wedge 

A theoretical solution to the impact problem is presented in the following, using potential theory. 

Consider a two-dimensional, rigid wedge entering calm water with constant velocity, as shown in 

Figure 4 a). 

 

Figure 4 – Boundary value problem for the water impact of a wedge. a) – Original geometry. b) – equivalent 

plate geometry. 

If an irrotational flow with constant density is assumed, there exists a velocity potential   so that 

the velocity field can be written 

      Eq.  2.1 

 

To find the velocity potential, an equivalent plate problem is considered, as seen in Figure 4 b). 

No gravity and a calm surface are assumed. The following boundary conditions are then valid 

 

                              ( ) 

  

  
                             ( )     ( ) 

Eq.  2.2 

A solution to the boundary value problem is the velocity potential 

     √      Eq.  2.3 

The pressure is now found from the Bernouilli equation 
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   Eq.  2.4 

The slamming occurs over a short time interval, so that the hydrostatic term will be small. Also, 

the time gradients will dominate the spatial gradients during the impact. It is observed that 

    (
  

  
)
 

 (
  

  
)

 

 Eq.  2.5 

Therefore, the second order term may be neglected as well. The pressure may now be written 

     
  

  
   

 

√      

  

  
 Eq.  2.6 

It is difficult to find an analytical expression for the wetted length  ( ). Different approaches 

have been applied for different geometries. The expression proposed by Wagner (1932) is used in 

the following. Taking the pile-up of water into account, the wetted length is written 

   
   

     
 Eq.  2.7 

The corresponding vertical force on the wedge can be found by integration 

    ∫    

 

  

   
  

  
∫

  

√      

 

  

 
 

 

    

  
 Eq.  2.8 

where          is the added mass of a flat plate in heave. A solution to the water entry 

problem is obtained. The pressure on the wedge bottom is often written as  

   
 

 
     

  Eq.  2.9 

where    is the pressure coefficient, and    is the effective impact velocity. This is a pragmatic 

approach that is easily calibrated by experimental results.    is dependent on position relative to 

the jet and the impact angle, as seen in Figure 5. It is seen that the pressure increases with 

increasing velocity and decreasing angle of impact.  
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Figure 5 – Pressure coefficient distribution for different wedge angles entering water. (DNV, 2010) 

The impact assessment described in DNV’s recommended practices for environmental loads 

(DNV, 2010) are based on a potential theory approach. They have, however, been shown to be 

non-conservative for extreme load cases (Johannessen, 2012). Therefore it is of great importance 

to find better numerical approaches to assess the impact problem.  

The theory outlined above is valid only for a wedge. For a different geometry, the wetted length 

 ( ) will display a different behavior. For an arbitrary geometry, there is no general, analytical 

expression that describes the wetted length. This puts every pressure estimate at the mercy of the 

validity of assumptions made when simplifying the geometry into a shape, for which analytical 

solutions apply. Alternatively, experimental values for    can be used, but they too will suffer 

from the fact that they are based on findings from idealized geometries. This problem has been 

addressed by several theorists, but will not be elaborated here. 
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2.1.2. Elastic wedge 

Now consider the hydroelastic water entry of a wedge, see Figure 6. 

 

Figure 6 - Hydroelastic water entry of wedge. 

The problem is still two-dimensional, with constant impact velocity. The difference from the 

rigid wedge is a mutual dependency between structural response and hydrodynamic load, i.e. 

   ( ). The hydroelastic equilibrium equation for the bottom of the wedge may be written 

  
   

   
   

   

   
  (     ) Eq.  2.10 

where   is the mass per unit length,   is the wedge deflection,    is the structural stiffness and 

 (     ) is the slamming pressure. There exists no general solution to this equation. The 

coupled nature of the deformation and the pressure distribution makes any solution highly case 

dependent. Still, some simplified solutions do exist. A brief presentation of a solution for a single 

beam is found in the following, as described by Aarsnes (2012). 

First, it is assumed that the deformation can be written as a linear sum of dry eigenmodes 

  (   )  ∑  ( )

 

   

  ( ) Eq.  2.11 

where   ( ) is the time dependent principal coordinate corresponding to   (   ).   (   ) is the 

i’th  normal mode of the system. Inserting Eq.  2.11 into Eq.  2.10, and setting the external 

pressure load to zero, the dry eigenfrequencies of the beam may now be found by solving 

    
       

    

   
   Eq.  2.12 

The eigenfrequencies are 

    
   

   
 Eq.  2.13 
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where     ∫  
 

 

 
 

 

  
 ( )   and     ∫   

    

   

 

 

 
 

 

  ( )  .   and    may either be continuous 

functions, or FE-formulated, depending on the approach chosen. The fluid domain may also in 

this case be described by potential theory. The difference between this case and the rigid body 

wedge is that the boundary condition on the wedge bottom must account for the deformation of 

the beam. This can be expressed as 

 
  

  
   ( )  

  

  
                Eq.  2.14 

Note that this is the same boundary condition as for the rigid wedge, except for the added 

velocity of the wedge deformation. We obtain the following velocity potential 

   ( ( )  
  (     )

  
)√      Eq.  2.15 

To arrive at a solution for   and  (     ) further simplifications have to be made. We assume 

constant velocity at impact. The slamming event is then divided into two phases. They are the 

structural inertia phase, where     , and the free vibration phase, where     , as seen in 

Figure 7. 

 

Figure 7 – The phases of impulse loading.  

For the structural inertia phase it is assumed that the effect of the beam deformation on the 

pressure field can be expressed in terms of the mean deflection along the beam, i.e. 

  (     )   ̅( )                 Eq.  2.16 
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This allows for the use of the Wagner approach on the wetted length  ( ), reducing the problem 

to the familiar rigid wedge problem during the inertia phase. Furthermore, we assume that the 

structural inertia dominates structural stiffness during the inertia phase. Combining Eq.  2.6 with 

Eq.  2.10 we may now write  

  
   

   
   

  

  
              | ( )|               Eq.  2.17 

  
   

   
                | ( )|              Eq.  2.18 

as boundary conditions for the velocity potential. This problem was solved by Faltinsen (1997), 

proposing the following initial conditions for the free vibration phase 

 

  (    )

  
    

 (    )    

Eq.  2.19 

 

Now the free vibration phase is considered. It was shown by Aarsnes (1994) that for a flat plate 

the deformation is dominated by the first eigenmode. Recalling that we now operate under the 

flat plate assumption, we may simplify Eq.  2.11 into 

  (   )    ( )  ( ) Eq.  2.20 

Aarsnes (2012) shows that the resulting pressure distribution   and bending stress distribution    

along the beam may be written as 

  (   )    
  

  
 

         

  
    (       )√(   )     Eq.  2.21 

       

  

       
( 

 

 
 )

 

   ( 
 

 
 )     (       ) Eq.  2.22 

with maximum values being 

       
          

  
 Eq.  2.23 

            

  

       
( 

 

 
 )

 

 Eq.  2.24 

Here,   is the impact velocity,        is the first wet eigenmode,   is the length of the beam,    is 

the height of the beam and   the Young’s modulus of the beam. These expressions have shown 

reasonable agreement with experiments of flat plates during the initial phase, where the 

maximum stresses are measured (Aarsnes, 1994). Later, during the free vibration phase, they 
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become inaccurate. Note that     and     , as opposed to the rigid wedge theory, where the 

    . This is an important conclusion to draw from a hydroelastic analysis, implying a reduced 

pressure peak when including the beam elasticity. 

This analysis has some questionable aspects. Assuming that  (     )   ̅( ) is fundamentally 

unphysical, but seems to be justifiable when compared to the experiments (Aarsnes, 1994). The 

analysis is based on the assumption that the wetting time is lower than the first eigenmode. For 

stiff steel and aluminum structures this would demand a low wetting time, suggesting very small 

angles and high impact velocities. On the other hand, it is assumed that the velocity is low 

enough to avoid effects of trapped air. This seemingly contradicting pair of base assumptions 

begs further investigation. 

Furthermore, it is interesting that structural analysis is strictly linear. As was seen in Section  1.3, 

the deformations can be as large as the thickness in order of magnitude, suggesting that the effect 

of geometrical stiffness should be taken into account.  

2.1.3. Linear and nonlinear geometry 

In the previous section a hydroelastic beam was considered and a pressure distribution and stress 

distribution for the impact problem was proposed. The governing equation was formulated under 

the assumption that deformations would be small. For a thin, composite plate as the one used in 

the design of free-fall lifeboats, deformations have been shown to be in the same order of 

magnitude as the plate thickness. This implies that a nonlinear geometry should be considered. 

Expressions for equivalent static deformations are derived in the following. 

 

Figure 8 – Simply supported beam with small deformations. 

The small-deformation assumption provides the following governing equation for a static case 

with an evenly distributed load,  

   
   

   
   Eq.  2.25 

with the analytical solution 

      
 

   

   

  
  Eq.  2.26 
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The large-deformation assumption provides the following governing equation for a static case 

with an evenly distributed load 

   
   

   
  ( )

   

   
   

  

  
   Eq.  2.27 

The difference is that the axial force P(w) is included, as well as the static deformation due to the 

beam weight   . Note that the tension is dependent on the wedge deformation. This equation 

has no general analytical solution. A simplified solution is presented for later comparison. It is 

assumed that the static deformation due to the weight of the beam is negligible. Further, zero 

bending stiffness is assumed. This appears to be an unphysical assumption, but as will be seen in 

Chapter  5, the resulting response is in a reasonable region for very slender structures.  

 

Figure 9 – Simply supported beam with large deformations. 

The governing equation may now be written 

  ( )
   

   
   Eq.  2.28 

The  approximation          (
  

 
) is used for the wedge deformation. The deformation 

leads to an elongation    of the wedge which can be calculated by numerically evaluating the 

integral equation for the arc-length 

    ∫√  (
  

  
)
 

 

 

      Eq.  2.29 

Now, the strain is defined as 

   
  

 
 Eq.  2.30 

We apply Hooke’s material law 

      Eq.  2.31 

and use the axial stress definition 
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     . Eq.  2.32 

 

 

Figure 10 - Force equilibrium of a zero stiffness catenary. 

An equilibrium consideration now gives the relationship between maximum deformation and line 

load   

      ( )     Eq.  2.33 

The angle alpha is given as    
  

  
 

   

 
 at the edges, which gives  

           (
   

 
) Eq.  2.34 

The importance of nonlinear effects will be analyzed in Chapter 4 and  5. 

2.1.4. The importance of hydroelasticity 

To evaluate whether or not hydroelasticity is of importance to a problem, a simple impulse 

consideration may be performed. For a sine load history, it is seen from Figure 7 that a load 

period of        gives a dynamic amplification factor (DAF) of 1.77.  

The hydroelasticity phenomenon has a similar range of relevance as a general impulse load. If the 

wetting time of the system is in the range of the lower eigenperiod, the system will respond as it 

does to impulse loads. If deformations in addition are large, there will be a mutual dependency 

between deformations and pressure field, and the problem will have to be addressed 

hydroelastically. The parameter of importance is therefore the wetting time quotient 

    
  
  

 Eq.  2.35 

Aarsnes (2012) suggests that hydroelasticity is important for a wedge shaped cross section when 

 
    

 √      
        Eq.  2.36 

Another approach is presented by Panciroli et al. (2012), where a hydroelasticity parameter R is 

proposed. It includes the deadrise angle   and impact velocity     as well as the total system mass 

  and the lowest eigenfrequency of the system  . It is proposed that hydroelastic effects will be 

important when  
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√ 

 
 〈      〉 Eq.  2.37 

The practical implication of the introduction of these parameters is that an arbitrary structure with 

little effort may be evaluated for hydroelasticity.  

2.2. Computational fluid dynamics (CFD) 

As was seen in Section  1.2, theoretical solutions to the water entry problem have been sought by 

many scientists over the years. The shortcomings of the theoretical approaches to describe the 

slamming problem have been their lacking ability to accurately describe complex geometries and 

3-D effects, or more exotic phenomena such as hydroelasticity, cavitation and ventilation. 

Therefore, experiments and numerical methods have been designed to address the problem. The 

numerical methods for solving hydrodynamic problems are referred to as computational fluid 

dynamics (CFD). 

There are many examples of rigid-body impact experiments in the literature, for example the ones 

presented by Tveitnes et al. (2008). Fewer attempts have been made to investigate the 

hydroelastic slamming of wedge-shaped bodies. Notable in the literature studied for this thesis, is 

the experiment series conducted by Panciroli et al. (2013). In Chapter  4 this series of experiments 

will be described and compared to results of the numerical model used in this thesis. 

There are different numerical methods for analyzing the water entry problem numerically. In this 

thesis, the RANS-equations will be used. A brief description of other methods is included in the 

following.  

Boundary element methods (BEM) have frequently been applied to study ships and offshore 

structures, including the impact problem. They are potential theory-based methods, with low 

computational costs compared to numerical solutions of the NS-equation.  

In recent years, Smoothed Particle Hydrodynamics (SPH) has increasingly been employed for 

free surface simulations. It is based on representing the fluid continuum by a finite number of 

mesh free, discrete particles. Physical quantities such as pressure and velocities are assigned to 

each particle. They are then calculated as a smoothed average between the neighboring particles. 

The method has some advantages over the control volume-based numerical solutions to the NS-

equation.  

SPH by definition ensures conservation of mass, as the mass is initially distributed to the 

particles. The pressure field is described as a smoothed average between neighboring cells, 

needing significantly lower computational time than the methods employed in the mesh-based 

CFD. Finally, SPH displays excellent rendering of the free surface. If air is neglected, the surface 

is easily and implicitly described as the mere end of the particle region governed by gravity. A 

limitation to the method is the high number of particles needed to describe the domain, as particle 

size must be constant over the region. It has difficulties fulfilling the incompressibility property 
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of water. Finally, the high accuracy needed in boundary regions is also better described with 

regular, grid-based NS-solvers. 

Nevertheless, the method is increasingly being used for flood simulations, and for marine 

applications involving complex free-surface geometries, such as slamming events.  

CFD is a rapidly growing field, with new methods being developed continuously as 

computational power increases. The method used in this thesis is based on solving the (NS)-

equation and the continuity equation, which together describe the conservation of impulse, mass 

and energy of an arbitrary fluid flow. There is no general solution to these equations, so 

depending on the case under consideration a numerical approach must be applied to analyze the 

problem. The theory and numerical approach used in these analyses are described in the 

following. The reader is encouraged to study the work of Ferziger and Peric (2011) and the online 

documentation presented by CD-ADAPCO (2012) and for further elaborations, as they constitute 

the basis for the theoretical descriptions. 

2.2.1. Mathematical model 

The continuity equation and the NS-equation can be written on differential form as 

 
  

  
  (  )    Eq.  2.38 

 
  

  
      

 

 
           Eq.  2.39 

where   is the density of water,   is the velocity vector, p is the pressure,   is the dynamic 

viscosity  and   denotes volume forces (gravity). They may also be written on integral form on a 

given volume   with a surface   
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     Eq.  2.40 
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Eq.  2.41 

 

where    is the velocity component in i-direction,    is the body forces in i-direction, and   is the 

unit vector normal to the surface. The terms are described for later references. Solving these 
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equations requires a numerical approach, and both the pressure term and the diffusion term make 

the NS-equation particularly hard to solve. 

2.2.2. Discretization 

In order to solve the given set of equations, a numerical approach is necessary. Therefore, it is 

necessary to discretize the equations to algebraic expressions that can be solved throughout the 

domain. There are some fundamentally different approaches, and they will be described briefly.  

The finite differential (FD)-method solves the equations in their differential form on a chosen set 

of grid points. The method is practical and efficient, but has some limitations. It is only 

applicable on relatively simple geometries, and is not necessarily conservative.  

The finite volume (FV)-method solves the equations in their integral form on a chosen set of 

control volumes. The volumes may have arbitrary shapes. As the convection term and the 

diffusion term of the NS-equation are solved as surface integrals on the interfaces between 

control volumes, the method per definition is conservative. This method is by far the most used in 

RANSE-formulations, and is also applied in the commercial code used in this thesis.  

The finite element method (FEM) is similar to the finite volume method. It too, discretizes the 

domain in finite volumes, but the values are given in the element corners, unlike the finite 

volume method. The physical equations are multiplied with weight functions, as a means to 

properly describe the distributions across the element. The weight functions are defined so that 

each assumes a value of either zero or one at each element node, allowing continuous fields to be 

described as linear sums of the weighted functions. This method is well suited for solid 

mechanics, but for CFD, this method also has problems describing complex geometries. The 

method is used in the structural solver, and is elaborated in Section  2.3. 

2.2.3. Mesh 

The FV-method is the basis for the solver used in this thesis. In general, the governing equations 

are discretized over a grid of cells, with nodal values of the physics fields at the center of each 

cell, see Figure 11. 
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Figure 11 – Principle sketch over the trimmer mesh setup. (Ferziger and Peric, 2011) 

The grid must not necessarily have a quadratic or even a perpendicular setup. In fact, a wide 

range of different grid propositions is used, each with advantages and disadvantages. Examples 

are the general polyhedral mesh, and the tetrahedral mesh. For the simulations run in this thesis, 

a grid is built up by hexahedral cells that are a 3-D equivalent of the setup seen above. This leads 

to a very effective solution, and is particularly well suited for free surface problems.  

The mesh should be tailored to ensure an effective, but convergent solution for a given problem. 

The requirements to the mesh will be different at different locations in the fluid domain. 

Generally, areas with high gradients or high fluid velocities will require a finer mesh than areas 

with low gradients and low velocities. The Courant number requirement (see Section  2.2.12) 

should be satisfied. For turbulent fluid flows the requirement to the y+ value must also be 

considered (see Section  2.2.6). At the impact surface of a body entering water, high pressure 

gradients and large fluid velocities are expected. Therefore, a fine mesh is required. 

In STAR CCM+, the mesh can be locally refined by applying a volumetric control. Regions are 

defined, for which the mesh setting may be set individually. This allows for a tailored mesh with 

the proper grid size in the entire region. 

When modeling a moving object, additional challenges arise, related to the motion of the body 

entering water. The need for a fine mesh along the surface of the body makes a fixed mesh very 

ineffective, as it would require a fine mesh on a relatively large region. This can be coped with in 

different ways.  

One possibility is the overset mesh technique, combined with a dynamic fluid-body interaction 

(DFBI)-model. The DFBI model calculates the trajectory of a rigid body, based on the mass 

distribution of the body and the pressure field in the fluid. A local overset mesh follows the 

object, and nodal values are interpolated between the background mesh and the moving mesh. 

This method is widely used in analyses of 6-degree-of-freedom (DOF) bodies.  
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If a constant velocity impact is assumed, a simpler approach can be used. The mesh can be given 

a constant global velocity equal to the impact velocity. This means that the entire mesh moves 

parallel to the body, and ensures high refinement on the required areas. Alternatively, the mesh 

and the object itself can be fixed at the initial location, with a free surface moving upwards 

towards the object. This will be done in the simulations in this thesis. Given the right boundary 

conditions, these two approaches are identical, and both allow for a more efficient mesh than the 

DFBI model. 

2.2.4. Finite approximations 

Surface integrals are generally discretized as 

 ∬ 

 

   ∑∬   

   

 Eq.  2.42 

where    is the  ’th side of a control volume, and   is the function for either the convection or 

diffusion term.   can be expressed on the given surface as a linear combination of surrounding 

nodal values. In its simplest form the surface integral may be written 

 ∬   

  

      Eq.  2.43 

Similarly, volume integrals are generally discretized 

 ∭   

 

     Eq.  2.44 

where   is the function for either the unsteady term or the body force term.    is the volume of 

the cell. 

These are just the fundamentals of discretizing the different terms, and more sophisticated 

methods can be used better to fit the chosen mesh, or to achieve a shorter solution time. 

2.2.5. Pressure correction 

There is no independent equation describing the pressure and its gradients. The pressure term 

must be solved iteratively and simultaneously with the velocity field. The approach is called 

pressure correction, and it iteratively corrects the pressure field so that the continuity equation is 

satisfied within each time step. By inserting the NS-equation in the continuity equation and 

assuming constant viscosity and density the following equation for the pressure is obtained 
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)     Eq.  2.45 

Note that Einstein notation has been used. The method is now based on iteratively repeating two 

steps: 

1. Use the old pressures      and velocity field      to calculate a temporary velocity 

field   . 

2. Use the velocity field    to calculate a pressure correction term   . 

3. Update the pressure field using the equation 

             Eq.  2.46 

where   is an under-relaxation factor dictating the degree of field update between iterations. A 

high under-relaxation factor needs fewer iterations before converging and is suited for unsteady 

simulations. A low under-relaxation factor needs more iterations before converging, and is best 

suited for steady state problems, or initialization of an unsteady problem. This iteration process is 

repeated with the updated fields     and    until both the NS- and the continuity equation are 

satisfied. The convergence rate may be increased by introducing more complex iteration 

processes for the pressure. As the basic principles remain the same, these will not be elaborated. 

The process used in STAR CCM+ is called the SIMPLE-algorithm, and can be seen in 

APPENDIX D. 

2.2.6. Turbulence 

The diffusion term carries the information about viscosity and turbulence. The optimal 

description of turbulence would be through Direct Numerical Simulation (DNS), which solves 

the term directly. This is extremely costly, due to requirements to the mesh and time step needed 

to ensure convergence. DNS can only be used on smaller problems today, and is not well suited 

for commercial purposes. Therefore, numerous simplified models have been developed to 

provide a practical compromise between efficiency and accuracy. The one used in this thesis is 

called the k-  model. 

By expressing the velocities in the NS-equation as a linear combination of arithmetic means and 

standard deviations, the flow in i-direction may be written  

         
  Eq.  2.47 

where   
  is a stochastic representation of the turbulence associated velocity. By applying this 

expression on the NS-equation, the Reynolds Averaged Navier-Stokes (RANS)-equation is 

obtained 
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As can be seen, additional unknowns have been introduced. They are handled by introducing two 

new expressions. The kinetic turbulent energy 

   
 

 
(  

   
 ) Eq.  2.49 

And the turbulent energy dissipation  

   
 

 
 

 
 Eq.  2.50 

where   is a characteristic length associated with the highest kinetic turbulent energy.   and   

must be described by introducing equations of conservation for both. As they are rather complex, 

they have been left out. The turbulence is now stochastically accounted for, and this model 

describes the flow in the entire fluid domain. 

However, at wall-boundaries the k- -model fails to describe the turbulent velocity gradients 

properly. To cope with this, the inner boundary layer is described by a Shear stress transport 

(SST)-model. A region at a given distance to the wall, often denoted by the dimensionless y+ 

value, is described by a two-equation eddy-viscosity model, but this will not be elaborated here. 

The combination gives an SST k- -model that is both robust and efficient, and widely used in 

turbulent flow simulations (Ferziger and Peric, 2011). 

2.2.7. Free surface 

For marine applications it is necessary to describe the free surface accurately. A free surface 

implies two fluid phases, air and water, with different material properties. Methods developed to 

account for this are generally divided into two groups, surface tracing and surface capturing.  

In surface tracing techniques the domain is divided into two subdomains, where the interphase is 

traced and the mesh regenerated for both fluid phases at every time step. This leads to a great 

increase in computation time. Besides, these techniques are not well suited to describe complex 

surface geometries.  

The surface capturing techniques imply that the free surface is captured by the initial mesh, 

demanding a mesh refinement at the free surface. One such method is called the Volume-of-Fluid 

(VOF)-method.  In the literature on impact problems, the VOF-method is widely used to describe 

the two phases, as it effectively describes waves of arbitrary geometry, without having to update 

the mesh for every time step. The VOF-method introduces a volume fraction of fluid   to the 

problem, defined as 

   {  
          
        

 Eq.  2.51 
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This pragmatic solution allows us to define the material quantities such as density and viscosity 

as continuous functions across the computational domain. By doing so, the two phases are in fact 

described as one, and the computational time is thus significantly reduced. 

 
           (   )     

           (   )     
Eq.  2.52 

The cost of this approach is the introduction of a new equation of conservation for   that must be 

solved for each time step.  

 
  

  
  (  )    Eq.  2.53 

2.2.8. Compressibility 

The introduction of compressibility of water is an effective way of reducing instabilities for the 

FSI-simulations run in this thesis. This can be done by introducing compressibility as it appears 

in physics, or by setting an artificial compressibility that still ensures a tolerable convergence 

level. 

Defining the speed of sound  , the pressure dependency of the density is expressed as 

 
  

  
 

 

  
 Eq.  2.54 

The density is now defined as 

      
 

  
 Eq.  2.55 

2.2.9. Solution process 

When a mesh is chosen, the governing equations can be discretized into an algebraic equation set. 

Generally, this will take the form 

      ∑      

  

     Eq.  2.56 

  is a matrix that implicitly contains discretized information about the geometry and physics,   is 

the relevant variable (for example a velocity component), and   contains all terms that can be 

considered constant.   refers to the discretization point considered, and    refers to all the 

neighboring points. The entire field is analyzed from this equation, so an appropriate combination 

of the terms for this equation must be found. For a steady state flow, or within a time step, the 

iterative solution for a velocity component   is 
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  Eq.  2.57 

where   refers to the number of inner iterations and   is the under-relaxation factor dictating the 

degree of field update between iterations, as for the pressure correction.  

All field variables are updated by iteratively solving these equations. These iterations are referred 

to as inner iterations. The exception is the pressure term, which is solved by pressure correction 

after a full set of inner iterations. These iterations are referred to as outer iterations. Finally, for 

unsteady problems, results from a given time step is used as the initial conditions for a new set of 

inner and outer iterations for the new time step. 

 

Figure 12 – Flowchart of the CFD process. 

The time steps can be discretized in many ways. Explicit and implicit schemes are available, with 

1
st
 and 2

nd
 order discretization being the most common ones, and the ones available in STAR 

CCM+ by default. Explicit schemes are less stable than implicit schemes, but the stability comes 

at the cost of computation time. We will not go into detail on the unsteady solver in STAR 

CCM+ here. 
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2.2.10.  Simplifications 

If an inviscid fluid flow with constant density and zero gravity is assumed, the following 

simplified equations is obtained 

      Eq.  2.58 

 
  

  
      

 

 
   Eq.  2.59 

Note that the NS-equation is now reduced to the so-called Euler equation. This simplification 

allows us to approach the NS-equation directly, without having to modify it to the RANS-

equation. The reason for this is that the viscosity is neglected, implying a turbulence-free fluid 

flow. The RANS-equation is a stochastic means to handle the delicate nature of turbulence, and 

the original equations may therefore be solved in their original state. This greatly simplifies the 

numerical approach needed. For the potential theory based solutions presented in Section  2.1.1, 

this assumption has been made, and results agree well with experiments. In Chapter  3 the validity 

of these assumptions will be discussed in detail. 

2.2.11.  Properties of the numerical approach 

The quality of any given numerical model will depend on its ability to satisfy the following 

criteria: 

1. Consistency – The equations of the numerical model should converge to the governing 

equations, as time-steps and grid size go to zero.  

2. Boundedness – Values should remain in their domain. For example, concentrations should 

lie between 0 and 1, and cell volumes should remain positive. 

3. Stability – Numerical errors should not propagate. This ensures boundedness, and also 

ensures convergence for iterative processes. 

4. Convergence – The solution to the numerical model should converge to the solution of the 

governing equations, as time steps and grid size go to zero. This can be difficult to check, 

and experiments are often the only approach. It should be noted that the convergence term 

is widely used in numerical modeling, and the parameters under consideration must 

always be stated when convergence tests are done, to avoid confusion. 

5. Conservativeness – Conservation of quantities defined by the conservation equations 

stated in the mathematical model must be satisfied. By applying a FV-method, this is 

satisfied by definition. 

6. Accuracy – The model should be accurate within a tolerable limit. Some errors will 

inevitably occur. Model errors are errors associated with the difference between reality 

and the exact solution to the governing equations chosen. Discretization errors are the 

errors associated with the difference between the exact solution to the numerical model 

and the exact solution to the governing equations. Iteration errors are errors associated 

with the difference between the iterative solution to the algebraic equations and exact 
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solutions to the algebraic equations. Model errors may be particularly difficult to assess. It 

is nevertheless important that one remains aware of them. 

2.2.12.  Convergence 

To ensure that a correct solution has been reached, convergence tests should always be 

performed. Generally, it is recommended to reduce time steps and cell size gradually until 

velocities and pressures converge. More specifically, the following values should be tested: 

1. Physical models included 

2. Domain size 

3. Grid size 

4. Time step 

5. Inner and outer iterations 

6. Finite approximations 

7. Under-relaxation factors 

For a solution of the RANS-equation in the time domain, caution must be observed when 

discretizing the domain. If the cells are too small compared with the time step, numerical 

smearing  and energy dissipation may occur, leading to instability and in some cases divergence 

(Ferziger and Peric, 2011). The problem arises when the fluid crosses more than one cell between 

two time steps, as illustrated in Figure 13. 

 

Figure 13 – Visualization of the importance of Courant number. a) Acceptable convection b) Unacceptable 

convection. 

To avoid this, a match between fluid velocity, cell size and time step is needed to ensure 

convergence. By introducing the Courant number    this problem can be assessed quantitatively, 

by imposing the following demand to the discretization 
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   Eq.  2.60 

where   is the fluid velocity,    is the time step and    is the characteristic cell length. If an 

implicit solution method is chosen instead of the explicit one, the convergence tends to be more 

robust, and    values above 1 can be chosen, if convergence is otherwise demonstrated. 

A correct combination of discretization methods, under-relaxation factors and iterations is also 

imperative to ensure convergence. Some discretization methods are unconditionally stable. 

Others are stable only for a given set of conditions. The appropriate combinations are best found 

from experience. Recommendations are found in the online documentations of STAR CCM+, 

CD-ADAPCO (2012). 

2.3. Finite element method (FEM) 

The structural part of the problem will be solved using the finite element method. The theory is 

based on the work presented by Moan (2003), Moan (2012) and the online documentation for 

Abaqus, Dassault-Systèmes (2013). 

2.3.1. Static 

For a shell element approach the structural domain is discretized into a finite number of 8-node 

shell elements with 5 DOFs per node (S8R5-elements). For a solid element approach the 

structural domain is discretized into a finite number of 8 node solid elements with 3 DOFs per 

node (C3D8R-elements). 

 

Figure 14 – Eight node shell element. 

 

Figure 15 – Eight node solid element. 



 

28 

 

The deformation field is made continuous through interpolation functions between the nodes. 

Each DOF corresponds to an entry in the global deformation matrix   defined as  

   [

  
  
 
  

] Eq.  2.61 

where   is the number of DOFs in the system. The basis for the analysis is the FE-formulation of 

the equation of equilibrium 

      Eq.  2.62 

where   is the global stiffness matrix, and   is the global load vector.  

2.3.2. Dynamic 

For the dynamic case, inertia, damping and time dependency of the deformation must be 

described. The deformations are time dependent, i.e.  

  ( )  [

  ( )
  ( )
 

  ( )

] Eq.  2.63 

The basis for the analysis is the FE-formulation of the dynamic equation of equilibrium 

   ̈( )    ̇( )    ( )   ( ) Eq.  2.64 

where   is the global mass matrix and   is the global damping matrix. The resulting system is a 

set of linear equations with   degrees of freedom. The system is solved by using the direct 

integration method. There are different formulations of direct integration methods for finite 

elements, but they are all based on integrating the load vector over the system nodes, and 

expressing  ̈ and  ̇ as finite differential approximations of  . A slightly modified Newmark’s  -

family method is used in this analysis. At the time      the acceleration and velocity may be 

approximated as  

 

 ̈    
 

   
         

 ̇    
 

  
        

Eq.  2.65 

where   and   are constants defining the nature of the approximations,   is the time increment, 

and    and    are calculated from the previous time step as 
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Eq.  2.66 

where    is the time increment. By inserting Eq.  2.65 into Eq.  2.64 the equations can be solved 

for  . Then  ̇ and  ̈ are found from Eq.  2.65. This procedure is repeated for every time step. The 

method is either conditionally or unconditionally stable, depending on the values chosen for   

and  .  

Generally, the time steps must be sufficiently small to capture the impulse period as well as the 

excited response periods. Typically,    is set to maximum       or      , where    is the 

impulse period and    is the lowest relevant eigenmode of the system. In our case, the impulse 

period is the time for full submergence neglecting pileup. Abaqus will determine the needed time 

increment, depending on the loading.  

2.3.3. Eigenvalue problem 

To evaluate the eigenfrequencies of a system, the eigenvalue problem must be solved. By 

assuming zero damping the dynamic equilibrium equation may be written  

   ̈( )    ( )   ( ) Eq.  2.67 

It is assumed that the deformations can be written as a linear combination of weighted 

contributions from different eigenmodes, i.e.  

  ̈( )  ∑  

 

 

  ( )     Eq.  2.68 

where n is the number of eigenmodes included in the system. By inserting Eq.  2.68 into Eq.  2.67 

the following eigenvalue problem is obtained 

 (    
  )    Eq.  2.69 

where    are the natural frequencies of the system. This equation is solved by using the Lanczos 

algorithm (Dassault-Systèmes, 2013). However, this will not be described in detail here. 

2.3.4. Nonlinear geometry 

In FEM, it is possible to account for large deformations. In its simplest form, the finite element 

formulations apply a constant stiffness matrix with loads applied to the undeformed geometry. If 

deformations become sufficiently large, both the stiffness and the load appliance will vary with 

the deformations. This is accounted for by applying a geometrical nonlinear finite element 

formulation. 
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The stiffness is now expressed as a combination of linear and nonlinear contributions, i.e.  

  ( )       ( ) Eq.  2.70 

where    refers to the small deformation stiffness matrix and   ( ) refers to the nonlinear 

contributions. The global finite element equilibrium equation is now written as a finite 

differential equation 

  ( )      Eq.  2.71 

This equation can be solved incrementally, iteratively or preferably by a combination of the two. 

Examples of such schemes are the Euler-Cauchy method (incremental), the modified Newton-

Raphson method (iterative) or the Riks-Wempner method (combined method). The Riks-

Wempner method is the basis for the nonlinear solver used in Abaqus. It is an arc-length method 

that combines an incremental approach (predictor) with an incremental approach (corrector). The 

mathematical details will not be elaborated here, but Figure 16 gives a visualization of the 

solution procedure.  

 

Figure 16 – Schematic illustration of the arc-length method. (Moan, 2012) 

The steps are taken with a given arc-length in the load-displacement plane, and a steady state for 

the increment level is achieved iteratively. A new step can then be applied with a new arc-length, 

and so on. This method is effective and stable, and ensures that large deformations are properly 

accounted for. 

2.4. Coupling of CFD and FEM 

There exist different types of couplings between the fluid and solid domain. They are all 

categorized as Fluid-Structure Interaction (FSI)-problems. They are defined as problems where 

there is a dependency between hydrodynamic forces and the structural response. It is the 

numerical equivalent of the theoretical term hydroelasticity. This dependency may either go one 

way only, or there may be a mutual dependency.  
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The term FSI is used both for rigid body motions and for deformable bodies, which may cause 

some confusion. For FSI-problems with rigid bodies, only the rigid motions will be coupled to 

the fluid. These are defined by the geometry and mass distribution, as well as the 6 degrees of 

freedom of the rigid body. A typical problem is a conventional ship motion analysis. For 

deformable bodies interacting with a fluid, the deformations must also be taken into account, and 

possibly also the effect these deformations have on the fluid. For these analyses, a fluid analysis 

and a structural analysis will have to be solved simultaneously. In this thesis, FSI refers to this 

mutual dependency.  

2.4.1. Coupling methods 

For the conventional approach to marine simulations, the structure is assumed rigid as the fluid 

velocities and pressures are computed. The resulting pressures are then applied as a load history 

on a separate structural model to assess the structural integrity. Mapping of this pressure field 

onto the structural model may be complicated, and therefore the simulations may be performed 

simultaneously. This is called a one-way coupled analysis.  

The pressure field is calculated using CFD for each time step, and exported onto the structural 

FE-model. This way, transient response may be accurately described. The pressure field is 

calculated neglecting these deformations, which may in many cases be sufficiently accurate. 

Examples of such cases are ringing or whipping of ship hulls. 

If the deformations are large, the effects on the fluid cannot be neglected. In these cases, the full 

system of equations for both the fluid and the structural domain must be solved simultaneously. 

This is called a two-way coupling. For the CFD process, this means including a full structural 

analysis of the problem, with redefined boundary conditions and remeshing of the fluid domain 

for each time step.  

 

Figure 17 – Condition at the fluid-structure interaction boundary. a) Rigid body. b) FSI-model. 

It is distinguished between loose and strong coupling. Loosely coupled problems are problems 

where the mutual dependency in time is low. An example would be a steady state deformable 

body in current. The time history is unimportant; only the resulting deformed steady state of the 
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solid and the fluid flow is important. A strongly coupled problem is a problem where the mutual 

dependency of two domains is great, and a small change in one domain leads to an immediate 

response in the other. Example of such cases are vortex-induced vibration of marine risers, or 

hydroelastic impact. 

The hydroelastic wedge entering water constitutes a transient problem with large deformations 

relative to the plate thickness. In Section  2.1.2, a flat plate entering water was shown to have the 

following approximate initial conditions after the structural inertia phase 

 
     

 ̇    
Eq.  2.72 

where     is the initial deformation and  ̇  is the initial velocity at the middle of the plate.   is 

the wedge velocity at impact. This goes to show that the hydroelastic slamming problem is highly 

coupled, and the problem should be solved using a full two-way coupled analysis. 

2.5. Coupling between STAR CCM+ and Abaqus 

The software’s chosen for the co-simulations in this thesis is STAR CCM+ from CD-ADAPCO 

and Abaqus from 3DS. They both have built-in modules supporting co-simulation with one 

another. The simulations are run from the STAR CCM+ environment, which includes Abaqus in 

its solver process. Abaqus is called upon at given intervals set by the user. 

2.5.1. Field exchange 

When conducting an FSI co-simulation, the nature of the coupling must be specified. This is done 

by specifying a set of FSI-boundaries, for which data are interchanged. The appropriate data must 

also be selected. It is imperative that the FSI-boundaries in both programs have the same 

coordinates, or else the co-simulation will fail due to topology inconsistency. For a DFBI-

simulation this can be challenging, but can be dealt with by letting Abaqus calculate the rigid 

body motion. For the setup used in this thesis the wedge remains fixed at the origin throughout 

the impact, making the mapping of imported and exported fields easy. The data interchanged are 

structural deformations and hydrodynamic pressure. 

Software Export Import 

Abaqus Deformations Pressure 

STAR CCM+ Pressure Deformations 

Table 1 – Field exchange between STAR CCM+ and Abaqus. 

The deformations imported to STAR CCM+ may be under-relaxed between inner iterations. This 

is done to introduce the deformation smoothly, without sudden discontinuities leading to pressure 

divergence. 



33 

 

2.5.2. Coupling schemes 

There are different coupling algorithms, and the algorithm chosen must reflect the degree of 

coupling in the physical problem. For loosely coupled problems, it is sufficient to update the 

fields between every time step. This is called explicit coupling schemes (see Figure 18). For 

strongly coupled problems, it may be necessary to update the fields at every outer iteration in the 

CFD process. This is called an implicit coupling scheme (see Figure 19). This leads to a more 

costly coupling, but the simulation will be more stable.  

 

Figure 18 – Flowchart for a two-way coupled simulation with explicit coupling. 
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Figure 19 - Flowchart for a two-way coupled simulation with implicit coupling. 

 

2.5.3. Mesh morphing 

Regardless of whether a DFBI-model or a fixed mesh is applied, the mesh will have to be 

updated to account for the deformations. This is done by the mesh morhper model in STAR 

CCM+. The mesh morpher allows boundaries and nodes to move within the domain, and deforms 

the mesh for every time step. When the mesh morpher is activated, every boundary enclosing the 

fluid domain is given an additional boundary condition, determining the nature of the mesh 

morpher at this boundary. Some important morpher conditions are seen in Table 2. 
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Morpher condition Description 

Fixed Nodes on this surface have zero displacement. 

Floating Nodes on this surface are free to move in all directions. 

In plane Nodes on this surface are allowed to move on the surface, but 

have zero displacement normal to the boundary. 

Fixed plane Nodes on this surface are allowed to move on the surface, but 

have zero displacement normal to the boundary. The boundary 

is treated as an infinite plane. 

Co-simulation Nodes on this surface are moved according to an imported 

displacement field. 

Table 2 – Morpher conditions 

 

The less constraint a boundary is given, the less computational cost the remeshing will require. 

The morphing is computed on the basis of control vertices. They are essentially lines that are 

interpolated on the basis of the nodal positions, and are used to reduce computational cost for the 

mesh morpher. The vertex thin factor controls the number of control vertices used. By lowering 

the vertex thin factor, the morpher ignores a fraction of the nodal positions when computing the 

control vertices. Caution must be exercised when using this factor, as boundary displacement 

may become inaccurate.  It should be noted that it is not only the nodes that move, but the 

boundary itself. When the mesh boundary conditions are set, the 3-D mesh is recomputed.  

The effect of structural deformation on the fluid properties is expressed through the grid flux. The 

grid flux is calculated as 

   ∬       

  

 Eq.  2.73 

where    is the area of a cell boundary and   is the boundary-normal displacement velocity. It 

expresses the volume swept by the deformation between two time steps. For the co-simulation, 

the grid flux gives the impulse that leads to a change in velocity and pressure fields in the fluid 

domain. This effect can be under-relaxed or ignored altogether. For a steady state problem the 

grid flux term can be ignored, as the dynamics leading to the deformed state are of no concern. 

For a transient problem, and particularly for a strongly coupled problem, the effect cannot be 

neglected. As the grid flux term is a source of instability for the simulation, the effect may be 

under-relaxed. This is particularly relevant for the initial phase of the simulation, where the fluid 

fields are still non-physical. It may also be used to stabilize a simulation with strong coupling. 
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3. CONVERGENCE TESTS AND VERIFICATION OF THE CFD 

MODEL 

3.1. A verification and validation study 

Johannessen (2012) conducted a thorough convergence analysis for 2-D and 3-D wedges in 

STAR CCM+. In his work, Johannessen presents convergence tests with respect to domain size, 

grid size, time steps as well as a number of numerical parameters. Results are presented for 

wedge impacts at various angles, and compared to the results of Zhao and Faltinsen (1993). With 

reference to this work, results for various angles and impact velocities are not included in the 

scope of this thesis. A single setup is chosen to demonstrate the performance of the numerical 

model. For this setup, convergence tests and some general discussion will be presented. 

3.2. Model setup 

To verify the numerical model, a 2-D rigid wedge entering water at constant speed will now be 

considered. A model is made in STAR CCM+, with properties as can be seen in Table 3 and 

Table 4.   is the density and   the is dynamic viscosity. 

 

Figure 20 – VOF scene. 

 

 

Property Value 

Length of wedge bottom [m] 1 

Impact angle [ ] 20 

Impact velocity [m/s] 1  

Table 3 – Problem setup 
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Material constant Value 

               997.5 

               28.97 

               8.89*     

             1.85*     

         -9.81 

Table 4 – Physical constants 

 

The wedge is fixed with the wedge apex at the origin. Water is entering the domain from below. 

Applying this configuration is practical for an idealized geometry, implying a minimal 

requirement to the mesh. For moving objects other mesh techniques must be used. Assuming 

symmetry, only half a wedge is modeled, with a symmetry boundary at the vertical plane crossing 

through the wedge apex. 

Although the model is called two-dimensional, it is in fact a three-dimensional model with a low 

in-plane thickness. This is done mainly due to modeling convenience. Star CCM+ models are 

built up of volume cells, and although two-dimensionality is supported, the possibilities within 

this configuration are limited. With regard to the coupled analyses that will be run later, it is 

chosen to set up the model as a thin 3-D model.  

3.2.1. Boundary conditions 

The boundaries can be seen in Figure 21. The Bottom boundary is set to velocity inlet, where the 

velocity and the composition of fluid components (air and water) are specified. Only water is 

allowed to enter the domain. Similarly, the top boundary is set to pressure outlet, where the 

pressure and the composition of fluid components are specified. Only air is allowed to exit the 

domain. The latter is not strictly necessary, but is done merely for the sake of convenience. The 

wedge itself is given a wall boundary condition, meaning a no-slip boundary with    . If 

viscosity is neglected, this boundary is called a free-slip boundary, and the limitations to velocity 

is reduced to           . By using the symmetry condition at the front and back boundaries, 

two-dimensionality is ensured. The symmetry boundary condition is indistinguishable from a 

free-slip boundary, with the additional requirement that all gradients are zero by definition. The 

boundary conditions given can be seen in Table 5.  
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Figure 21 – Boundaries for the fluid domain. 

 

Boundary Condition 

Front Symmetry 

Back Symmetry 

Symmetry Symmetry 

End Symmetry 

Top Pressure outlet 

Bottom Velocity inlet 

WedgeTop Wall 

WedgeBottom Wall 

Table 5 – Boundary conditions. 

 

3.2.2. Initial conditions 

The free surface is initialized at 30cm below the wedge. It is defined through the VOF-method. 

The initial velocity field is set to 1m/s in the vertical direction, normal to the velocity inlet. The 
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reason for the initial distance between the wedge and the free surface is to allow a steady velocity 

field and pressure field to be established before impact. The pressure is set to zero at the pressure 

outlet. The hydrostatic pressure is implicitly accounted for through the VOF-method.  

 

Region/Boundary Condition Value 

Top Outlet pressure [Pa] 0 

Bottom Inlet velocity [m/s] 1 

Entire domain Initial velocity field [m/s] 1 

Table 6 – Initial conditions. 

   

3.3. Convergence tests on 2-D rigid wedge 

In his master’s thesis, Johannessen performed a number of convergence tests for different 2-D 

and 3-D wedge setups in STAR CCM+ (Johannessen, 2012). He primarily investigated 

convergence with respect to the pressure distribution on the wedge bottom and the residuals. 

Table 7 shows some of the conclusions of these tests, and constitutes a basis for the investigation 

performed in this thesis. There is, however, a large difference in our convergence criterion. 

Whereas Johannessen investigated the slamming phenomenon in order to achieve a convergent 

pressure distribution at the wedge, the convergence criterion here has been set as the total vertical 

force on the wedge. This is achieved with less computational costs than the pressure 

convergence, because the pressure peak must not necessarily converge. This is justified by 

considering that for dynamic response to hydroelastic slamming it is the total force impulse on 

the wedge that is of importance. As long as this impulse is correct, the true pressure peak may in 

fact be abandoned before it has converged. This is true from a theoretical point of view, and if the 

numerical model stays stable it is the most economic approach. 

  



41 

 

Tested property Value 

Domain height [m] 3.5 

Domain width [m] 3 

Minimum cell height [m] 0.00054 

Minimum cell width [m] 0.0025 

Viscosity Laminar 

Convection discretization 2
nd

-order 

Time discretization 2
nd

-order 

Velocity under-relaxation 0.9 

Pressure under-relaxation 0.4 

Inner iterations 20 

Table 7 – Results from the convergence tests conducted by Johannessen (2012). 

 

3.3.1. Mesh size 

The mesh is built up by the hexahedral and tetrahedral cells. The domain is divided into 

subdomains with individual mesh size definitions (see Figure 22). They correspond to the 

expected need for accuracy in capturing the free surface, as well as requirements in regions with 

high gradients and fluid velocities. In addition, a surface layer is added on the wedge bottom (see 

Figure 23). This is done to ensure a very fine mesh at the interface between fluid and the wedge 

bottom, capable of capturing high velocities, high gradients and the turbulence model. Three 

different meshes are tried. Data for the different runs can be seen in Table 8.  

The grid size determines to which degree high gradients and pressure peaks are correctly 

captured. Grid size and time steps must always be considered simultaneously, because the 

convergence and stability of the solution depend on their mutual relationship. For example, a 

very fine mesh will be of no avail, if the time step is too large to capture the changes between 

neighboring cells. The courant number is well fit to assess this relationship. For elaboration on 

this, it is referred to the discussion in Section  2.2.12. 
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Figure 22 – Mesh with volumetrically controlled subdomains. 

 

 Mesh size Coarse mesh Medium mesh Fine mesh 

Total number of cells [-] 2936 9373 11785 

Default (x,z) [m] (0.1 , 0.1) (0.1 , 0.1) (0.1 , 0.1) 

SurfaceCoarse (x,z) [m] (0.1 , 0.0125) (0.1 , 0.0125) (0.1 , 0.0125) 

SurfaceFine (x,z) [m] (0.1 , 0.0125) (0.05 , 0.00625) (0.05 , 0.00625) 

AlongWedge (x,z) [m] (0.05 , 0.0125) (0.00625 , 0.00625) (0.00625 , 0.00625) 

Number of surface layers  [-] 4 8 10 

Surface layer thickness [m] 0.02 0.02 0.03 

Table 8 – Mesh setups. 
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Figure 23 – Surface layer captured during the simulation. 

Figure 24 shows the pressure coefficient along the wedge at t = 0.06s after impact for the 

different mesh setups. It is seen that the magnitude of the pressure peak grows with finer mesh, 

but the width of the peak decreases. Time steps were chosen so that      on the wedge bottom 

during the impact.  

As the goal for these tests is to find a pressure that will suffice for a co-simulation with Abaqus, it 

is not the capturing of the pressure peak that is of importance, but rather the total vertical force on 

the wedge bottom. As we will see in Section  4.2.1 the total vertical force does in fact converge 

for lower time steps and coarser meshes than what is the case for the pressure peak. This is 

understood by considering that the pressure integrated over the wedge may converge although the 

peak has not yet converged. 

 

Figure 24 – Pressure coefficients for different meshes. 

3.3.2. Domain size 

A convergence test has been performed with respect to the domain size surrounding the wedge. 

Due to the symmetry boundaries at all vertical boundaries surrounding the wedge, it is expected 

that the domain size will affect the solution. Four domain sizes are tried, see Table 9. 
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Domain property Small 

domain 

Medium 

domain 

Large 

domain 

Very large 

domain 

Domain height [m] 2.5 4 5 8 

Domain width [m] 2.5 3 4 6 

Total cell count [-] 14520 15010 15750 17280 

Table 9 – Domain size setups. 

 

Figure 25 – Pressure coefficient on the wedge bottom for different domain size setups. 

 

Figure 26 – Total vertical force on the wedge bottom for different domain size setups. 
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Figure 25 and Figure 26 show results from the four different domain sizes. It is evident that the 

smaller domains tend to under-predict the pressure field, and hence the total vertical force on the 

wedge. It is curious, however, that the pressure and the vertical force do not seem to converge 

properly, even for domain sizes far greater than the ones found by Johannessen (2012). This 

indicates that the rate of convergence with respect to domain size is dependent on other 

parameters than domain size only. Sources for this difference in convergence could be mesh 

resolution, time steps, as well as the physics included in the simulation. 

By evaluating Figure 25, it is seen that the pressure distribution on the wedge bottom is not 

properly captured, due to a coarse mesh. Visually, this effect is emphasized by the fact that the 

model is three-dimensional, with every z-coordinate along the wedge bottom having multiple 

readings. Later, we only monitor the middle nodes along the wedge bottom, and get more smooth 

curves.  

The total vertical forces seen in Figure 26 seem to oscillate. There is no obvious explanation for 

this behavior. One reason could be shock waves in the fluid domain. Another reason could be 

trapped air oscillating, but by evaluating the VOF-images, no air is seen on the wedge bottom. 

One final suggestion is that it could be due to air vortexes being shed at the wedge apex. This 

also seems strange, because it is not expected that air-induced pressure fluctuations should have 

such an impact on the total force. Of course, the oscillations could merely be the result of 

inaccurately set numerical values. As will be seen later, these oscillations do in fact disappear, as 

the model gets more properly tuned. 

3.3.3. Viscosity 

The effect of viscosity has been investigated. In his thesis, Johannessen concluded that a laminar 

model could describe the slamming phenomenon sufficiently accurately, and that the complex 

turbulence models available in STAR CCM+ should be avoided. However, to simplify the 

problem further, a comparison between a turbulent model and an inviscid model is presented in 

the following. With reference to the theory in Section  2.1.1, it is expected that the effect of 

viscosity is negligible. 

Figure 27 shows the total vertical force on the wedge for an inviscid and a viscid simulation. It is 

seen that although minor fluctuations differ, the trend lines remain almost identical. This shows 

that turbulence may in fact be neglected, and corresponds well with the assumptions of water 

impact theory. 
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Figure 27 - Total vertical force on the wedge bottom for a viscid simulation and an inviscid simulation. 

3.4. Comparison with previous results 

To verify the numerical model, a comparison with previous results has been conducted. The setup 

for the model can be seen in Table 10. The setup is based on the knowledge acquired during the 

convergence tests. For comparison, the results of Zhao and Faltinsen (1993) and Johannessen 

(2012) are chosen. These results have been verified by comparison with experiments, and are 

considered to be accurate. 

Property Value 

Domain height [m] 4 

Domain width [m] 3 

Minimum cell height [m] 0.0018 

Minimum cell width [m] 0.0035 

Viscid/Inviscid Inviscid 

Convection discretization 2
nd

 order 

Time discretization 1
st
 order 

Velocity under-relaxation 0.9 

Pressure under-relaxation 0.4 

Inner iterations 5 

Time step [s] 0.0001 

Table 10 – Model setup. 
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Figure 28 – Comparison between the current model and previous results. 

A good agreement is seen between the results. The pressure peak has approximately the same 

value for all three setups.  

The proper settings for the impact problem are found to be highly case-dependent. The needed 

mesh size will depend on the physics chosen. The time steps will depend on the mesh size. The 

number of inner iterations is strongly dependent on the under-relaxation factors, and the correct 

under-relaxation factors will depend on the chosen solver algorithms. Therefore, convergence 

tests should always be conducted. Only by studying the residuals and by running numerous 

setups with ever finer mesh and lower time steps, can convergence be assured.  
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4. VERIFICATION OF CO-SIMULATION MODEL 

To verify the hydroelastic simulation method, the experiments presented by Panciroli et al. 

(2012) are chosen for comparison. A model is built in STAR CCM+ and Abaqus. To verify the 

model, convergence tests have been performed for both the hydrodynamic model and the 

structural model. Coupled analyses are performed and compared to the experimental values. The 

results are discussed. 

4.1. A hydroelastic experiment 

In 2012, several papers were published in cooperation between Università di Bologna and 

Southern Illinois University, documenting experiments on water-entry of an elastic wedge 

(Panciroli et al., 2012, Panciroli et al., 2013, Panciroli, 2013). More than 1200 runs were 

conducted, and a numerical model was used to compare with the experimental results. The 

experiments will be used as a comparison to the numerical approach presented in this thesis, and 

are therefore elaborated in the following. 

The experimental setup is shown in Figure 29 and Figure 30. Material and geometrical data can 

be seen in Table 11 and Table 12. Wedges consisting of two 300mm long plates were dropped 

into the water, along fixed rails on both sides. The plates were connected to a 27mm long 

reinforced support at the wedge apex. It was installed in order to be able to adjust angles for 

different runs. Angles were adjustable between    and    , and the maximum velocity was 

8.8m/s.  Accelerations and velocities were measured. Two strain gauges were installed at 30mm 

and 120mm distance to the support.  

 

Figure 29 – Experimental setup. Left – The wedge-dropping installation. Right – The strain gauges installed at 

the wedge plate. (Panciroli, 2013) 
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Figure 30 – Idealized experiment setup. (Panciroli, 2013) 

 

Material  E [GPa]   [-]           

Aluminium 68 0.3 2700 

Vinylester 20.4 0.28 2650 

Table 11 – Material data for the elastic wedge plates. 

 

Object Length [mm] Width [mm] Depth [m] Thickness [mm] 

Wedge 300 250 - 2 and 4 

Tank 1600 1000 800 - 

Table 12 – Geometrical data for the elastic wedge plates. 

 

It should be noted that the plate thicknesses are very low. The reason for this is to lower the 

stiffness and consequently induce hydroelastic behavior for larger angles and lower impact 

velocities. Also, the free end boundary is curious, and unconventional for slamming experiments, 

and for ship structures in general. This too was done in order to increase deformations for lower 

impact velocity (Panciroli et al., 2013). The resulting structure is a very light wedge with low 

bending stiffness. 
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Figure 31 – Microstrain measured at 30mm from the wedge apex for various impact velocities. Top left - 3m/s. 

Top right – 4.2m/s. Bottom left – 5.2m/s. Bottom right – 6m/s. (Panciroli, 2013) 

Figure 31 shows strain measurements for various impact velocities. In particular for the higher 

impact velocities, a distinct oscillatory behavior is seen. In the paper, it is concluded that the plate 

oscillates in more than one eigenmode. Their configurations actually showed experiments where 

higher order modes dominate the response. This is interesting from a theoretical point of view, 

emphasizing the extreme response of hydroelastic slamming. For ship structures, however, the 

plates will typically be clamped, and have a far greater thickness, increasing the stiffness 

dramatically, so that the mode of interest in any practical case should be the first one (Aarsnes, 

1994).  
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Figure 32 – Velocity monitoring for a 5m/s initial velocity impact. (Panciroli, 2013) 

Figure 32 shows the development of the velocity for a 5m/s initial velocity impact. Note that the 

wedge velocity decays drastically during the first 10ms of impact. Due to the low weight of the 

wedge, high decelerations result from the large initial slamming pressures. This goes to show that 

a rapid deceleration of the wedge is expected before the water entry is over. 

The numerical approach used consisted of an SPH-model for the fluid domain, assuming 

incompressible and inviscid fluid flow. Air was neglected, removing the possibility of entrapped 

air. 3-D effects were neglected, and symmetry assumed, so that only half of the wedge was 

modeled. The wedge was simulated using shell elements with four integration points. The nature 

of the numerical coupling has not been elaborated in the paper. Their results show good 

agreement with the experimental data. 

4.2. CFD model 

The numerical model in this thesis will be compared to the results from this experiment. A model 

is made in STAR CCM+. The wedge is built up by a 300mm long plate entering water at a 

velocity of 3m/s. The mesh and boundaries are shown in Figure 33 and Figure 34. Only half the 

wedge is modeled, with a symmetry condition at the vertical plane crossing through the wedge 

apex. The domain is given a small in-plane depth, so the impact can be considered a 2-D case. 

Data on the setup can be seen in Table 13. Boundary conditions and initial conditions can be seen 

in Table 14 and Table 15. Material data are the same as in chapter 3. 
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Figure 33 – CFD-mesh for the co-simulation. 

 

Figure 34 – Domain boundaries. 
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Property Value 

Domain depth [m] 0.005 

Wedge length [m] 0.3 

Wedge thickness [m] 0.002 

Wedge angle [deg] 20 

Minimum cell height [m] 0.0004 

Minimum cell width [m] 0.002 

Number of cells [-] 89639 

Impact velocity [m/s] 3 

Viscosity No 

Gravity Yes 

Table 13 – Simulation setup. 

Boundary Condition 

Front Symmetry 

Back Symmetry 

Symmetry Symmetry 

End Symmetry 

Top Pressure outlet 

Bottom Velocity inlet 

WedgeTop Wall 

WedgeBottom Wall 

WedgeEnd Wall 

Table 14 – Boundary conditions. 

 

 

Region/Boundary Condition Value 

Top Outlet pressure [Pa] 0 

Bottom Inlet velocity [m/s] 3 

Table 15 – Initial conditions. 

 

4.2.1. Convergence tests 

Convergence tests have been performed with respect to time step, domain size and water 

compressibility. The mesh and time steps are chosen so that      on the wedge bottom. The 

reason for these tests is merely to confirm and strengthen the results from Chapter 3. Water 

compressibility is investigated as a means to reduce instability, as discussed in Section  2.2.8. 
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Figure 35 – Total vertical force on the wedge bottom for different time steps. 

Figure 35 shows the total vertical force on the wedge at impact for various time steps. It is seen 

that the convergence of the total force is still reached at the same time step as for the wedge in 

chapter 3.  

Table 16 shows the different domain sizes tried. Figure 36 shows the total vertical force on the 

wedge for the various domain sizes. It is seen that convergence is reached with the medium 

domain size. It is also seen that the oscillations on the total force are gone with this particular 

numerical setup. 

Domain property Small domain Medium domain Large domain 

Domain height [m] 1.75 3 5 

Domain width [m] 1 2 3 

Total cell count [-] 80252 89639 109677 

Table 16 – Domain sizes. 

 

 

Figure 36 – Total vertical force on the wedge bottom for different domain sizes. 
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To stabilize the simulation compressibility may be introduced to the simulation. An artificial 

compressibility is introduced by defining a speed of sound in water of 300 m/s, and applying the 

expressions seen in Section  2.2.8. This is multiple times lower than in reality, but results show 

that the effect on the impact pressure is negligible (see Figure 37).  

 

Figure 37 – Total vertical force on the wedge bottom for a compressible and an incompressible simulation. 

It is seen that the total vertical force agree well for the two simulations. In fact, it is seen that for 

the setup chosen for this experiment, the compressible flow displays a steadier solution than the 

incompressible one, as expected. Note that the impact occurs slightly later for the compressible 

flow. This is because the water sinks under its own weight as it approaches the wedge. The 

conclusion is that compressibility may be an effective way to reduce divergence for the co-

simulations. 

4.3. FEM model 

An Abaqus model is made, as seen in Figure 38. The wedge is 300mm long with a thickness of 

2mm. The wedge is given a small in-plane depth corresponding to the one in the STAR CCM+ 

model. Only half the wedge has been modeled, as in STAR CCM+. The plate is clamped at the 

wedge apex and all other boundaries are free. For geometrical and material data, see Table 17 and 

Table 18.  

 

Figure 38 - Abaqus model. 
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Property Value 

Wedge length [m] 0.3 

Wedge thickness [m] 0.002 

Wedge depth [m] 0.005 

Table 17 – Geometrical data. 

 

Property Value 

Material Aluminum 

Density [kg/m3] 2700 

Young’s modulus [GPa] 68 

Poisson’s Ratio [-] 0.3 

Table 18 – Material data 

4.3.1. Element choice 

The co-simulation demands a topological correspondence between boundaries that interchange 

data. They are the wedge top, the wedge bottom and the wedge end in STAR CCM+. These 

surfaces need to be properly modeled in Abaqus.  

If the body were enclosing a volume, shell elements could be used for the FSI-boundary, as only 

a plane interface would be required. But because the wedge end is free and the fluid domain 

encloses the wedge plate on all sides, the only convenient way to create spatial correspondence 

between Abaqus and STAR CCM+ is to use solid elements. The reason for this is that shell 

elements do not possess a real thickness, and this makes it impossible to give a proper spatial 

reference between the shell element model and the STAR CCM+ model. This prohibits us from 

using shell elements. The elements chosen are C3D8R elements. These are 8-node, linear, solid 

elements.  

 

Figure 39 – FSI boundaries for different plate setups. Left – The FSI-boundary can be described with 2-D 

shell elements. Right – The fluid encloses all sides of the plate, and solid elements must therefore be used. 
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4.3.2. Convergence tests 

To ensure that the model properly describes the physics of the structure, a convergence test on the 

mesh size is performed, and results are compared to theory.  

 

Figure 40 – Equivalent clamped beam. 

The analytical solution for deformation of an equivalent beam with a uniform loading is 

   
   

    
(          ) Eq.  4.1 

where   is the uniform load,    is the stiffness and   is the position along the beam length  . The 

plate is loaded with an evenly distributed unit load of        normal to the wedge top, and a 

general static analysis is performed. Figure 41 and Figure 42 show the displacement along the 

wedge for different mesh setups.  

 

Figure 41 – Vertical displacement of the plate for different mesh refinements in the longitudinal direction.  
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Figure 42 – Vertical displacement of the plate for different mesh refinements through thickness. 

It is seen that for meshes with too few cells in length direction, Abaqus under-predicts the vertical 

deformation of the plate. At least 30 cells are required along the wedge to achieve a wedge 

deformation according to beam theory. However, it is expected that not only the first eigenmode 

will be excited during the co-simulation, but possibly other low order modes. Therefore, a mesh 

of 60 cells in length direction is chosen.  

It is seen that for meshes with too few cells through the thickness of the plate, Abaqus over-

predicts the deformation of the plate. At least 5 cells are required through the thickness of the 

wedge to achieve a wedge deformation according to theory. 

4.3.3. Nonlinear geometry 

The plate used in the experiment is very thin, and large deformations are observed. The effect of 

large deformations is investigated in Abaqus. To achieve large deformations, a uniformly 

distributed load of           is applied to the wedge. A linear and a nonlinear, general static 

analysis are performed, see Figure 43. 

 

Figure 43 – Vertical displacement of the plate for a linear and a nonlinear analysis. 
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It is seen that the effect of large deformations is close to zero for the clamped wedge. This is 

understood by considering that the load is distributed normal to the wedge surface, making no 

contribution to the axial stress distribution. There are two main sources of geometrical 

nonlinearity. Firstly, forces are applied to the deformed geometry instead of the undeformed 

geometry. Secondly, large deformations lead to an updated stiffness of the structure. However, 

the boundary conditions do not allow for axial stresses to develop, and therefore no effect is seen 

on the maximum deformations. 

4.3.4. Eigenfrequencies 

The eigenfrequencies of the wedge have been calculated. They are found in Abaqus, by 

eigenvalue analysis, as described in  2.3.3. They are presented in the following, and compared to 

the experimental data presented by Panciroli (2013). It is seen that the Abaqus model display an 

excellent agreement. 

 

Figure 44 – Eigenmodes of the wedge plate. They are the first, second and third eigenmode from left to right. 

 

 

Eigenmode Abaqus Experiment 

1 18.06 18.01 

2 113.2 112.89 

3 316.9 316.1 

Table 19 – Eigenmodes from Abaqus and experiment. 

 

4.4. Co-simulation 

Co-simulations have been performed with STAR CCM+ and Abaqus. The geometries are 

identical with the ones seen earlier in this chapter. The results are compared with experimental 

data, and the agreement is discussed. 

4.4.1. Boundary conditions and initial conditions 

Boundaries are identical with the rigid wedge CFD-case, with two exceptions. The front, back 

and end boundaries are changed from symmetry to free-slip walls. The reason for this is related to 
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the morphing of the mesh, which will be described in the next section. Additionally, the wedge 

top, wedge bottom and wedge end boundaries are now defined as co-simulation walls. This 

means that they will adapt the appropriate deformation field from Abaqus and update the 

geometry accordingly. The FSI boundaries can be seen in Figure 45, boundary conditions can be 

seen in Table 20 and initial conditions in Table 21. 

 

Figure 45 – FSI-boundaries. 
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Boundary Boundary condition 

Front Free-slip wall 

Back Free-slip wall 

Symmetry Symmetry 

End Free-slip wall 

Top Pressure outlet 

Bottom Velocity inlet 

WedgeTop Co-simulation wall 

WedgeBottom Co-simulation wall 

WedgeEnd Co-simulation wall 

Table 20 – Boundary conditions. 

 

Boundary Condition Value 

Top Outlet pressure [Pa] 0 

Bottom Inlet velocity [m/s] 3 

- Initial velocity field [u,v,w] [m/s] [0, 0, 3] 

- Initial free surface [m] -0.25 

Table 21 – Initial conditions. 

 

4.4.2. Mesh 

The mesh used in the co-simulation is similar to the one used in the initial rigid wedge studies. 

Hexagonal cells are used, with a prism layer on the wedge surface. Volumetric control has been 

used to refine the mesh additionally where needed, see Figure 46. A morphing mesh has been 

used, as described in Section  2.2.3. The configurations for the morpher are seen in Table 22. 
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Boundary Morphing condition 

Front In-plane 

Back In-plane 

Symmetry Fixed plane 

End In-plane 

Top In-plane 

Bottom In-plane 

WedgeTop Abaqus co-simulation 

WedgeBottom Abaqus co-simulation 

WedgeEnd Abaqus co-simulation 

Table 22 – Mesh morpher conditions. 

 

The parts of the wedge in direct contact with the water are set as co-simulation walls with 

imported displacement fields. Other boundaries are given the in-plane and fixed plane morphing 

condition. This allows the volume mesh to follow the deformed wedge effectively.  

The symmetry boundary condition in STAR CCM+ automatically adapts a symmetry-plane 

condition for the morpher. This was found to pose a condition on the mesh morpher that was not 

strict enough. For a variety of morpher conditions tried, the symmetry boundaries were morphing 

out of plane,  causing pressure divergence and simulation crash. Therefore, the boundaries were 

changed to free-slip walls, for which the morphing condition may be specified. 

 

Figure 46 – Mesh scene for the original state and a deformed state. 
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4.4.3. Solver settings 

The solver settings can be seen in Table 23. Due to the strong coupling between the fluid and the 

structure an implicit solver scheme is necessary. Attempts at co-simulating with an explicit 

scheme quickly diverged, even for very short time steps. The flow is modeled inviscid and 

compressible, with an artificial compressibility to suppress divergence. An Abaqus step is 

included at every inner iteration. The grid flux under-relaxation factor is set to 0.8, meaning that 

the fluid response to structural deformations is slightly reduced. Also, note that the under-

relaxation factors for the velocity and pressure are lowered. This implies that a lower amount of 

the new solution is included at each new time step, and has been done to increase stability. The 

number of inner iterations must be raised, to reach a convergent solution with these under-

relaxation factors. This has also been done. The STAR CCM+ solver first runs decoupled until 

shortly before impact. At this point, the co-simulation engine is enabled, and the Abaqus solver is 

included. This has been done to allow the fluid field to stabilize before the co-simulation starts. 

 

 

Table 23 – Solver settings. 

 

Property Value 

Viscosity No 

Gravity Yes 

Compressibility Yes 

Convection discretization 2
nd

 order 

Time discretization 2
nd

  order 

Total simulation time [s] 0.130 

Time of impact [s] 0.084 

Velocity under-relaxation 0.9 

Pressure under-relaxation 0.3 

VOF under-relaxation  0.9 

Imported fields under-relaxation Adaptive 0.2-0.5 

Grid flux under-relaxation 0.8 

Time step [s] 0.00002  

Inner iterations 20 

Inner iterations per exchange 1 
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Figure 47 and Figure 48 show comparison between the strain measured from the experiments, 

and the strain from the co-simulation for a 20  wedge and a 30  wedge. Abaqus operates with its 

own time history, and the impact occurs at approximately 4ms after the Abaqus monitoring has 

started. The strains are measured 30mm from the wedge apex, at the upper node with respect to 

the wedge thickness. It is seen that the agreement is rather poor. For the 20  impact the numerical 

model severely over-predicts the maximum strain. For the 30  impact the agreement is better, but 

not satisfactory. The non-zero initial strain for the 30  simulation is due to wedge bending under 

its own weight. This is not seen in the 20  impact, as the Abaqus solver was included closer to the 

time of impact. 

 

Figure 47 – Comparison between experiment and numerical model. Microstrains are measured at 30mm from 

the wedge apex. Impact velocity V=3m/s, wedge angle  =20 . 

 

Figure 48 – Comparison between experiment and numerical model. Microstrains are measured at 30mm from 

the wedge apex. Impact velocity V=3m/s, wedge angle  =20 . 
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Figure 49 – VOF scenes from different time instants throughout the water impact. Impact velocity V=3m/s, 

wedge angle  =20 . 

Figure 49 shows snapshots from the simulation. It is seen that the plate is deformed in its second 

eigenmode during the first 20ms of the impact. As the submergence increases the deformations 

are dominated by the first eigenmode. This observation is verified by observing the strain at 

30mm and 120mm from the wedge apex, see Figure 50 and Figure 51. It is seen that for both 

angles, the strain monitored 120mm from the wedge apex show a large increase before dropping 

to negative values at approximately 20ms after impact. The increase corresponds to the tension 

during the second eigenmode deformation (Solution time<0.1s in Figure 49), and the negative 



67 

 

strains correspond to the compression during the first eigenmode deformation (Solution 

time>0.1s in Figure 49). 

 

Figure 50 – Strains monitored at 30mm and 120mm from the wedge apex,  =20 . 

 

Figure 51 – Strains monitored at 30mm and 120mm from the wedge apex,  =30 . 

Figure 52 shows the total vertical force on the wedge for the two different impact angles. It is 

seen that a higher angle yields a lower vertical force. It is also seen that the total vertical force is 

significantly lower than for the rigid case seen in for example Figure 37. As the wedge deforms, 

the effective impact velocity decreases and the impact angle increases, both of which lead to 

lower pressure peaks for impact problems. 
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Figure 52 –Total vertical force on the wedge bottom for the 20  and 30  wedge. 

There could be several reasons for the deviation between the simulation results and the 

experiment. For one, the box used in the experiment is rather small compared to the wedge, as 

was seen in Table 12. This implies that boundary conditions should have an effect on the results, 

as demonstrated in Figure 36. In this model, a rather large box has been used with no pressure 

limitations on the bottom boundary. This was done to avoid effects of the domain boundary, and 

also due to modeling convenience. With a mesh setup as the one used in this thesis, it would be 

difficult to impose a fixed depth of the domain, as the water is entering the domain from below. 

In hindsight, this may have been differently performed.  

Also, the experimental setup uses plates with a width of 250mm in a box with a width of 800mm. 

This implies that 3-D effects in the experiment should be significant. Neglecting 3-D effects is 

generally considered to be conservative, meaning that 3-D slamming simulations should lead to 

lower pressures than 2-D slamming simulations (DNV, 2010). This is considered a contribution 

to the mismatch between the experiments and the simulations. 

Finally, and most importantly, the co-simulation setup assumes constant velocity, whereas the 

experiment is conducted with freely falling wedges subjected to accelerations from both gravity 

and impact pressures. As can be seen in Section  3.1, the impact velocities decay to approximately 

one third of initial velocity after only 10ms. This is believed to be the main source of error when 

comparing the results.  

The reason why this was done was partly because the effect of deceleration was underestimated 

initially and partly because of modeling convenience. As the scenario is modeled with a fixed 

wedge with water entering the domain from below, it is problematic to describe the inlet velocity 

accurately as a continuous function of the impact pressure. Alternatively, a prescribed velocity 

function based on an assumed deceleration can be adapted. This was in fact tried. However, as 

the wedge deceleration is very large compared to the gravitational acceleration, pockets of very 

low pressure arise at the velocity inlet as the inertia drives the water upwards and not enough 
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water enters the domain to fill the gap. This eventually leads to cavitation or pressure divergence 

altogether. 

Indeed, this goes to show that the chosen model has some fundamental difficulties in describing 

even slightly complicated trajectories of the impacting body. It is seen that to give an accurate 

description of physical impacts, where the impacting object is accelerated in any degree of 

freedom, the DFBI-model should be chosen. This acknowledgement was reached at a late stage 

of the work with the master’s thesis, and the time needed to set up such a configuration was 

considered to be too scarce. It is recommended that further work on FSI-problems should be 

conducted with an overset mesh-morphing DFBI-model as explained in Section  2.2.3.  

4.4.4. Instabilities 

During the initial co-simulations many simulations failed due to problems with the morphing 

mesh. One problem was the STAR CCM+ solver crashing due to too much vertex thinning. This 

was coped with by reducing the vertex thinning factor, which increases the accuracy of the mesh 

morpher along a surface. Distortion of the mesh was also a reason for many failed simulations, 

where the mesh boundaries were morphed out of their initial planes, quickly leading to pressure 

divergence. Divergence of the pressure field has in general been the largest problem for the FSI 

simulation. The morphing problems might have been smaller if an overset mesh were applied, 

with only the overset mesh morphing with the deformations. 

Even when the mesh morpher was running smoothly, pressure divergence was seen for many 

simulations. This may be caused by the very strong coupling of the two physical domains. As the 

wedge is only 2mm thick and has a free end, deformations are very large and accordingly the 

fluid response to them, too. In fact, as will be shown in the next chapter, pinning the wedge leads 

to a significantly more stable simulation that converges for time steps in the same region as for 

the rigid wedge. 

There could be some other reasons for the instability of the current setup. The Abaqus mesh 

could be a source of instability. Although convergent with respect to the deformations, the 

Abaqus grid is much coarser than the STAR CCM+ grid. This could lead to small-angled edges 

on the wedge boundary in STAR CCM+, that could trigger the divergence of the pressure field.  

Another source could be the time-step simply needing to be extremely low to capture the effects 

expected from the experiment. In the experiment, cavitation and air pockets are seen on the 

wedge bottom as it starts to oscillate during water entry. The frequencies of these oscillations 

should be high. The current model does not even account for cavitation, and so it is possible that 

the governing physics are not sufficiently accurately captured. 
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5. PARAMETER STUDY ON HYDROELASTICITY 

Simulations have been performed on a wedge built up by plates that are pinned at the ends as 

well as at the wedge apex, as seen in chapter 2.1.2. From a numerical point of view, this wedge 

will be more stable than the one seen in chapter 4, because the deformations will be smaller. 

Convergence tests with respect to time steps, domain size and under-relaxation factors are 

conducted. Parameter studies related to elasticity, coupling algorithm, structural solver scheme 

are presented and discussed.  

5.1. Model 

A pinned wedge is modeled in STAR CCM+ and Abaqus, as shown in Figure 53. 

 

Figure 53 - Pinned-pinned wedge configuration. 

Because the ends are now pinned, the wedge is modeled as a solid, triangular block with only the 

wedge-bottom set to FSI-boundary. This has some convenient implications. Only the bottom of 

the wedge will be deforming, posing less requirements to the mesh morpher, as well as to the 

time step. As the block encloses a fluid free region, the wedge bottom may be modeled with 2-D 

shell elements in Abaqus, as opposed to the free-end wedge, which was modeled with 3-D solid 

elements.  

The geometry and mesh settings can be seen from Table 24 and Table 25. A thin 2x300mm plate 

is used also for these simulations, to investigate the hydroelastic impact of structures with 

nonlinear response. As free-fall lifeboats are often designed with thin composite walls that 

experience relatively large deformations, it is of interest to investigate the capabilities of the 

numerical method on this field. Physics and numerical properties are seen in Table 26. 
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Property Value 

Wedge length [m] 0.3 

Wedge thickness [m] 0.002 

Wedge angle [deg] 20 

Impact velocity [m/s] 3 

Table 24 – Water entry setup. 

 

Property Value 

Domain height [m] 3 

Domain width [m] 2 

Domain depth [m] 0.005 

Minimum cell height [m] 0.0004 

Minimum cell width [m] 0.002 

Number of cells 41252 

Table 25 – Domain size and mesh setup. 

 

Property Value 

Viscosity No 

Gravity Yes 

Compressibility Yes 

Convection discretization 2
nd

 order 

Time discretization 1
st
 order 

Velocity under-relaxation 0.9 

Pressure under-relaxation 0.3 

VOF under-relaxation  0.9 

Nonlinear geometry (structure) Yes 

Table 26 – Solver setup. 
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Figure 54 – Snapshots from a two-way coupled simulation of a pinned-pinned wedge.  

 

5.2. Convergence tests 

5.2.1. Time steps and iterations 

Convergence tests with respect to time steps and inner iterations for the co-simulation are 

presented, this time from a structural point of view.  

A case is set up with an aluminum wedge, with geometry and setup as described above. Different 

time steps and iteration setups are tried, and the von Mises stress at the upper midpoint of the 

wedge plate is monitored – 150mm from the wedge apex and 1mm from neutral axis. This is 

where the largest moments, stresses and deformations occur. The dry eigenfrequencies for the 

wedge plate are calculated in Abaqus and can be seen in Table 27. 
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Mode number Frequency [Hz] 

1 50.56 

2 202.2 

3 455.1 

4 809.1 

5 1264 

Table 27 - Eigenfrequencies of the pinned aluminum wedge. 

 

Figure 55 show the von Mises stress at the midpoint of the wedge plate for different time steps. It 

is seen that as for the rigid case, a time step of 0.0002s is sufficient to achieve convergence. 

Figure 56 shows the von Mises stress for different numbers of inner iterations. Figure 57 shows 

the von Mises stress for different numbers of inner iterations per exchange. Inner iterations per 

exchange refer to the number of inner iterations in the CFD-code between each inclusion of 

Abaqus. It is seen that the difference is minimal between the different setups for inner iterations 

and for the number of inner iterations per exchange. This is understood by considering that these 

parameters do not really govern the physical solution. If the number of inner iterations is too low, 

or the number of inner iterations per exchange is too high, a small inaccuracy in the result is not 

what is seen, but rather a large and sudden divergence of the entire solution. This has been the 

case for a number of attempted simulations, and the parameters are chosen accordingly.  

Two stress peaks at approximately 0.013s and 0.027s after simulation start are recognized. They 

correspond to the first eigenmode. The reason that the peaks are separated by less than the 

expected 0.02s is believed to be related to additional stiffness arising from large deformation. The 

local variations of the stress curve correspond well with the second eigenmode of the plate.  

An important conclusion to draw from these comparisons is that a stable and convergent result 

has been found with a relatively small amount of additional computation time, compared to the 

rigid wedge case. This is encouraging with respect to use of the method in later works. 
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Figure 55 – von Mises stress at the midpoint of a wedge side (150mm from the wedge apex) for various time 

steps.  

 

Figure 56 – von Mises stress at the midpoint of a wedge side (150mm from the wedge apex) for various 

numbers of inner iterations. 
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Figure 57 - von Mises stress at the midpoint of a wedge side (150mm from the wedge apex) for various 

numbers of iterations per exchange. 

 

5.2.2. Imported Fields under-relaxation factor 

The deformation field is imported from Abaqus to STAR CCM+, and applied to the FSI-

boundaries at each time step. The imported field can be under-relaxed in STAR CCM+. The 

reason for this would be to stabilize the CFD-solution in cases of large sudden deformation. The 

effect of varying this under-relaxation factor has been investigated for the pinned aluminum 

wedge.  

 

Figure 58 – Total vertical force on the wedge bottom for different imported field under-relaxation factors. 

Figure 58 shows the total vertical force on the wedge bottom for different imported field under-

relaxation factors. The effect of varying the imported field under-relaxation factor is seen to be 

negligible, as the different simulations agree completely. The default setting in STAR CCM+ is 

the adaptive under-relaxation factor. This is therefor used in the co-simulations. 
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5.2.3. Grid flux under-relaxation factor 

The fluid response to the wedge deformations is based on the grid flux of the FSI boundary (see 

Section  2.5.3). The grid flux is the volume swept by the deformation of the wedge between two 

time steps. The fluid experiences an impulse due to the deformation, which in turn leads to 

changes in pressures and velocities.  

The grid flux may be under-relaxed. This is done to stabilize a solution where the dynamic 

between deformations and fluid responses becomes unstable. This effectively neglects a fraction 

of the fluid response to the deformations. The effect of varying the grid flux under-relaxation 

factor has been investigated. 

 

Figure 59 - Total vertical force on the wedge bottom for different grid flux under-relaxation factors. 

Figure 60 shows the total vertical force on the wedge bottom for different grid flux under-

relaxation factors. Curiously, it is seen that instabilities occur for the lower grid flux under-

relaxation factors, i.e. 0.4 and 0.6 (They agree perfectly in the plot). The divergence is 

significant, and the last 15ms of simulation for these two cases are left out, for visual 

convenience. It is concluded that the grid flux should not be too strongly under-relaxed for the 

impact problem.  

The divergence could come from precisely the bad correspondence between true deformations 

and fluid response. If so, it is not a proper tool to stabilize a strongly coupled problem. The 

parameter would be better suited to stabilize steady state hydroelasticity problems. 

5.2.4. Structural nonlinearity 

In Section  4.3.3, it was seen that nonlinear structural effects were negligible for the clamped 

wedge plate. This was explained by acknowledging that neither updated stiffness nor load 

appliance changed the fact that the boundary conditions did not allow for axial forces to develop. 

For the pinned beam, however, a nonlinear analysis should lead to an additional stiffness in the 

plate. This is investigated by observing the stress variation through the thickness of the wedge for 

a nonlinear analysis, as well as by running a full two-way coupled analysis with linear geometry. 
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Figure 60 – Stress in the longitudinal direction at the top and bottom integration point at the midpoint of the 

wedge, for a two-way coupled simulation with nonlinear geometry. 

Figure 60 shows the stress in longitudinal direction for the nonlinear analysis over time. The Top 

and Bottom lines refer to monitoring at the top and bottom integration point of the shell element. 

In a linear analysis these lines should be symmetrical with opposite signs. In this case it is seen 

that the bottom integration point has significantly lower absolute values than the top integration 

point. This implies that the nonlinear membrane stress contributes significantly to the results. 

 

Figure 61 - von Mises stress at the midpoint of the wedge, for a two-way coupled linear analysis and a two-way 

coupled nonlinear analysis.  

Figure 61 shows the maximum midpoint von Mises stress for a full two-way coupled analysis 

with nonlinear effects enabled and disabled. It is seen that the linear analysis reaches levels of 

stress multiple times higher than the nonlinear analysis. When deformations occur, the nonlinear 

analysis updates the geometry, allowing for large membrane forces that limit the deformations. 

The effect of nonlinearity will be dependent on the stiffness and the slenderness of the structure. 

In this case, the effect is so important that the linear analysis is considered worthless from a 
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physical point of view. A visualization of the difference can be appreciated in Figure 62, where 

snapshots from STAR CCM+ illustrate the deformed wedge.  

 

Figure 62 -  Snapshots during the water entry. Top - Nonlinear geometry in Abaqus enabled, Bottom – 

Nonlinear geometry in Abaqus disabled. 

5.2.5. One-way coupling 

A one-way coupled analysis has been performed on the wedge, and the results are compared with 

the two-way coupled analysis. With one-way coupling it is meant that the pressures are being 

exported from STAR CCM+ to Abaqus, but the deformations are not imported back. This is 

therefore the equivalent of running a rigid analysis and applying the pressures as a dynamic load 

history.  

 

Figure 63 – von Mises stresses at the midpoint of the wedge, for a two-way coupled analysis and a one-way 

coupled analysis. 

Figure 63 shows the von Mises stress for the two analyses. It is seen that the one-way coupled 

simulation shows large oscillations at a higher frequency than the two-way coupled simulation. 

The dominating frequency of oscillation appears to be approximately 400 Hz. This does not 
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correspond well with any of the eigenfrequencies. The reason for this is believed to be an 

additional nonlinear stiffness that comes from the large deformation and added membrane forces, 

leading to a stiffer system with altered and higher eigenfrequencies. Note that the stress from the 

two-way coupled simulation acts as a mean to the one-way coupled simulation. This implies that 

the higher order oscillations of the wedge are damped, or not even excited, in the two-way 

coupled analysis. 

5.3. The wetting time quotient 

5.3.1. Varying natural frequencies 

In the theory of hydroelasticity, the relation between wetting time and the lowest eigenperiod of 

the system was seen to be an important parameter. The wetting time is defined as the time from 

initial submergence to full submergence of the system, in this case the wedge. To investigate this 

relationship, a series of coupled analyses has been performed. The wetting time quotient is 

defined as 

    
    

  
 Eq.  5.1 

where      is the wetting time and    is the first eigenperiod of the system. For a pinned-pinned 

wedge entering water at constant velocity, the wetting time is given as a function of geometry and 

impact velocity. The wetting time is expressed as 

      
     

 
 Eq.  5.2 

where L is the length of the wedge,   is the wedge angle and V is the initial impact velocity. The 

lowest natural frequency for a pinned-pinned beam is defined as  

    
 

  
(
 

 
)
 

√
  

 
 Eq.  5.3 

where   is the weight per meter of the wedge. By changing the Young’s modulus of the material, 

systems with different wetting time quotients are obtained. It is expected to see a large difference 

in response for wedges with an eigenperiod lower than the wetting time, i.e.     , and a more 

quasi-static response for the cases with     . Table 28 shows the range of wetting time 

quotients chosen for the coupled analyses.  
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Young’s modulus [GPa] Eigenfrequency [Hz] WQ [-] 

2.885 10.41 0.25 

11.54 20.83 0.5 

25.96 31.25 0.75 

46.16 41.66 1 

72.13 52.08 1.25 

103.8 62.50 1.5 

184.1 83.33 2 

1154 208.3 5 

4616 416.6 10 

Table 28 – Resulting eigenfrequencies and necessary Young’s moduli to obtain a given wetting time quotient 

for the wedge. 

 

The simulations have been run, varying the time step according to the magnitude of the 

deformations. It was seen that for the systems with higher stiffness, the time step could be set to 

0.2ms, as for the rigid case. For the systems with a low stiffness, the time step was lowered to 

0.02ms to achieve convergence. This illustrates the fragile nature of the coupling algorithm. 

5.3.2. Deformations and strains 

Figure 64 shows the vertical displacement at the midpoint of the wedge plate (150mm from 

wedge apex) for different wetting time coefficients. The upper plot shows the displacement 

normalized with respect to the wedge thickness, and the lower plot shows the displacement with a 

correction for Young’s modulus dependency. One should recall that the wedge is very slender, 

with a thickness of      , a length of        , and accordingly a slenderness ratio of 

       . Therefore it is not unexpected to see large relative deformations. Note that      

     . 

Figure 65 shows the strain at the midpoint of the wedge plate for different wetting time 

coefficients. The upper plot shows the monitored strain and the lower plot shows the strain with a 

correction for Young’s modulus dependency. Note that        . 
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Figure 64 – Deformations at the midpoint of the wedge for two-way coupled simulations. Top – Deformations 

divided by the thickness of the wedge plate. Bottom – Deformations corrected for dependency to Young’s 

modulus. 

 

Figure 65 – Strains at the midpoint of the wedge for two-way coupled simulations. Top – Strains. Bottom – 

Strains corrected for dependency to Young’s modulus. 
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As discussed in Section  2.1.3, linear beam theory implies that          for a quasi-static case. 

This is obviously not the case here. The nonlinear, quasi-static beam/catenary theory implies a 

nonlinear relationship between      and  . This is understood by recognizing that the catenary 

approximation assumes a linear relationship between the wedge plate elongation and the Young’s 

moduli through the cinematic compatibility assumption, i.e.      , and at the same time 

observing that    relates nonlinearly to      through the analytically unsolvable arc length 

integral of the sine approximation for  . Although a cushioning effect is expected to be seen on 

the pressures from the varying Young’s moduli, such a well agreeing relationship between the 

maximum strains and the square root of the Young’s moduli is surprising. The nature of the force 

distribution in the wedge is further investigated in the following. 

5.3.3. Structural nonlinearity 

The axial fraction of the response can be seen by considering Figure 66. 

 

Figure 66 - Strain at the top and bottom integration point at the midpoint of the wedge for a two-way coupled 

simulation. Top plot – WQ=0.25. Bottom plot – WQ=5.00. 

It is seen that for the WQ=0.25 case, the strains are positive throughout the water impact. This 

implies that the bending stiffness forces are dominated by the membrane forces. For the 

WQ=5.00 case the internal forces are distributed more evenly between axial and bending 

contributions. The conclusion to be drawn from this is that the response of the wedge is 

dominated by axial membrane forces in the wedge for almost all the WQs tried. 

Figure 67 shows the pressure coefficient for different instants throughout the water impact for 

WQ=0.75. It is seen that the pressure coefficient grows steadily with a characteristic slamming 

distribution, until the entire wedge is submerged at approximately t=0.030s, and the pressure 
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coefficient decays gradually. The gradually growing pressure coefficient is in conflict with the 

rigid water entry presented in Section  2.1.1, where analytical solutions point towards a constant 

maximum value of    that moves along the wedge bottom with time. This difference is believed 

to be associated with the fact that the wedge is initially deforming, leading to a lower effective 

impact velocity, and subsequently a lower pressure. As the maximum deflection of the first 

deformation period is reached, the internal forces in the wedge plate make an addition to the 

counterforce of the pressure, and the coefficient grows to values that are larger than for a rigid 

wedge. As has been seen, these forces appear to be dominated by the membrane terms. 
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Figure 67 - Pressure coefficient on the wedge bottom for different time instants throughout the water impact 

for a two-way coupled simulation with WQ=0.75. 
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Figure 68 shows the total vertical force on the wedge for different wetting time quotients. The 

total vertical force for the all the wetting time quotients can be seen in APPENDIX A. The force 

displays a linear growth for the rigid wedge, but the elastic wedges show an increasingly 

exponential behavior with a decreasing Young’s modulus. This is consistent with the conclusions 

drawn from evaluating the pressure coefficient time history. It is seen that the force significantly 

exceeds the rigid wedge case for the cases with low stiffness. As the wetting time quotient grows, 

the stiffness grows accordingly, and the vertical force of the coupled simulation converges 

towards the rigid case. 

 

Figure 68 - Total vertical force for different wetting time quotients. 

 

5.3.4. Hydroelastic amplification 

Based on the maximum total force      from Figure 68, an equivalent pressure is defined as  

     
    

  
 Eq.  5.4 

where B is the width of the wedge and L is the length. This pressure is an evenly distributed 

pressure that results in a total force      when integrated over the wedge bottom. The degree of 

dynamical behavior in the problem can now be assessed by applying an equivalent pressure on 

the wedge bottom and conduct a quasi-static analysis in Abaqus. Table 29 shows the equivalent 

pressures calculated with Eq.  5.4. 

WQ 0.25 0.50 0.75 1.00 1.25 1.50 2.00 5.00 Rigid 

Maximum vertical force [N] 558 536 498 462 463 441 429 407 373 

Equivalent pressure [kPa] 62.0 59.6 55.4 51.4 51.6 49.1 47.7 45.2 41.4 

Table 29 – Equivalent pressures. 
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Quasi-static analyses of the wedge plate subjected to the equivalent pressure have been conducted 

in Abaqus. Figure 69 shows the response for the two-way coupled simulation compared to the 

response of the static analysis with an evenly distributed equivalent pressure. 

 

Figure 69 - Comparison between maximum wedge displacement at the midpoint of the wedge for a two-way 

coupled simulation and a quasi-static FE-analysis with hydroelastic equivalent pressures. 

The comparison shows an almost identical response behavior. This does not imply that the 

problem can be analyzed quasi-static. The dynamics of hydroelasticity are implicitly accounted 

for because the pressures are derived from hydroelastic simulations. The figure does, however, 

show us that the even distribution of the equivalent pressure is a satisfactory representation of the 

impact pressure for this particular case.  

Now consider Figure 70, where the quasi-static responses have been calculated using only the 

equivalent pressure from the rigid wedge case and applying it on the wedges with varying 

Young’s moduli. It is seen that the hydroelastic response is greater for every wetting time 

quotient.  

 

Figure 70 - Comparison between wedge displacements at the midpoint of the wedge for a two-way coupled 

simulation and a quasi-static FE-analysis with rigid impact equivalent pressures. 

A hydroelastic amplification factor is now defined as 

     
             

      
 Eq.  5.5 
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where               refers to the maximum deformation for a hydroelastic simulation, and        

refers to the quasi-static deformation for the rigid wedge equivalent pressure. Figure 71 shows the 

hydroelastic amplification factor for the different wetting time quotients. 

 

Figure 71 - Hydroelastic amplification factor 

We arrive at a remarkable conclusion for the simulations of the elastic wedges analyzed in this 

section. The maximum structural responses from the dynamic, two-way coupled analyses are 

larger than the quasi-static responses to the highest pressures found in a rigid body analysis. This 

contradicts the assumption that the cushioning leads to a lower maximum response. In DNVs 

recommended practices (DNV, 2010) it is explicitly stated that it is considered conservative to 

neglect the effect of hydroelasticity. But these results indicate that if deformations are sufficiently 

large, and nonlinearity in the structural response is significant, the pressures may exceed those of 

a rigid body analysis and lead to higher strains and deformations. 

For a last remark to the deformations, see Figure 72 and Figure 73. The maximum deformation 

has been computed based on the theoretical expressions proposed in Section  2.1.3 on 

nonlinearity, and compared to the static FE-analysis with equivalent pressures from the rigid 

wedge water entry. The beam theory approach and linear Abaqus solutions agree very well, and 

both lead to extreme over-predictions of the displacement, with   
 

 
    . The simplified catenary 

theory approach shows surprisingly good agreement with the nonlinear Abaqus solutions, but 

slightly over-predicts the displacement. This is explained by recognizing that the bending 

stiffness is neglected, and the contributions from bending stiffness are expected to be present, 

although small for low-stiffness bodies. Additionally, the sine curve approximation to the 

catenary deformation is inaccurate, as the analytical solution to the catenary is actually a 

hyperbolic sine function, which gives slightly higher angles at the ends, and accordingly leads to 

a lower maximum deformation. Nevertheless, it is seen that a zero-stiffness approximation shows 

good agreement with the quasi-static, nonlinear Abaqus-deformations.  
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Figure 72 - Maximum deformations calculated with linear FEM and linear beam theory. The deformations 

are calculated statically based on the equivalent pressure from the rigid wedge simulations. 

 

Figure 73 - Maximum deformations calculated with nonlinear FEM and nonlinear catenary theory. The 

deformations are calculated statically based on the equivalent pressure from the rigid wedge simulations. 

5.3.5. One-way and two-way coupling 

One-way coupled simulations have been run for the different wetting time quotients, for 

comparison to the two-way coupled simulations. Results from the one-way coupled simulations 

are seen in Figure 74. The deformations are corrected for dependency to the Young’s moduli and 

divided by the plate thickness. Comparison between one-way coupled results and two-way 

coupled results for each wetting time quotient can be seen in APPENDIX B. 

 

Figure 74 - Deformations at the midpoint of the wedge for one-way coupled simulations. The deformations are 

divided by the thickness of the plate, and corrected for dependency to the Young’s moduli.  
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We recognize an oscillatory behavior for the one-way coupled simulations, with a low frequency 

for         and a high frequency for         This is expected, considering the stiffness 

variations. We also recognize that the two-way coupled deformations act as an arithmetic mean to 

the one-way coupled simulations. We see that the maximum deformation for the two-way 

coupled case is larger than then the corresponding one-way coupled case. This is yet another 

illustration of the large maximum pressures that come with large non-linear responses. It would 

be interesting to investigate the possibility of assessing the agreement between two-way coupled 

responses and the low-pass filtered, one-way coupled responses, but this has not been done, due 

to time considerations. 

5.3.6. Deformation velocities 

Figure 75 shows the magnitude of the displacement velocity throughout the water entry for 

different wetting time quotients. Deformation velocities for all the runs can be seen in 

APPENDIX C. The water impact occurs at approximately 5ms after monitoring has started. It is 

seen that the deformation velocity quickly rises to magnitudes that are large compared to the 

impact velocity of 3 m/s. For the WQ=0.25 case the deformation velocity approaches 2m/s. This 

implies a significant reduction in effective impact velocity, leading to the lower pressures as was 

seen in Figure 67. As submergence continues the displacement velocities go down 

(approximately between 15ms and 20ms after initialization). This is associated with the 

deformation state where large deformations have been reached, and the added axial stiffness 

prevents the wedge from further deformation. This is also the time instance where the pressure 

coefficient grows largest. At approximately 30ms after initialization, a slight increase is seen in 

the velocity magnitude. This is associated with the end of the submergence phase, where impact 

pressures gradually fade towards the hydrodynamic pressures of constant velocity vertical 

movement in water. 

 

Figure 75 - Deformation velocity magnitude at the midpoint of the wedge for different wetting time quotients. 
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6. DISCUSSION 

Some of the choices and results from this work are discussed and elaborated in the following. 

The results from the rigid wedge simulations in Chapter 3 in STAR CCM+ agree well with 

previous results. The capabilities of the numerical model are found to be robust for the rigid body 

impact. It would have been interesting if more impact velocities and impact angles could have 

been included. The reason for the initial presence of oscillations in the total force remains 

unclear, but it is believed to be related to poor initialization of the fluid domain. As was seen, 

these oscillations were avoided as the experience with the program grew. The finding that 

viscosity may be excluded altogether is interesting, although expected. For different geometries, 

where the water separation point is of importance, the viscosity should not be excluded (Larsen, 

2013). Also, it could be argued that because the jet behavior depends on the viscosity setting, and 

the structural response depends on a correctly expressed wetted surface with regard to added 

mass, viscous effects could be of importance. 

In Chapter 4, the numerical model is compared to experimental data. Substantial deviations are 

found between calculations and measurements, particularly for smaller deadrise angles. It is 

believed that the main reason for this is related to the constant velocity assumption. Different 

boundary conditions and the presence of three-dimensional effects may also contribute to the 

deviation. Due to the very large flexibility of the experimental model, air pockets and cavitation 

could also be important. From an industry application point of view, the varying velocity and 

three-dimensional effects are most relevant to include in future calculations.  

The experiment chosen has some limitations in its ability to verify the FSI-simulations. Firstly, 

the physics observed in the experiment include large relative deformations, which are found to be 

challenging to capture by the numerical model. Secondly, the slenderness of the wedge plate 

leads to a very strong coupling between the hydrodynamics and the structure. This is also 

numerically challenging, and a source of instabilities in the simulations. Finally, the experiments 

document scenarios where ventilation and cavitation play a role, and this further complicates the 

numerical problem.  

To verify the co-simulation model properly, it is recommended to use an experiment or 

comparison that is not so extreme in nature. Measurements from full scale lifeboat drops are one 

alternative, and the numerical challenges related to such a simulation are considered to be fewer 

than for the experiment used in this thesis. Another interesting possibility is the experiment 

presented by Wang and Guedes Soares (2012). This is an idealized, three-dimensional 

experiment with hydroelastic responses that seem well suited to verify an FSI-model. 

In Chapter  5 the capabilities of the model are demonstrated, but the setup chosen has some 

limitations. It was focused on hydroelastic slamming on very slender structures with a response 

dominated by nonlinearity. This is, to the candidate’s knowledge, an unexplored field, as all 

theoretical formulations found for hydroelasticity are based on the small deformations 
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assumption. This makes it particularly interesting to investigate the results, and at the same time 

particularly challenging to compare the model to theoretical data. In hindsight, it might have been 

more convenient for the verification of the model if a linear system were chosen. Still, the fact 

that the numerical model was capable of capturing such extreme response behavior illustrates the 

possibilities of the FSI-analyses. 

In the discussion on structural nonlinearity in Section  2.1.3, a simplified expression for the 

nonlinear deflection of the plate is used to compare with quasi-static analyses. Some work could 

be invested in finding a better comparable nonlinear expression that accounts for the bending 

stiffness. This was omitted, as the agreement with the simulations was satisfactory for the 

expression chosen. It is interesting to see that the zero-stiffness expression displays such good 

agreement with the simulation. 
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7. CONCLUSION 

The main objective of this thesis has been to investigate hydroelastic slamming by establishing a 

numerical model to conducted coupled simulations between a CFD-code and a FEM-code. This 

has been achieved by using the commercial codes STAR CCM+ and Abaqus. Although the 

method requires the use of two independent commercial codes, it is found to be easily used, due 

to the built in co-simulation modules.  

Water impact of a rigid wedge is simulated, and convergence tests with respect to domain size, 

mesh, time steps and number if iterations are presented. The model is compared to previous work 

and shows good agreement. 

Additionally, the effect of viscosity and compressibility is investigated. It is concluded that 

viscosity may be neglected with an insignificant effect on the total vertical force on the wedge. It 

is concluded that artificial compressibility leads to an insignificant change in total vertical force 

on the wedge, and may be an effective way to reduce instabilities. 

The FEM-code Abaqus is chosen for the structural simulations. Convergence tests are conducted 

with respect to mesh size, and the capabilities of the model are verified by comparison to theory. 

Coupled FSI-analyses have been conducted. Convergence tests with respect to time steps, 

iterations, domain size, mesh size and coupling scheme are presented. The model is compared to 

experimental data. The agreement is poor, and it is concluded that the model setup does not 

accurately describe the physics of the experiment. Alternative experiments are proposed. 

The impact of elastic wedges is parametrically studied by varying the Young’s modulus of an 

elastic wedge. The effect of hydroelasticity and structural nonlinearity is investigated by 

comparing the results with quasi-static structural analyses and theoretical expressions for the 

response. It is concluded that hydroelasticity has a non-conservative effect on the highly 

deformed structures investigated. It is suggested that the main parameters dictating this non-

conservativeness are the slenderness and stiffness of the structure. 

One-way coupled simulations are compared to two-way coupled simulations, and the difference 

is seen to be significant. Particularly, the one-way coupled simulations show an oscillatory 

structural response that is avoided using the two-way coupled simulations. 

Previous work on water impact and fluid-structure interaction is reviewed. A report 

demonstrating the relevance for free-fall lifeboats is presented. 

A thorough description of the theory related to water impact of rigid and elastic wedges is 

presented. The CFD and FEM processes are described in detail, and the possibilities and 

limitations of coupling the solvers with one another are presented. 
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8. RECOMMENDATIONS FOR FUTURE WORK 

For future work on CFD, FEM or coupling of the two, the software chosen for this work is 

strongly recommended. STAR CCM+ is a user-friendly software, with easy access to all the 

relevant parameters for the CFD-process. The possibilities to interact and visualize during the 

simulations have been very helpful. The software also has an easily accessible online 

documentation on theory and recommended practice. Abaqus is a well-known and much used 

software for complex FE-analyses. The coupling of Abaqus and STAR CCM+ is easy to set up, 

as both codes have integrated co-simulation modules specifically designed to couple with each 

another. If a student considers taking this work further, it is recommended that the student is 

familiar with at least one of the programs, as a considerable amount of time would be needed to 

familiarize with both codes. 

As the results from the coupled analyses in this work deviate somewhat in comparison with 

experiments, different experiments are recommended to verify the model. For verification of the 

model, two setups are proposed. The experiment series presented by Wang and Guedes Soares 

(2012) seem easily reproduced, and are less extreme in nature than the experiment chosen in this 

thesis. A comparison to measurements from full scale experiment of the relevant structure is also 

recommended. 

It is recommended to avoid a fixed-body approach as it was applied in this thesis. The limitations 

quickly outweigh the modeling convenience. An overset, morphing mesh combined with a DFBI-

model is recommended. Limitations related to spatial correspondence between the models can be 

coped with by having Abaqus calculate the trajectory of the body. 

The effect of varying structural nonlinearity should be investigated further to gain a good 

understanding of the mutual dependency between hydrodynamic forces and large structural 

responses. 

The one-way coupled model used in this thesis worked excellently, and for problems with an 

assumed low degree of coupling between loads and responses, this method will give a robust and 

reliable method for analyzing FSI-problems. The method can be employed for hydroelastic 

analyses of such structures. 

Curiously, the CFD-code STAR CCM+ has an integrated structural model, and the FEM-code 

Abaqus has an integrated CFD model. It would be interesting to compare the results from the co-

simulations to results from simulations run internally in the two codes.  
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APPENDIX A 

The Appendix contains monitor plots of the total vertical force of the wedge bottom for the 

different wetting time quotients presented in Chapter 5. 

 

Figure 76 – Total vertical force on the wedge plate for wetting time quotients WQ=0.25, WQ=0.50 and 

WQ=0.75. 

 



 

II 

 

 

Figure 77 – Total vertical force on the wedge plate for wetting time quotients WQ=1.0, WQ=1.25 and 

WQ=1.5. 



III 

 

 

Figure 78 – Total vertical force on the wedge plate for wetting time quotients WQ=2, WQ=5 and WQ=10. 
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APPENDIX B 

The Appendix contains a comparison between deformations at the midpoint of the wedge from 

one-way coupled simulations and two-way coupled simulations, as presented in Chapter 5. 

 

Figure 79 – Deformations at the midpoint of the wedge from one-way coupled simulations and two-way 

coupled simulations for WQ=0.25 to WQ=1.00. 
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Figure 80 – Deformations at the midpoint of the wedge from one-way coupled simulations and two-way 

coupled simulations for WQ=1.25 to WQ=5.00. 
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APPENDIX C 

The appendix contains displacement velocity magnitudes at the midpoint of the wedge for the 

two-way coupled simulations presented in Chapter 5. 

 

Figure 81 – Displacement velocity magnitudes at the midpoint of the wedge for two-way coupled simulations 

for WQ=0.25 to WQ=1.00. 
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Figure 82 – Displacement velocity magnitudes at the midpoint of the wedge for two-way coupled simulations 

for WQ=1.25 to WQ=5.00. 



IX 

 

APPENDIX D 

The SIMPLE algorithm, as presented by CD-ADAPCO (2012). 

 

 

 


