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Background: Patients with chronic pain (CP) are often reported to have deficits in working 

memory. Pain impairs working memory, but so do depression and sleep problems, which are 

also common in CP. Depression has been linked to changes in brain activity in CP during work-

ing memory tasks, but the effect of sleep problems on working memory performance and brain 

activity remains to be investigated.

Methods: Fifteen CP patients and 17 age-, sex-, and education-matched controls underwent 

blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging at 3T while 

performing block design 0-back, 2-back, and paced visual serial addition test paradigms. 

Subjects also reported their level of pain (Brief Pain Inventory), depression (Beck Depression 

Inventory II), and sleep problems (Pittsburgh Sleep Quality Index) and were tested outside the 

scanner with neuropsychological tests of working memory.

Results: The CP group reported significantly higher levels of pain, depression, and sleep problems. 

No significant performance difference was found on the neuropsychological tests in or outside the 

scanner between the two groups. There were no correlations between level of pain, depression, 

and sleep problems or between these and the neuropsychological test scores. CP patients exhibited 

significantly less brain activation and deactivation than controls in parietal and frontal lobes, which 

are the brain areas that normally show activation and deactivation during working memory tasks. 

Sleep problems independently and significantly modulated the BOLD response to the complex 

working memory tasks and were associated with decreased brain activation in task-positive regions 

and decreased deactivation in the default mode network in the CP group compared to the control 

group. The pain and depression scores covaried with working memory activation.

Discussion: Sleep problems in CP patients had a significant impact on the BOLD response 

during working memory tasks, independent of pain level and depression, even when performance 

was shown not to be significantly affected.

Keywords: magnetic resonance imaging, 2-back, serial addition test, deactivation, activation

Introduction
Cognitive complaints are common in patients with chronic pain (CP),1 as well as objec-

tively measured cognitive deficits.2,3 Working memory is often reduced in CP, and the 

reduction is independent of local analgesia.4 The effect of CP on working memory is 

moderate and there is considerable discrepancy between studies.5 Furthermore, working 

memory is affected by depression6 and sleep problems,7 both of which are common 

in CP patients. Approximately 70% of CP patients are reported to be moderately or 

severely depressed,8 and/or experience sleep problems.9,10 It has been shown that pain 
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sensitivity is increased by the induction of sad mood in CP11 

and by sleep deprivation.12,13 Moreover, sleep deprivation has 

negative effects on mood,14 and sleep problems are present 

in the majority of depressed subjects.15 Several prospective 

studies have also found that sleep problems increase the risk 

of later CP,16–20 and that restorative sleep is independently 

associated with later resolution of widespread pain.21 Thus, 

CP, depression, and sleep problems are closely entwined, and 

all may affect working memory.

A number of studies have investigated the effect of experi-

mental pain on brain activity during working memory tasks 

with T2* weighted, blood-oxygen-level dependent (BOLD) 

functional magnetic resonance imaging (fMRI),22,23 but only 

one fMRI study has investigated working memory in a group 

of CP patients.24 In the latter study, patients with chronic fibro-

myalgia exhibited reduced brain activation relative to controls, 

and a significant effect of level of depression on brain activity 

was reported. Since sleep deprivation is also known to reduce 

BOLD activation in brain regions during working memory 

tasks in healthy controls (HC),25–31 sleep problems may impact 

working memory related brain activity in CP patients, but 

this remains to be studied. Indeed, fMRI studies on working 

memory in CP patients that simultaneously take into account 

level of pain, depression, and sleep problems are lacking.

The aim of the current study was to investigate BOLD 

activation in CP patients compared with HC during differ-

ent working memory tasks, and to study the relationship 

between BOLD activation and level of pain, depression, and 

sleep problems to verify the contribution of each of these to 

BOLD signal differences.

Methods
The study was approved by the Regional Committee for 

Medical Research Ethics and the Norwegian Social Sciences 

Data Service. Written informed consent was obtained from all 

participants. In addition, all participants were informed per-

sonally and in writing that they could withdraw their consent 

at any time without any consequences. All participants were 

offered a monetary compensation of 400 NOK and pictures 

from their morphological brain scan.

Subjects
A total of 20 CP patients (16 females) were recruited from a 

local university hospital pain clinic. Inclusion criteria for the 

CP group were $6 months with average pain intensity of $4 

on the Verbal Rating Scale.32,33 An experienced clinician per-

formed the clinical assessment. To minimize external effects 

on cognition or brain activity, subjects with high consumption 

of analgesics were excluded (.180 mg codeine or equivalent 

per 24 hours, 24 hours continuous benzodiazepine treatment, 

or using carisoprodol). The included subjects were instructed 

not to consume caffeine and/or nicotine in the hours prior to 

testing and scanning. No morphological abnormalities were 

detected in the MRIs of any of the participants.

In addition, a control group of 20 age-, sex-, and edu-

cation-matched HC (18 females) were recruited from the 

local community. Exclusion criteria for both CP patients and 

HC were severe psychiatric disorder and any neurological 

disorders, including traumatic brain injury (,13 Glasgow 

Coma Scale at the time of injury) and MRI contraindications.  

A diagnosis of mild or moderate depression did not warrant 

exclusion in any of the groups, neither did use of antidepres-

sants. All participants reported being right-handed, and were 

assessed with the Edinburgh Handedness Inventory34 (CP: 

0.82±0.21, range: 0.43–1; HC: 0.91±0.16, range: 0.45–1).

One subject was excluded after previous neurological 

disease was discovered in the clinical interview. A series 

of technical problems caused data loss that resulted in the 

final groups consisting of 15 CP subjects (13 females) and 

17 HC subjects (16 females). Of the 15 included patients, 

ten were classified as having musculoskeletal pain, four 

idiopathic pain, and one as having visceral pain. None had 

neuropathic pain.

Pain
Pain intensity was assessed using the validated Norwegian 

translation35 of the Brief Pain Inventory (BPI).36 Total BPI 

score was calculated. In BPI, the intensity of pain during 

the last 24  hours is rated using a numerical rating scale 

(NRS), where 0 is no pain and 10 is worst imaginable pain. 

The NRS measure was used as an estimate of individual 

level of pain at time of the experiment and applied in the 

fMRI analysis.

Depression
The level of depression was assessed with the validated 

Norwegian translation37 of the Beck Depression Inventory 

(BDI) II.38 BDI has been validated in a CP population with 

BDI Negative Thoughts and BDI Behavior,39 and recom-

mended for use in clinical studies of CP.40 Score on the BDI 

was used as the level of depression in analyses, and not for 

diagnosing the presence or absence of clinical depression.

Quality of sleep
The Norwegian validated version41 of the Pittsburgh Sleep 

Quality Index (PSQI)42 was used to measure the quality 
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of sleep. PSQI is related to the subjective sleep experi-

ence rather than objective measures of sleep quality and 

sleep problems.43 It has been used in a number of studies 

in patients with CP.44–46 The cut-off value of five was used 

to differentiate good sleepers from bad sleepers (sensitivity 

89.6%, specificity 86.5%).42

Working memory and fMRI task design
The Wechsler Adult Intelligence Scale (WAIS)-III subtests 

Digit Span and Letter Number Sequencing47 were admin-

istered to all subjects. Age-adjusted scores for the groups 

are reported. While the Digit Span Forward requires basic 

attention, phonological loop, and short-term memory, the 

Digit Span Backward, and to a larger extent the Letter 

Number Sequencing, requires maintaining and updating the 

information. WAIS-III subtests were performed according 

to the instructions described by Wechsler.47

For the fMRI experiments, 0- and 2-back (collectively 

referred to as n-back) plus paced visual serial addition test 

(PVSAT) paradigms were implemented. The n-back task is 

one of the more popular paradigms for studying working 

memory with functional neuroimaging48 and is frequently 

used.49 The PVSAT is an adapted version of a working 

memory, attention, and processing speed test used in CP and 

other patient groups.50 The n-back and PVSAT paradigms 

test different attention and executive processes: basic atten-

tion and the phonological loop (0- and 2-back and PVSAT), 

updating and maintaining information (2-back and PVSAT), 

and manipulation of information (PVSAT). The 0-back 

probes sustained attention and other processes that underlie 

working memory. The design of the 0/n-back paradigm 

resembles a Go/No Go-task51 as subjects respond if the 

current element is identical to a predefined element, and in 

66% of the trials the subject has to withhold the response. 

Reaction time (RT) variability on Go-elements of a Go/No 

Go-task has been used as a measure of inhibitory efficiency 

and is sensitive to sleep deprivation.52,53

The n-back and PVSAT paradigms were all block 

designs. There were six 30 seconds “off ” blocks and five 

30 seconds “on” blocks for the n-back paradigms. For the 

PVSAT paradigms, there were eight 30 seconds “off ” blocks 

and seven 30  seconds “on” blocks. In the “off ” blocks, 

participants were instructed to fixate on a white cross in the 

center of a black screen. In each “on” block in the n-back 

tasks, 12 numbers were shown for 500 ms with a fixation 

asterisk lasting for 2,000 ms between the numbers. In the 

“on” blocks in the PVSAT, 15 numbers were shown for 

500 ms with a fixation asterisk lasting for 2,000 ms between 

the start of each numbers. The n-back and PVSAT tasks were 

balanced in such a way that the number of correct responses 

per block was similar for all three paradigms. This was done 

to ensure that data from the different conditions would later 

be comparable. The n-back and the PVSAT tasks were 

programmed, presented, and the subjects’ performance 

recorded in E-Prime 1.1 (Psychology Software Tools, Inc., 

Sharpsburg, PA, USA). The paradigm presentation order 

was randomized and the stimuli presentation order was 

pseudorandomized. During fMRI scanning, the tasks were 

displayed on an LCD screen mounted behind the bore open-

ing, and viewed through a mirror mounted on the head coil. 

All responses were recorded using response buttons from 

NordicNeuroLab (NNL) (Bergen, Norway). The participants 

were familiarized with the fMRI paradigms outside the 

scanner and performed computer-based test versions of each 

paradigm until full compliance was obtained.

n-back paradigm
The subject was instructed to press a response button every 

time the number shown was identical to the number preceding 

it by n steps.54 Subjects were tested with n=0 and n=2, referred 

to as 0-back and 2-back, respectively. The numbers shown were 

between 1 and 13. For the 0-back, subjects were instructed to 

respond by pressing the button whenever the number shown 

was 7 or 13. Thus, no manipulation of information in working 

memory was required. For the 2-back condition, the subjects 

were instructed to press the button whenever they saw a num-

ber identical to the one before the previous. Both n-back trials 

induced button presses 33% of the time if performed correctly.54 

n-back tasks are usually performed with letters. Since there is a 

small, but significant difference between using numbers and let-

ters in an n-back paradigm,55 we used numbers in our n-back task 

in order to ensure comparability with the PVSAT paradigm.

PVSAT
All participants completed one PVSAT paradigm. In the 

PVSAT, subjects were shown a series of numbers between 1 

and 12 and asked to add every number to the number before 

it. When the sum was either 7 or 13, the subject was instructed 

to press the response button. This was done in order to keep 

the PVSAT comparable to the n-back paradigms with regard 

to both the response method and the interstimulus intervals, 

ie, nonverbal button press responses. To ensure that all sub-

jects did indeed add the numbers as instructed, the approach 

of Mainero et al56 was modified by asking subjects to press the 

response button every time the sum equaled 7 or 13. Previ-

ous research shows that training has a significant effect on 
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Paced Auditory Serial Addition Test (PASAT) scores, partly 

because experience with the test alleviates frustration and 

anxiety, which have negative effects on scores.57 With this in 

mind, all participants received a standardized and thorough 

explanation of the task adapted from the Gronwall version of 

PASAT instructions,58 including an out-of-scanner 8-minute 

PVSAT training session, a set up identical to the fMRI run, 

but with 12 blocks of 15 numbers, and resting blocks only 

lasting 10 seconds. The training session paused at 33% and 

66% completion, and started again when subjects decided 

they were ready to continue. The subjects also trained in the 

scanner before fMRI scanning commenced.

fMRI
Scanning was performed on a 3T Siemens Trio scanner with 

a 12-channel head matrix coil (Siemens AG, Erlangen, Ger-

many). Foam pads were used to minimize head motion. T2* 

weighted, BOLD sensitive images were acquired using an 

echo-planar imaging pulse sequence (repetition time 3,000 ms, 

echo time 35  ms, field of view 220  mm, slice thickness 

=2.8 mm, slice number =41, in-plane resolution 2.8×2.8 mm). 

Each functional run contained either 111 (n-back) or 152 

volumes (PVSAT), with slices positioned parallel to the plane 

through the anterior and posterior commissures. For anatomical 

reference, one T1 weighted 3D volume was acquired (2,300 ms  

repetition time, 2.88 ms echo time, 900 ms inversion time, 

9° flip angle, 526 mm field of view, 160 slices, 1.2 mm slice 

thickness, 1.0×1.0 mm in-plane resolution).

Functional image analysis
Imaging data preprocessing and analysis were performed 

with FSL 4 (FMRIB Software Library; Analysis Group, 

FMRIB, Oxford, UK). Preprocessing involved brain extrac-

tion, motion correction (MCFLIRT), interleaved slice time 

correction, spatial smoothing (FWHM 6.0 mm), intensity 

normalization, and high-pass temporal filtering (cut-off 

90 seconds). Nonlinear coregistration was performed to the 

1 mm Montreal Neurological Institute (MNI) template with 

a warp resolution of 10 mm. For each paradigm, absolute and 

relative displacements were calculated for all participants.

Individual runs were analyzed with an uncorrected statis-

tical threshold of P,0.05 in the first level. Intra-individual 

contrasts in the second level (2-back . 0-back, PVSAT . 

0-back, PVSAT . 2-back) were analyzed with fixed effects 

analysis and an uncorrected statistical threshold of P,0.05. 

Between-subject differences were first investigated with 

a threshold of P,0.005 uncorrected and cluster size .20 

voxels, which is equivalent to a false discovery rate (FDR) of 

q,0.05 and suggested for use in fMRI studies with smaller 

samples.59 Group differences were subsequently assessed 

with a mixed effects analysis (FLAME1) with pain, depres-

sion, and sleep scores as regressors (see Group differences on 

BOLD activations and impact of level of pain, depression, and 

sleep). These analyses were also subsequently thresholded 

with a cluster-corrected Z threshold of Z.3.0 and P,0.05. 

Stricter statistical thresholds were employed to enable bet-

ter specification of the locations of activation differences 

between groups for the different contrasts.

It has been shown that CP,60,61 BDI depression score,62 

and sleep deprivation25,29,63,64 can affect cerebral blood flow 

and/or the BOLD response. BOLD activity in the CP group 

could thus be significantly affected by level of pain, depres-

sion, and/or sleep problems, which could mask or increase 

group differences in brain activation between the CP and HC 

groups. To unpack the possible independent contributions of 

pain, depression, and sleep on brain activity during working 

memory tasks between the CP and HC group, we combined 

the three self-report measures (NRS rating, BDI score, and 

PSQI score), which were uncorrelated (“Results” section), 

as regressors in a common general linear model. Analyses 

were run one time for each regressor separately, each time 

with the two other regressors orthogonalized on the regres-

sor of interest. This was done to establish the presence of a 

unique contribution to BOLD activity for pain, depression, 

and sleep scores in the CP and HC groups.

Study protocol
The experimental layout was as follows: day one: BDI and 

BPI, n-back and PVSAT; day two: PSQI and Wechsler Adult 

Intelligence Test-III. The testing was separated over 2 days 

to avoid exhausting the participants.

Statistical analysis
Questionnaires and fMRI behavioral data were analyzed 

using Excel 2004 (Microsoft Corporation, Redmond, WA, 

USA) and PASW Statistics 18 (SPSS Inc., Chicago, IL, 

USA). Results are given as mean ± standard deviation and 

range where normal distribution applied in both groups. 

Where results from one or both group were not normally 

distributed, median and range are reported. Normality was 

assessed with the Shapiro–Wilk test.

For each fMRI paradigm, correct responses and nonre-

sponses were registered as total scores. Likewise, the total 

number of errors of commissions, ie, a response when a 

nonresponse was correct, and the total number of errors of 

omission, ie, a nonresponse when a response was correct, 
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were calculated. RT was measured from the presentation of 

new stimulus to the time of first subsequent button press.

Sleep deprivation has been found to increase variability 

in RT.52,53 Since pain is associated with sleep problems we 

calculated, for each paradigm, the individual variability in RT 

over all trials where responses were given. RT variability was 

assessed with Intra-Individual Coefficient of Variation, which 

is defined as the standard deviation of individual RT divided 

by the mean individual RT, after removing all trials where 

subjects did not respond correctly.27 The RT variability was 

calculated for each fMRI paradigm and compared between 

the CP and HC groups.

Two-tailed, unpaired Student’s t-tests with P#0.05 as a 

statistical threshold for significance were used on the behav-

ioral data with normal distribution to statically evaluate the 

differences between the CP and HC groups. For measures 

that were not normally distributed (NRS, BDI, and PSQI 

among HC, and the majority of n-back and PVSAT behav-

ioral measures), Independent Mann–Whitney U tests were 

used. To compare proportions in each group, chi-square test 

was used. Cohen’s d was calculated and classified as small 

(d=0.15–0.40), medium (d=0.40–0.75), or large (d.0.75). To 

evaluate potential relationships between the three self-report 

measures (NRS, BDI, and PSQI) and also with behavior, 

a correlation matrix with bivariate Spearman correlation was 

set up in the CP group. The behavioral data obtained from the 

three fMRI paradigms (total scores) and the scores of pain, 

depression, and sleep problem questionnaires were entered 

into the analysis. Similar correlations were not performed in 

the HC group due to the limited range in scores. Correlations 

with a P,0.05, two-tailed, were considered significant.

Results
Demographics
Age, sex distribution, and years of education were not sig-

nificantly different between the groups (Table 1).

Subjects reported pain in a nonspecific pattern, both with 

regard to the localization of the painful areas and areas of 

maximal pain (Figure 1). Total BPI score was significantly 

higher in the CP group (45.0, range: 28–81) compared to 

that in the HC group (2.7, range: 0–16) (P,0.001), as was 

the average level of pain during the last 24 hours, in the CP 

group (6.0, range: 3–8) compared to that in the HC group 

(0.0, range: 0–2) (P,0.0001) (Table 1).

The CP group scored significantly higher on BDI with 

12.0 (range: 0–33), compared to the HC group scoring 

1.0 (range: 0–8) (P,0.0001) (Table 1). According to a 

CP-specific BDI cut-off, only two patients had a BDI 

Table 1 Demographics, level of pain, depression, and sleep 
quality and working memory performance in 15 chronic pain 
patients and matched healthy controls

Measure CP (n=15) HC (n=17) P-value Cohen’s 
d

Age, years 38.6±7.2 (22–49) 37.6±7.0 (23–48) 0.69 0.14

Education 4.5±2.4 (0–10) 5.1±2.5 (1–11) 0.51 0.24

NRS 6.0 (3–8) 0.0 (0–2) 0.00* 3.64a

BDI 12.0 (0–33) 1.0 (0–8) 0.00* 1.69a

PSQI 11.0 (2–16) 2.0 (0–6) 0.00* 2.39a

Letter  
number  
sequencing

8.0±2.1 (5–12) 9.4±2.4 (6–14) 0.11 0.61

Digit span  
forward

8.3±2.0 (6–12) 9.3±2.3 (6–14) 0.23 0.45

Digit span  
backward

5.4±1.3 (4–8) 6.0±1.9 (3–9) 0.32 0.37

Notes: Numbers are average scores ± standard deviation and (range) in CP patients 
with pain self-rating of $4/10 for $6 months and in HC. Numbers are mean ± 
standard deviation where both groups had a normal distribution. Only where one 
or more group was not normally distributed, the median is reported. Range is given 
in parenthesis. Statistical differences were estimated/calculated with a two-tailed 
two-sample t-test where equal variance was assumed if Levene’s test for equality 
of variances was significant with a P,0.05. For measures that were not normally 
distributed in both groups (NRS, BDI, and PSQI among HC), an independent 
Mann–Whitney U test was used. *Significance on t-test for P#0.001; alarge effect 
sizes. Education: Years of education after high school. Handedness recorded with 
Edinburgh Handedness Inventory.
Abbreviations: CP, chronic pain; HC, healthy controls; NRS, average pain last 
24 hours, rated on a numerical rating scale before scanning; BDI, Beck Depression 
Inventory II score; PSQI, Pittsburgh Sleep Quality Index score.

Patients reporting pain

1 2 3 4 5

Figure 1 Body map over pain location in CP group.
Notes: Colored areas correspond to the areas where patients reported pain 
on the human figure from the Brief Pain Inventory questionnaire. Color intensity 
corresponds with number of patients that report pain in the given area, the colored 
box indicates color intensity corresponding to one patient (lightest pink) to five 
patients (darkest pink).
Abbreviation: CP, chronic pain.
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score that indicated they were likely clinically depressed.8 

Three CP patients were on selective serotonin reuptake 

inhibitors.

The CP group had a significantly higher PSQI score of 11.0 

(range: 2–16) compared to 2.0 (range: 0–6) in the HC group 

(P,0.0001). Indeed, the CP group differed significantly from 

the HC group on all the sleep problem subscales (P-values 

between P,0.02 and P,0.001) (Table 1). Furthermore, 

86.7% in the CP group were poor sleepers, compared to 5.9% 

in the HC group (χ2[1] =21.13, P,0.001).

Working memory testing  
and fMRI task behavior
Analysis of motion correction data showed that there were 

no significant group differences in maximum absolute or 

relative displacement during scanning between the CP and 

HC groups, and also no large effect sizes.

There were no significant group differences on the neurop-

sychological working memory tests Letter Number Sequenc-

ing, Digit Forward or Digit Backward, but there was a medium 

effect size (Cohen’s d=0.61) for Letter Number Sequencing 

with lower scores in the CP group (Table 1).

Working memory performance during fMRI did not 

differ with regard to number of correct responses, errors 

of commission, errors of omission, average RT or RT vari-

ability on any of the fMRI paradigms between the CP and 

HC groups, although a large effect size was evident for RT 

variability on the 0-back (Table 2).

There were no significant correlations between pain, 

depression, sleep, PVSAT-, and n-back scores in either group 

(CP group results shown in Table 3).

Group differences on BOLD  
activations and impact of level  
of pain, depression, and sleep
With FDR q,0.05, significant group differences were pres-

ent for the 2-back . 0-back, PVSAT . 0-back, PVSAT . 

2-back contrast without the three self-report measures as 

regressors. Differences in activations were found in all brain 

lobes for both HC . CP and HC , CP. In general, the HC 

groups had higher Z values and more extensive activations 

compared with the CP group for the 2-back and PVSAT 

versus 0-back (Table 4). When including pain, depression, 

and sleep problem scores as regressors, the number of sig-

nificantly different voxels was reduced for pain and depres-

sion, but markedly increased for sleep problems. Since the 

areas of increased activation were quite extensive, a stricter 

statistical threshold (Z.3.0, cluster P#0.05) was applied to 

Table 2 Performance on the fMRI paradigms for chronic pain patients and healthy controls

Test CP (n=15) HC (n=17) P-value Cohen’s d

0-back
 S core 60.0 (39.0–60.0) 60.0 (55–60) 0.60 0.63
  RT 521 (404–1,146) 555 (437–856) 0.71 0.40
 IC V 0.18 (0.05–0.73) 0.15 (0.09–0.26) 0.15 0.76a

 EC  0.0 (0.0–7.0) 0.0 (0.0–2.0) 0.35 0.63
 E O 0.0 (0.0–17.0) 0.0 (0.0–5.0) 0.58 0.54
2-back
 S core 54.5±3.6 (47.0–59.0) 56.4±3.0 (51.0–60.0) 0.12n 0.55
  RT 598 (478–1,311) 630 (461–1,261) 0.85 0.08
 IC V 0.26±0.12 (0.11–0.51) 0.27±0.09 (0.16–0.43) 0.88n 0.06
 EC  2.0 (0.0–5.0) 1.0 (0.0–4.0) 0.58 0.26
 E O 3.5±2.5 (0.0–8.0) 2.1±1.5 (0.0–6.0) 0.08n 0.65
PVSAT
 S core 99.9±3.7 (94.0–105.0) 100.1±3.9 (91.0–105.0) 0.89n 0.05
  RT 848 (634–1,224) 876 (615–1,377) 0.63 0.23
 IC V 0.30±0.08 (0.18–0.49) 0.27±0.07 (0.12–0.35) 0.20n 0.47
 EC  2.0 (0.0–5.0) 1.0 (0.0–5.0) 0.55 0.13
 E O 2.0 (0.0–10.0) 2.0 (0.0–9.0) 0.85 0.00

Notes: Numbers are medians and ranges in CP patients with pain self-rating of $4/10 for $6 months and their matched HC. Numbers are mean ± standard deviation where 
both groups had a normal distribution. Only where one or more group was not normally distributed, the median is reported. Range is given in parentheses. There were no 
statistical significant group differences found with the two-tailed independent sample Student’s t-test (where both variables were normally distributed, marked with n) or the 
Mann–Whitney U test (where one or more variables were not normally distributed) with significance level set to P,0.05; alarge effect sizes. Score: Subjects get 1 point when 
they correctly push or correctly refrain from pushing the response button.
Abbreviations: fMRI, functional magnetic resonance imaging; CP, chronic pain; HC, healthy controls; PVSAT, paced visual serial addition test; RT, reaction time in 
milliseconds; ICV, individual coefficient of variation for RT variability; EC, errors of commission, responding when nonresponse was correct; EO, errors of omission, 
nonresponse when response was correct.
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enable better differentiation of the activations resulting from 

the different analyses. Again, significant group differences 

were demonstrated for all three contrasts (2-back . 0-back, 

PVSAT . 0-back, PVSAT . 2-back) for HC . CP and to 

a limited extent in CP . HC. As expected, the regions with 

activation differences were similar, but the activations were 

more confined. Moreover, only sleep scores remained a sig-

nificant contributor to working memory related differences 

in brain activity between the CP and HC groups with the 

stricter statistical threshold. With sleep scores as the main 

regressor, the HC group had significantly increased activation 

compared with the CP group, both for the 2-back . 0-back 

(bilateral lateral occipital cortex, bilateral middle frontal 

gyrus, right superior frontal gyrus, bilateral paracingulate 

gyrus, frontal pole, inferior temporal gyrus, and the thalamus) 

and the PVSAT . 0-back (bilateral lateral occipital cortex, 

right middle frontal gyrus, bilateral paracingulate gyrus, 

left precentral gyrus, left supramarginal gyrus, and right 

inferior frontal gyrus). The HC group also had increased 

activation in the frontal poles, bilaterally, in the 2-back . 

PVSAT condition. In addition, PVSAT . 0-back elicited 

higher activation bilaterally in the medial frontal lobe, in 

the CP group compared to the HC group. Detailed informa-

tion on activation differences between the groups for the 

different contrasts is given in Table 5 and Figure 2. The 

sleep score related reductions in brain activation in the CP 

group compared with that in the HC group were found in all 

regions of the dorsal attention and the frontoparietal control 

networks for the 2-back . 0-back contrast.65 Several areas 

in the dorsal attention and frontoparietal control networks 

also showed reduced activation in the PVSAT . 0-back 

contrast in the CP group. The regions with decreased activity 

in the CP compared with the HC group, resulted from less 

activation, not lack of activation. The increased activation 

in the CP . HC group for PVSAT . 0-back in the bilateral 

medial prefrontal gyrus, part of the default mode network,66,67 

had a different origin. It stemmed from less deactivation in 

the CP group compared to the HC group (Figure 3). The 

CP group thus showed both significantly reduced activation 

in the dorsal attention and frontoparietal control networks 

and significantly reduced deactivation in the default mode 

network compared to controls during more complex working 

memory tasks that were performed similarly at the behavioral 

level in the two groups.

Discussion
The current study demonstrated that working memory 

performance was similar in the CP group and the matched 

HC group both for the traditional working memory tests 

and during fMRI. However, this similar performance was 

accompanied by areas of both reduced brain activation in 

the dorsal attention and frontoparietal control networks and 

deactivation in the default mode network in the CP group. 

Importantly, the difference in brain activity was explained 

by sleep problems in the CP group.

The CP and HC groups performed similarly on the work-

ing memory tests from WAIS-III and on the fMRI tasks. 

A lack of significant group differences on cognitive measures 

is not uncommon in CP studies.5 There was a large effect 

size for RT variability for the simplest task, 0-back, but not 

for the 2-back and PVSAT in the CP group. Increased RT 

variability is often seen in sleep deprivation, and simple rather 

than more complex tasks are most affected at the behavioral 

level.68 It should be noted that the CP group was not compa-

rable to controls with total sleep deprivation. The CPs most 

likely suffered from partial sleep deprivation. In partial sleep 

deprivation in HC, the behavioral effects increase with time 

and the degree of deprivation, and significant performance 

effects are not observed before sleep deprivation reaches 50% 

Table 3 Correlations between working memory test, pain 
(NRS), depression (BDI), and sleep problems (PSQI) scores in 
chronic pain patients

Self-report and test scores NRS BDI PSQI

NRS 1 – –
BDI -0.041 1 –
PSQI -0.230 0.157 1
0-back score -0.346 -0.235 0.124
2-back score -0.277 0.012 0.240
PVSAT score -0.021 -0.390 0.126

Notes: All numbers are Spearman’s r between factors in a bivariate correlation 
analysis in a group of 15 CP patients with pain self-rating of $4/10 for $6 months. 
There were no significant correlations using a two-tailed analysis and a statistical 
threshold of r P,0.05.
Abbreviations: CP, chronic pain; NRS, average pain last 24 hours, rated on a 
numerical rating scale before scanning; BDI, Beck Depression Inventory II score; 
PSQI, Pittsburgh Sleep Quality Index score; PVSAT, paced visual serial addition test.

Table 4 Clusters of significantly increased or decreased activity 
in the CP versus HC groups during working memory fMRI

Contrast HC . CP HC , CP

Clusters Total no  
of voxels

Clusters Total no  
of voxels

2-back . 0-back 70 21,486 7 941

PVSAT . 0-back 39 13,755 20 5,138

PVSAT . 2-back 3 294 33 6,661

Notes: Numbers are numbers of clusters above threshold equivalent to q,0.05 
false discovery rate between a group of 15 patients with pain self-rating of $4/10 
for $6 months and 17 HC.
Abbreviations: CP, chronic pain; HC, healthy controls; fMRI, functional magnetic 
resonance imaging; PVSAT, paced visual serial addition test.
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of recommended sleep duration.69 The lack of significant 

effects or correlations between sleep scores and test scores 

are therefore not unexpected.

Importantly, despite similar performance, there were sig-

nificant group differences in brain activation during the more 

complex working memory tests. The between-group differ-

ences in the current study are quite similar to those reported 

in the only other fMRI study of working memory in chronic 

fibromyalgia patients using an n-back task.24 Furthermore, 

the increased activity in the HC compared with that in the 

CP group during the 2-back and PVSAT tasks was located 

to areas where healthy subjects generally activate on the two 

tasks.48,70–72

The main finding in this study is that sleep prob-

lems contribute independently to the differences in brain 

activation between the CP and HC group. When using pain 

or depression scores as primary regressors, the difference 

in BOLD activations between the CP and HC groups dur-

ing performance of working memory tasks became smaller 

(significant impact seen only using the less strict statistical 

threshold) and not present (with the stricter threshold). This 

is in line with the Seo et al24 study that reported a negative 

correlation between pain and depression scores and BOLD 

activity in frontoparietal regions in chronic fibromyalgia 

patients. Seo et al24 specifically noted that pain and depres-

sion could not fully explain the differences in brain activity 

between the CP patients and controls. The current study 

adds to their findings by demonstrating the importance of 

sleep for differences in brain activity between the CP and 

HC groups. Sleep problems are as frequent in CP groups 

Table 5 Localization of maxima of increased and decreased BOLD signal in patients with CP versus HC for working memory tasks 
with sleep problems as main regressor and pain and depression scores orthogonalized

Cluster 
number

Cluster peak Lateralization Cluster 
voxel size

Cluster  
Z max

Coordinates (MNI) for  
cluster peak

Symmetry  
w/cluster 
numberX (mm) Y (mm) Z (mm)

2-back . 0-back; HC . CP
  1 Lateral occipital cortex, superior division L and R 33,282 5.08 28 -68 37 5, 1*
  2 Middle frontal gyrus L 15,682 4.60 -52 30 22 3, 9
  3 Middle frontal gyrus R 14,706 5.04 40 34 14 2, 7
  4 Superior frontal gyrus R 10,028 4.97 25 10 55 –
  5 Lateral occipital cortex, superior  

division
L 7,512 4.38 -46 -40 39 1

  6 Paracingulate gyrus L and R 5,522 4.59 8 19 35 5*
  7 Frontal pole L 4,793 4.19 -32 51 14 3
  8 Inferior temporal gyrus,  

temporooccipital part
R 2,929 4.35 54 -46 -12 –

  9 Inferior frontal gyrus, pars opercularis R 2,536 4.34 54 14 9 2
  10 Thalamus L 1,735 4.13 -13 -13 -4 –

PVSAT . 0-back; HC . CP
  11 Lateral occipital cortex, superior  

division
R 12,196 4.66 28 -67 36 14, 16

  12 Middle frontal gyrus R 6,304 4.76 30 11 58 13
  13 Paracingulate gyrus L and R 2,998 4.52 -9 2 60 12, 13*
  14 Lateral occipital cortex, superior  

division
L 2,717 4.00 -16 -65 47 11

  15 Precentral gyrus L 2,039 4.25 -47 -2 37 –
  16 Supramarginal gyrus, posterior division L 2,031 4.20 -40 -46 39 11
  17 Inferior frontal gyrus R 1,767 4.29 38 33 15 –
0-back . PVSAT; HC . CP
  18 Medial frontal lobe L and R 9,313 -4.33 -4 62 19 18*

2-back . PVSAT; HC . CP
  19 Frontal pole L 3,454 4.03 -34 51 12 20
  20 Frontal pole R 2,114 4.02 37 50 3 19

Notes: Statistical threshold was set to Z$3.0 and cluster P,0.05 in all analyses. Activation was judged as symmetrical if similar activation was found above threshold in the 
contralateral hemisphere. Symmetrical activation is marked with an * if the bilateral activation is in the same cluster. The cluster peak coordinates are given in mm in an MNI 
152 coordinate space. Lateralization: R, right side; L, left side. The Harvard-Oxford cortical and subcortical structural atlases were used in deciding which anatomical region 
each maximum belonged to.
Abbreviations: BOLD, blood-oxygen-level dependent; CP, chronic pain; HC, healthy controls; PVSAT, paced visual serial addition test; MNI, Montreal Neurological 
Institute.
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referred to specialist pain services as depression, and are 

found in ∼70%.8,9 Still, controlling for sleep in studies in CP 

is not common. In a meta-analysis of 23 behavioral working 

memory studies in CP, most of the studies did not control for 

sleep, which was described as a risk of bias.5 Specifically, 

the present results demonstrated that sleep problems had 

an effect on brain activity in the CP group during complex 

working memory tasks since brain activity differences were 

increased for 2-back . 0-back and PVSAT . 0-back with 

sleep scores included in the model and pain and depression 

scores orthogonalized. Depression and pain scores, on the 

other hand, covaried similarly with brain activity for 2-back, 

PVSAT, and 0-back conditions, and with these as main 

regressors, the differences in brain activity between the HC 

and CP groups were reduced (for the sensitive statistical 

threshold) or had no additional impact (with the stricter 

statistical threshold). Increasing sleep problems were asso-

ciated primarily with decreased BOLD response in the CP 

group in the same areas that the HC group activated. Sleep 

deprivation has previously been demonstrated to reduce 

working memory related BOLD signal in parietal25–31 and 

frontal26,27,31 regions in HC, the same regions in which the 

CP group had lower activation compared with the HC group 

in the current study. Reduced activation in the frontoparietal 

areas in the CP group could be explained by reduced cerebral 

blood flow and glucose metabolism described in previous 

studies on sleep deprivation in HC.73,74 It is suggested that 

sleep deprivation causes local populations of neurons to 

collectively enter a nonrapid eye movement-sleep-like state 

and stop firing in wake subjects.75 Such “local sleep” could 

explain reduced cerebral blood flow, glucose metabolism, and 

BOLD signal. The lower activation implies a reduced ability 

in the CP group to recruit more neural resources within the 

task-positive networks with increasing sleep problems. The 

CP group also displayed lack of deactivation during work-

ing memory task performance in medial frontal lobe, part of 

the default mode network. With increasing sleep problems, 

an increasing impairment in de-engaging the default mode 

Working memory deactivation adjusted for sleep problems

HC deactivation, Z >1.5

CP deactivation, Z >1.5

HC > CP deactivation, Z >3.0

Figure 3 Brain regions with decreased activation at the whole brain level for contrast 
0-back . 2-back with sleep problem score (PSQI), and scores for depression (BDI) 
and pain (NRS) as orthogonalized covariates in the CP group alone (blue), HC group 
alone (yellow), and the significant difference between them (HC . CP; green).
Notes: The areas where there is a significant difference in activation overlaps 
closely with the regions where HC have higher deactivation than CP. Thus the 
areas where the CP group seems to have higher activation than HC are in fact 
areas where HC has higher deactivation than CP. Coordinates are given in MNI 152 
coordinate space.
Abbreviations: HC, healthy controls; CP, chronic pain; PSQI, Pittsburgh Sleep 
Quality Index score; BDI, Beck Depression Inventory II score; NRS, average pain 
last 24  hours, rated on a numerical rating scale before scanning; MNI, Montreal 
Neurological Institute.

Working memory activation adjusted for sleep problems, HC > CP

2-back > 0-back

2-back > PVSAT

PVSAT > 0-back

0-back > PVSAT

Figure 2 Between-group differences in working memory activation.
Notes: Brown corresponds to HC . CP activation in the 2-back . 0-back 
condition, red to the PVSAT . 0-back condition, green to the 0-back . PVSAT 
condition, and magenta to the 2-back > PVSAT condition. All images are thresholded 
at Z.3.0, cluster level P,0.05. There was no activation above threshold for the 
HC , CP contrast in the 2-back . 0-back condition. Coordinates are given in MNI 
152 coordinate space.
Abbreviations: HC, healthy controls; CP, chronic pain; PVSAT, paced visual serial 
addition test; MNI, Montreal Neurological Institute.
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activity was detected in the CP group. This is in line with 

previous reports in HC,28,29,76–78 and in chronic back pain 

patients during a simple attention task.79 Taken together, 

sleep problems were shown to be connected to both reduced 

activation of task-positive networks and reduced deactivation 

of the default mode network during more complex working 

memory tasks in the CP group.

The areas involved in pain processing, sometimes referred 

to as the pain neuromatrix, include the primary and second-

ary somatosensory cortex, insula, anterior cingulate cortex, 

prefrontal cortex, and thalamus.80 One hypothesis for cogni-

tive impairments in CP is the limited resource hypothesis.3,81 

Here, brain activity caused by pain interferes with concurrent 

cognitive processing relying on the same brain regions. There 

was overlap between the regions where differences in work-

ing memory activations where detected between the CP and 

HC groups and areas in the pain neuromatrix. Both prefrontal 

cortex and thalamus had significantly lower activity levels in 

the CP compared with the HC groups both in the analysis with 

sleep as main regressor and in the between-group analysis 

without regressors. However, current pain did not increase 

activation differences between the CP and HC groups in 

this study. This may be due to spontaneous pain fluctuations 

occurring during fMRI scanning in the CP group being more 

important for brain activity than average pain reported prior 

to scanning.82 Nevertheless, these results indicated that CP 

per se affected brain activation rather than the current level 

of pain. Furthermore, CP may induce changes in the pain 

neuromatrix, which in turn influences cognitive processing 

capabilities. However, since the brain activity differences 

between the CP and HC groups without and with regressors 

were mostly outside the neuromatrix, other mechanisms 

appear to be more important for the altered BOLD response 

in CP than the limited resource hypothesis.

This study has several limitations. First, the CP group had 

CP of mixed etiology, which reduces the study’s sensitivity 

to any etiology-specific effects. This design does, however, 

increase the ecological validity and generalizability of the 

study’s results to CP patients in general. Moreover, most 

participants in the CP group were on analgesics and some 

on opioids, although high-dose users were excluded to avoid 

strong confounding effects, as opioids increase cerebral blood 

flow in HC.83 Opioids are known to affect sleep patterns in 

both healthy subjects and CP84,85 and could therefore influence 

the results. Similarly, three patients were on antidepressants, 

which might be a confounder. Exclusion of all patients on 

opioids or antidepressants would have made it impossible 

to study the effect of depression, pain, and sleep in the same 

group of patients, and reduced the ecological validity of the 

results, while stopping medication would have introduced 

confounding withdrawal effects and be ethically questionable. 

Moreover, the small sample size makes it sensitive to type I 

and type II errors. Relatively strict statistical thresholds were 

used in the fMRI analysis, while all other statistical analyses 

were uncorrected for multiple testing. This limits the general-

izability of the results before more research is done. Another 

issue is PSQI as a measure of sleep. PSQI measures subjec-

tive sleep quality and habitual patterns of sleep over time, ie, 

aspects of the sleep–wake experience distinct from objective 

measures like actigraphy or polysomnography.43 The use of 

nonobjective measure of sleep problems makes it difficult to 

pinpoint the exact aspect(s) of the CPs’ sleep cycle, which 

is disturbed and possibly linked to the observed changes in 

brain activation. An objective measurement of habitual sleep 

behavior is very resource-intensive. For a first study of the 

impact of sleep on working memory performance and brain 

activity, PSQI is a reasonable compromise.

In conclusion, the current study demonstrated that sleep 

problems independently and significantly contributed to dif-

ferences in BOLD activity in the CP group compared with the 

HC group during complex working memory tasks. The degree 

of sleep problems was associated with both decreased activa-

tion and deactivation in the CP group. These results suggest 

that working memory problems in CP stem from impaired 

recruitment of task-positive networks, which normally over-

ride the effects of lack of sleep as task complexity increases. 

This could have implications for future treatment of CP.
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