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far been found from dedicated experiments with rigid cylinders; spring supported or with 
forced motions. An alternative to such experiments is to measure the response in flexible 
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Abstract 
 
 
With the development of the offshore engineering and the increasing of water depth, VIV 

(vortex induced vibrations) becomes a big challenge of the design of slender marine 

structures.  

 

In engineering field, we use some empirical VIV prediction codes like VIVAVA and Shear 7 

to predict VIV. A key issue for using the codes is to establish a data base for hydrodynamic 

coefficients. Such coefficients have so far been found from experiments. An alternative way 

to get the force coefficients is to measure the response in flexible beams in current, and get 

the local force using some mathematical calculation method, which is called inverse analysis.  

 

In this project, we analyzed 44 NDP riser model tests. First we apply inverse analysis method 

to estimate the excitation force coefficients for one test and make comparison with the 

previous results from the rigid pipe model test. And we can find out the inverse analysis 

method is quite an efficient way to calculate the force coefficients.  

 

Second we compare the results with the existing models in VIVAVA for excitation and 

damping coefficients. We can see that the model in VIVAVA can give more reasonable 

results of the damping coefficients compared with inverse analysis when the non-dimensional 

frequency is outside the excitation range. 

 

Third we calculate the fatigue damage from the varying frequency components in order to 

find the contribution from the primary cross flow frequency and higher order frequency. We 

find that the fatigue generated by higher order frequency components is as important as that 

from the primary cross flow frequency component and cannot be neglected. We can introduce 

a parameter which can be used to find out the total fatigue damage from the primary 

frequency fatigue damage. 
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Nomenclature 
 
 
Abbreviations 

 

1D                                                One dimensional 

2D                                                Two dimensional 

3D                                                Three dimensional 

CF                                                Cross flow 

CFD                                             Computational Fluid Dynamics 

IL                                                 In-line 

MIT                                              Massachusetts Institute of Technology 

NDP                                             Norwegian Deepwater Program 

NTNU                                          Norwegian University of Science and Technology 

VIV                                              Vortex Induced Vibration 

Greek Symbols 

 

                                                Strain 

                                                   Input matrix 

                                                  Curvature 

                                                   Lagrange multiplier 

                                                 Viscosity 

                                             Circular frequency 

osc                                            Oscillation frequency 

                                              Mode shape 
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                                                Mode shape matrix 

F                                               Standard deviation of error between estimated force and true  

                                                     force 

Z                                              Standard deviation of error between estimated displacement  

                                                     and true displacement 

                                                 System matrix in discrete time domain 

                                                   Phase angle between IL and CF displacement 

                                                 Kinematic viscosity 

Mathematical Symbols 

 

,                                         Time derivatives 




                                             Partial derivative 

T                                               Matrix transpose 

Roman symbols 

 

                                                  Weight factor 

f̂                                                Non-dimensional frequency 

A                                                Displacement amplitude 

C                                                Damping matrix 

aC                                               CF added mass coefficient 

eC                                               CF excitation coefficient 

D                                                Pipe diameter 

E                                                Young’s modulus 

F                                                 Hydrodynamic force 

0f                                              Cylinder eigen frequency in still water 

Vf                                              Vortex shedding frequency 

, ,Z F Xj j j                             Cost functions for measurements, external 

                                                    forces and state vectors respectively 



8 

 

K                                                Stiffness matrix 

L                                                  Pipe length 

M                                                Mass Matrix 

m                                           Mass per unit length 

Q                                               Measurement noise variance matrix 

, ,ZZ FF XXQ Q Q                         Error covariance matrix for measurements external forces and  

                                                    state vectors respectively 

R                                               Process noise covariance matrix 

Re                                               Reynolds number 

St                                               Strouhal number 

T                                                  Oscillation period 

t                                                  Time variable 

U                                               Current velocity 

rU                                             Reduced velocity 

X                                               State vector 

x                                               Displacement in IL direction 

Y                                                  Displacement vector 

y                                                  Displacement in CF direction 

Z                                               Measured vector 

z                                               Displacement obtained from measured acceleration 
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Chapter 1 

 

Introduction 

 
1.1 Background 
 
Slender marine structures are extremely important for offshore industry and oil production. 

Risers which are exposed in the waves and current will suffer from vortex induced vibrations 

(VIV), causing fast accumulation of fatigue damage. Another consequence is that in-line drag 

will be amplified. This will lead to the static displacement in current and create some problem 

for the drilling and workover risers. With the development of the offshore industry, the 

prediction of the riser response becomes more and more important. 

 

Nowadays we can use some codes and programs to predict VIV on risers. Some of the present 

VIV prediction tools available for industry practice are the empirical models, VIVAVA, 

VIVA, and SHEAR7. See figure 1.1. 
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Figure 1.1: classification of some VIV prediction models. Figure from Larsen [2] 

 

However, the flow conditions are much more complicated in the fields than in the lab. Some 

important aspects of VIV phenomenon of a flexible pipe, such as the interaction of CF and IL, 

the Reynolds number effects, and higher order force components have not been sufficiently 

modeled in the coefficient database obtained from rigid pipe experiments. 

 

1.2 Research Objectives 
 

The overall objective is to get a better understanding of the VIV of slender marine structures . 

 

Find a reliable and simpler tool to identify hydrodynamic forces coefficients from limited 

number of measurements of riser VIV experiments (accelerations and strains).  

 

After finding the hydrodynamic coefficients, we have to compare the results with the present 

code VIVAVA in order to find the difference. 

 

Then we need to do the fatigue analysis for the NDP riser model tests to calculate the 

cumulative fatigue damage and make comparison with VIVANA. 

 

1.3 Thesis Outline 
 

The project is organized as the following 7 chapters: 

 



11 

 

Chapter 2 gives an overview of the VIV phenomenon and defines some important parameters 

which are used in the thesis. Review some different ways to extract hydrodynamic force 

coefficients from experiments. 

 

Chapter 3 introduces inverse analysis method which can identify external forces form 

experimental measurements along the riser.  

 

Chapter 4 applied the inverse analysis method into two NDP flexible riser VIV experiment 

data, one for shear flow case  and the other for uniform flow case . Hydrodynamic forces 

along the riser are identified and the force coefficients are calculated. The trends of the 

obtained force coefficients are studied. The differences with existing data are compared.  

 

In chapter 5, compare the excitation coefficients from inverse analysis with the results from 

damping model in VIVAVA-the Venugopal’s damping model. 

 

In chapter 6, analyze 44 NDP tests, including 2 shear flow cases and 22 uniform flow cases, 

calculate the annual cumulative fatigue damage for different cases along the riser. Find out the 

parameters which can be used in VIVANA to get the total fatigue damage. 

 

In chapter 7, major contributions in this research work is summarized. Conclusions are drawn 

and recommendations for future work are proposed. 
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Chapter 2 

 

Theoretical Background 

 
2.1 Vortex Induced Vibration Phenomenon 
 

Vortex Shedding 

 

When the water flows towards the cylinder, the high fluid pressure close to the leading edge 

impels the flow to the cylinder as boundary layers develop on both sides of the riser. 

 

But the high pressure is not enough to force the flow to go back to the cylinder at high 

Reynolds numbers. The boundary layers separate from each side of the cylinder surface and 

become two shear layers that trail after in the flow and bound the wake. Since the inner part of 

the shear layers is in contact with the cylinder moves much more slowly than the outside 

portion of the shear layers. The shear layers roll into the wake close by, they fold on each 

other and become discrete vortices.  

 

The vortices interact with the cylinder are called vortex induced vibration, see figure 2.1. Ref. 

Blevins[3] 
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Figure 2.1 Vortex shedding. Figure from Larsen [4] 

 

The vortices shedding generate time varying pressure over the cylinder. Integrated over the 

cylinder surface and can give rise to the lift force in cross flow (CF) direction and drag force 

in in line (IL) direction. The lift force oscillates at the vortex shedding frequency of the 

cylinder; while the drag force oscillates at twice the vortex shedding frequency. 

 

Flow Regimes 

 

The parameter describing the flow around a cylinder depends on the Reynolds number Re.  

 

                                                               
Re

UD




                                                                 (2.1) 

In eq 2.1, U is the flow speed, D is the cylinder diameter,  is the kinematic viscosity. 

The detailed classification of flow regimes is shown in figure 2.2: 
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Figure 2.2: regimes of flow around a smooth, circular cylinder in steady current. Figure from 

Sumer and Fredsoe [5] 

 

Strouhal Number St 

 

The Strouhal number is based on the shedding frequency of a fixed cylinder in constant flow. 

It is proportionality constant between the vortex shedding frequency Vf and U/D. it’s defined 

as: 

 

                                                                

Vf D
St

U


                                                                (2.2) 

Strouhal number varies significantly for different Reynolds number ranges. As seen from 

Figure 2.3. 
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Figure 2.3: the dependence of St number on Re. Figure from Pantazopoulos [6] 

 

Hydrodynamic Force Coefficient Ce and Ca 

 

In VIVAVA, CF force and motion is band pass filtered around primary vortex shedding 

frequency component before calculating force coefficients. The filtered force in CF direction 

can be separated into one component in phase with the acceleration and the other component 

in phase with the velocity.  

 

The excitation coefficient is expressed as 

 

                                                     

2

0

2
lim ( ) ( )

1
( )

2

T

e

F t y t dt
TC

DLU y 






                                              (2.3) 

 

The added mass coefficient is expressed as  

 

                                                      

2 2 2

0

2
lim ( ) ( )

( )
4

T

a

F t y t dt
TC

D L y

 






                                             (2.4) 

 

Where, U is the flow velocity, L is the length and F(t) is total hydrodynamic force on the 

cylinder. 0y is the amplitude of the displacement. ( )y t and ( )y t  are the velocity and 

acceleration.   is the angular frequency. D is the external diameter of the cylinder. T is the 

time of integer number or periods. 

 

Non –Dimensional Frequency f̂  

 

The non-dimensional frequency is used as input parameters to select added mass and 

excitation coefficients in empirical models. which is defined by  



16 

 

 

                                                                 

ˆ oscf D
f

U


                                                               (2.5) 

 

Where oscf  is the oscillation frequency. 

 

 

Reduced Velocity 
0rV  

 

The reduced velocity is defined as the ratio between the path length in flow direction per 

cycle and the cylinder diameter: 

 

                                                                 
0

0

r

U
V

f D


                                                               (2.6) 

 

0f  is the natural frequency in still water, which is usually used as parameter to present 

measurements from free oscillation tests. 

 

If the oscillation frequency is used in still water, the reduced velocity is defined as  

 

                                                               

1

ˆr

osc

U
V

f D f
 

                                                       (2.7) 

 

 

 

2.2 Extracting Hydrodynamic Force coefficients 
 

2.2.1 Rigid Pipe Tests with Harmonic Motion  
 

At present, the most widely used CF coefficient database is based on the results from 

Gopalkrishnan’s test [7]. In his test, a rigid cylinder was towed at constant speed and given a 

forced harmonic motion in CF direction only. Forces got from the cylinder ends were 

measured and force coefficients were computed- excitation coefficient Ce and added mass 

coefficient Ca. Force coefficients got from his original plots were presented as contour plots 

with non-dimensional frequency f̂  and amplitude ratio 
A

D
 see Figure 2.4 
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Figure 2.4: CF force coefficient database based on Gopalkrishnan’s data. (a) excitation 

coefficient eC ; (b) added mass aC  coefficient. Reynolds number is 10000. 

 

There are Two excitation regions in the excitation coefficient contour plot which are given by 

the zero contour line in the plot. The first excitation region is between non-dimensional 

frequency ˆ=0.125~0.2f . The second excitation region is in the range of non-dimensional 

frequency ˆ=0.22~0.3f .  

 

The contours of the added mass coefficients show an increase of the coefficients when the 

ˆ 0.16f  and the force coefficient jumps from negative values to positive values. 

 

Measurements from field tests with long slender beam [8] show that VIV response is 

amplitude-modulated.  

 

Because there are inherent limitation in the 2D rigid pipe experiments and existing database: 

Some differences between prediction of CF response and fatigue damage from empirical 

programs can be found [9].  

 

Since the pipe is only able to vibrate at CF direction only, the fluid-structure interaction can 

be changed greatly when the pipe vibrates in both IL and CF direction. [10,11] 

 

 

2.2.2 Rigid Pipe Tests with Observed Orbits  
 

In order to get improved hydrodynamic force coefficient, we can use rigid cylinder 

experiment with obtained cross sectional orbits, see Fig 2.5. Non-dimensional frequency, 

amplitude, and Reynolds number were kept the same for both types of tests. The objective of 

this work is to obtain IL and CF hydrodynamic force coefficients at the primary vortex 

shedding frequency.  
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Figure 2.5: Trajectory taken from flexible beam experiment (left) is used as forced motion in 

the continuous rigid pipe test (right). Figure from Larsen [1] 

 

This method needs a lot of experiments to produce enough data for force coefficient database. 

The amount of data is far less than what we need to cover all cases of practical interest. The 

work is continued by Yin [24] and Aglen [25] . 

 

Another alternative use of these results is to find the hydrodynamic force directly from the 

shape of the recent trajectory. This approach is described by Maincon [13]. 
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2.3 Empirical Program VIVAVA 
 

 

2.3.1 Experiment Environment (NDP Test) 
 

The setup of the NDP test is given in figure 2.6: 

 

 
 

Figure 2.6: NDP high mode VIV test setup. Figure form Trim [18] 

 

In NDP riser VIV tests, a 38 m horizontally towed cylinder was tested for VIV at different 

towing speeds in uniform flow and shear flow. The riser is made of a reinforced glass fiber 

pipe of 27 mm outer diameter, with a wall thickness of 3 mm. the mass ratio of the 

instrumented riser model is approximately 1.6. The key structural parameters are summarized 

in table 2.1 

 

Table 2.1: Key Structural parameters of test pipe used in NDP experiment, taken form Trim 

[18] 

 

Outer Diameter (D) 0.027 m 

Wall thickness (t) 0.003 m 

Length (L) 38 m 

Section Modulus 

(EI) 
598.8     

 

We measure the bending strains at 24 locations along the riser in CF direction, and 

acceleration signals at 8 locations for both CF and IL direction, the test cases are seen in table 

2.2. The eigen-frequencies are given in the test report. The stiffness of the pipe is tension 

controlled.  

 

Table 2.2: Analyzed NDP high mode VIV test cases 

 

Case 

No. 

Max Current Speed 

(m/s) 
Tension (N) 
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2030 0.50 (uniform flow) 4000 

2340 0.60 (shear flow) 4000 

 

 

2.3.2 Experiment Environment (Rotating Rig Test) 
 

The tests were performed with a rotating rig in MARINTEK’s 10m deep towing tank. The test 

setup is shown in figure 2.7.  

 

 

 
 

Figure 2.7: rotating rig test setup, figure from Barrholm [19] 

 

The test rig was pinned at the floor of the tank. The upper end was attached to a force 

transducer. The slope of the riser can be adjusted so that it can be tested for different 

sheared/uniform flow profiles when the test rig rotates. The dimension of the riser is shown in 

table 2.3. 12 accelerometers were uniformed spaced along the riser to measure the response in 

cross-flow direction and 3 accelerometers were used to measure the in-line response. The 

sampling frequency was 200 Hz. The test case is summarized in table 2.4. 

 

Table 2.3: Key Structural parameters of test pipe used in rotating rig test experiment, taken 

from Lie [20] 

 

Outer Diameter (D) 0.02 m 

Wall Thickness (t) 0.0046 m 

Length (L) 11.34 m 

Section Modulus (EI) 14.3     

 

Table 2.4: Analyzed rotating rig VIV test case 

 

Case 

No. 

Current Speed at still water level 

(m/s) 

Current Speed at bottom end 

(m/s) 

Tension 

(N) 

5205 0.16 0.61 725 
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By performing the rotating rig test, we can get the hydrodynamic force coefficients, see the 

excitation coefficients contour plot in figure 2.8 

 

 
Figure 2.8: contour plot of excitation coefficients of non-dimensional amplitude and non-

dimensional frequency (rotating rig test 5205) [21] 

 

And the added mass coefficient contour plot in figure 2.9 [21] 
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Figure 2.9: contour plot of added mass coefficients with non-dimensional amplitude and non-

dimensional frequency (rotating rig test 5205) [21] 

 

 

2.4 Empirical Program VIVAVA 
 

2.4.1 Analysis Procedure 
 

VIVAVA is a commercial software which can be used to predict VIV on slender marine 

structures which subject to current based on a semi-empirical approach. The hydrodynamic 

force along the riser is calculated from an empirical force coefficient database, which is in the 

form of several curves or functions that can provide coefficients when the local response 

parameters are known. The program is based on the assumption that the response takes place 

at one or more discrete eigen-frequencies.  

 

 

2.4.2 Hydrodynamic Load Model 
 

The empirical force coefficient database used in VIVANA is based on rigid pipe forced 

motion test results, which is done by Gopalkrishnan, see Fig 2.4 

 

The CF added mass coefficient is approximated as response amplitude independently, as 

shown in Fig 2.10. Its value is found by taking the added mass values from Fig 2.4 at non-

dimensional amplitude of 0.5.  

 
Figure 2.10: Added Mass curve in VIVANA. Figure from Larsen, [22] 

 

In order to get the CF excitation force, VIVANA applies a set of parameters that defines the 

coefficient as a function of the amplitude. It simplifies the contour curves at a given non-

dimensional frequency by second order polynomials. See figure 2.11. The curve is assumed to 

have a maximum value at point B, meaning that A-B and B-C can be given as two second 

order polynomial when the three points A, B and C are defined. The parameters are given as 

functions of the frequency. 
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Figure 2.11: CF excitation coefficient curve defined from three points, figure from Larsen,[22] 

 

The numerical values for A, B and C coordinates as functions of the non-dimensional 

frequency are defined in Fig 2.12 for cross-flow VIV. This figure makes it convenient to 

update the model with new information without changing the complete set of data as shown 

on Fig 2.4. 

 

Detailed explanations can be found in the VIVANA theory manual [22]. 

 

 
Figure 2.12: Parameters to define specific excitation coefficient curves for CF response 

analysis, figure form Larsen, [22] 
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Chapter 3 

 

Force coefficient 

Identification by Inverse 

Analysis Method 

 
3.1 Introduction 
 

As we mentioned in chapter 2, direct measurement for the response of the riser is not realistic. 

It’s only possible to measure the strain or acceleration at only a few points. The inverse 

analysis method is a method that can predict the response along the whole riser based on only 

a few measurements of the discrete points. 

 

There are three ways to do the inverse analysis: the direct inverse analysis, the Kalman filter 

method and the optimal control theory method. 

 

The direct method is to estimate displacement at unmeasured locations of the riser. The 

hydrodynamic forces can be calculated at more locations along the pipe than the measured 

locations. This method has large errors and not discussed in detail in the thesis. 

 

The Kalman filter method is method is based on Karman filter. The filter models the system 

dynamics in a set of state equations. However, there is an unknown time delay between 

identified forces and response. This time delay may introduce error when calculating the force 

coefficients. As a result, this method is not discussed in detail in this report. 

 

The third method is based on optimal control theory [14]. It is chosen over the frequency 

domain. The tension is kept constant in the present study. The rotation degrees of freedom are 

eliminated by master-slave condensation [15], which can improve the matrix number.  
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The acceleration and bending strain are measured at several locations along the flexible pipe 

during VIV test. Acceleration signals are measured at a number of locations along a flexible 

pipe during VIV test. And the acceleration signal can be transformed into displacement using 

double integration or modal. Bending strain signal also can be transformed to displacement 

before applied directly. The procedure is summarized in figure 3.1 

 
 

Figure 3.1: Inverse Analysis Procedure 

 

 

 

3.2 Finite Element Beam Model 
 

The beam is a tensioned Euler beam, shown by the following equation: 

 

              

2 4

2 4
( , ) [ ( , )] ( , ) ( , ) ( , )fluidm y z t T y z t EI y z t c y z t F z t

t z t z t

    
   

                       (3.1) 

 

( , )y z t  is the beam deflection in CF direction, m is the mass of the beam per unit length 

without added mass, c is the structural damping characteristic, EI is the bending stiffness and 

T is the applied top tension. ( , )fluidF z t  is the total hydrodynamic forces, which is unknown. 

 

The model is pinned at both ends and we does not consider axial displacements. The 

rotational degrees of freedom are eliminated by using maser-slave condensation. See Eq.(3.1). 

 

                                                ( ) ( ) ( ) ( )MY t CY t KY t F t                                                (3.2) 

 

M, C and K are the mass, damping and stiffness matrix respectively, Y is the CF displacement 

vector and F is the external hydrodynamic force vector. Rayleigh damping method has been 

used with C proportional to K. 
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The dynamic equilibrium equation of a finite element beam model defines in Eq. (3.2) can 

also transformed as the state-space model: 

 

                                                 ( ) ( ) ( )X t AX t BF t                                                     (3.3) 

 

                                                      ( ) ( )TZ t G X t                                                          (3.4) 

 

Where 

 

X
Y

Y

 
  
                                                                    (3.5) 

 

1 1

0 I
A

M K M C 

 
  

                                                         (3.6) 

 

1

0
B

M 

 
  
                                                                  (3.7) 

 

 

 

3.3 Pre-Processing Measurements 
 

Direct measurements of riser displacements are not realistic. Accelerometer or strain gauges 

are normally used along the riser at limited locations to measure acceleration or strains signals, 

both accelerometer and strain gauges are used. 

 

Acceleration signals measured at m locations along a flexible pipe during VIV test will be 

transformed to obtain displacement  1 2( ), ( ),... ( )
T

mZ z t z t z t directly by double integration. 

The time varying shape of the riser can be composed as a series of mode shapes 

 1 2( ), ( ),... ( )
T

mt t t     . ( )=sin(n z/L)i t  . 

 

 
( ) ( )w t Z t                                                                 (3.8) 

 

The model weight can be calculated by a least-square method. 

 
1( )T Tw Z                                                            (3.9) 

 

The cylinder displacement at n locations  1 2( ), ( ),... ( )
T

mY y t y t y t  is shown as : 

 
( ) ( )Y t w t                                                        (3.10) 

 

Another method to reconstruct the riser VIV response is expanding the displaced shape of the 

riser at any instance of time as a spatial Fourier series in both the sine and cosine terms [16]. 
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Including additional cosine term may give more flexibility for the interpolating curve. 

Therefore, the travelling wave behavior can be better described.  

 

 

3.4 Inverse Analysis Based on Optimal Control Theory 
 

 

In order to identify a most probable external force F which creates response X close to the 

measured response Z, we minimize the cost function connected with the measurement error 

and external force and satisfying the dynamic equilibrium Eq.(3.3) 

 

Cost Functions 

 

Assuming that the measurement signal Z follows a Gaussian probability distribution about the 

true value 0Z with a standard deviation Z . The cost connected to a difference between the 

true response 0Z  and the response Z is  

 

0 0

1
( ) ( )

2

T

Z ZZj Z Z Q Z Z  
                                             (3.11) 

Where 

 

2

1
ZZ

Z

Q I




                                                        (3.12) 

 

The response vector 0Z  is related to state vector X by an observation matrix G: 

 

0( ) ( )TZ t G X t
                                                    (3.13) 

 

Replace Eq 3.13 in Eq 3.11 and leave out the constant term associated with Z: 

 

1

2

T

Z XX Xj X Q X Q X 
                                             (3.14) 

Where 

 
T

XX ZZQ G Q G
                                                     (3.15) 

 
T

X ZZQ G Q Z 
                                                   (3.16) 

The cost is: 

 

1

2

T

F FFj F Q F
                                                    (3.17) 

2

1
FF

F

Q I




                                                        (3.18) 
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Where 
FFQ  includes the inverse of covariance of the force and 

F  the standard deviation of 

the error between estimated force and the true force 

 

The total cost function is: 

 

1 1

2 2

T T

Z F XX X FFj j j X Q X Q X F Q F    
                          (3.19) 

 

Constrained Optimization 

 

By minimizing a cost function of the response and the force under constraint, the external 

force is: 

 

1 1
( )
2 2

T T

XX X FFJ X Q X Q X F Q F dt  
                               (3.20) 

 

,

min
X F
J , subjected to ( ) ( ) ( )X t AX t BF t   

 

The system’s dynamic equilibrium equation is: 

 

 
( 1) ( ) ( )X k X k F k                                                 (3.21) 

 

The Lagrangian multiplier is: 

 
1

0

( 1)[ ( 1) ( ) ( )]
n

T

k

J J k X k X k F k




       
                          (3.22) 

 

Taking the gradients of J   with respect to ( )X k , ( )F k and ( )k , the constrained optimization 

problem is solved by Franklin [23]. The external force F at time k is obtained by Eq. 3.23 

 

 

( ) ( ) ( ) ( )a bF k K k Z k K k 
                                             (3.23) 

 

For the last time step n 

 

( ) ( )XXS n Q n
                                                      (3.24) 

 

( ) ( )XT n Q n
                                                       (3.25) 

 

The gains associated with response to ( )X k  and external force ( )F k  can be calculated 

backwards for time step k down from n-1 to 1 : 

 

                                     1( ) ( ) ( 1) ( )TM k k S k k  
                                            (3.26) 
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                                      2( ) ( ) ( ) ( 1) ( )T

ZZM k Q k k S k k   
                                     (3.27) 

 

                                       
1

3 ( ) ( ) ( ) ( 1) ( )T

FFM k Q k k S k k    
                                     (3.28) 

 

                                           1( ) ( ) ( 1) ( )T

ZV k k T k Q k  
                                           (3.29) 

 

                                                  2( ) ( ) ( 1)TV k k T k  
                                                   (3.30) 

 

                                                3 1( ) ( ) ( 1)T

aK k M k M k  
                                             (3.31) 

 

                                              3 2( ) ( ) ( 1)T

bK k M k M k  
                                              (3.32) 

 

                                                 1 2( ) ( ) ( )aS k M k K k M 
                                               (3.33) 

 

                                                    1 1( ) ( ) ( )bT k M k K k V 
                                                (3.34) 

 

The gains ( )aK k  and ( )bK k  are calculated at each step k. The external force ( )F k  is 

reconstructed by Eq 3.23. The response ( )X k  is also obtained from Eq.3.21. 

 

The major difficult is the poor conditioning of the matrix and it will cause stability problem 

and the computation time is too long. This limits the number of degrees of freedom that the 

method can calculate. Therefore, master-slave condensation is used to reduce rotation degree 

of freedoms [15], which also improves the numerical condition for inversing the matrix.  

 

Regularization: Variance vs. Bias 

  

The solution of the algorithm is influenced by the relative magnitude of ZZQ  and FFQ  [17]: if 

ZZQ  is high, then the estimated response from the algorithm will follow the measurement 

closely. On the other hand, if FFQ  is high, the solution of the algorithm will only be weakly 

related to the measured ones.  

 

If the measurement data is adequate in precision, a range of ratio of ZZQ and FFQ may exist. 

The solution does not change too much over this range.  

 

 

 

 

 

 

 

 

 



30 

 

 

 

 

 

Chapter 4 

 

Application of Inverse 

Analysis on Flexible Beam 

VIV Experiments 

 
4.1 Inverse Analysis for NDP Test of Sheared Current 

Flow 
 

4.1.1 NDP Shear flow Case 2340 
 

This case is a shear current case, the left end of the riser is with 0 current velocity, while the 

right end of the riser is with current velocity 0.6 m/s. see figure 4.1: 
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Figure 4.1: current velocity of NDP test case2340 

 

In the test, we measure the bending strains at 24 locations along the riser in CF direction only, 

and the acceleration signals at 8 locations for both CF and IL direction. The strains and 

accelerations are transformed into displacements using Normal Mode Analysis method. 

 

Then, we selected only 19 points along the riser and use their displacements as input of the 

inverse analysis calculation. 

 

Before we carry on the inverse analysis we first have to decide the weighting factor in the cost 

function, see functions below: 

 

1 1

2 2

T T

Z F XX X FFj j j X Q X Q X F Q F    
                                 (4.1) 

T

XX ZZQ G Q G
                                                         (4.2) 

T

X ZZQ G Q Z 
                                                       (4.3) 

 

We use the sensitivity of weighting parameter to control the weighting of the costs of the 

measured displacement and the force. The higher parameter is, the higher ZZQ  we have, which 

means that the closer the calculated displacement data we get compared with the data from 

experiments.  

 

4.1.2 Results of Different Sensitivity of Weighting Parameters 
 

In order to find the influence of different parameters on the displacements, we select five 

different parameters to make a comparison: 

 

We choose Parameter= 6, 7,8,9,10,15 separately. 
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From the tests, we can find that the displacements of the inverse analysis highly depend on the 

parameter. We select the midpoint of the riser and plot the displacement of the midpoint with 

time. See figure 4.2: 

 

 
Figure 4.2: midpoint displacements of the riser for parameter=6, 7,8,9,10,15 and displacement 

measured 

 

We can see from the figure, the higher parameter we use, the closer the displacement from 

inverse analysis to the displacement we got from experiments, which means with the 

increasing of parameter, the contribution of the force is increasing, which ‘forced’ the riser to 

behave exactly as it did in the experiment, normally it will make the force lager than true 

value.  

 

Next, we can identify excitation coefficients and added mass coefficients for different 

parameters, using equation 4.4 and 4.5: 

 

                                          

2

0

2
lim ( ) ( )

1
( )

2

T

e

F t y t dt
TC

DLU y 






                                                (4.4) 

 

                                         

2 2 2

0

2
lim ( ) ( )

( )
4

T

a

F t y t dt
TC

D L y

 






                                                 (4.5) 

 

We can get the excitation coefficient Ce and added mass coefficients Ca for these 19 points, 

plot them with riser length, see figure 4.3: 
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Figure 4.3: excitation coefficients along the riser for parameter=6, 7,8,9,10,15 

 

 

We can see that when close to the left endpoint of the riser, the excitation coefficient is very 

unstable, that’s basically because the velocity of the vibration close the left endpoint is very 

small (close to zero), even a small disturbance will cause large difference to the result. 

 

To see the detail of the Ce for different parameter long the riser, we select the data from the 

riser length 15m to 38m in order to get rid of the influence of the small velocity, see figure 4.4: 

 
Figure 4.4: excitation coefficients along the riser (from 15m to 38m) for parameter=6, 

7,8,9,10,15 

 

And we can see with the increasing of the parameter, the excitation coefficient is also 

increased, this is because that as we discussed above, when increase the parameter, and the 
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estimated response from the inverse analysis will tend to follow the measurement closely. 

This may leads to the structure into the noisy measurements. And for parameter=6 and 

parameter=7, the excitation coefficients are quite small and unstable, which is not a good 

estimate, and for parameter=8, the estimated parameter have large difference compared with 

parameter= 9, this is not a good estimate as well. While parameter=10, it has little difference 

with parameter=15, which means the coefficient is quite stable. 

 

Similarly, we check the added mass coefficient, see figure 4.5: 

 
Figure 4.5: excitation coefficients along the riser for parameter=6, 7,8,9,10,15 

 

We can find it has the same trend with the excitation coefficient. When we increase parameter, 

the added mass coefficient is also increased and the amplitude of Ca close to the right side is 

large is mainly because that the acceleration of the riser is close to zero, which means that it’s 

easy to be affected by very small change. And when parameter=6, 7 and 8, the added mass 

coefficient are not small and unstable. While parameter=10 is better. 

 

Next we will see the relationship of the force got from inverse analysis at the midpoint of the 

riser with time, see figure 4.6: 
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Figure 4.6: lateral force from inverse analysis for the midpoint of the riser with parameter=6, 

7,8,9,10,15 

 

We can see that at the beginning of the time interval, because the towing is just started, the 

velocity is quite small, which means that the towing force is very unstable and will give 

unrealistic values. We chose from time interval 0.4s to 7s to get rid of the large uncertainty. 

See the figure 4.7: 

 
Figure 4.7: lateral force from inverse analysis for the midpoint of the riser with parameter=6, 

7,8,9,10,15 from time 0.4s to 7s 

 

We can see it clearly, as we expected, the force estimated by inverse analysis for small 

parameter is also smaller than the force estimated by large parameter as has already been 

explained. For parameter=6, 7, 8, the force estimated are also unrealistically small and 

unstable. For parameter=10, the force we estimated is quite stable. 
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In conclusion, we assume parameter=10 is the most correct value. 

 

4.2.3 Calculation of Excitation and Added Mass Coefficients along the Riser 
 

In the shear flow analysis, we can plot the relationship between excitation coefficient Ce and 

non-dimensional amplitude A/D, since we choose parameter=10 as the most correct one. We 

can divide the riser into more elements, to make the plot smoother in order to see the detail to 

the excitation parameter along the riser. Here we choose 90 points along the riser.  See figure 

4.8: 

 

 
Figure 4.8: excitation coefficients and non-dimensional amplitude along the riser for 

parameter=10 

 

Zoom in detail from riser length 15m to 38m, see figure 4.9: 
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Figure 4.9: excitation coefficients and non-dimensional amplitude along the riser for 

parameter=10 from 15m to 38m 

 

4.2.4 Contour Plot of Excitation and Added Mass Coefficients 

 

Then we can get the contour plot of the excitation coefficient with A/D and non-dimensional 

frequency
f̂

. As we have 90 points, the contour plot is quite smooth. In order to get rid of the 

unstable points of Ce near the left end side of the riser, we just use the last 80 points. See 

figure 4.10 below, the black dots in the figure represents the estimated force coefficients from 

inverse analysis. The contours are interpolated from the data points. The contours have 

limited accuracy due to the large variation of data density and they are also incomplete since 

the data points cannot cover the whole amplitude ratio and non-dimensional frequency space. 
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Figure 4.10: contour plot of excitation coefficients of non-dimensional amplitude and non-

dimensional frequency, parameter=10 

 

Compare the result with the inverse analysis results for rotating rig test 5205 [21], see figure 2. 

8 in chapter 2. We can see that for the NDP high mode test, there are two excitation ranges. 

The first excitation region is from f̂ =0.12 to 0.16 and the second one is from f̂ =0.17 to 0.31. 

There is a valley with negative excitation coefficient around f̂ =0.16. When f̂ =0.13 there is 

a peak value excitation coefficient of about 1.0 is observed with amplitude ratio of about 0.62. 

When f̂ =0.2 there is another peak value about 1.5 with the maximum amplitude ratio of 

about 0.6. 

 

While for the rotating rig test, we see that there are two excitation regions. The first region 

ranges from non-dimensional frequency f̂ =0.12 to f̂ =0.22. There is a valley as well with 

negative excitation around f̂ =0.16. Significantly high excitation coefficient with a value of 

1.4 is observed at f̂ =0.14 with amplitude ratio of 0.5. The highest positive excitation 

coefficient is 1.5 at f̂ =0.19 and the corresponding amplitude ratio is around 0.45. The second 

excitation region seems to range from f̂ =0.25 to f̂ =0.31. The largest excitation coefficient 

value at f̂ =0.28 is considered less accurate due to small response amplitude. 

 

Using the same method, we can plot the added mass coefficient with A/D along the riser, see 

figure 4.11 below: 

 
Figure 4.11: added mass coefficients and non-dimensional amplitude along the riser for 

parameter=10 

 

Make the contour plot of added mass coefficient, see figure 4.12: 
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Figure 4.12: contour plot of added mass coefficients with non-dimensional amplitude and 

non-dimensional frequency, parameter=10 

 

Compare the result with the results from rotating rig test 5205, see figure 2.9 in chapter 2. We 

see that for the NDP high mode test 2340, the added mass coefficients for A/D<0.4 is very 

large, which is unrealistic, and this is basically because of the small amplitude of acceleration 

when A/D is small, since Ca is high for small displacement amplitude and with small 

amplitude, there is large uncertainty as well. As a result, we neglected the data for A/D<0.4. 

Then we can see that when f̂ =0.17, there is a peak value of Ca about 2.2 with non-

dimensional amplitude 0.52. the value of Ca fits quite well with the result of rotating rig test, 

while the non-dimensional amplitude is different, because for the rotating rig test, the peak 

value of Ca will happen when A/D=0.4. But the trend seems similar. 

 

See from the results, even for the different experiments, the contour plot we get show similar 

trends. Which means when we consider the CF direction response only, we can use the non-

dimensional frequency f̂ and non-dimensional amplitude A/D as a function of excitation and 

added mass coefficients. And the inverse analysis method seems to give quite reasonable 

results.  
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4.2 Inverse Analysis for NDP High Mode Tests of Uniform 

Current Flow  
 

4.2.1 NDP High Mode Test 2030 
 

This case is a uniform current case, the current velocity along the riser is constant, 0.5m/s. see 

figure 4.13: 

 
Figure 4.13: current velocity of the Test 2030 

 

Then, we selected 19 points along the riser and take their displacement as input of the inverse 

analysis. 

 

4.2.2 Results of Different weighting parameters 
 

Before we carry out the inverse analysis we first have to decide the weighting factor in the 

cost function, we use the similar with mode test 2340. We select five different parameters: 

 

Parameter= 6, 7,8,9,10,15 separately. 

 

We find the same trend for test 2030. We select the midpoint of the riser and plot the 

displacement of the point with time. Compare the displacement of different parameters with 

the value from the measurement. See figure 4.14 below: 
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Figure 4.14: midpoint displacements of the riser for parameter=6, 7,8,9,10,15 and 

displacement measured of NDP test 2030 

 

As we can see from the results, there are similar results with NDP test 2345, but there are 

difference when parameter is small (parameter=6), the displacement estimated by inverse 

analysis is larger than the experiment value. Basically speaking, the larger the parameter is, 

the closer the displacement by inverse analysis to the displacement measured. 

 

Next, identify excitation coefficients and added mass coefficients for different parameter, see 

figure 4.15: 

 

 

 

 
Figure 4.15: excitation coefficients along the riser for parameter=6, 7,8,9,10,15  
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We can find that when parameter is smaller than 8, the plot is very unstable, which means the 

Ce varies very much with parameter. The same phenomenon can be found from the Ca plot. 

See figure 4.16: 

 

 
Figure 4.16: added mass coefficients along the riser for parameter=6, 7,8,9,10,15  

 

Then we will see the relationship of the force got from inverse analysis at the midpoint of the 

riser with time, see figure 4.17: 

 
Figure 4.17: lateral force from inverse analysis for the midpoint of the riser with parameter=6, 

7,8,9,10,15 

 

We can see that at the beginning of the time interval, the force is very unstable, then we select 

from the 0.4 time as starting point, see the figure 4.18: 
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Figure 4.18: lateral force from inverse analysis for the midpoint of the riser with parameter=6, 

7,8,9,10,15 between 0.4s and 12s 

 

We can see it clearly, as we estimated, the force by small parameter is smaller than the force 

by large parameter. But this is not always correct, because when parameter=7, the force 

estimated is sometimes large than parameter=15. In conclusion, we assume parameter=10 is 

the most correct one. 

 

4.2.3 Calculation of Excitation and Added Mass Coefficients along the Riser 

 
In the uniform flow analysis, we can plot the relationship between excitation coefficient Ce 

and non-dimensional amplitude A/D, since we choose parameter=10 as the most correct one. 

Then we can divide the riser into more elements, to make the plot smoother. See figure 4.19 

below: 
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Figure 4.19: excitation coefficient and non-dimensional amplitude along the riser length 

 

If we use A/D as x-axis and Ce as y-axis, we can see figure 4.20: 

 
Figure 4.20: relationship between excitation and non-dimensional amplitude 

 

When A/D is small, there will be large uncertainty with Ce, as a result, we neglect the points 

when A/D is smaller than 0.2, plot, see figure 4.21: 
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Figure 4.21: relationship between excitation and non-dimensional amplitude for A/D>0.2 

 

This figure does not fit very well with the three point figure, see figure 4.22: 

 

 
Figure 4.22: CF excitation coefficient curve defined from three points, figure from Larsen,[22] 

 

Figure 4.22 is the built-in model in VIVAVA, it applies a set of parameters that defines the 

coefficient as a function of the amplitude. It simplifies the contour curves at a given non-

dimensional frequency by second order polynomials. The curve is assumed to have a 

maximum value (horizontal tangent) at B, meaning that AB and BC can be given as two 

second order polynomial when the three points A, B and C are defined. This figure does not 

fit very well with the three point figure, this must be the effect of interaction between in –line 

vibration and cross-flow vibration, the phase angle between CF and IL vibration. During this 

analysis, we just focus on the CF response and neglect the IL response. As a result, the phase 

angle will take effect. 
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Then we plot the figure of added mass coefficient and non-dimensional amplitude along the 

riser, see figure 4. 23 below: 

 

 
Figure 4.23: added mass coefficient and non-dimensional amplitude along the riser length 

 

We can see at the length of 7m, the Ca has a deep drop from 2.5 to -1.5, that’s because that at 

this point, the vibration amplitude of the riser is very small, almost zero, so even a small 

disturbance may cause large difference. As a result, we should neglect the data which is too 

low for the corresponding vibration amplitude. 

 

 

4.3 Summary 

 
In this chapter, we use inverse analysis to calculate the force coefficients for shear flow case 

and uniform case separately. For the shear flow case, we made the contour plots and make 

comparison with the results from the rotating rig test. For uniform flow cases we compare the 

results with the model in VIVANA: 

 

We also tried different weighting parameters in the cost function to see the influence on the 

force coefficients we found the higher the parameter ,the closer the results from the invers 

analysis to the measured results. 
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Chapter 5 

 

Comparison of Excitation 

Coefficients 

 
5.1 The Venugopal’s Damping Model 
 

As we have already known, the inverse analysis can give us quite good results within the 

excitation range of the riser, while outside the excitation range, especially in the low reduced 

velocity range (close to the left end side of the riser). The results are quite unrealistically low 

(see figure 4.8), as we explained, it’s because of the low velocity in this range, and small 

disturbances can cause large uncertainty. In VIVAVA, there is a damping model which is 

used to calculate the excitation coefficients in the damping range-the Venugopal’s damping 

model. We should make comparison with the results from inverse analysis and the results 

from the damping model. 

 

 

5.1.1 Dimensional Damping Coefficients.  
 

 

As we said, the riser may have different excitation and damping regions depending on the 

actual excitation frequency, the cross-section properties and local flow velocity. [26] 

 

The dynamic equilibrium equation for a single degree of freedom system is shown below: 

 

                                                      vmx cx kx F  
                                                    (5.1) 

If vF  is a single harmonic force, then the equation can be written as: 

 

                    
( ) ( ) 0str fm am x c c x kx    

                                        (5.2) 
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where am  is the added mass and fc  is the excitation force. If fc is negative, it’s exciting the 

system (putting energy into the system). 

 

Venugopal proposed three damping expressions for still water, low reduced velocity and high 

reduced velocity separately.  The reduced velocity is give below: 

 

                                          

2
R

U
U

D






                                                         (5.3) 

 

Where U is the incident velocity, D  is the diameter, and   is the frequency of cross-flow 

oscillation. 

 

The damping force coefficients on a cylinder section with diameter D , oscillating with cross-

flow amplitude of 0x , frequency  , in a fluid with density  , viscosity  , and incident 

velocity U  is given  as: 

 

Damping in Still Water: 

 

                                          

22

02 2

2 Re
sw sw

xD
c k

D


   
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                                             (5.4) 

Where 

                                            
2Re /D  

                                                   (5.5) 

 

The first part of eq 5.4 corresponds to the skin friction according to Stoke’s law. The second 

part is the pressure-dominated force. The factor swk is a value found from curve fitting to be 

0.25. 

 

Low Reduced Velocity Damping: 

 

 

                                        1 sw vlc c DUC 
                                                 (5.6) 

The damping is increasing linearly with respect to the incident flow velocity. The coefficient 

vlC  was found to be 0.18 bases on measurements. 

 

High Reduced Velocity Damping 

 

                                         

2

2 vh

U
c C




                                                     (5.7) 

This coefficient is independent of the amplitude ratio. The coefficient vhC  was found to be 0.2 

based on the measurement. 

 

5.1.2 Non-Dimensional Damping Coefficients.  
 

The damping force model may be expressed in a non-dimensional way by transforming it into 

an equivalent lift force (with negative lift coefficient), 
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                                                 (5.8) 

By requiring the same energy loss per cycle using LF  we got the following relation between 

the dimensional force coefficient and the non-dimensional lift coefficient: 
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                                                   (5.9) 

 

And similarly, we can express in drag coefficient 

 

                                                       
0

4

3
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                                                  (5.10) 

 

We will then arrive at the following results: 

 

Damping in Still Water: 

 

Expressed using drag coefficient ,D swC  
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Low Reduced Velocity Damping: 

 

Expressed using drag coefficient ,D lvC  

 

                                                    

, ,
0

3

8
( )

r
D lv vl D sw

U
C C C

x

D

 

                                             (5.12) 

Expressed as lift coefficient ,D lvC  
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High Reduced Velocity Damping: 

 

Expressed using drag coefficient ,D hvC  
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Expressed as lift coefficient ,L hvC  

                                                             

0
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                                                   (5.15) 

 

 

5.2 Calculation for Non-Dimensional Damping Coefficients 
 

From the formulas above we know that we need the non-dimensional amplitude /A D , the 

oscillating frequency   and diameter D  and viscosity  .  

 

From the data of the NDP test Case 2340 we can find the kinematic viscosity coefficient of 

water:  

 

 

                                                        1.188 6E                                                       (5.16) 

 

Diameter of the riser:  

 

                                        0.027D m                                                        (5.17) 

 

Since the oscillation frequency along the riser is constant, we read from the experiment result 

and find the oscillating frequency is: 

 

                                                  16.755rad / s                                                    (5.18) 

 

Then 

 

                                                
8 / 3 2.67hzoscF  

                                               (5.19) 
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Since we have already calculated the non-dimensional amplitude /A D  using inverse analysis, 

see the result in figure 5.1 below: 

 
Figure 5.1:  the non-dimensional amplitude A/D along the riser 

 

Next we should plot the non-dimensional frequency f̂  along the riser. See the figure 5.2 

below: 

 

Figure 5.2:  non-dimensional frequency f̂  along the riser 

 

Since we know for the excitation range, the non-dimensional frequency ranges from 0.125 to 

0.3 and outside this range is the damping range. 
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Read from the figure 5.2 above we found that in the left part of the riser, from 0m to 15.5m 

the f̂  is above 0.3, which means the riser of the section is in the damping range. From 15.5m 

to 38m the f̂  is between 0.125 and 0.3, which is in the excitation range. As a result, from the 

section 0 to 15.5m, we should use the Venugopal’s damping model to calculate the damping 

force coefficient.  And we should use the low reduced velocity damping formulas. 

 

Then we can calculate and plot the damping coefficients based on the formulas above. By 

using Matlab, we got: 

 

                                             
2Re / 1.0281 04D e    

                                       (5.20) 

 

By using the equation 5.6, we got low reduced damping coefficients. Since the damping 

coefficients we got are dimensional, we have to found the non-dimensional coefficients in 

order to make comparison to the results we got from inverse analysis. We use the formula 

5.13.  

 

Plot the non-dimensional damping coefficients ,L lvC  along the riser, see the figure 5.3 below: 

 

 
Figure 5.3: non-dimensional damping coefficients along the riser 

 

Then we compare the non-dimensional coefficients with the result we got from inverse 

analysis. We plot the excitation coefficients with the non-dimensional damping coefficients 

together. See the figure 5.4 below: 
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Figure 5.4: the non-dimensional damping coefficients and the excitation coefficients from 

inverse analysis 

 

We zoom in to see the detail from the damping coefficients from 2 to -23 in order to see the 

details, see the figure 5.5 below: 

 
Figure 5.5: zoom in to see the details of the damping coefficients 

 

We  see from 8m to 15.5m, the excitation coefficients fits well, but from 0m to 8m the 

excitation coefficients are quite small, as we discussed before, when it’s close to the left end 

of the riser, the velocity is nearly 0, which means that small turbulence will cause large 

difference.  

 

As we can see from figure5.5, the results from Venugopal’s damping model are more realistic. 
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5.3 Summary 
 

We found the results from inverse analysis have large uncertainty when the velocity or 

acceleration is low. 

 

We used the Venugopal’s damping model which is used in VIVAVA to calculate the damping 

coefficients and find that the results are more reasonable than the inverse analysis when the 

frequency is outside the excitation range. 
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Chapter 6 

 

Fatigue Analysis for NDP 

High Mode Tests 

 
6.1 Pre-Processing of 44 NDP Test Cases  
 

6.1.1 Introduction 
 

Marine structures are in general subjected to dynamic loads. For risers, VIV gives a 

significant contribution to the fatigue damage.  

 

We have discussed the inverse analysis method which can be used to calculate the force 

coefficients in Chapter 4. Next we have to some fatigue analysis to get a more profound 

knowledge of the fatigue damage of the risers for shear flow and uniform flow separately. 

Since VIVANA use band pass to process the data, we also have to find the influence of the 

band pass on the fatigue analysis. 

 

In this paper, we choose 44 cases to analysis, which consist of 22 uniform flow cases and 22 

shear flow cases. The maximum velocity of the cases varies from 0.3m/s to 2.2m/s. See table 

6.1 below: 

 

Table 6.1: Maximum Velocity for 44 NDP Cases 

 

shear flow uniform flow 

Case No. 
Maximum Velocity U 

(m/s) 
Case No. 

Maximum Velocity U 

(m/s) 

2310 0.3 2010 0.3 

2320 0.4 2020 0.4 

2330 0.5 2030 0.5 

2340 0.6 2040 0.6 
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2350 0.7 2050 0.7 

2360 0.8 2060 0.8 

2370 0.9 2070 0.9 

2380 1 2080 1 

2390 1.1 2090 1.1 

2400 1.2 2100 1.2 

2410 1.3 2110 1.3 

2420 1.4 2120 1.4 

2430 1.5 2130 1.5 

2440 1.6 2141 1.6 

2450 1.7 2150 1.7 

2460 1.8 2160 1.8 

2470 1.9 2170 1.9 

2480 2 2182 2 

2490 2.1 2191 2.1 

2500 2.2 2201 2.2 

2510 2.3 2210 2.3 

2520 2.4 2220 2.4 

 

From the document- Specification for VIV predictions and Measurements-NDP 38m Riser 

Model [27], we can find the detailed physical properties of the riser: 

 

Table 6.2: Detailed Property of the NDP Test Riser 

 

Parameter Dimension 

Total length between pinned ends 38.00 m 

Outer diameter 27 mm 

Wall thickness of pipe 3.0 mm 

Bending stiffness, EI 598.8    

Young modulus for pipe, E 3.62 E10      

Axial stiffness, EA 5.09 E5 N 

Mass (air filled), measured 0.761kg/m 

Mass (water filled) estimated 0.933kg/m 

Mass ratio 1.62 

 

As we have already known, there are 24 strain gauges along the riser, as well as 8 

accelerometers. The distance from the left end of the riser is shown in table 6.3: 

 

Table 6.3: the Location of 24 Strain Gauges along the Riser 

 

Cross-Flow strain gauges Number Distance From Riser Top End (m) 

1 2.555 

2 3.084 

3 3.224 

4 4.155 

5 6.030 

6 8.609 



57 

 

7 8.889 

8 10.285 

9 13.676 

10 16.452 

11 16.891 

12 19.997 

13 20.193 

14 21.393 

15 22.460 

16 23.165 

17 25.153 

18 26.254 

19 28.863 

20 29.365 

21 31.191 

22 33.005 

23 36.559 

24 37.322 

 

Table 6.4: the Location of 8 Accelerometers along the Riser 

 

Cross-Flow Accelerometer Number Distance From Riser Top End (m) 

1 4.155 

2 8.609 

3 13.676 

4 16.891 

5 21.393 

6 25.153 

7 28.863 

8 33.005 

 

Since we have the strain and acceleration signals from the NDP high mode test report, we can 

make a plot for the strain and acceleration signal separately of one test case of two output 

channels and make comparison. Choose case 2380 (1.0m/s shear flow) and make the plots. 

See the figure 6.1 and 6.2: 
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Figure 6.1: Strain of Case 2380 of Strain Gauge No.9 

 
Figure 6.2: Acceleration of Case 2380 of Accelerometer No.2 

 

See from the figures above, we can see that the strain signal and the acceleration signal of the 

same case share the same time range. 

 

Before we go further we have to do some modification to the strain signals, when we check 

the strain signals from the experiments, it’s quite obvious that there are something wrong at 

the strain gauge No. 21 for case 2420, 2430, 2440, 2450, 2460, 2470. Take case 2420 for 

example we plot the time series of the strain signals at strain gauge No. 20 and No. 21 

together, see figure 6.3 below: 
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Figure 6.3: Strain of case 2420 of Strain Gauge No.20 and No.21 

 

As we have expected, we can find it obviously that there is serious problems at strain gauge 

No. 21 during these experiments, while the strain signals from strain gauge No. 20 is quite 

reasonable. There are similar mistakes for other cases. In order to remove the mistakes 

introduced by the strain gauge No. 21, we decided not to use the experimental results at strain 

gauge No. 21 from case 2420 to 2470. 

 

In order to make full use of the data and without introducing high uncertainty, we should 

define the time range we choose to use from the start time t1 to the end time t2, since the time 

range of the strain and acceleration signal for the same case are the same, we can define t1 

and t2 from strain signal only. Take shear flow case 2380 for example, we choose the strain 

signal from t1=13s to t2=54s, and neglected the data outside this range, then re-plot it, see 

figure 6.4 below: 
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Figure 6.4: Strain Selected Between t1 and t2 of Case 2380 of Strain Gauge No. 9 

 

From figure 6.4 we can see that we choose the range of the data which can represent the flow 

cases quite well and neglect the starting data and ending data which have large uncertainties. 

 

Since the velocity for each case is different, the time ranges we choose to use are different as 

well. We have to define the t1 and t2 for all the 44 cases, see table 6.5 below: 

 

Table 6.5: start time t1 and end time t2 for 44NDP cases 

 

shear flow uniform flow 

Case No. t1(s) t2(s) Case No. t1(s) t2(s) 

2310 11 170 2010 15 166 

2320 10 128 2020 16 129 

2330 10 104 2030 15 103 

2340 11 87 2040 21 96 

2350 9.2 75 2050 40 102 

2360 9.8 65 2060 14 68 

2370 10 58 2070 13 62 

2380 13 54 2080 14 57 

2390 10 50 2090 20 59 

2400 10 45 2100 16 52 

2410 11 43 2110 11 45 

2420 13 41 2120 49 79 

2430 11 39 2130 11 39 

2440 12 37 2141 10 36 

2450 12 35 2150 13 37 

2460 10 34 2160 11.5 34 

2470 11 32 2170 12.5 32 

2480 11 31 2182 12 30 

2490 13 30 2191 25 41 

2500 11 31 2201 14 32 

2510 11 29 2210 12 29 

2520 11 29 2220 12 28 

 

 

6.1.2 Band Pass Filtering of the Experiment Data 
 

 

In this thesis, we will do the fatigue analysis not only in the total frequency range, but also in 

the 1   frequency component range and the 3   frequency component range. 

 

Before that, we have to find out the dominant frequency of each case. First we must plot the 

spectrum for the strain of each case. Choose case 2380 for example, using Fourier transition 

for the strain signals of strain gauge 9 and plot the strain spectrum, see figure 6.5 below: 
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Figure 6.5: Spectrum of Strain Signal of case 2380 of Strain Gauge No.9  

 

We can see it clearly that there are two peaks of the frequencies, the first peak is higher than 

the other, the frequency of the first peak is the dominant frequency, we represent it with  , 

and for case 2380   is about 4.7 Hz. The frequency of the second peak is about 14.1 Hz, 

which is 3 times of the dominant frequency. 

 

Then we should find out if the dominant frequency for strain signals and acceleration signals 

for the same case are the same, see figure 6.6 below: 

 

 
Figure 6.6: Spectrum of Acceleration Signal of case 2380 of Accelerometer No.5 

 



62 

 

We can see it clearly that the spectrum of the strain and the acceleration are quite similar to 

each other. And the dominant frequencies for strain signal and acceleration signal are the 

same. 

 

 Then we can get the dominant frequencies for all the 44 cases by reading the strain spectrum 

only, see table 6.6 below: 

 

Table 6.6: the Dominant frequency for 44 NDP Cases 

 

shear flow uniform flow 

case w(Hz) case w(Hz) 

2310 1.5 2010 1.9 

2320 2.1 2020 2.5 

2330 2.4 2030 2.8 

2340 2.7 2040 3.4 

2350 3.4 2050 4.3 

2360 4 2060 4.5 

2370 4.2 2070 4.9 

2380 4.7 2080 5.8 

2390 5 2090 6.1 

2400 5.6 2100 6.8 

2410 6.4 2110 7.1 

2420 6.9 2120 7.4 

2430 7.1 2130 8.1 

2440 7.7 2141 8.5 

2450 7.9 2150 9.1 

2460 8.1 2160 9.3 

2470 8.5 2170 9.8 

2480 9 2182 10.5 

2490 9.4 2191 11.25 

2500 9.8 2201 11.4 

2510 10.8 2210 12 

2520 11 2220 12.5 

 

 

After defining the dominant frequency of each case, we can now do the total, 1   and 3   

band pass filtering for the data. Take case 2380 for example, by using the strain signal from 

strain gauge 9, we can filter it in three different ways.  

 

1. The total band pass filtering 

 

 We filter the data from 0.5  to 3.5 ,   is the dominant frequency which is 4.7 Hz, so the 

data we use is between 2.35 and 16.45 Hz . See figure 6.7 below: 
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Figure 6.7: Total Band Pass of Case 2380 of Strain Gauge No.9  

 

2. The 1   band pass filtering 

 

We only use the data of the first peak. Filter the data from 0.5  to 1.5 , for this case it 

means from 2.35Hz to 7.05 Hz, see figure 6.8 below: 

 
Figure 6.8: 1   Band Pass of Case 2380 of Strain Gauge No.9  

 

3. The 3  band pass filtering,  
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We only use the data of the second peak, Filter the data from 2.5  to 3.5 , for this case it 

means from 11.75Hz to 16.45 Hz, see figure 6.9 below: 

 
Figure 6.9: 3   Band Pass of Case 2380 of Strain Gauge No.9 

 

Since we have already got the dominant frequency for all the 44 cases, we can easily define 

the frequency range for the total analysis, 1   analysis and 3  analysis for each case. See 

table 6.7 and 6.8 below: 

 

Table 6.7: the Frequency Ranges for Total, 1   and 3   band pass filtering for 22 Shear 

Flow Cases 

 

shear flow 

Case 

No. 

total band pass 1w band pass 3w band pass 

0.5w(Hz) 3.5w(Hz) 0.5w(Hz) 1.5w(Hz) 2.5w(Hz) 3.5w(Hz) 

2310 0.75 5.25 0.75 2.25 3.75 5.25 

2320 1.05 7.35 1.05 3.15 5.25 7.35 

2330 1.2 8.4 1.2 3.6 6 8.4 

2340 1.35 9.45 1.35 4.05 6.75 9.45 

2350 1.7 11.9 1.7 5.1 8.5 11.9 

2360 2 14 2 6 10 14 

2370 2.1 14.7 2.1 6.3 10.5 14.7 

2380 2.35 16.45 2.35 7.05 11.75 16.45 

2390 2.5 17.5 2.5 7.5 12.5 17.5 

2400 2.8 19.6 2.8 8.4 14 19.6 

2410 3.2 22.4 3.2 9.6 16 22.4 

2420 3.45 24.15 3.45 10.35 17.25 24.15 

2430 3.55 24.85 3.55 10.65 17.75 24.85 

2440 3.85 26.95 3.85 11.55 19.25 26.95 

2450 3.95 27.65 3.95 11.85 19.75 27.65 
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2460 4.05 28.35 4.05 12.15 20.25 28.35 

2470 4.25 29.75 4.25 12.75 21.25 29.75 

2480 4.5 31.5 4.5 13.5 22.5 31.5 

2490 4.7 32.9 4.7 14.1 23.5 32.9 

2500 4.9 34.3 4.9 14.7 24.5 34.3 

2510 5.4 37.8 5.4 16.2 27 37.8 

2520 5.5 38.5 5.5 16.5 27.5 38.5 

 

Table 6.8: the Frequency Ranges for Total, 1   and 3    Band Pass for 22 Uniform Flow 

Cases 

 

uniform flow 

case 
total band pass 1w band pass 3w band pass 

0.5w(Hz) 3.5w(Hz) 0.5w(Hz) 1.5w(Hz) 2.5w(Hz) 3.5w(Hz) 

2010 0.95 6.65 0.95 2.85 4.75 6.65 

2020 1.25 8.75 1.25 3.75 6.25 8.75 

2030 1.4 9.8 1.4 4.2 7 9.8 

2040 1.7 11.9 1.7 5.1 8.5 11.9 

2050 2.15 15.05 2.15 6.45 10.75 15.05 

2060 2.25 15.75 2.25 6.75 11.25 15.75 

2070 2.45 17.15 2.45 7.35 12.25 17.15 

2080 2.9 20.3 2.9 8.7 14.5 20.3 

2090 3.05 21.35 3.05 9.15 15.25 21.35 

2100 3.4 23.8 3.4 10.2 17 23.8 

2110 3.55 24.85 3.55 10.65 17.75 24.85 

2120 3.7 25.9 3.7 11.1 18.5 25.9 

2130 4.05 28.35 4.05 12.15 20.25 28.35 

2141 4.25 29.75 4.25 12.75 21.25 29.75 

2150 4.55 31.85 4.55 13.65 22.75 31.85 

2160 4.65 32.55 4.65 13.95 23.25 32.55 

2170 4.9 34.3 4.9 14.7 24.5 34.3 

2182 5.25 36.75 5.25 15.75 26.25 36.75 

2191 5.63 39.38 5.63 16.88 28.13 39.38 

2201 5.7 39.9 5.7 17.1 28.5 39.9 

2210 6 42 6 18 30 42 

2220 6.25 43.75 6.25 18.75 31.25 43.75 

 

 

 

6.2 Calculation of Non-Dimensional Amplitude and Stress 

along the Riser 

 
6.2.1 Non-Dimensional Amplitude Analysis 
 

Before the fatigue analysis, we have to study the non-dimensional amplitude A/D along the 

riser from the experimental data of accelerometers.  This A/D is actually the root mean square 
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of the amplitude of the riser cross flow displacements, here we use A/D to represent the 

/rmsY D . Y is the cross flow displacement of the riser. 

 

Since we have 8 accelerometers along the riser, we have the acceleration signal, we can get 

the displacement by double integration. For the cross flow acceleration signals along the riser, 

we can also band pass the signal in total frequency range, the 1   band pass frequency range 

and the 3   band pass filtering frequency range. As we know, the strain signal and the 

acceleration signal share the same critical frequency , we can band pass the acceleration 

signal just like the strain signal. 

 

We can see it clearly the effect of the response amplitude with and without band pass. Select 

case 2380, we choose the acceleration signal at the 4th accelerometer, we plot the 

displacement of the accelerometer for total band pass, with 1   band pass, and with 3   

band pass together, see figure 6.10 below:  

 

 
Figure 6.10: the Displacement of Accelerometer No.4 of Case 2380 of Total, 1   and 3   

Band Pass  

 

If we zoom in, we can see the details. 
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Figure 6.11: the Displacement of Accelerometer No.4 of Case 2380 of Total, 1   and 3   

Band Pass in detail  

 

See from the figures above, we can find that there are no significant difference between total 

and 1   band pass filtering. But we can see the difference when we zoom in. After 1   

band pass filtering the higher order displacement is filtered out. While after 3   band pass 

filtering, the displacement have big differences with the total band pass filtering.   

 

It’s easy to explain because see from the spectrum plot, we can see that most of the energy is 

concentrated around the critical frequency , while around the 3   range, the energy is 

small. So when we get displacements after double integration, we can see that the amplitude 

of total displacement has no big difference with 1w amplitude but is much larger than the 

3   band pass amplitude. 

 

Then, we can plot the A/D along the riser at 8 accelerometers, plot the A/D with total, 1   

and 3   band pass together. For case 2380 and 2080, see figures 6.12 and 6.13 below: 
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Figure 6.12: Non-Dimensional Amplitude A/D of Total, 1   and 3   Band Pass of case 

2380 

 
Figure 6.13: Non-Dimensional Amplitude A/D of Total, 1   and 3   Band Pass of case 

2080 

 

See from the figures above, we can find that as we have expected, the total non-dimensional 

amplitude A/D is a little higher than that of the 1   band pass. And they are both much 

higher than the results from 3   filtering. 

 

Since we have only 8 accelerometers along the riser, the curve we got is too rough to see the 

detail. 
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6.2.2 Standard Deviation of Stress of NDP tests 
 

After the non-dimensional amplitude analysis, we go on to do the stress analysis of the riser 

 

Since we get the strain signals along the riser for the 44 cases, we can get the stress easily. 

 

We get the standard deviation of stresses along the risers. Take case 2380 and 2080 for 

example, we can get the stress signals from the strain signals of the 24 strain gauges, see 

figures 6.14 and 6.15 below: 

 
Figure 6.14: Standard Deviation of Stress of Total, 1   and 3   Band Pass along the Riser 

of Case 2380 
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Figure 6.15: Standard Deviation of Stress of Total, 1   and 3   Band Pass along the Riser 

of Case 2080 

 

 

See from figure 6.14 to 6.15, we can see that for shear flow case and uniform case, the 1   

band pass gives a large contribution to the stress along the riser, and larger than the 

contribution from  3  band pass, which is different from the annual cumulative fatigue 

damage. 

 

 

6.3 Calculation of Annual Cumulative Fatigue Damage 

along the Riser 

 
 

6.3.1 SN Curve 
 

After defining the frequency range for the cases, we can do the fatigue analysis to get the 

cumulative damage now. 

 

For the NDP 38m riser model test, we use the SN curve which is give in the Specification for 

VIV Predictions and Measurements-NDP 38m Riser Model [27]. See table 6.9 below: 

 

Table 6.9: SN Curve Used for Fatigue Analysis 

 

Parameter Value 

S-N curve 
DNV F2 single slope 

log  ̅= 11.63; m=3.0 

SCFs 1.0 everywhere 

Notes: 

1. log (N)=log  ̅-m·log(s), where 

    N is the predicted number of cycles to failure under stress range S (Mpa) 

    m is the inverse slope of the SN curve 

    log used in the notation is log to the base 10 

 

 

6.3.2 Rain Flow Counting Method 
 

Rain flow counting is designed to count reversals in accordance with the material’s stress-

strain response. The principle may be illustrated by the strain history shown in figure 6.16 and 

the corresponding stress-strain path. The individual cycle 2-3-2’ does not affect the remainder 

of the stress-strain history. Each time the hysteresis loop is closes, a cycle count is made. The 

method is illustrated for a more complicated strain history in figure 6.17.  
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Figure 6.16: Part of a strain history (a) and the stress-strain response (b) of a material being 

subjected to this history. Note that the small cycle 2-3-2’ forms a closed hysteresis loop 

within the large range 1-4, the latter being undisturbed by the interruption.[28] 

 

 
Figure 6.17: A more complicated strain history (a) and the corresponding stress-strain 

response (b). The rain flow counting method counts small cycles within large cycles similar to 

the way closed hysteresis loops are formed. The cycle count is thus reflecting the way in 

which the material responding.[28] 

 

 

 

6.3.3 Miner Summation 
 

Fatigue design of welded structures is bases on constant amplitude SN data. A marine 

structure, however, will experience a load history of a stochastic nature.  
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The development of fatigue damage under stochastic or random loading is in general termed 

cumulative damage. Miner summation has proved to be no worse than any other method, and 

much simpler.  

 

The basic assumption in the Miner summation method is that the ‘damage’ on the structure 

per load cycle is constant at a given stress range and equal to  

 

1
D

N


                                                              (6.1) 

Where N is the constant amplitude endurance at the given stress range. In a constant 

amplitude test, this leads to the following failure criterion 

 

1fD 
                                                               (6.2) 

With the failure criterion given by equation 6.2, the procedure of calculating Miner 

summation is shown in figure 6.18 below: 

 

 
Figure 6.18: the Miner summation for one particular stress block with stress range exceeding 

diagram (a) and SN curve (b).[28] 

 

 

In this thesis, we are calculating the annual cumulative damage for 44 cases. We calculate the 

annual cumulative fatigue damage at 24 strain gauges along the riser for each case.  

 

See from table 6.5, the time of each test we use ranges from t1 to t2, the annual cumulative 

fatigue damage means that we repeat this test interval for one year long and get the 

cumulative damage. 

 

6.3.4 Total, 1   and 3   Frequency Component Fatigue Damage 
 

We can now get the results of each case at the location of 24 strain gauges for total, 1w and 

3w annual cumulative fatigue damage.  
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In order to make sure my calculation method is correct, we can compare my results with the 

results from literature- 38m_Riser_Case_Data_VIVANA to see if my calculation method is 

correct.  

 

See the figures 6.19 below, we choose case 2080 and 2380 separately and plot the results 

presently with the results from the literature together, see the figures 6.19 to 6.20 below: 

 

 
Figure 6.19: Total Annual Cumulative Fatigue Damage of Case 2380 presently and from 

literature 

 

 
Figure 6.20: Total Annual Cumulative Fatigue Damage of Case 2080 presently and from 

literature 
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We can see from the results presently and the results from literature have the same trends, and 

the value is quite close to each other, and the results presently is a little lower than the results 

from literature which means that the results we got is a more conservative than the previous 

result. 

 

Using the same method, we can compare the 1   band pass annual cumulative damage 

result presently with the results from the literature. Since the 1   band pass annual 

cumulative damage results from the literature is only available for the uniform flow, we can 

compare the results for the case 2080 only, see figure 6.21 below: 

 
Figure 6.21: 1   Annual Cumulative Fatigue Damage of Case 2080 presently and from 

literature 

 

See from the figure above, the results from the S-N curve and the measurements are quite 

close to each other after 1   band pass filtering. And some of the annual cumulative damage 

at the location of the strain gauges along the riser presently are large than the results from the 

literature, while others are lower, which is different from the total damage cases. 

 

6.3.5 Difference of Total, 1   and 3   Fatigue Damage  
 

Then we can see the difference of the fatigue damage for the total analysis and after 1   

filtering and 3   filtering, we analyzed total 44 cases, see appendix A.1 and A.2. Here we 

only choose case 2380 and case 2080, we can see the difference between the annual 

cumulative fatigue damage, see figures 6.22 and 6.23 below: 
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Figure 6.22: Annual Cumulative Fatigue Damage of Case 2380 of Total, 1   and 3   

Band Pass 

 

 
Figure 6.23: Annual Cumulative Fatigue Damage of Case 2080 of Total, 1   and 3   

Band Pass 

 

See from the figures above, we can find that the fatigue damage of total fatigue damage is 

larger than the 1   and 3   annual cumulative fatigue damage, for shear flow case 2380, 

the 1   annual cumulative fatigue damage is larger than 3   annual cumulative fatigue 

damage, except when it comes close to the right end of the riser, when the velocity is small.  

While for the uniform flow case 2080, the 1   annual cumulative fatigue damage is almost 

the same with the 3   annual cumulative fatigue damage along the riser. 
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6.3.6 Ratio of Fatigue Damage of  Total, 1   and 3   Frequency 

Component 
 

In order to see it clearly, we calculate the ratio of 1   annual cumulative fatigue damage and 

3   annual cumulative fatigue damage with the total annual cumulative fatigue damage at 

the location of each stain gauge and plot the results along the riser for each case to see if there 

is any trend. 

 

See the formulas below: 

 

                                                       

1
1

tot

fat
Rat

fat





 

                                                    (6.3) 

 

                                                        

3
3

tot

fat
Rat

fat





 

                                                    (6.4) 

Then we can get 1Rat   and 3Rat  for each case.  Then plot them together, see appendix B.1 

and B.2. Neglect the data of the case 2420 to 2470 at the strain gauge No. 21. Take case 2080 

and 2380 for example: 

 
Figure 6.24: the Ratio of Annual Cumulative Fatigue Damage of Case 2380 of Total, 1   

and 3   Band Pass 
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Figure 6.25: the Ratio of Annual Cumulative Fatigue Damage of Case 2080 of Total, 1   

and 3   Band Pass 

 

See the figures 6.24 and 6.25 above, for shear flow cases, we can see that when the velocity is 

large (close to the left part of the riser), the ratio of 1   cumulative damage is dominant but 

decreasing, while the ratio of 3   annual cumulative fatigue damage is increasing, when the 

velocity is small (close to the right part of the riser), the ratio of 3   annual cumulative 

fatigue damage is dominant. 

 

 For uniform cases, things are different. The ratio of 3   annual cumulative fatigue damage 

is dominant for most part of the riser, especially in the middle part of the riser.  For some 

cases like case 2050, 3w cumulative damage is dominant almost along the whole riser. 

 

From the results we know that the 3   also gives a large contribution to the fatigue damage 

to the riser, especially for the uniform flow cases, which can’t be neglected. 

 

6.3.7 Contour plots for the Ratio of Fatigue Damage of Total, 1   and 3   

Frequency Component 
 

Since we got the results for the 1Rat   along the riser for 44 cases (appendix B.1 and B.2), we 

can then make the contour plots for shear flow cases and uniform flow cases separately. Since 

VIVANA only use the data after 1   filtering, in this part we only focus on the 1Rat   and 

make the contour plots. 

 

For shear flow cases, we use the results of the 22 cases, and make the contour plots, see the 

figure 6.26, 6.27 below: 
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Figure 6.26: Contour Plot of 1Rat   for 22 Shear Flow Cases 

 

 
Figure6.27: Contour Plot of 1Rat   for 22 Uniform flow Cases 

 

When making the contour plots for shear flow cases, we neglect the data at the No.21 strain 

gauge of the riser in order to avoid mistakes. 

 

See from the contour plots 6.26 and 6.27 above, we can find that for shear flow cases, the 

larger the current speed of the riser, the large 1Rat   is. 

 

For different cases, with the increasing of the maximum velocity of the current speed, the 

1Rat   at the same location of the riser also increases. But there are two cases which seems 
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different, for the cases with maximum velocity 2.1m/s and 1.7m/s, the increasing of the 

1Rat   along the riser are not obvious. 

 

For the uniform flow cases, the 1Rat   seems quite stable along the riser, and the 1Rat   close 

to both ends are a little larger than the 1Rat   in the middle of the riser. And with the 

increasing of the maximum velocity of different cases, the 1Rat   at the same location of the 

riser also increases. 

 

6.3.8 Average Value and Standard Deviation of the Ratio of Fatigue 

Damage of  Total, 1   and 3   Frequency Component 
 

Then we can plot the average value and standard deviation of 
1Rat   for shear flow cases and 

for uniform flow cases separately, remember to get rid of the error values of strain gauge No. 

21 from case 2420 to case 2470. See figures 6.28 to 6.29 below: 

 

 
Figure 6.28: the Average Value and Standard Deviation of 1Rat   of 22 Shear Flow Cases 
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Figure 6.29: the Average Value and Standard Deviation of 1Rat   of 22 Uniform Flow Cases 

 

See from figure 6.28 and 6.29, we can see that for shear flow cases, the v takes up about 30% 

to 70% of the total annual cumulative fatigue damage, the larger the velocity, the larger the 

1Rat  , and the standard deviation is about 40% along the riser. 

 

For uniform flow cases, we can see that the 1Rat   takes up about 20% to 35% of the total 

annual cumulative fatigue damage, and the standard deviation is about 20%.  

 

Since VIVANA uses the 1   band pass method to do the fatigue analysis, we should 

multiply a safety factor ranges from 1.43 to 3.3 for shear flow cases, and 2.86 to 5 for uniform 

cases to get the real fatigue damage. 

 

6.3.9 Influence of Different SN Curve on the Results of the Fatigue analysis 
 

In order to see the influence of different SN curves on the fatigue analysis results, here we use 

a new SN curve. See table 6.10 below: 

 

Table 6.10: New SN Curve Used for Fatigue Analysis 

 

Parameter Value 

S-N curve 
DNV F2 single slope 

log  ̅= 15.01; m=4.0 

SCFs 1.0 everywhere 

Notes: 

1. log (N)=log  ̅-m·log(s), where 

    N is the predicted number of cycles to failure under stress range S (Mpa) 

    m is the inverse slope of the SN curve 

    log used in the notation is log to the base 10 
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Using the new SN curve above, we can get a totally new result of the annual cumulative 

fatigue damage for total, 1   annual cumulative fatigue damage and 3   annual 

cumulative fatigue damage for the 44 cases.  

 

Similarly, we can calculate the can 1Rat   along the riser for all the cases. Make the new 

contour plots for the shear flow and uniform flow cases separately. See figures 6.30 and 6.31 

below:  

 

 
Figure 6.30: Contour Plot of 1Rat   of 22 Shear Flow Cases of New SN Curve 

 
 

Figure 6.31: Contour Plot of 1Rat   of 22 Uniform Flow Cases of New SN Curve 
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We can find that when we use the new SN curve, the 
1Rat  are decreasing along the risers.  

 

Then we can plot the average value and standard deviation of 1Rat   for shear flow cases and 

for uniform flow cases separately, see figures 6.32 to 6.33 below: 

 
Figure 6.32: the Average Value and Standard Deviation of 1Rat   of 22 Shear Flow Cases of 

New SN Curve 

’  

Figure 6.33: the Average Value and Standard Deviation of 1Rat   of 22 Uniform Flow Cases 

of New SN Curve 

 

We can find that the average and standard deviation values for the 1Rat  for the new SN 

curve is a little lower than that of the old SN curve 
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See from figure 5.23 to 5.26 we can find that for different SN curve, the contour plot and 

average value of 1Rat  are a little different from the previous SN curve, 1Rat  becomes 

lower, for shear flow cases, 1Rat  ranges from25% to 65%, for uniform flow cases, it ranges 

from 15% to 30% , but the trend keeps the same.  

 

Although the annual cumulative fatigue damage changes a lot, the ratio changes a little.  

 

 

 

6.4 Summary 

 
In this chapter, we analyzed 44 NDP cases including 22 uniform cases and 22 shear flow 

cases. We pre-process the data to choose the length of the signal we use and get the spectrum 

of each case to get the dominant frequency and filtered the data in three different ways, the 

total band pass filtering, the 1   band pass filtering and 3  band pass filtering.  

 

We calculated the non-dimensional amplitude and standard deviation of the stress for one 

cases, and we can see the 1   band pass filtering doesn’t change the amplitude very much, 

while the 3  band pass filtering changes a lot. 

 

Then we calculated the annual cumulative fatigue damage of the cases, we found the fatigue 

from the 3  frequency component are as important as those from 1   frequency 

component. And for the different cases, the ratio of the 1   frequency component fatigue 

also changes. Even for the same case, the ratio at different position on the riser are different. 
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Chapter 7 

 

Conclusions 

 
7.1 Summary of Present Work 
 

The present work focuses on using inverse analysis method to estimate hydrodynamic 

force/coefficient from VIV experiments of bare risers in shear/uniform flow and improves the 

understanding of CF VIV response and fatigue damage of the risers . 

 

We used the inverse analysis method based on optimal control theory, and use this method on 

the data obtained from NDP tests of sheared flow and uniform flow cases separately. For the 

sheared flow case, we made the contour plot of the excitation coefficient and added mass 

coefficient and make comparison with the results from rotating rig tests. For the uniform flow 

case, we present the relation between excitation coefficient and non-dimensional amplitude 

and make comparison with the excitation coefficient model used in VIVANA. We found by 

using the inverse analysis method we can get the force coefficients easily. And the accuracy is 

also good in the excitation frequency range. 

 

Then we compare the excitation coefficients from inverse analysis with the results from the 

damping model used in VIVANA-the Venugopal’s damping model, we found the excitation 

coefficients outside the excitation frequency range will have large uncertainties which the 

Venugopal’s damping model gave more reasonable results. 

 

Then we analyzed 44 NDP tests including shear flow cases and uniform flow cases to 

calculate the annual cumulative fatigue damage. We find the influence on the displacements 

and the standard deviation of stress along the riser for total, 1  and 3   frequency. Then 

we found the the 1   and 3   fatigue damage all contribute to the total fatigue damage a 

lot. And the we found the parameters which can be used to get the total fatigue damage from 

the 1   fatigue damage. For the different cases, the ratio of the 1   frequency component 

fatigue also changes. Even for the same case, the ratio at different position on the riser are 

different. 
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7.2 Recommendation of Future Work 
 

Improved inverse analysis algorithm: Based on the experience from the present work, the 

following recommendations are proposed for future work: 

 

In the inverse analysis part, we just use two cases, one for shear flow and the other for 

uniform flow. In the future we should use more cases. 

 

Improved modeling of the force coefficient database: From the inverse analysis of the uniform 

flow case we see that the excitation coefficient and non-dimensional amplitude don’t fit the 

three point model very well, which means the phase between IL and CF displacement may be 

introduced as an additional parameter. We can also try to identify a general force coefficient 

model based on the inverse analysis of various test data.  

 

IL force coefficients: The influence of the IL response seems to have a large influence, in the 

present work, we analyze the CF response individually. While in this project, we can find that 

in some cases, the IL response is also an important issue. In the future work, we can include 

the effect of IL response, for example, the non-dimensional IL amplitude and phase angle 

between the IL and CF response. 

 

We just analyze the ratio of the annual cumulative fatigue damage between 1  band pass 

and total band pass, in the future work, we can also calculate the ratio between 3   band 

pass and total band pass to see if there are any similar trends. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

 

 

 

 

 

Appendix A 

 

Annual Cumulative Fatigue 

Damage Results of NDP 

Tests 

 
A.1 Comparison of Annual Cumulative Fatigue Damage 

Results for Total, 1   and 3   Frequency Component for 

Shear Flow Cases 
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A.2 Comparison of Annual Cumulative Fatigue Damage 

Results for Total, 1   and 3   Frequency Component 

for Uniform Flow Cases 
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Appendix B 

 

Annual Cumulative Fatigue 

Damage Results of NDP 

Tests 

 
B.1 Comparison of Annual Cumulative Fatigue Damage 

Ratio for Total, 1   and 3   Frequency Component for 

Shear Flow Cases 
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B.2 Comparison of Annual Cumulative Fatigue Damage 

Ratio for Total, 1   and 3   Frequency Component for 

Uniform Flow Cases 
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