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Parametric roll is a phenomenon relevant both for large and small vehicles, e.g. for cruise 

vessels as well as for fishing vessels, advancing in waves. It is both an instability and a 

resonance phenomenon. It may lead to a significant amplification of the roll motion, 

oscillating at the natural frequency, and is connected with the periodic change, with the 

excitation period, of the restoring arm as the ship moves in waves. Its occurrence requires a 

certain link between the roll natural frequency and the excitation frequency and implies that 

the damping of the ship to dissipate the parametric roll energy is insufficient to avoid the 

onset of a resonance condition. The resulting roll amplitude can be rather large depending on 

the damping level and can lead to ship capsizing in the case of small vessels.  
The project thesis examined this phenomenon from theoretical point of view and selected a fishing 

vessel to carry on a preliminary numerical parameter investigation in terms of incident wave and 

vessel configuration. The latter concerned the use of cables and their effects on the parametric roll 

occurrence and features. A cable arrangement is planned to be used on an experimental investigation 

of the same vessel.  

 

Objective 

The aim of the thesis is to provide insights about the sensitivity of the parametric roll 

occurrence and features on a fishing vessel to the environmental and operational conditions. 

The occurrence of the parametric roll will be examined numerically using the 6DOF potential-

flow solver adopted during the project and also considering an available 1.5DOF method. The 

more advanced method will be used to continue the parametric study of the phenomenon 

started during the project. Possibly the investigation will be complemented by including 

experimental studies on the same fishing vessel. 

 

The work should be carried out in steps as follows: 

 

1.  Examine the state of the art in terms of numerical and physical modelling of parametric roll to 

complete the theoretical investigation performed during the project thesis.   
2.  Choose a 1.5D model to investigate the parametric roll occurrence for the fishing vessel selected 

during the project study and compare the results with those from the 6DOF potential-flow model 

applied. Use the outcomes to discuss the reliability and applicability of the simplified approach.    
3.  As done during the project, use free decay tests already available for the same fishing vessel but 

with appendages (bilge keels, skeg, rudder, propeller) to predict the roll damping. Include the 

damping correction (both as linear and as quadratic correction) into the 6DOF method and 

check the influence on the occurrence and features of the phenomenon.  
4.  An experimental campaign is planned on the same fishing vessel with a set of cables to investigate 

the occurrence of parametric roll. Perform simulations with 1.5DOF and 6DOF methods for the 

chosen experimental conditions.  If possible (a) analyze experimental data in terms of ship 

motions and (b) compare the parametric-roll occurrence against 1.5DOF, and/or 6DOF, method.   
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PREFACE

This thesis is a �nal work on my Master of science study in Maritime Technology at
the Department of Marine Technology, Norwegian University of science and Technology,
Trondheim. It is part of the Nordic Master in Maritime Engineering program, which
includes 1 year of studies in Naval Architecture at Chalmers University, Gothenburg.
The thesis is carried out in the Spring Semester of 2013. The subject is Numerical and
Experimental Investigation of Parametric Roll.
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understanding and a foundation of the theory and principles for further work covered
in this thesis. It is recommendable to read the project thesis �rst, in order to get full
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has some background knowledge to the theory presented in this report.

The 6 DoF solver as well as the 1.5DoF MatLab code were provided by Prof. Marilena
Greco and Dr. Claudio Lugni. Small changes were done in the MatLab code in order to
obtain the required data for a comparison of a numerical investigation of parametric roll.
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partment of Marine Technology, NTNU. Her continuous guidance and quick support is
most appreciated.

Trondheim, June 08, 2013
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ABSTRACT

The main purpose of this Master thesis is to provide insights about the
sensitivity of parametric roll occurrence. Parametric roll resonance may lead
to large roll angles experienced by the ship typically in longitudinal waves. It
is related to the periodic change of stability when the ship's wave encounter
frequency is approximately twice the rolling natural frequency and the damp-
ing of the ship to dissipate the parametric roll energy is not su�cient to avoid
the onset of a resonant condition. This study contains a brief description of
this physical phenomenon and presents the state of the art in terms of theo-
retical, numerical and physical modeling.

Using free decay tests, a parameter analysis is carried out, including lin-
ear and quadratic damping corrections. The in�uence of the parametric roll
occurrence relative to appendages such as skeg or bilge keels is carried out
using the 6DoF potential �ow solver. The numerical results are presented as
a function in time, showing the amplitudes in heave, roll and pitch.

A 1.5DoF model is chosen to investigate the parametric roll resonance on
a �shing vessel. The in�uence on the occurrence and features of the phe-
nomenon are analyzed using this model. Hence the reliability and applica-
bility of the simpli�ed approach is discussed. Comparing the 1.5DoF model
results with experimental results of scaled model testing of the same �shing
vessel, a validation of the model is performed, showing that the model is
consistent with the experiments.
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1 Introduction

The parametric roll of ships is a well identi�ed problem, and a lot of research has been
done to identify the occurrence and characteristics of this phenomenon. Over the last
decades many spectacular accidents happened, as for example on the APL China Con-
tainer vessel in October 1998. The ship encountered an unexpected roll angle of about
40 degrees and lost about one third of the deck containers. Investigations, including
numerical simulations and experiments, showed that parametric roll was most likely the
cause of damage. This problem can occur on all kind of vessels, including tankers, cruise
liners and �shing vessels.

In order to explain this sudden increase in roll amplitude, one has to take a closer
look into the roll stability of a vessel relative to the excitation wave. This resonance
phenomenon occurs in head and following seas when the wavelength is identical or close
to the shiplength. The stability of a ship is reduced if a wave crest is situated amidships.
The average waterplane width is signi�cantly lower than in calm water and a total loss of
stability may occur. However on a wave trough, the restoring moment is increased and
the ship rolls to the other side with an increasing roll angle with time, passing through
the vertical upright position. Now the �ared parts of the bow and stern are more deeply
immersed than in calm water and the wall-sided midship is less deep. An increase of

Figure 1.1: Change of waterline in a wave trough (a) and wave crest (b)

the metacentric height (GM) over the calm water is the result. The instantaneous,
mean waterplane is now wider than in calm water. This periodic change of the stability
(GM), leads to an ampli�cation of the roll amplitude, which in severe cases might lead
to capsizing.
This phenomenon occurs at sea states that are usually considered by designers. Clas-
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si�cation societies (e.g. DNV, American Bureau of Shipping) and other regulatories such
as IMO have therefore undertaken several activities, in order to introduce the idea that
parametrically excited roll motion is more dangerous than the well known resonance
rolling motion in beam sea.

There are many di�erent methods to prevent parametric roll. Certain parameters, such
as the roll damping and the excitation forces are relevant for parametric roll to start.
They have to drop below or exceed threshold values respectively. Consequently, one must
consider either increasing the damping or reducing the moment created by the excitation
force to prevent the problem. For this reason active and passive roll stabilization devices
can be built on. Within this master thesis, passive roll stabilization devices, such as bilge
keels and skegs, will be analyzed and compared with the roll motion of the bare hull. The
design of such devices is important as they should be over a certain 'e�ectiveness thresh-
old' to be worth the investment. An example of an active roll stabilization device would
be the U�type tank. Two properly sized wing tanks are interconnected via a crossover
duct. The resulting �uid �ow is used for creating a stabilizing moment opposing the roll
motion of the vessel.

Another way to approach this problem is to introduce a decision support system that
would inform the shipmaster of foreseen danger. If the ship speed and heading, as well
as the sea state is known, it is possible to calculate the upcoming roll motion and pre-
vent dangerous situations. This real-time calculation would however require appropriate
hardware to predict the incoming waves and immense computational power. Hence pre-
calculated data could be obtained and presented for vessels in form of polar plots for
loading condition and each sea state. As a result the shipmaster would change heading
and/or speed or simply alter the route to avoid parametric roll motion.

1.1 Outline

The work starts with the introductory chapter, chapter 1, which gives an outline and a
brief description of the basic concepts of parametric roll. Motivations are also presented.
In order to carry out any further work in any �eld, it is a necessity to be aware of the
latest advancements. Therefore, chapter 2 provides a review of the state of the art.
The methods that are currently in use as well as their limitations and applications are
discussed.

After the theory is covered, chapter 3 introduces the 1.5DoF model that has been
used to obtain the numerical results. Its functions, the analytical model as well as the
usage are outlined. The input/output �les and their structures are detailed.

Chapter 4 introduces the 6DoF potential-�ow model. The main features of the model
are presented and the mathematical background is described. Previous usage examples
of the model are presented.

18



Chapter 5 gives a full analysis of roll decay tests that were obtained from experimen-
tal results from the model tests in the basin of the institute CNR - INSEAN situated
in Rome, Italy. A detailed theory of roll damping is given. Furthermore the procedure
to obtain damping coe�cients is presented as well as the results. Lastly, an analysis of
the results for di�erent hull models (bare hull, skeg and bilge keels) using an equivalent
damping term or linear and quadratic damping coe�cients is carried out.

Chapter 6 investigates the occurrence of parametric roll using a 1.5DoF model, which
is implemented into MatLab. The same model characteristics as in chapter 5 (using dif-
ferent appendages) are analyzed. The occurrence of parametric roll is examined by
changing the incident wave properties as well as the boundary conditions for �xed-trim
or free-trim of the model.

Chapter 7 presents the experimental campaign of the �shing vessel model and gives
an overview of the outcome. These results were used to validate the 1.5DoF model.

The work is concluded with chapter 8, presenting the general conclusions and dis-
cussing possible works.
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2 State-of-the-Art

2.1 Introduction

An introduction into the theoretical modeling of parametric roll was already given in the
project thesis. However this chapter completes the investigation in terms of theory, and
examines the state -of-art in terms of numerical and physical modeling of parametric roll.

2.2 Theoretical background

As already mentioned before, parametric roll is a phenomenon that occurs in longitudinal
regular waves (head or following seas). Pitch and heave motions are the result of the
direct excitation of the wave and can therefore be described with the linear seakeeping
theory. Nevertheless for parametric roll all 6 degrees of freedom will be taken into ac-
count. Some approximations however can be done, assuming that the ship is able to keep
course, which means that sway and yaw will not change and can be left out. Similarly the
surge motion wiiÂ�ll not change, as we expect a constant speed were the ship encounters
the same wave frequency. Hence 3 motion remain, i.e. heave, roll and pitch.

The simplest mathematical model of parametric roll can be described with the single
degree of freedom motion equation in which the restoring is made nonlinear.

φ̈+ d(φ, φ̇) + ω2
0[1 + f(t)]φ = 0 (2.1)

Figure 2.1: Typical GM variation

Where φ denotes the roll angle,
d(φ, φ̇) the damping function in-
cluding the linear and quadratic
damping term, ω0 the natural
roll frequency and f(t) denotes
the nonlinear restoring coe�-
cient.

Fundamental is to understand
how the restoring arm (GZ)
is in�uenced by heave, pitch
and wave motions. Know-
ing these parameters, one can
easily calculate the hydrostatic
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stability how the GZ curve changes with di�erent Froude numbers. The
slope of the restoring arm i.e. the initial metacentric height (the slope
dGZ
dη4

of the GZ-curve at η4 = 0) is the most important. It is largest
when the wave trough is mid-ships and smallest when there is a wave crest.

Figure 2.2: Example how the GZ curve is in�uenced
by the wave

Theoretically if the wave was
stationary to the ship and there
was a crest midships, this ship
could capsize due to static ef-
fects only.

Several approximations are
possible in order to de�ne and
calculate the nonlinear restoring
coe�cient. The most simple as-
sumption is to set the nonlin-
ear restoring term as a harmonic
function of time with a certain
amplitude. As the metacentric
height GM varies due to the dif-
ferent wave's longitudinal posi-
tion, one can assume that GM is
a periodic function with period
Te. In �rst order of approxima-
tion, the variation can be mod-
eled as a single sinusoidal func-
tion with time.

GM(t) = GM(1 + δGMcos(ωet)) (2.2)

One typical example of GM variation in waves is shown on �gure (2.1). The determination
of this curve is not very simple as it depends on many quantities which are nonlinear e.g.
heave motion, pitch motion, instantaneous roll angle, instantaneous wave elevation, etc.
Inserting this in formula (2.1) one gets

φ̈+ d(φ, φ̇) + ω2
0[1 +

δGM

GM
cos(ωet)] = 0 (2.3)

Relative to the damping function a classical quadratic approximation of the damping
moment is considered as

d(φ, φ̇) = 2p1φ̇+ p2φ̇
∣∣∣φ̇∣∣∣ (2.4)

where φ̇ denotes the roll angle velocity, p1 the linear damping coe�cient and p2 the
quadratic damping coe�cient. The damping component opposes to the roll motion. It
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damps and/or dissipates the energy of the motion. In this way a large enough damping
moment could prevent the resonance.

Inserting formula (2.4) in (2.3) one gets

φ̈+ 2p1φ̇+ p2φ̇
∣∣∣φ̇∣∣∣+ ω2

0[1 +
δGM

GM
cos(ωet)] = 0 (2.5)

By setting the damping function equal to zero, one gets the Mathieu type instability
equation, which is well known in other �elds of physics. It allows to de�ne the stability
zones of a system. In order to illustrate these zones, one can use the Ince-Strutt diagram
on �gure (2.3). The unshaded areas represent instability domains with d(φ, φ̇) = 0. The

Figure 2.3: Stability diagram for the Mathieu equation

abscissa (q) in this graph represents the ratio of the excitation frequency ωe(frequency
of encounter) and the natural roll frequency ω0. The ordinate (p), represents the am-
plitude of GM variation, which is the amplitude of parametric roll excitation. With the
parameters p and q, one can easily deduce the critical conditions. The combination of√
p = ω0

ωe
= 0.5, 1.0, 1.5, 2.0, etc. with low q= δGM

GMm
yields to dangerous positions. That

means when the excitation frequency is close to twice the natural roll frequency, the sta-
bility region is reduced and even small excitation amplitudes may excite the unstable roll
motion. In this case damping was neglected. However it will have an positive in�uence
on the stability. The higher the damping, the higher q has to be for instability to occur.

2.3 Numerical modeling

2.3.1 General

In order to predict ships responses by numerical methods, one can roughly divide three
di�erent approaches which can be applied to di�erent hydrodynamic problems and type
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of vessels. For structures that are very small compared to the encountered wave length,
one can use the Morrison equation.

FM = ρCmV u̇+
1

2
CdAu |u| (2.6)

The �rst term is the inertia contribution including the inertia coe�cient, the volume of
the body and the �ow acceleration. The second term is the drag contribution which
contains the drag coe�cient, wetted surface of the body and the �ow velocity. The
assumption is that the drag force contribution and inertia force contribution are added
together linearly. However if the drag contribution is small compared to the inertia forces,
then the Froude-Krylov theory can be applied. This can therefore only be done for small
structures.

FFK = −
∫ ∫

−Sw

p~nds (2.7)

Where FFK denotes the Froude-Krylov force, Sw the wetted surface of the �oating body,
p the pressure in undisturbed waves and ~n the body's normal vector pointing into the
water. The formula expresses the product of the wetted surface of the �oating body and
the dynamic pressure acting from the waves on the body.
Yet if the wavelength has the size of the structure, then a third methodology should

be used, which is the di�raction theory. For parametric roll to occur the wavelength
has to be the same size or similar to the vessel. In other words, the main focus lies in
this theory. It is applicable for slender hull forms, such as long hulled ships but also
including �shing vessels. Considering the boundary condition, the Laplace equation is
solved using also the so called strip theory. This theory simpli�es the three-dimensionality
of the structure into a manageable form, in order to achieve quicker solutions in the
hydrodynamic calculations.

2.3.2 Strip theory

The strip theory is a method to solve a three-dimensional problem in two dimensions.
The three dimensional hydromechanical and exciting wave forces and moments on the
ship are computed by integrating the two-dimensional potential solution over the ship
length. Interactions between the cross sections are ignored for a zero-speed case. This
means that each cross section of the ship is considered to be part of an in�nitely long
cylinder. Faltinsen and Svensen [3] have discussed this method extensively and they
concluded that this method is the most successful and practical tool for calculation of
wave induced motions of the ship, at least in an early design stage of the ship.
The ship is considered to be a rigid body, �oating in the surface of an ideal �uid,

which is incompressible, homogeneous, free of surface tension, irrotational and without
viscosity. The speci�c problem of the motions of the �oating body in waves can be
linearized. Therefore only the external forces on the underwater part of the ship is
considered here and the part of the above water is neglected.
The strip theory is applicable for slender body's and less accurate predictions appear

for ships with a low length to breadth ratio. Yet experiments showed that the strip
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Figure 2.4: The hull is represented by 2D strips

theory appears to be remarkably e�ective for predicting the motions of ships with length
to breadth ratios down to about 3.0, or even sometimes lower. The strip theory is based
in the potential �ow theory which holds that viscous e�ects are neglected. This however
can deliver some major problems regarding the prediction of roll motion at resonance
frequency.
For large ship motions, as they appear in parametric rolling, the strip theory can

deliver less accurate results. The so-called "end-terms" become more important. The
strip theory is based on linearity, which means that the ship motions are supposed to be
small, relative to the cross sectional dimensions of the ship. Only hydrodynamic e�ects
on the hull below the still water are considered. If therefore a part of the ship goes out
or into the water, or green water occurs, inaccuracies can be expected.
Anyhow, taking these limitations into account, the strip theory still provides a su�-

ciently good basis for optimization studies at an early design stage. For more precise
results at a later stage, model experiments can be carried out in order to investigate for
instance the added resistance or extreme event phenomena.

2.3.3 Time domain numerical modeling of ship motions

The time domain numerical method is an iterative process where the output of the last
time step becomes the input for the next time step. Its focus lies in predicting the forces
acting on the body and the movements at prede�ned time steps. For each time step, a
new calculation is required to obtain the forces and transcribe them into motions. The
underwater part of the hull is also calculated at each time step. To date, the majority
of research has assumed that water can be considered as inviscid and incompressible and
that the �ow around the body remains irrotational. In this case the Laplace equation
(2.8) is valid everywhere in the �uid domain and the hydrodynamic forces acting on the
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body are determined as the solution to a boundary value problem.

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (2.8)

These are the fundamental assumptions of the potential theory. The standard strip
theory can be applied, considering small amplitude motions. The limitation is set due to
the underwater geometry that should not change at each time step. For large motions
that will not be the case. To overcome this problem one can calculate hydrodynamic
coe�cients and forces based on the instantaneous conditions. However this increases the
computation and modeling time.
The use of time domain analysis is not new, but since the computational power in-

creased, it has become more practical to study actual solutions and investigate the com-
putational advantages of time domain methods. Still, for linear problems at zero forward
speed, the time domain computations take more time than the conventional frequency
domain approach. More time steps are needed to obtain a few frequencies regarding
the frequency domain method. Yet with forward speed, the frequency domain function
becomes very di�cult to compute and time domain analysis can be signi�cantly faster.
It is also possible to consider a three-dimensional time domain method. Park and

Troesch [10] have investigated the stability of time stepping for di�erent two and three-
dimensional problems. The conclusions were, that the stability depends upon the geome-
try of the speci�c problem, and the integration method. Generally the three-dimensional
problems were more stable than two-dimensional problems. The results were closer to
the experimental results. However, the simplicity of the two dimensional problems should
be considered and time is a very precious factor in engineering. The reliability of strip
theory is mostly accurate enough.

2.3.4 Frequency domain numerical modeling of ship motions

For the frequency domain solution of the hydrodynamic problem, one can solve the linear
and di�raction problem by various theories. Once again strip theory can be applied.
The incoming waves and the forced motions are assumed to be harmonic to simplify the
calculations. Hence regular waves are taken in consideration. Also irregular waves can
be taken into account. This is done by the superposition principle.
For a ship with forward speed, radiation forces will appear. These forces can be split

into one that is in phase with the acceleration and one that is in phase with the velocity.
The inviscid damping force is proportional to the damping coe�cient and results from
the radiation force that is in phase with the velocity of the ship's motion. The other
term that is in phase with the acceleration should include the added mass, so that a total
equivalent mass is formed. Added mass can be de�ned as the mass of the �uid that is
accelerated by the ship's structure.
The combination of the ship's own weight with the hydrodynamic forces, result in the

restoring forces. Usually they can be linearized for simpli�cation (strip theory). The
hydrodynamic forces are calculated up to the still water surface. Small changes in the
waterplane area of the ship occur. These forces, are the excitation forces, if the ship
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is advancing with constant forward speed through a �eld of incident harmonic waves.
The ship is considered to be restrained at its mean position without doing an oscillatory
motion. One can divide the forces into two parts, which are the Froude-Krylov forces
and the di�raction forces. The latter is related to the perturbation of the incident wave
�eld due to the presence of the vessel itself and the Froude-Krylov force is related to the
incident wave �eld pressure.

Within the frequency domain analysis, it is also possible to compute three-dimensional
solutions. In this case strip theory is not applicable. This increases the computational
power drastically, since the problem becomes more complex. The main di�erence from
strip theory is, that a 3D panel method can be applied to all structures even if the body
is not considered slender.

Transfer functions

In order to �nd the response of a ship or platform in the frequency domain, one can
calculate the transfer function. Here linear theory is assumed which implies that the
motions are proportional to the wave amplitude. The transfer function gives the ratio
between the amplitude of a given motion of the ship and the wave amplitude as a function
of frequency. Moreover the transfer function can also serve as an indicator for testing a
computer program, since one can easily compare the transfer functions for a given ship
to a transfer function of a new developed program or experimental tests.
Firstly one has to �nd the steady state amplitude for the motion of interest. In this

case the roll motion, which we �nd from the particular solution. Assume that the body is
forced to oscillate in roll in calm water with the amplitude η4 and the angular frequency
ω.

η4 = η̂4e
iωt (2.9)

The roll angular velocity is then

η̇4 = −iωη̂4eiωt (2.10)

and the roll angular acceleration

η̈4 = −ω2η̂4e
iωt (2.11)

Regarding all the motions without forward speed, one can express the equation of motion
in matrix form as

η =


η2
η3
η4
η5
η6



26



The equation of motions requires also the mass matrix, which can be set up as following
(Faltinsen 2005)

Mjk =


M 0 −MzG 0 0
0 M 0 0 0

−MzG 0 I4 0 −I46
0 0 0 I5 0
0 0 −I46 0 I6


where Ij is the moment of inertia in the jthmode and Ijk is the product of inertia with
respect to the coordinate system. The added mass matrix is given as

Ajk =


A2 0 A24 0 A26

0 A3 0 A35 0
A42 0 A4 0 A46

0 A53 0 A5 0
A62 0 A64 0 A6


and damping matrix respectively according to (Salvesen er al., 1970).

Bjk =


B2 0 B24 0 B26

0 B3 0 B35 0
B42 0 B4 0 B46

0 B53 0 B5 0
B62 0 B64 0 B6


Further the matrix containing the linear restoring coe�cients is

Cjk =


0 0 0 0 0
0 C3 0 C35 0
0 0 C4 0 0
0 C53 0 C5 0
0 0 0 0 0


The last matrix is the excitation matrix which is given as

F =


F2

F3

F4

F5

F6


Now the equation of motion can be written as

(M +A)η̈ +Bη̇ + Cη = Feiωet (2.12)

where ωe denotes the encounter frequency and the forces in the matrix (2.12) are written
in complex form x+ iy. The phases of each force are taken into account by the real and
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imaginary parts.

As in equation 2.9 for the roll motion, one can write in general form, assuming once
again that all modes of motion are oscillating harmonically. The response matrix can be
written as

η = η̂eiωt (2.13)

η̇ = −iωη̂eiωt (2.14)

η̈ = −ω2η̂eiωt (2.15)

where η̂ is the complex motion amplitude. One can now insert the equations 2.13, 2.14,
2.15 in 2.12 which then becomes

−ω2
e(M +A)η̂eiωt + iωBη̂eiωt + Cη̂eiωt = Feiωt (2.16)

This equation (2.16) is a function of frequency and independent from time. One can now
write the complex response matrix as

η̂(ω) = H(ω)F (ω) (2.17)

where H(ω) is called the mechanical transfer function which is de�ned as

H(ω) = [−ω2
e(M +A) + iωeB + C]−1 (2.18)

For each mode, the �nal response amplitude is given by the absolute value of the complex
response amplitude with

ηj =
√
η2Rj + η2Ij (2.19)

where R stands for the real part,I the imaginary and j goes from 2...6. The phase angle
between the response and load can be found by the ratio of the real and imaginary part

εj = arctan
ηIj
ηRj

(2.20)

An example of a transfer function in roll for beam sea with and without forward speed
is given on �gure 2.5. One can see that for long waves the value of the transfer function
goes towards 1 and for short waves to 0. This shows that the calculations are realistic and
follow a physical behavior. For U = 0 knots, one can see that when the wave frequency
ω reaches the natural roll frequency ω0 a large roll motion occurs.

2.4 Experimental modeling

Experimental model testing of ships has a long tradition. Improved resistance perfor-
mance was the early start of the development of ship model testing. By doing so, simple
methods could give recommendation about which shape of ship gives the highest speed.
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Figure 2.5: Example of roll transfer function (Martinussen, 2011)

This idea can be transferred into many other aspects, including the stability of ships. As
physical models are intended to represent the full-scale system as good as possible, one
has to ful�ll the general modeling laws. First laws were introduced by William Froude
(1810-1897) regarding the model resistance to the actual ship resistance.
To achieve similarity in forces between the model and full scale situation the following

conditions has to be ful�lled:

Geometrical similarity de�nes, that geometrical similar structures should have the same
shape in model scale as well as full scale. That means that a constant length
characteristic must remain constant, i. e.

λ = Lf/Lm (2.21)

Where λ denotes the scale factor and Lm,Lf any dimensions of the model/full scale
structure. The requirement to equal length ratio for all dimensions does not only
apply on the ship, but should also be ful�lled to the surrounding environment.
Uncertainties and di�culties to ful�ll these requirements might appear in some
cases, for example regarding the actual surface roughness of a ship which cannot
be accurately modeled. Another example is the almost unrestricted extent of the
surrounding water. Yet the water depth is easier to model as the dimensions are
smaller.

Kinematic similarity includes the equality of the velocity ratios in model and full scale.
This implies that the �ow will undergo the geometrical similar motions in both
cases. For example the ratio between the forward speed of a ship and the rotational
speed of the propeller has to be the same:

Vf
nf (2πRf )

=
Vm

nm(2πRm)
(2.22)
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or

Vf
nfDf

=
Vm

nmDm
→ Jf = Jm (2.23)

where V is the ship speed, n is the rate of revolution of the propeller, R the radius
of the propeller, D the propeller diameter and J the advance coe�cient.

Dynamic similarity is achieved if the same force contributions in the problem have the
same ratio as in model and full scale. The main forces are referred to:

• Inertia forces

• Viscous forces

• Gravitational forces

• Pressure forces

• Elastic forces in the �uid

• Surface forces

Considering elastic cables, the elastic relative deformations scaling has to be taken
into account.

In order to compare the two systems/ships in a simple manner, one can use the
dimensionless numbers. The most important and widely used are:

Froude number which is applied on the ratio between inertia and gravity forces.
Regarding the model and full scale comparison one can write

Fn =
Um√
gLm

=
Uf√
gLf

(2.24)

where Fn denotes the Froude number. If geometrical and kinematic similarity
are ful�lled, then in addition with equality in Froude number one can ensure
similarity between inertia and gravity forces. Regarding the wave resistance
coe�cient, one can say that both are equal, since surface waves are gravity
waves.

Reynolds number will give an equal ratio between inertia and viscous forces:

Re =
UmLm
νm

=
UfLf
νf

(2.25)

where Re is the Reynolds number and ν the kinematic viscosity of the �uid.
Equality in Reynolds number will therefore ensure that the viscous forces are
correctly scaled in model and full scale.

Webers number includes the ratio between inertia and surface tension forces.

We =
Um√
σm

ρmLm

=
Uf√
σf
ρfLf

(2.26)
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The quantity is useful in analyzing thin �lm �ows and the formation of droplets
and bubbles i.e cavitation.

More dimensionless numbers exist that are used in scaling for experimental meth-
ods. These are for example the Mach's number (force ratio of inertia to elasticity),
Keulegan-Carpenter number (force ratio of drag to inertia), Strouhall number (non-
dimensional vortex shedding frequency), etc.

In practice it is not possible to satisfy all di�erent scaling laws simultaneously.
For ships the most practical situations are in�uenced by the surface wave e�ects.
This includes incoming waves generated by forward speed or motions of the ship.
The surface wave formation is governed by the gravitational forces. Therefore it is
necessary to achieve equality in Froude number in model and full scale. However
if viscous forces are more important for the actual situation, then one has the
requirement to achieve equality in Reynolds number. Scaling both dimensionless
numbers is not possible. Hence in conventional experimental model testing of ships
and o�shore structures Froude scaling is used, although the viscous forces will not
be correctly scaled. Post-calculations and other correction methods are used to
adjust the e�ect of di�erences in Reynolds number.

2.4.1 Model tests vs. Numerical calculations

In table 2.1 one can see the most important qualities of experimental model testing
and numerical models. The weighting in the table represents a general evaluation of
the capabilities of two di�erent tools. The assessment depends on the actual case, the
complexity of the problem and how appropriate the numerical code as well as the test
facility is for the actual case.

Qualities Physical Models Numerical Models

Representation Very good Limited by available theories and computer power
Accuracy Good Good within validity limits
Reliability Very good Risk of human errors
Credibility Very good Prima facie not good
Flexibility Not good Good
Execution Long Low with standard programs
Cost High High development cost

Table 2.1: Physical versus Numerical Models (from Aage (1992))

One of the main advantages is that model testing is capable of analyzing very compli-
cated situations. Furthermore one can be sure that all important physical phenomena
are properly covered. This can be very helpful, especially for new design solutions or
innovative concepts. However the lack of �exibility can be a problem. This includes
changing design conditions, costs and scale e�ects.
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Nowadays, numerical calculations become more accurate and easier to use, which re-
duces the importance of experimental testing for routine veri�cation of the performance
of ships. Despite calculations are slowly taking over the routine work, still new and
technologically demanding structures need experiments in order to analyze or con�rm
numerical methods.
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3 1.5DoF model

3.1 Introduction

As prior mentioned in chapter 2 (State-of-the-art), one can say that a ship that is sailing
in upright position in longitudinal regular sea is subjected to the actions of symmetrical
motions and waves. When analyzing the problem of parametric roll occurrence, all 6
DoF should be considered as coupled, since large motion amplitudes appear. Regarding
a simpli�ed model, one can neglect the sway and yaw motion, as it is assumed that the
model keeps course (on average). Also the surge motion can be neglected, assuming the
ship is able to maintain a constant speed. Thus only 3 motions remain: heave, roll and
pitch.
The remaining three motions are coupled with each other. One can determine the

in�uence of roll to heave and pitch as an explicit forcing with a frequency twice the roll
frequency. On the contrary the in�uence of heave and pitch on roll can be seen as a
parametric excitation. Regarding a constant displacement of the vessel, one can write
the roll motion equation as follows:

φ̈+ d(φ, φ̇) + ω2
0

GZ(φ, ϑ, η, xc)

GM
= 0 (3.1)

where φ is the roll angle, ϑ the pitch angle, η the heave displacement and xc the wave
crest position along the ship. Assuming that the heave and pitch motion are functions
of the roll angle and the position of the wave crest, one can simplify the restoring term
as

GZ(φ, ϑ, η, xc) = GZ(φ, xc) = GZ(φ, t) (3.2)

Knowing the ship speed, the wave celerity and the encounter angle of the wave, one can
obtain the explicit dependence on time. In order to ful�ll the assumption in equation
3.2, that is, to explain the dependence of pitch and heave to roll, one should in principle
introduce additional coupled equations. This would need complex analytical approximate
techniques with high order non-linearities. The more simple option is to introduce a quasi
static assumption, meaning that heave and pitch are assumed to be statically balanced in
wave. The restoring moment is calculated according to a standard hydrostatic software
where non-hydrostatic e�ects are neglected.
Two di�erent cases can be calculated using this method: The 'free-trim' or '�xed trim'

methodology. When a 'free-trim' is used, then both sinkage and trim are free to move.
However using the '�xed-trim', the trim is kept constant, while the sinkage is still free to
vary. These are two approaches to determine the hydrostatic hull pressure under the wave
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pro�le. Presently the IMO requires free trim calculations. Regarding the assumptions
prior mentioned, it is to be said, that in some range the results are more accurate. This
will be the case for following waves (low encounter frequencies) and a wavelength that is
identical or larger that the ship.

3.2 Analytical model

The analytical model used in this analysis is given when inserting equation 3.2 into 3.1.
The model includes a varying restoring lever GZ dependent on wave crest position and
heeling angle. The so called 1.5 DoF roll motion equation can be written as

φ̈+ d(φ, φ̇) + ω2
0

GZ(φ, xc)

GM
= 0 (3.3)

where

• φ̈ roll angle acceleration

• d(φ, φ̇) damping function

• ω0 the natural roll frequency

• GZ(φ, xc) the restoring lever in waves

• GM the still water metacentric height

• xc the wave crest position

The 1.5 degrees of freedom are decomposed of 1 DoF for the roll motion and an additional
0.5 DoF as a reminder for the simpli�ed static accounting for sinkage and trim (heave and
pitch). The restoring lever GZ contains information about the heeling angle as well as
the position of the wave crest. By using the quasi static assumption, one can evaluate the
restoring lever for each position of the wave crest along the hull. The wave is regarded to
be frozen, while the restoring moment is evaluated for di�erent heeling angles. This can
be done using the �xed or free trim approach, whereas the displacement is kept constant.
The term GZ(φ, xc) can be written as a Fourier series. This can be done by �rst

approximating the term, for each wave crest position, by means of the least square
polynomial �tting with degree Np:

GZ(φ, xc) ≈
Np∑
j=0

Aj(xc)φ
j (3.4)

Assuming a wave length λw and a sea that is exactly longitudinal (head or following
seas), one can write a periodicity condition that holds

Aj(xc) = Aj(xc + nλw) with n = 0,±1,±2, ... (3.5)
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This condition (equation 3.4) allows to express each coe�cient Aj(xc) as a Fourier series.
It contains a main period λw and a variable xc:

Aj(xc) = Aj0 +

Nh∑
n=1

Acjncos(knxc) +Asjnsin(knxc) (3.6)

This Fourier series has a maximum number of harmonic components Nh, which can
be estimated from Aj(xc). It depends on the position number at which GZ(φ, xc) is
evaluated. Furthermore kn denotes the wave number, being

kn = nkw = n
2π

λw
(3.7)

By introducing the Fourier series coe�cients: initial, sinus and cosinus

Aj0 =
1

λw

∫ λw

0
Aj(xc)dxc (3.8)

Acjn =
2

λw

∫ λw

0
Aj(xc)cos(kxc)dxc (3.9)

Asjn =
2

λw

∫ λw

0
Aj(xc)sin(kxc)dxc (3.10)

one gets a combining expression for the approximation of GZ(φ, xc), being

GZ(φ, xc) ≈
Np∑
j=0

{
Aj0 +

Nh∑
n=1

Acjncos(kxc) +Asjnsin(kxc)
}
φj (3.11)

It is to be mentioned, that the still water righting arm does not coincide with the mean
value of GZ in waves, especially for large wave amplitudes. Also for the metacentric
height GM a term can be determined as a function of the wave crest position xc. If
assumed φ = 0 then one can write

GM(xc) =
∂GZ(φ, xc)

∂φ

∣∣∣
phi=0

≈ A10 +

Nh∑
n=1

Ac1ncos(kxc) +As1nsin(kxc) (3.12)

In order to reach the fully analytical di�erential equation for the nonlinear parametric
roll from BULIAN [5], one can insert equation 3.12 into 3.3, and get

φ̈+ d(φ, φ̇) +
ω2
0

GM

Np∑
j=0

{
Aj0 +

Nh∑
n=1

Acjncos(kxc) +Asjnsin(kxc)
}
φj (3.13)

In the next step the analytical model will be recasted in time domain. Some major
simpli�cations can be made, since the master thesis only analyzes certain cases. Here
the ship is seen as �xed and no forward motion is considered. The reference system stays
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therefore the same and can be seen as �xed. Furthermore only longitudinal sea is taken
into account (i.e. head or following sea). The wave crest position is when t=0 equal to
the reference system position:

xc0 =
ξc0

cos(χ)
= ξc0 for χ = 0deg and 180deg (3.14)

Generally one can write the wave crest position as a function of time, being

xc = xc0 + (cw − Vs)t (3.15)

where Vs is the ship speed and equal to zero for no forward speed. In this case also the
wave frequency is equal to the encounter frequency. Therefore the wave celerity cw is
obtained by cw = ωw/kw.

BULIAN [5] transforms the coe�cients into

Qj(t) = Aj(t)

Qj0 = Aj0

Qcjn = Acjncos(nψc0) +Asjnsin(nψc0)

Qsjn = −Acjnsin(nψc0) +Asjncos(nψc0) with ψc0 = 2π
xc0
λw

including information for the wave crest position. The information for the wave direction,
ship speed and encounter frequency will be implemented afterwards. This however is not
of main interest and on that account the thesis will not go into further details.

3.3 Numerical implementation of the analytical model

For the implementation of the analytical model, the numerical computing environment
MatLab is used. Many subroutines are built in into one main program, which calculates
the hydrostatics features of a certain case. The �rst step is to load the ship's dimensions,
which in the case of this thesis is a �shing vessel with a geometry explained in chapter 7.
After implementing the geometry of the hull, the restoring lever GZ(φ, xc) is evaluated.

This is done for a certain amount of positions of the wave along the hull. It starts from
the aft perpendicular (xc = 0) and moves upfront to the last position, which corresponds
to the same wave crest at xc = λw. For each position a set of heeling angles are analyzed,
which are from 0deg to 55deg with a step of 2.5 deg. By doing so, a surface matrix is
created which contains the curve of GZ(φ, xc,i), where i stands for the crest position.
In the next step, a polynomial approximation of each column of the matrix is done,

that is for each wave crest position. In order to reach a transient restoring lever with
a step of 1deg, the GZ curve will be resampled by means of cubic spline interpolation.
This interpolation is preferred, so that the interpolation error is small, even for low degree
polynomials. It avoids the problem of the Runges phenomenon [11]. The metacentric
height (GM) is a linear coe�cient that is not obtained from the least square method
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(contrary to GZ). It means that the coe�cient A1(xc,i) is estimated from the numerical
derivative of the restoring lever curve, close to the upright position at φ = 0. On �gure
3.1, one can see that then a new matrix is created, in order to substitute the previous
one. By doing so the i-th column contains the coe�cients Aj(xc,i). As a next step a

Figure 3.1: Scheme of the steps used for the implementation of the mixed polynomial-
Fourier approximation of restoring lever in waves - from BULIAN [2005]

Fourier transformation is made for each coe�cient Aj(xc,i). A discrete Fourier transform
algorithm is used to analyze the polynomial coe�cients as a function of the wave crest
position. Including the information of the initial wave crest position in time domain,
one can lastly calculate the Q..jn coe�cients. By changing the input parameters of the
encounter wave frequency and wave heading, one can obtain the requested restoring lever
in waves in time domain GZ(φ, t).

3.4 Fixed trim vs. Free trim

Another feature of the 1.5 DoF model is the possibility to change the boundary condi-
tions for trim. As already mentioned before, one can use a 'free-trim' approach where
both, sinkage and trim of the vessel are free, or '�xed-trim', where only the sinkage is
free to vary. These two approaches represent the two old possible ways of performing
hydrostatic calculations for intact ships and will be later on compared with each other
regarding the occurrence of parametric roll.

Comparisons with experimental results in regular sea, show that the 'free-trim' ap-
proach in all cases underestimates the amplitude of motion and the range of speeds
where instability of the upright position is observed. The '�xed-trim' on the other side
is able to give good predictions in the amplitudes of roll in terms of peak, while the
description of the shape might not be satisfactory.
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4 6DoF potential-�ow model

In order to compare the di�erent damping characteristics of the experimental decay tests,
a numerical solver is used that was already introduced in the project thesis, written in
the autumn semester 2012. This solver, provided by Prof. Marilena Greco, is a 6DoF
numerical algorithm based on potential �ow assumptions.

4.1 Main features of the model

The numerical solver used to analyze the parametric roll occurrence as a function of
the damping is a 3-D seakeeping analysis model. This model was developed to handle
occurrence and e�ects of water-on-deck and bottom slamming. It is divided into three
parts that are coupled with each other

1. the rigid ship motions

2. the water �owing along the deck

3. bottom slamming events

While part 2 and 3 are not of main interest for parametric rolling, the focus lies merely
on part 1.
As mentioned before, the numerical solver takes all 6 degrees of freedom into account

and it is based on potential �ow assumptions. This implies that the velocity �eld can be
considered as irrotational and the �uid incompressible. Also forward motion of the ship
(with limited speed) as well as the ship interaction with regular and irregular sea states
can be studied. However, regarding the analysis of parametric rolling, no forward motion
of the ship will be considered, only longitudinal waves (wave frequency = encounter
frequency) and regular sea states.
The rigid body equation of motion are given by Newtons second law and in order

to keep the ship generalized mass matrix constant in time, they are written along the
body coordinate system. The ship is assumed free to move in 6 degrees of freedom
ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) (see �gure 4.1), while the elastic deformations are neglected.
The six component vector equation is given as

Mξ̈ + Ω×Mξ̇ = F (4.1)

where Ω denotes the angular velocity vector including ξ̇4, ξ̇5, ξ̇6,. These velocities are
time derivatives of the motions, along the instantaneous body axes. The cross prod-
uct of the angular velocity and Mξ̇ will give a six component vector. The forces and
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moments, represented by the term F in equation 4.1, are the external loads causing
the body motions. Disregarding the water on deck and slamming, F is decomposed as
Fg+F0nlin+Fhnlin+Frsc. These loads are connected to the ship weight, the Froude-Krylov
force, restoring and radiation-scattering contributions. The solution of the seakeeping

Figure 4.1: Reference frame in the center of gravity and ship motions, ξ1, surge; ξ2, sway;
ξ3, heave; ξ4, roll; ξ5, pitch; ξ6, yaw

problem is based on the wake-scatterer hypothesis. This implies that the waves radiated
from the ship are small relative to the incoming wave amplitude. Moreover the incident
disturbances are considered small with respect to the ship rigid motions. By solving the
linear radiation problem about the mean free surface and body surface, instead of the
instantaneous incident wave, it is possible to obtain the solution through the frequency
domain approach. Due to the quadratic velocity contributions, which are included in
the Froude-Krylov and hydrostatic pressure, the forces F0nlin and Fhnlin have non-linear
terms. This results from the incident waves and ship body motions, which are evaluated
on the instantaneous wetted body con�guration. The incident waves acting on the body,
concerning regular sea waves, are described by second-order Stokes waves. Lastly, the
radiated and scattering force Frsc is referred to the disturbance to the wave �eld due to
the presence and motion of the ship.

Regarding the solution in equation 4.1, M is given in the ship mass properties and the
generalized forces are evaluated at any time instant i.e.in this case: Fg, F0nlin, Fhnlin. By
projecting the gravitational loads in the instantaneous body reference frame, one gets
Fg. If all generalized forces are known at any time instant, then equation 4.1 can be
integrated so the ship motions (ξ) and velocities (ξ̇) are available. This is done by the
fourth order Runge-Kutta [1]. The estimated ship velocities can then be expressed in the
inertial reference frame and then integrated in order to get the motions.

This fully 3-D seakeeping solver has already been used to analyze parametric roll on a
FPSO in combination with water on deck. The solver provides results globally consistent
with the experiments, with a good agreement in terms of motion amplitudes, especially
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for the roll. The major discrepancies in terms of phenomena occurrence are documented
for cases more sensitive to the involved non-linearities and so to the numerical approxi-
mations [2].
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5 Decay test

5.1 Introduction

When a ship is in calm water, any disturbance in transversal will lead to roll motions.
This can come from any physical natural excitation in full scale, such as wind and waves.
In order to get the decay tests in model experiments, usually a single excitation is given
and the decay is measured over time. When the roll equilibrium is disturbed, the hydro-
static restoring moment acts to oppose the instantaneous roll angle and tends to return
the ship back to the upright position. Due to the inertia of the ship, it does not stop
at the instant when the equilibrium angle is reached but continues to roll with a slower
velocity until its maximum roll angle is reached. Then the restoring moment causes the
ship to begin to right itself. Once upright, inertia causes the ship to continue to roll.
This motion cycle is repeated all over again and in theory is only limited by the damping.
The period of the roll oscillation in calm water is known as the natural roll period and
natural frequency, respectively.

5.2 Roll damping

The roll motion causes waves that radiate out from the body, and the moment, B4η̇4,
needed to keep this radiation is in phase with the angular velocity. These radiated waves
transport energy away from the body and thus introduces hydrodynamic or radiation
damping. The roll motion is however not dominated by the radiation damping, but
depends more on turbulent skin friction, turbulence caused by bilge keels and appendages.
This means that the total damping cannot be calculated by potential theory only, but also
other damping contributions must be taken into account. Normally one uses experiments,
which however come with obvious problems of scaling. Viscous and turbulence �ow
computations have been created in order to correct these problems. One can say that
the roll-damping moment is caused by:

• radiated waves

• turbulent skin friction between hull and water

• appendage or bilge keel vortex shedding

• moorings for moored ship or platforms

Besides the �rst point, the contributions of the roll damping moment are functions of the
velocity squared, which means they depend on the amplitude of the roll. Fishing vessels
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are �oating bodies in the water surface, yet the radiation roll damping is a function of
the frequency of oscillation due to the generation of waves. In the limit ω →∞ no waves
can be formed and the radiation damping is equal to zero. Hence, no surface gravity
waves are produced. Also for ω → 0 the radiation damping will be zero. Consequently,
a maximum is somewhere in between where the body has a maximal ability to radiate
energy or absorb wave energy.
From the stability point of view it is preferable to have a high damping component in

order to reduce the roll motions. In general, roll damping tends to be small for mono-
hulls. Viscous and wave-generation roll damping is present on the bare hull of every
vessel. It can be increased/decreased by changing the hull form. The frictional force
is resisting the roll motion in the opposite direction together with a wave-generation
component. The relatively small roll damping caused by the bare hull is counteracted in
conventional �shing vessels, for instance, using bilge keels, skegs and antirolling tanks.
Fins and rudders cause a roll damping that increases with speed. In order to describe
how the model behaves at certain conditions, one has to �nd the damping characteristics
of the ship. This can be done by �nding the damping coe�cients and inserting them in
the equation of motion. To �nd the damping coe�cients we use the experimental data
obtained from the model testing that was performed in a ship model basin of the institute
CNR - INSEAN situated in Rome, Italy. For this reason, the model was excited and the
decay of the motions was recorded over time.

Decay tests will give important information about natural frequencies, added mass
and as mentioned before, the damping of a dynamic system. We start by considering a
system with one degree of freedom and non-linear damping. The di�erential equation
describing the motion is

Mẍ+B1ẋ+B2ẋ |ẋ|+ Cx = 0 (5.1)

Here M is the mass, including added mass, B1 is the linear damping, B2 is the quadratic
damping term and C the restoring sti�ness. The natural frequency of the system can
easily be found with

ω0 =

√
C

M
(5.2)

To determine the linear and non-linear damping the equation of motion (5.1) is divided
by the mass and one gets the following equation

ẍ+ p1ẋ+ p2ẋ |ẋ|+ p3x = 0 (5.3)

The linear and quadratic damping term can now be determined from the relation

2

Tm
log(

Xn−1

Xn+1
) = p1 +

16Xn

3Tm
p2 (5.4)
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where Xn is the amplitude of the n-th oscillation. By plotting the left hand side
against the equivalent velocity 16Xn

3Tm
, the equivalent damping coe�cient can be found.

The coe�cient p1 is found from the �gure from the intersection to the axis (abscissa)
and p2 is found from the slope of the straight line that was �tted through the values by
the least square method.

5.3 Obtaining the damping coe�cients

As explained before, the model is excited and the roll decay is measured over time.
Although calculations were already done in the project thesis, the aim for this master
thesis is to get more accurate results. The procedure starts by measuring the model roll
decay without any appendages, i.e. bare hull:

1. Find the natural roll frequency from the roll decay data using formula (5.2)

2. Calculate 16Xn
3Tm

for each period Tm

3. Calculate 2
Tm
log(Xn−1

Xn+1
) for each period Tm

4. Plot 3) over 2) and �t a curve with the linear least-square method

5. Extract p1 and p2 from the plot

Figure 5.1: Step 4 before �tting a curve

This has been done 7 times, due to 7 di�erent and independent measurements. The aim
is to reduce the uncertainties and get more accurate results. On �gure 5.2 one can see
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that some measurements do not follow a certain trend. These values should be kept out-
side the calculations. One should avoid using the �rst oscillation due to transient e�ects
and the smallest amplitudes at the tail of the decay due to inaccuracy. After evaluating
the data one can �t a curve simply using the MatLab curve �tting tool (tftool) and read
p1 and p2 from the �gure.

Figure 5.2: Step 4 after �tting a curve

The red cross on �gure 5.2 represents values that were not taken into account.

5.4 Results

The most reliable way to obtain the roll damping of a ship at the present time seems
to be to carry out model experiments, since the scale e�ect of damping is considered to
be connected mainly with the skin friction of the hull, which makes a small contribution
to total damping. The data from model testing can easily be transferred to the actual
ship case by using an appropriate non-dimensional form of roll damping. The total roll
damping for an ordinary hull can be divided into �ve components, that is, friction, eddy,
lift and wave damping for bare hull and bilge keel damping.

Be = BF +BE +BL +BW +BBK (5.5)

The term BBK includes normal-force damping, hull-pressure damping and wave damping,
all due to the bilge keels. Also other appendages can be included into the formula as for
example the damping of a skeg that will be included in part 5.4.3 (skeg damping). Also
other damping components can be neglected in the following decay experiments. The
results of 4 di�erent roll decay cases are listed in the subsequent subsections, including
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a �nal parameter for p1 and p2, for each case. This parameter is calculated by the mean
of all decay tests and will be used for further calculations.

5.4.1 Bare hull

As explained before, in total 4 di�erent cases of roll decay tests are examined. Bare hull
implies no propeller or other features that are attached on the hull. Therefore only the
hull surface and form will give contribution to roll damping. One can focus on only 3
di�erent damping contributions:

• radiated waves (not dominating in roll)

• turbulent skin friction between hull and water

• vortex shedding (eddy)

The wave damping BW denotes the increment of the hull-pressure damping, due to the
presence of free surface waves. It includes the interaction between waves and eddies and
waves and lift. These interaction however are very small and one can assume them to be
almost linear. The skin friction between hull and water is dominated by the model/ship
material of the hull which gives a certain resistance that damps the roll motion. The
friction damping is caused by the skin friction stress on the hull in roll motion. It may
possibly be in�uenced by the presence of waves.

Decay Nr. p1 p2
Decay 1 −0.003885 0.07834

Decay 2 −0.005550 0.08020

Decay 3 −0.002235 0.07125

Decay 4 −0.002505 0.07197

Decay 5 −0.006294 0.07999

Decay 6 −0.005682 0.07830

Decay 7 −0.006258 0.07910

Mean -0.004630 0.07702

Table 5.1: Coe�cients p1 and p2 calculated for each decay (bare hull)

The vortex damping (eddy damping) is caused by the pressure variation of the bare
hull, excluding the e�ect of waves and bilge keels. It stands for the non-linear damping
p2ẋ |ẋ|. The form of the hull is a relevant factor for this damping.

5.4.2 Bilge keels

In order to increase the roll damping, passive stability systems such as bilge keels can
be added to the hull. These appendages are usually constructed from �at plates that
form a sharp obstruction to the roll motion (see �g 5.3). In order to have a minimal
resistance while the ship is moving, the bilge keels are aligned with the calm water �ow.
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To aid this placement, one usually uses �ow visualization. The length of the bilge keels
is regularly selected to be such that the tip of the bilge keel lies within the maximum
beam of the ship and above the baseline. By doing so, the ship's hull protects the bilge
keel during docking, dry-docking and in shallow water. Bilge keels signi�cantly improve

Figure 5.3: Typical bilge keel arrangement

the roll damping over that of a bare ship hull, but are less e�ective than what can be
obtained by other roll stabilization devices. Still in most cases it is recommendable for a
naval architect to install them, even when other stabilizers are �tted, thus only bilge keels
are e�ective in the severest of seas. In addition to the damping components explained in

Decay Nr. p1 p2
Decay 8 0.04624 0.3262

Decay 9 0.04669 0.3191

Decay 10 0.04500 0.3269

Decay 11 0.04611 0.3323

Decay 12 0.04098 0.3367

Decay 13 0.04075 0.3432

Decay 14 0.04300 0.3365

Mean 0.04411 0.33156

Table 5.2: Coe�cients p1 and p2 calculated for each decay (bilge keel)

section 5.4.1 (bare hull), which are also present in this case, the bilge keel damping has
to be introduced. It represents the increment of pressure damping due to the presence
of a pair of bilge keels. This term consists of three components which are: The normal
force damping of bilge keels, which is due to the normal force of the bilge keels itself. The
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second component is the hull pressure damping due to bilge keels, which corresponds to
the pressure change on the hull. One can regard this aspect as the interaction between
hull and bilge keels. The rest is the wave damping of bilge keels, which is the interaction
between the hull and the waves.
HIMENO [9] concludes that bilge keel damping is not merely a quadratic non-linear

form, but that it depends on the roll amplitude and frequency in a more complicated
manner. Furthermore, the e�ect of forward speed is not very large.

5.4.3 Skeg

Skegs are used to improve the maneuverability of the ship. In addition it upgrades the
propulsion by concentrating the �ow around the propeller disc. One can say that a skeg
is a sternward extension of the keel of ships which have a rudder mounted behind. Vessel
containing two rudders can therefore have twin skegs. Also multiple skegs are possible.
Regarding the roll damping, one can say that from the physical point of view a skeg is

Figure 5.4: An example of a skeg arrangement

very similar to a bilge keel. It works likewise a bilge keel, containing the same damping
characteristics.

Decay Nr. p1 p2
Decay 15 −0.00444 0.1406

Decay 16 −0.02286 0.1773

Decay 17 −0.00950 0.1580

Decay 18 −0.03950 0.2106

Decay 19 −0.01028 0.1656

Decay 20 −0.03450 0.1822

Decay 21 −0.02300 0.1776

Mean -0.01915 0.17313

Table 5.3: Coe�cients p1 and p2 calculated for each decay (skeg)

One has to remember that the purpose of a skeg is not to damp the roll motion, in
contrary to bilge keels. Still it contributes to roll damping, to what extent will be shown
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later in section 5.6 (Analysis).

5.4.4 Combination

In this series of decay test the model contains bilge keels as well as a skeg. Both damping
characteristics were explained in the sections 5.4.2 and 5.4.3. Basically one can say that
both damping contributions are added together, as if an additional bilge keel would be
added on. The roll damping is higher for the combination of both appendages (bilge
keels and skeg), than either of them alone.

Decay Nr. p1 p2
Decay 22 0.03006 0.3732

Decay 23 0.03100 0.3545

Decay 24 0.02800 0.3851

Decay 25 0.02865 0.3669

Decay 26 0.02901 0.3712

Decay 27 0.02820 0.3796

Decay 28 0.02831 0.3858

Mean 0.02880 0.37376

Table 5.4: Coe�cients p1 and p2 calculated for each decay (bilge keel and skeg)

5.5 Neglecting the quadratic term

If non-linear terms, such as the p2 coe�cient, are not suitable for the calculations, then
one can neglect the quadratic term and replace both coe�cients (p1 and p2) into one
equivalent damping term. By doing so, equation 5.3 becomes

ẍ+ peqẋ+ p3x = 0 (5.6)

Here it should be noted that the equivalent damping coe�cient peq does not replace
the damping term p1 that was calculated previously. However the energy loss per cycle
(in the decay) for both, linear and quadratic term, should be equal to the equivalent
coe�cient. The calculation procedure to obtain peq is as follows. Find the damping ratio
from the decay data assuming:

ξ =
1

2π
log(

Xn−1

Xn+1
) (5.7)

Here Xn−1 and Xi+1 are considered to be two succeeding amplitudes. Knowing the
natural roll amplitude of the ship, one can easily calculate peq:

peq = 2ω0ξ (5.8)
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Bare hull Bilge keel Skeg Combination

peq 0.0412 0.101 0.0533 0.113
ξ 0.009 0.0227 0.0124 0.0268
T [s] 2.7473 2.809 2.9245 2.9716
ω[1/s] 2.2870 2.2368 2.1485 2.1144

Table 5.5: Equivalent damping coe�cients

Logically these values change, considering a bare hull or a ship with bilge keels and/or
a skeg. Table 5.5 shows the equivalent damping coe�cients for the decay tests mentioned
earlier in section 5.4.
One can now compare the equivalent damping term with the linear and non-linear

damping term. As mentioned before, both terms should damp the same amount of
energy per cycle. For this reason, the code is run for both damping terms and the wave
incident wave properties are kept the same. In a similar way, this has already been done

Wave frequency ω 7.9956 1/s
Wave amplitude ζa 0.015 m
Wave steepness k 0.0015 m

Table 5.6: Standard values for computation

in the project thesis. Comparing the angular displacement from the roll motion, one
can see from the maximum obtained after the transient e�ect that both values nearly
coincide. While using the linear and quadratic damping term the maximum is reached
earlier than using the equivalent term. This means less incident wave periods are needed
to reach the parametric roll resonance. The di�erences in the transient phase can be
explained that the instability occurrence is more sensitive to the involved non-linearities
and the approximations in the solver can be more restrictive. The simulations with the
quadratic term and therefore the viscous damping corrections, should be more consistent
with the experimental, physical results.

5.6 Analysis

The analysis is carried out with the 6DoF numerical solver, based on potential �ow
assumptions, presented in chapter 4. In order to work with the numerical solver one has
to use a Unix-like operating system such as the XFree86 software. Through this platform
one can get access to the SSH channel, where the numerical solver is implemented.
For the analysis, the incident wave properties and all other values are kept the same.
The wave properties are listed in table 5.6. No more than the damping coe�cients are
changed, in order to visualize the sensitivity. For this reason, the linear and quadratic
damping coe�cients calculated in section 5.4 are scaled and transferred into the numerical
algorithm. Here one has to distinguish between linear and quadratic term, as well as axial

49



and rotational displacement. Using the equation of motion for a ship, one can �nd the
di�erences in the units. The linear damping term is proportional to the velocity, which
gives a di�erence to the acceleration of 1/s. Assuming Froude scaling is applied and a
geometrical similarity with scale ratio λ = LF /LM from the equality in time, one gets
the relation

tF =
√
λtM (5.9)

As a consequence one gets

p1,F =
1√
λ
p1,M (5.10)

The quadratic rotational damping term is dimensionless. Therefore one can assume

p2,F = p2,M (for η4, η5, η6) (5.11)

Finally one can obtain the coe�cients that will be implemented in the numerical solver.
The model size from the physical experiments is Lpp= 2.95m. Scaling to a length of 1m,
one gets the following results (see table 5.7)

Bare hull Bilge keel Skeg Combination

p1 -0.004630 0.04411 -0.01915 0.02880
p1−scaled−to−1m -0.007952 0.07576 -0.0329 0.04947

p2 0.07702 0.33156 0.17313 0.37376

Table 5.7: Equivalent damping coe�cients

5.6.1 Using equivalent damping coe�cients

The results from table 5.5 are now implemented into the code. Only the damping coef-
�cient is used instead of the linear and quadratic term. However, as mentioned before,
the energy damped per decay cycle is equal in both approaches. It is of importance to
compare the di�erent damping parameters which automatically represent di�erent hulls
with or without appendages. Two main characteristics are compared here: the steady
state roll amplitude while parametric rolling and the transient phase including the needed
amount of waves for parametric roll occurrence. The latter is better described by the
second approach using a quadratic damping term. Consequently the equivalent term is
used for analyzing the steady state amplitudes. The importance lies within the maximum
amplitude in the steady state condition. From table 5.5 one can already see the damping
variable and expect the highest amplitudes with the smallest number of incident wasves.
Smaller damping→ less motions. In order to visualize the di�erence, one can take a look
into the amplitudes in roll. Figure 5.5 shows the heave, roll and pitch amplitude of the
bare hull. From this �gure one can see the steady state roll motion with its maximum
roll amplitude of 16.283 deg is reached after merely 290 wave crests. Furthermore, one
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Figure 5.5: Seakeeping motions with a bare hull using the equivalent damping coe�cient

can observe an interaction between the roll and pitch motion. Relative to the paramet-
ric roll motion of the same vessel with bilge keels, one can observe a drastic change in
roll motion. Nearly no roll motion occurs. However the pitch motion as well as heave
remain nearly equal. Concerning the maximum steady state roll amplitude with bilge
keels, which occurs after around 420 incident wave crests, one has a magnitude of ≈ 2 deg.

To sum up, the roll amplitude while the ship is parametric rolling is as expected in the
following order, starting with the highest amplitudes:

1. Bare hull

2. Skeg

3. Bilge keel

4. Combination of bilge Keel and skeg
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Table 5.8 gives an overview of the roll amplitudes at steady state condition.

Bare hull Bilge keel Skeg Combination

16.283 deg ≈ 5 deg 15.41 deg ≈ 4 deg

Table 5.8: Roll amplitudes using di�erent appendages (equivalent linear damping
coe�cient)

From this results one can see the e�ect of a bilge keel or skeg relative to the roll
amplitude. An enormous roll damping is achieved in attaching bilge keels to the hull. If
however only a skeg is attached, then a small change in roll amplitude is recognizable.
Using both together achieves the smallest amplitudes. Parametric rolling occurs, however
the amplitude is so low that it is almost not noticeable.

Figure 5.6: Seakeeping motions with a skeg attached to the bare hull using the equivalent
damping coe�cient

5.6.2 Using linear and quadratic damping

In this section the linear and quadratic damping coe�cients are used instead of the equiv-
alent damping term. The values are shown in table 5.7. In general, the results should
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be more consistent with the experimental, physical results. The simulations with the
quadratic term imply corrections for the viscous damping. In the former case only the
wave-radiation roll damping from the linear potential-�ow solver is modeled.

Two analysis are done here:

• comparison of the maximum amplitude (with the equivalent damping coe�cients)

• analysis of the transient phase

Similar as in the previous section, the maximum roll angles while parametric rolling of
the ship are determined. Results are shown in table 5.9. Basically one can observe that
all maximum amplitudes are close to the previously obtained. A trend of slightly greater
amplitudes can be observed. On the other hand, it is noticeable that the e�ect of a skeg
is bigger. Being the di�erence for the equivalent damping coe�cient between bare hull
and skeg almost negligible, one can observe a considerable additional damping using a
skeg with the quadratic damping term. The amplitudes using both, skeg and bilge keels,
are higher than the results obtained from previous computations (di�erence of approx-
imate 1 deg). It must be noted that only 400 incident wave periods were used for the
calculations. In order to �nd the exact value for the steady state amplitude for bilge
keels, one should increase the number of incident waves.

As a next step, the required amount of incident wave periods for parametric roll to
occur is analyzed. The transient phase between the di�erent models varies. Not only the
time needed to reach parametric roll is di�erent, but also the transient phase duration
di�ers. In order to compare the various hull properties and its damping characteristics,
the needed incident wave periods to obtain a roll motion of 1 degree is to be determined.
Figure 5.7 shows the roll motion of the ship with additional bilge keels and a skeg. The
vertical line at the incident wave period of 231 represents the reached roll motion angle
of 1 deg.

Figure 5.7: Roll motion for the hull with a combination of skeg and bilge keels

To sum up, the amplitudes while parametric roll occurrence (steady state condition)
have an expected trend. The highest motions are found with the bare hull, followed by
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skeg, bilge keels and �nally the combination of both. This has already been shown using
an equivalent damping term. Regarding the occurrence of parametric roll motion, one
can observe that it starts the earliest (the smallest amount of incident wave periods)
with a bare hull. However, comparing the bilge keels with the combination, one can see
that it takes less incident wave periods for the combination (231 periods) than only bilge
keels (294 periods). This can be explained, by the fact that the instability occurrence
using bilge keels is more sensitive to the involved nonlinearities. Nevertheless, the main
importance lies in the roll amplitudes which show the smallest motion in the combination
using bilge keels and skeg.

Bare hull Bilge keel Skeg Combination

Amplitude 18.68 deg ≈ 6 13.08 deg 5.384 deg
Number of wave periods 113 294 138 231

Table 5.9: Roll amplitudes using di�erent appendages (linear and quadratic damping
coe�cient) and number of wave periods to reach a roll angle of 1 deg
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6 Investigation of parametric roll

occurrence using a 1.5 DoF model

The analytical model introduced in chapter 3 has been implemented into MatLab for
the analysis of parametric roll motion. As explained before, it is valid for longitudinal
regular waves.

6.1 Procedure

There are many di�erent approaches to analyze the parametric roll occurrence and its
characteristics. Many coe�cients can be modi�ed and therefore a high number of di�erent
cases can be studied. However, in order to have comparable results, one should focus
on certain parameters and keep other coe�cients equal. In general, one can de�ne an
example of a numerical implementation with the following procedure:

1. Estimation of natural frequency and mechanical characteristics of the ship.

2. De�ne the damping parameters for the given case.

3. Select a particular wavelength and waveheight.

4. Calculate the restoring arm surface in waves using the analytical model (imple-
mented in MatLab)

5. Fitting of the analytical GZ surface, to obtain the Q..jn coe�cients.

6. Select the ship speed range which is analyzed close to the �rst parametric roll
resonance region.

7. Plot the results, showing the occurrence of parametric roll, position on the Ince-
Strutt diagram and relative roll velocity and motion in time.

This procedure will be passed through several times, while some parameters are changed.
The occurrence of parametric roll, including the roll velocity and amplitude are checked.
Two major cases are studied separately: the ship as a bare hull and with a skeg.

6.2 Bare Hull

The characteristics of a ship with bare hull i.e. no bilge keel or other appendages,
are already explained in chapter 5.4.1. From the model experiments one can extract
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some parameters, as for example the natural roll frequency in calm water. In order to
implement this coe�cient in the 1.5 DoF model one has to scale the model natural roll
frequency into a full scale ship frequency. The full scale to model scale is given as

λ =
Lf
Lm

= 10 (6.1)

with a given natural roll frequency of ω0 = 2.2870 for the bare hull ship model (see table
5.5), the full scale natural roll frequency is calculated as

ω0 = 2.2870→ fsc =
1

s
=

1√
λ

=
1√
10

= 0.31623 (6.2)

ω0fsc = 2.287 ∗ 0.31623 = 0.7232[
1

s
] (6.3)

For the bare hull this value will always be the same, as well as the mechanical character-
istics of the ship. For simplicity, the damping parameter is set as µ = 0.05. This starting
value for the damping parameter is chosen, regarding realistic values for the given case.
The in�uence of the damping parameter will be analyzed later on. In the next step the
occurrence of parametric roll is analyzed as a function of the incident wave.

6.2.1 Case 1 � Changing the wavelength Lw

In this case the wave characteristics are chosen randomly. A waveheight of 2 meters is
kept equal for all further calculations. However, the wavelength is changed and the related
occurrence of parametric roll is analyzed. For better understanding, the wavelength is
chosen as s function of the ship length i.e.

F (Lpp) = Lw (6.4)

where Lpp denotes the ship length between perpendiculars and Lw the incident wave
length. Table 6.1 shows the values which were used in the 1.5 DoF model.

Wavelength Velocity Roll motion Occurrence

0.5 Lpp 0.065 0.013 X
0.7 Lpp 0.07 0.015 X
0.8 Lpp 0.44 0.1

√

0.9 Lpp 3.58 0.91
√

1 Lpp 0.87 0.21
√

1.1 Lpp 0.088 0.021 ∼X
1.2 Lpp 0.076 0.0185 X
1.3 Lpp 0.073 0.017 X
1.5 Lpp 0.071 0.0168 X

Table 6.1: Occurence of parametric roll for waveheight 2m and di�erent wavelengths
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As a next step the maximum roll motion is determined by �nding the optimal wave-
length that gives the highest parametric roll motion. For this reason one can take a look
into the theory of the Mathieu diagram. With the relation

√
p =

ω0

ωe
= 0.5 (6.5)

one can determine the encounter frequency, which due to zero forward speed of the ship
is equal to the wave frequency. In order to �nd the requested wave length the following
formula can be used

Lw =
2πg

ω2
w

(6.6)

This gives the wave properties for the largest parametric roll excitations. If the values

Wavefrequency [1s ] Wavelength [m] Relative Lw Roll motion Occurrence

1.4465 29.44 0.919945 Lpp 0.92
√

Table 6.2: Wave properties for ω0
ωe

= 0.5

p and q for the above mentioned incident wave properties are plotted in the Mathieu
diagram, one can see its position.

Figure 6.1: Mathieu diagram with p=0.2507 and q=0.0866
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Taking the values from table 6.1 into the 1.5DoF model and solving the equations in
time, one can compute the parametric roll motion. Starting with a roll angle of 1 deg,
the amplitude of roll increases drastically. After 1 time step of 100 seconds, the ship
encounters a roll angle of about 15.5 degrees. A critical angle of 45 degrees is already
reached after 138 seconds. In theory capsizing of the ship could happen. Finally one

Figure 6.2: Roll motion in time for an incident wave of Hw = 2m and ωw = 1.4465

can visualize the dependance of the wavelength Hw as a function of Lpp, relative to the
parametric roll occurrence. The �gure shows that the highest roll motion was found at a
wavelength of Hw ≈0.92Lpp. The straight line on �gure 6.3 shows where the ship start
with parametric rolling. It was found that a wavelength in between 0.74Lpp and 1.09Lpp
leads to this phenomenon. All other wavelenghts i.e. underneath the straight line, will
not give enough contribution to parametric rolling.

As a next step a closer look is taken into an edge case, where the parameters q and
p lie on the borderline to a non-parametric roll case. For this reason, the wave from
table 6.2 is taken into the 1.5DoF model and analyzed i.e. a wave with a wavelength
of 1.1Lpp. On �gure 6.4 one can see the given case where the red point (q=0.0905 and
p=0.2998) lies beyond the line. From theory no parametric rolling should occur. This
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is also the case and can be observed on the same �gure (right). Although in the be-
ginning the roll motion and velocity start to increase (from t=0 to t=18 seconds), they
�atten out after a while. The roll motion and velocity go toward zero in a spiral pattern.

Figure 6.3: Roll motion vs wavelength

Figure 6.4: left - Mathieu diagram for edge case, right - progress of roll velocity and
motion in time

6.2.2 Case 2 - Changing the waveheight Hw

After analyzing the wavelength as a function of Lpp, the incident waveheight is investi-
gated. For this reason a wavelength is chosen and kept equal. Also the natural frequency
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and mechanical characteristics of the ship, including the damping parameters, remain
the same. As explained before the full scale natural roll frequency of the ship as a bare
hull was previously calculated as ω0 = 0.723 [1s ]. Using the relation

√
p = ω0

ωe
= 0.5 an

incident wave with a frequency is given as ωw = 1.446[1s ]. This yields to a wavelength of
29.44m which is an unchanged value in this case for further computations.

In case 1 the wavelength was constantly Hw = 2 meters. However in this case this
parameter changes in order to see how the coe�cients p and q alter. Also the occurrence
of parametric roll is checked. Hence 15 new calculations were done with a variable
waveheight, starting from Hw = 0.25 to Hw = 5 meters, using steps in between 0.25 and
0.5 meters.

Figure 6.5: left - Mathieu diagram for edge case, right - progress of roll velocity and
motion in time

The results are plotted on �gure 6.5. Here one can see the instability region inside
the wedge of the Mathieu diagram. The red circles and crosses represent the di�erent
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calculations with a varying waveheight where the values of p and q lie in between the
instability boundaries. In theory all of these incident waves should excite the ship in
a manner, so that parametric roll occurs. However the damping of the ship prevents a
steady state parametric roll motion, when certain waves act on the body. These waves
are marked with a red cross instead of a circle.

In summary it can be said that a greater waveheight will lead to a greater parametric
roll motion. Also the transient phase to a steady state parametric roll motion should
appear earlier. By increasing the damping characteristics of a ship a higher waveheight
is needed to excite the ship, in order to reach a parametric roll occurrence.
Assuming a damping coe�cient of µ = 0.05, the edge case for parametric roll to occur

was found for a waveheight of Hw = 0.96meters. It must be noted that this is only the
case for a wave frequency of ωw = 1.446[1s ]. For this special case the roll motion does
not �atten out after a time t, neither it increases. The roll motion and velocity given for
time t=0 stay equal in in�nity, as can be seen on �gure 6.6. No transient phase emerges
(see �gure 6.7).

Figure 6.6: Roll motion and velocity for a waveheight Hw = 0.96m
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Figure 6.7: Roll motion in time for Hw = 0.96m - No transient phase

6.3 Fixed trim

As previously explained, one can analyze the ship stability using di�erent approaches.
An alternative way to examine the stability properties is to restrict the ship from having
a trim. The so-called '�xed-trim' calculations are compared with the free trim calcula-
tions obtained previously.

The initial static stability of the vessel (GM - metacentric height) is compared for both
approaches. This is done as a function of the wave steepness. The following cases are
evaluated:

Wavelength Waveheight Wave steepness Wave length ratio
λw[m] Hw[m] sw = Hw/λw λw/Lpp

Case 1 32 0.3200 1/100 1.000
Case 2 32 1.0667 1/30 1.000
Case 3 32 2.1333 1/15 1.000
Case 4 32 3.2000 1/10 1.000

Table 6.3: Numerical conditions for the metacentric height analysis
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From all cases one can assess that the initial stability is higher for the '�xed-trim'
method, when the wave crest is at the ship FP and AP (front perpendicular, aft perpen-
dicular). In particular, one can see from case 3 (�gure 6.8) that the initial metacentric
height is 1.0697m for '�xed-trim' and 1.0097m for 'free-trim'. This is a di�erence of
6%. Furthermore it is important to notice the di�erence in the phase of the �uctuations
between the two methods. This di�erence can be explained in the phase angle of the
response as predicted by the analytical approach.

Concerning the minimum initial stability, one can observe that for case 3 both methods
show an almost equal magnitude of the metacentric height (0.5217m for free-trim and
0.5286 for �xed-trim). Yet a di�erence where it occurs (wave crest position relative to
Lpp) is notable. Being it amidships for 'free-trim' method, one can see that it is shifts
4.48m to the aftperperndicular for the '�xed-trim'.

Figure 6.8: Calculated GM variation for case 3. Blue - free-trim; Red - �xed-trim

Comparing the results of the metacentric height with another model, one can see a
similar trend. BULIAN (2006) predicted the metacentric height variation for a Destroyer
CT1 with a ship length of Lpp= 126.6m. Generally, one can say that the '�xed-trim'
calculation is more conservative with respect to the 'free-trim' approach. Yet it is im-
portant to consider the requirements of the IMO intact stability code, which requires
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static calculations using the 'free-trim' method. However this might be unsafe when
considering quasi-static approaches.

Figure 6.9: Calculated GM variation for CT1 - λw/Lpp = 100 and sw = 1/100

Figure 6.10: Calculated GM variation for case 2. Blue - Free-trim; Red - Fixed-trim

The results of case 1 and 4 can be found in Appendix B.

6.4 Skeg

For the same model which is used in the previous computation, an additional skeg is
mounted. This new model is used as the input for further calculations in the 1.5DoF
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model. Due to available experimental model testing data of the �shing vessel with a skeg,
this section focuses on comparing the results of model testing with the 1.5DoF model.
By doing so, one can determine the conformity of both methods.

The remaining input parameters for the 1.5DoF model were already determined in
chapter 5, decay tests. The natural period of the vessel with skeg is Tn=2.94 sec, while
the linear and quadratic damping coe�cients are p1=0.04411 and p2=0.33156. These
values were obtained from ship model decay tests and have to be scaled to a ratio of
λ = 1/10.

In total 7 di�erent edge cases will be calculated and compared afterwards with the
experimental results.

Natural Period Wave Period Tw/Tn Circular Wave steepness
Tn[s] Tw[s] kA

Case 1 9.234 4.710 0.51 0.1
Case 2 9.234 4.617 0.5 0.1
Case 3 9.234 4.432 0.48 0.1
Case 4 9.234 4.246 0.46 0.1
Case 5 9.234 4.710 0.51 0.15
Case 6 9.234 4.617 0.5 0.15
Case 7 9.234 4.432 0.48 0.15

Table 6.4: Input data for the 1.5DoF model

The results of the calculations are given in the next chapter (7, Experimental campaign)
in order to analyze them with the models tests.
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7 Experimental campaign

The experimental campaign took place in the ship model basin of the institute CNR -
INSEAN situated in Rome, Italy. It was performed by Dr. Claudio Lugni. A parametric
roll study of a �shing vessel model with the following characteristics was carried out:

Ship Info
Length over all LOA 33.99 m
Length between perpendiculars Lpp 29.5 m
Beam overall BOA 9.5 m
Depth overall D 9.27 m
Volume displacement 5 640.775 m3

Waterplane area Aw 253 m2

Block coe�cient cb 0.449

Table 7.1: Main particulars of the �shing vessel model

Figure 7.1: Body plan of the �shing vessel

Validation of a numerical code means to check if the computer program is consistent
with the physical reality. For this purpose, model tests play an important role. From
a selected data, the relevant tests were taken out, in order to compare them with the
1.5DoF model calculations. The results are shown in table 7.2.
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Natural Period Wave Period Tw/Tn Circular Wave Occurrence
Tn[s] Tw[s] steepness kA

Case 1 2.92 1.49 0.51 0.1
√

Case 2 2.92 1.46 0.5 0.1
√

Case 3 2.92 1.40 0.48 0.1 X
Case 4 2.92 1.34 0.46 0.1 X
Case 5 2.92 1.49 0.51 0.15

√

Case 6 2.92 1.46 0.5 0.15
√

Case 7 2.92 1.40 0.48 0.15
√

Table 7.2: Input data for the test runs in the towing tank

7.1 Model test for validation of numerical calculations

The results obtained from the model tests (table 7.2) are compared with the results from
the calculations from table 6.4. The cases that are analyzed are edge cases, where para-
metric roll motion might occur or not. Table 7.2 shows when parametric rolling occurs
for the experiments. For the 1.5DoF model the input data was obtained from the exper-
iments e.g. (natural period, table 6.4 and damping table 5.5) and scaled to the actual
size. Then the results from section 6.4 are compared with the experiments.

By comparing both results from the experiments and numerical calculations, one can
see that they coincide. Although the di�erence between the cases are rather small (small
changes in incident wave lengths), they still agree with the experiments. This shows that
the model is quite accurate. Finally one can con�rm that the 1.5DoF model is consistent
with the experimental results.

7.2 Uncertainties

In order to carry out a computer code validation using model test results, one needs to
identify possible error sources, both for the model tests and for the numerical model.
In principle an uncertainty analysis should be carried out. This means that possible
error sources should be determined for the numerical analysis, as well as experimental
results. The e�ect of each error source should be systematically investigated by numerical
calculations. The validation procedure depends on the actual problem, in this case the
sensitivity of parametric roll occurrence. The steps for a validation procedure are:

1. Equal model loading condition; Ensure that the model and numerical parameters
are the same

• Geometry (with or whiteout skeg)

• Vessel draft and trim

• Metacentric height
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• Radius of gyration

2. Equal environment; Examine the environmental data used in model tests.

• Wave height H and period T

• E�ect of water depth

• Di�racted and re�ected waves of the roll motion

3. Equal test condition; Ensure that model test and calculations are carried out for
the same test cases

• Forward speed

• Wave heading

• Transient e�ects

4. Natural periods and damping; Compare calculated and measured roll damping.

5. In�uence of error ranges on results; Establish by numerical calculations the e�ect of
error ranges for the di�erent parameters (mainly roll damping) on the �nal results.

6. Comparison of results; The occurrence of parametric roll as well as the transient
phases and the maximum roll angle.
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8 Conclusions and Further work

8.1 Conclusions

The main focus of this study has been on parametric rolling and the aim was to ana-
lyze the sensitivity of parametric roll occurrence and features on a �shing vessel to the
environmental conditions. To achieve this, a 6DoF potential �ow solver was used to
compare di�erent damping characteristics, which are related to di�erent hull models or
appendages respectively. Furthermore, a 1.5DoF model was examined and used to in-
vestigate the occurrence of parametric roll while changing the environmental conditions.
Lastly, experimental model tests were used to validate the 1.5DoF method.

From decay tests of the �shing vessel, the di�erences in damping were obtained. As
expected the lowest damping was calculated from a bare hull. Adding a skeg to the
model gives a small increase in roll damping. Concerning bilge keels, one can observe a
considerable roll damping increase. The highest damping was found by the combination
of skeg and bilge keels. Using the 6DoF potential �ow solver, the maximum roll angle for
a given incident wave (where parametric rolling occurs) was obtained. The steady state
roll amplitude while parametric rolling was around 4 times smaller than using only the
bare hull model. These calculations were done using equivalent damping coe�cients as
well as linear and quadratic terms. The latter simulations are more consistent with the
physical results as they include viscous damping corrections.

For the 1.5DoF model the sensitivity of parametric roll occurrence was analyzed by
changing the incident wavelength and waveheight. This has been done separately by
keeping all values the same and using the wave properties as variables. Knowing the
damping parameters, one can then easily �nd the critical incident wave length or height
for parametric rolling to occur. The feature of using a �xed-trim or free-trim method,
changes the initial stability and therefore also when parametric roll takes place, being the
initial stability higher for the �x-trim method, when the wave crest is at the ship ends.
However both methods follow a similar trend with a noticeable phase shift. Generally
it can be said that the �xed-trim calculation is more conservative with respect to the
free-trim approach.

The validation of the 1.5DoF model was done using experimental data from model tests
which took place in the ship model basin of the institute CNR-INSEAN. By comparing
edge cases where instability of the vessel occurs and nearly occurs, it could be showed
that both the 1.5DoF numerical method and the experimental results coincide. It can
be said that the 1.5DoF model is consistent with the physical experiments.
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8.2 Further work

The occurrence of parametric rolling is largely dependent on the hull form and the en-
counter conditions. While the focus has been on a �shing vessel, other hull forms with
di�erent appendages or such as larger container vessels or smaller ships are not excluded
from encountering this phenomenon. This study may be extended onto di�erent hull
forms in order to see how the codes (6DoF and 1.5DoF model) fares with them to widen
its area of application.

The experimental results were only compared with the 1.5DoF model, however it could
be of interest to verify also the physical model results with the 6DoF potential �ow solver.
By doing so, not only the occurrence could be checked but also if the maximum roll angle
while parametric rolling is consistent with the experiments.

Considering that the 1.5DoF model does not include all 6 rigid ship body motions,
it would be interesting to study to what extent other motions such as yaw are neces-
sary for a reliable analysis of parametric roll. The coupling of other ship motions can
have considerable e�ect on the ship stability and it is not considered in the 1.5DoF model.

Since bilge keels showed a considerable increase in roll damping, it would be of interest
to study further cases by including them. This could be done experimentally, but also
using the 1.5DoF model and comparing the occurrence with the results from the numer-
ical 6DoF method.
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9 Nomenclature

Symbol Description
BM Metacentric radius
GM Transverse metacentric height
GZ Righting arm about center of gravity
KB Distance from keel to the vertical center of buoyancy
KG Distance from keel to the vertical center of gravity
A Sectional area
Aw Water plane area
Ajk Added mass matrix component
B Ship beam
Bjk Damping matrix component
Be Total roll damping
BE Eddy damping
BBK Bilge keel damping
BF Friction damping
BL Lift damping
BW Wave damping
cb Block coe�cient
Cd Drag coe�cient
Cm Inertia coe�cient
Cjk Restoring matrix component
cw Wave celerity
D Propeller diameter
E Young's modulus
FFKj Froude-Krilov force amplitude, for j = 1..6

Fn Froude number
F Force in general
Fg Gravitational force
Frsc Radiated and scattering force
fsc Scale coe�cient
G Center of gravity
g Gravitational constant
Hw Waveheight
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Symbol Description
H(ω) Mechanical transfer function
i Imaginary unit
I Second moment of area
Ij Moment of inertia
Ijk Product of inertia
J Advance coe�cient
K Keel
k Wave number
Lpp Length between perpendiculars
Lw Wave length
Lf Full scale ship length
Lm Model scale ship length
m Meters
Mjk Mass matrix component
Np Polynomial �tting degree
n Propeller rate of revolution
Q..jn Transformed Fourier coe�cients
p Pressure in general
peq Equivalent damping term
p1 Linear damping term
p2 Quadratic damping term
Re Reynolds number
Sw Wetted surface
sw Wave steepness
t Time
Te Period of encounter
Te Period of roll decay peak
V Volume of the body
Vs Ship speed
We Weber number
xc Wave crest position along the hull

Greek symbols

ε Phase angle
ηj Modes of rigid body motions
ηRj Real part of complex motion amplitudes
ηIj Imaginary part of complex motion amplitude
λ Scale factor
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Symbol Description
φ Static heel angle
ωw Wave frequency
ωe Encounter frequency
ω0 Natural roll frequency
Ω Angular velocity
ν Kinematic viscosity
ϑ Pitch angle
Φ Velocity potential
ρ Water density
χ Angle between ship heading and wave propagation
ξi Ship body motions along body the coordinate system
ξ Damping ratio
ζa Wave amplitude

Abbreviations

BOA Breadth Over All
DNV Det Norske Veritas
DoF Degrees of Freedom
IMO International Maritime Organization
LOA Length Over All
SSH Secure Shell
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10 Appendix A

Figure 10.1: Seakeeping motions with a bilge keel attached to the bare hull using the
equivalent damping coe�cient
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Figure 10.2: Seakeeping motions with a skeg and bilge keel attached to the bare hull
using the equivalent damping coe�cient
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Figure 10.3: Seakeeping motions with a skeg and bilge keel attached to the bare hull
using the linear and quadratic damping coe�cient
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11 Appendix B

Figure 11.1: Calculated GM variation for case 1. Blue - Free-trim; Red - Fixed-trim

Figure 11.2: Calculated GM variation for case 4. Blue - Free-trim; Red - Fixed-trim
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12 Appendix C

Here the MatLab codes used in this Master thesis are presented.

motions.m

clc
clear

mot = load('C:\Users\Johi\Desktop\roll\dsolnew.txt');
Time = mot(:,1);
surge = mot(:,2);
sway = mot(:,3);
heave = mot(:,4);
roll = mot(:,5);
pitch = mot(:,6);
yaw = mot(:,7);

figure(1);
plot(Time,roll);
xlim([0 400]);
ylim([-10 10]);
hold on

r=231
e=[-10:0.01:10]
plot (r,e)

xlabel('t/T');
ylabel('Â◦');
legend('Roll');

figure(2)
subplot(3,1,1)
plot(Time,surge);
xlim([0 400]);
xlabel('t/T');
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ylabel('Surge / wave amplitude');
legend('Surge');
title('Manouevring')

subplot(3,1,2)
plot(Time,sway);
xlim([0 400]);
xlabel('t/T');
ylabel('Sway / wave amplitude');
legend('Sway');

subplot(3,1,3)
plot(Time,yaw);
xlim([0 400]);
xlabel('t/T');
ylabel('[deg]');
legend('Yaw');

figure(3)
subplot(3,1,1)
plot(Time,heave);
xlim([0 400]);
xlabel('t/T');
ylabel('Heave / wave amplitude');
legend('Heave');
title('Seakeeping')

subplot(3,1,2)
plot(Time,roll);
xlim([0 400]);
ylim([-20 20]);
xlabel('t/T');
ylabel('[deg]');
legend('Roll');

subplot(3,1,3)
plot(Time,pitch);
xlim([0 400]);
xlabel('t/T');
ylabel('[deg]');
legend('Pitch');
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Natural frequency

figure(1);
[P1,F1] = pwelch(Angle,[],[],[],(1./0.0018));
plot(F1,P1);
xlim([0 1]);

xlabel('Frequency [s-1]');
ylabel('Spectral density');

[Y_1X,i_1X] = max(P1);
Oscillation_frequenzy = F1(i_1X)

Decay test

figure(1);
plot(Time,Angle);
xlabel('Time [s]');
ylabel('Roll angle [deg]');
legend('Decay (Roll)');

max(Angle);

for i= 1:1530;
Decay1(i) = Angle(8+i,:);

end
max1=max(Decay1)*pi/180;
for i= 1:1530;

Decay2(i) = Angle(1535+i,:);
end
max2=max(Decay2)*pi/180;
for i= 1:1530;

Decay3(i) = Angle(4595+i,:);
end
max3=max(Decay3)*pi/180;
for i= 1:1530;

Decay4(i) = Angle(6125+i,:);
end
max4=max(Decay4)*pi/180;
for i= 1:1530;
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Decay5(i) = Angle(7655+i,:);
end
max5=max(Decay5)*pi/180;
for i= 1:1530;

Decay6(i) = Angle(9185+i,:);
end
max6=max(Decay6)*pi/180;
for i= 1:1530;

Decay7(i) = Angle(10715+i,:);
end
max7=max(Decay7)*pi/180;
for i= 1:1530;

Decay8(i) = Angle(12245+i,:);
end
max8=max(Decay8)*pi/180;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i= 1:1530;
Decay1(i) = Angle(775+i,:);

end
min1=min(Decay1)*pi/180;
for i= 1:1530;

Decay2(i) = Angle(2305+i,:);
end
min2=min(Decay2)*pi/180;
for i= 1:1530;

Decay3(i) = Angle(3835+i,:);
end
min3=min(Decay3)*pi/180;
for i= 1:1530;

Decay4(i) = Angle(5365+i,:);
end
min4=min(Decay4)*pi/180;
for i= 1:1530;

Decay5(i) = Angle(6895+i,:);
end
min5=min(Decay5)*pi/180;
for i= 1:1530;

Decay6(i) = Angle(8425+i,:);
end
min6=min(Decay6)*pi/180;
for i= 1:1530;

Decay7(i) = Angle(9955+i,:);
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end
min7=min(Decay7)*pi/180;
for i= 1:1530;

Decay8(i) = Angle(11485+i,:);
end
min8=min(Decay8)*pi/180;

osc.freq=0.373
T=2.7473

damp1=(log(max1/max2))*(2/T);
damp2=(log(max2/max3))*(2/T);
damp3=(log(max3/max4))*(2/T);
damp4=(log(max4/max5))*(2/T);
damp5=(log(max5/max6))*(2/T);
damp6=(log(max6/max7))*(2/T);
damp7=(log(max7/max8))*(2/T);
damp8=(log(max8/max9))*(2/T);

damp=[damp1,damp2,damp3, damp4, damp5, damp6, damp7, damp8]

right1=(16/3)*abs(min1/T);
right2=(16/3)*abs(min2/T);
right3=(16/3)*abs(min3/T);
right4=(16/3)*abs(min4/T);
right5=(16/3)*abs(min5/T);
right6=(16/3)*abs(min6/T);
right7=(16/3)*abs(min7/T);
right8=(16/3)*abs(min8/T);
right=[right1, right2, right3, right4, right5, right6, right7, right8]

figure(4)
plot(damp,right)
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