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Abstract

The Phasor Measurement Unit (PMU) introduces new functionality to the mea-
surement spectrum, with accurate time tagging and synchronization capability, and
is thus the next step in the technological evolution of state estimation in electrical
power systems. This thesis presents the theoretical basis behind a two-pass hybrid
linear state estimation model, the aim of which is to utilize PMU measurements
in conjunction with classical state estimation. Following this, the construction of
a hybrid linear state estimator application is discussed. Numerical simulation has
been conducted to evaluate the feasibility of the model as a way of utilizing the
increasing availability of synchrophasor measurements to improve state estimation.
The results indicate a significant potential improvement of state estimation, espe-
cially in aspects of monitoring dynamic behaviour within the system.

Sammendrag

Fasormåleenheter (PMU) introduserer ny funksjonalitet blant målinger, med nøyak-
tig tidsstempling og synkroniseringsevne, og er dermed det neste steget i den tek-
nologiske utviklingen av tilstandsestimering av elektriske kraftsystemer. Denne
avhandlingen presenterer den teoretiske basisen for en to-stegs hybrid lineær til-
standsestimatormodell, med mål om å utnytte PMU-målinger i kombinasjon med
tradisjonell tilstandsestimering. Videre diskuteres konstruksjonen av en hybrid
lineær tilstandsestimatorapplikasjon. Numeriske simuleringer har blitt utført i
den hensikt å evaluere gjennomførbarheten til modellen som en måte å utnytte
den økende tilgangen på fasormålinger til å forbedre tilstandsestimering. Resul-
tatene indikerer en betydelig potensiell forbedring av tilstandsestimering, spesielt
for overvåkning av dynamisk atferd i systemet.
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1 | Introduction

1.1 Background

Over the course of the 20th century, the presence of electricity became increasingly
prevalent, especially in the more developed parts of the world. This development
has not seized after the passing of the last century, giving weight to the slogan of
the Norwegian TSO, Statnett: "The future is electric", and there are no indications
suggesting otherwise. Today’s modern society has reached a point where the use
of electric power has become an integral part of daily life. The importance of the
electric power supply is not only present in aspects of individual comfort, and has
also time and time again been identified as a critical factor for national security
and civil protection. The Norwegian white paper nr. 22 (2007-2008) states the
following. A stable and effective power system is a prerequisite for the societal
security in Norway [1].

The integration of renewable and distributed energy sources will in the time
ahead lead to more extremes and uncertainties in the electric power system, making
the continuous and reliable operation of the system increasingly challenging.

Given the above, equipping system operators with good tools for monitoring,
analyzing, optimizing and forecasting the power system is becoming increasingly
important.

1.1.1 History of the PMU
Voltage phasors in the power system have long been known to be a reliable way of
calculating active power flow. In the early 1980s, attempts were made to directly
measure bus voltage angle differences. The methods involved use of radio trans-
mission to establish synchronization between geographical locations and registering
voltage zero-crossing times. These early systems achieved decent measurement ac-
curacies given the available technology, but no filtering of disruptive frequencies
were present and only single-phase applications were attempted. [2]

In 1983, the first paper outlining the use of positive-sequence voltage and current
phasor measurements was published by A. G. Phadke and J. S. Thorp [3]. The
paper presented the utilization of the newly established Global Positioning System
(GPS) for highly precise time synchronization between units deployed over vast
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Introduction

geographical distances. Along with the paper, a prototype of the modern phasor
measurement unit (PMU) was constructed. [2]

The PMU has since been further developed as a measurement tool and is now
being implemented into power systems world-wide. Over the years, many technolo-
gies have been implemented into the state estimator, which today has become an
integral part of every power system control center around the globe. The phasor
measurement unit is the next step in this technological evolution, bringing new op-
portunities to the table that aim to increase the quality of system state estimation.

1.1.2 History of State Estimation
Many tools have been developed to aid system operators in maintaining the opera-
tional security, efficiency and reliability of the electric power system. The state es-
timator was introduced in the early 1970s, and has been an effective and important
tool for achieving monitoring and continuous security assessments from centralized
control rooms. Since its infancy, the fields of computational power, communica-
tions technology and power system engineering have seen great advances, and as a
result the state estimator has evolved with the access to new means of improving
the resulting estimate.

In January 1970, Schweppe and Wildes proposed methods of implementing
state estimation in power systems [4]. This made it possible for more accurate and
extensive analysis of Supervisory Control and Data Acquisition (SCADA)-collected
data from Remote Terminal Units (RTU) and, later, Intelligent Electronic Devices
(IED). This led to the introduction of the Energy Management System (EMS),
which facilitates the use of numerous analysis and planning applications such as
contingency analysis, optimal power flow and automatic generation control [5].

Today, functionality vary between different state estimators, but a common set
of applications includes the following.

Topology processor
Gathers the statuses of switches and circuit breakers to continuously create
updated one-line diagrams of the system.

Observability analysis
Evaluates the observability of the system given the available information.
Identifies unobservable sections of the system as well as observable islands.

State estimation solution
Calculates the estimate of the system state. May also provide estimates for
other system parameters, like line currents and load flows.

Bad data processing
Provided there is enough measurement redundancy, the state estimator can
identify greater errors in measurements and eliminate these from the state
estimation.

2
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Parameter and structural error processing
Provided there is enough measurement redundancy, estimates physical net-
work parameters.

1.2 Objective of the Thesis
The work conducted in this thesis will be twofold. Firstly, the theoretical basis of
both the modern PMU and classical state estimation will be outlined, followed by an
introduction to the concepts of hybrid linear state estimation. A hybrid estimator
will then be constructed based on the aforementioned theoretical aspects.

The second part of the work presented in this thesis will consist of a feasibility
study of the hybrid linear state estimator model as a way of utilizing the increas-
ing availability of synchrophasor measurements to improve state estimation. This
will be done through numerical simulations, with the aim of identify the possible
benefits of introducing PMU technology into state estimation.

The simulations will be conducted on a network model representing parts of
the Norwegian transmission grid. In addition to a general assessment of the hybrid
estimator model, its effectiveness and potential integration in the Norwegian system
will be evaluated.
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2 | The Phasor Measurement
Unit

This chapter aims to introduce the mathematical basis of the modern phasor mea-
surement unit, as well as a brief summary of its hardware and the communication
systems connecting the individual unit to the centralized monitoring system.

2.1 Phasor Representation of Sinusoids
Consider a sinusoidal wave given by the following

x(t) = Xm cos(ωt+ φ). (2.1)

In the above equation Xm is the peak amplitude of the signal. ω and φ are the
signal frequency [ rad

s ] and the phase angle [rad] to a reference, respectively. The
phase angle describes the phase-shifting of the signal compared to a sinusoid with
its peak at t0 = 0 seconds. Studying the time at which the signal reaches its peak,
tpeak, φ is defined as positive when the tpeak < t0. Equation 2.1 is an expression of
the instantaneous value of the signal at any time t. The sinusoid can, however, also
be represented as a time-independent complex quantity, X, as shown in Equation
2.2 below. [2] [6]

X = Xm[cos(φ) + j sin(φ)] (2.2)

X is known as the phasor representation of the signal, and is a vector with
magnitude corresponding to the peak value of the signal and angle difference from
the real axis equal to the phase angle φ outlined above. An illustration depicting
the relationship between a sinusoidal signal and its phasor representation is shown
in Figure 2.1. [2]

For use in AC circuitry it is convenient to employ the root mean square of the
signal, resulting in the following expression. [2]

X = Xm√
2

[cos(φ) + j sin(φ)]. (2.3)

5



The Phasor Measurement Unit

Figure 2.1: (a) Sinusoidal signal and (b) its phasor representation.

2.2 Phasor Measurement Units

AC voltages and currents in the power system can be modeled in the time domain
using sinusoids as outlined in the above section, and thus as phasors in the form
of Equation 2.3. The advantage of this conversion becomes evident when collect-
ing multiple measurements of voltage and current signals throughout the power
system in this form. Through utilization of a common time reference, phasor mea-
surements with identical time tags become comparable regardless of geographical
origin. This is solely by virtue of accurate synchronization of time tags, and thus
these phasor measurements are often referred to as synchrophasors. When col-
lected, the synchrophasor measurements provide instantaneous information about
the power system. [2]

Phasor measurement units, commonly referred to as PMUs, are devices installed
in substations throughout the electrical power grid to estimate the synchrophasors
of current and voltage signals, as well as frequency and rate of change of fre-
quency. Both hardware configuration and the software capabilities and applications
of PMUs differ between manufacturers. Consequently, the following description of
a generic PMU composition may not always be accurate, but describes the most
important aspects of the device given its core functionality. See Figure 2.2 as
reference for the following paragraphs. [2]

Instrument transformers convert the current and voltage signals to voltages in
an appropriate range (commonly around 10 volts) for the analog-to-digital con-
verter. The incoming analog signal is in practice corrupted by various signals.
These include harmonics, out-of-band signals and high frequency disturbances.
Anti-aliasing filters are utilized to extract a single frequency component from the
incoming signal, efficiently limiting corrupting frequencies from affecting the final
estimation. [2]
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Figure 2.2: Composition of a generic PMU. From Phadke and Thorp [2].

Highly accurate time stamps of each signal sample are needed for the collective
of PMUs to operate together. To achieve this, the global positioning system (GPS)
is used as a time reference, giving a sufficient accuracy in the range of 1 µs. The
GPS-receiver is connected to a phase-locked sampling clock, which provides the
analog-to-digital signal converter. The microprocessor is then able to calculate
the desired estimates and delivers the completed phasors and their accompanying
time stamps to the communication transmitter. Synchrophasor measurements from
PMUs located at different geographical locations are aggregated in a Phasor Data
Concentrator (PDC) for further use in applications concerning monitoring, control
and protection of the system. [2] [6]

The configuration of PMUs and PDCs differ according to the desired applica-
tion, and not very many working cases exist today. The principle idea is to install
PMUs in substations throughout the greater power grid, providing information
about big portions of the system. Figure 2.3 highlights installation locations of
PMUs and PDCs in the North American power grid. The amount of installed
devices has multiplied several times over the last decade, greatly improving the
information collection coverage in the region. A similar geographical overview of
installed and planned PMUs in Norway is given in Figure 2.4.

Standards regarding data file structure for PMUs were established by IEEE in
1991, and later updated in 2005 [8], allowing for units of multiple manufacturing
origins to collaborate.

7
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Figure 2.3: Geographical locations of networked PMUs and PDCs in North Amer-
ica as of October 2013. From the North American SynchroPhasor Initiative [7].
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The Phasor Measurement Unit

Figure 2.4: Geographical locations of networked (green) and planned (red) PMUs
in Norway as of October 2015. Courtesy of Statnett.
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3 | State Estimation

This chapter will present the theoretical principles behind state estimation for
power systems. The use of measurements in the weighted least square method
will be outlined, followed by a discussion of the classical state estimator. The
chapter will then move on to the subject of utilizing PMU measurements in state
estimation, leading up to Chapter 4 and the presentation of hybrid linear state
estimation as a way of integrating PMU technology into today’s state estimation
systems. The construction and testing of such an estimator will be presented in
the Chapters 5 and 6, respectively.

3.1 The Principles of State Estimation

The operating conditions of a transmission system can at any time be determined
when the voltage phasor of every bus in the system is known along with the com-
plete network model. This is often referred to as the static system state and is
assigned to one of three possible states: normal, emergency and restorative [5].
These states will not be discussed in detail in this report, as it is sufficient to know
that they indicate the operational safety of the system as a whole.

The process of identifying the current state of a system, given measurement
data collected throughout the geographical extent of the power grid, is called state
estimation. To avoid vulnerability to measurement errors and the loss or corruption
of data, this process is completed with a redundancy of measurements. Through-
out this thesis, it is assumed that the investigated system is observable, meaning
that a sufficient amount of measurements are available for the estimator to arrive
at a unique estimate of the system state. The process of determining whether
this requirement is satisfied will not be discussed in this work, but an extensive
explanation is provided in [5].

It is also worth noting that the methods introduced in this chapter represent one
of several existing formulations of the state estimation problem. The underlying
principles, however, remain the same throughout the various approaches.

11
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3.2 Mathematical Basis
In this section, the mathematical basis used to conduct state estimation will be
presented. Both a non-linear and a linear approach will be introduced.

3.2.1 Non-Linear Weighted Least Square
Consider a set of measurements given by the vector zT = [z1, z2, ..., zm] and the
non-linear functions hT = [h1(x), h2(x), ..., hm(x)] relating each measurement to
the state variables xT = [x1, x2, ..., xn]. Additionally, each measurement contains
an error ε, such that εT = [ε1, ε2, ..., εm].

z =


z1

z2
...
zm

 =


h1(x1, x2, ..., xn)
h2(x1, x2, ..., xn)

...
hm(x1, x2, ..., xn)

+


ε1

ε2
...
εm

 = h(x) + ε (3.1)

The measurement errors are assumed mutually independent and spread within a
Gaussian probability distribution with a mean of zero. To be able to weigh different
measurements according to their expected errors the matrix W is introduced as
the co-variance matrix for the error variance of each measurement. Because of the
independence of the individual errors, this matrix is purely diagonal, as illustrated
in Equation 3.2. [5]

W =


σ2

1 0 · · · 0

0 σ2
2

...
... . . .
0 · · · σ2

m

 (3.2)

Equation 3.1 can be turned with respects to the error matrix, giving an expres-
sion for the measurement errors.

ε = z− h(x) (3.3)

The objective function J(x) is defined as the sum of every error squared, each
divided by their individual variance.

J(x) = ε2
1
σ2

1
+ · · ·+ ε2

m

σ2
m

= εT ·W−1 · ε (3.4)

Equation 3.3 can be substituted into Equation 3.4 to get

J(x) = 1
2 · [z− h(x)]T ·W−1 · [z− h(x)]. (3.5)

12



State Estimation

The goal of the estimation is to minimize J(x). To achieve this, the first-order
optimality conditions must be satisfied. This can be expressed as

g(x) = δJ(x)
δx = −HT (x) ·W−1 · [z− h(x)] = 0, (3.6)

where H is the measurement Jacobian coefficient matrix

H(x) = δh(x)
δx . (3.7)

The gain matrix of this system is

G(xk) = δg(xk)
δx = HT (xk) ·W−1 ·H(xk), (3.8)

where xk is the solution vector at iteration k. g(x) is non-linear and can be
expanded into its Taylor series around the point x = xk. By neglecting all higher
order terms the resulting expression can be rearranged to arrive at Equation 3.9.
From here, the iterative Gauss-Newton method can be used to find a solution vector
satisfying a desired accuracy. [5]

xk+1 = xk − [G(xk)]−1 · g(xk) (3.9)

3.2.2 Linear Weighted Least Square
An estimation problem where all the measurements relate linearly to the state
variables can be written on the form of Equation 3.10 below.

z =


z1

z2
...
zm

 =


δh1
δx1

δh1
δx2

. . . δh1
δxn

δh2
δx1

...
... . . .

δhm

δx1
. . . δhm

δxn

 ·

x1

x2
...
xn

+


ε1

ε2
...
εm

 = H · x + ε (3.10)

In the above equation, H is the measurement Jacobian coefficient matrix. The
vectors z, x and ε are the sets of measurements, state variables and measurement
errors, respectively. Similar to the approach described in Subsection 3.2.1, the
diagonal co-variance matrix W is introduced, and the objective function becomes

J(x) = [z−Hx]T ·W−1 · [z−Hx]. (3.11)

Following the first-order optimality condition gives Equation 3.12, which can
be rearranged into Equation 3.13.

δJ(x)
δx

∣∣∣∣
x=x̂

= HTW−1Hx̂−HTW−1z = 0 (3.12)
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x̂ = (HTW−1H)−1HTW−1z (3.13)

As opposed to the method presented in Subsection 3.2.1, this estimation is
linear and direct, and does not require iterations. [2]

3.3 Power System Application

3.3.1 Classical State Estimation
The mathematical principles outlined in the previous section can be applied to the
electric power system. Traditional state estimators use measurements of various
types. The most common measurements are line power flows, bus power injections,
bus voltage magnitudes and line current flow magnitudes. Magnitude and angle
of bus voltages are used as the system’s state variables, giving the following state
vector for a system with n buses. [5]

xT = [θ1, θ2, . . . , θn, V1, V2, . . . , Vn] (3.14)

One of the angles are selected as the reference bus and set to an arbitrary
value, generally zero. Assuming all constant network parameters are known, the
measurement function for each of the measurement types can be found with the
help of a standard π equivalent transmission line model, as illustrated in Figure 3.1.
Vi and Vj represent the voltage magnitudes of the buses i and j. The parameters
gij+jbij and gs,ij+jbs,ij are the branch series and shunt admittances, respectively.

Figure 3.1: π equivalent model of transmission line.

The real and reactive line power flow measurements from bus i to bus j are
given by the Equations 3.15 and 3.16 below. [5]

Pij = V 2
i (gs,ij + gij)− ViVj(gij cos(θi − θj) + bij sin(θi − θj)) (3.15)

Qij = −V 2
i (bs,ij + bij)− ViVj(gij sin(θi − θj)− bij cos(θi − θj)) (3.16)
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Given Gij + jBij as the ij-th element of the bus admittance matrix and ℵi as
the set of buses connected to bus i, the real and reactive bus power injections are

Pi = Vi
∑
jεℵi

Vj(Gij cos(θi − θj) +Bij sin(θi − θj)) (3.17)

Qi = Vi
∑
jεℵi

Vj(Gij sin(θi − θj)−Bij cos(θi − θj)) (3.18)

The line current flow magnitude measurement function is

Iij =

√
P 2
ij +Q2

ij

Vi
(3.19)

This results in the measurement Jacobian coefficient matrix,H, given i Equation
3.20. Every row in the matrices z, H and ε represents the entirety of a single
measurement type. Similarly, the vectors in the x-matrix contain all bus voltage
angles and magnitudes. [5]

z =



Pflow

Qflow

Pinj

Qinj

Imag

Vmag


=



δPflow
δθ

δPflow
δV

δQflow
δθ

δQflow
δV

δPinj
δθ

δPinj
δV

δQinj
δθ

δQinj
δV

δImag
δθ

δImag
δV

δVmag
δθ

δVmag
δV


·

[
θ

V

]
+



εPflow

εQflow

εPinj

εQinj

εImag

εVmag


= H · x + ε (3.20)

An exhaustive list of the complete expressions for each H-matrix segment can
be found in Appendix A.

Given the non-linear relation between most of the measurements and the state
variables, the estimator is forced to use the non-linear approach presented in Sub-
section 3.2.1. This type of state estimator, utilizing SCADA-collected measure-
ments and applying the non-linear weighted least square method, is referred to as
the classical state estimator (CSE). One of the main problems with this type of
estimation is linked to the SCADA’s data scan duration and the lack of time stamp-
ing. It normally takes the SCADA system between 5 and 10 seconds to request
and receive measurements from the system’s RTUs, in which time the system state
might change. This means that an assumption central to classical state estimation
is that the system remains static throughout the process of measurement collection.
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This can have a big impact on the quality of the final estimate, depending on the
current operating conditions of the system. As an example, dynamic behaviours
like unwanted waveforms might be difficult to identify because of this. [2] [5]

3.3.2 State Estimation with Phasor Measurements
Imagine a system where PMUmeasurements alone could supply information enough
to form complete observability. This would have several effects on the estimate of
the system’s state. Firstly, it would allow the estimator to apply the linear and non-
iterative method outlined in Subsection 3.2.2. Both bus voltage and line current
measurements conducted by PMUs are given in rectangular coordinates. Because
of this, the state vector needs to be changed from polar to rectangular coordinates
for the shift to the linear approach to be achieved. This results in a state vector
on the form given in Equation 3.21, where n is the number of buses in the system.
The subscripts R and I denote the real and imaginary rectangular components of
the bus voltages, respectively.

x =
[

VR

VI

]
=




VR1

VR2
...

VRn


VI1

VI2
...
VIn




(3.21)

The second benefit of using only PMU measurements is rooted in their linked
time-tags. Since all measurements will have a very accurate time stamp, the static
assumption could be removed and the estimate would be a snapshot of the dynamic
system at the point in time where the synchrophasor measurements were collected.
A slight time skew is however unavoidable because of the communication delay.
Another benefit of the PMU-monitored system worth mentioning is the PMU’s
inherent low measurement error, which in general is smaller than that of the generic
RTU.

There are, however, a few issues that merits a mention. Conducting a state
estimation using purely PMU measurements will require a substantial amount of
the system’s buses to have a PMU installed. Redundancy is also a requirement to
be able to eliminate bad data caused by poor measurements and corruption during
communication. As per today, the aforementioned proposed system is unlikely
due to the costs of PMUs, but might become a reality in the years ahead, as PMU
technology gains a bigger foothold in both academic and commercial aspects. [2] [9]

The complete measurement model for this system is given in Equation 3.22
below. [9]
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z =


VR

VI

IR

II

 =



δVR
δVR

δVR
δVI

δVI
δVR

δVI
δVI

δIR
δVR

δIR
δVI

δII
δVR

δII
δVI


·

[
VR

VI

]
+


εVR

εVI

εIR

εII

 = H · x + ε (3.22)

The expressions δVR
δVI

and δVI
δVR

are both vectors of zeros, while both δVR
δVR

and
δVI
δVI

are sets of vectors, each representing a single bus voltage measurement, with 1
in columns corresponding to that specific measurement’s state variable, and zeros
as the remaining values. [9]

Consider a nominal π equivalent model of a transmission line illustrated in
Figure 3.2 below.

Figure 3.2: π equivalent model of transmission line.

Each of the variables depicted in the π model can be decomposed into rect-
angular coordinates as shown in the following equations. YL represents the total
series line admittance.

YL = 1
ZL

= 1
RL + jXL

(3.23)

YS is half of the total shunt admittance of the transmission line. Note that the
shunt conductance, GS , is often neglected in practical applications.

YS = GS + jBS (3.24)
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The bus voltages and line currents can be expressed in their real and imaginary
components.

Va = VR,a + jVI,a (3.25)

Iab = IR,ab + jII,ab (3.26)

The PMU measurements come in four variants, namely the real and imaginary
components of bus voltages and line currents. The measurement functions, ex-
pressed by the constant network parameters and the state variables, are presented
in Equations 3.27 through 3.30. [10]

VR,a = VR,a (3.27)

VI,a = VI,a (3.28)

IR,ab = VR,a · (GL +GS)− VI,a · (BL +BS)− VR,b ·GL + VI,b ·BL (3.29)

II,ab = VR,a · (BL +BS) + VI,a · (GL +GS)− VR,b ·BL − VI,b ·GL (3.30)

This gives the following general measurement Jacobian coefficient matrix, H,
where the measuring PMU is located in the substation of bus a with a line current
measurement conducted on the branch leading from bus a to bus b. [10]

H =



δVR,a

δVR,a

δVR,a

δVR,b

δVR,a

δVI,a

δVR,a

δVI,b

δVI,a

δVR,a

δVI,a

δVR,b

δVI,a

δVI,a

δVI,a

δVI,b

δIR,ab

δVR,a

δIR,ab

δVR,b

δIR,ab

δVI,a

δIR,ab

δVI,b

δII,ab

δVR,a

δII,ab

δVR,b

δII,ab

δVI,a

δII,ab

δVI,b


=



1 0 0 0

0 0 1 0

GL +GS −GL −(BL +BS) BL

BL +BS −BL GL +GS −GL


(3.31)

Given the above information, the linear weighted least square method discussed
in Subsection 3.2.2 can now be applied to the measurement model from Equation
3.22 to achieve the non-iterative solution given below [2].

x̂ = (HTW−1H)−1HTW−1z = M · z (3.32)

Note that the matrix M is constant as long as the network topology does not
change. This means that it can be pre-calculated offline and stored between esti-
mations, thus increasing speed of the process.
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3.4 Bad Data Detection and Elimination
The presence of bad measurements, measurement values that are not coinciding
with the actual parameter, is an inevitable occurrence in big measurement configu-
rations. These can be caused by an inaccurate measurement from the measurement
unit itself or because of a corrupted communication packet. The former of these
normally result in relatively small errors, whereas the latter can cause huge discrep-
ancies. In either case these measurements can to a large degree affect the outcome
of an estimation. Some measurements should therefore be eliminated before a final
estimation solution is reached. [2]

This process is referred to as bad data detection and elimination and can be done
in a number of different ways. The method highlighted here is completed in two
main steps. After an initial estimate has been completed, the measurements are
evaluated using a chi-squared test. Let z̃ be a vector containing the measurement
residuals, the differences between the measurements and their respective estimated
values so that

z̃ = z− ẑ = z−Hx̂, (3.33)
where x̂ is the resulting state vector after the initial estimation. Next, R is

defined as the co-variance of z̃.

R = Cov(z̃) = H(HTW−1H)−1HT (3.34)
Finally, the vector residuals are normalized by their co-variance matrix, result-

ing in c, a χ2-distributed variable with degrees of freedom corresponding to the
amount of measurements.

c = z̃TR−1z̃ (3.35)

Figure 3.3: Chi-squared distribution of c with 40 degrees of freedom. From Phadke
and Thorp [2].

The variable c is a representation of the total measurement residual of the
estimation, and an off-center value (e.g. above 60 or below 20 in the case of Figure
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3.3) indicates discrepancies in the measurements. For every specific case, an upper
and a lower bond is chosen as an acceptance limit for the measurement set. If c is
found to be outside the acceptable area the process moves on to its second step:
bad data rejection. Here, the measurement with the highest normalized residual is
found and removed from the data set before a new state estimation is conducted
with the updated measurement set. The result is again evaluated in the same way,
and the process is repeated until c is within the allowed band. [2]

Note that in cases with high amounts of measurements it can be pertinent to
remove several measurements for every iteration to reduce the total amount of
state estimations needed. Also, measurements with grossly big residuals are often
automatically removed after the first state estimation is conducted. [2]

This method is consistently used in classical static state estimation, which can
easily be done because of the sheer amount of measurements providing a high de-
gree of redundancy. This means that eliminating a few of the measurements will
not affect the complete observability of the system. With PMU measurements,
however, measurement redundancy is rarely present. This implies that bad data
detection and elimination on measurement sets consisting solely of synchrophasors
is in many cases impossible without reducing observability through removal of mea-
surements. It can, however, be applied in conjunction with static state estimation
results as described in the following chapter. Being able to eliminate any corrupt-
ing measurements despite lacking complete observability from PMUs alone is an
important advantage of the Hybrid Linear State Estimation model, which will be
discussed in the following chapter. [2]
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4 | Hybrid Linear State
Estimation

4.1 Background and Principle
PMU coverage is rarely extensive enough to single-handedly provide complete ob-
servability, let alone redundancy enough to give a satisfactory estimate of the
system state. Despite this, introducing synchrophasor measurements into state
estimation can potentially bring great benefits in terms of both accuracy and con-
fidence. Several methods of utilizing PMU measurements in state estimation has
been suggested. These include, but are not limited to, introducing PMU mea-
surements directly into classical state estimation by transforming them to polar
coordinates, and use of pseudo measurements of power flows in tandem with PMU
measurements to achieve complete observability. [2]

The approach discussed and investigated in this thesis was proposed by Nuqui
and Phadke in 2007 [9]. The proposed model attempts to tackle the problem of
incomplete PMU coverage through a two-pass verification method. The first pass
utilizes classical static state estimation through WLS using the system’s SCADA-
collected measurements, as discussed in Subsection 3.3.1. The second pass is a
linear state estimation using PMU measurements as well as the state vector result-
ing from the first pass. This can be viewed two ways; the static state estimation is
used to counter the lack of complete PMU obervability, or the PMU measurements
are used to improve the original static state estimation. Either way one chooses to
look at it, this model aims to improve on the final estimation of the system state.
Figure 4.1 presents a visual illustration of the hybrid linear estimation process. [9]

Note that the state vector must prior to the second pass be transformed from
polar to Cartesian coordinates for the linearity requirement to be satisfied.

A common angle reference between the state vector values and the PMU mea-
surements must also be established. Since most control centers today already em-
ploy a classical state estimator, this method would in practice be performed as a
post-processing operation of the initial state estimate. For this reason, the first pass
of the method is not discussed in-depth in this chapter. Since the two passes are
completed separately, the method is completely non-invasive and can therefore be
implemented alongside existing state estimators without compromising these. [2] [9]
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Figure 4.1: The two-pass hybrid linear state estimator model structure.
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4.2 Model Formulation
The second pass linear estimation is performed mathematically in a way similar
to that discussed in Section 3.3.2, where the state vector from the first pass, from
here referred to as the CSE state vector, is treated as a set of measurements. The
complete measurement model presented in Equation 3.22 is expanded to facilitate
the incorporation of the classically estimated state vector as shown in Equation 4.1
below. The subscripts CSE and PMU refer to values obtained from the classical
state estimator’s state vector and PMU measurements, respectively.

z =



[
VR

VI

]
CSE[

VR

VI

]
PMU[

IR
II

]
PMU


=



δVR,CSE
δVR

δVR,CSE
δVI

δVI,CSE
δVR

δVI,CSE
δVI

δVR,PMU
δVR

δVR,PMU
δVI

δVI,PMU
δVR

δVI,PMU
δVI

δIR,PMU
δVR

δIR,PMU
δVI

δII,PMU
δVR

δII,PMU
δVI



·

[
VR

VI

]
+



εVR,CSE

εVI,CSE

εVR,P MU

εVI,P MU

εIR,P MU

εII,P MU


= H · x + ε

(4.1)
The measurement Jacobian coefficient matrix, H, can be rewritten in the fol-

lowing manner

H =



I 0
0 I
II 0
0 II

δIR,PMU
δVR

δIR,PMU
δVI

δII,PMU
δVR

δII,PMU
δVI


, (4.2)

where I is an identity matrix and II is a set of vectors, each representing a
single bus voltage measurement, with 1 in columns corresponding to that specific
measurement’s state variable, and zeros as the remaining values. Additionally, the
co-variance matrix, W, has been expanded to include the variances of the CSE
state vector values as illustrated in Equation 4.3.
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W =



σ2
VR,CSE

. . . 0
σ2
VI,CSE

σ2
VR,P MU

...
... σ2

VI,P MU

σ2
IR,P MU

0 . . . σ2
II,P MU


(4.3)

In W, each element, σ2
type, is a diagonal matrix containing the individual mea-

surement variances within the distinct measurement type. [9]

The weighted least square solution of the model is non-iterative and on the
same form as in Subsection 3.2.2:

x̂ = (HTW−1H)−1HTW−1z (4.4)

4.3 A Brief Discussion of the Model
No approach to processing big amounts of data is perfect. This section aims to
briefly outline the most important benefits and flaws of the hybrid linear state
estimator model, on a strictly conceptual basis.

4.3.1 Benefits
The most obvious benefit provided by the above presented model is the potential
to increase estimate accuracy and thus increase the confidence of the result. This
will allow for better security margins and more sound economical decision making
for system operators.

Among present state estimators, an update to the estimate is normally cal-
culated with time intervals in the range of 10 seconds, while PMU systems often
report measurements at 50 Hz. This means that the hybrid estimator can deliver an
updated estimate with a much higher time-frequency than classical systems. This,
combined with the more meticulous time stamping of PMU measurements, allows
for more reliable detection of unwanted waveforms in the system, for example in
the case of faults in the system.

The use of the first pass state vector as measurements increases the redundancy
of measurements and allows for bad data detection and elimination among PMU
measurements, despite having a low number of units deployed in the system.

Lastly, it should again be pointed out that the hybrid estimator can be used
as post processing of existing classical state estimator systems, and can be im-
plemented in a non-invasive manner completely separate from the SCADA-system
and EMS.
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4.3.2 Problems
A requirement for the steady operation of the hybrid estimator is the successful
convergence of the classical state estimator. Although this is rarely a problem, it
would halt the hybrid model until a CSE state vector is provided.

Another prerequisite for the model is a common angle reference with the CSE.
The obvious solution to this is monitoring the reference bus of the classical es-
timator with a PMU. In the case of unit breakdown or telemetry faults at this
substation, however, there should be a protocol for selecting a new common refer-
ence in its place.

Finding a good value for the variance of the elements in the first pass state
vector is difficult. One approach to this is to let the relevant components of the
co-variance matrix, W, be a representation of the confidence and expected variance
of the classic state estimator results. Unfortunately, this is only valid for the first
iteration of the hybrid estimator after it receives a state vector from the CSE. As
the hybrid estimator will run several times between each CSE iteration, it is clear
that the older the CSE estimate is, the less reliable it becomes. One way of dealing
with this problem is to gradually change the weight of the measurements depending
on their age. This approach can help in compensating for the time skew, but is
still not a perfect solution.

Last but not least it should be mentioned that, despite introducing PMU mea-
surements into the estimation process, the static assumption can not be removed,
due to the continued extensive use of SCADA-collected measurements.
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5 | Model Construction

5.1 Purpose and Objective
As part of this work, a Hybrid Linear State Estimator (HLSE) has been constructed
and tested within different simulation environments. This chapter describes the
approach taken in the construction process. The aim of the model was to conduct
a proof-of-concept study to investigate the method’s feasibility as a way of utilizing
the increasing availability of synchrophasor measurements to improve classical state
estimation. The functionality objective of the model was to use the methodology
introduced in the previous chapters to arrive at a system state estimate, given the
following simulated input data:

Network data
Topology layout and parameter data for each branch in the system.

PMU measurements
Synchrophasor measurements of bus voltages and line currents in rectangular
coordinates, along with their physical locations in the network.

SCADA measurements
Measurements of line power flows, bus power injections, bus voltage magni-
tudes and line current flow magnitudes, conducted by RTUs and collected by
a SCADA-system.

5.2 Model Structure
The resulting hybrid linear state estimator application was constructed as a set of
Matlab scripts. Matlab version 8.4.0 (R2014b) [11] was used in both the construc-
tion of the application and the subsequent numeric simulation analysis.

The estimator application is run from a Main script, acting as a hub for the
second pass of the estimator model. Several functions are connected to the Main
script, each performing different tasks related to the state estimation process. The
Main script is in turn called by a Run_simulation script which controls the test-
ing environment of the numerical simulations. Figure 5.1 illustrates the complete
application structure and the information exchanged between the Main script and
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each individual function. Each of the model’s components and their functionality
will be discussed in the following subsections. Most of the produced scripts are
supplied in Appendix B.

5.2.1 Use of Downloaded Scripts
In this work, the focus point of the construction and testing processes revolved
around the second pass of the hybrid estimator. In the later testing of the model,
supplying a realistic state vector to the second pass of the hybrid estimator was
important. The first pass of the HLSE can be conducted with a standard classical
state estimator. This is a tried and tested algorithm of which scripts are readily
available on file exchange communities. A power system state estimator utilizing
the non-linear weighted least square method was downloaded from the Matlab
Central File Exchange. This script was used as the first pass of the estimator. The
name of the downloaded document is Power System State Estimation using WLS
and can be found by following this hyperlink [12].

This script was modified to work as a Matlab function, enabling other scripts
to call upon it to receive a classically estimated state vector from a supplied set
of measurements. The network model used for testing the final application was
added to the downloaded script. Additionally, a measurement error generator was
implemented in the script. The latter is further discussed later in this chapter.

5.2.2 Run_simulation Script
The numerical simulations applied to the hybrid estimator application, as described
in Chapter 6, involve the execution of several state estimation runs. These extended
tests are governed by the Run_simulation script. It is not technically a part of
the estimator application itself, but is rather what prompts every new estimation
to start throughout the testing process. The main task of this component is to
manage the simulation by supplying the Main script with the input data relevant
for the desired test and by collecting the results from the estimator so that they
can later be accessed. For the purpose of the numerical simulations, it also runs
the classical state estimator, enabling it to supply the second pass with a realistic
classically estimated state vector, and error generation scripts to add measurement
errors to all measurements.

The data provided by Run_simulation to the Main script is given in two ma-
trices: measurements and branches. The measurements matrix is a list of measure-
ments and values that are viewed by the linear state estimator as measurements.
This means that it is comprised of PMU measurements of bus voltages and line
currents, together with the classically estimated state vector, which in the second
pass is considered as measurements. Each row of the matrix represents a single
measurement, whilst the range of information provided with each measurement is
defined by the matrix’s columns. An overview of information contained within the
measurements matrix is given in Table 5.1.
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Figure 5.1: A graphical representation of the Hybrid Linear State Estimator ap-
plication structure. The yellow blocks represent the scripts that constitute the two-
pass hybrid estimator algorithm. The grey blocks are scripts needed to conduct the
numerical simulations.
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Table 5.1: Information contained within the measurements matrix.

Unit number The arbitrary number given to each specific value
Unit type The type specification of each value

Type 1: PMU bus voltage measurements
Type 2: PMU line current measurements
Type 3: Classic state estimation bus voltage values

Bus from Type 1 and 3: the bus at which the value corresponds to
Type 2: the substation in which the PMU is located

Bus to Type 1 and 3: not used
Type 2: the bus at the opposite end of the measured branch

Value The measured or estimated value as a complex number
given in rectangular coordinates and per unit

Confidence The variance of the value’s expected measurement or
estimation error in per unit

The branches matrix provides the estimator application with information re-
garding the network topology through a complete list of the branches in the system.
The build-up of the matrix is similar to the measurements matrix described above,
with individual branches represented in each row and accompanying information
given in the different columns. An overview of information contained within the
branches matrix is given in Table 5.2. This matrix provides the state estimator
with enough information to form a complete model of the network topology.

Table 5.2: Information contained within the branches matrix.

Branch number The arbitrary number given to each branch
Bus from The buses connected by the branch
Bus to It is insignificant which is selected as from and to
Series impedance The series impedance of the branch as a complex

number given in per unit
Shunt admittance The total shunt admittance of the branch as a

complex number given in per unit
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It should be mentioned that the Run_simulation script changes slightly between
the Monte Carlo steady-state based tests conducted to investigate the effects of
PMU coverage and measurement weighting, and the time based dynamic response
simulations. The purpose of the script, however, remains the same throughout the
numerical simulations.

5.2.3 Main Script
The second pass of the hybrid linear state estimator application is run from the
Main script, which is acting as a hub for the estimation process. Its task is to
handle the exchange of information between the estimator’s function scripts and
deliver the final estimate back to the Run_simulation script. After receiving the
measurements and branches matrices from the Run_simulation script, it passes
them both on to the Reconstruction script, which returns the set of matrices re-
quired to complete the linear state estimation. The Main script then hands these
matrices over to the Linear_estimation script, which completes the final linear
state estimate. After receiving the resulting state vector, the Main script returns
this to the Run_simulation script, thus completing its run.

In addition to this, the script has two optional operations, both essential to
the testing process. First of these is the ability to manually set the weights of
the three types of measurements, influencing the degree of impact the individual
types have on the final estimate. The second optional action is to initiate the
Current_calculation script, which returns the actual line currents of the system.

5.2.4 Reconstruction Script
This script constructs the matrices required to complete the linear state estimation
based on the measurements and branches matrices. The constructed matrices are
called M, W and H, and correspond to z, W and H from Equation 4.4. After
these are constructed, they are returned to the Main script.

5.2.5 Linear_estimation Script
Supplied with the matrices outlined in the above subsection, this short script con-
ducts the non-iterative linear state estimation using Equation 4.4. After this cal-
culation, the estimated system state is returned to the Main script as the state
vector.

5.2.6 Error_generator Scripts
The purpose of this script is to add measurement errors to an existing set of mea-
surements, which are used in the numerical simulation to mimic real-world mea-
surement errors. It does this by creating probability distributions based on the
measurement types, within which it calculates an error for each individual mea-
surement. This error is added to the measurement, and then returned to the Main
script.
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The probability distributions are all Gaussian with zero mean, and have stan-
dard deviations given by the user. The script also contains an optional operation
which allows the user to print the measurement errors in comparison to the original
set of measurement.

Appendix B contains the Error_generator script used to handle PMU mea-
surements. The measurements given to the classical state estimator are also given
errors according to the same principles, through the script referred to as Er-
ror_generator_cl in the attached Matlab code.

5.2.7 Current_calculation Script
The Current_calculation script uses the measurement Jacobian coefficient matrix,
H, together with the correct state vector of the system, calculated using PSS®E
[13], to calculate the correct line currents in all measurement points of line currents.
This includes line current measurements from both PMUs and RTUs.

This operation is optional, and did not actively take part in any of the tests
conducted. It was, however, needed for the simulation of the above mentioned
measurements. The script was used prior to the testing processes to complete the
measurements matrix with correct measurements for the following simulations.
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6 | Numerical Simulation and
Testing

6.1 Purpose and Objective
To investigate the feasibility of the hyrid linear state estimator model, several nu-
merical simulations were conducted using the Matlab model presented in Chapter
5, with parallel simulations run in PSS®E [13] for validation. The numerical simula-
tions are discussed in detail throughout this chapter, with the aim of mapping both
the model’s fulfillment of its functionality objectives and its effectiveness compared
to a classical state estimator.

6.2 Simulation Network Model
The constructed estimator application can accommodate any grid configuration,
provided it is given the needed input data. The network model employed through-
out the tests conducted with the estimator is part of the Statnett Tunglast Norges-
modell, a PSS®E model containing the Norwegian transmission system in a heavy
load scenario. Due to its origin, the use of this model does not only serve as an
assessment of the hybrid estimator as a concept, but also to investigate the viabil-
ity of importing system data directly from Statnett’s existing models. Specifically,
the tested grid fragment is the span between the substations Alta and Kirkenes.
A single-line diagram of the grid is provided in Figure 6.1. This is a 10-bus sys-
tem, and is hence given the name Finnmark 10-Bus Model. The substations Alta,
Adamselv, Varangerbotn and Kirkenes each contain an installed and networked
PMU, capable of line current measurements of all connected branches.

6.3 Core Functionality Validation
Before the numerical simulations were initiated, the basic functionality of the esti-
mator application was subjected to a short validation study. By running PSS®E’s
decoupled Newton-Raphson loadflow simulation, the steady-state solution of the
Statnett Tunglast Norgesmodell was found. This solution was used as a baseline
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Figure 6.1: Single-line diagram of the Finnmark 10-Bus Model.

for the tests and considered to be the correct, or target, values in the following val-
idation study. These values, including bus voltages, line currents, power injections
and line power flows, were then given to the estimator application in the form of
measurements. No measurement errors were added to the input date. Since the
network topology and the set of constant parameters comprising the Finnmark
10-Bus Model is a fragment of the greater Statnett Tunglast Norgesmodell run in
PSS®E, the expected result of running the estimator with the correct measurements
would be a correct state vector. This was achieved.

Following this, an additional test was conducted to validate whether the second
pass of the estimator application handled all types of measurements correctly. The
three types of measurements given to the second pass are the following.

PMU voltage
Bus voltage measurements from buses with an installed PMU.

PMU current
Line current measurements from branches connected to buses with an in-
stalled PMU.

CSE voltage
The classically estimated state vector resulting from the first pass of the
estimator. These comprise a complete list of the bus voltages.

Measurement errors were introduced to two of these sets at a time, whilst keep-
ing the remaining set of measurements as the correct values found in PSS®E. The
measurement errors were simulated and added to the measurement sets using the
Error_generator script. This test was not meant to mimic a real estimation sce-
nario, and thus the standard deviation of the probability distributions used to
produce the measurement errors were arbitrarily set to 2 percent of the measured
value. The estimation weight of the unaltered (correct) measurement set was grad-
ually increased, and a Monte Carlo simulation of 200 runs were conducted for each
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step. Both remaining measurement sets, now affected by the simulated measure-
ment errors, were kept at weights of 1.

It should be noted that in this and the following simulations, the linear estima-
tion solution as presented in Equation 4.4 is changed so that the co-variance matrix,
W, is not inverted. This is done for the practical aspects of letting higher values in
theW matrix result in a more predominant use of the corresponding measurement,
and not the inverse, which is true for the previously presented equation.

For each Monte Carlo run, the standard deviation of the estimation error was
recorded. The results of the simulations are shown in the Figures 6.2a and 6.2b
below. The graphs illustrate the development of the standard deviation of magni-
tude and angle errors in the estimated state vector as the relative weighting of the
correct measurement type increases. Each value is the mean of standard deviations
across all 200 Monte Carlo runs.

It is clear that heavier weighting of correct measurements contribute to a lower
standard deviation among errors in the estimated state vector. The limited cover-
age of PMUs, however, restricts the achievable lower bound of the errors. This is
true even at a relative weighting of one million, at which point the correct measure-
ment set is virtually the only one deciding the state variables it is directly related
to. The reason for this is the fact that there are only 4 PMUs in the Finnmark
10-Bus System, giving the estimator PMU measurements of only 4 bus voltages
and 9 line currents to work with. This leaves many buses not directly connected
to any of the available values without errors, thus making it impossible to reach a
perfect estimate in this way.

To illustrate this effect, a similar set of Monte Carlo simulations were conducted,
this time with a PMU in every single bus in the system. The results are shown
in the Figures 6.3a and 6.3b below. Here, the potential lower limit of the error
is evidently reduced. It should be pointed out that tests where the PMU current
measurements are error free give worse results than the others. This is assumed to
occur because the other two measurement types, PMU bus voltage measurements
and the CSE state vector, are direct measurements of the monitored values, whilst
the PMU current measurements need an additional calculation operation to reach
bus voltages. This is evident considering the measurement Jacobian coefficient
matrix, H, presented in Equation 4.2.

The simulations above conclude the validation of the estimator application’s
target functionality. The simulations gave the expected results when given perfect
input data and demonstrated its ability to utilize the measurement weighting to
its advantage in a desired manner.
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Figure 6.2: Standard deviations of state vector errors of magnitude (a) and angle
(b). Each curve represents the results of a simulation where the indicated measure-
ment sets are kept at perfect values, whilst the remaining sets are given measure-
ment errors. The correct measurement sets are gradually given increased weights in
the estimation process. 4 PMUs were included in the model during this simulation.
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Figure 6.3: Standard deviations of state vector errors of magnitude (a) and angle
(b). Each curve represents the results of a simulation where the indicated measure-
ment sets are kept at perfect values, whilst the remaining sets are given measure-
ment errors. The correct measurement sets are gradually given increased weights in
the estimation process. 10 PMUs were included in the model during this simulation.
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6.4 Numerical Simulations
Following the confirmation of the estimator application’s functionality, the testing
moved on to simulating real measurement scenarios. Three numerical simulations
were performed during the testing process, divided into two different testing envi-
ronments. The first two of these were steady-state Monte Carlo simulations, during
which the impact of measurement weights and the number of deployed PMUs were
investigated, independently. The third and last simulation was that of a dynamic
response of a fault scenario. In this test, the hybrid linear state estimation model’s
ability to monitor the dynamic behaviour of the system was examined.

Table 6.1: Simulation environments and the tests conducted within each of them.

Testing environments
Monte Carlo Time spanning

steady-state simulation dynamic simulation
Measurement
weighting test

PMU coverage
test Dynamic behaviour handling test

6.4.1 Measurement Errors
Throughout the following simulations, for each Monte Carlo run and relevant time
step, the Main script would run the Error_generator script for both PMU mea-
surements and the classical state estimator with its integrated measurement error
simulation. This meant that the measurement set supplied to the estimator ap-
plication’s second pass contained measurement errors as would be expected in a
real estimation scenario. As discussed in Chapter 5, the measurement errors were
simulated using a Gaussian probability distribution with a mean of zero, where a
user defined standard deviation determined its span of possible outcomes.

The measurements given as input to the classical state estimator script, meaning
all SCADA-collected RTU measurements, were given a standard deviation of 2
percent of the measured value. Despite these errors in the classical estimator
input, the resulting estimated state vector consistently ended up with far lower
errors in the steady-state environment. The classical state estimator’s results in
the dynamic scenario were much weaker. This was, however, in great part due to
the uncertainty in measurement time more than the individual measuring errors,
as will be discussed in more detail in Subsection 6.4.4.

The magnitudes of the measurement errors applied to the PMU measurements
through the Error_generator script were determined by the IEEE Standards for
Synchrophasors for Power Systems [8]. This standard states that a PMU mea-
surement must have a total vector error (TVE) of less than 1 percent. For the
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following simulations, a standard deviation of PMU measurement errors were se-
lected so that 1 percent of all measurements would fall outside of this limit. The
calculation conducted to reach the value of this standard deviation can be found
in Appendix C.

6.4.2 Measurement Weighting Test
The first of the two Monte Carlo steady-state simulations aimed to investigate the
impact of PMU measurement weighting relative to those of the classically estimated
state vector values. For each step of a gradual increase of the PMU measurement
weights, a 1000-run Monte Carlo simulation was performed with measurement er-
ror generation as described in Subsection 6.4.1. The simulation was run on the
Finnmark 10-Bus System, where 4 PMUs are installed.

For each completed estimation, the standard deviations of the state vector er-
ror for both magnitude and angle were calculated and stored. The Figures 6.4a
and 6.4b below show the mean of the 1000 standard deviations for each relative
weighting preset.

Magnitude errors for the state vector components clearly improve with increas-
ing weighting of the PMU data. At a relative weight of 5, the hybrid estimator’s
magnitude error standard deviation is reduced to half of that of the classically
estimated state vector.

The estimation accuracy of bus voltage angles, on the other hand, ends up
suffering at higher measurement weights. This is probably due to the fact that
the classical state estimator results are in polar form and thus give a direct link to
the angle. In comparison, the PMU line current measurement needs to go through
several calculations to end up with an expression of the bus voltage angle, increasing
the potential final error.
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Figure 6.4: Standard deviations of state vector errors of magnitude (a) and angle
(b). The graphs illustrate the results from simulations conducted in the hybrid linear
state estimator compared to the classical state estimator. The PMU measurements
are gradually given increased weights in the estimation process.
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6.4.3 PMU Coverage Test
The second investigation conducted within the steady-state simulation environment
studied the impact of the number of phasor measurement units installed in the
tested system. The network parameters, except for the number of PMUs, was
kept identical to the Finnmark 10-Bus System. Similarly, the measurement error
generation remained as outlined in Subsection 6.4.1. The number of PMUs ranged
from zero to 10, at which point every bus in the system would have an installed
unit. For each test case, a 1000-run Monte Carlo simulation was conducted, and
the standard deviations of the state vector error for both magnitude and angle were
calculated and stored. The Figures 6.5a and 6.5b below show the mean of the 1000
standard deviations for each measurement unit coverage preset.

It should be mentioned that all simulated PMUs were given access to all branches
connected to their substation. Due to the promising results presented in 6.4.2, the
relative weighting of PMU measurements were set to five times that of the CSE
state vector.

From Figure 6.5b, it is evident that the estimated bus voltage angles are not
affected greatly by the number of phasor measurement units, although complete
or close to complete coverage of the system generates a slightly better result than
the classical state estimator.

The bus voltage vector magnitude, on the other hand, experiences a clear en-
hancement of estimation results as the number of PMUs is increased. At 4 PMUs,
equating to a coverage of 40 % of all buses, the standard deviation of magnitude
errors is more than halved compared to a classical state estimator operating alone.

When reaching a high degree of PMU coverage in the system, the incremental
improvement of the estimate stagnates somewhat. The introduction of the four
last PMUs (from 6 to 10 installed units) each yield an average of 2,2 % better
estimations compared to the CSE. Comparatively, the first five units installed (from
zero to 5) enhance the magnitude estimation by an average of 11,8 % for every
additional PMU.

This set of simulations concludes the steady-state Monte Carlo testing environ-
ment.
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Figure 6.5: Standard deviations of state vector errors of magnitude (a) and angle
(b). The graphs illustrate the results from simulations conducted in the hybrid
linear state estimator compared to the classical state estimator. The number of
PMUs installed in the system are gradually increased throughout the simulations.
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6.4.4 Dynamic Behaviour Handling Test

The following simulations were conducted in a slightly different manner from the
ones discussed above. Instead of the steady-state loadflow simulation previously
used as the data basis, the Statnett Tunglast Norgesmodell was instead subjected
to a dynamic analysis in PSS®E. The model was preparatory run under stationary
conditions to reach a stable operation point. Following this introductory phase, the
hydroelectric power plant, Alta Kraftverk, located at bus 3:Sautso, was disconnected
from the system. This lead to a dynamic response in the system, causing waveforms
that gradually stabilized at a new equilibrium point after approximately 15 seconds.
The Figures 6.6a and 6.6b depict the dynamic behaviour of the Sautso Substation
after the disconnection of Alta Kraftverk. The data collected from this PSS®E
dynamic simulation was used as input for the dynamic testing environment.
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Figure 6.6: Bus voltage magnitude (a) and angle (b) at Sautso Substation follow-
ing the disconnection of Alta Kraftverk. The disconnection occurs after 5 seconds.
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Under the assumption of a steady-state system and the absence of telemetry
failure, both PMU and RTU measurement errors are singularly dependent on the
inaccuracy of the measuring unit itself. When the measured signal becomes time
dependent, another layer of measurement uncertainties is added. As mentioned
in Chapter 3, it normally takes the SCADA system between 5 and 10 seconds
to request and receive measurements from the system’s RTUs. RTUs employ no
precise time stamping system for their measurements, as opposed to PMUs, and
thus the measured value might be taken from any point within the 5-10 second
data collection period, in which time the measured value might change. Figure 6.7
illustrates this point, showing how a value measured within the SCADA collection
time period, Tscan, could range from Amin to Amax.

Figure 6.7: Representation of the possible outcomes of an RTU measurement,
given its time and amplitude uncertainties, here illustrated by ε and Tscan, respec-
tively. Measurements may range from Amin to Amax.

To recreate this effect, the simulated RTU measurements given as input to the
hybrid estimator first pass (the classical state estimator) were chosen randomly
from the previous five seconds of actual system values. As an example, consider a
measurement used in a classical state estimation conducted at second 10 into the
simulation. This value would be randomly picked from all the measured variable’s
states within the time interval spanning from T = 5 seconds to T = 10 seconds.
The measurements would subsequently be subjected to the previously introduced
error generation, applying the unit’s inherent measurement uncertainty to the final
value.

Phasor measurements are meticulously time tagged, and therefore do not pos-
sess this weakness. Because of this, the PMU measurements used in these sim-
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ulations were only given errors based on the measurement unit uncertainty. All
inherent unit uncertainty errors were calculated in the same manner as described
in Subsection 6.4.1.

Throughout the dynamic behaviour simulation, the classical state estimator was
run every 10 seconds, mirroring an ordinary control center system. Meanwhile, the
second pass of the hybrid estimator application was run 50 times every second,
corresponding to the reporting time of the phasor measurement units. As a result
of this, the first pass results, the classically estimated state vector, would be reused
as input to the second pass several hundred times before being updated by a new
classical estimation process. Due to the promising results presented in 6.4.2, the
relative weighting of PMU measurements were set to five times that of the CSE
state vector.

The aim of this simulation was to compare the hybrid linear state estimator’s
ability to monitor the dynamic behaviour of a system to that of a classical state
estimator. For this reason, the tests recorded the results from both the classical
and hybrid estimators, as well as the actual system data as calculated by PSS®E.

The Figures 6.8 and 6.9 illustrate the estimator results recorded in the sub-
stations Alta and Sautso. The system dynamics were monitored with near equal
accuracy throughout the system, hence only these two buses are illustrated. It is
immediately clear that the classical estimates (conducted at second zero, 10, 20
and 30) provide a far inferior representation of the system’s dynamic behaviour
than that produced by the hybrid estimator. Despite this, the hybrid estimate is
undoubtedly heavily influenced by the first pass state vector. This is evident by
the manner of which the hybrid estimate is frequently drawn towards the classical
estimate and away from the actual values. Considering the construction of the
hybrid estimator and its method of handling PMU measurements in conjunction
with the first pass state vector, this effect is expected.

There are, however, exceptions to this, one of which can be observed in the bus
voltage magnitude plots in Figure 6.8a and 6.8b. The hybrid estimates in the time
window between second 7 and 10 pull in the opposite direction of the classically
estimated values. This is probably caused by the big voltage angle discrepancy in
this period, which can be seen in Figure 6.9.

The final estimates contain a substantial amount of noise due to the simulated
measurement errors. This is especially true for bus voltage magnitudes, and less
prevalent among the angle estimates. For practical applications, a low-pass filter
should be included in the algorithm to reduce this effect.
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Figure 6.8: Bus voltage magnitude at Alta (a) and Sautso (b) substations follow-
ing the disconnection of Alta Kraftverk. The disconnection occurs after 5 seconds.
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Figure 6.9: Bus voltage angle at Alta (a) and Sautso (b) substations following
the disconnection of Alta Kraftverk. The disconnection occurs after 5 seconds.
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The problems outlined above often become larger as the age of the first pass
state vector increases. In an attempt to combat the disruptive effects of old state
vector values, a new weighting system was introduced into the simulation. The
introduced concept is based on gradually decreasing the weight of state vector as
it ages. When a new classical state estimation would be completed, the weight
of its state vector would be restored, only to again be incrementally reduced over
the subsequent 10 seconds. The following equation was introduced to the Matlab
scripts.

Weightstatevector = 10.000−Age[ms]
10.000 (6.1)

Figure 6.10 depicts the development of the first pass state vector weight over
time based on Equation 6.1.
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Figure 6.10: Measurement weights of the first pass state vector as a function of
its own age. A new estimated state vector is produced every 10 seconds, renewing
the credibility, and thus the weights, of the values.

The results obtained using the new weighting system are portrayed in the Fig-
ures 6.11 and 6.12. As can be observed, the angle estimation errors are greatly
reduced through the process of reducing the weight of the classically estimated
state vector. This, in turn, prohibits the magnitude estimation error seen in Fig-
ure 6.8.
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Figure 6.11: Bus voltage magnitude at Alta (a) and Sautso (b) substations fol-
lowing the disconnection of Alta Kraftverk with age adjusted first pass state vector
weight. The disconnection occurs after 5 seconds.
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Figure 6.12: Bus voltage angle at Alta (a) and Sautso (b) substations following
the disconnection of Alta Kraftverk with age adjusted first pass state vector weight.
The disconnection occurs after 5 seconds.
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7 | Discussion and
Concluding Remarks

7.1 Assumptions and Simulation Weaknesses

Throughout the processes of model construction and numerical simulation, a col-
lection of assumptions were made. This section will highlight these assumptions
and briefly discuss their impact on the simulation results.

The constructed Matlab estimator application does not have an integrated ob-
servability analysis tool. In all simulations presented in this thesis, complete ob-
servability was at all times present by virtue of the great amount of measurements
used in the Finnmark 10-Bus Model, hence observability was never a relevant is-
sue. In a real-world application of any estimator, however, observability should
be considered to ensure the validity of the estimation. Observability analysis of
measurement topologies has not been discussed in this work, but an extensive ex-
planation is provided in [5].

In Subsection 6.4.3, a stepwise activation of phasor measurement units was
conducted, from zero units to complete coverage. The order of activation was de-
termined on a basis of intuition and geographical spread. There exists, however,
analytical methods of optimizing placements of PMUs. The aim of these methods
is to acquire the best possible range of measurement information given an available
number of units. Several sources of published material discuss this issue, includ-
ing the Power System Engineering Research Center report Optimal Placement of
Phasor Measurement Units for State Estimation [14]. In the case of the numerical
simulations conducted in this work, the radial nature of the test system makes the
aforementioned methods virtually redundant, due to the low complexity of power
flow directions within the network. It is likely that only small improvements could
have been achieved by applying a more meticulous approach.

Several assumptions were made in regards to measurement errors. Firstly, the
inherent measurement inaccuracy of the units themselves were simulated to be
spread over a Gaussian distribution with a mean of zero. The use of the Gaussian
probability distribution was a reasonable approach, assuming that all metering
units discussed in this work generally adhere to this norm. The zero-mean as-
sumption addresses any constant offset in the measurements, which in this case is
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considered non-existent. In practice, measurement units can develop such offsets
over prolonged periods of time if not regularly adjusted, which in turn can impact
state estimator results.

Furthermore, all measurement value errors were considered independent. This
is also a sound assumption given the fact that most units are not directly linked
in any way, and thus any discrepancy occurring in one unit should not affect the
recorded measurements in the others.

The final assumption related to measurement error was that of ignoring teleme-
try failure. This includes both corruption of communication packets as well as any
potential downtime of a unit or communications link. In other words, the simula-
tions conducted assumed all measurement units in the system to be operational and
able to transmit their measurements to the control center without complications.
Both of these issues are inevitable components of a real power system and should be
expected and managed accordingly when implementing a state estimator. The aim
of this study has been to investigate the feasibility of the hybrid linear estimator
methodology. As the prospects of unit downtime is more an issue of observability,
it does not impact the feasibility analysis. The problem of communication failure
introduces problems that can be handled with relative ease through the utilization
of the bad data detection and elimination process discussed in Chapter 3. The lack
of such corrupted measurements in the simulations meant a bad data detection and
elimination module was not needed in the constructed Matlab application.

The numerical simulations heavily relied on the network analysis results pro-
vided by PSS®E. Given the coherent and consistent results produced by the Matlab
estimator application, it is safe to say that the imported data was valid. It should
still be noted that a loss of data accuracy could have occurred in the process of
data transfer, e.g. in the form of lost decimals.

As was explained in Chapter 3, the co-variance matrix of the linear estimator
model is used as a means to weigh the different types of measurements. In all of
the numerical simulations performed in this work, the values selected for the mea-
surement weights were based on the results from the measurement weighting test
described in Subsection 6.4.2. In a real-world implementation of a hybrid state
estimator model, however, a more rigorous approach of utilizing the individual
measurement unit’s accuracy should be applied. Despite straying from this prin-
ciple, the performed simulations give a good indication of the capabilities of the
hybrid estimator model compared to its classical counterpart.

Owing to very extensive durations of the dynamic behaviour simulations, each
case was simulated only once. This reduces the ability to reach a generalized
conviction with basis in the collected results. Despite this, the simulations still
provided a good indication of the performance of the hyrid estimator model. It
should also be noted that, although every case was simulated once, every single 32-
second simulation conducted 1600 hybrid linear state estimations and four classical
state estimations. The high number of estimations is a result of the chosen second
pass estimation time step of 20 ms.
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7.2 Evaluation of Conducted Simulations
This section will summarize the results found throughout the numerical simula-
tions. Each separate simulation aimed to investigate one or several aspects of the
hybrid linear state estimator model in comparison to the classical state estimator
and identify possible benefits of the model.

The measurement weighting test illustrated the importance of measurement
weights in the estimation process. The results indicate a strong potential decrease
in estimated bus voltage magnitude errors by increasing the relative PMU mea-
surement weights. The incremental impact was by far at its highest when the
PMU weights were within the first few multiples of the first pass values’ weights.
At exceedingly high relative weights, the incremental benefit of further increase
approached zero. The bus voltage angle estimates ended up suffering from higher
weightings of the PMU measurements. This suggests that, under steady-state con-
ditions, the classical approach estimates bus voltage angles as proficiently as the
hybrid estimator.

The PMU coverage test studied the impact of the number of installed phasor
measurement units in the monitored system. Despite the meager incremental im-
provements of higher degrees of coverage, it is clear that increasing the system
coverage of PMUs positively influence estimation accuracy as well as reliability.
This is especially true if factors like telemetry faults and unit down-time are con-
sidered, which indirectly decrease the number of available PMU measurements.

Lastly, the dynamic behaviour simulation investigated the hybrid estimator
model’s ability to monitor the system dynamic response, in this case caused by
the disconnection of a power plant. Despite some slight errors, the hybrid linear
state estimator’s capabilities of detecting and monitoring waveforms in the system
far exceeds that of the classical state estimator. The improvement comes in three
forms. Firstly, the estimation error is decreased compared to that of the classical
estimation. Secondly, the frequency of the estimations greatly improves the track-
ing proficiency of dynamic behaviour and unwanted waveforms. The third and
last factor of improvement is the time of detection of unwanted dynamics in the
system. Depending on when during the classical estimation cycle a dynamic event
occurs, it could take up to 10 seconds for the control center to become aware of it.
The hybrid estimator, on the other hand, registers the fault in a matter of 50-100
milliseconds, plus any communication delay.

7.3 Concluding Remarks
The introductory chapter stated that the aim of this study was to investigate the
feasibility and effectiveness of the two-pass hybrid linear state estimation model
as a way of utilizing the increasing availability of synchrophasor measurements to
improve state estimation. The findings obtained through the numerical simulations
show great improvements in state estimation results, both in a steady-state and
dynamic environment, even with a relatively small number of PMUs in the system.
The improvement compared to the classical state estimator was especially prevalent

53



Discussion and Concluding Remarks

in the aspect of detecting dynamic behaviour in the system, due to the time-
synchronization capabilities of the PMUs.

A careful selection of weighting methodology is still advised for any practical ap-
plication, and the inclusion of age-adjusted measurement weights is recommended.
The constructed estimator application illustrated the fact that the method is com-
pletely non-invasive to existing state estimation systems, adding to the practical
appeal of the model as a way of introducing synchrophasors to state estimation.
All in all, the feasibility of the two-pass hybrid linear state estimation model, as
proposed by Nuqui and Phadke [9], has been confirmed.

Additionally, all testing was conducted using existing PSS®E network models
owned by Statnett. This demonstrates that existing network models can be em-
ployed in the estimator model with ease, and simultaneously proves the feasibility
of the model in the Norwegian transmission system. The simulations indicate that
even a small number of PMUs can greatly improve system monitoring.

Given the increasing number of phasor measurement units in the Norwegian
transmission grid and the growing initiative of PMU integration within Statnett,
it is recommended that a pilot project is launched, employing the two-pass hybrid
estimator model principles in the existing wide area monitoring system.
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A | Measurement Jacobian
Coefficient Equations

In this appendix, an exhaustive list of the complete expressions for each H-matrix
segment from Equation 3.20 is given. [5]

Line power flow:

δPij
δθi

= ViVj(gij sin(θi − θj)− bij cos(θi − θj)) (A.1)

δPij
δθj

= −ViVj(gij sin(θi − θj)− bij cos(θi − θj)) (A.2)

δPij
δVi

= −Vj(gij cos(θi − θj) + bij sin(θi − θj)) + 2Vi(gij + gs,ij) (A.3)

δPij
δVj

== −Vi(gij cos(θi − θj) + bij sin(θi − θj)) (A.4)

δQij
δθi

= −ViVj(gij cos(θi − θj) + bij sin(θi − θj)) (A.5)

δQij
δθj

= ViVj(gij cos(θi − θj) + bij sin(θi − θj)) (A.6)

δQij
δVi

= −Vj(gij sin(θi − θj)− bij cos(θi − θj))− 2Vi(bij + bs,ij) (A.7)

δQij
δVj

= −Vi(gij sin(θi − θj)− bij cos(θi − θj)) (A.8)
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Bus power injection:

δPi
δθi

=
n∑
j=1

ViVj(−Gij sin(θi − θj) +Bij cos(θi − θj))− V 2
i Bii (A.9)

δPi
δθj

= ViVj(Gij sin(θi − θj) +Bij cos(θi − θj)) (A.10)

δPi
δVi

=
n∑
j=1

Vj(Gij cos(θi − θj) +Bij sin(θi − θj)) + ViGii (A.11)

δPi
δVj

= Vj(Gij cos(θi − θj) +Bij sin(θi − θj)) (A.12)

δQi
δθi

=
n∑
j=1

ViVj(Gij cos(θi − θj) +Bij sin(θi − θj))− V 2
i Gii (A.13)

δQi
δθj

= Vj(−Gij cos(θi − θj)−Bij sin(θi − θj)) (A.14)

δQi
δVi

=
n∑
j=1

Vj(Gij sin(θi − θj)−Bij cos(θi − θj))− ViBii (A.15)

δQi
δVj

= Vi(Gij sin(θi − θj)−Bij cos(θi − θj)) (A.16)

Line current magnitude:

δIij
δθi

=
g2
ij + b2

ij

Iij
· ViVj sin(θi − θj) (A.17)

δIij
δθj

= −
g2
ij + b2

ij

Iij
· ViVj sin(θi − θj) (A.18)
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δIij
δVi

=
g2
ij + b2

ij

Iij
· (Vi − Vj cos(θi − θj)) (A.19)

δIij
δVj

=
g2
ij + b2

ij

Iij
· (Vj − Vi cos(θi − θj)) (A.20)

Bus voltage magnitude:

δVi
δθi

= 0 (A.21)

δVi
δθj

= 0 (A.22)

δVi
δVi

= 1 (A.23)

δVi
δVj

= 0 (A.24)
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B | Estimator Application
Matlab Scripts

This appendix provides the produced Matlab scripts that constitute the constructed
two-stage hybrid linear estimator application.

B.1 Run_simulation script

B.1.1 Monte Carlo Simulation

1 % -----------------------------------------------------%
2 % -------------- MONTE CARLO SIMULATION ---------------%
3 % -----------------------------------------------------%
4

5 % -----------------------------------------------------%
6 % ----- User input for amount of Monte Carlo runs -----%
7 % -----------------------------------------------------%
8

9 runs = 1000;
10

11 % -----------------------------------------------------%
12 % ------ Creating vectors for result collection -------%
13 % -----------------------------------------------------%
14

15 % Vector for collecting standard deviation of vector
magnitude

16 error_sd_mag = zeros(runs ,1);
17

18 % Vector for collecting standard deviation of vector
angle

19 error_sd_ang = zeros(runs ,1);
20
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21

22 % -----------------------------------------------------%
23 % Creating Branches and Measurements matrices with

actual values
24 % -----------------------------------------------------%
25

26 % ---------------- Branches ------------------------%
27 % [ Branch_nr , Bus_f , Bus_t , Series_impedance (Z=R+jX)

, Shunt_admittance (the total shunt admittance )]
28 branches = [
29 1 1 2 0.22669+1.3055 i 0.00526 i;
30 2 1 3 0.19224+0.7807 i 0.00257 i;
31 3 2 4 0.25195+1.30183 i 0.00272 i;
32 4 3 4 0.37478+1.52958 i 0.00408 i;
33 5 4 5 0.49047+2.01225 i 0.00404 i;
34 6 5 7 0.56704+1.9329 i 0.00375 i;
35 7 5 6 0.39337+1.61331 i 0.00324 i;
36 8 6 7 0.0871+0.35686 i 0.00071 i;
37 9 7 8 0.300256+0.786273 i 0.001505 i;
38 10 8 9 0.353396+0.925427 i 0.001771 i;
39 11 9 10 0.316168+0.82794 i 0.001584 i
40 ];
41

42 % ------------------- Measurements -------------------%
43 % Type 1: PMU bus voltage measurement
44 % Type 2: PMU branch current measurement
45 % Type 3: Classic state estimation bus voltage value
46 % Commented out rows are used in the PMU coverage test
47 % [ Unit_nr , Type , Bus_f , Bus_t , Measurement_value ,

confidence ]
48 measurements = [
49 % Type 1: PMU bus voltage measurements
50 1 1 1 0 0.2865+1.0123 i 10;
51 2 1 5 0 0.2111+1.0286 i 10;
52 3 1 7 0 0.2128+1.0161 i 10;
53 4 1 10 0 0.1372+1.0418 i 10;
54 % 0 1 2 0 0.3224+0.9981 i 10;
55 % 0 1 3 0 0.2742+1.0206 i 10;
56 % 0 1 4 0 0.2894+1.0046 i 10;
57 % 0 1 6 0 0.2154+1.0168 i 10;
58 % 0 1 8 0 0.1909+1.0249 i 10;
59 % 0 1 9 0 0.1634+1.0343 i 10;
60 % Type 2: PMU line current measurement
61 5 2 1 2 0.0032749+0.029299 i 10;
62 6 2 1 3 -0.0076258 -0.016859 i 10;

vi



Estimator Application Matlab Scripts

63 7 2 5 4 0.00023574+0.039876 i 10;
64 8 2 5 7 0.0037916+0.002947 i 10;
65 9 2 5 6 0.0045808+0.0045069 i 10;
66 10 2 7 5 -0.0076252 -0.0021521 i 10;
67 11 2 7 6 -0.0041018+0.0063759 i 10;
68 12 2 7 8 -0.0012598 -0.027938 i 10;
69 13 2 10 9 -0.0034527+0.030852 i 10;
70 % 0 2 4 2 -0.0013405+0.025753 i 10;
71 % 0 2 4 3 -0.0096586 -0.011176 i 10;
72 % 0 2 4 5 -0.0043426 -0.038865 i 10;
73 % 0 2 8 7 -0.000276+0.028242 i 10;
74 % 0 2 8 9 0.00011814 -0.029083 i 10;
75 % 0 2 2 1 -0.0085624 -0.027698 i 10;
76 % 0 2 2 4 -0.0013831 -0.024921 i 10;
77 % 0 2 6 5 -0.0078943 -0.0038159 i 10;
78 % 0 2 6 7 0.0033801 -0.0062239 i 10;
79 % 0 2 3 1 0.0050135+0.01758 i 10;
80 % 0 2 3 4 0.0055273+0.012326 i 10;
81 % 0 2 9 8 -0.0019415+0.029397 i 10;
82 % 0 2 9 10 0.0018084 -0.030614 i 10;
83 % Type 3: Classic state estimation bus voltage value
84 14 3 1 0 0.2865+1.0123 i 10;
85 15 3 2 0 0.3224+0.9981 i 10;
86 16 3 3 0 0.2742+1.0206 i 10;
87 17 3 4 0 0.2894+1.0046 i 10;
88 18 3 5 0 0.2111+1.0286 i 10;
89 19 3 6 0 0.2154+1.0168 i 10;
90 20 3 7 0 0.2128+1.0161 i 10;
91 21 3 8 0 0.1909+1.0249 i 10;
92 22 3 9 0 0.1634+1.0343 i 10;
93 23 3 10 0 0.1372+1.0418 i 10;
94 ];
95

96

97 % -----------------------------------------------------%
98 % ----------- PSSE calculated bus voltages ------------%
99 % -----------------------------------------------------%

100

101 % [ Bus_nr , V_Amplitude , V_Angle ]
102 PSSE = [
103 1 1.0521 74.2;
104 2 1.0489 72.1;
105 3 1.0568 74.96;
106 4 1.0454 73.93;
107 5 1.05 78.4;
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108 6 1.0394 78.04;
109 7 1.0381 78.17;
110 8 1.0425 79.45;
111 9 1.0471 81.02;
112 10 1.0508 82.5
113 ];
114

115 % Recalculation to rectangular coordinates
116 for i = 1: length (PSSE)
117 PSSE_rec (i ,1) = i;
118 [ PSSE_rec (i ,2) ,PSSE_rec (i ,3)] = pol2cart (PSSE(i ,3)

*2* pi /360 , PSSE(i ,2));
119 end
120

121

122 % -----------------------------------------------------%
123 % Runs the estimator application the selected amount of

times
124 % -----------------------------------------------------%
125

126 for t = 1: runs
127

128 % Runs error_generation functions to add measurement
errors to measurements

129 measurements = error_generator ( measurements );
130 error_cl = wls_function ( );
131

132 for n = 1: num_t_3
133 [X Y] = pol2cart ( error_cl (n ,3) *2* pi /360 , error_cl

(n ,2));
134 measurements (n + num_t_1 + num_t_2 , 5) = X + j*Y

;
135 end
136

137 % Initiating estimator application
138 V = main( measurements , branches );
139 [a, b] = size(V);
140

141 % Creating placeholder vectors for storing vector errors
after each estimation

142 errors_magnitude = zeros(a/2 ,1);
143 errors_angle = zeros(a/2 ,1);
144

145 % For -loop for extraction of estimation errors
146 for n = 1:a/2
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147

148 % Display printing of errors
149 % st = ['Bus ', num2str (n), ': ', num2str (V(2*n

-1)), ' ', num2str (V(2*n)) 9 '| ' num2str (
PSSE_rec (n ,2)) 9 num2str ( PSSE_rec (n ,3)) 9 9
'| Differanse : ' num2str (V(2*n -1) - PSSE_rec
(n ,2)) 9 num2str (V(2*n) - PSSE_rec (n ,3))];

150 % disp(st);
151

152 % Calculation of estimation errors
153 magnitude_estimated = sqrt ( (V(2*n -1))^2 + (V

(2*n))^2 );
154 magnitude_actual = sqrt ( ( PSSE_rec (n ,2))^2 + (

PSSE_rec (n ,3))^2 );
155 errors_magnitude (n ,1) = magnitude_estimated -

magnitude_actual ;
156

157 angle_estimated = atan( V(2*n) / V(2*n -1) )
*360/(2* pi);

158 angle_actual = atan( PSSE_rec (n ,3) / PSSE_rec (n
,2) ) *360/(2* pi);

159 errors_angle (n ,1) = angle_estimated -
angle_actual ;

160 end
161

162 % Calculaton of the error set 's standard deviation
163 counter_m = 0;
164 counter_a = 0;
165 for n = 1:a/2
166 counter_m = counter_m + ( errors_magnitude (n ,1))

^2;
167 counter_a = counter_a + ( errors_angle (n ,1))^2;
168 end
169 error_sd_mag (t ,1) = sqrt ( counter_m / (a/2) );
170 error_sd_ang (t ,1) = sqrt ( counter_a / (a/2) );
171 end
172

173

174 % -----------------------------------------------------%
175 % Calculation and optional plotting of mean estimation

error standard deviation across all estimation runs
176 % -----------------------------------------------------%
177 mean_mag_error = sum( error_sd_mag ) / runs
178 mean_ang_error = sum( error_sd_ang ) / runs
179 error_sd_mag = sort ( error_sd_mag );
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180 error_sd_ang = sort ( error_sd_ang );
181 % plot( error_sd_mag )
182 % plot( error_sd_ang )

B.1.2 Dynamic Response Simulation

1 % -----------------------------------------------------%
2 % ------------ DYNAMIC RESPONSE SIMULATION ------------%
3 % -----------------------------------------------------%
4

5 % -----------------------------------------------------%
6 % Creating matrices with actual pre -fault initial values
7 % -----------------------------------------------------%
8

9 % ---------------- Branches ------------------------%
10 % [ Branch_nr , Bus_f , Bus_t , Series_impedance (Z=R+jX)

, Shunt_admittance (the total shunt admittance )]
11 branches = [
12 1 1 2 0.22669+1.3055 i 0.00526 i;
13 2 1 3 0.19224+0.7807 i 0.00257 i;
14 3 2 4 0.25195+1.30183 i 0.00272 i;
15 4 3 4 0.37478+1.52958 i 0.00408 i;
16 5 4 5 0.49047+2.01225 i 0.00404 i;
17 6 5 7 0.56704+1.9329 i 0.00375 i;
18 7 5 6 0.39337+1.61331 i 0.00324 i;
19 8 6 7 0.0871+0.35686 i 0.00071 i;
20 9 7 8 0.300256+0.786273 i 0.001505 i;
21 10 8 9 0.353396+0.925427 i 0.001771 i;
22 11 9 10 0.316168+0.82794 i 0.001584 i
23 ];
24

25 % ----------------- Initial CSE values -----------------%
26 % [ Unit_nr , Type , Bus_f , Bus_t , Measurement_value ,

confidence ]
27 measurements_se = [
28 % Type 1: PMU bus voltage measurements
29 1 1 1 0 0.2865+1.0123 i 10;
30 2 1 5 0 0.2111+1.0286 i 10;
31 3 1 7 0 0.2128+1.0161 i 10;
32 4 1 10 0 0.1372+1.0418 i 10;
33 % Type 2: PMU branch current measurement
34 5 2 1 2 0.0032749+0.029299 i 10;
35 6 2 1 3 -0.0076258 -0.016859 i 10;
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36 7 2 5 4 0.00023574+0.039876 i 10;
37 8 2 5 7 0.0037916+0.002947 i 10;
38 9 2 5 6 0.0045808+0.0045069 i 10;
39 10 2 7 5 -0.0076252 -0.0021521 i 10;
40 11 2 7 6 -0.0041018+0.0063759 i 10;
41 12 2 7 8 -0.0012598 -0.027938 i 10;
42 13 2 10 9 -0.0034527+0.030852 i 10;
43 % Type 3: Classic state estimation bus voltage value
44 14 3 1 0 0.2865+1.0123 i 10;
45 15 3 2 0 0.3224+0.9981 i 10;
46 16 3 3 0 0.2742+1.0206 i 10;
47 17 3 4 0 0.2894+1.0046 i 10;
48 18 3 5 0 0.2111+1.0286 i 10;
49 19 3 6 0 0.2154+1.0168 i 10;
50 20 3 7 0 0.2128+1.0161 i 10;
51 21 3 8 0 0.1909+1.0249 i 10;
52 22 3 9 0 0.1634+1.0343 i 10;
53 23 3 10 0 0.1372+1.0418 i 10;
54 ];
55

56 % --------------- Initial hybrid values ---------------%
57 measurements_hybrid = [
58 % Type 1: PMU bus voltage measurements
59 1 1 1 0 0.2865+1.0123 i 10;
60 2 1 5 0 0.2111+1.0286 i 10;
61 3 1 7 0 0.2128+1.0161 i 10;
62 4 1 10 0 0.1372+1.0418 i 10;
63 % Type 2: PMU branch current measurement
64 5 2 1 2 0.0032749+0.029299 i 10;
65 6 2 1 3 -0.0076258 -0.016859 i 10;
66 7 2 5 4 0.00023574+0.039876 i 10;
67 8 2 5 7 0.0037916+0.002947 i 10;
68 9 2 5 6 0.0045808+0.0045069 i 10;
69 10 2 7 5 -0.0076252 -0.0021521 i 10;
70 11 2 7 6 -0.0041018+0.0063759 i 10;
71 12 2 7 8 -0.0012598 -0.027938 i 10;
72 13 2 10 9 -0.0034527+0.030852 i 10;
73 % Type 3: Classic state estimation bus voltage value
74 14 3 1 0 0.2865+1.0123 i 10;
75 15 3 2 0 0.3224+0.9981 i 10;
76 16 3 3 0 0.2742+1.0206 i 10;
77 17 3 4 0 0.2894+1.0046 i 10;
78 18 3 5 0 0.2111+1.0286 i 10;
79 19 3 6 0 0.2154+1.0168 i 10;
80 20 3 7 0 0.2128+1.0161 i 10;
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81 21 3 8 0 0.1909+1.0249 i 10;
82 22 3 9 0 0.1634+1.0343 i 10;
83 23 3 10 0 0.1372+1.0418 i 10;
84 ];
85

86

87 % -----------------------------------------------------%
88 % ------- Creates matrices for storing results --------%
89 % -----------------------------------------------------%
90 result_hybrid = zeros (1601 ,20);
91 result_se = zeros (4 ,20);
92

93

94 % -----------------------------------------------------%
95 % ------- For -loop covering 32000 milli - seconds -------%
96 % -----------------------------------------------------%
97 for t = 0:32000
98

99

100 % -----------------------------------------------------%
101 % Activation of classical state estimator every 10

seconds
102 % -----------------------------------------------------%
103 if t == 0 || t == 10000 || t == 20000 || t == 30000
104 if t == 0
105 num = 1;
106 elseif t == 10000
107 num = 2;
108 elseif t == 20000
109 num = 3;
110 elseif t == 30000
111 num = 4;
112 end
113

114 % Correction of angle reference
115 [ angle_reference c] = cart2pol (real(

measurements_hybrid (1 ,5)) , imag(
measurements_hybrid (1 ,5)));

116 angle_reference = angle_reference * 360 / (2* pi)
117

118 % Creating a new set of SCADA measurements and running
CSE

119 error_cl = wls_function_2 ( t + 10000 ,
angle_reference );

120 for n = 1:10
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121 [X Y] = pol2cart ( error_cl (n ,3) *2* pi /360 ,
error_cl (n ,2));

122 measurements_se (n + 13, 5) = X + j*Y;
123 result_se (num , n * 2 - 1) = sqrt ( X^2 + Y^2

);
124 result_se (num , n * 2) = atan ( Y / X ) * 360

/ (2* pi);
125 end
126

127

128 end
129

130

131

132 % -----------------------------------------------------%
133 % Activation of hybrid linear state estimator every 50

milliseconds
134 % -----------------------------------------------------%
135 if mod(t ,20) == 0
136 measurements_hybrid = get_values ( t + 15000 , t

+ 15001 , 1);
137 for n = 14:23
138 measurements_hybrid (n ,5) = measurements_se (n

,5);
139 end
140 measurement_units = error_generator (

measurement_units );
141 V = estimator ( measurements_hybrid , branches , t

);
142 [a, b] = size(V);
143

144 for bus_n = 1:10
145 result_hybrid ((t/20) + 1, bus_n * 2 - 1) =

sqrt ( (V(2* bus_n -1))^2 + (V(2* bus_n))^2
);

146 result_hybrid ((t/20) + 1, bus_n * 2) = atan(
V(2* bus_n) / V(2* bus_n -1) ) *360/(2* pi);

147 end
148 end
149 end
150

151 % -----------------------------------------------------%
152 % ------------ Optional printing of results -----------%
153 % -----------------------------------------------------%
154 result_hybrid
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155 result_se

B.2 Main script

1 % -----------------------------------------------------%
2 % -------------------- MAIN SCRIPT --------------------%
3 % --------------- Estimator Second Pass ---------------%
4 % -----------------------------------------------------%
5

6

7 % -----------------------------------------------------%
8 % --------------- Function declaration ----------------%
9 %- The script returns the completed state vector : V --%

10 % -----------------------------------------------------%
11

12 function [ V ] = main( measurements , branches )
13

14

15 % -----------------------------------------------------%
16 % ---------- Measurement confidence override ----------%
17 % For testing purposes , the measureent weights can be

overridden here%
18 % -----------------------------------------------------%
19

20 num_t_1 = 0; % Amount of type 1 measurements
21 num_t_2 = 0; % Amount of type 2 measurements
22 num_t_3 = 0; % Amount of type 3 measurements
23 for n = 1: length ( measurements )
24 if measurements (n ,2) == 1
25 num_t_1 = num_t_1 + 1;
26 elseif measurements (n ,2) == 2
27 num_t_2 = num_t_2 + 1;
28 elseif measurements (n ,2) == 3
29 num_t_3 = num_t_3 + 1;
30 end
31 end
32 for n = 1: num_t_1 % Type 1 weights
33 measurements (n ,6) = 1;
34 end
35 for n = 1: num_t_2 % Type 2 weights
36 measurements ( num_t_1 +n ,6) = 1;
37 end
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38 for n = 1: num_t_3 % Type 3 weights
39 measurements ( num_t_1 + num_t_2 +n ,6) = 1;
40 end
41

42

43 % -----------------------------------------------------%
44 % -------- Initiates the reconstruction script --------%
45 % -----------------------------------------------------%
46

47 [ H , W , M ] = reconstruction ( branches , measurements
);

48

49

50 % -----------------------------------------------------%
51 % ------- Initiates the linear estimation script ------%
52 % -----------------------------------------------------%
53

54 V = linear_estimation ( M, H, W );
55

56

57 % -----------------------------------------------------%
58 % -------- Optional current calculation script --------%
59 % -----------------------------------------------------%
60

61 %The current calculation script requires the correct
state vector , PSSE_rec

62 % [ Bus_nr , V_Amplitude , V_Angle ]
63 PSSE = [
64 1 1.0521 74.2;
65 2 1.0489 72.1;
66 3 1.0568 74.96;
67 4 1.0454 73.93;
68 5 1.05 78.4;
69 6 1.0394 78.04;
70 7 1.0381 78.17;
71 8 1.0425 79.45;
72 9 1.0471 81.02;
73 10 1.0508 82.5
74 ];
75 % Recalculation to rectangular coordinates
76 for i = 1: length (PSSE)
77 PSSE_rec (i ,1) = i;
78 [ PSSE_rec (i ,2) ,PSSE_rec (i ,3)] = pol2cart (PSSE(i ,3)

*2* pi /360 , PSSE(i ,2));
79 end
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80 % current_calculation ( measurements , H , PSSE_rec );
81

82 end

B.3 Reconstruction script

1 % -----------------------------------------------------%
2 % --------------- RECONSTRUCTION SCRIPT ---------------%
3 % -----------------------------------------------------%
4

5 % -----------------------------------------------------%
6 % --------------- Function declaration ----------------%
7 % ----- The script returns the matrices H, W and M ----%
8 % -----------------------------------------------------%
9 function [ H , W , M ] = reconstruction ( branches ,

measurements )
10

11

12 % -----------------------------------------------------%
13 % ----------- Counting measurements by types ----------%
14 % -----------------------------------------------------%
15 num_t_1 = 0; % Amount of type 1 measurements
16 num_t_2 = 0; % Amount of type 2 measurements
17 num_t_3 = 0; % Amount of type 3 measurements
18 for i = 1: length ( measurements )
19 if measurements (i ,2) == 1
20 num_t_1 = num_t_1 + 1;
21 elseif measurements (i ,2) == 2
22 num_t_2 = num_t_2 + 1;
23 elseif measurements (i ,2) == 3
24 num_t_3 = num_t_3 + 1;
25 end
26 end
27

28

29 % -----------------------------------------------------%
30 % ----------- Counting the amount of branches ---------%
31 % -----------------------------------------------------%
32 num_branches = length ( branches );
33

34

35
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36 % -----------------------------------------------------%
37 % Changing branch - matrix series values from impedance to

admittance
38 % -----------------------------------------------------%
39 for i = 1: num_branches
40 branches (i ,4) = 1/ branches (i ,4);
41 end
42

43

44 % -----------------------------------------------------%
45 % Changing branch / matrix shunt values from the total

admittance to half of the total admittance
46 % -----------------------------------------------------%
47 for i = 1: num_branches
48 branches (i ,5) = 0.5* branches (i ,5);
49 end
50

51

52 % -----------------------------------------------------%
53 % ------------ Counting the amount of buses -----------%
54 % -----------------------------------------------------%
55 high = max( branches );
56 num_buses = max(high (2) ,high (3));
57

58

59 % -----------------------------------------------------%
60 % --------------- Creating empty H- matrix -------------%
61 % -----------------------------------------------------%
62 H = zeros (2 * ( num_t_1 + num_t_2 + num_t_3 ) , 2 *

num_buses );
63

64

65 % -----------------------------------------------------%
66 % ------ Filling state estimator part of H- matrix -----%
67 % -----------------------------------------------------%
68 for i = 1:(2 * num_t_3 )
69 H(i,i) = 1;
70 end
71

72

73 % -----------------------------------------------------%
74 %-- Filling PMU voltage measurement part of H- matrix -%
75 % -----------------------------------------------------%
76 for i = 1: num_t_1
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77 H(2 * num_t_3 + 2 * i - 1, 2 * measurements (i ,3) -
1) = 1;

78 H(2 * num_t_3 + 2 * i, 2 * measurements (i ,3)) = 1;
79 end
80

81

82 % -----------------------------------------------------%
83 % Pairing PMU current measurement units with their

relevant branchs
84 % -----------------------------------------------------%
85 pairing = zeros(num_t_2 ,1);
86 for i = 1: num_t_2
87 for n = 1: num_branches
88 if( ( measurements ( num_t_1 + i ,3) == branches (n

,2)) && ( measurements ( num_t_1 + i ,4) ==
branches (n ,3)) || ( measurements ( num_t_1 + i
,3) == branches (n ,3)) && ( measurements (
num_t_1 + i ,4) == branches (n ,2)) )

89 pairing (i) = branches (n ,1);
90 end
91 end
92 end
93

94

95 % -----------------------------------------------------%
96 %-- Filling PMU current measurement part of H- matrix -%
97 % -----------------------------------------------------%
98 for i = 1: num_t_2
99 H(2 * ( num_t_1 + num_t_3 ) + 2 * i - 1, 2 *

measurements ( num_t_1 + i ,3) - 1) = real( branches (
pairing (i) ,4) + branches ( pairing (i) ,5));

100

101 H(2 * ( num_t_1 + num_t_3 ) + 2 * i - 1, 2 *
measurements ( num_t_1 + i ,3)) = - imag( branches (
pairing (i) ,4) + branches ( pairing (i) ,5));

102

103 H(2 * ( num_t_1 + num_t_3 ) + 2 * i - 1, 2 *
measurements ( num_t_1 + i ,4) - 1) = - real(
branches ( pairing (i) ,4));

104

105 H(2 * ( num_t_1 + num_t_3 ) + 2 * i - 1, 2 *
measurements ( num_t_1 + i ,4)) = imag( branches (
pairing (i) ,4));

106
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107 H(2 * ( num_t_1 + num_t_3 ) + 2 * i, 2 * measurements (
num_t_1 + i ,3) - 1) = imag( branches ( pairing (i) ,4)

+ branches ( pairing (i) ,5));
108

109 H(2 * ( num_t_1 + num_t_3 ) + 2 * i, 2 * measurements (
num_t_1 + i ,3)) = real( branches ( pairing (i) ,4) +
branches ( pairing (i) ,5));

110

111 H(2 * ( num_t_1 + num_t_3 ) + 2 * i, 2 * measurements (
num_t_1 + i ,4) - 1) = - imag( branches ( pairing (i)
,4));

112

113 H(2 * ( num_t_1 + num_t_3 ) + 2 * i, 2 * measurements (
num_t_1 + i ,4)) = - real( branches ( pairing (i) ,4));

114

115 end
116

117

118 % -----------------------------------------------------%
119 % -------------- Creating empty W- matrix --------------%
120 % -----------------------------------------------------%
121 W = zeros (2 * ( num_t_1 + num_t_2 + num_t_3 ));
122

123

124 % -----------------------------------------------------%
125 % ------------------ Filling W- matrix -----------------%
126 % -----------------------------------------------------%
127 for i = 1: num_t_3 % Weights for SE voltage values
128 W(2*i -1 ,2*i -1) = measurements ( num_t_1 + num_t_2 + i

,6);
129 W(2*i ,2*i) = measurements ( num_t_1 + num_t_2 + i ,6);
130 end
131 for i = 1: num_t_1 % Weights for PMU voltage values
132 W(2*( num_t_3 +i) -1,2*( num_t_3 +i) -1) = measurements (i

,6);
133 W(2*( num_t_3 +i) ,2*( num_t_3 +i)) = measurements (i ,6);
134 end
135 for i = 1: num_t_2 % Weights for PMU current values
136 W(2*( num_t_3 + num_t_1 +i) -1,2*( num_t_3 + num_t_1 +i) -1) =

measurements ( num_t_1 + i ,6);
137 W(2*( num_t_3 + num_t_1 +i) ,2*( num_t_3 + num_t_1 +i)) =

measurements ( num_t_1 + i ,6);
138 end
139

140
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141 % -----------------------------------------------------%
142 % -------------- Creating empty M- matrix --------------%
143 % -----------------------------------------------------%
144 M = zeros (2 * ( num_t_1 + num_t_2 + num_t_3 ) ,1);
145

146

147 % -----------------------------------------------------%
148 % ------- Filling M- matrix with measurement data ------%
149 % -----------------------------------------------------%
150 for i = 1: num_t_3 %SE voltage values
151 M(2 * i - 1) = real( measurements ( num_t_1 + num_t_2 +

i ,5));
152 M(2 * i) = imag( measurements ( num_t_1 + num_t_2 + i ,5)

);
153 end
154 for i = 1: num_t_1 %PMU voltage values
155 M(2 * ( num_t_3 + i) - 1) = real( measurements (i ,5));
156 M(2 * ( num_t_3 + i)) = imag( measurements (i ,5));
157 end
158 for i = 1: num_t_2 %PMU current values
159 M(2 * ( num_t_3 + num_t_1 + i) - 1) = real(

measurements ( num_t_1 + i ,5));
160 M(2 * ( num_t_3 + num_t_1 + i)) = imag( measurements (

num_t_1 + i ,5));
161 end
162

163 end

B.4 Linear_estimation script

1 % -----------------------------------------------------%
2 % ------------- LINEAR ESTIMATION SCRIPT --------------%
3 % -----------------------------------------------------%
4

5

6 % -----------------------------------------------------%
7 % --------------- Function declaration ----------------%
8 % --- The script returns the final state estimate : V --%
9 % -----------------------------------------------------%

10 function [ V ] = linear_estimation ( M, H, W )
11

12
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13 % -----------------------------------------------------%
14 % ----------- Direct linear state estimation ----------%
15 % -----------------------------------------------------%
16 V = inv( transpose (H) * inv(W) * H) * transpose (H) * inv

(W) * M;
17

18

19 % -----------------------------------------------------%
20 % Alternative form used for an inverted relation between

measurement predominance and its weighting
21 % -----------------------------------------------------%
22 % V = inv( transpose (H) * W * H) * transpose (H) * W * M;
23

24

25 end

B.5 Error_generator script

1 % -----------------------------------------------------%
2 % ------------- ERROR GENERATOR SCRIPT --------------%
3 % -----------------------------------------------------%
4

5

6 % -----------------------------------------------------%
7 % --------------- Function declaration ----------------%
8 % The script returns a measurement matrix with added

errors
9 % -----------------------------------------------------%

10 function [ measurements_updated ] = error_generator (
measurements )

11

12

13 % -----------------------------------------------------%
14 % Storing the original measurements for optional

printing later in the script
15 % -----------------------------------------------------%
16 measurements_unchanged = measurements ;
17

18

19 % -----------------------------------------------------%
20 % ------- Measurement standard deviation input --------%
21 % -----------------------------------------------------%

xxi



Estimator Application Matlab Scripts

22 sd_type_1 = 0.0027451; % Type 1 : PMU Voltage
23 sd_type_2 = 0.0027451; % Type 2 : PMU Current
24 sd_type_3 = 0.01; % Type 3 : CSE State Vector
25

26

27 % -----------------------------------------------------%
28 % --- Creating probability distributions for errors ---%
29 % -----------------------------------------------------%
30 pd1 = makedist ('Normal ','mu ',0,'sigma ',sd_type_1 );
31 pd2 = makedist ('Normal ','mu ',0,'sigma ',sd_type_2 );
32 pd3 = makedist ('Normal ','mu ',0,'sigma ',sd_type_3 );
33

34

35 % -----------------------------------------------------%
36 % Calculation and addition of errors for each

measurement
37 % -----------------------------------------------------%
38 num_t_1 = 0; % Amount of type 1 measurements
39 num_t_2 = 0; % Amount of type 2 measurements
40 num_t_3 = 0; % Amount of type 3 measurements
41 for n = 1: length ( measurements )
42 if measurements (n ,2) == 1
43 num_t_1 = num_t_1 + 1;
44 elseif measurements (n ,2) == 2
45 num_t_2 = num_t_2 + 1;
46 elseif measurements (n ,2) == 3
47 num_t_3 = num_t_3 + 1;
48 end
49 end
50

51 for n = 1: num_t_1 % Type 1
52 pd1 = makedist ('Normal ','mu ',0,'sigma ',sd_type_1 *

sqrt (( real( measurements (n ,5)))^2+( imag(
measurements (n ,5)))^2));

53 measurements (n ,5) = measurements (
n ,5) + random (pd1) + random (pd1)*1i;

54 end
55 for n = 1: num_t_2 % Type 2
56 pd2 = makedist ('Normal ','mu ',0,'sigma ',sd_type_2 *

sqrt( (real( measurements ( num_t_1 +n ,5)))^2 + (imag
( measurements ( num_t_1 +n ,5)))^2));

57 measurements ( num_t_1 +n ,5) = measurements (
num_t_1 +n ,5) + random (pd2) + random (pd2)*1i;

58 end
59
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60 %The error generation of type 3 measurements was removed
after the addition of the classical state estimator .
SCADA measurements are given measurement errors

within the CSE.
61 %for n = 1: num_t_3 % Type 3
62 % pd3 = makedist ('Normal ','mu ',0,'sigma ', sd_type_3 *

sqrt (( real( measurements ( num_t_1 + num_t_2 +n ,5)))^2+(
imag( measurements ( num_t_1 + num_t_2 +n ,5)))^2));

63 % measurements ( num_t_1 + num_t_2 +n ,5) = measurements
( num_t_1 + num_t_2 +n ,5) + random (pd3) + random (pd3)*1i;

64 %end
65

66

67 % -----------------------------------------------------%
68 % Returning the updated measurements matrix , now

containing errors
69 % -----------------------------------------------------%
70 measurements_updated = measurements ;
71

72

73 % -----------------------------------------------------%
74 %- Optional : printing of relative measurement errors -%
75 % -----------------------------------------------------%
76

77 % -----------------------------------------------------%
78 % ------------------ Magnitude errors -----------------%
79 % -----------------------------------------------------%
80 for n = 1:( num_t_1 + num_t_2 )
81 if n == 1
82 fprintf ('Type 1: PMU Voltage \n');
83 end
84 actual = sqrt( (real( measurements_unchanged (n ,5)))^2

+ (imag( measurements_unchanged (n ,5)))^2 );
85 measurement = sqrt( (real( measurements (n ,5)))^2 + (

imag( measurements (n ,5)))^2 );
86 error = 100 * ( measurement - actual ) / actual ;
87 st = ['Measurement vector ', num2str (n), ': ',

num2str ( measurement ) , 9 , 'Real vector : ',
num2str ( actual ) 9 'Diff: ' , num2str ( error )];

88 disp(st);
89

90 if n == num_t_1
91 fprintf ('Type 2: PMU Current \n');
92 end
93 end
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94

95

96 % -----------------------------------------------------%
97 % -------------------- Angle errors -------------------%
98 % -----------------------------------------------------%
99 for n = 1:( num_t_1 + num_t_2 )

100 if n == 1
101 fprintf ('Type 1: PMU Voltage \n');
102 end
103 actual = atan(imag( measurements_unchanged (n ,5))/real

( measurements_unchanged (n ,5))) *360/(2* pi);
104 measurement = atan(imag( measurements (n ,5))/real(

measurements (n ,5))) *360/(2* pi);
105 error = 100 * ( measurement - actual ) / actual ;
106 st = ['Measurement vector ', num2str (n), ': ',

num2str ( measurement ) , 9 , 'Real vector : ',
num2str ( actual ) 9 'Diff: ' , num2str ( error )];

107 disp(st);
108

109 if n == num_t_1
110 fprintf ('Type 2: PMU Current \n');
111 end
112 end
113

114

115 end

B.6 Current_calculationn script

1 % -----------------------------------------------------%
2 % ------------ CURRENT CALCULATION SCRIPT -------------%
3 % -----------------------------------------------------%
4

5

6 % -----------------------------------------------------%
7 % --------------- Function declaration ----------------%
8 % The script returns nothing , but rather prints its

results
9 % -----------------------------------------------------%

10 function [ ] = current_calculation ( measurements , H ,
PSSE_rec )

11
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12

13 % -----------------------------------------------------%
14 % ----------- Counting measurements by types ----------%
15 % -----------------------------------------------------%
16 num_t_1 = 0; % Amount of type 1 measurements
17 num_t_2 = 0; % Amount of type 2 measurements
18 num_t_3 = 0; % Amount of type 3 measurements
19 for i = 1: length ( measurements )
20 if measurements (i ,2) == 1
21 num_t_1 = num_t_1 + 1;
22 elseif measurements (i ,2) == 2
23 num_t_2 = num_t_2 + 1;
24 elseif measurements (i ,2) == 3
25 num_t_3 = num_t_3 + 1;
26 end
27 end
28

29

30 % -----------------------------------------------------%
31 % ----------- Stores the actual state vector ----------%
32 % -----------------------------------------------------%
33 voltage_fasit = zeros (2 * length ( PSSE_rec ) ,1);
34 for i = 1: length ( PSSE_rec )
35 voltage_fasit (2 * i - 1) = PSSE_rec (i ,2);
36 voltage_fasit (2 * i) = PSSE_rec (i ,3);
37 end
38

39

40 % -----------------------------------------------------%
41 % Calculates the correct line currents of all PMU line

current measurement points , then prints them to the
console

42 % -----------------------------------------------------%
43 for i = 1:(2 * num_t_2 )
44 a = mod(i ,2);
45 if a == 1
46 ifstr = ',r';
47 else
48 ifstr = ',i';
49 end
50

51 teller = 0;
52 for n = 1: length ( voltage_fasit )
53 teller = teller + H(2 * ( num_t_1 + num_t_3 ) + i,

n) * voltage_fasit (n);
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54 end
55

56 st = ['I', num2str (floor(i/2) + a), ifstr , ' = ',
num2str ( teller )] ;

57 disp(st);
58 end
59

60 end
61

62 end
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C | Calculation of PMU
Measurement Error
Standard Deviation

The requirement from [8] states that the total vector error (TVE) shall be less than
1 percent for any given PMU measurement. Consider a measurement Xmeasured =
Xmeasured,real + i · Xmeasured,imag opposed to the actual system value Xactual =
Xactual,real + i ·Xactual,imag. The TVE of this measurement discrepancy is given
by the following.

TV E = |Xmeasured −Xactual|
Xactual

< 0.01 (C.1)

Deconstructed into rectangular coordinates, this becomes

TV E =
√

(Xmeasured,real −Xactual,real)2 + (Xmeasured,imag −Xactual,imag)2

X2
actual,real +X2

actual,real

< 0.01

(C.2)

Now, the errors of the real and imaginary components of the measurements can
be defined as εreal = Xmeasured,real − Xactual,real and εimag = Xmeasured,imag −
Xactual,imag.

TV E =

√
ε2
real + ε2

imag

X2
actual,real +X2

actual,real

< 0.01 (C.3)

TV E = ε2
real + ε2

imag < 10−4 · (X2
actual,real +X2

actual,real) (C.4)
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Calculation of PMU Measurement Error Standard Deviation

An assumption is made, stating that the errors of the real and imaginary com-
ponents are similarly sized, so that the measurement error for both components of
a PMU measurement can be scaled according to ε, where εreal ≈ εimag ≈ ε.

TV E = 2 · ε2 < 10−4 · (X2
actual,real +X2

actual,real) (C.5)

TV E = |ε| <
√

10−4

2 ·
√
X2
actual,real +X2

actual,real (C.6)

TV E = |ε| <
√

10−4

2 ·Xactual ≈ 0.007071 ·Xactual (C.7)

In a Gaussian distribution 1 percent of the possibility set lies outside of 2.575829
times the standard deviation. To achieve a distribution where 99 percent of the
PMU measurements satisfy the requirements stated above, the standard deviation
of the individual components, real and imaginary, is set to be the following:

σ =

√
10−2

2

2.575829 ·Xactual = 0.00274516 ·Xactual (C.8)
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