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USFOS is a computer program for simulation of the response to extreme environmental and 

accidental loads. It was originally developed for fixed offshore structures like jackets and 

jack-ups. In recent years the program has been modified to account also for floating offshore 

structures.  Floating offshore structures are subjected to diffraction and radiation terms, which 

are often simulated as added mass and damping terms. In USFOS these masses are at present 

assumed to be constant. In reality these terms are frequency dependent. In irregular waves the 

frequency dependence should be accounted for by using memory functions expressed by 

convolution integrals. The purpose of this work is to investigate the feasibility of including 

added mass and frequency dependence in USFOS. The work will start with analysis of a 

single degree of freedom problem using MATLAB 

 

The work is proposed to be carried out in the following steps. 

 

1. Discuss the frequency dependence of the added mass and damping terms for various 

floating and submerged bodies representative for pontoon type structures. Describe 

how the convolution integral (retardation function) can be established, based on both 

the added mass term and the damping term. Compare the retardation functions 

calculated with the two methods and comment any differences. Describe the 

challenges related to establishing the retardation function and how the accuracy can 

be checked by inverse calculation of the added mass and damping term. (Reference is 

made to PhD thesis of Olav Rognebakke). 

 

2. Develop a MATLAB code for numerical, stepwise incrementation of a single degree of 

freedom system where the added mass and damping are frequency dependent. 

Simulate the response of the system for a single excursion, in regular wave and 

irregular seas. Illustrate the time history of the memory functions. Check the amount 

of “memory” that is needed to obtain satisfactory results. Investigate also the 

importance of the memory effect by comparing with results with constant added 

mass and damping terms. 

 

3. On the basis of the experience obtained with the single degree of freedom system, 

describe how frequency dependent added mass and damping can be implemented in 

USFOS. This should include a flow diagram with input/output data defined. 

 

4. To the extent time permits write a subroutine in USFOS to calculate the retardation 

function for a pontoon of a floating platform. Perform simulations with USFOS for a 
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Thesis format 
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The thesis shall contain the following elements:  A text defining the scope, preface, list of 

contents, summary, main body of thesis, conclusions with recommendations for further work, list 
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Preface

This master thesis was written during the spring semester 2013, at the Norwegian
University of Science and Technology (NTNU). The work is conducted independently,
and is partially based on the work done in my project thesis from fall 2012.

The objective is to look into the problem of including frequency-dependence in the
added mass and damping terms in USFOS, to allow time-domain simulations of
floating structures.

The work has been challenging regarding both the programming and the technical
aspects, as transient effects have been mentioned, but disregarded in my hydrody-
namic courses at NTNU. The absence of a standardized nomenclature used in the
books regarding time-domain effects, has made the learning process more difficult.
Slowly building a better understanding of these effects throughout the semester
have been a great motivation.

As part of the work with this thesis, a MATLAB function for the convolution of two
vectors has been written. However, MATLAB comes with a convolution function
implemented in the standard library. This predefined function is only used for
verification of correctness of the function written by the author. This is to make a
transition to FORTRAN code possible.

Marianne Mellbye Larsen,
Trondheim, June 10, 2013
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Abstract

This master thesis deals with calculation of the convolution integrals that constitute
the memory functions in the linear time-domain wave response equation. Basic
theory needed to calculate the forces acting on floating structures is presented.
The main motivation for the thesis is to investigate the feasibility of including
frequency dependent added mass and damping in USFOS. USFOS is a computer
program originally developed to simulate the response to extreme environmental
and accidental loads for fixed offshore structures. The program has been modified to
be able to handle also floating offshore structures. Floating structures are however
subjected to diffraction and radiation terms often simulated as added mass and
damping terms. So far, these terms are assumed to be constant in USFOS. This
is not correct, as the added mass and damping terms are frequency dependent
in reality. The frequency dependence can be accounted for by adding memory
functions expressed as convolution integrals.

The convolution terms are integrated from 0 to t, i.e. from the beginning of time
and up to this moment. This is neither possible, due to computer restrictions, nor
necessary, due to damping effects. This thesis concentrates on finding the amount of
’memory’ that needs to be included in the convolution integral. A single degree of
freedom system illustrating a platform oscillating in heave is analysed in MATLAB,
both for regular waves and irregular seas. The convolution integral is calculated
with different time intervals included in the memory function, and the deviations
from the full integral are analysed.

Finally, a brief description is given of how the experiences obtained with the
single degree of freedom system can be utilized in the implementation of frequency
dependent added mass and damping terms in USFOS.
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Sammendrag

Denne masteroppgaven omhandler utregningen av konvolusjonsintegralene som
utgjør minne-funksjonene i den lineære bølgeresponsfunksjonen i tids-domenet.
Grunnleggende teori for utregning av kreftene som virker p̊a flytende konstruk-
sjoner blir presentert i oppgaven. Hovedmotivasjonen er å utforske muligheten for
å inkludere frekvensavhengighet i tilleggsmasse- og dempningsleddene i USFOS.
USFOS er et program som opprinnelig ble skrevet for å simulere responsen fra
ekstreme miljø- og ulykkeslaster for faste offshore konstruksjoner. Programmet
er senere modifisert for å kunne h̊andtere ogs̊a flytende konstruksjoner. Flytende
konstruksjoner er imidlertid utsatt for diffraksjons- og eksitasjonslaster. Hittil er
disse uttrykkene antatt å være konstante i USFOS, men dette er ikke helt korrekt da
tilleggsmassen og dempningen i virkeligheten er frekvensavhengige. Denne frekven-
savhengigheten kan bli redegjort for ved å inkludere minnefunksjoner uttrykt som
konvolusjonsintegraler.

Konvolusjonsleddene skal integreres fra 0 til t, det vil si fra tidenes morgen og opp
til dette øyeblikket. Dette er verken mulig, p̊a grunn av databegrensninger, eller
nødvendig, p̊a grunn av dempning. Denne oppgaven konsentrerer seg om å finne
den nødvendige mengden ’minne’ som må inkluderes i konvolusjonsintegralet. Et
masse-fjær system med én frihetsgrad som illustrerer en platform som svinger i hiv
analyseres i MATLAB, b̊ade for regulære bølger og irregulær sjø. Konvolusjonsinte-
gralet regnes ut med ulike tidsintervaller inkludert i minnefunksjonen, og avvikene
fra det fulle integralet blir analysert.

Til slutt blir det gitt en kort forklaring av hvordan erfaringene som har blitt oppn̊add
gjennom analysene av masse-fjær systemet kan benyttes i implementasjonen av
frekvensavhengighet for tilleggsmasse- og dempningsleddene i USFOS.
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Nomenclature

α Constant in the JONSWAP sea spectrum

ω Rotation

η̈3 Acceleration in heave direction

η̇3 Velocity in heave direction

η1, η2, η3 Oscillatory rigid-body translatory motions; surge, sway and heave

η4, η5, η6 Oscillatory rigid-body angular motions; roll, pitch and yaw

ηj Wave induced vessel motion response, see η1−6

γ Constant in the JONSWAP sea spectrum

λ Wavelength

i, j,k Unit vectors in x- y- and z-direction respectively

r Distance from the origin to a given position

s Motion of an arbitrary point on a structure

ω Circular frequency in radians per second = 2π
T

ω1 Frequency of first wave component

ωl Lower integral limit of ω

ωp Constant in the JONSWAP sea spectrum

ωu Upper integral limit of ω

ρ Mass density of sea water = 1025 kg
m3

σ Constant in the JONSWAP sea spectrum

ε Phase angle

ϕ Velocity potential

ζ Surface elevation
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ζa Wave amplitude

ac Normal component of cylinder acceleration

An Amplitude of wave component n

an Wave induced acceleration normal to cylinder axis

ax x-component of acceleration

az z-component of acceleration

A33 Added mass in heave

A33(∞) Infinite frequency limit for added mass in heave

A2D
33 2D added mass in heave

Aij(ω) Frequency dependent added mass component

A∞ij Infinite frequency limit for added mass component

Akj Added mass coefficients

AWP Water-plane area

B Damping matrix

B33 Damping in heave

B33(∞) Infinite frequency limit for damping in heave

B2D
33 2D damping in heave

Bij(ω) Frequency dependent damping component

Bkj Damping coefficients

C Stiffness matrix

CD Drag coefficient

CM Mass coefficient

C33 Restoring in heave

Ckj Restoring coefficients

D Cylinder diameter

F Force

F3 Force in heave direction

Fk Force component, where k = 1, 2, ..., 6

g Acceleration of gravity = 9.81ms2

HS Significant wave height, in this thesis chosen as H1/3
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H1/3 Average of the 1/3 highest waves

h33 Retardation function (impulse response function) in heave

hij Retardation function (impulse response function)

i Wave component number, i = 1, 2, ..., N , where N is the total
number of wave components

k Wave number = 2π
λ = ω2

g

ki Return period

L Length

M Mass matrix

N Number of wave components

n Unit normal vector

p Pressure

S Average wetted surface

S(ω) Wave spectrum

T Wave period

t Time

Tr Return period of irregular sea pattern

TZ Zero up-crossing period

u x-component of velocity

un Wave induced velocity normal to cylinder axis

urel Relative velocity between fluid and cylinder normal to cylinder
axis

w z-component of velocity
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Chapter 1

Introduction

Humans have traveled and worked at sea for thousands of years. Knowledge of the
sea and of how floating structures respond to different sea states, are a crucial part
of protecting lives and property at sea. Floating structures might have complex
geometries and loads, and the sea changes constantly, leaving the calculation of the
motion responses to be quite comprehensive.

Many advanced computer programs have been written to simulate motion responses
and loads on structures in different sea states. Accidents or extreme environmental
conditions might lead to for instance flooding of some compartments, causing the
buoyancy of the structure to change. Detailed knowledge of how a structure will be
able to cope under such conditions is of high importance in designing safer ships
and platforms.

1.1 Motivation

USFOS is a computer program for simulation of the response to extreme environ-
mental and accidental loads. The program was originally developed for fixed offshore
structures like jackets and jack-ups. USFOS have been modified in more recent
years to be able to also simulate the response of floating offshore structures. One of
the new challenges in the simulations due to this modification is connected to the
added mass and damping terms. These terms are used to simulate the diffraction
and radiation loads. They are at present assumed to be constant, but are in reality
dependent of frequency.

For USFOS to be able to account for transient effects and not only steady-state
conditions, a memory function must be introduced. The memory function is
expressed by convolution integrals, which should be integrated from the beginning
of time and up to present time. For practical reasons, this is not possible. This thesis
is written as an investigation of the feasibility of including frequency dependence in

1



2 CHAPTER 1. INTRODUCTION

the added mass and damping terms in USFOS. The amount of time necessary to
include in the memory function will be examined.

1.2 Background

Numerous books and articles have been written about the subject of understanding
the motions of floating bodies. Some basic background is given here as a framework
for discussions of the wave-induced motions.

1.2.1 Problem simplifications

As stated by Vugts, the general problem of floating structures at sea involves: ”(...)
the dynamic equilibrium of forces and moments in and on an elastic body moving
in the interface of two different media” [9]. The problem is simplified by only
considering the external forces on the submerged parts of the vessel. This is a valid
simplification for many cases because the density of seawater is a thousand times
larger than the density of air [9]. There are situations in which the air environment
must be included in the calculations, for instance in manoeuvring a ship with
large superstructures in strong winds [9], but these effects are neglected in this
thesis.

Another simplification made is that the structures are assumed to be rigid bodies,
a simplification that is valid as long as no structural or vibrational problems are
dealt with [9].

To further simplify the problem, the water is considered incompressible, inviscid
and irrotational. Finally, the problem is considered to be linear, allowing irregular
seas to be simulated by superpositioning the contributions for different regular wave
components [3].

1.2.2 Definition of motions

A floating structure subjected to waves might have response motions, both transla-
tory and angular. The motions will be oscillatory, with the frequency depending
on the sea state [1]. To describe the waves and response motions of the analysed
structure, a coordinate system must be chosen. The axis system used in this thesis
is defined with its origin and xy-plane at the undisturbed free surface, and the
z-axis perpendicular to it. The z-axis is chosen so it will pass through the structures
center of gravity when the structure is floating in still water [1].

The translational oscillatory motions are referred to as surge, sway and heave, where
heave is the vertical motion, while surge and sway are the horizontal motions. For
structures with forward motion, such as ships, surge is defined as the longitudinal
motion. The rotational oscillatory motions are roll, pitch and yaw, where yaw
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is rotation about the vertical axis, and roll and pitch are rotations about the
horizontal axes. The axis system with oscillatory motion definitions is shown in
Figure 1.1.

Figure 1.1: Axis system showing translational and rotational oscillatory motions [1]

The motion components are denoted η1, η2, . . . η6, where the first three components
(i = 1, 2, 3) refer to the translatory motions, and the last three components (i =
4, 5, 6) refer to the rotations as shown in table 1.1.

Translations Rotations
η1 surge η4 roll
η2 sway η5 pitch
η3 heave η6 yaw

Table 1.1: Rigid oscillatory motion components for floating structures

Assuming small motions, the motion of any part of the structure can be written as
in equation (1.1). ω is the rotation, and is given by equation (1.2). r is the distance
from the origin to the given location, and is found in equation (1.3). × denotes
the vector product, while i, j and k are unit vectors along the x-, y- and z-axes,
respectively.

s = η1i + η2j + η3k + ω × r (1.1)
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ω = η4i + η5j + η6k (1.2)

r = xi + yj + zk (1.3)

The rigid-body motion of any point on the floating structure given in equation (1.1)
can hence be written as in equation (1.4).

s = (η1 + zη5 − yη6)i + (η2 + xη6 − zη4)j + (η3 + yη4 − xη5)k (1.4)

1.3 Scope of work

The intended work scope proved to be larger than initially anticipated, and was
reduced in extent in cooperation with the supervisor. The MATLAB code written in
the second step of the proposed work description was reduced to focus on calculating
the convolution integrals constituting the memory terms. The investigation of the
importance of the memory effects was hence left for further work. The fourth step
of the proposed work description was completely omitted in this thesis due to time
restrictions.

1.4 Outline of thesis

A brief introduction to the sea environment explaining how to calculate the surface
elevation and corresponding vertical velocity component for regular waves are given
in chapter 2. Wave spectra are introduced, and the process of using them to simulate
irregular seas are explained.

Chapter 3 explains how the response motions are found in the frequency domain
assuming steady-state conditions. The frequency dependence of the added mass
and damping terms for various floating and submerged bodies representative for
pontoon type structures are discussed.

The linear time-domain heave response of a floating structure is presented in chapter
4. How the retardation function in the convolution integral can be established is
explained, based on both added mass and damping. The two techniques are tested
for a rectangular cross-section oscillating at the surface, and the obtained functions
are compared. The challenges related to establishing the retardation function is
then described, and a procedure for checking the accuracy by inverse calculation is
presented.

Chapter 5 explains the MATLAB program written in order to assess how much
time must be included in the memory functions. The results of the analyses are
then presented and discussed in chapter 6.
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Chapter 7 deals with USFOS, describing how frequency dependent added mass and
damping can be implemented based on the experiences obtained with the system
tested in MATLAB. A flow diagram is presented, explaining a possible program
flow of the subroutine.

Finally, chapter 8 presents the conclusion of this thesis and recommendations for
further work.
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Chapter 2

The sea environment

To be able to predict a floating structures response to different sea states, a set
of equations describing the seas characteristics are needed. The derivation of the
equations valid for linear wave theory is found in Newman (1977) [10]. Some
important resulting equations are presented in this chapter.

2.1 Regular waves

As mentioned in the introduction, the sea water is assumed to be incompressible
and inviscid, with irrotational fluid motion [1]. A velocity potential describes the
fluid velocity vector for a water particle located at the point (x, y, z) at a given time
t [1]. Assuming infinite water depth, the velocity potential is given as in equation
(2.1). Using the same assumptions, the wave profile is given in equation (2.2). ζa is
the wave amplitude.

ϕ = gζa
ω
ekz cos(ωt− kx) (2.1)

ζ = ζa sin(ωt− kx) (2.2)

The dynamic pressure in the fluid due to the wave is given by equation (2.3).

p = ρgζae
kz sin(ωt− kx) (2.3)

The x- and z-components of velocity can be found by derivation of the velocity
potential in equation (2.1) with respect to x and z respectively. The velocity in
x-direction is given in equation (2.4) and in z-direction in equation (2.5). ”It should

7
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be noted that the linear theory assumes the velocity potential and fluid velocity to
be constant from the mean free-surface to the free-surface level” [1].

u = ωζae
kz sin(ωt− kx) (2.4)

w = ωζae
kz cos(ωt− kx) (2.5)

Similarly the x- and z-components of acceleration are found by derivation with
respect to time of the corresponding velocity component. Derivation of (2.4) gives
the acceleration in x-direction given in equation (2.6), while derivation of (2.5) gives
the acceleration in z-direction given in equation (2.7).

ax = ω2ζae
kz cos(ωt− kx) (2.6)

az = −ω2ζae
kz sin(ωt− kx) (2.7)

Equations (2.1) to (2.7) are part of the linear wave theory for propagating waves.
They are derived assuming a horizontal sea bottom and a free-surface of infinite
horizontal extent [1]. In real life, these assumptions are never completely fulfilled.
However, taking into consideration that a floating offshore structure usually operates
in deep water and far from shore, the equations might be assumed to give a good
estimation of the conditions the structure is subjected to.

2.2 Irregular seas

The sea state a floating structure is exposed to do usually not look like a regular
sine wave with constant amplitude propagating in one direction. The sea state is
far more complex. However, due to linear superposition, irregular sea states can
be simulated by adding together waves of different amplitudes, wavelengths and
propagation directions [3].

This means that the surface elevation might be modeled by numerous longcrested
waves, with different amplitudes, frequencies and phases. If considering a two-
dimensional model, all the waves propagate along the same axis. The surface
elevation might then be expressed as in equation (2.8), where N is the total number
of wave components [3].

ζ(x, t) =
N∑
n=1

An sin(ωnt− knx+ εn) (2.8)
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The phase angles, εn, are randomly chosen numbers between 0 and 2π and are
constant with time. An, ωn and kn are the wave components amplitude, frequency
and wave number respectively. The wave amplitude An can be expressed by a wave
spectrum S(ω) as in equation (2.9) [3].

1
2A

2
n = S(ωn)∆ω (2.9)

A wave spectrum describes the wave conditions after a constant velocity wind has
been blowing for a long time. A specific ocean wave spectrum will typically be
far more complex, and might for instance have two different peaks, one generated
by waves coming in from far away, and one due to local winds creating more local
waves [11]. However, a general wave spectrum is used to simulate irregular seas for
analyses. The two most common standard wave spectra available are the Pierson-
Moskowitz spectrum given in equation (2.10) [12] and the JONSWAP spectrum
given in equation (2.11) [11].

S(ω) = H2
STZ

8π2

(
ωTZ
2π

)5
exp

[
−1
π

(
ωTZ
2π

)−4
]

(2.10)

S(ω) = αg2

ω5 exp
[
−5

4

(ωp
ω

)4
]
γr

r = exp
[
− (ω − ωp)2

2σ2ω2
p

] (2.11)

The main difference between the two spectra is that the Pierson-Moskowitz spectrum
assumes a fully developed sea, while Hasselmann et al. [13] realized that this is
never really the case, and introduced an extra factor γr to the Pierson-Moskowitz
spectrum creating the JONSWAP spectrum. The constants α, ωp, γ and σ might be
found in for instance Stewart (2008) [11]. The significant wave height HS is usually
defined as H1/3, the average of the 1/3 largest wave heights [2]. This wave height
is said by Huss [2] to correspond approximately to the wave height perceived by
the human eye when observing irregular seas, as the lower components get filtered
out.

For a regular wave, the wave period is easy to identify. For irregular seas however,
it is harder to define a constant wave period, as the resulting wave elevation is
irregular. TZ is defined to be the mean zero up-crossing period; the mean time
interval between wave crests rising up past the still-water level.

For the analyses conducted in the work with this thesis, the Bretschneider spectrum
shown in Figure 2.1 is used. The spectrum is also known as an ISSC spectrum
and is a modified Pierson-Moskowitz spectrum [14]. The spectrum is based on the
equation given in (2.12).
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Figure 2.1: Bretschneider wave spectrum with HS = 4m and TZ = 10s [2]

S(HS , TZ , ω) = H2
STZ

8π2

(
2π
ωTZ

)5
exp

[
− 1
π

(
2π
ωTZ

)4
]

(2.12)

For each wave component, the amplitude is found by equation (2.13), where the
upper limit ωu and the lower limit ωl are defined in (2.14). This is another way to
write equation (2.9).

An =

√√√√√2
ωu∫
ωl

S(ω) dω (2.13)

ωl = ωn − 0.5∆ω
ωu = ωn + 0.5∆ω

(2.14)

Huss(2010) [2] explains the wave spectrum and its features as follows:

”The shape of the wave spectrum reflects the character of the irregular
sea. A spectrum with large area represents a severe sea state with large
waves, a spectrum that is spread out over a wide span of frequencies
represent a very chaotic sea state with a mixture of short and long waves
while a narrow spectrum represents a rather regular sea state (such as
swell) where most of the energy is concentrated to waves with almost
the same frequency.” [2]

When generating an irregular sea state for simulation analyses, one technique is
to divide the wave spectrum into N columns of width ∆ω, as shown in the upper
half of Figure 2.2. The lower half of the figure shows how the wave components
are summed up to give the resulting irregular sea. Another way to visualize the
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transition from the wave spectrum in the frequency domain to the irregular wave
elevation in the time domain is given in Figure 2.3.

Figure 2.2: How a simplified irregular sea state can be simulated from a wave
spectrum. The arrows indicate the quasi-random wave heights [2]

2.2.1 The return period

The return period is the total time span a unique wave pattern is generated before
it is repeated. The ability to produce long return periods Tr is an indicator of the
quality of the chosen wave generator. The simulated irregular sea will repeat itself
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Figure 2.3: The connection between the frequency-domain and time-domain repre-
sentation of waves [3]

when all the wave components have run an integer number of full periods at the
same time, i.e. when the condition given in equation (2.15) is satisfied [2]. ω1 is the
frequency of the first component, i is the component number, ∆ω is the frequency
step between the wave components, Tr is the return period of the irregular sea
pattern and ki is an integer number [2].

[
ω1

2π + (i− 1)∆ω
2π

]
Tr = ki (2.15)

For the Bretschneider spectrum, with ω1 = 0.2 and the total number of wave
components N = 100, the frequency step ∆ω = 0.02. It can be shown that for
ω1 > 0, condition (2.15) is satisfied if (2.16) is satisfied [2].

k2 = k1

(
∆ω
ω1

+ 1
)

(2.16)

For N = 100, k1 = 10 and k2 = 11. The return period Tr will then be equal to
314.2 seconds. This is illustrated in Figure 2.4. It can be seen from equation (2.16)
that a way of extending the return period is to make the ratio ∆ω

ω1
more irrational

[2].
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Figure 2.4: The return period for N = 100 wave components in a Bretschneider
spectrum with ω1 = 0.2
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Chapter 3

Frequency-domain motion
response

The same way regular waves can be added together to simulate irregular seas, a
structures steady-state response in irregular seas is the sum of the response to
each wave component [1]. It is hence sufficient to analyze a structure in incident
regular sinusoidal waves. In a frequency-domain analysis, steady-state conditions are
assumed, meaning no transient effects due to initial conditions are considered.

The problem of finding the motion response to a given sea state might be divided
in two sub-problems as shown in Figure 3.1. One sub-problem consists of the wave
exciting forces on a structure retained from moving, as shown in the left part of the
figure. The other sub-problem, shown in the middle of Figure 3.1, consists of the
fluid reactive forces induced by a structure forced to oscillate in still water [9]. Due
to the assumed linearity with respect to the wave amplitude, the loads from the first
and second sub-problem can be added together to obtain the total hydrodynamic
forces acting on a structure oscillating in regular waves [5].

Figure 3.1: Motion response as the sum of two sub-problems [4]

15
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3.1 Added mass, damping and restoring

One of the sub-problems, shown in the middle of Figure 3.1, consists of the forces on
the structure from the fluid when the structure is forced to oscillate with frequency
ωi in still water. The oscillation frequency is the same as the frequency of the
incoming waves in the other sub-problem. The hydrodynamic loads developed in
this sub-problem are referred to as added mass, damping and restoring loads [1].
The oscillating structure will generate outgoing waves, and by integration of the
oscillating fluid pressure forces over the structures surface, the forces and moments
acting on the structure are found [1].

The hydrodynamic added mass and damping loads due to harmonic motion mode
ηj can be written as in equation (3.1), where k = 1, 2, · · · , 6. F1, F2 and F3 are the
force components in the x-, y- and z-direction, and F4, F5 and F6 are the moment
components about the corresponding axes.

Fk = −Akj
d2ηj
dt2
−Bkj

dηj
dt

(3.1)

Akj and Bkj are the added mass and damping coefficients, where k denotes the
force-direction, and j denotes the direction of movement [5]. Six possible values
for each of k and j gives a total of 36 added mass coefficients and 36 damping
coefficients. Many of these coefficients are zero for a structure due to symmetry or
no forward speed [1].

The terms added mass and damping might be misleading, in fact added mass terms
do not have to have the dimension of mass. For instance A44 has the dimension of
an inertia moment, and other terms might have the dimension of mass multiplied by
length [1]. The names added mass and damping simply refers to the similarities with
the terms in the equation for a simple oscillating single degree of freedom system.
Equation (3.2) shows such a system, where M , B and C refer to the systems mass
matrix, damping matrix and stiffness matrix respectively.

Mẍ+Bẋ+ Cx = 0 (3.2)

The hydrodynamic added mass and damping terms multiplied by respectively
acceleration and velocity will give forces, but they are not physical properties of
a structure, like the structures mass is [5]. The hydrodynamic added mass is the
force acting on the structure caused by the pressure field of the fluid being forced
to oscillate by the moving structure. It is hence hydrodynamic pressure induced
forces. The two terms in equation (3.1) can be understood as [5]:

• −Akj η̈j = force in k-direction because of acceleration in j-direction

• −Bkj η̇j = force in k-direction because of velocity in j-direction
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A freely floating structure will have restoring forces following from hydrostatic and
mass considerations. The restoring loads are caused by the changes of the displaced
volume and hence changes in the buoyancy, due to rigid body motions [4]. The
force and moment components may be written as in equation (3.3) [1].

Fk = −Ckjηj (3.3)

”The restoring coefficients can be obtained estimating the variation of the buoyancy
loads due to the rigid motions” [4]. Considering an uncoupled heave motion for
a structure with the xy- plane as a symmetry plane for the submerged volume,
the restoring coefficient is given in equation (3.4) [1]. AWP is the water-plane
area.

C33 = ρgAWP (3.4)

A positive restoring coefficient counteracts the motion, and hence helps bringing the
structure back towards its initial position. Vice versa, a negative restoring coefficient
will work destabilizing on the system [4]. ”The restoring loads are important in
fixing the natural periods of the body motions (...)” [4].

3.1.1 Strip theory

Finding the hydrodynamic coefficients for three-dimensional structures are not
straightforward, and requires use of numerical techniques and computer programs
[5]. Model testing is also possible. However, taking advantage of the structures
geometry is useful. The underwater parts of both ships and platform pontoons
and columns are slender structures, with one dimension dominating the other two.
Dividing the underwater part of the structure in strips like in Figure 3.2 makes it
possible to consider each strip in a two-dimensional stream in the cross-sectional
plane [5]. This implies that the variation of the flow in the cross-sectional plane is
much larger than the variation of the flow in the longitudinal direction [1]. This is
not true at the ends of the structure, so the strip theory can only be applied for
structures where the end effects are relatively small.

Integration of the strip components over the structures length as shown in equa-
tion (3.5), or summation of the results for all the strips, gives the hydrodynamic
coefficients. This approach is referred to as strip theory.

A33 =
∫
L

A
(2D)
33 (x) dx (3.5a)

B33 =
∫
L

B
(2D)
33 (x) dx (3.5b)
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Figure 3.2: Underwater part of platform divided in strips [5]

Reduction of the problem from three to two dimensions makes it possible to find the
solution analytically for some special very simple cross-sections like a circular cylinder
[5]. In a general case, complicated body shapes makes numerical methods like source
technique or conformal mapping necessary to estimate the two-dimensional added
mass and damping coefficients.

Strip theory does have certain limitations. End effects become important if the
length to beam ratio is too low, making strip theory a valid approach for finding
hydrodynamic coefficients only for elongated bodies [3]. Also, strip theory is best
applied to high frequency waves.

3.1.2 Frequency dependence of added mass and damping

As explained in the previous section, the added mass and damping terms depend
on the cross-section of the submerged part of the structure. The added mass and
damping components may also be strongly influenced by the oscillation frequency
ω [1]. This is because the frequency of the waves affects the structures capability of
generating waves. This might be shown by considering the far-field solution of the
velocity potential [1], but this will not be done here.

In addition, the added mass and damping coefficients depend on the motion mode,
meaning that for instance the added mass in heave and the added mass in roll are not
necessarily equal. Figure 3.3 illustrates this. The left part of the figure shows added
mass coefficients, and the right part shows damping coefficients. By comparing the
two upper plots with the two lower plots, all for a circular cross-section oscillating
at the free surface, it is easily seen that different motion modes yields different
damping coefficients.

Again considering Figure 3.3, it is seen from the right column of plots that B → 0
as ω → 0 and ω → ∞. This is because no free-surface waves are generated at
these frequencies. ”The reason is that the approximate free-surface conditions in
these two cases state that there cannot be both a horizontal and a vertical velocity
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Figure 3.3: Top: Added mass (left) and damping (right) of a circular cylinder
oscillating in heave. Middle: Added mass (left) and damping (right) of a pointed
cross-section oscillating in heave. Bottom: Added mass (left) and damping (right)
of a circular cylinder oscillating in sway.[6]

component on the free-surface. Both are necessary everywhere for there to be any
propagating waves” [1]. In theory, A33 → ∞ as ω → 0 for any two-dimensional
surface piercing body in deep water. ”But as ω → 0, finite water depth effects
and 3D effects become important and make the added mass to be finite in reality”
[4].

3.2 Excitation forces

The other sub-problem consists of the forces and moments working on the structure
from the fluid when the structure is retained from moving under incident regular
sinusoidal waves of frequency ωi [5]. These loads are due to the unsteady fluid
pressure, and are referred to as wave excitation loads. They consist of Froude-Kriloff
and diffraction forces and moments.
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The Froude-Kriloff loads are caused by the pressure field in the incident waves
when they are undisturbed by the structure [1]. The diffraction forces are the forces
that occur because the structures presence will change the undisturbed pressure
field. The diffraction forces are found by solving a boundary value problem for
the velocity potential, similar to the method used for finding the added mass and
damping coefficients [1].

Different books operate with different names for the forces in this sub-problem.
Faltinsen [1] operates with the names presented above, that excitation loads consists
of Froude-Kriloff and diffraction forces and moments, while Newman [10] defines
the names otherwise. Using Newmans notations, diffraction forces consists of
Froude-Kriloff and scattering loads. Faltinsens way of naming the forces will be
used in this thesis.

The forces on a relatively small structure can be written as a sum of components,
as given in equation (3.6) [1]. Each component are given by equation (3.7). To
be considered as a small volume structure, the characteristic length must be small
compared to the wavelength λ. For instance, the diameter D of a vertical cylinder
must be less than λ

5 to be considered small volume [1].

F = F1i+ F2j + F3k (3.6)

Fi = −
∫∫
S

pnids+Ai1a1 +Ai2a2 +Ai3a3 (3.7)

The first term in equation (3.7) are the Froude-Kriloff forces. p is the pressure in
the undisturbed wave field, and n the unit normal vector to the structures surface
and positive into the fluid. ”The integral is over the average wetted surface of the
body” [1]. The three last terms represents the diffraction forces.

Since the integral in equation (3.7) is to be taken over the wetted surface of the
body, the junctions between the columns and pontoons must be respected, meaning
that the Froude-Kriloff forces must be integrated directly [1].

3.2.1 Morison’s equation

Wave forces acting on marine structures may be defined as either inertia or mass
forces, or viscous forces. Inertia and mass forces are found from potential theory
assuming inviscid fluid. Viscous forces are far more difficult to predict, as flow
separation will occur and vortices will change the pressure field around the body
and hence influence the hydrodynamic forces [7]. Empirical formulas are therefore
often applied.

Faltinsen(1990) states that: ”Morison’s equation is often used to calculate wave
loads on circular cylindrical structural members of fixed offshore structures when
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viscous forces matter” [1]. Morison’s equation gives the force dF on a strip of length
dz of a rigid circular cylinder like a platform leg, and can be written as in equation
(3.8) [7].

dF = ρ
πD2

4 dzCMan + ρ

2CDDdz|un|un (3.8)

In the case of a vertical cylinder, the force is positive in the wave propagation
direction as seen in Figure 3.4. ρ is the mass density of the water, D is the cylinder
diameter, and un and an are the undisturbed wave induced velocity and acceleration
components normal to the cylinder axis at the midpoint of the strip [7]. CM and
CD are the mass and drag coefficients, and are dependent of several parameters such
as Reynolds number, the roughness number, and the Keulegan-Carpenter number.
CM and CD must be empirically determined [1].

Figure 3.4: Force dF on strip of length dz of vertical cylinder [5]

In the analysis of floating offshore structures, the cylinder is allowed to move, and
equation (3.8) must be modified to the expression given in equation (3.9). The
velocity used in the equation is now the relative velocity between the fluid and the
cylinder. ac is the normal component of the cylinder acceleration.

dF = ρ
πD2

4 dzCMan + ρ
πD2

4 dz(CM − 1)ac + ρ

2CDDdz|urel|urel (3.9)

Figure 3.5 indicates which kind of forces that dominate for different cylinder
diameters compared with wavelengths and wave heights. ”Morison’s equation is
normally assumed to be valid for a wavelength/diameter ratio above 5. Below this
limit the presence of the cylinder will change the wave potential significantly, which
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Figure 3.5: Relative importance of mass, viscous drag and diffraction force on
vertical cylinder [7]

means that wave diffraction forces become important and Morison’s equation should
not be used” [7].

Another limitation to Morison’s equation is that it only gives a good estimation of
the forces in the case of a uniform flow. For orbital flow, for instance encountered by
a cylinder subjected to waves, Morison’s equation does not give a good representation
of the forces as a function of time [1]. Morison’s equation is not perfect, but it
is the best prediction known today of the forces caused by the complicated flow
picture that occurs for separated flow around marine structures [1].

3.3 The equations of motion

”When the hydrodynamic forces have been found it is straightforward to set up
the equations of rigid body motions. This follows by using the equations of linear
and angular momentum. [1]. ”Obtaining the hydrodynamic forces is by no means
trivial” [3]. The steady-state rigid-body sinusoidal motions of a floating body are
given as in equation (3.10) [3].

6∑
k=1

[(Mjk +Ajk)η̈k +Bjkη̇k + Cjkηk] = Fje
iωet, j = 1, ..., 6 (3.10)



Chapter 4

Time-domain motion
response

When analysing a structure in irregular seas, the structure is subjected to many
different excitation frequencies. Because added mass and damping depend on the
frequency of the waves, as discussed in section 3.1.2, the system in equation (3.10)
cannot be used directly [3]. When only the steady-state solution is of interest, this
problem is circumvented by finding the response to each regular wave component,
and then adding together the structures motion responses for all the components
[3].

In some cases, the transient effects might be too important to be neglected. Faltinsen
[3] lists waves generated by passing ships, coupling between nonlinear sloshing in a
ship tank and ship motions, and wet-deck slamming on a catamaran in waves as
examples of situations where transient effects are crucial.

For these transient effects to be considered, a memory function must be included in
the equations of motion to represent the time-domain effects [3].

4.1 The memory function

Cummins (1962) [15] and Ogilvie (1964) [16] discussed how the equation of motion
must be reformulated to be valid in the time domain. Ogilvie [16] states that: ”In
a sense, we find that the existence of the free surface causes the physical system to
have a ’memory’: What happens at one instant of time affects the system for all
later times” [16].

Cummins [15] presented a new mathematical expression as a representation of a
ships response to waves. The linear time-domain response in heave decoupled from
all other motions, are given in equation (4.1) [3].

23
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(M +A33(∞))η̈3 +B33(∞)η̇3 + C33η3 +
t∫

0

h33(τ)η̇3(t− τ) dτ = F3(t) (4.1)

By way of comparison, the steady-state response given in equation (3.10) will for
heave motion decoupled from all other motions look like equation (4.2).

(M +A33)η̈3 +B33η̇3 + C33η3 = F3(t) (4.2)

The structures mass M and restoring C33 are the same in the two equations [3].
The differences are an additional integral term in equation (4.1), and that equation
(4.1) uses the mean infinite-frequency added mass and damping coefficients [3].
This means that the added mass and damping coefficients in equation (4.1) are
independent of frequency. The integral term is referred to as a convolution integral.
Cummins [15] states that: ”The response is given as a convolution integral over the
past history of the exciting force with the impulse response function appearing as
the kernel” [15].

h33(t) is the impulse response function, or the retardation function, and section 4.2
explains how this function might be found.

4.2 Finding the retardation function

The retardation function h(t) may be calculated based on either the added mass or
the damping coefficient, as shown in equation (4.3). The two different approaches
will be further investigated in the rest of this section.

hij(t) = − 2
π

∞∫
0

ω(Aij(ω)−Aij(∞)) sin(ωt) dω (4.3a)

= 2
π

∞∫
0

(Bij(ω)−Bij(∞)) cos(ωt) dω (4.3b)

4.2.1 The added mass related approach

Calculation of the retardation function using equation (4.3a) requires information of
Aij to be known for all frequencies [3]. The added mass coefficient strongly depends
on the geometry of the cross-section of the submerged body. Figure 4.1 shows the
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added mass coefficients in heave for a rectangular cross-section for three different
beam to draft ratios. The upper lines are for B/D = 8, the middle lines are for
B/D = 4, and the lower lines are for B/D = 2.

Figure 4.1: Added mass coefficients in heave as function of frequency [6]

As seen in Figure 4.1, low frequencies gives large added mass coefficients. The
figure does not give any clear information as to what happens to the added mass
coefficient as ω → 0, but the figure indicates that the values grows exponentially.
The figure also indicates that the added mass coefficients might stabilize at a
fixed value for frequencies larger than a certain value. For instance for a beam to
draft ratio of 2, the lower line in Figure 4.1, the added mass coefficient appears to
stabilize at approximately 1.1 for frequencies larger than approximately 1.9. As will
be discussed further in 4.2.3, this is not sufficient information of the added mass
coefficient for all frequencies to be used as a basis for calculation of the retardation
function.

4.2.2 The damping related approach

The other possible approach for calculation of the retardation function is based on
the damping of the structure, and is given by equation (4.3b). This approach will,
analogous to the added mass approach, require information of Bij to be known
for all frequencies [3]. Like for the added mass coefficients, there are a strong
dependency to the geometry of the cross-section of the submerged body.

Figure 4.2 presents damping coefficients for a rectangular cross-section oscillating
in heave. The upper lines represents a beam to draft ratio B/D = 8, the middle
lines represents B/D = 4 and the lower lines represents B/D = 2. The main
difference between this figure, and the figure for the added mass coefficients 4.1, is
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that unlike the added mass coefficients, the damping coefficients are defined also for
low frequencies. The damping coefficients go to zero for really small and for large
frequencies. This is because these frequencies causes the structure to not generate
any waves, as mentioned in section 3.1.2.

Figure 4.2: Damping coefficients in heave as function of frequency [6]

4.2.3 Challenges related to the two approaches

The main challenge in connection with calculating the retardation function is
connected to finding sufficiently detailed information of either the added mass
or damping coefficients at all frequencies. Rognebakke (2002) [17] describes this
process as crucial. Both approaches where tested in this thesis, using the procedure
explained in detail for damping in chapter 5.2.2. Both attempts at finding the
retardation function are based on the information given respectively in Figure 4.1
and 4.2. A rectangular cross-section with a beam to draft ratio of 2 are assumed.
The resulting functions are shown in Figure 4.3 and 4.4.

It is easily seen that the two approaches in this case does not produce the same
resulting function. To decide which, if any, is the correct one, comparison is made
to the impulse response function presented by Faltinsen(2005) [3]. His function is
given in Figure 4.5. By inspecting the three functions, it seems to be a reasonable
accuracy in Figure 4.3, the one calculated utilizing the damping-related equation.
The function found by the added mass approach, Figure 4.4, is incorrect. This
is probably due to the inadequate information of the added mass coefficients for
large and very small frequencies. The approximated function used for the line
representing a beam to draft ratio of 2 in Figure 4.1, assumed a value of 5 for the
added mass coefficient at ω = 0. This is a large understatement, in fact Kotic and
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Figure 4.3: Retardation function calculated using damping (equation (4.3b))

Figure 4.4: Retardation function calculated using added mass (equation (4.3a))
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Figure 4.5: Retardation function in heave (dotted line) for a rectangular cross-section
of B/D = 2 [3]

Mangulis (1962) [18] have proven that A33 →∞ as ω → 0 for all two-dimensional
surface-piercing structures. An insufficient accuracy of the value the added mass
coefficient seemingly stabilizes at might further add to the error.

4.3 Verification of accuracy by inverse calculation

The retardation function (4.3) for uncoupled heave motion is given by equation
(4.4).

h33(t) = − 2
π

∞∫
0

ω(A33(ω)−A33(∞)) sin(ωt) dω (4.4a)

= 2
π

∞∫
0

(B33(ω)−B33(∞)) cos(ωt) dω (4.4b)

The accuracy of the retardation function found might be checked by performing
an inverse calculation as explained by Rognebakke (2002) [17]. Equations (4.5)
and (4.6) show how the obtained retardation function might be used to calculate
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respectively the added mass or damping coefficient in heave for all frequencies
[16].

A33(ω) = A33(∞)− 1
ω

∞∫
0

h33(t) sin(ωt) dt (4.5)

B33(ω) = B33(∞) +
∞∫

0

h33(t) cos(ωt) dt (4.6)

This enables for comparison of the initial A33(ω) or B33(ω) with the result from
respectively (4.5) or (4.6). A good correspondence between the initial coefficients
and the coefficients found by the inverse calculation indicates a good accuracy in
the retardation function h33(t) [17].

As the added mass related approach was seen from Figure 4.4 not to work, the
procedure of inverse calculation was tested on the retardation function found by
utilizing the damping related approach. The result is shown in Figure 4.6. The
red line, found from the inverse calculation, is seen not to coincide with the initial
damping coefficients shown with the black line. This indicates a bad accuracy of the
retardation function, and is most likely connected to the method used for finding
the function describing the initial damping coefficients. This procedure is explained
in chapter 5.2.2. However, the two lines do show similar trends, they both start
at zero for zero frequency and seemingly converges to zero for large frequencies.
Thus, the retardation function found using the damping related approach is used
in the calculation of the convolution integral in this thesis, despite the deficient
accuracy.

Figure 4.6: Initial damping coefficients compared to the damping coefficients found
by inverse calculation
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4.4 The convolution integral

A general mathematical description of what a convolution integral is, and which
mathematical operations that are valid when dealing with convolution integrals, are
given in appendix A.

Rognebakke (2002) states that: ”The convolution integral takes care of the memory
effect of past motions” [17]. As mentioned in the beginning of this chapter, this is
because the free surface of the water represents a ’memory’ of the system. ”Each
occurrence is, in fact, dependent on all preceding occurrences.” [9]. Considering
equation (4.7), the integral term from equation (4.1), it can be seen that the integral
limits are 0 and t.

t∫
0

h33(τ)η̇3(t− τ) dτ (4.7)

This means that the integral is supposed to be evaluated from the beginning of
time and up to this moment. This would require enormous computer resources and
is hence neither practically possible nor necessary. By investigating the h(t)-term
plotted in Figure 4.5, it is observed that the retardation function appears to be
non-zero only for a limited time range. This implies that a ”cut-off” value might be
introduced, limiting the time history for the integral term. Equation (4.8) shows
the convolution integral over a limited time span.

t∫
t−t1

h33(τ)η̇3(t− τ) dτ (4.8)

t − t1 defines the ”cutoff” value, with t1 the amount of time in the time span
included in the calculation. In the following, equation (4.7) will be referred to as the
full convolution integral, while equation (4.8) will be referred to as the limited or
reduced integral. A further investigation of the time span that needs to be included
in the calculation of the memory effects are conducted in chapter 5.



Chapter 5

Analyses in MATLAB

To illustrate the time history of the memory functions, a MATLAB program is
written. A simplified system is tested, to help estimate the amount of memory that
needs to be included in the convolution integral (4.8) to obtain a certain accuracy
compared to the complete integral. What is considered a satisfactory accuracy will
be discussed in chapter 6.3 after the results of the analyses are presented. One
major simplification in the analysis is the geometry of the structure tested. The
’platform’ is considered to be a two-dimensional rectangular cross-section oscillating
at the free surface. Another important simplification is that the system analysed
is assumed to oscillate only in heave, decoupled from other motions. The system
hence becomes a single degree of freedom mass-spring system.

5.1 Single-degree mass-spring system

Wave-induced motions on a floating body might to a large extent be described by a
mass-spring system with damping [3]. Faltinsen [3] states that coupling between
different modes of motions are of importance, but a single degree of freedom system
is sufficient to exemplify essential features of the motions. Equation (5.1) represents
the steady-state motion in heave for a floating structure.

(m+ a)ÿ(t) + bẏ(t) + cy(t) = f(t) (5.1)

Here m is the structures mass, a is the added mass in heave, b is the damping
coefficient (according to [3] caused by, among others, wave radiation due to heave
oscillations), c is the restoring coefficient due to changes in the buoyancy etc, and
f(t) is the excitation force.

The oscillating body is assumed to be positioned at x = 0, which means that the
surface elevation from equation (2.8) might be expressed as in equation (5.2) [3].

31
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Similarly the vertical velocity component of the wave might be expressed as in
equation (5.3)

ζ(t) =
N∑
n=1

An sin(ωnt+ εn) (5.2)

w(t) =
N∑
n=1

ωnAn cos(ωnt+ εn) (5.3)

5.2 The MATLAB program

A MATLAB code is written to find two vectors, η̇(t − τ) and h33(τ) for time
from 0 to a specified end time t, with time step dt, and numerically integrate the
convolution of the two vectors from 0 to t. The program then calculates the integral
from t−t1 to t, where t1 is a given time interval, and compare the deviation between
this integral and the first one. The MATLAB program with all associated functions
are found in the appendix.

5.2.1 Simulating waves

Three quite similar, but still slightly different functions are written to calculate the
η̇(t) vector. The program asks the user to choose a wave scenario to be used in
the analysis, and asks for the relevant input information for the chosen wave type.
The chosen function will return a vector of vertical velocities for different t-values.
The velocities are calculated at x = 0, since this is considered to be the floating
structure’s location in this simplified analysis.

The transfer function |η3|/ζa is assumed to be equal to 1 for all frequencies. This
means that the structure analysed behaves like a cork floating on the water, i.e. the
structures vertical velocity equals the waves vertical velocity component [3].

regWave

The first wave-function is called regWave, and is used for creating regular waves. It
takes the end time maxT , time increment dt, wave amplitude ζa and wave period
T as input from the user. The function then calculates the wave profile and vertical
velocity vectors at x = 0, using equation (2.2) and (2.5) respectively. Finally the
function makes an animated plot of the wave and the corresponding vertical velocity
vector. A snapshot of the animation is given in Figure 5.1 for a wave with amplitude
ζa = 5m and period T = 5s. As seen, the wave profile at the given time instant
is T/4 out of phase with the vertical velocity component. The vertical velocity is
zero under the wave crests and troughs, and reaches its maximum absolute values
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at the wave profile’s points of intersection with the still water level. This is as
expected when comparing to the theory of regular waves presented by for instance
Faltinsen(1990) [1]. The vector containing vertical velocities for all elements of t at
x = 0 is returned to the main program.

Figure 5.1: Snapshot of regular wave propagation with vertical velocity component

singleRegWave

The second wave function is singleRegWave. The function works precisely like the
regWave function, except that it only creates one single wave excursion. The vectors
of wave elevation and vertical velocities at x = 0 hence contains non-zero values only
for one wave period. This function does not represent a plausible wave scenario,
but it is a practical tool for understanding the convolution integral.

Like the regWave function, singleRegWave produces an animated plot of the wave
propagation, and a snapshot of this plot is given in Figure 5.2. The function returns
the vector of vertical velocity components at x = 0 to the main program.

Figure 5.2: Snapshot (at t = 0) of regular wave propagation for a single wave
excursion with its vertical velocity component
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irrSea

The third wave function represents the most realistic representation of a sea state,
and is called irrSea. Instead of getting a single wave amplitude and period from
the user, the function requests a significant wave height HS and a zero up-crossing
period TZ . A Bretschneider wave spectrum is then used to find a set of wave
amplitudes and frequencies to be summed up to represent an irregular sea state, as
explained in chapter 2. Finally, an animated plot showing the sea state is made,
and a vector of vertical velocities at x = 0 is returned to the main program. A
snapshot of an irregular sea state is given in Figure 5.3.

Figure 5.3: Snapshot of the irregular sea elevation and its vertical velocity component

5.2.2 Finding the retardation function

After the η̇(t) term is found, the next step is to find the retardation function.
As explained in chapter 4.2, the retardation or impulse response function might
be found using one of two approaches, equation (4.3a) or equation (4.3b). Both
approaches where tested in this thesis, and only one gave a reasonable accuracy
compared to the expected result. As shown in figure 4.6, the verification of accuracy
for the best resulting function revealed inaccurate results also for this approach.
This is most likely due to inaccurate information of the frequency-dependent added
mass and damping coefficients introduced by the procedure used. The procedure for
finding the retardation function will be presented here only for the damping related
approach, but the procedure used for the added mass approach is identical.

Figure 4.2 constituted the basis of the calculation. The figure was digitized using a
program called GetData Graph Digitizer. Figure 5.4 shows the process of digitizing;
the program traces the specified line and returns a set of x- and y-values. For the
frequency-dependent damping coefficients, the x- and y-values were then copied
over to a spreadsheet. A scatter diagram was drawn based on the values, and finally,
a polynomial equation was found as an approximated function of the coefficient.
Figure 5.5 shows the scatter diagram and corresponding function found for the
frequency dependent damping coefficients in heave. This function is used by the
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MATLAB function retardationD to calculate equation (4.3b).

Figure 5.4: The process of digitizing a graph. Here shown for finding A33(∞) for a
rectangular cross-section

Figure 5.5: Damping coefficient B33 as function of frequency

retardationD

The MATLAB function retardationD is used to calculate the h33(t) vector. It takes
the time increment dt and end time maxT as input. The function from Figure
5.5 is then used as a basis for calculating equation (4.3b). Finally, a plot showing
the retardation function is made, as shown in Figure 4.3. A vector containing the
retardation values for all elements of t are returned to the main program.
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5.2.3 Performing the convolution

Finally, the actual convolution of the two vectors is performed. This is done in a
function called contConvolution. There exists a predefined MATLAB function conv
that returns the convolution of two vectors given as input. This function is not
used in this thesis since the supereminent objective is to prepare for including a
corresponding function in USFOS, which is written in Fortran.

contConvolution

The last function, contConvolution, takes the vertical wave velocity and retardation
vectors as input, in addition to the time increment dt and end time maxT. The
function defines a new ’time’ variable τ , ranging from −maxT to maxT . The two
input vectors are expressed in terms of τ , creating η̇(τ) and h33(τ). The vertical
velocity vector is then mirrored around the y-axis, creating η̇(−τ) for plotting of
the convolution process. The time span to be included in the limited integral is
defined, and the corresponding number of steps in the time vector is calculated.
The lower integral limit is calculated based on the chosen time span. A loop iterates
over each element in the time vector t. For each iteration, the full integral from 0
to t is calculated, as well as the reduced integral only including the the number of
seconds defined as the time span in the integral. The deviation between the two
integrals for each value of t is stored in a vector. For t < t1, where t1 is the time
span, the full time interval is included in the reduced integral, causing the deviation
to be zero.

Finally, an animated plot showing the process of convolution is made. Figure 5.6
shows a snapshot of this animation. For better visualization of the process, the
two vectors η̇(t) and h33(t) are scaled (in this figure) to be of the same order of
magnitude. This is possible since the main interest here is the ratio of the error
between the two integrals, and not the actual numerical values. The upper part of
the figure shows the shifting of η̇(t− τ) through a coordinate system fixed in τ . In
the middle of the figure, the product of η̇(t− τ) and h(τ) is shown for all values of
time t. The area under the graph is shaded, and corresponds to the value of the
convolution in time t. The vertical lines show the integral limits, the full integral is
calculated from time t = 0 (left line) to time t. The limited integral only include
the area between the middle and right vertical lines, in Figure 5.6 corresponding to
8 seconds. Lastly, in the two calculated integrals are plotted in the lower part of
the figure.
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Figure 5.6: Snapshot of the animation of the convolution process for a rectangular
cross-section oscillating in heave in regular waves. t = 60s, time span t1 = 8s
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Chapter 6

Required memory

The main results of the simulations conducted in MATLAB are presented in this
chapter. The different wave scenarios are tested, and the effect of different wave
parameters on the memory required to achieve a specific accuracy are investi-
gated.

6.1 Regular waves

Table 6.1 shows the maximum deviation between the two integrals calculated with
different time spans included in the ’memory’ for the reduced integral. In this
analysis, a regular wave with amplitude ζa = 4 meters and period T = 5 seconds are
used. A total of 100 seconds are included in the full integral, and a time increment
dt = 0.01 seconds is used. The first column shows how many seconds are included
in the ’memory’. The second column shows the maximum absolute deviation of the
second integral, and the third column shows the maximum absolute deviation as a
ratio of the maximum value from the full integral.

Only including a few seconds in the ’memory’ is seen to give bad estimations of
the full convolution integral. For one second, the maximum deviation amounts to
65% of the maximum value in the full convolution integral. However, a few seconds
extension of the time interval significantly reduces the deviation. Including a time
span of four seconds gives a maximum deviation of 20%, while 10% deviation is
reached with less than six seconds included in the ’memory’. As the time span
included in the reduced integral increases, it becomes more and more expensive in
seconds to achieve a certain percentual improvement of the limited integral. Figure
6.1 illustrates this effect. The upper part of the figure shows the obtained deviation,
while the two lower plots shows the percentual deviations.

As seen from table 6.1, a time span of 6 seconds included in the limited convolution
integral results in an accuracy of 10%. Figure 6.2 shows the full integral and the

39
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Time span included Maximum deviation Relative deviation
1 0.82370 0.67807
2 0.37273 0.30683
3 0.26563 0.21867
4 0.25403 0.20912
5 0.17585 0.14476
6 0.12061 0.09929
7 0.10027 0.08254
8 0.08233 0.06778
9 0.06309 0.05194
10 0.05134 0.04226
11 0.04496 0.03702
12 0.03800 0.03128
13 0.03136 0.02582
14 0.02755 0.02268
15 0.02483 0.02044
16 0.02147 0.01767
17 0.01860 0.01531
18 0.01704 0.01403
19 0.01557 0.01281
20 0.01369 0.01127
25 0.00878 0.00722
30 0.00626 0.00515
35 0.00450 0.00371
40 0.00344 0.00283
45 0.00280 0.00231
50 0.00224 0.00184
55 0.00179 0.00148
60 0.00157 0.00129
65 0.00134 0.00110
70 0.00111 0.00091
75 0.00099 0.00082
80 0.00091 0.00075
85 0.00078 0.00064
90 0.00066 0.00054
95 0.00059 0.00049
100 0.00000 0.00000

Table 6.1: Maximum deviation between the two integrals for different time spans
included in the ’memory’. End time t = 100s and time increment dt = 0.01s. Tested
with a regular wave with amplitude ζa = 4m and period T = 5s.
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Figure 6.1: The deviations obtained while calculating the convolution integrals for
various time spans in regular waves of amplitude ζa = 4m and period T = 5s

reduced integral for this time span. The blue line for the full integral completely
covers the reduced integral line for the first 6 seconds, as should be expected. After
6 seconds, the reduced integral deviates from the full integral, and an oscillating
error or deviation occurs.

Investigating the upper part of Figure 6.2, the maximum deviation appears to be
less than 10% because the lines seem to coincide well. The maximum error can
however be observed by enlarging the figure. This is done in Figure 6.3, where it is
seen that the maximum deviations do not occur at the largest absolute values of
the full integral. The largest deviations occur due to the shift, or ’phase difference’,
between the two integrals. At the points of maximum absolute values in the full
convolution integral, the reduced integral is seen to give a better approximation
to the full integral than the value from table 6.1 indicates. In fact, the reduced
integral overestimates the maximum value of the ’memory function’ by 1.3%.
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Figure 6.2: Full and reduced integral for a time span of 6 seconds

Figure 6.3: Enlarged part of Figure 6.2 showing the full and reduced integral for a
time span of 6 seconds
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6.1.1 A single wave excursion

The ’memory function’ obtained for an analysis in regular waves, such as the
analysis conducted in Figure 6.2 is seen to be oscillating with constant amplitude
and period after a short initial phase. This is despite of the fact that more and
more of η̇(t− τ) is shifted into the integrated area. The reason for this becomes
obvious when considering Figure 6.4. The contribution from a single wave excursion
constitutes a negligible amount after being shifted only 20s, due to the low values
of the retardation function after the initial fluctuations. Even though the value of
the retardation function is visually non-zero where the vertical velocity vector is
non-zero, the plotted product of the two vectors are almost invisible.

Since the convolution integral corresponds to the area under the middle graph with
the area below the zero reference cancelling out the area above zero, the contribution
to the ’memory function’ is practically non-existent. Hence the ’constant’ oscillation
is understood to arise from a continuous wave of vertical velocities being shifted
through the initial part of the retardation function, independent of the vertical
velocities that are shifted past the initial part. The initial phase of the ’memory
function’, observed in Figure 6.2 to last only a couple of seconds, arises in the time
interval until t reaches the part of the retardation function where the values are so
low that the product of the two vectors are neglectable.

Figure 6.4: The convolution process for a single wave excursion
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6.1.2 The effect of higher waves

To investigate how the height of the waves affect the time interval that needs to be
included in the limited integral to obtain a certain accuracy, a sample of time spans
are tested for different wave amplitudes ζa with a constant period T . The maximum
relative deviation are written to table 6.2. The wave amplitude of a regular wave
is observed not to affect the relative deviation for regular waves. The numerical
values of the deviation will however depend on the wave amplitude chosen.

Time span Relative deviation, ζa =
2 4 6

1 0.67807 0.67807 0.67807
2 0.30683 0.30683 0.30683
3 0.21867 0.21867 0.21867
4 0.20912 0.20912 0.20912
5 0.14476 0.14476 0.14476
10 0.04226 0.04226 0.04226
20 0.01127 0.01127 0.01127
30 0.00515 0.00515 0.00515
40 0.00283 0.00283 0.00283
50 0.00184 0.00184 0.00184
60 0.00129 0.00129 0.00129
70 0.00091 0.00091 0.00091
80 0.00075 0.00075 0.00075
90 0.00054 0.00054 0.00054
100 0.00000 0.00000 0.00000

Table 6.2: Effect of wave amplitude on relative deviation

6.1.3 The effect of longer wave periods

The effect of increasing the wave period is investigated by analysing a sample of time
intervals for different wave periods of regular waves, while keeping the amplitude of
the waves constant. The results are given in Figure 6.5. It is easily seen that longer
wave periods require greater time intervals included in the ’memory’ of the reduced
integral to achieve a certain accuracy. A wave with period T = 5 seconds will for
instance have a maximum deviation of approximately 4% of the correct value for a
time interval of 10 seconds. For a wave with period T = 25 seconds to achieve the
same level of accuracy, almost 20 seconds must be included in the reduced integral.
Similarly, it is seen that an included time interval of 10 seconds yields an error of
only 4% for a wave with period T = 5 seconds, but an error of 12% for a wave with
period T = 25 seconds.

The period of a regular wave is hence observed to affect the time interval that must
be included in the limited convolution integral. Long wave periods require larger
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Figure 6.5: Effect of increasing the period for regular waves

time intervals included in the ’memory’ than shorter wave periods.

6.2 Irregular waves

Any floating structure at sea will be subjected to irregular sea states which makes
analyses in irregular seas important. The results obtained when testing in irregular
seas are however dependent of the exact sea state generated from the irrSea function.
Due to the random phase angles of the wave components, re-running the code results
in a new sea state, and hence slightly different deviations. The main characteristics
of the analysis do however stay valid unless input parameters are changed.

Table 6.3 presents the maximum deviation obtained for different time spans included
in the ’memory’. An irregular sea state with significant wave height HS = 5m and
zero up-crossing period TZ = 10s is used in this analysis. As was the case for the
regular wave analysis, only including a few seconds in the ’memory’ results in bad
estimations of the full integral. The deviance is seen to be significantly reduced
by including a few seconds more in the ’memory’. By including 7 seconds in the
’memory’, the largest obtained deviance is 9.2%, i.e. less than 10% of the largest
value in the full convolution from 0 to 100 seconds. By comparing the results in
table 6.3 to the results found for regular seas given in table 6.1, it is seen that the
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Time span included Maximum deviation Relative deviation
1 0.42615 0.50774
2 0.21282 0.25357
3 0.19576 0.23324
4 0.16987 0.20239
5 0.12360 0.14726
6 0.09496 0.11314
7 0.07724 0.09203
8 0.06301 0.07507
9 0.05172 0.06163
10 0.04373 0.05210
11 0.03753 0.04471
12 0.03224 0.03841
13 0.02806 0.03343
14 0.02480 0.02955
15 0.02198 0.02619
16 0.01953 0.02327
17 0.01757 0.02093
18 0.01591 0.01896
19 0.01440 0.01716
20 0.01310 0.01560
25 0.00874 0.01041
30 0.00622 0.00741
35 0.00464 0.00553
40 0.00362 0.00431
45 0.00289 0.00345
50 0.00235 0.00280
55 0.00196 0.00234
60 0.00167 0.00199
65 0.00142 0.00169
70 0.00123 0.00146
75 0.00108 0.00129
80 0.00095 0.00114
85 0.00084 0.00100
90 0.00075 0.00090
95 0.00068 0.00081
100 0.00000 0.00000

Table 6.3: Maximum deviation between the two integrals for different time spans
included in the ’memory’. End time t = 100s and time increment dt = 0.01s. Tested
with an irregular sea with significant wave height HS = 5m and zero up-crossing
period TZ = 10s.



6.2. IRREGULAR WAVES 47

results are very similar. This is not unexpected, as the significant wave height and
zero up-crossing period used in this analysis are the same as the wave amplitude
and period used for the regular wave case.

The deviation and relative deviation for different time intervals included in the
’memory’ are shown in Figure 6.6 for the irregular sea analysis. For small time
spans, both the maximum deviation and the relative deviation are seen to be less
in the irregular sea case than for the regular wave. The relative deviation does
however decrease faster for the regular wave, causing the relative deviation of a
time span of more than 5 seconds to be smallest in the regular wave case.

Figure 6.6: Illustration of deviations obtained while calculating the convolution
integrals for various time spans in regular waves

Figure 6.7 illustrates the convolution process for a time span of 7 seconds included
in the limited integral. This corresponds to an accuracy of 9.2%. The values in the
figure are scaled to be of the same order of magnitude for a better visualization.
The convolved function is observed not to have an initial and a stable oscillating
phase, as was the case for the regular wave analysis conducted in Figure 6.2.
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Figure 6.7: The process of convolution shown for an irregular sea state with a time
span of 7 seconds included in the limited integral

Figure 6.8: The error of the convolved function from Figure 6.7
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The irregular sea state cause a vector of irregular vertical velocities, which again
cause the convolved function to be irregular. It should be noted that the error, or
the deviation, of the limited integral does not oscillate with constant amplitude and
period like it did in the regular wave scenario. This is shown in Figure 6.8. From
t = 22 to t = 42 the error is seen to be small, due to a period of low values in the
vertical velocity vector causing the area in the part of the product plot not included
in the limited integral to be small. Vice versa, from t = 65 to t = 85, the error is
seen to be larger and rapidly changing sign. This is caused by a set of large vertical
velocity values causing the limited integral to cut off some of the area contributing
to the value in the full integral.

6.2.1 The effect of more severe sea states

Using the set of values for Hm0 and Tp for different sea states given by Myrhaug
(2007), the significant wave heights and zero up-crossing periods listed in table 6.4
might be calculated [19]. The significant wave heights and zero up-crossing periods
given in the table is understood to be the most severe sea state with a duration of
3 hours that are likely to occur during the given return period.

Return period HS [m] TZ [s]
1 year 7.3 10.4

10 years 8.4 10.9
100 years 11.1 12.4

Table 6.4: Significant wave height and zero up-crossing period for sea states of
different return periods

The effect of more severe sea states are analysed by comparing the deviations
obtained for the three different sea states given in Table 6.4. Figure 6.9 illustrates
the relative maximum deviations found. The three cases are seen to give very equal
results. This is not unexpected, considering the experience gained from the regular
wave analyses. The main difference between the sea state with 1 year return period,
and the sea state with 100 years return period is in the significant wave height. The
wave height alone does not affect the relative deviation, as concluded in section
6.1.2. The difference in zero up-crossing period is seen from Table 6.4 to be only 2
seconds between the 1 year and 100 year return periods. This difference can hence
not be expected to give any large effects to the outcome, and the small differences
between the different sea states seem reasonable.

6.3 Evaluation of the results

To decide what is a satisfactory accuracy is not straightforward, as a given accuracy
might be considered sufficient in some cases and insufficient in other. For a situation
where the memory effects constitutes a small part of the total forces acting on a
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Figure 6.9: Effect of more severe sea states

structure, a rough estimate might be sufficient. However, if the memory effects
constitutes a large part of the total forces on the structure, the accuracy might be
crucial for the simulated vessel response. In general, a good accuracy is always best,
but the additional accuracy comes with a cost in the form of slower calculations
and higher computer memory requirements.

Considering the results obtained from the analyses conducted in MATLAB, a
time interval of approximately 25 seconds should be sufficient to yield an accuracy
of 99%, i.e. less than 1% in maximum deviation. Saving the time history of
25 seconds should not induce too high costs in terms of computational memory
requirements. Considering Table 6.3, reducing the error with 0.5%, from 1% to
0.5% costs approximately an additional 12-13 seconds. This is an increase of 50%
in storage requirements, only to achieve an additional 0.5% in accuracy. Thus,
including 25 seconds in the time history seems to be an appropriate choice.

However, the analyses conducted in this thesis only considers uncoupled heave
motion for a rectangular cross-section oscillating in heave at the free surface. As
discussed in section 3.1.2, the added mass and frequency coefficients depends on the
motion mode and cross-sectional geometry, as well as the submergence. Different
values for the A(ω) term might result in a different retardation function, which
again might change the time interval necessary to obtain a sufficient accuracy in the
approximated convolution integral. More analyses should thus be conducted in order
to state a specific minimum time interval to be included in the ’memory’.



Chapter 7

Implementation in USFOS

On the basis of the experience obtained with the single degree of freedom system
dealt with in chapter 5 and 6, a brief description is given of how frequency dependent
added mass and damping can be implemented in USFOS.

7.1 Program flow

Figure 7.1 shows a possible program flow of the subroutine that must be written
in Fortran code and implemented in USFOS. The first phase consists of collecting
data. The cross-sectional geometry is taken as input from the existing USFOS code.
The subroutine then checks whether or not information of either Aij(ω) or Bij(ω)
is known. If not, the program flow is returned to the gathering of cross-sectional
data. If the required information is known, the program proceed to the second
phase. Aij(∞) or Bij(∞) is taken as input from the existing USFOS code, and hij
is calculated. The accuracy is then verified by inverse calculation as described in
section 4.3. If a predefined requirement is met, the program flow proceeds to the
third phase and if not, the entire process must start over.

In the third phase of the subroutine, the time interval defining the amount of time
history stored is taken as input. The convolution integral is the calculated, and the
last phase of the subroutine is entered. Here, the structures displacement, velocity
and acceleration are taken as input from the existing program, and the equation of
motion in the time domain is calculated and returned as output.
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Figure 7.1: Flow chart showing a possible program flow of the subroutine in USFOS



Chapter 8

Concluding Remarks

8.1 Conclusion

Frequency dependence of the diffraction and radiation loads on a floating offshore
structure might be implemented in USFOS using memory functions expressed by
convolution integrals. One of the terms in each convolution integral is a retarda-
tion function, and the procedure of establishing the retardation function requires
information of either the added mass coefficients or the damping coefficients to
be known for all frequencies. A detailed information over the entire frequency
range is necessary for a satisfactory accuracy of the retardation function to be
achieved. Digital reading of the data from a scanned plot did not produce an
accurate retardation function. This was demonstrated by verifying the accuracy of
the retardation function by inverse calculation.

It is possible to obtain a good accuracy of the memory function by including only a
short time span in the convolution integral. The analyses conducted in MATLAB
for a single-degree of freedom system simulating a platform oscillating in heave,
showed that a time span of 25 seconds was sufficient to achieve an error of 1%
compared to the full convolution integral. The analyses showed that the relative
deviation of the limited integral was independent of the amplitude of the waves
the structure was exposed to. The amount of memory needed to obtain a certain
accuracy does however depend on the wave period. Waves with long periods require
longer time spans included in the memory than waves with shorter periods.

The main findings might be summarized as follows:

• Extreme caution must be taken in establishing the retardation function, as
this function is very sensitive to the frequency dependent added mass or
damping coefficients.

• The time span that needs to be included in the convolution integral to achieve
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a certain accuracy is independent of the amplitude of the waves the structure
is subjected to.

• Long wave periods require larger time spans included in the memory function
than the smaller wave periods do.

• A time span of 25 seconds was found to be sufficient to achieve a maximum
deviation of 1% compared to the maximum value of the full convolution integral
for a rectangular cross-section oscillating at the free surface in uncoupled
heave motion.

8.2 Recommendations for further work

Many aspects of the calculations performed in this thesis can be further investigated.
The importance of the memory terms might be investigated by calculating the
total motion response of a platform oscillating in incident waves. The results from
an analysis conducted using the time-domain equation of motion might then be
compared to the results from an analysis conducted assuming constant added mass
and damping terms. This was initially intended to be within the scope of this thesis,
but was omitted due to time restrictions.

The amount of time that needs to be included in the memory functions might be
further investigated by calculating the retardation functions for other motion modes.
Finding the retardation function in heave for other cross-sectional geometries and
using that as a basis for the convolution integral could also be interesting. Different
retardation functions might require that a different time span is included in the
convolution integral to obtain an accuracy of 1%.

Finally, and most interestingly, a subroutine must be written in Fortran to calculate
the motion response in the time domain. This subroutine might be tested by
calculating the motion response of a platform pontoon, and compare the result to a
similar analysis conducted in an extended version of the MATLAB program. The
result might then be verified by comparison to results obtained from other programs
known to be accurate.
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Appendix A

The convolution integral
explained

Convolution is a mathematical operation on two functions f1 and f2, over the
same variable, e.g. f1(t) and f2(t). The convolution produces a third function
that describes how the first function modifies the second one, and conversely; the
resulting function can be seen as how the second function modifies the first function
[20]. The convolution is a mathematical operation ”giving the area overlap between
the two functions as a function of the amount that one of the original functions is
translated” [8].

The convolution of two functions is denoted ∗ and is written as in equation (A.1). τ
is used as a ”dummy variable”; a variable used to shift f2 through time t [20].

f1(t) ∗ f2(t) =
∞∫
−∞

f1(τ) · f2(t− τ) dτ (A.1)

This process can be explained through the following steps, illustrated by Figure A.1
to A.4:

1. Start out with two functions f1(t) and f2(t). Express the two functions in
terms of a dummy variable τ : f1(τ) and f2(τ) as shown in Figure A.1.

2. Reflect one of the functions: f2(τ)→ f2(−τ). f2 is now time-inverted. Leave
the other function, f1(τ) fixed in τ -space. This is shown in Figure A.2.

3. By adding a time-offset, t, f2(t − τ) is allowed to slide along the τ -axis [8].
”Start t at −∞ and slide it all the way to +∞. Wherever the two functions
intersect, find the integral of their product” [8]. This process is shown in
Figure A.3 to A.4.
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The result is a sliding, weight-average of function f1(τ), where the weighting function
is f2(τ).

Figure A.1: f1and f2 as functions of τ [8]

Figure A.2: f2 time-inverted while f1 is fixed [8]

Figure A.3: Time-offset added so f2 can be shifted through τ [8]

Figure A.4: Shifting of f2(t− τ) through f2(τ) [8]

Following is a list of properties useful when handling convolution integrals and a
set of equations, equations (A.2) to (A.6), showing how the different mathematical
operations can be performed on the convolution integrals [20]:

Communicative property: Changing the order of the operands does not change
the result.

f1(t) ∗ f2(t) = f2(t) ∗ f1(t) (A.2)

Distributive property: The order of the mathematical operations can be over-
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ruled by parentheses.

f1(t) ∗ [f2(t) + f3(t)] = f1(t) ∗ f2(t) + f1(t) ∗ f3(t) (A.3)

Associative property: The order in which the operations are performed within
an expression containing two or more of the same associative operator in a
row does not matter as long as the sequence of the operands is not changed.

f1(t) ∗ [f2(t) ∗ f3(t)] = [f1(t) ∗ f2(t)] ∗ f3(t) (A.4)

Shift property: If equation (A.5) is true, then equation (A.6) is also true.

f1(t) ∗ f2(t) = c(t) (A.5)

f1(t− T1) ∗ f2(t− T2) = c(t− T1 − T2) (A.6)
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Appendix B

MATLAB: Main program

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Marianne Mellbye Larsen: Master thesis 2013 %
3 % − Main program − %
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5

6 clear % Clears all variables from the workspace
7 clc % Clears the command window
8 close all % Close all plots
9

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

12 % Properties for plots:
13 set(0, 'DefaultAxesFontSize', 11);
14 set(0, 'DefaultTextInterpreter', 'Latex');
15

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17

18 disp('−−−−−−−−−−−−−−−−−−−− PROGRAM STARTED −−−−−−−−−−−−−−−−−−−−')
19

20 % Get input from user:
21 maxT = input('Choose end time (e.g. 100): '); % End time
22 dt = input('Choose time increment (e.g. 0.1): '); % Time increment
23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25

26 % Let user choose wave type:
27 type = menu('Select wave type', 'Regular wave', 'Single regular ...

wave excursion', 'Irregular sea');
28

29 if (type == 1)
30 disp('Regular wave chosen')
31 zeta a = input('Choose wave amplitude in meters (e.g. 5): ');
32 T = input('Choose wave period in seconds (e.g. 5): ');
33 % Finding a vector of vertical velocities at different times t ...

for a wave at position x = 0:

V
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34 if (T < maxT | | T == maxT) % Wave period must be shorter ...
than maximum time

35 continualWaveVel = regWave(maxT, dt, zeta a, T);
36 else
37 disp('Invalid combination of period T and end time maxT ...

chosen, at least one wave period must be included in maxT')
38 end
39 disp('continualWaveVel:')
40 disp(continualWaveVel)
41

42 elseif (type == 2)
43 disp('Single regular wave excursion chosen')
44 zeta a = input('Choose wave amplitude in meters (e.g. 5): ');
45 T = input('Choose wave period in seconds (e.g. 5): ');
46 % Finding a vector of vertical velocities at different times t ...

for a wave at position x = 0:
47 if (T<maxT | | T == maxT)
48 singleWaveVel = singleRegWave(maxT, dt, zeta a, T);
49 else
50 disp('Invalid combination of period T and end time maxT ...

chosen, at least one wave period must be included in ...
maxT')

51 end
52 disp('singleWaveVel')
53 disp(singleWaveVel)
54

55 elseif (type == 3)
56 disp('Irregular sea chosen')
57 N = input('Choose number of wave components (e.g. 15): ');
58 H S = input('Choose significant wave height in meters (e.g. 5): ');
59 T Z = input('Choose mean zero up−crossing period (e.g. 10): ');
60 % Finding a vector of vertical velocities for an irregular sea ...

state at position x = 0:
61 if (T Z < maxT | | T Z == maxT)
62 irrSeaVel = irrSea(maxT, dt, N, H S, T Z);
63 else
64 disp('Invalid combination of "period" T Z and end time maxT ...

chosen, increase maxT or decrease T Z')
65 end
66 % disp('irrSeaVel:')
67 % disp(irrSeaVel)
68 end
69

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71

72 % Finding the retardation function using a damping related approach:
73 h = retardationD(dt, maxT);
74 disp('h(t)')
75 disp(h')
76

77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
78

79 % Performing the convolution:
80 if (type == 1)
81 % Calculating the convolution integral for continual wave:
82 contConvTerm = contConvolution(continualWaveVel, h, dt, maxT);
83 disp('contConvTerm:')
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84 disp(contConvTerm)
85 elseif (type == 2)
86 % Calculating the convolution integral for single wave excursion:
87 singleConvTerm = contConvolution(singleWaveVel, h, dt, maxT);
88 disp('singleConvTerm:')
89 disp(singleConvTerm)
90 elseif (type == 3)
91 % Calculating the convolution integral for irregular seas:
92 irrConvTerm = contConvolution(irrSeaVel, h, dt, maxT);
93 disp('irrConvTerm:')
94 disp(irrConvTerm)
95 end
96

97 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
98

99 disp('−−−−−−−−−−−−−−−−−−−− PROGRAM ENDED −−−−−−−−−−−−−−−−−−−−−−')
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Appendix C

regWave.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Marianne Mellbye Larsen: Master thesis 2013 %
3 % − Function to find the vertical velocity of %
4 % a regular wave − %
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 function vel = regWave(maxT, dt, zeta a, T)
8

9 disp('−−−−− Continual regular wave function started −−−−−')
10

11 % Time and x−vector with increment dt:
12 x = 0:dt:maxT; % x vector [m]
13 t = 0:dt:maxT; % Time vector [s]
14

15 % Constants:
16 g = 9.81; % Acceleration of gravity [m/sˆ2]
17

18 % Wave parameters:
19 omega = 2*pi/T; % Circular frequency [sˆ−1]
20 k = omegaˆ2/g; % Wave number [mˆ−1]
21

22 % Stillwater−line:
23 stillWater = zeros(length(x),1);
24

25 % Vectors of the wave profile and vertical velocities at x=0:
26 prof = zeros(length(t),1);
27 vel = zeros(length(t),1);
28 for i = 1:length(t)
29 prof(i) = zeta a*sin(omega*t(i));
30 vel(i) = omega*zeta a*cos(omega*t(i));
31 end
32

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%% PLOT %%%%%%%%%%%%%%%%%%%%%%%%%%%%
34

35 % Speeds up the animation of the wave:
36 increment = 1;
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37 if length(t) > 501
38 increment = floor(length(t)/500);
39 end
40

41 % Plotting the wave animation:
42 for i = 1:increment:length(t)
43 j = t(i);
44 zeta = zeta a*sin(omega*j − k*x);
45 w = omega*zeta a*cos(omega*j − k*x);
46

47 figure(1)
48 subplot(2,1,1)
49 plot(x, stillWater, 'Linestyle', '−−', 'LineWidth', 2, ...

'Color', 0.75*[1 1 1]);
50 hold on
51 plot(x, zeta)
52 plot(x, w, 'r')
53 axis([0 maxT −20 20])
54 xlabel('x [m]');
55 str = {'Wave elevation [m]', 'Vertical velocity [m/s]'};
56 ylabel(str);
57 title('Continual regular wave propagation', 'FontSize', 14);
58 hleg1 = legend('Still water level', 'Wave profile', ...

'Vertical velocity');
59 set(hleg1,'Location', 'NorthEast', 'Interpreter', 'Latex')
60 regWavePlot = gcf;
61 saveas(regWavePlot, 'Plots\regWavePlot', 'png');
62 hold off
63

64 if (i > 200)
65 break; % Stop the animation (exit the for loop)
66 end
67

68 % Create movie frame
69 M(i) = getframe;
70 end
71

72 disp('−−−−− Continual regular wave function closed −−−−−')
73 end
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singleRegWave.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Marianne Mellbye Larsen: Master thesis 2013 %
3 % − Function to find the vertical velocity − %
4 % − of a single wave excursion − %
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 function singleVelShort = singleRegWave(maxT, dt, zeta a, T)
8

9 disp('−−−−−−−−−−−− Single wave function started −−−−−−−−−−−−−−')
10

11 % Time and x−vector with increment dt:
12 x = 0:dt:maxT; % x vector [m]
13 t = 0:dt:maxT; % Time vector [s]
14

15 % Constants:
16 g = 9.81; % Acceleration of gravity [m/sˆ2]
17

18 % Wave parameters:
19 omega = 2*pi/T; % Circular frequency [sˆ−1]
20 k = omegaˆ2/g; % Wave number [mˆ−1]
21

22 % Calculating the wavelength:
23 lambda = 2*pi/k; % [m]
24

25 % Number of x−steps in one wave excursion:
26 stepX = ceil(lambda/dt);
27

28 % Amplitude and vertical velocity for one single wave excursion ...
at x=0:

29 singleAmp = zeros(length(t),1);
30 singleVel = zeros(length(t),1);
31 for i = 1:length(t)
32 time = t(i);
33 if time ≤ T
34 singleAmp(i) = zeta a*sin(omega*time);
35 singleVel(i) = omega*zeta a*cos(omega*time);
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36 end
37 end
38

39 % Vertical velocity in vector of length one period at x=0:
40 stepT = length(0:dt:T);
41 singleVelShort = zeros(stepT,1);
42 for i = 1:length(singleVelShort)
43 time = t(i);
44 singleVelShort(i) = omega*zeta a*cos(omega*time);
45 end
46

47 % Still−water level:
48 stillWater = zeros(length(x),1);
49

50 %%%%%%%%%%%%%%%%%%%%%%%%%%%% PLOT %%%%%%%%%%%%%%%%%%%%%%%%%%%%
51

52 % Wave profile and vertical velocity at t=0:
53 wave = zeros(stepX,1);
54 velo = zeros(stepX,1);
55 for i = 1:stepX
56 wave(i) = zeta a*sin(−k*x(i));
57 velo(i) = omega*zeta a*cos(−k*x(i));
58 end
59

60 % Plotting the wave:
61 offset = 0;
62 singleZeta = zeros(length(t),1);
63 singleW = zeros(length(t),1);
64 for i = 1:length(t)
65

66 if (offset == 0)
67 singleZeta(1:length(wave),1) = wave;
68 singleZeta(length(wave)+1:length(t),1) = 0;
69

70 singleW(1:length(velo),1) = velo;
71 singleW(length(velo)+1:length(t),1) = 0;
72

73 elseif (offset < length(t)−length(wave))
74 singleZeta(1:offset,1) = 0;
75 singleZeta(offset+1:offset+length(wave),1) = wave;
76 singleZeta(offset+length(wave)+1:length(t),1) = 0;
77

78 singleW(1:offset,1) = 0;
79 singleW(offset+1:offset+length(velo),1) = velo;
80 singleW(offset+length(velo)+1:length(t),1) = 0;
81

82 elseif (offset < length(t))
83 singleZeta(1:offset,1) = 0;
84 singleZeta(offset+1:length(t),1) = ...

wave(1:(length(t)−offset),1);
85

86 singleW(1:offset,1) = 0;
87 singleW(offset+1:length(t),1) = ...

velo(1:(length(t)−offset),1);
88

89 else
90 singleZeta = 0;
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91

92 singleW = 0;
93 end
94

95 offset = offset + 3; % Speeds up the animation
96

97 if offset > length(t)
98 break; % Stop the animation (exit the for loop)
99 end

100

101 figure(1)
102 subplot(2,1,1)
103 plot(x, stillWater, 'Linestyle', '−−', 'Color', 0.75*[1 1 1]);
104 hold on
105 plot(x, singleZeta)
106 plot(x, singleW, 'r')
107 axis([0 maxT −20 20])
108 xlabel('x [m]')
109 str = {'Wave elevation [m]', 'Vertical velocity [m/s]'};
110 ylabel(str);
111 title('Single excursion wave propagation', 'FontSize',12)
112 hleg1 = legend('Still water level', 'Wave profile', ...

'Vertical velocity');
113

114 set(hleg1,'Location', 'NorthEast', 'Interpreter', 'Latex')
115 singleRegWavePlot = gcf;
116 saveas(singleRegWavePlot, 'Plots\singleRegWavePlot', 'png');
117 hold off
118

119 if (i > 200)
120 break; % Stop the animation (exit the for loop)
121 end
122

123 % Create movie frame
124 M(i) = getframe;
125 end
126

127 disp('−−−−−−−−−−−− Single wave function closed −−−−−−−−−−−−−−−')
128 end
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Appendix E

irrSea.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Marianne Mellbye Larsen: Master thesis 2013 %
3 % − Function to find the vertical velocity of %
4 % an irregular sea state − %
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6

7 function vel sum = irrSea(maxT, dt, N, H S, T Z)
8

9 disp('−−−−−−−−−−−− Irregular sea function started −−−−−−−−−')
10

11 % Time and x−vector with increment dt:
12 x = 0:dt:maxT;
13 t = 0:dt:maxT;
14

15 % Constants:
16 g = 9.81; % Acceleration of gravity
17

18 % Finding random phase angles (epsilon):
19 eps = rand(N,1)*2*pi;
20 disp('eps:')
21 disp(eps)
22

23 % Delta omega:
24 domega = (2.18−0.2)/(N−1);
25

26 % Creating a vector of amplitudes:
27 zeta a = zeros(N,1);
28

29 % Calculating the amplitudes from the wave spectrum:
30 S = @(omega) (H Sˆ2*T Z/(8*piˆ2)) * (2*pi./(omega.*T Z)).ˆ5 .* ...

exp(−(1/pi)*(2*pi./(omega.*T Z)).ˆ4);
31 for i = 1:N
32 lower = (i−1)*domega;
33 upper = i*domega;
34 int = integral(S,lower,upper);
35 zeta a(i) = sqrt(2*int);

XV
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36 end
37 disp('zeta a:')
38 disp(zeta a)
39

40 % Plotting the wave spectrum:
41 omega plot = 0:0.01:2;
42 S plot = zeros(1,length(omega plot));
43 disp('omega plot:')
44 disp(omega plot)
45 disp('S plot:')
46 disp(S plot)
47 for i = 1:length(omega plot)
48 S plot(i) = (H Sˆ2*T Z/(8*piˆ2)) * ...

(2*pi/(omega plot(i)*T Z))ˆ5 * ...
exp(−(1/pi)*(2*pi/(omega plot(i)*T Z))ˆ4);

49 end
50 figure(80)
51 hold on
52 plot(omega plot, S plot)
53 grid on
54 hold off
55

56 % Finding the frequency values:
57 omega mid = zeros(N,1);
58 for i = 1:N
59 omega mid(i,1) = 0.2 + (i−1)*domega;
60 end
61 disp('omega mid:')
62 disp(omega mid)
63

64 % Calculating periods:
65 T = zeros(N,1);
66 for i = 1:N
67 T(i,1) = (2*pi)/omega mid(i,1);
68 end
69 disp('T:')
70 disp(T)
71

72 % Wave number:
73 k = zeros(N,1);
74 for i=1:N
75 k(i,1) = omega mid(i,1)ˆ2/g;
76 end
77 disp('k:')
78 disp(k)
79

80 % Still−water level:
81 stillWater = zeros(1,length(x));
82

83 % Vector of the wave profile and vertical velocities at x=0;
84 prof = zeros(length(t), N);
85 prof sum = zeros(length(t), 1);
86 vel = zeros(length(t), N);
87 vel sum = zeros(length(t), 1);
88 for i = 1:length(t)
89 for n = 1:N
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90 prof(i,n) = zeta a(n,1)*sin(omega mid(n,1)*t(i) + ...
eps(n,1));

91 vel(i,n) = ...
omega mid(n,1)*zeta a(n,1)*cos(omega mid(n,1)*t(i) ...
+ eps(n,1));

92 end
93 prof sum(i,1) = sum(prof(i,:));
94 vel sum(i,1) = sum(vel(i,:));
95 end
96

97

98 %%%%%%%%%%%%%%%%%%%%%%%%%%%% PLOT %%%%%%%%%%%%%%%%%%%%%%%%%%%%
99

100 % Plotting the wave:
101 zeta = zeros(N,length(t));
102 zeta tot = zeros(1,length(t));
103 w = zeros(N,length(t));
104 w tot = zeros(1,length(t));
105 for i = 1: length(t)
106 for n = 1:N
107 zeta(n,:) = zeta a(n,1)*sin(omega mid(n,1)*t(i) − ...

k(n,1)*x + eps(n,1));
108 w(n,:) = ...

omega mid(n,1)*zeta a(n,1)*cos(omega mid(n,1)*t(i) ...
− k(n,1)*x + eps(n,1));

109 end
110

111 for j = 1:length(t)
112 zeta tot = sum(zeta);
113 w tot = sum(w);
114 end
115

116 % Plotting:
117 figure(1)
118 subplot(2,1,1)
119 plot(x, stillWater, 'Linestyle', ':', 'LineWidth', 2, ...

'Color', 0.75*[1 1 1])
120 hold on
121 plot(x,zeta tot)
122 plot(x,w tot, 'r')
123 axis([0 maxT −4 4])
124 xlabel('x [m]')
125 str = {'Wave elevation [m]', 'Vertical velocity [m/s]'};
126 ylabel(str)
127 title('Irregular seas', 'FontSize', 12)
128 hleg1 = legend('Still water level', 'Wave profile', ...

'Vertical velocity');
129 set(hleg1,'Location', 'NorthEast', 'Interpreter', 'Latex')
130 irrSeaPlot = gcf;
131 saveas(irrSeaPlot, 'Plots\irrSeaPlot', 'png');
132 hold off
133

134 if i > 200
135 break; % Stop the animation (exit the for loop)
136 end
137

138 % Create movie frame:
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139 M(i) = getframe;
140 end
141

142 disp('−−−−−−−−−−−− Irregular sea function ended −−−−−−−−−')
143 end
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retardationD.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Marianne Mellbye Larsen: Master thesis 2013 %
3 % − Function to find the retardation function − %
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5

6 function h nondim = retardationD(dt, maxT)
7

8 disp('−−−−−−−−−−−− Retardation function started −−−−−−−−−−−−−−')
9

10 % Platform dimensions (the beam to draft ratio must be two):
11 B = 16; % Beam [m]
12 D = B/2; % Draft [m]
13

14 % Constants:
15 rho sw = 1025; % Density seawater [kg/mˆ3]
16 g = 9.81; % Acceleration of gravity [m/sˆ2]
17

18 % Damping in heave for 2D platform as omega −> infinity:
19 B inf = 0; % [kg/m]
20

21 % Vector of damping values at spesific omega values:
22 stepsize = 0.001;
23 valueRange = 1.6; % B is defined for omega < 1.6
24 nSteps = valueRange/stepsize +1;
25 B coef = zeros(nSteps,1);
26 omega nondim = zeros(nSteps,1);
27 for i = 1:nSteps
28 omega nondim(i,1) = (i−1)*stepsize;
29 B coef(i,1) = −0.6591*omega nondim(i,1)ˆ4 + ...

3.1149*omega nondim(i,1)ˆ3 − ...
4.9105*omega nondim(i,1)ˆ2 + 2.6013*omega nondim(i,1) ...
− 0.0298;

30 end
31

32 % Evaluate h33(t):
33 t range = maxT;
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34 n t steps = t range/dt + 1;
35 time = zeros(n t steps,1);
36 for i = 1:n t steps
37 time(i,1) = (i−1)*dt;
38 end
39

40 zero ref = zeros(n t steps,1); % Plotting a zero reference vector
41

42 h eq = @(w)(2/pi) * ((−0.6591*(w*sqrt(B/(2*g)))ˆ4 + ...
3.1149*(w*sqrt(B/(2*g)))ˆ3 − 4.9105*(w*sqrt(B/(2*g)))ˆ2 + ...
2.6013*(w*sqrt(B/(2*g))) − ...
0.0298)*rho sw*B*D/sqrt(B/(2*g)) − B inf)*cos(w*(time));

43 h = integral(h eq,0,1.6,'ArrayValued',true);
44

45 % Non−dimentionals for plotting h33:
46 t nondim = time*sqrt(g/(B/2));
47 h nondim = h/(2*rho sw*g*D);
48

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%% PLOTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%
50

51 % Properties for plots:
52 set(0, 'DefaultAxesFontSize', 10);
53 set(0, 'DefaultTextInterpreter', 'Latex');
54

55 % Plotting non−dimentional damping in heave:
56 figure(2)
57 subplot(2,1,1)
58 hold on
59 plot(omega nondim, B coef, 'k')
60 y1 max = max(B coef)*1.2;
61 axis([0.0 valueRange 0.0 y1 max])
62 xlabel('$\omega \sqrt{\frac{B}{2g}}$')
63 ylabel('$\frac{B {33}}{\rho {sw} B D}$', 'Rotation', 0.0)
64 title('Damping coefficient in heave as function of ...

frequency','FontSize',12)
65 hleg2 = legend('Damping coefficient in heave');
66

67 set(hleg2,'Location', 'NorthEast', 'Interpreter', 'Latex')
68 heaveOmegaPlot = gcf;
69 saveas(heaveOmegaPlot, 'Plots\heaveOmegaPlot', 'png');
70 hold off
71

72 % Plotting dimentionless retardation function h:
73 figure(3)
74 subplot(2,1,1)
75 plot(t nondim, zero ref, 'Linestyle', '−−', 'Color', 0.75*[1 1 1])
76 hold on
77 plot(t nondim, h nondim, 'g')
78 y4 min = min(h nondim)*1.1;
79 y4 max = max(h nondim)*1.1;
80 axis([0 t range y4 min y4 max])
81 xlabel('t $\sqrt{\frac{2g}{B}}$')
82 ylabel('$\frac{h}{2 \rho {sw}gD}$', 'Rotation', 0.0)
83 title('Dimensionless retardation function $h(t)$ in heave', ...

'FontSize', 12)
84 hleg3 = legend('Zero reference', 'Retardation function ...

$h {33}(t)$');
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85

86 set(hleg3,'Location', 'NorthEast', 'Interpreter', 'Latex')
87 retDPlot = gcf;
88 saveas(retDPlot, 'Plots\retDPlot', 'png');
89 hold off
90

91 disp('−−−−−−−−−−−− Retardation function closed −−−−−−−−−−−−−−−')
92 end
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contConvolution.m

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % Marianne Mellbye Larsen: Master thesis 2012 %
3 % − Function to find the convolution of two functions − %
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5

6 function answer = contConvolution(etaDot,h,dt,endt)
7

8 disp('−−−−−−−−−−−− Convolution function started −−−−−−−−−−−−−−')
9

10 % Time vector t:
11 t = 0:dt:endt;
12

13 % Creating vectors for the results of the convolution integrals:
14 result = zeros(length(t)+1,1);
15 result limits = zeros(length(t)+1,1);
16

17 % Creating a zero reference for plotting:
18 zero ref = zeros(length(t), 1);
19

20 % Making etaDot a vector of length(t) for plotting:
21 etaDotPlot = zeros(length(t),1);
22 for i = 1:length(etaDot)
23 etaDotPlot(i) = etaDot(i);
24 end
25

26 % Plotting the two functions that will be convolved vs time t:
27 figure(5)
28 plot(t, zero ref, 'Linestyle', '−−', 'Color', 0.75*[1 1 1])
29 hold on
30 plot(t, etaDotPlot, 'r')
31 plot(t, h, 'g')
32 ymin = min(min(etaDot), min(h))*1.1;
33 ymax = max(max(etaDot), max(h))*1.1;
34 axis([0 endt ymin ymax])
35 xlabel('time $t$ [s]')
36 title('$\dot{\eta}(t)$ and $h(t)$', 'FontSize',12)
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37 hleg5 = legend('Zero reference', 'Retardation function: ...
$h(t)$', 'Vertical velocity: $\dot{\eta}(t)$');

38 set(hleg5,'Location', 'NorthEast', 'Interpreter', 'Latex')
39 fig5Plot = gcf;
40 saveas(fig5Plot, 'Plots\fig5Plot', 'png');
41 hold off
42

43 % Defining dummy time variable T:
44 T = −endt:dt:endt;
45 zero t index = ceil(length(T)/2); % Finding the index of t=0 ...

in vector T:
46

47 % Expressing the functions in terms of dummy variable T:
48 etaDot T mirror = zeros(length(T),1);
49 h T = zeros(length(T),1);
50 for i = 1:length(h)
51 h T(zero t index − 1 + i) = h(i);
52 end
53 for i = 1:length(etaDot)
54 etaDot T mirror(zero t index + 1 − i) = etaDot(i);
55 end
56

57 % Creating a zero reference in T for plotting:
58 zero ref T = zeros(length(T), 1);
59

60 etaDot mirror = zeros(length(etaDot),1);
61 for i = 1:length(etaDot)
62 etaDot mirror(i) = etaDot(length(etaDot) + 1 − i);
63 end
64

65 % Adding zeros after the vectors because of length issues when ...
shifting ETA:

66 ETA = [etaDotPlot, zeros(length(etaDotPlot),1)];
67 H = [h, zeros(length(h),1)];
68

69 % Vector of t values used in plotting of the convolution:
70 t result = zeros(length(result),1);
71 zero ref result = zeros(length(result),1);
72 temp = 0:dt:2*endt;
73 for i = 1:length(result)
74 t result(i) = temp(i);
75 end
76

77 % Defining global paramter for printing of matrix to latex:
78 global maxDiff;
79 maxDiff = zeros(endt,3);
80

81 % Choose time span to be included in the limited integral:
82 timespan = 10; % [s]
83 % or run a loop over many timespans:
84 % for timespan = 1:endt
85 % disp(timespan)
86

87 % Time span in steps:
88 timeSpan steps = timespan/dt;
89

90 product = zeros(length(result));
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91 result = zeros(length(t)+1,1);
92 result limits = zeros(length(t)+1,1);
93

94 % Lower limit:
95 low limit = zeros(length(t),1);
96 for i = 1:length(t)
97 if i ≤ timeSpan steps
98 low limit(i,1) = 0;
99 else

100 low limit(i,1) = t(i−timeSpan steps);
101 end
102 end
103

104 % Compare:
105 comp = zeros(length(t),2);
106 comp(:,1) = low limit(:,1);
107

108 % Figure used for plotting of animation (slow):
109 figure(6)
110

111 offset = −length(etaDot mirror); % Position relative to ...
t=0 of first non−zero element in etaDot mirror

112 for i = 1:length(result)
113

114 comp(i,2) = t(i);
115

116 etaDot shift = zeros(length(T), 1); % Empty ...
etaDot shift

117

118 if offset < (length(t) − length(etaDot mirror))
119 for j = 1:length(etaDot mirror)
120 etaDot shift(zero t index + offset + j) = ...

etaDot mirror(j);
121 end
122 else
123 etaDot shift(zero t index + offset + ...

1:length(etaDot shift)) = ...
etaDot mirror(1:(length(T)−zero t index−offset));

124 end
125

126 % Calculating the convolution integral from 0 to t:
127 for j = 1:length(h)
128 if (i−j+1 > 0)
129 product(j) = ETA(j) * H(i − j + 1);
130 result(i+1) = result(i+1) + (ETA(j) * H(i − j + ...

1))*dt;
131 end
132 end
133

134 % Calculating the convolution integral from t−timeSpan ...
to t:

135 for j = 1:length(h)
136 if (i−j+1 > 0)
137 if (j > low limit(i)/dt)
138 result limits(i+1) = result limits(i+1) + ...

(ETA(j) * H(i − j + 1))*dt;
139 end
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140 end
141 end
142

143 if (timespan == 1 | | timespan == 10)
144 if (i == 0.6*endt/dt +1)
145 % Animated plot (slow):
146 subplot(3,1,1)
147 plot(T, zero ref T, 'Linestyle', '−−', 'Color', ...

0.75*[1 1 1])
148 hold on
149 plot(T, etaDot shift, 'r')
150 plot(T, h T, 'g')
151 x7min = −endt/10;
152 x7max = endt;
153 axis([x7min x7max ymin ymax])
154 grid on
155 if i < length(t)
156 t 0 = t(i);
157 opts.vpos = 'top';
158 opts.halign = 'left';
159 opts.staircase = true;
160 vline2(t 0, {'k'}, {' $t$'}, opts) % ...

Uses a function found on MatWorks File ...
Exchange to plot vertical lines (not ...
my code)

161 end
162 xlabel('dummy time $\tau$')
163 title('$\dot{\eta}(t−\tau)$ and $h(\tau)$', ...

'FontSize',12)
164 hleg11 = legend('Zero reference', ...

'$\dot{\eta}(t−\tau)$', '$h(\tau)$');
165

166 set(hleg11,'Location', 'NorthEast', ...
'Interpreter', 'Latex')

167 hold off
168

169 subplot(3, 1, 2)
170 plot(t result, zero ref result, 'Linestyle', ...

'−−', 'Color', 0.75*[1 1 1])
171 hold on
172 % plot(t result, product); % Faster than area
173 area(t result, product, 'FaceColor', [.6 .0 .6]);
174 axis([x7min x7max −40 40])
175 grid on
176 if i < length(t)
177 opts.vpos = 'top';
178 opts.halign = 'left';
179 opts.staircase = true;
180 vline2([0 low limit(i) t(i)], ...

{'k','k','k'}, {'',' $t−t 1$',' ...
$t$'}, opts) % Uses a function ...
found on MatWorks File Exchange to ...
plot vertical lines (not my code)

181 end
182 xlabel('time t [s]')
183 title('Product of $\dot{\eta}(t−\tau)$ and ...

$h(\tau)$', 'FontSize',12)
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184 hleg12 = legend('Zero reference', ...
'$\dot{\eta}(t−\tau) h(\tau)$');

185

186 set(hleg12,'Location', 'NorthEast', ...
'Interpreter', 'Latex')

187 hold off
188

189 subplot(3, 1, 3)
190 plot(t result, zero ref result, 'Linestyle', ...

'−−', 'Color', 0.75*[1 1 1])
191 hold on
192 plot(t result, result limits, 'r')
193 plot(t result, result, 'b')
194 axis([x7min x7max −40 40])
195 grid on
196 xlabel('time t [s]')
197 title('Convolution of $\dot{\eta}(t−\tau)$ and ...

$h(\tau)$', 'FontSize',12)
198 hleg13 = legend('Zero reference', ...

'$\int\limits {t−t 1}ˆt \dot{\eta}(t−\tau) ...
h(\tau) \, d\tau$ \quad', ...
'$\int\limits {0}ˆt \dot{\eta}(t−\tau) ...
h(t) \, d\tau$');

199

200 set(hleg13,'Location', 'NorthEast', ...
'Interpreter', 'Latex')

201 if (timespan == 1)
202 convAnPlot 1 = gcf;
203 saveas(convAnPlot 1, 'Plots\convAnPlot 1', ...

'png');
204 elseif (timespan == 10)
205 convAnPlot 10 = gcf;
206 saveas(convAnPlot 10, ...

'Plots\convAnPlot 10', 'png');
207 end
208 hold off
209

210 % Create movie frame
211 M(i) = getframe;
212 end
213 end
214

215 offset = offset + 1;
216

217 if i ≥length(t)
218 break
219 end
220 end
221

222 disp('comp:')
223 disp(comp)
224

225 res = zeros(length(result),5);
226 res(:,1) = result(:,1);
227 res(:,2) = result limits(:,1);
228 for i = 1:length(res)
229 res(i,3) = (res(i,1)−res(i,2));
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230 res(i,4) = (res(i,3)/res(i,1));
231 res(i,5) = res(i,4)*100;
232 end
233 disp('res:')
234 disp(res)
235

236 maxIntegralValue = max(abs(res(:,1)));
237

238 maxDiff(timespan,1) = timespan;
239 maxDiff(timespan,2) = max(abs(res(:,3)));
240 maxDiff(timespan,3) = maxDiff(timespan,2)/maxIntegralValue;
241

242

243 maxError = max(res(:,4));
244 disp('maxError:')
245 disp(maxError)
246

247 maxPercent = max(res(:,5));
248 disp('maxPercent:')
249 disp(maxPercent)
250

251 % end
252 answer = maxDiff(:, 3);
253 disp('answer:')
254 disp(answer)
255

256 % Figure:
257 figure(7)
258 subplot(2,1,1)
259 plot(t result, zero ref result, 'Linestyle', '−−', 'Color', ...

0.75*[1 1 1])
260 hold on
261 plot(t result, result limits, 'r')
262 plot(t result, result, 'b')
263 axis([0 endt −40 40 ])
264 grid on
265 xlabel('time $t$ [s]')
266 title('Convolution of $\dot{\eta}(t−\tau)$ and $h(\tau)$', ...

'FontSize',12)
267 hleg71 = legend('Zero reference', '$\int\limits {t−t 1}ˆt ...

\dot{\eta}(t−\tau) h(t) \, d\tau$', '$\int\limits {0}ˆt ...
\dot{\eta}(t−\tau) h(t) \, d\tau$');

268 set(hleg71,'Location', 'NorthEast', 'Interpreter', 'Latex')
269 hold off
270

271 subplot(2,1,2)
272 plot(t result, zero ref result, 'Linestyle', '−−', 'Color', ...

0.75*[1 1 1])
273 hold on
274 plot(t result, res(:,3), 'r')
275 axis([0 endt −10 10 ])
276 grid on
277 xlabel('time $t$ [s]')
278 title('Error')
279 hleg72 = legend('Zero reference', 'Error');
280 set(hleg72,'Location', 'NorthEast', 'Interpreter', 'Latex')
281 fig7Plot = gcf;
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282 saveas(fig7Plot, 'Plots\fig7Plot', 'png');
283 hold off
284

285 % Used only when the loop iterating over many time spans is ...
activated:

286 figure(8)
287 subplot(2,1,1)
288 hold on
289 plot(maxDiff(:,1), maxDiff(:,2), 'r')
290 axis([1 length(maxDiff) 0 7 ])
291 grid on
292 xlabel('Time included in memory [s]')
293 title('Deviation', 'FontSize',12)
294 hleg81 = legend('Maximum deviation');
295 set(hleg81,'Location', 'NorthEast', 'Interpreter', 'Latex')
296

297 subplot(2,1,2)
298 hold on
299 plot(maxDiff(:,1), maxDiff(:,3)*100, 'g')
300 axis([1 length(maxDiff) 0 65 ])
301 grid on
302 xlabel('Time included in memory [s]')
303 title('Maximum deviation in percent of highest value in full ...

convolution integral', 'FontSize',12)
304 hleg82 = legend('Maximum percentual deviation');
305 set(hleg82,'Location', 'NorthEast', 'Interpreter', 'Latex')
306 fig8Plot = gcf;
307 saveas(fig8Plot, 'Plots\fig8Plot', 'png');
308 hold off
309

310

311 figure(9)
312 subplot(2,1,2)
313 hold on
314 plot(maxDiff(:,1), maxDiff(:,3)*100, 'g')
315 axis([1 length(maxDiff) 0 10 ])
316 grid on
317 xlabel('Time included in memory [s]')
318 ylabel('\%', 'Rotation', 0.0)
319 title('Maximum deviation in percent of highest value in full ...

convolution integral', 'FontSize',12)
320 hleg9 = legend('Maximum percentual deviation \quad');
321 set(hleg9,'Location', 'NorthEast', 'Interpreter', 'Latex')
322 fig9Plot = gcf;
323 saveas(fig9Plot, 'Plots\fig9Plot', 'png');
324 hold off
325

326 disp('−−−−−−−−−−−− Convolution function ended −−−−−−−−−−−−−−−−')
327 end
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