
Recognizing and Learning Opportunities
in Complex and Dynamic Environments

Fredrik Åsgård

Master of Science in Computer Science

Supervisor: Pinar Öztürk, IDI

Department of Computer and Information Science

Submission date: July 2015

Norwegian University of Science and Technology

Recognizing and Learning Opportunities

in Complex and Dynamic Environments

Fredrik Åsgård

June 2015

MASTER’S THESIS

Department of Computer and Information Science

Norwegian University of Science and Technology

Abstract: An opportunistic agent need not only to identify, learn to recognize and to exploit opportu-

nities. This is of particular interest in complex environments, where an agent is unable to attain full

overview of the situation. Real-world environments are riddled with uncertainty, there are changes tak-

ing place everywhere, agents have severely limited observability, and there is no realistic way to evaluate

all possible states/actions. We adapt a proven model of temporarily suspending goals (instead of per-

manently discarding them), should the goals constraints become invalidated. We propose a conceptual

framework that uses reinforcement learning on observations in a Partially observable Markov decision

process (POMPD) for learning to recognize future opportunities. The learned opportunities are combined

with partial-specification planning in order to enable an agent to achieve its goals.

Supervisor 1: Pinar Özturk

Supervisor 2: Kerstin Bach

Preface

This thesis concludes my Master of Science education in Computer Science at the

Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. The

thesis was performed throughout my 10th semester, spring of 2015, at the Depart-

ment of Computer and Information Science.

Working on this thesis was very intense work, with hours upon hours of coding.

Unfortunately, in the end only a very simplified implementation was still functional.

There was simply not enough time and too many details that needed ironing.

I hope the contents of this document may become useful for those interested in

learning to recognize opportunities.

I would like to thank my supervisors associate professor Pinar Øzturk and post-

doctoral fellow Kerstin Bach for valuable ideas and comments throughout the work

period. A big thank also goes to my friends who kept me motivated during the most

intense periods.

Trondheim, 2015-07-03

FREDRIK ÅSGÅRD

i

Abstract

An opportunistic agent need not only to identify, learn to recognize and to exploit op-

portunities. This is of particular interest in complex environments, where an agent is

unable to attain full overview of the situation. Real-world environments are riddled

with uncertainty, there are changes taking place everywhere, agents have severely lim-

ited observability, and there is no realistic way to evaluate all possible states/actions.

We adapt a proven model of temporarily suspending goals (instead of permanently

discarding them), should the goals constraints become invalidated. We propose a

conceptual framework that uses reinforcement learning on observations in a POMPD

for learning to recognize future opportunities. The learned opportunities are com-

bined with partial-specification planning in order to enable an agent to achieve its

goals.

iii

Table of Contents

Preface . i

Abstract . iii

Table of Contents . v

List of Figures . vii

List of Tables . ix

1 Introduction 1

1.1 Objectives . 2

1.2 Structure . 4

2 Background 5

2.1 Opportunism . 6

2.2 Related work . 9

2.2.1 Trucker . 9

2.2.2 Pareto . 9

2.2.3 Nicole . 9

2.2.4 Opportunistic Control . 10

3 Conceptual Model 11

3.1 Knowledge representation . 12

3.1.1 Attributes . 13

3.1.2 Actions . 15

3.2 Opportunities . 18

4 Experiments 21

4.1 Simple . 21

4.2 Noisy . 23

v

4.3 Tricky . 25

5 Discussion 27

5.1 Limitations . 29

6 Conclusions and further work 31

6.1 Conclusion . 31

6.2 Additional work . 31

6.2.1 Domain modelling software . 32

6.2.2 Simulation software . 32

6.2.3 Planner-less implementation . 33

6.3 Further work . 34

References . 37

vi

List of Figures

3.1 An example of a concept inheritance hierarchy. 13

3.2 An example of concept instances and how they reference each other. . . 14

3.3 Actions, methods and goals in a hierarchical task network 17

3.4 One potential strategy for getting a raise 18

4.1 The initial programmed knowledge of the agent 22

4.2 The actual environment of the simple experiment 23

4.3 The actual noisy environment . 24

4.4 The tricky environment which requires more complicated strategy . . . 25

6.1 Screenshot from modeling software . 33

vii

List of Tables

3.1 A list of a few example attributes . 15

3.2 Agent observations as cases. 19

3.3 Example of an opportunity learned form observations. 20

3.4 Actual rules for the opportunity. 20

ix

Chapter 1

Introduction

We interact with uncertain, dynamic environments in our everyday lives, yet this has

proved to be a daunting task for Artificial Intelligence (AI). It’s become evident that

creating agents capable of working in such environments is not simply a matter of

filling in knowledge. A static knowledge base is quickly rendered obsolete in a rapidly

changing environment. Additionally, for sufficiently complex environments we can’t

hope to anticipate every possible situation. Some circumstances even severely restrict

our ability to reason about the environment in advance. As a result an intelligent

agent must perform even with very limited prior domain knowledge, and potentially

wast amounts of learned knowledge.

Many real-world domains have been characterized as messy. These domains have

a weak theoretical basis, and there may be a large number of potential outcomes to

every situation and an inherent uncertainty. If other agents are present one must also

consider their interactions with the domain. This makes it imperative that intelligent

agents are able to adapt to unforeseen changes in the environment, and also to learn

from opportunities and failures (Hammond et al., 1993). Learning to recognize op-

portunities relies on learning from past experiences and understanding what caused

the opportunity. However, the first step towards learning to anticipate opportunities

is to recognize a circumstance where an opportunity may present itself (Pryor, 1996).

There exists a few different definitions of opportunism and opportunistic agents

in the scientific literature (Francis, 1995; Pryor and Collins, 1994; Schank and Leake,

1989). We will use the following definition throughout the thesis unless stated other-

wise:

1

An opportunity is any circumstance in which selecting a particular course

of action allows the agent to reach some goal with less effort than initially

foreseen.

That is not to say that certain opportunities may not have an associated risk. In or-

der to be opportunistic a system needs to be able to recognize opportunities, but also

assess their worth with regard to the potential risks and rewards. The circumstances

necessary for an opportunity may arise due to several different reasons. Examples

include a sudden availability of a resource or tool, a change in the agents knowl-

edge about the domain, a change in the external world, and more (see Section 3.2

on page 18).

One way of tackling these domains is by reusing strong knowledge, as in Case-

Based Reasoning (CBR) systems. In essence these systems propose new solutions by

adapting solutions from previous problem instances. Some domain knowledge can

be used to improve case adaptation. While classical approaches were not intended

for large cases with few important features, the similarity measure and retrieval is

useful for discovering similar circumstances. However, in classical CBR designs, the

quality of the similarity measures and adaptation knowledge are not within the scope

of the learning process. When combined with other machine learning techniques

CBR allows us to identify new opportunities by analysing the observations that lead

to an opportunity.

This thesis focuses on designing a conceptual model that uses past experiences to

identify and recognize opportunities in complex environments.

1.1 Objectives

Our objectives for this thesis is to define a conceptual framework that allows us to

identify, recognize and learn several different types of opportunities in a complex en-

vironment, as well as exploiting the opportunities when appropriate. We will look at

requirements for an autonomous agent that is placed in an unknown symbolic envi-

ronment, with respect to knowledge representation, planning, execution and learning

under soft real-time constraints.

This thesis focuses on the following research goals:

1. Creating a framework for identifying opportunities in complex environments

2

Identifying an opportunity entails knowledge of the circumstance necessary for

the opportunity to arise, and reacting when such a circumstance is being ob-

served. This can be particularly interesting in complex environments as obser-

vations may consist in large parts of noise with respect to the opportunity.

2. Creating a framework for recognizing opportunities in complex environments

Once we have an idea about the circumstances that need to be for an oppor-

tunity to arise, we can index specific actions accordingly. The challenge is to

create a framework that allows us to recognize as many types of opportunities

as reasonable through different indexing strategies.

3. Finding a representation of opportunities for reasoning and recognition

Assuming an agent knows the circumstance for a specific opportunity, we still

need find a representation of this information in order to enable the actual rea-

soning and recognition.

4. Specifying what an agent should learn in order to recognize future opportunities

In a complex environment there are many observed features that may have no

relevancy for the opportunity. Remembering everything in order to analyse this

information at a later time is likely intractable. We are interested in finding a

method to narrow down which features without reducing the capability to rec-

ognize new opportunities.

5. Specifying when an agent should create a new case in order to recognize future

opportunities

As important as what the agent should focus on learning; when to form new

memories are also highly interesting.

6. Specifying how an agent should decide whether to pursue the recognized oppor-

tunity

Some measure of control must be applied when deciding whether to pursue

an opportunity. At any given time frame, there are likely many opportunities

that arise. There may even be several opportunities between two consecutive

observations. Most of these opportunities are unlikely to improve the current

plan, and we must be able to decide which.

3

1.2 Structure

The rest of the thesis is split into chapters and structured as follows.

• Chapter 2 on the next page (Background) covers basic theory about opportunism,

planning, and CBR, in addition to an outline of the related work.

• Chapter 3 on page 11 (Conceptual Model) describes the components of the do-

main model and the agent model, and how they relate to the research goals.

• Chapter 4 on page 21 (Experiments) explains how the experiments were set up

and performed, and also lists relevant results.

• Chapter 5 on page 27 (Discussion) discusses the validity of the approach and

the results of the experiments. There is also a section on limitations of our con-

ceptual framework.

• Chapter 6 on page 31 (Conclusions and further work) contains a short summary

of the contents in this thesis, in addition to the conclusions and recommenda-

tions for future work. Finally, there is a short section on additional work.

4

Chapter 2

Background

Mastering the real world around us is challenging for computers because of uncer-

tainty, complexity and dynamism. Any intelligent system intended to operate in the

real world needs to handle the inherent difficulties such a world presents (Pryor and

Collins, 1994). While our agent only exists in a symbolic environment, we intend to

model these challenges. A large world entails that an agent can never know every-

thing there is to know. In a dynamic world, changes are caused by several agents

and/or processes. We define a dynamic world to include the creation and destruction

of objects. Finally, uncertainty makes it impossible to know the exact outcome of an

action or the state of the unobserved world. These properties allow us to model such

an environment as a Partially observable Markov decision process (POMPD). We will

assume that the world our agent shall operate in has all of these properties.

In order to achieve goals an agent must formulate a plan. However, complexity,

uncertainty and dynamism make it very difficult to create detailed plans. At any point

during the execution, a precondition may be invalidated and the rest of the plan ren-

dered useless. This makes classical planning, where a problem is solved precisely by

listing all the required steps, an unsuited approach to achieving goals in such worlds.

Even when looking at very efficient planners such as the Hierarchical Task Network

(HTN) planner SHOP2 (Nau et al., 2003), it quickly became intractable to do plan-

ning even in deterministic worlds of significant size. However, there are several pos-

sible approaches that still appear tractable in complex, dynamic and uncertain envi-

ronments. Partial-specification planning (also sometimes know as just partial plan-

ning) techniques, while also working well within opportunistic reasoning, may allow

5

tractable implementations (Mancarella et al., 2005; Weld, 1994). A planner that only

partially specifies the plan and keeps alternative plans could be said to find a strat-

egy for solving the problem. The actual execution of each step is deferred until the

agent has enough information to carry out the primitive actions, and every action

may change as the agent carries out the plan.

Furthermore, learning to recognize and remember circumstances that are favor-

able (i.e. opportunities) requires memory. The less one knows about the domain in

advance, the more general the memory needs to be. Our assumption is that we can

only have limited knowledge about the domain in advance, and thus our model for

memory must adapt to previously unseen data. Since the environment we need to re-

member is symbolic, there is an upper size limit on the set of states. This suggest that

we could look at Markov decision processes. Also, we have an uncertain and com-

plex environment, which in turn makes reinforcement learning an attractive candi-

date. Incidentally, reinforcement learning is also suited to large environments. We

are also interested in using the memory structure in order to learn future opportu-

nities. Instance-based learning and case-based reasoning are interesting candidates

which both generalize observations

2.1 Opportunism

A more pragmatic definition of opportunism is that opportunistic behavior is the pro-

cess of recognizing circumstances in which a suspended goal may again be pursued

Simina and Kolodner (1995). While working towards a goal an agent may encounter

a problem which prevents an immediate sub-goal from being achieved. Instead of

abandoning the task in its entirety, the agent may choose to temporarily suspend

the sub-goal and begin work on another problem. Eventually this may lead to new

evidence or insight about the suspended sub-goal, and the deferred work can be re-

sumed. In this definition the opportunity itself can be thought of as the proposition as

to how a current or future challenge may be overcome. In many cases this challenge

will be to overcome the perceived cost of solving the problem.

There are several required steps towards a fully opportunistic agent:

• Identification of opportunities: Identification is linked to observation. The

agent needs to be capable of identifying an opportunity in the observed data.

6

• Learning opportunities: Once we have identified an opportunity, the agent can

learn the circumstances required for the opportunity to arise.

• Recognizing learned opportunities: This step is similar to identification, but

occurs after the opportunity has been learned. Recognizing is focused on quick

evaluation of the benefits of the opportunity.

• Exploitation of opportunities: The process of deciding whether to pursue the

recognized opportunity or not, given that not all opportunities improve utility

at all times.

• Chasing opportunities: If the agent believes that a certain circumstance may

improve the current plan by a significant amount, it could decide to actively go

looking for an opportunity.

This definition of opportunity can be encapsulated through storytelling: A man

wants to cook bacon and eggs for breakfast, but discovers that he is out of eggs. Re-

alizing he won’t have time to go to the store and return in order to make eggs without

being late for work, he decides to eat something else. While driving to work he sees a

storefront advertising a limited offer on eggs. Upon recalling that he is out of eggs he

decides to quickly stop and buy a dozen before going on his way.

In this example the travel to work is temporarily suspended in order to work to-

wards another goal. Even though he gains no momentary benefit from purchasing

the eggs, this course of action allows him to immediately satisfy a precondition for a

latent goal at low cost.

From the perspective of a planning agent, opportunities should be seen some-

what in contrast to planning failures. Whereas planning failures indicate when an

agent need to avoid negative interactions, opportunities are about exploiting positive

interactions according to Hammond et al. (1993). It could be argued that for every

planning failure there must be some missed opportunity. However this may not al-

ways be true. Following the example; if the man had planned ahead by purchasing

eggs the previous day he would have no use of buying more, missing the opportu-

nity to save money on the special offer. While certain opportunities may arise at the

planning stage, other are only revealed during execution.

7

Without knowing the schedule of promotional offers of grocery stores in his vicin-

ity, the man had no realistic way to know that the eggs would be on sale. However,

after acting on the opportunity he may now pay special attention to this particular

store in case a similar offer appears. This reflects one way in which acting upon op-

portunities ties in with learning.

If one argues that it is impossible to predict such futures, one should at least react

should a more favorable future occur. It is also possible to plan for futures that may

happen, e.g. anticipate opportunities. Part of being able to utilise such opportunities

is to unify how planning and execution works (Pryor and Collins, 1994). In the objec-

tives following this section, we look closer at how we intend to realize an agent that is

able to cope with the circumstances mentioned above.

The several different classifications of opportunities. An opportunity may arise

because of a change in the environment (exogenous) or in the agents beliefs (endoge-

nous). The change may be discovered by passively observing or actively chasing an

opportunity. This can happen during planning-time or execution-time, and may af-

fect the agents current goal or behavior. Finally, the opportunity could arise as a con-

sequence of change in availability of a resource or tool, a change of the agents loca-

tion, or simply because of passing time.

In order to successfully exploit opportunities, an agent must first identify the op-

portunity. There has been done much research on the identification and recognition

of opportunities previously. See (Hammond et al., 1993; Hayes-Roth, 1993; Pryor and

Collins, 1994; Schank and Leake, 1989) for a good starting point. The next step is to

decide whether to pursue the opportunity, as not all opportunities end up increasing

the utility of the current plan. Francis (1995) proposes a utility controlled approach

in order to ignore certain opportunities. Finally, the agent could learn the circum-

stances for the opportunity, in order to actively look for opportunities in the future.

In this thesis, we intend to look at learning opportunities and to recognize them in

real-time in complex environments.

8

2.2 Related work

2.2.1 Trucker

TRUCKER was developed to deal with the problem of recognizing execution-time op-

portunities in the context of a resource-bound agent that is forced to suspend plan-

ning in order to attend to execution (Hammond et al., 1993). The goal of this model

was to capture the ability of an agent to suspend goals, yet still recognize execution-

time opportunities to satisfy them. In response to a suspended goal, TRUCKER per-

forms a planning-time analysis of the conditions that would favor the satisfaction of

the goal. It then suspends the goal in memory, indexed by a description of those con-

ditions. Once those conditions are present, the goals are reevaluated in terms of the

new conditions. Either the goals fit into the current plan or they are again suspended.

2.2.2 Pareto

PARETO operates a simulated robot delivery truck in an unpredictable world: The

truck has limited perception, and can sense only those objects that are at its cur-

rent location. The world is also dynamic, since objects may spontaneously change

location, appear, or disappear. Finally, the results of the truck’s actions are uncer-

tain (Pryor, 1996; Pryor and Collins, 1994). PARETO receives delivery orders at unpre-

dictable intervals during execution-time. Calculating plans that allow for every pos-

sible combination of goals is intractable; instead it uses a separate plan for each of

its goals. These plans are only partially-specified, and PARETO can choose primitive

actions during execution-time.

2.2.3 Nicole

NICOLE is divided into three components: Memory, reasoning, and control. These

three components work together in order to allow an opportunistic memory (Francis,

1995). The reasoning components is tasked with limiting what reminders the memory

component produces while the control component decides if the plan should change.

The control component, TASKSTORM, continuously evaluates what it can do, decid-

ing what it should do, and deciding to change what it is currently doing.

9

2.2.4 Opportunistic Control

The opportunistic control model comprises three component processes (Hayes-Roth,

1993). An agent must be able to react to event during execution-time. In order to

control the direction of the agents overall actions, a strategic planner dynamically

modifies a strategy that constrain the intended actions. Together, these two aspects

allow the agent to perform a match-based control process, selecting specific primitive

actions to execute which satisfy the overall strategy.

10

Chapter 3

Conceptual Model

Our target environment is complex; There are potentially an infinite number of states.

The state of the environment is only partially visible to an agent. There is an inherent

uncertainty about the outcome of actions. There are other agents which may also in-

teract with and change the environment. There are, however, a few assumptions that

help us reduce the complexity slightly; Observations made by the agent are correct

(no inaccuracies or noise). The agent has perfect memory.

There are a few important consequences that arise from those points. Primarily,

we can not expect to be able to perform precise planning (Hauskrecht, 2000); The ac-

tion and state space is too large and any plan that details a course of action may be

obsolete by the time we receive the next observation. As such, we need to formulate

an overall strategy to achieve our goals that will not be easily obsoleted1, then dur-

ing execution quickly evaluate our possible courses of actions to achieve each step in

the overall strategy. This is sometimes referred to as partial-specification planning or

just partial planning. Hierarchical Task Network (HTN) planners allow us to achieve

the above given we allow specification of abstract actions. An abstract action is not

a directly executable as is, but functions as a starting point for a specialized planner.

Path-finding would be a prime example, where the abstract action could be Goto. The

HTN planner only needs to know the result of executing the action and the associated

cost, while the specialized planner is first consulted when that action is up for execu-

1There is another possibility of instead approximating the solution. However, this is more relevant
when set of actions is very large and the result of an action is continuous. Example: rotating a robot
arm and arbitrary amount, with an error ε> 0. Situations like this does sometimes not require a precise
rotation, and it may be corrected later on.

11

tion.

While our environment potentially contains multiple agents, we do not consider

it to be a multi-agent problem. Each agent is not directly aware of the existence of any

other intelligent agents and we do not consider behavior modeling. Interaction be-

tween agents is modelled the same way as any other interaction in the environment,

through the execution of actions. This enables cooperative planning if the actions

are tailored as such, while still allowing us to model our problem as a Partially ob-

servable Markov decision process (POMPD). A POMPD is a Markov decision problem

in which an agent knows about the set of states, actions, transitions between states

and the associated reward in addition to a set of observations. As defined above, the

agents observations are without error, but beliefs about no longer visible parts of the

environment are uncertain.

3.1 Knowledge representation

We model our representation of a complex environment based on a set of concepts.

Each concept describes a class of objects and has zero or more attributes and/or

actions. E.g. a door might be closed (attribute) and you could lock/unlock(actions)

it. Attributes and actions are collectively described as members of the concepts, and

we refer to a specific attribute or action using the following notation throughout the

thesis: The concept name followed by a period and the member name (Concept.member).

Concepts are organized in an inheritance hierarchy (see Figure 3.1 on the facing

page) in order to facilitate generalization of induced rules for opportunities. We will

revisit rule induction and generalization of opportunities in Section 3.2 on page 18.

Concepts closer to the top in the hierarchy are generalizations of concepts further

down. Concepts closer to the bottom are specializations of entities further up in the

hierarchy. Specializations can have more than one parent and inherit all the attributes

and actions of the parent concepts.

Concepts themselves do not exist in the environment. They are merely a repre-

sentation of a class of objects that an agent may utilize when reasoning about the

environment. Instances of concepts on the other hand, exist in the environment and

agents may directly observe and interact with them (see Figure 3.2 on page 14). Each

concept may have more than one instance in the environment at any time. As per

our previous definition of dynamic environments; instances may also be created and

12

Item

Door

Entity

Physical Immovable

Person

Agent

G
en

er
al

iz
at

io
n

Sp
ec

ia
liz

at
io

n

Area

Lockable Door

Room

Portal

Key Coin

Figure 3.1: An example of a concept inheritance hierarchy.

destroyed at any time.

3.1.1 Attributes

Concept attributes are straight forward. They are strongly typed and can be restricted

to a range of values or transitions by an optional data model. Attributes are inherited

from the parent concept. This means that if the parent concept has an attribute, the

specialization has an exact copy of the same attribute. Note that the attributes are not

assigned any actual values; This is deferred until a concept has been instantiated, as

every instance may have different values for each attribute (see Table 3.1 on page 15).

Once instantiated, every attribute is assigned an unambiguous value. The value

might change between observations and before the agent has a chance to perform an

action. An agent may only observe a subset of all attribute values at a time, as a result

of partial observability of the environment. Only instances in the same location as the

agent may be observed, along with their attribute values.

While the exact types of attributes depend on the implementation, there are three

main classes that each type belong to:

• Enumeration: a relatively small set of values (E.g. weekdays). Enumerations

are the simplest, and are candidates for exact planning and reasoning in small

13

Door

KeyLockable Door

inherits inherits

Lockable Door (2)

Attributes

Behaviors

Locked: Boolean

Closed: Boolean

Close Door(A, D)

Knock(A, D)

Lock Door(A, D, K)

Open Door(A, D)

Unlock Door(A, D, K)

Key (5)

Attributes

Weight: Float

Opens: Instance

Opened by: Instance

references

references

Concepts

Instances

Features

Locked = True

Closed = True

Opened by = Key (5)

Features

Weight = 0.05

Opens = Lockable Door (2)

Instance of Instance of

Item

Behaviors

Drop(A, K)

Pickup(A, K)

Figure 3.2: An example of concept instances and how they reference each other.

14

Attribute examples
Name Type Model Example value

World.Time Time 24h-Time 17:07

World.Weather Enumeration {Sunny, Rainy, ...} Cloudy

Store.Location Instance instance-of Location Manhattan

Store.Open Boolean {False, True} True

Agent.Name String String "Jarvis"

Agent.Money Integer x ∈ [0,1010] 133

Agent.Happiness Float x ∈ [0.0,1.0] 0.8

Table 3.1: A list of a few example attributes

environments.

• Discreet: a large range of values (E.g. integers). Discreet values need intelligent

planning, and classical planners may still perform reasonably well. The term

reasonable used here is not an absolute measure, more of a guideline for real-

time performance time constraints.

• Continuous: a practically infinite range of values (E.g. floating-point values).

Continuous values makes planning very difficult, and classical planning may no

longer be applicable. Partial-specification planning is a likely candidate, aside

from specialized planners or approximations.

Our environment does potentially contain continuous attributes (recall that we

assume a continuous environment). Because of this, we need to be selective with our

approach to interaction. The actions that are available to the agent during planning

must work well with partial-specification planning.

3.1.2 Actions

Actions (sometimes called operators or primitive tasks in planning literature) are the

only mean by which an agent can interact with the environment, as opposed to sim-

ply observing. Each action is considered in a context (a subset of the environment).

As an action may never change anything outside of the context, planning and evalu-

ation can be limited exclusively to instances that are part of the context. Additionally,

each action has a set of constraints that must be satisfied before execution, and a set

of potential outcomes (see Listing 3.1 on the following page). While the outcomes and

15

their probabilities are specified in the model, the agent does not know the probabili-

ties. The probabilities may even depend on the current state.

1 action Open {

2 context :

3 agent instanceof Agent

4 door instanceof Door

5 constraints :

6 door . closed = true

7 door . locked = f a l s e

8 door . location = agent . location

9 r e s u l t s :

10 outcome 0.99 {

11 door . closed := f a l s e

12 }

13 outcome 0.01 { } // door got stuck somehow

14 }

Listing 3.1: An example specification of an action.

All the actions in the environment are organized in a hierarchical network, called

a Hierarchical Task Network (HTN) (see Figure 3.3 on the next page). In addition to

actions (diamonds), there are methods (rectangles) and goals (ellipses) collectively

referred to as tasks or subtasks;

Methods are sequences of actions, other methods and goals. They complete more

advanced tasks and must be recursively decomposed into a series of just actions be-

fore the agent may execute them. Methods, like actions, also have constraints and

results. The difference is that the result is only true when the method is completed, as

subtasks may have conflicting results. During the execution of the method, the state

of the world can only be determined by analysing the decomposed subtasks.

Goals specify some conditions which should be fulfilled. Goals are potentially ful-

filled by one or more methods and/or actions. In continuous environments, goals

specifying exact states are not suited for planning. We instead need to specify the in-

tentions of each goal (e.g. instead of a goal agent.money = 100.0 we could say the

goal is increase agent.money and give the larger increment higher utility). In order

to apply bounds on goals, but not strictly specifying a value, we can use inequalities

(e.g. agent.money > 100.0) so that the goal can be completed.

Given an agents current knowledge of the environment, a behavioral graph is built

16

Change job

Get raise

Ask boss

Upload CV Upload letter

Apply online

Apply for job

Apply online Apply newspaper

Change job

Apply for job Negotiate Sign contract

Ask raiseGoto

Ask boss

Mail CV Mail letter

Apply newspaper

Figure 3.3: Actions, methods and goals in a hierarchical task network

from the task network. The graph is directed and acyclic with only one root node,

and describes the complete strategy an agent will use to achieve its goals. Towards

the top there are general goals, and further down there are more specific actions (see

Figure 3.4 on the following page).

Goals, methods and actions may all be suspended if the constraints are not satis-

fied at the time of execution. Methods are also suspended once any of its sub-tasks

are suspended. Goals are suspended once all of the sub-tasks are suspended. Once

the constraints are satisfied the action may be resumed. We assume that the agent

has one or more active goals at all times.

When the agent is introduced into the environment, it does not know all the ac-

tions it can perform. One of the few things the agent is ’programmed’ to know are

the primary goals. If an agent satisfies all the primary goals, it has successfully solved

the complete problem. As the agent explores the environment, it discovers new con-

cepts and learns new actions. When this happens, the agent can attempt to create

a new strategy for achieving its primary goals. An assumption that we make here, is

that once the agent learns a new action, it understands where in the task network it

17

Ask raise

Change job

Goto Apply for job Negotiate Sign contract

Get raise

Ask boss

Upload CV Upload letter

Apply online Apply newspaper

Mail CV Mail letter

Figure 3.4: One potential strategy for getting a raise

is supposed to go (this is possible since the entire task network is specified at design

time). This means that once an action has been learned, the methods and (sub-)goals

are discovered as well.

The main motivation behind concept and action discovery is to handle execution-

time opportunities that affect the current action or goal. As an example, this allows

us to model scenarios in which an agent e.g. discovers the manual for a complex ma-

chine; All that is needed is to assign the action to the manuals concept and the agent

will learn the action once it encounters an instance of the manual. If the new ac-

tion(s) triggered an opportunity (see Section 3.2), the agent can learn that discovering

manuals is a good way to learn about the environment and may create opportunities.

3.2 Opportunities

Whenever an agent attempts to satisfy a goal, the agents beliefs are stored in a case

along with the goal and the results of the attempt. Given enough such cases, the agent

runs a rule induction algorithm on the cases with similar classification in order to

learn what the opportunity might consist of. A possible output of such an algorithm

is listed in table 3.3 on page 20.

Given only a limited set of observations, the agent is likely to create sub-optimal

18

Cases
Case 1 Case 11 Case 37

Goal Buy eggs Buy eggs Buy eggs

Result Success Failure Success

World.Time 12:41 19:33 17:07

World.Day Monday Saturday Wednesday

World.Weather Sunny Rainy Cloudy

Store.Location Building 2 Building 2 Building 2

Store.Open True False True

Store.HasSale True False False

Agent.Location Building 2 Building 2 Building 2

Agent.Money 100 2560 133

Agent.Mood Good Fantastic Good

Table 3.2: Agent observations as cases.

rules (Zhang et al., 2006). In table 3.4 on the next page we list an example of how the

proper rules could be. Another challenge comes from the fact that one goal may have

several different associated opportunities. E.g. the goal ’buy eggs’ may be satisfied by

asking the neighbor if he has some. This way, the store is not involved at all and the

opportunity could be indexed on the neighbor as well.

As the agent explores the environment, the observation component of the agent

runs through all concepts and attributes, and signals all learned opportunities that

index either the concept or the attribute. During observation the agent compares the

newly observed data with its beliefs. This allows the agent to signal opportunities that

are indexed in terms of increases or decreases of values.

In the example above, the agent would become aware that the goal ’buy eggs’

is potentially satisfiable if it observes a change in the attribute Store.Open (for any

given store it may observe), or an increase in Agent.Money.

This type of remembering enables opportunities that are discovered planning-

time and execution-time (as the structures are shared between the agents simula-

tion and observation components). It can discover endogenous and exogenous (both

changes in the beliefs and in the environment). And it can index the opportunity in

terms of tools, resources, time and place (all are represented as attributes).

19

Opportunity
Goal Buy eggs

Cases 1, 11, 37

Triggers

Change World.Time

Change Store.Open

Increase Agent.Money

Change Agent.Mood

Conditions

World.Time > 12:41

World.Time < 19:33

Store.Open True

Agent.Money > 100

Agent.Mood Good

Table 3.3: Example of an opportunity learned form observations.

Actual
Goal Buy eggs

Episodes ∞
Triggers

Change Store.Open

Increase Agent.Money

Conditions

Store.Open True

Agent.Money > 5

Table 3.4: Actual rules for the opportunity.

20

Chapter 4

Experiments

Using a very rudimentary implementation of the conceptual framework, we were able

to design three very simple experiments. The domain is the same for all three exper-

iments, as well as the room layout (see Figure 4.1 on the following page). The agent

starts with the pre-programmed knowledge of the environments as depicted in this

figure. The primary goal of the agent is to pick up the coin. The planner en mem-

ory were omitted in this implementation. The agent is provided the correct strategy

given the observations. The intention of these experiments are to test the opportunity

recognition component of the conceptual framework.

The agent can observe all instances in the same location as itself, in this case in

the same room. The doors belong to both rooms they are connected to. Furthermore

the agent can pick up and drop any item, and it can only hold one item at a time. All

doors can be locked and unlocked given the agent has the correct key, and all doors

can be opened/closed as long as they are unlocked. Once a door is open, the agent

may change its current location by entering the connected room.

4.1 Simple

In the simple experiment, everything went as expected. We engineered a strategy

which should be comparable to what a partial-specification planner would create;

The goal is to get to the coin. There are two methods: 1) Unlock the locked door and

enter the room containing the coin 2) Go around. Since the agent does not have the

key, the first method is suspended and indexed in terms of the concept ’Key’. The

21

Figure 4.1: The initial programmed knowledge of the agent

22

Figure 4.2: The actual environment of the simple experiment

agent should be able to resume the first method once it finds a key.

Upon entering the next room (Room 2) the agent discovers the key, and the first

method may be resumed (see Figure 4.2). Since the first method has higher utility (in

this case, shorter plan length), the agent chooses to continue with the first method

and reaches the goal with 1 less action. Observations revealed underway did not trig-

ger the agent to create a new strategy, as only the key was unexpected.

4.2 Noisy

The only difference between the noisy experiment and the simple one, is the addition

of several randomly generated items (red). These red items can not be used to reduce

the effort of the agent, and exist only to create noise in the environment (see Fig-

23

Figure 4.3: The actual noisy environment

ure 4.3). This requires a much larger initial effort when creating a strategy, however,

the strategy in this example is exactly the same as in the simple experiment.

Once entering the next room (Room 2) the agent discovers the key, and a 3 other

items. While the key allows the agent to resume the first method, as in the simple

experiment, the agent performs some additional reasoning to see if any of the other

items are usable1. Except for this, the scenario played exactly as in the simple experi-

ment. The agent reached the goal with 1 less action.

1This scenario was already too large for classical planning. See 6.2 on page 31

24

Figure 4.4: The tricky environment which requires more complicated strategy

4.3 Tricky

The tricky experiment illustrated the importance of filtering incoming observations

(see section 6.3 on page 34 3rd paragraph). In this experiment the extra doors and

keys (see Figure 4.4), while no combination except the yellow one works, were esti-

mated to take a significant hit in the reasoning performance. Additionally, the strategy

would have to increase significantly in size. As this experiment first becomes interest-

ing when an actual planner is running, we did not implement this experiment and

therefore we do not have any actual results. We note, however, that such an environ-

ment would impose a much higher workload on the agent until the agent has learned

that the (red) items are not useful.

25

Chapter 5

Discussion

Below we go through the research goals from section 1.1 on page 2, and quickly dis-

cuss our results given each goal. The results from the experiments are questionable

at best, as the scenarios were engineered to demonstrate specific features of the con-

ceptual framework.

1. Creating a framework for identifying opportunities in complex environments

As detailed under section 3.2 on page 18, there are several types of opportunities

we can identify in complex environments. The rudimentary implementations

indicate that our conceptual framework is possibly a sound approach. This is

merely an indicator, however, as the implementation simplifies planning and

memory to such an extent. While the results look Several more detailed experi-

ments must be conducted before we can reach a conclusion.

2. Creating a framework for recognizing opportunities in complex environments

The recognition mechanism works well, and other research which uses the same

mechanism confirms these findings (Hammond et al., 1993; Hayes-Roth, 1993;

Pryor and Collins, 1994). We extended it to allow the agent to remember several

different types of conditions for reasoning.

3. Finding a representation of opportunities for reasoning

Given the lack of prior information about the domain the agent is to operate in,

we were required to find a flexible representation. Using Case-Based Reasoning

(CBR) as a foundation allowed us to use previous research when generalizing

27

and finding similar cases. With some additional work, we believe rule induc-

tion/extraction to be useful tools together with a memory that stores observa-

tions in order to take advantage of opportunities.

4. Specifying what an agent should learn in order to recognize future opportunities

Much of the work on this research goal has been based on reinforcement learn-

ing. We attempt to narrow down which features we store when observing op-

portunities related to specific goals. But we also need to keep remembering

some odd features in case they become relevant in the future. In other words,

we must avoid using a stabilising filter. The experiments did unfortunately not

cover this aspect of opportunity recognition, and therefore a conclusion would

be premature. This is probably one of the most important points under sec-

tion 6.3 on page 34 (Further work).

5. Specifying when an agent should create a new case in order to recognize future

opportunities

The model we used in this thesis is just one of several possibilities. However,

if we consider the circumstance where an opportunity may arise as an oppor-

tunity, using recursion we could potentially learn chains of circumstances that

eventually lead to opportunities.

6. Specifying how an agent should decide whether to pursue the recognized oppor-

tunity

This research goal, if slightly rephrased, has been the focus of much research.

We preferred an approach using an indefinite horizon with discounted rewards.

This approach has been formalized for (partially observable) Markov decision

processes. While we can not expect to find an optimal policy for complex envi-

ronments, we can analyse the potential future reward given the current strategy

and horizon. Our thesis has not contributed anything new to this research goal.

All things considering, we believe we have a solid conceptual framework, but we

do not have enough data to confidently back this claim. While much of our work

is based on previously proven research, the combination itself is not guaranteed to

work as we intended. Much less once the real-time constraints of the real world are

considered.

28

5.1 Limitations

• The agent does not properly understand causation

Consider the following scenario: The agent is in a room with a locked chest. No

matter how many times the agent unlocks the chest and opens it in order to

find the treasure inside, the agent will not learn to associate the chest with the

treasure. It will, at best, be able to learn that the action of opening chests has

a certain probability of revealing a treasure. This is because the agent does not

consider chains of actions. The agent we propose can only see a relationship

between the last performed action and the results of the state change following

that action.

• The agent does not properly understand complex attribute relationships

If an opportunity could be reliably predicted by the presence of the car owned

by the person married to the agents boss, and the agent understood this rela-

tionship, once the agent observed the car it could trigger the indexed goal. How-

ever, in our framework there is no way to currently discover such relationships.

More formally, while the agent may understand that a → b and b → c where c

is an opportunity, it does not realize that a → c. As a result, even though the

opportunity c could be reliably predicted from a, the agent can only index the

opportunity under the attribute b.

29

Chapter 6

Conclusions and further work

6.1 Conclusion

In summary; we set out to create a conceptual framework for an opportunistic agent

that identifies, learns and recognized opportunities in complex environments. Clas-

sical planning and case-based reasoning are not tractable in such environments, and

some simplification must be performed. With respect to planning, we are confident

that partial-specification planning is the most promising candidate in the environ-

ments we considered. Case-based reasoning worked for short simulations, but as

the scenarios grow bigger there is a need to filter and prune the case-base (see sec-

tion 6.3 on page 34 3rd paragraph). Otherwise, we believe the conceptual framework

shows promise, and that opportunity identification and recognition in complex en-

vironments is tractable. Unfortunately we lack results from proper experiments to

confidently claim usefulness of our approach.

6.2 Additional work

Unfortunately, we spent much time on development that never bore any fruit. We

underestimated the problem of planning in complex environments, and our results

suffered significantly because of this. Below we quickly outline some of the failed

attempts at producing conclusive and valuable results using our conceptual frame-

work. All in all, we ended up with over 441 code files totalling 1,23MB which ended

up yielding nothing of value.

31

6.2.1 Domain modelling software

Since we are interested in large and complex environments, it was natural to desire a

tool that would allow fast modelling of such environments. We started on an imple-

mentation in Java which would allow modeling of concepts, actions and attributes,

and save those to a file for running in the simulation software. While the software

allowed definition of concepts, attributes and actions, as well as the underlying data

models for the attributes, there was not enough time to write software that would load

and simulate those domain models. As we realized this fact, we started development

of a system that would generate large and complex environments, but this task proved

to be just as time consuming considering the other challenges with planning. Factor-

ing in the extra time needed to interpret the output of a generated environment, we

realized this was also a dead end. The software has been released to the public do-

main, but it is doubtful that it will be of any practical value.

6.2.2 Simulation software

Testing the conceptual model was naturally of high priority. Getting all the different

libraries working together was too big a challenge, especially with much time spent

on the modelling software. Integration of myCBR 3 and JSHOP2 went as expected,

but we soon realised that JSHOP2 would not be able to plan in the environments

we were interested in. Since both those libraries were written in Java, we decided

to do the same with out library. However, memory constraints on the Java VM ended

up destroying any hope of simulating even large deterministic environments. Once

we scaled down enough that the memory limit (12GB) was no longer an issue, the

garbage collection (GC) took over as a critical problem. The application spent over

98% of its running time in the GC, which throws an exception (even as we tested on a

high-end 12 core i7, the application made no progress). Finally, after changing the GC

strategy, we still could not get results within a day of running. The Partially observ-

able Markov decision process (POMPD) scenarios were now reduced to 5 concepts

(4 attributes each), 15 instances and 5 actions, but we kept running out of memory1.

1Although it is difficult to admit, at this point we began to suspect incompetent development from
our side. Somewhere in the code we must have been giving the garbage collector a run for the money.
It just seemed to unreal that such small environments could strain a modern desktop computer to such
an extent. All unit tests were working as expected. There was, however, not enough time to investigate
properly

32

Figure 6.1: Screenshot from modeling software with a very simple domain

Classical planning was off the table. We started looking for partial-specification plan-

ners and approximation algorithms for solving POMPDs. Add on top of that libraries

for machine learning (Weka), and libraries for rule induction, and we were stuck writ-

ing type converters and layers upon layers of wrappers in order to get the systems

working together. We realised we had to simplify significantly.

6.2.3 Planner-less implementation

Finally, as time was truly running out, we implemented a rudimentary version of our

conceptual framework. This very limited implementation started out with hardcoded

knowledge about the opportunities in the environment (there was no point on build-

33

ing a case-base and learning without a planner which could use that knowledge in

order to act). As a substitute to a planner (which was just a black box to the agent any-

ways), we created a planner that would generate the correct plan based on the current

state. Since the environment was much smaller than intended, this was tractable by

hand. We engineered scenarios specifically for testing out the opportunity recogni-

tion aspects of the conceptual model, and those were a success. Although, the validity

of the results may be discussed.

6.3 Further work

Opportunity recognition and exploitation is limited by how precise the opportunity

structures are. The agents ability to combine, generalize, remove and create these

structures can be explored further. Triggers could have different weights, allowing the

agent to suppress select opportunities when there already is a high workload. Con-

ditions could be optimized to cover the broadest possible set of opportunities, while

still giving few false-positives. Further work on rule induction or rule extraction on

the observed cases might allow much more precise opportunity descriptions. Finally,

one could experiment with several layers of conditions; one for unblocking the task

so that the agent may resume it at will, and one layer signaling that the opportunity is

now worth chasing (e.g. when an opportunity guarantees a high reward).

Active opportunity search was not explored in this thesis. Although a planner

which handles stochastic environments could likely take advantage of the potential

opportunities, this was not considered while designing the conceptual framework.

This aspect of opportunism is somewhat related to internal opportunities. Internal

(reasoning) opportunities were also not considered at any stage during the develop-

ment. Internal opportunities could potentially skip expensive reasoning steps when

evaluating possible actions (as happened even in the very limited experiments we

performed). Actively looking for opportunities (chasing opportunities), and internal

opportunities are potentially very interesting in complex environments.

One of the decisions we made early, was that we wanted the noise from the obser-

vations the agent made. This is because the agent does not know which features or

concepts are relevant for carrying out its plan. However, analysing all the noise takes

a lot of time and resources. One potential approach to reduce such noise is to filter

the incoming observations before the agent begins reasoning. This requires some in-

34

teraction between the memory, the opportunities and the filter. This idea could be

further expanded to include the memory itself. Instead of storing all observations, fil-

ter cases based on the expected amount of contributed information and even prune

older observations that are no longer as relevant.

35

References

Francis, A. (1995). Memory-Based Opportunistic Reasoning. PhD thesis, College of

Computing, Georgia Institute of Technology.

Hammond, K., Converse, T., and Marks, M. (1993). Opportunism and learning. Ma-

chine Learning, 10:279–309.

Hauskrecht, M. (2000). Value-function approximations for partially observable

markov decision processes. Journal of Artificial Intelligence Research, 13:33—-94.

Hayes-Roth, B. (1993). Opportunistic control of action in intelligent agents. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 23(6):1575–1587.

Mancarella, P., Sadri, F., Terreni, G., and Toni, F. (2005). Planning partially for situated

agents. In Computational Logic in Multi-Agent Systems, volume 3487 of Lecture

Notes in Computer Science, pages 230–248.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F. (2003).

Shop2: An htn planning system. Journal of Artificial Intelligence Research, 20:379–

404.

Pryor, L. (1996). Opportunity recognition in complex environments. In Proceedings of

the Thirteenth National Conference on Artificial Intelligence, pages 1147–1152.

Pryor, L. and Collins, G. (1994). Opportunities: A unifying framework for planning

and execution. In Proceedings of the Second Artificial Intelligence Planning Systems

Conference, pages 329–334.

Schank, R. C. and Leake, D. B. (1989). Creativity and learning in a case-based ex-

plainer. Artificial Intelligence, 40:353–385.

37

Simina, M. D. and Kolodner, J. L. (1995). Opportunistic reasoning: A design perspec-

tive. In Proceedings of the Seventeenth Annual Cognitive Science Conference, pages

78–83.

Weld, D. S. (1994). An introduction to least commitment planning. Artificial Intelli-

gence Magazine.

Zhang, D., Yang, T., Wang, Z., and Fan, Y. (2006). A new approach to symbolic classi-

fication rule extraction based on svm. In 9th Pacific Rim International Conference

on Artificial Intelligence, volume 4099, pages 261–270.

38

	Preface
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Objectives
	Structure

	Background
	Opportunism
	Related work
	Trucker
	Pareto
	Nicole
	Opportunistic Control

	Conceptual Model
	Knowledge representation
	Attributes
	Actions

	Opportunities

	Experiments
	Simple
	Noisy
	Tricky

	Discussion
	Limitations

	Conclusions and further work
	Conclusion
	Additional work
	Domain modelling software
	Simulation software
	Planner-less implementation

	Further work
	References

