
Numerical Investigation of Wave-Body 
Interactions in   Shallow Water

Yi Luo

Marine Technology

Supervisor: Marilena Greco, IMT
Co-supervisor: Torgeir Vada, DNV

Department of Marine Technology

Submission date: June 2013

Norwegian University of Science and Technology



 



  

 



 

 



1 
 

Preface 

This report is the result of my master thesis written under supervision from both the Depart-

ment of Marine Technology and Det Norske Veritas. It is a continuation and further study of the 

project thesis written in the last semester. The project thesis was composed of a literature study 

of both wave theories and the Rankine panel method and several analyses in Wasim for both 

learning the program and reproducing the error associated with the stream function method. 

Then the major work of the master thesis turned to modification and implementation to the 

source code of the program, and afterwards a significant part of time was used to verify the 

modification and the new implementations. The update of the program is aimed to provide a 

combination of the stream function method and proper nonlinear free surface conditions, 

which should extend the capability of the program dealing with nonlinear problems, especially 

in shallow water where Stokes 5th wave theory is no longer valid. 

The report consists of four chapters. The first chapter includes relevant background theories 

which are extracted from the project thesis, and most of these theories will be referred later in 

the rest of the report. Chapter two includes the modification and verification of the stream 

function method while chapter three includes the implementation and verification of the non-

linear free surface conditions. All the figures, tables and formulas are inserted through the 

whole report at correct locations instead of being placed in appendix so that readers do not 
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Abstract 

DNV has Wasim (a module of HydroD) as a Rankine panel method potential flow solver original-

ly developed for more concern to deep water analysis. Some attempts have been made to ex-

tend the capability of the program in shallow water. The stream function method is chosen and 

still in development for the current Wasim, but unphysical “pumping” diffractions which may 

due to numerical problems have been observed. In the previous work, i.e. the project done in 

the last semester, the error was reproduced and some preliminary possible reasons were pro-

posed. 

The main task of this thesis is to fix the bug and test the modification of the program. Then two 

sets of nonlinear free surface conditions will be implemented which together with the stream 

function method are purposed to improve the capability of the program when handling nonlin-

ear problems. In final, these two approaches of the nonlinear free surface conditions will be 

evaluated by comparing with some experiment results. The evaluation process is mainly com-

posed of two parts. Wave diffractions will be tested first by checking the wave loads on a fixed 

cylinder, and afterwards wave radiations will also be included where the motion responses of a 

LNG carrier will be studied. The numerical results calculated by Wasim will be compared with 

the experiment data collected from Huseby & Grue (2000) and the Extreme Seas project respec-

tively. 
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1 Background theory 

 

1.1 Common assumptions and governing equations 
 

i. The water is homogeneous and incompressible (∇ ∙ � = 0), i.e. ρ is constant if variation 

of temperature and salinity over water depth are negligible. Thus there is no internal 

pressure and only surface gravity waves are concerned (e.g. wind-generated waves, but 

tsunamis or tides are others). 

ii. The water is inviscid, i.e. there is no internal shear stresses and no shear stresses on the 

air-sea interface or on the sea bottom. 

iii. The water is initially irrotational, and since it is inviscid it will always be irrotational (∇ ×

� = 0). This makes the potential flow theory applicable and together with the first as-

sumption it leads further to a valid Laplace’s equation for the velocity potential (∇�� =

0). 

iv. The wave lengths are at least greater than a few centimeters so that the surface tension 

becomes unimportant. 

v. The sea bottom is stationary, impermeable and horizontal (also valid for small sloping 

bottom in shallow water). Therefore the sea bottom is not able to add or absorb any 

wave energy. 

vi. The water pressure is approximated to be equal to the constant atmospheric pressure 

along the free surface, so the aerostatic pressure difference between the wave crest and 

trough is negligible. 

vii. The water particles on the free surface always remain on the surface. This assumes no 

particle escaping (no breaking waves). 

viii. No stream or current is presented. 
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These assumptions above will generate the following nonlinear boundary value problem. 

 ���

���
+

���

���
= 0  within the fluid (1) 

 �(���)

��
=

�

��
(� − �) + ∇� ∙ ∇(� − �) = 0  kinematic free surface 

condition on � = � 

(2) 

 � − ���� = −�(�� +
��

��
+

�

�
∇� ∙ ∇�) = 0  dynamic free surface 

condition on � = � 

(3) 

 ��

��
= 0  sea bottom boundary 

condition on � = −ℎ 

(4) 

 

If there is no lateral physical boundary nearby, then a periodic boundary condition for the sur-

face waves can be included, i.e. 
��(�,�,�)

��
=

��(�,�,�)

��
. 

A sketch of the boundary value problem is given by following. 

 

Figure 1-1 Sketch of the general boundary value problem 
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1.2 Stream function method 
 

The method is mainly based on Fourier series so that each term in the approximated solution 

already satisfies the field equation, but instead of doing perturbation expansion for the coeffi-

cients (as in Stokes wave theory) which will pollute the solution more or less, the coefficients 

are solved directly by the benefit from development of computer power. The method got its 

name because stream function is used instead of velocity potential for the purpose of more 

practical programming. This is due to that the kinematic free surface condition can be satisfied 

straightforward as the streamline value is constant there, but the velocity potential approach 

does not implicitly satisfy the kinematic free surface condition so another set of coefficients is 

required for �. 

Several approaches can be found as branches of the method. Only Dalrymple’s approach (1974) 

will be explained here as it is which Wasim uses. 

First the coordinate system (x, z) is defined to be following the wave and thus have the velocity 

c relative to the stagnant water. Because of the constant wave shape assumed, the problem be-

comes steady state and only spatial dependent which results in the benefit that the time-

derivatives in the free surface boundary conditions can be taken away. The boundary value 

problem will be denoted with stream function as given below: 

 ���

���
+

���

���
= 0  

(satisfied by default as continuity assumed) 

within the fluid (5) 

 ��

��
= −

��

��

��

��
 �� �(�, �) = −�  

(Q is the discharge through a vertical section) 

kinematic free surface 

condition on � = � 

(6) 

 �

�
��

��

��
�

�

+ �
��

��
�

�

� + �� = �  

(R is the Bernoulli constant) 

dynamic free surface 

condition on � = � 

(7) 

 ��

��
= 0 �� �(�, −ℎ) = 0  

(satisfied by default because of the term 

sea bottom boundary 

condition on � = −ℎ 

(8) 
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sinh[nk(h+z)]) 

 

The lateral boundary condition, �(�, �) = �(� + �, �), is already hidden in the assumed form of 

� in all those three approaches. In addition to the boundary conditions, we need three more 

constraints to close the problem when H, T, h are input: 

 � ̅ =
�

�
∫ � �� = 0

�

�
  

(elevations must have a zero mean as incompressibility assumed) 

(9) 

 � = ���� − ����  (5) 

 � = ��  (11) 

 

As no stream is included, the stream function can be assumed as: 

 �(�, �) =
��∙�

�
+ ∑ {�� ∙ ���ℎ

�(���)�

��
(ℎ + �) ∙ ���

�(���)�

��
�} ���

���   (12) 

where �� = �, ���� = ��  and there are N+1 unknowns to be solved. The assumed stream func-

tion has already taken constraint (11) into account as the wave period should be prescribed. So 

there is only one boundary condition, the dynamic free surface condition, which is left to be sat-

isfied. This can be done by requiring the following objective function to be zero: 

� =
�

�
∑ (�� − ��)��

��� +
��

�
∑ �(��) + ��(�(��) − �(��) − �)�

��� = 0  (13) 

where �� and �� are Lagrange multipliers which can be used to adjust the weight of the last two 

terms in the objective function, and � is the resolution of the wave profile while N is the order of 

the stream function. The objective function is a combination of constraint (9), (10) and a fitting 

of local Bernoulli constants at point i, �� =
�

�
��

��

��
�

�

�

+ �
��

��
�

�

�

�, to the mean Bernoulli constant 

value �� =
�

�
∑ ��

�
���  (Here equidistant points along the wave profile is assumed and �� is used 

since no prescribed Bernoulli constant in Dalrymple’s approach). Equation (13) is nonlinear and 

can be solved by use of Newton-Raphson’s method, and this yields a linear equation system 
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consists of N equations with N unknowns (by insert (12) into (13)). The linear system can be pre-

sented as: 

���� = �� + ∑
���

���
∙ Δ��

�
+ ∑

���

���
∙ Δ��

��
���

�
���   (14) 

��
���

= ��
�

+ Δ��
�
, ��

���
= ��

�
+ Δ��

�
  (15) 

When Δ��
�
 have been solved, the coefficient set �� at the iteration j+1 will be updated as 

��
���

= ��
�

+ Δ��
�
. Then the wave elevations ���� will be solved based on ��

���
 and ����

�
 (i.e. 

partly explicit, because ����
���

= ��
���

 will be updated at last). Insert � = � in (12): 

 
�(�)��� =

�∙����
�

��
��� −

�

��
��� ∑ {��

���
∙ ���ℎ

�(���)�

��
��� (ℎ + �(�)���) ∙���

���

���
�(���)�

��
��� �}  

(6) 

The wave elevations can be solved by the transcendental equation (16) iteratively. In final ����
���

 

is calculated based on ���� by numerically integrating (16) along the wave profile. Then the left 

hand side of (16) can be eliminated because of constraint (9), thus ����
���

 can be solved as: 

 ����
���

=
�

�
∑ {∑ {��

���
∙ ���ℎ

�(���)�

��
��� (ℎ + �(�)���) ∙ ���

�(���)�

��
��� �}���

��� }�
���   

(17) 

This is the procedure of the method for one iteration and all the N+1 unknowns in (12) plus the 

wave elevations are computed once. Notice that Δ�� is taken away and use 
�

�
 instead of 

�

�
 as 

equidistant points is assumed along the wave profile. 
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1.3 Basic theory of Wasim 

 

1.3.1 The general model 

We consider a body travelling at constant speed with x-component U, y-component V and rota-

tion Ω in the earth fixed coordinate system (��, ��, ��), i.e. the stagnant fluid will have a mean 

velocity field ����⃗ = (� − Ω�, � − Ω�) in the body fixed coordinate system (�, �, �). The Galilean 

transform relates these two coordinate systems can thus be defined as  

 �

��
=

�

��
− ����⃗ ∙ ∇  (18) 

where 
�

��
 denotes the time derivative in the earth fixed coordinate system while 

�

��
 denotes the 

time derivative in the body fixed coordinate system. The unsteady body motions about its fixed 

coordinate system is given below 

 �⃗(�⃗, �) = (��, ��, ��, 0,0,0) + (0,0,0, ��, ��, ��) × �⃗  (19) 

where �⃗ = (�, �, �) and �� are the six degrees of freedom rigid body motions. 

 

Figure 1-2 Definition of the 3D coordinate systems when a body is presented 
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1.3.2 Decomposition of the total potential 

By linear potential theory, the total fluid potential can be treated as a superposition of several 

potential components. The classical way is usually to discretize the transient part into a radia-

tion potential and a diffraction potential. In Wasim another alternative is used by introducing 

so-called local flow and memory flow, and the benefit is better numerical stability. The decom-

position is given as ���� = �� + �� + �� + ��, and the following is a brief explanation. 

 �� is the basis flow potential which is steady state and independent of the other poten-

tial components. This component represents the steady flow around the body which is in 

forward speed. In Wasim, one of the two famous linearization models, the Neumann-

Kelvin (where a uniform stream will be used) or the double body flow is available in the 

graphical user interface of the program. The latter gives more accurate results but may 

lead to numerical problems in a nonlinear analysis, so the former is set as the default 

model for nonlinear analyses. In fact Wasim uses a so-called Aspiration model which is a 

combination of Neumann-Kelvin and double body flow (see the next section for more 

details). The basis flow is always zero in this project. 

 ��  is the local flow potential. It can be understood as the instantaneous response of the 

surrounding fluid due to a given velocity of the body boundary, i.e. as a pressure release 

problem, and this further causes disturbance of the free surface. In this way the body 

forcing is transferred to an inhomogeneity of the fluid, and this inhomogeneity acts as an 

initial boundary value problem for the memory flow. With other words, in Wasim the 

classical radiation problem is divided into two parts. The first part is included in the local 

flow while the rest is put into the memory flow. It is the separation of the local flow 

added mass from the right hand side of the motion equation which results in the better 

numerical stability since the remaining force will be independent of the instantaneous 

acceleration (see the next section for more details). In section 2.3, the local flow will also 

be zero due to no radiation. 

 �� is the memory flow potential. It represents both a part of the radiation flow and the 

diffraction flow, i.e. it is the rest of the transient potential. An initial boundary value 
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problem will be solved at each time step to get the memory flow so this potential com-

ponent will form the major part of the computation. 

 ��  is the incident wave potential. It is given and will be an input, mainly as a Stokes 5th 

order wave or a stream function wave in this project. 

We assume that �� = �(1) while ��, ��, �� = �(�). Thereby the decomposition is kind of a 

perturbation expansion (only linear terms are kept) where the parameter � is a measure of the 

potential magnitude and it is a function of the Froude number. The basis flow is thus the basis 

for the linearization and it should be the largest of all the potential components (if nonzero for-

ward speed) so that the small body-motions assumption in the body fixed frame will be a good 

approximation. 

 

1.3.3 The boundary value problems 

After the decomposition of the total fluid potential, the whole complex problem is split into 

several boundary value problems. The advantage is not only the simplification and the practical-

ity to the implementation but also that the results of the different components can be checked 

and analyzed separately. The boundary value problems together with brief explanations are giv-

en below. 

i) Basis flow 

 ∇��� = 0  within the fluid (20) 

 ���

��
= 0  on � = 0 (21) 

 ���

��
= �1 − �(�, �, �)� ∙ (����⃗ ∙ ��⃗ )  on the body boundary (22) 

 ���

��
= 0  on the sea bottom (23) 

The same free surface condition is used as the double body flow modeling. The introduction of 

function f(x,y,z) is to allow a specified normal flux through the hull. When f(x,y,z)=0, the normal 

flux equals the free stream, i.e. it gives the Neumann-Kelvin model while f(x,y,z)=1, i.e. no flux 
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passes through the body, gives the double body flow. By stacking a small amount free stream up 

to the double body flow, the rectangular wake flow behind a transom stern can be modeled. 

ii) Local flow 

 ∇��� = 0  within the fluid (24) 

 �� = 0  on � = 0 (25) 

 ���

��
= ∑ �

���

��
�� + ������

���   on the mean body boundary (26) 

 ���

��
= 0  on the sea bottom (27) 

where 

 (��, ��, ��) = ��⃗ , (��, ��, ��) = �⃗ × ��⃗   (28) 

 (��, ��, ��) = (��⃗ ∙ ∇)(����⃗ − ∇��),  (��, ��, ��) = (��⃗ ∙ ∇) ��⃗ × �����⃗ − ∇���� (29) 

Since �� and ��  are time independent while 
���

��
 and �� are spatial independent due to the rigid 

body motions, equation (26) is similar as so-called “normal modes” approach and ��, �� , repre-

sent the modal shapes which can be determined before time stepping. The terms �� give the 

coupling between the basis flow and unsteady flow, and they may be difficult to compute due 

to the second order derivative so no further discussion will be included here. We then spatial 

integrate (26) and assume that ��  is proportional to the instantaneous velocity and the instan-

taneous displacement which thus can be given as  

 
��(�⃗, �) = ∑ ��(�

��� �⃗)
���

��
(�) + ��(�⃗)��(�)  (30) 

Therefore �� and �� must satisfy the following boundary value problem 

 ∇��� = 0, ∇��� = 0  within the fluid (31) 

 �� = 0, �� = 0  on � = 0 (32) 

 ���

��
= ��,

���

��
= ��  on the mean body boundary (33) 

 ���

��
= 0,

���

��
= 0  on the sea bottom (34) 
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By solving �� and �� before time stepping, ��  can be simply calculated after solving the motion 

equation at each time step. 

The linearized local flow force (see section 2.1.5 for more details) is assumed to be 

�� = ∫ −�(
�

��
− �����⃗ − ���� ∙ ∇)���� =  ∑ ∑ ����  

����

���
+  ����

���

��
+ ������   (35) 

By inserting (30) into (35), the local flow added mass, damping and stiffness can be calculated as 

the following 

���� = ∫ � �� ∙ ����  (36) 

���� = ∫ �( − �����⃗ − ���� ∙ �� + ��) ∙ �� ��  (37) 

���� = ∫ �( − �����⃗ − ���� ∙ ��) ∙ ����  (38) 

The coefficients are also time independent as expected. Then we move the local flow force to 

the left hand side of the motion equation so that the rest at right hand side will be memory flow 

force plus Froude-Krylov force, and both of them are independent of the body instantaneous 

acceleration. This separation will be unnecessary if the problem is forced oscillations because of 

no need for solving the motion equation. 

iii) Memory flow 

∇��� = 0  within the fluid (39) 

��

��
− �����⃗ − ∇���∇� =

����

���
(� + ��) +

���

��
+

���

��
− (∇�� ∙ ∇��)   

���

��
− �����⃗ − ������� = −�� + �����⃗ ∙ ��� −

�

�
(∇��)�� − ∇��∇��  

on � = 0 
(40) 

(41) 

���

��
= �����⃗ − ��

�
� ∙ ��⃗ −

���

��
   on the mean body boundary (42) 

���

��
= 0  on the sea bottom (43) 

where ��  is the elevation of the incident wave (see Appendix A for more details about the linear-

ization of the free surface conditions). On the free surface, known 
���

��
 from the previous time 

step will be used to calculate � at the current time step by explicit Euler time discretization of 

the kinematic free surface condition, i.e. (40). Then the updated � will be used to calculate �� 
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at the current time step by implicit Euler time discretization of the dynamic free surface condi-

tion, i.e. (41). On the body boundary 
���

��
 is always known since �� is solved before time step-

ping while ��  is input. 

A combination of Euler schemes is applied because it is proved by von Neumann stability analy-

sis that neither of fully explicit and fully implicit discretization will lead to satisfied numerical 

properties. 

 

1.3.4 Rankine panel method 

To solve the described boundary value problems, a boundary element method will be used. The 

main idea is to represent the fluid field as superposition of sources (and sometimes also dipoles 

and vortices). The boundary surfaces are discretized into a finite number of panels where cer-

tain number collocation points are distributed depends on the order of the method, and there-

by the method is named “panel method”. Different source types can be chosen to satisfy certain 

boundary conditions in advance, e.g. Kelvin or Havelock source satisfies the linear free surface 

condition, and several source types can be found which satisfy both the free surface and the 

bottom boundary condition at the same time. The disadvantage for sure is the complicated 

computation for such multifunctional sources (or Green function). In Wasim, the fundamental 

Rankine source is used. The cost of using Rankine source is that we have to distribute sources on 

all the boundaries (except the sea bottom in Wasim) since Rankine source is only solution of La-

place’s equation and does not satisfy any boundary conditions, and this will lead to more un-

knowns and further more memory cost (the increase of CPU cost is less noticeable as it is simple 

to calculate). The sea bottom boundary condition is satisfied by mirroring so no panel mesh is 

needed there, but irregular sea bottom (which is more concerned in shallow water) may thus 

not be allowed in Wasim. Since different boundary value problems with different kind boundary 

conditions will be solved in Wasim, the use of Rankine source is more general for programming 

purpose, especially for object oriented language. 



22 
 

If the entire fluid domain considered is denoted as ��, and the corresponding total boundary is 

denoted as ���. Then by using Green's second identity, the following equation can be derived 

∫ (� ∙ ∇�� − � ∙ ∇��)��
��

= ∫ �� ∙
��

��
− � ∙

��

��
� ��

���
  (44) 

where � can be any potential component and G is the Green function. We choose Rankine 

source as the Green function, i.e. 

� =
�

|�⃗����⃗ |
   and ∇�� = −4��(�⃗, �⃗)  (45) 

where �⃗ is the location of certain collocation point, and � is the Dirac delta function represent-

ing the singularity, i.e. 

� = �
+∞    �⃗ = �⃗ 

0         �⃗ ≠ �⃗ 
  (46) 

Then by inserting (45) into (44) we come to the following equation 

� ∙ �(�⃗) − ∫ �(�⃗, �⃗) ∙
��(���⃗ )

��
��⃗ +

���
∫ �(�⃗) ∙

��(�⃗,���⃗ )

��
��⃗

���
= 0  (47) 

� = �
4�      �⃗ ∈ �� 
2�    �⃗ ∈ ��� 
0   �����ℎ���

  
(48) 

In fact, the contribution from the far field boundary can be eliminated so that ��� consists only 

of the free surface and the body boundary (no panel mesh on the sea bottom). And solutions on 

the free surface and the body boundary are most concerned (where wave elevations or pres-

sures will be computed), i.e. � = 2�, e.g. when �� on the free surface is calculated by the dy-

namic free surface condition and as 
���

��
 on the body boundary is already known (see section 

2.1.3), the only unknown will be 
���

��
 on the free surface and �� on the body boundary. Assume 

we have N collocation points on the free surface and M collocation points on the body boundary, 

i.e. we will get N+M unknowns for the concerned example, then by establishing equation (47) at 

each collocation point we obtain a linear equation system consists of N+M equations, i.e. the 

problem is closed.  
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1.3.5 Computation of the pressures 

The pressure field can be derived from Bernoulli’s equation, i.e. 

� − �� = −�(
�

��
���� +

�

�
(∇����)� + ��)  (49) 

Assume �� ≈ 0 due to relatively small air density and introduce the Galilean transform (18) and 

the decomposition of the total potential, we can linearize the total pressure by keeping only 

�(1) and �(�) terms, which is given as 

� = −� ��
�

��
− �����⃗ − ���� ∙ ∇� (�� + �� + ��) − ��� �����⃗ −

�

�
∇��� + ���  

(50) 

Then the total pressure can also be discretized similarly as the total potential, i.e. 

Froude-Krylov ��� = −� �
�

��
− �����⃗ − ���� ∙ ∇� ��  

(51) 

Local flow �� = −� �
�

��
− �����⃗ − ���� ∙ ∇� ��  

(52) 

Memory flow �� = −� ��
�

��
− �����⃗ − ���� ∙ ∇� �� − ��� �����⃗ −

�

�
∇����  

(53) 

Hydrostatic ����� = −��� = −��(�� − �� + ��� − ���)  (54) 

where �� is the mean body position. When the nonlinear analysis option is enabled (see section 

2.2 for more details), the �(��) terms will also be included so the nonlinear pressures should be 

Froude-Krylov ��� = −� ��
�

��
− �����⃗ − ���� ∙ ∇� �� +

�

�
(∇��)

��  
(55) 

Local flow �� = −� ��
�

��
− �����⃗ − ���� ∙ ∇� �� +

�

�
(∇��)��  

(56) 

Memory flow 

�� = −� ��
�

��
− �����⃗ − ���� ∙ ∇� �� − ��� �����⃗ −

�

�
∇��� +

+
�

�
(∇��)��  

(57) 

Cross coupling ��� = ∇��∇�� + ∇��∇�� + ∇��∇��  (58) 
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2 Modification of the stream function method 

 

2.1 Review of the error 

A semi-sub with six columns is used here. Its length in x-direction is 121.43 meter and breadth in 

y-direction is 60.44 meter (measured from center of the columns). The diameter of the columns 

is 20 meter. The semi-sub is sitting fixed on the sea bottom where z=0. The water level is set to 

z=30 meter, and the height of the columns is 53.35 meter, i.e. 23.35 meter above the still water 

level. The picture below gives an impression of the model. 

 

Figure 2-1 The semi-submersible model used to test stream function method 

To reproduce the error, we can run two analyses with the model, one of them has a stream 

function wave with 14 coefficients as incoming wave and the other with a Stokes 5th wave as 

input. Both input waves have H=12 m and T=15 s, i.e. a wave condition which remains inside of 

the valid region of Stokes 5th order wave theory. Therefore we expect that both stream function 

method and Stokes 5th order wave theory will give us almost the same wave profile with very 



27 
 

small deviations in the wave elevations and wave kinematics, and this should further lead to al-

most the same wave diffractions. But when the incident wave is generated by stream function 

method, “pumping” wave diffractions can be observed which will not appear if the incident 

wave is a Stokes 5th wave. The wave diffractions generated by these two analyses are quite dif-

ferent as presented below. The incident wave elevations are already filtered out from the total 

wave elevations, and since the platform is fixed sitting on the sea bottom there is only diffracted 

waves left. 

 

Figure 2-2 The pumping effect shows up when the incident wave is stream function wave 
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Figure 2-3 The pumping effect disappears when the incident wave is Stokes 5th wave 

To present the error even clearer, the time history of the diffraction wave elevations right be-

hind the middle column (where the diffractions are biggest) is plotted. 

 

Figure 2-4 Right behind the middle column where the diffraction wave elevation is collected 
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Figure 2-5 Comparison of diffraction wave elevations behind the middle column 

Since the Stokes 5th wave in Wasim is well tested and evaluated to be correct, and such phe-

nomenon did not show up during a model test or in a CFD analysis (according to DNV) either. 

The “pumping” wave diffractions are thus assumed to be unphysical, and there should be some 

error either inside of the implementation of stream function method itself or associated with 

the integration of the method into the whole program. 
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2.2 How the program works 

After study the source code of Wasim, one of the possibilities regarding where the error is lo-

cated can be eliminated now. Because the program does not have an implementation of stream 

function method internal, but instead an online java application is used to calculate the Fourier 

coefficients of stream function. The java application is developed by Dalrymple himself at Uni-

versity of Delaware (http://www.coastal.udel.edu/faculty/rad/streamless.html). 

 

Figure 2-6 Online java application which is used to calculate stream function coefficients for Wasim 

After the java application calculated the stream function coefficients, these coefficients will be 

input to a python script for post-processing. The main task of the python script is to compute a 

series of wave elevation coefficients so that Wasim can get wave elevation at any point on the 

http://www.coastal.udel.edu/faculty/rad/streamless.html
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free surface just by summation of some sinus or cosine terms. The script first calculate wave el-

evations along the wave length in a specified resolution based on the stream function coeffi-

cients (more details will be explained later in section 2.4), and then it calculates the wave eleva-

tion coefficients by fitting these wave elevation values. The script will in final output a data file 

includes both the stream function coefficients and the wave elevation coefficients which is input 

to Wasim, and Wasim uses these coefficients directly to compute wave elevations and wave 

kinematics. 

 

Figure 2-7 A screen capture of an example input file to Wasim 
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2.3 Fix the wave kinematics 

Considering those two analyses in the section 2.1, if we take a look at the linearized Froude-

Krylov forces (i.e. the 
�

�
(∇��)

� term is taken away, and as both ����⃗  and ∇�� are zero, only ∇�� is 

associated), the huge difference tells us that there must be something wrong with the wave 

kinematics. 

 

Figure 2-8 Comparison of the linear Froude-Krylov force 

 

After comparing outputs of the stream function wave and the Stokes 5th wave in wasim (the 

same wave condition as in section 2.1, i.e. H = 12 m, T = 15 s and water depth = 30 m), signifi-

cant deviations in water particle accelerations and 
��

��
 have been observed. 

The wave kinematics are always calculated at point(0,0) while the wave travels in time. This re-

mains in the rest of the report if same kind of comparison is made. If there is no information 

given, the same wave condition will be used as above. 
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Figure 2-9 Comparison of the wave kinematics and dϕ/dt between the stream function wave and the Stokes 5th wave 

 

Then we do the same comparison further with a stream function wave calculated by a program 

based on Fenton’s approach (The program is implemented by myself, but it is tested to be cor-

rect). We do not use Dalrymple’s java application here to do the comparison because the appli-

cation does not output wave kinematics. Though the wave kinematics can be calculated by the 

stream function coefficients output of the java application, I preferred to use my program here 
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since it is a good opportunity to extend I/O part of the program and I can modify the source 

code directly instead of post-process the results of the java application. The velocities and ac-

celerations in y-direction are abandoned below as they are always zero. 

 

Figure 2-10 Comparison between the Wasim stream function wave and the Fenton stream function wave 

 

The accelerations and 
��

��
 from the wasim stream function wave seems to be wrong. Both accel-

erations and 
��

��
 are derivatives by time, which is associated with wave celebrity. Since 

��

��
=

��

��
∙

��

��
= � ∙ �, if the velocity in x-direction is correct (which has very small deviations compared 
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both to the Wasim Stokes 5th wave and the Fenton stream function wave), then the wave celeb-

rity should be wrong. 

By checking through the source code of Wasim in debug mode, the wave-length, period, height, 

all the coefficients and etc. are nondimensionalized at once after input, and all the computa-

tions are nondimensional, i.e. the results should be redimensionalized before output. After 

modifying the program so that the results are in correct dimension before output, the results 

become quite different. 

 

Figure 2-11 Comparison after modification, the ratio of the values between Wasim and Fenton is about √g 
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If we compare the results carefully, the ratio of all the values from the Wasim stream function 

wave and the Fenton stream function wave is about �� so it looks like some variable is wrongly 

nondimensionalized. By further study of the formula which calculates stream function, i.e. 

equation (12) �(�, �) =
��∙�

�
+ ∑ {�� ∙ ���ℎ

�(���)�

��
(ℎ + �) ∙ ���

�(���)�

��
�} ���

��� , the Fourier coeffi-

cients �� should have the same dimension as stream function as both sinh and cos are dimen-

sionless, i.e. the dimension of the Fourier coefficients should be [
��

�
] (or [alength ∗ �g ∗ alength] 

in source code of Wasim, where alength is a reference length, e.g. if we use millimeter as unit in 

analyses, then alength = 1000), but the coefficients have not been nondimensionlized after in-

put. Since alength=1 as meter is used, the ratio �� then can be explained. 

After fixing this bug, the accelerations and 
��

��
 from the wasim stream function wave seems to 

be correct now. 
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‘  

Figure 2-12 Comparison after bug fixing, the accelerations and dϕ/dt seems to be correct now 

 

Since the program can calculate the wave kinematics properly, the huge deviation in Froude-

Krylov force will disappear at once. 

 

Figure 2-13 Comparison of the Froude-Krylov force after bug fixing 

 

And this leads further to vanished “pumping effect”. The diffraction wave elevations right be-

hind the middle column are very close to the analysis where the incident wave is Stokes 5th 

wave. 
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Figure 2-14 “pumping effect” disappears after bug fixing 

 

Figure 2-15 Comparison of diffraction wave elevations behind the middle column after bug fixing 
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2.4 Fix the wave elevations 

Another strange thing observed when doing the analyses is about the wave elevations of the 

Wasim stream function wave. When we zoom in around the crest, the stream function wave 

generated by Wasim gives a lower crest (7.8084 m) than the Stokes wave (7.8777 m). And the 

trough (-4.1482 m) of the Wasim stream function wave is lower than the Stokes wave (-4.1222 

m). What we expected is that the stream function wave should have a higher crest and also a 

flatter trough due to higher order nonlinearity. The stream function wave generated by using 

Fenton’s approach gives more reasonable results where the highest elevation is 8.0069 m and 

the lowest elevation is -3.9929 m. See the pictures below. 

 

Figure 2-16 Comparison of the incident wave profiles 
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Figure 2-17 Comparison of the wave crests after zoomed in 

 

Similar results as Fenton’s approach can be obtained by using Dalrymple’s java application. 

 

Figure 2-18 Wave elevation at crest from Dalrymple’s java application 

 

Figure 2-19 Wave elevation at trough from Dalrymple’s java application 

Since Wasim calculates wave elevations by using the wave elevation coefficients output by the 

python script, so there must be some error in the script. The python script first calculates exact 
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elevation values at some collocation points in a predefined resolution (let us denote these val-

ues as elev_exact), then the script calculates the wave elevation coefficients (let us denote 

these coefficients as elev_coeff) based on these elev_exact values by least square fitting. In final 

the script can interpolate approximated elevation values (let us denote these values as 

elev_approx) at any point by series summation of these elevation_coeff. The problem looks like 

that the elev_exact values are already not so accurate while the least squares fitting works per-

fectly, i.e. very little difference between elev_exact values and elev_approx values at the collo-

cation points. 

Python Dalrymple Fenton

x elev_exact elev_approx elev elev

0.00 7.811772 7.811771 8.00 8.005705

3.10 7.736088 7.736088 7.92 7.929232

6.20 7.514654 7.514655 7.70 7.705514

9.30 7.163071 7.163071 7.35 7.350414

12.40 6.703732 6.703731 6.88 6.886747

15.50 6.161995 6.161995 6.34 6.340328

18.60 5.562907 5.562908 5.73 5.736547

21.69 4.929059 4.929058 5.09 5.098177

24.79 4.279532 4.279531 4.44 4.444416

27.89 3.629673 3.629673 3.79 3.790729

30.99 2.991322 2.991322 3.14 3.149079

34.09 2.373272 2.373271 2.52 2.528305

37.19 1.781780 1.781779 1.93 1.934606

40.29 1.221054 1.221054 1.37 1.372088

43.39 0.693680 0.693681 0.84 0.843278

46.49 0.200988 0.200987 0.34 0.349511

49.59 -0.256659 -0.256660 -0.10 -0.108836

52.69 -0.679619 -0.679619 -0.53 -0.532158

55.79 -1.068784 -1.068783 -0.92 -0.921439

58.88 -1.425423 -1.425423 -1.27 -1.278035  

Figure 2-20 Comparison of the wave elevation values indicates elev_exact may already be wrong 

I was expecting in the beginning that the script would calculate elev_exact by solving the tran-

scendental equation (16) iteratively based on the stream function coefficients output of the java 

application, i.e. physically by requiring �(� = �) = �� = ����. But the script solves the prob-

lem in a smarter way, by requiring local pressure equals to zero along the wave surface, i.e. to 

increase or decrease wave elevation iteratively at a collocation point so that the local pressure 
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there will converge to zero. This approach takes fewer iterations since the local pressure can be 

calculated straightforward after wave kinematics are known. But the disadvantage is that Dal-

rymple’s approach is mainly based on least square fitting the objective function � =

�

�
∑ (�� − ��)��

��� +
��

�
∑ �(��) + ��(�(��) − �(��) − �)�

��� , and the local Bernoulli constant �� 

will be slightly different at the collocation points, then solving elev_exact from the dynamic F.S: 

condition 
�

�
��

��

��
�

�
+ �

��

��
�

�
� + �� = � should refer to those local �� so that the whole method 

will be consistent. So long these �� values are not available from the online java application, 

solving the transcendental equation will give better solutions, though a bit slower when the 

script is used to calculate a series of waves. 

 

Figure 2-21 Comparison of the wave elevation values after modification 
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2.5 Test the modifications 

The modification of both Wasim source code and the python script should be tested. The wave 

elevation, kinematics and 
��

��
 will be compared with results from other programs according to 

the following figure and table. 

 

Figure 2-22 Wave conditions which will be used for testing 
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Point �

���
 

�

���
 

T (s) H (m) Program Order 

Shallow water (D=30m) 

1 0.0006 0.0004 71.4043 20.0000 WasimStream 

WajacStream 

FentonStream 

varies 

2 0.0026 0.0004 34.3015 4.6154 WasimStream 

WajacStream 

FentonStream 

11 

Intermediate water (D=100m) 

3 0.0200 0.0048 22.5800 24.0000 WasimStream 

WajacStream 

FentonStream 

WasimStokes 

WajacStokes 

FentonStokes 

5 

4 0.0020 0.0100 22.5800 50.0000 WasimStream 

WajacStream 

FentonStream 

11 

Deep water (D=300m) 

5 0.1000 0.0199 17.4904 59.6998 WasimStream 

WajacStream 

FentonStream 

WasimStokes 

WajacStokes 

FentonStokes 

5 

6 0.1000 0.0220 17.4904 65.9998 WasimStream 

WajacStream 

FentonStream 

11 

Table 2-1 Parameters to the wave conditions which will be used for testing 
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Program Theory 

WasimStream Dalrymple’s approach 

WajacStream Dean’s approach 

FentonStream (my implementation) Fenton’s approach 

WasimStokes Fenton’s approach 

WajacStokes Skjelbreia and Hendrickson’s approach 

FentonStokes (my implementation) Fenton’s approach 

Table 2-2 Information about the programs which will be used for testing 

 

2.5.1 Wave condition 2 

 

Figure 2-23 Comparison of wave elevation, kinematics and dϕ/dt in wave condition 2 

Wasim stream function seems to work well. Acc-z from Wajac stream function seems to have 

lower absolute value, and 
��

��
 has opposite sign (may due to different definition). The absolute 
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value of 
��

��
 in Wajac stream function is a little lower which may due to the lower absolute value 

of vel-x. 

 

2.5.2 Wave condition 3 

 

Figure 2-24 Comparison of wave elevation, kinematics and dϕ/dt in wave condition 3 
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Wasim stream function works well. Wajac stream function has the same problem as observed at 

point 2, but vel-x and 
��

��
  varies more. In addition 

��

��
 from Wajac stokes 5th also has also oppo-

site sign and lower absolute value, and the other parameters have more or less deviations. 

 

2.5.3 Wave condition 4 

 

Figure 2-25 Comparison of wave elevation, kinematics and dϕ/dt in wave condition 4 

Wasim stream function works well. Wajac stream function has the same problem, and the devi-

ations become larger as steepness increases. 
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2.5.4 Wave condition 5 

 

Figure 2-26 Comparison of wave elevation, kinematics and dϕ/dt in wave condition 5 

Wasim stream function works well! Wajac stream function and stokes 5th in Wajac are still not 

so accurate, especially at wave trough. 
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2.5.5 Wave condition 6 

 

Figure 2-27 Comparison of wave elevation, kinematics and dϕ/dt in wave condition 6 

Wasim stream function works well while Wajac stream function has still the same problem es-

pecially at wave trough. One possibility could be that when wave is below the still water level, 

Wajac will output the wave kinematics at (0,�) instead of at (0,0) (where no water can be found 

actually) while the other programs will always calculate the wave kinematics at (0,0). But this 

cannot explain the deviations when wave is above the still water level, though they are smaller 

but still visiable. Further study or modification of Wajac program will not be included in this re-

port. 
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2.5.6 Wave condition 1 

i) WasimStream 

The online java application works only up to order 40, otherwise it will return NaN results. Order 

40 is for sure enough for the most waves, but maybe not enough for wave condition 1. 

 

Figure 2-28 Dalrymple’s approach to wave condition 1 

Dalrymple’s approach cannot even converge to the correct wave height and wave length as the 
oscillations are global. This is due to that the wave is too long (Dalrymple & Solana 1986). 

 

ii) WajacStream 

The max order the program allows is 24, and when order 24 is used the program will not give 
any output. It seems that Dean’s approach cannot converge either. 
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iii) FentonStream 

For such long waves, Fenton’s approach can solve the problem stepwise, i.e. by first divide the 

wave height into several parts, and then solve a lower wave with the same wave length and 

step upwards in wave height after convergence. 

When 10 steps in wave height and order 40 are used, the method can converge to the correct 

wave height and wave length, though we can still observe small local oscillations due to lack of 

more higher order terms. 

 

Figure 2-29 Fenton’s approach to wave condition 1 when order = 40 

If we set order = 100, the small local oscillations will disappear which gives a perfect wave pro-

file. 
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Figure 2-30 Fenton’s approach to wave condition 1 when order = 100 

 

After all, it seems that Fenton’s approach is more robust when waves are extremely long. At 

least it can handle solitary waves which Dean or Dalrymple’s approach cannot. On the other side, 

Wasim after modification and cooperating with Dalrymple’s java application works well except 

for the limitation to deal with extremely long waves. But the stream function method is both 

general enough to replace the Stokes 5th and it extends even more the validity range for input 

waves to Wasim, especially waves in shallow water. 
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3 Nonlinear free surface conditions 

 

3.1 Theoretical derivation 

After the implementation of stream function method is included in Wasim, it is reasonable to 

have nonlinear free surface conditions which combined with stream function method can im-

prove the capability of Wasim to handle nonlinear problems. Some free surface conditions with 

strong nonlinear coupling terms were once attempted to be implemented in Wasim, but the 

results were not satisfying. This may due to that the program as a whole is a weakly nonlinear 

potential solver (the strongest limitation may be that when the program solves the memory 

flow potential in time domain, the left hand side matrix of the linear system which is derived 

from equation (44) will not be updated). Fully or strongly nonlinear analysis without parallel 

computing at present is too far to commercial softwares. In the rest of the report, only weakly 

nonlinear free surface conditions based on perturbation theory will be discussed. 

 

3.1.1 Kinematic free surface condition 

We start from the most derived kinematic free surface condition: 

 �
�

��
+ ∇���� ∙ ∇� ∙ [� − ����] = 0     on z= � + ��   (59) 

Introduce Galilean transform (18), ���� = �� + �� + �� + �� and ���� = � + ��  where � is wave 

radiation and diffraction elevation while ��  is incident wave elevation. Then we come to the fully 

nonlinear kinematic free surface condition: 

 �

��
(�� + �� + �� + ��) = �

�

��
− ����⃗ ∙ �� ∙ (� + ��) + ∇(�� + �� + �� + ��) ∙

∇(� + ��)         on z= � + ��   

(60) 

 

i) Alternative 1 
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Move terms only including �� and �� without coupling with other variables to the right hand side 

of (60) and leave all the other terms at the left hand side, then we come to equation (61). 

 �
��

��
− �����⃗ − ���� ∙ ∇� + ∇(�� + �� + ��) ∙ ∇� + ∇(�� + �� + ��) ∙ ∇�� −

�

��
(�� + �� + ��)� = �

���

��
− �

�

��
− ����⃗ ∙ �� ∙ �� − ∇�� ∙ ∇���  on z= � + ��   

(61) 

Taylor expand left hand side of (61) about z=0 and keep only terms up to �(�). Assume �(��) =

�(1) while �(��) = �(��) = �(��) = �(�) = �(��) = �(�), and introduce 
���

��
= 0 on � = 0. 

Right hand side of the equation remains the same. This yields equation (62) 

 �
��

��
− �����⃗ − ���� ∙ ∇� + ∇�� ∙ ∇�� −

����

���
∙ (� + ��) −

�

��
(�� + ��)�

���
  

= �
���

��
− �

�

��
− ����⃗ ∙ �� ∙ �� − ∇�� ∙ ∇���

�� ����

   

(62) 

Equation (62) is identical to Sunhui’s approach (D-4.1-DNV, see reference list). The left hand side 

of (62) is what we have in the current Wasim, i.e. the linear kinematic free surface condition 

(see Appendix A). 

 

ii) Alternative 2 

We start from equation (61). Taylor expand left hand side of the eqution. about z=0 and keep 

only terms up to �(�). But now we assume �(��) = �(��) = �(��) = �(1) while �(��) =

�(��) = �(�) = �(�). At the same time we Taylor expand right hand side of the equation. 

about z=��. This gives us equation (63) 

 �
��

��
− �����⃗ − ���� ∙ ∇� + ∇�� ∙ ∇� + ∇�� ∙ ∇�� + ∇(�� + ��) ∙ ∇�� −

����

��� ∙

(� + ��) −
�

��
(�� + ��)�

���
  

= �
���

��
+

����

���
∙ � − �

�

��
− ����⃗ ∙ �� ∙ �� − ∇�� ∙ ∇�� −

�

��
(∇�� ∙ ∇��) ∙ ��

�� ��

   

(63) 
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Since the kinematic free surface condition 
���

��
= −

���

��

���

��
 is applied when we solved the stream 

function incident wave (see section 1.2), rewrite the condition by using velocity potential gives 

���

��
=

���

��

���

��
. Then transform the equation to the 3D body fixed coordinate (figure 1.2) and in-

troduce Galilean transform (18), which leads to equation (64).  

 �
�

��
− ����⃗ ∙ �� ∙ �� + ∇�� ∙ ∇�� =

���

��
      on z= ��  (64) 

Insert equation (64) into the right hand side of equation (63): 

 �
��

��
− �����⃗ − ���� ∙ ∇� + ∇�� ∙ ∇� + ∇�� ∙ ∇�� + ∇(�� + ��) ∙ ∇�� −

����

���
∙

(� + ��) −
�

��
(�� + ��)�

���
= �

����

��� ∙ � −
�

��
(∇�� ∙ ∇��) ∙ ��

�� ��

   

(65) 

If we further Taylor expand the right hand side of (65) and reorganize the equation, which gives: 

 �
��

��
− �����⃗ − ���� ∙ ∇� + ∇�� ∙ ∇�� −  

����

��� ∙ (� + ��) −
�

��
(�� + ��)�  

= �
����

��� ∙ � −
�

��
(∇�� ∙ ∇��) ∙ � − ∇�� ∙ ∇� − ∇(�� + ��) ∙ ∇���  on z=0   

(66) 

Then the left hand side of (66) is what we have in the current Wasim.  

 

3.1.2 Dynamic free surface condition 

We start from the the most derived dynamic F.S. condition. 

 �����

��
= −����� −

�

�
(∇����)�       on z= � + ��   (67) 

Introduce Galilean transform (18), ���� = �� + �� + �� + �� and ���� = � + ��. Then we come to 

the fully nonlinear dynamic free surface condition: 

 �
�

��
− ����⃗ ∙ ∇� (�� + �� + �� + ��) = −�(� + ��) −

�

�
�∇(�� + �� + �� +

��)�
�
         on z= � + ��   

(68) 
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i) Alternative 1 

Move terms only including �� and �� without coupling with other variables to the right hand side 

of (68) and leave all the other terms at the left hand side, then we come to equation (69). 

 ��
�

��
− ����⃗ ∙ ∇� (�� + �� + ��) + �� +

�

�
�∇(�� + �� + ��)�

�
+ (∇�� ∙ ∇�� +

∇�� ∙ ∇�� + ∇�� ∙ ∇��)� = �− �
�

��
− ����⃗ ∙ ∇� �� − ��� −

�

�
(∇��)

��  on z= � + ��   

(69) 

Taylor expand left hand side of (69) about z=0 and keep only terms up to �(�). Assume �(��) =

�(1) while �(��) = �(��) = �(��) = �(�) = �(��) = �(�), and introduce 
���

��
= 0 on � =

0,
���

��
= 0. Right hand side of the equation remains the same. This yields equation (70). 

 ��
�

��
− �����⃗ − ∇��� ∙ ∇� (�� + ��) − ����⃗ ∙ ∇�� + �� +

�

�
(∇��)� + ∇�� ∙

∇���
���

= �− �
�

��
− ����⃗ ∙ ∇� �� − ��� −

�

�
(∇��)��

������

  

(70) 

Equation (70) is identical to Sunhui’s approach (D-4.1-DNV, see reference list). The left hand side 

of (70) is what we have in the current Wasim, i.e. the linear dynamic free surface condition (see 

Appendix A). 

 

ii) Alternative 2 

We start from equation (69). Taylor expand left hand side about z=0 and keep only terms up to 

�(�). But now assume �(��) = �(��) = �(��) = �(1) while �(��) = �(��) = �(�) = �(�). At 

the same time we Taylor expand right hand side about z=��. This gives us equation (71). 

 ��
�

��
− �����⃗ − ∇��� ∙ ∇� (�� + ��) − ����⃗ ∙ ∇�� + �� +

�

�
(∇��)� + ∇�� ∙

∇�� +
�

��
(∇�� ∙ ∇��) ∙ (� + ��) + ∇�� ∙ ∇�� + ∇�� ∙ ∇���

���
  

= �− �
�

��
− ����⃗ ∙ ∇� �� − � ∙

�

��
��

�

��
− ����⃗ ∙ ∇� ��� − ��� −

�

�
(∇��)

� −

�

��
�

�

�
(∇��)�� ∙ ��

����

  

(71) 
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Introduce the fully nonlinear dynamic free surface condition of incident wave �
�

��
− ����⃗ ∙ ∇� �� +

��� +
�

�
(∇��)� = 0 into (71) and further Taylor expand right hand side of the equation about z=0, 

which leads to equation (72). 

 ��
�

��
− �����⃗ − ∇��� ∙ ∇� (�� + ��) − ����⃗ ∙ ∇�� + �� +

�

�
(∇��)� + ∇�� ∙ ∇��� 

= [−� ∙ ��
�

��
− ����⃗ ∙ ∇� ∙

���

��
� − ∇�� ∙

�(∇��)

��
∙ � −

�

��
(∇�� ∙ ∇��) ∙ (� + ��) −

∇�� ∙ ∇�� − ∇�� ∙ ∇��]  

(72) 

Then the left hand side of (72) is what we have in the current Wasim. 

 

The advantage of alternative 1 is that the update with regards to what already included in the 

current Wasim, is only associated with �� and ��, which is not difficult to be implemented. The 

disadvantage may be the inconsistence of the approach since different parts of the free surface 

conditions are evaluated differently. Whether this approach will converge to acceptable results 

should be tested. Comparing with alternative 1, the disadvantage of alternative 2 is the extra 

terms required to be calculated, e.g. the terms where �� or �� has coupling with ��, especially 

the last term in (72) which can cause problems as the dynamic free surface condition is used to 

solve �� implicitly (see section 1.3.3). The advantage of alternative 2 is assumed to be a better 

consistence with linear theory , which will be tested later. 
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3.2 Discretization and implementation of the free surface conditions 

Because the basis flow is steady state and the local flow potential can be calculated straightfor-

ward after solving the motion equation (see section 1.3.3), the main computation in time 

marching will be the memory flow, i.e. to solve the boundary value problem which includes 

equations (40) (or (62)/(66)), (41) (or (70)/(72)) and (42), where the three unknows ��, � and 

���

��
 are approximated in Wasim as follows: 

 ��
� (�⃗) = ∑ ��

� ∙ ��(�⃗)  (73) 

 �

��
��

� (�⃗) = ∑ ��
� ∙ ��(�⃗)  (74) 

 ��(�⃗) = ∑ ��
� ∙ ��(�⃗)  (75) 

�� is the quadratic spline centered at �⃗�, and the superscript denotes time step, i.e. ��
� = ��(�Δ�). 

 

Consider the initial value problem 
��

��
= �(�, �) where the function � and the initial data ��, �(��) 

are known. Several time discretization schemes which are used in Wasim are presented below. 

i) Explicit (forward) Euler 

�

��
(���� − ��) = �� ⇒ ���� = �� + Δ� ∙ �(��, ��)  

ii) Implicit (backward) Euler 

�

��
(���� − ��) = ���� ⇒ ���� = �� + Δ� ∙ �(����, ����)  

iii) Explicit Leap-Frog scheme 

�

���
(���� − ����) = �� ⇒ ���� = ���� + 2Δ� ∙ �(��, ��)  

iv) Trapzoidal scheme 

�

��
(���� − ��) =

�

�
(���� + ��) ⇒ ���� = �� +

��

�
∙ (�(����, ����) + �(��, ��))  
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3.2.1 Implementation of the kinematic free surface condition 

 

i) Linear kinematic free surface condition (available in the offical Wasim version) 

First order: apply explicit Euler scheme to (40) 

 �� ∙ ��
��� = �� + Δ� ������⃗ − ∇��� ∙ ∑ ��

� ∙ ∇�� +
���

�

��
+

���
�

��
�  on z= 0 (76) 

Second order: apply explicit Leap-Frog scheme to (40) 

 �� ∙ ��
��� = ���� + 2Δ� ������⃗ − ∇��� ∙ ∑ ��

� ∙ ∇�� +
���

�

��
+

���
�

��
�  on z= 0 (77) 

Note: 

 Term 
����

��� ∙ (� + ��) is neglected due to the difficulty of 2nd order derivation calculation, 

but −∇�� ∙ ∇�� can be included as an option (in source code if ifscond=1 or ilin_surf>1, 

where ifscond is a variable depends on whether the base flow is inhomogeneous, i.e. 

ifscond=1 indicates ∇�� ≠ 0, and ilin_surf is a variable depends on what nonlinearity 

should be included in the free surface conditions). 

 If ilin_surf=2 or 3, a nonlinear term −∇(�� + ��) ∙ ∇(� + ��) will be included. But this op-

tion gives unsatisfying results and will not be discussed in the report. 

 If ilin_surf=5 and the incident wave is generated by stream function method, extra terms 

−�(∇��)������
∙ �� − (∇��)����

∙ ��� + ��
���

��
�

������

− �
���

��
�

����

� will be included. Then it will 

be identical to the approach alternative 1. 

 

ii) Alternative 1 

First order: apply explicit Euler scheme to (62) 

 �� ∙ ��
��� = �� + Δ� ������⃗ − ∇��� ∙ ∑ ��

� ∙ ∇�� +
���

�

��
+

���
�

��
� + Δ� �

���
�

��
−

�
�

��
− ����⃗ ∙ �� ∙ ��

� − ∇��
� ∙ ∇��

��
�� ����

     on z= 0 

(78) 
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Second order: apply explicit Leap-Frog scheme to (62) 

 �� ∙ ��
��� = ���� + 2Δ� ������⃗ − ∇��� ∙ ∑ ��

� ∙ ∇�� +
���

�

��
+

���
�

��
� +

2Δ� �
���

�

��
− �

�

��
− ����⃗ ∙ �� ∙ ��

� − ∇��
� ∙ ∇��

��
�� ����

    on z= 0 

(79) 

Note: 

 Term 
����

��� ∙ (� + ��) is neglected. 

 This approach can be switched on when ilin_surf=5 

 

iii) Alternative 2 

First order: apply explicit Euler scheme to (66) 

 �� ∙ ��
��� = �1 + Δ� ∙

����
�

���
− Δ� ∙

�

��
(∇��

� ∙ ∇��
�)� ∙ �� + Δ� ������⃗ − ∇�� −

∇��
�� ∑ ��

� ∙ ∇�� +
���

�

��
+

���
�

��
− ∇(�� + ��

� + ��
� ) ∙ ∇��

��   on z= 0 

(80) 

Second order: apply explicit Leap-Frog scheme to (66) 

 �� ∙ ��
��� = ���� + 2Δ� �

����
�

��� −
�

��
(∇��

� ∙ ∇��
�)� ∙ �� + 2Δ� ������⃗ − ∇�� −

∇��
�� ∑ ��

� ∙ ∇�� +
���

�

��
+

���
�

��
− ∇(�� + ��

� + ��
� ) ∙ ∇��

��   on z= 0 

(81) 

Note: 

 Term 
����

��� ∙ (� + ��) is neglected. 

 This approach can be switched on when ilin_surf=6 
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3.2.2 Implementation of the dynamic free surface condition 

 

i) Linear kinematic free surface condition (available in the offical Wasim version) 

First order: apply implicit Euler scheme to (41) 

 ��� − Δ������⃗ − ∇��� ∙ ∇��� ∙ ��
��� = ��

� − Δ�(�����) − Δ� ��
�

��
− ����⃗ ∙

∇� ��
��� + ���

����        on z= 0 

(82) 

Second order: apply trapzoidal scheme to (41) 

 ��� −
�

�
Δ������⃗ − ∇��� ∙ ∇��� ∙ ��

��� = ��
� +

��

�
������⃗ − ∇��� ∑ ��

� ∙ ∇�� −

�(���� + ��)� − Δ� ��
�

��
− ����⃗ ∙ ∇� ��

��� + ���
����    on z= 0 

(83) 

Note: 

 Term �����⃗ ∙ ��
�

−
1

2
�∇�

�
�

2
� is neglected, but −∇�� ∙ ∇�� can be included as an option. 

 The linear dynamic free surface condtion of the incident wave, i.e. the last term in (83) 

remains to be subtracted Euler implicitly in the trapezoidal-scheme. 

 If ilin_surf=1, 3 or 5, the linear dynamic free surface condition of incident wave will be 

evaluated on z= � + �� 

 

ii) Alternative 1 

First order: apply implicit Euler scheme to (70) and consider only the memory flow 

 ��� − Δ������⃗ − ∇��� ∙ ∇��� ∙ ��
��� = ��

� − Δ�(�����) + Δ� �− �
�

��
− ����⃗ ∙

∇� ��
��� − ���

��� −
�

�
(∇��

���)��
������

     on z= 0 

(84) 

Second order: apply trapzoidal scheme to (70) and consider only the memory flow 
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 ��� −
�

�
Δ������⃗ − ∇��� ∙ ∇��� ∙ ��

��� = ��
� +

��

�
������⃗ − ∇��� ∑ ��

� ∙ ∇�� −

�(���� + ��)� + Δ� ��
�

��
− ����⃗ ∙ ∇� ��

��� + ���
��� −

�

�
(∇��

���)��
������

  

         on z= 0 

(85) 

Note: 

 Term �����⃗ ∙ ��
�

−
1

2
�∇�

�
�

2
� is neglected, but −∇�� ∙ ∇�� can be included as an option. 

 This approach can be switched on when ilin_surf=5 

 

iii) Alternative 2 

First order: apply implicit Euler scheme to (72) and consider only the memory flow 

 
��� − Δ������⃗ − ∇��� ∙ ∇��� ∙ ��

��� = ��
� + Δ� �−����� + �����⃗ −

�

�
∇�� −

∇��
���� ∙ ∇�� − ���� ∙ ��

�

��
− ����⃗ ∙ ∇� ∙

���
���

��
+ ∇��

��� ∙
��∇��

����

��
� −

�∇�� ∙
�

��
(∇��

���)� ∙ (���� + ��
���)�      on z= 0 

(86) 

Second order: apply trapzoidal scheme to (72) and consider only the memory flow 

 
��� −

��

�
�����⃗ − ∇��� ∙ ∇��� ∙ ��

��� = ��
� +

��

�
������⃗ − ∇��� ∑ ��

� ∙ ∇�� −

�(���� + ��) + �2����⃗ − ∇�� − (∇��
��� + ∇��

�)� ∙ ∇�� − ����� ∙

��
�

��
− ����⃗ ∙ ∇� ∙

���
���

��
+ ∇��

��� ∙
��∇��

����

��
� + �� ∙ ��

�

��
− ����⃗ ∙ ∇� ∙

���
�

��
+ ∇��

� ∙

��∇��
��

��
�� − ��∇�� ∙

�

��
(∇��

���)� ∙ (���� + ��
���) + �∇�� ∙

�

��
(∇��

�)� ∙

(�� + ��
�)��         on z= 0 

(87) 
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Note: 

 
�

��
(∇�� ∙ ∇��) ∙ (� + ��) = �

����

���
∙

���

��
+ ∇�� ∙

�

��
(∇��)� ∙ (� + ��) ≈ �∇�� ∙

�

��
(∇��)� ∙

(� + ��) as terms associated with 
����

���
 are omitted. 

 Term ∇�� ∙ ∇�� is neglected. If we include it implicitly, the term will be moved to the 

left hand side, then Wasim needs to update the coefficients matrix at the left hand side 

due to ∇��, which is not allowed at present. If we include it explicitly, then the dynamic 

free surface condition will be discretized emplicitly, which leads to unsatisfying results 

and sometimes the method loses its numerical stability. 

 This approach can be switched on when ilin_surf=6 
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3.3 Wave loads on a fixed cylinder 

The main task of this section is to test the wave diffractions with the implemented nonlinear 

free surface conditions by studying the wave loads on a fixed body. A series of analyses are 

done in Wasim, and the numerical results will be compared with the experimental results in 

Huseby & Grue (2000). A fixed cylinder with a 3cm radius in 0.6m water depth is set up in 

Wasim which is identical to the model and environmental condition used in the mentioned ex-

periment.  

 

Figure 3-1 The fixed cylinder model in Wasim 

We keep kR=0.245, where k is the wave number and R is the cylinder radius. The dimension of 

the cylinder will not be changed during all the analyses so the wave number will also be con-

stant. Then we increase kA from 0.00245 up to 0.245, where A is the wave amplitude. 

kA 0.00245 0.0245 0.049 0.0735 0.098 0.1225 0.147 0.1715 0.196 0.2205 0.245 

A (m) 0.0003 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03 

Table 3-1 Wave steepness and corresponding wave amplitudes which will be used 
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The horizontal wave loads calculated by Wasim will be decomposed into five harmonic compo-

nents by a small python script which is mainly based on least squares fitting, i.e. 

 �(�) ≈ ∑ �� sin(���) + ��cos (���)�
���   (88) 

 
|��| = ���

� + ��
�  

(89) 

 �� = arctan �
��

��
�  (90) 

where |��| is the amplitude of the ith order horizontal load and �� is the phase angle between the 

ith order horizontal load and the total horizontal load. Regarding decomposition of the results, 

we have also considered to use FFT which is quite traditional for post-processing. But in this 

case FFT decomposition will give a bit smaller 1st order loads because FFT principally includes 

infinitive number of harmonic components and is sensitive to small local oscillations. Since the 

results are always steady state and quite regular, the harmonic Fourier analysis should be a bet-

ter choice. 

The first and second order numerical results compared with corresponding experimental results 

are presented on the next pages. The mesh resolution is fine enough. There are 62 elements 

(along the circumference) × 100 elements (along the height) on the cylinder boundary and 62 × 

154 elements on the free surface. This fine mesh requires a time step down to 0.001s (1st order 

time integration), and one analysis of 10s duration will take about 3 hours. The results can be 

improved slightly if we put more elements on the free surface, but it is little worth considering 

the corresponding time costage. 

Legend label Description 

Experiment Experiment data from Huseby & Grue (2000) 

Ferrant Fully nonlinear numerical results from Ferrant 

(1998) 

McCamy-Fuchs Theoretical solutions from McCamy & Fuchs 

(1954) 

Airy Wasim results, Airy incident wave 
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Streamfunction Wasim results, stream function incident wave 

with 11 coefficients 

ilin = 0 Wasim results, linear analysis 

ilin =3  Wasim results, nonlinear analysis (more non-

linearity will be included in force integration, 

details can be found in my project thesis P39) 

ilin_surf = 0 Wasim results, linear free surface condtions 

ilin_surf = 5 Wasim results, nonlinear free surface condi-

tions alternative 1 

ilin_surf = 6 Wasim results, nonlinear free surface condi-

tions alternative 2 

Table 3-2 Description to the legend labels used in the plots 

 

 

Figure 3-2 First order horizontal force on the cylinder 
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Figure 3-3 Phase angle of the first order horizontal force 

 

Figure 3-4 Second order horizontal force on the cylinder 
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Figure 3-5 Phase angle of the second order horizontal force 

 

 Figure 3.2: all the 1st order loads calculated by Wasim converge to the linear solution 

when kA is small, even the approach alternative 1, which considered to be theoretically 

inconsistent, does so as well when the incident wave becomes small. 

 Figure 3.2: all the 1st order loads calculated by Wasim are close to each other. They 

seems to be better than the fully nonlinear results from Ferrant (1998). Though a notice-

able nearly constant deviation can be observed comparing with the experiment results, 

but at least the tendency is correct when kA becomes large. 

 Figure 3.3: the phase angles of the 1st order loads from Wasim oscillate a lot around 90 

degree (theoretical solution) when the nonlinear free surface conditions are applied 

(both alternative 1 and 2). All the numerical results tend to be close to the theoretical 

solution, but the most experiment results are far from 90 degree. 
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 Figure 3.4: Stream function incident wave combined with nonlinear free surface condi-

tions alternative 2 seems to be a little closer to the experiment results. But all the results 

from Wasim give larger estimation when kA increases. The fully nonlinear analysis from 

Ferrant (1998) gives better results at this stage. 

 Figure 3.5: Stream function incident wave combined with nonlinear free surface condi-

tions alternative 2 seems to give the best results. 

 The yellow line and the cyan line are always close to each other, but the cyan line has 

quite different pattern than the red/blue line. For this diffraction problem, it seems that 

the free surface conditions can influence the results more than the incident wave model. 

Therefore, to update Wasim with some nonlinear free surface conditions will be im-

portant for this kind of analyses. 

 

A certain amount of time has been used to figure out the deviations in the 1st order load ampli-

tudes. At first, the deviations were attempted to be explained by some viscous force. The non-

dimensional Morison drag was estimated and the magnitude of the drag force was a bit larger 

than the deviations, so I was hoping there could be found some 1st order viscous force in the 

same order of magnitude. The viscous force might be skin drag which is associated with KC-

number. But according to Huseby & Grue (2000), KC-number was between 1 and 3.6 and Re-

number was around 20000 when the experiments were done, therefore the viscous drag force 

should be very small even when kA is large. 

If we further take a look at figure 3.2-3.5, the results from Wasim have lower 1st order ampli-

tudes but higher 2nd order amplitudes when kA becomes large. This could be caused by that the 

horizontal load time histories from Wasim have higher crests and flatter troughs, i.e. the pattern 

of the load time histories from Wasim should be more asymmetric about x-axis comparing with 

the experiment results. The picture below gives an illustration of this phenomenon. The magni-

tudes in the picture are just for a clear demonstration so they are meaningless.  
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Figure 3-6 Illustration1: Asymmetry about x-axis causes lower 1st order amplitude and higher 2nd order amplitude 

 

Another observation is that the phase angles of the 1st order loads from the experiment results 

have values father away from 90 degree, which could cause the 1st order load amplitudes from 

the experiment results to be larger than those which have phase angles closer to 90 degree, see 

figure 3.7 (apologize for my painting skills…). This may due to that the load time histories from 

the experiments are more asymmetric about some axis at x=2�� +
�

�
. This asymmetry can also 

make the least squares fitting converge to more than one possible solutions Figure 3.8 gives an 

illustration of this phenomenon. Both two solutions have almost the same sum of squared re-

siduals, i.e. both of them are numerically correct. But if only one of them is physically correct, 

then we need some physics law as constraint when we least squares fit the objective function, 

which may be expressed as: 

 � = |�����(���������) − �����(����������)| + ∑ �� ∙ ���� = 0  (91) 
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The problem is that the constraints and the Lagrange multipliers are unknown, then the conver-

gence direction of the least squares fitting works like which direction a pen tends to fall down 

when you balance it on fingertip. This may also explain why the phase angle of the 1st order 

loads from Wasim oscillates around 90 degree after harmonic Fourier analysis. 

 

Figure 3-7 Illustration 2: Phase angle closer to 90 degree causes lower 1st order amplitude 

 

Figure 3-8 Illustration 3: Horizontal asymmetry causes more than one possible solutions 
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The load time histories should have both vertical and horizontal asymmetry when kA becomes 

large. But for practical problems, the maximum and minimum load values are more important 

than the exact load profile. Since the values of both harmonic amplitudes and phase angles up 

to 6th order are available from Huseby & Grue (2000), to reproduce the time history of the total 

horizontal wave load would not be difficult. The maximum and minimum values from the load 

time histories are picked up and compared with the results calculated by Wasim. 

 

Figure 3-9 Maximum value of the dimensionless horizontal wave load on the cylinder 

 

The load profiles from the experiments seems to have lower maximum magnitudes and higher 

minimum magnitudes. The implementation of the nonlinear free surface conditions alternative 

2, which may due to more nonlinear terms as �(��) = �(��) = �(1) is assumed, seems to give 

results more compatible to the experiment data. When the linear free surface conditions 

(ilin_surf=0) are applied, the nonlinear analyses give underestimated minimum load values but 

acceptable and conservative load amplitudes. On the other side, the linear solutions (ilin=0),  
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Figure 3-10 Minimum value of the dimensionless horizontal wave load on the cylinder 

 

Figure 3-11 Amplitude value of the dimensionless horizontal wave load on the cylinder 
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which due to that linear systems with regular harmonic inputs always give regular harmonic 

outputs, will not give satisfying load profiles, especially when kA > 0.1 the results are too con-

servative. The difference of the results which due to the incident wave model is noticeable 

when kA>0.2 (the difference between the yellow and cyan lines). 
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3.4 Ship motions in steep regular waves 

After we have studied the diffraction problem, it is logical to do some analysis further with a 

floating body so that wave radiations can be tested. Traditionally we should go for a forced os-

cillation analysis, i.e. a pure radiation analysis, since problems often should be spilt into compo-

nents which are simpler to study. But considering the update of Wasim will be a combination of 

both the stream function method and the nonlinear free surface conditions, it is worth to in-

clude incident waves as excitations. In addition, a series of ship model test data, which is gener-

ated within the EC project Extreme Seas, is available at DNV and will be used for comparison 

purpose in this section, therefore the analyses will be estimation of ship motions in some steep 

regular waves. However, wave loads on the ship will not be studied because it requires detailed 

mass distribution of the ship model in Wasim, which is time consuming.  

 

3.4.1 Ship model 

The ship model used in the analyses is a LNG carrier. The following table and picture gives a de-

scription and demonstration respectively of the model.  

Scale = 70 Full scale (in Wasim) Model scale 

Loa 197.13 m 2.816 m 

Lpp 186.90 m 2.670 m 

B 30.38 m 0.434 m 

D 18.20 m 0.268 m 

d 8.40 m 0.120 m 

M 35614.03 t 103.831 kg 

CGx 94.87 m 1.355 m 

CGy 0.00 m 0.000 m 

CGz 8.26 m 0.118 m 

RGx 11.27 m 0.161 m 

RGy 40.53 m 0.579 m 
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RGz 40.18 m 0.574 m 

Water Depth 70 m 1 m 

Table 3-3 Main dimensions of LNG carrier 

 

Figure 3-12 The LNG carrier with simplified superstructure 

 

3.4.2 Wave data 

The following table includes the data of the regular waves used in the model tests. Units: 

[length]=meter, [time]=second, [angular frequency]=rad/second. The basin is 110 m long, with a 

measuring range of 90 m, the width is 8 m and the water depth is 1 m. 

Wave λs λm Hs Hm �� �� Ts Tm H/gT2 d/gT2 kA 

1 112.14 1.6020 2 0.02857 0.7421 6.2091 8.4664 1.0119 0.00284 0.09955 0.05603 

2 149.52 2.1360 2 0.02857 0.6407 5.3608 9.8062 1.1721 0.00212 0.07420 0.04202 

3 168.21 2.4030 3 0.04286 0.6030 5.0448 10.4204 1.2455 0.00282 0.06571 0.05603 

4 186.90 2.6700 3 0.04286 0.5698 4.7670 11.0277 1.3181 0.00251 0.05868 0.05043 

5 205.59 2.9370 3 0.04286 0.5405 4.5223 11.6243 1.3894 0.00226 0.05281 0.04584 

6 224.28 3.2040 4 0.05714 0.5148 4.3067 12.2062 1.4589 0.00274 0.04789 0.05603 

7 261.66 3.7380 4 0.05714 0.4694 3.9269 13.3867 1.6000 0.00228 0.03982 0.04803 

8 299.04 4.2720 5 0.07143 0.4313 3.6088 14.5667 1.7411 0.00240 0.03363 0.05253 



79 
 

9 336.42 4.8060 5 0.07143 0.3983 3.3328 15.7731 1.8852 0.00205 0.02868 0.04669 

10 373.80 5.3400 6 0.08571 0.3699 3.0947 16.9870 2.0303 0.00212 0.02473 0.05043 

11 411.18 5.8740 6 0.08571 0.3447 2.8836 18.2304 2.1789 0.00184 0.02147 0.04584 

12 112.14 1.6020 8 0.11429 0.7598 6.3573 8.2690 0.9883 0.01193 0.10436 0.22412 

13 149.52 2.1360 11 0.15714 0.6577 5.5027 9.5532 1.1418 0.01229 0.07819 0.23112 

14 168.21 2.4030 12 0.17143 0.6177 5.1679 10.1723 1.2158 0.01182 0.06896 0.22412 

15 186.90 2.6700 13 0.18571 0.5833 4.8804 10.7714 1.2874 0.01142 0.06150 0.21852 

16 205.59 2.9370 14 0.20000 0.5532 4.6286 11.3575 1.3575 0.01106 0.05532 0.21393 

17 224.28 3.2040 16 0.22857 0.5282 4.4192 11.8956 1.4218 0.01153 0.05043 0.22412 

18 261.66 3.7380 18 0.25714 0.4818 4.0312 13.0404 1.5586 0.01079 0.04196 0.21612 

19 299.04 4.2720 20 0.28571 0.4432 3.7077 14.1784 1.6946 0.01014 0.03550 0.21011 

20 336.42 4.8060 22 0.31429 0.4103 3.4328 15.3139 1.8304 0.00956 0.03043 0.20544 

21 373.80 5.3400 24 0.34286 0.3821 3.1965 16.4456 1.9656 0.00905 0.02638 0.20171 

22 411.18 5.8740 25 0.35714 0.3566 2.9834 17.6203 2.1060 0.00821 0.02298 0.19101 

Table 3-4 Wave data used in the model tests 

The period/frequency values in the table above are different from those given in the model test 

report from TUB, Clauss, G & Klein, M & Dudek, M (2011). The values above are calculated by 

stream function method (with wave length, wave height and water depth as inputs) while the 

values given in the report are calculated by using �� = ��, i.e. by deep water assumed, which 

should be bad approximation for some of the waves. 

These 22 waves can be divided into two series according to the wave steepness. The first wave 

series includes wave 1-11 which have relatively lower kA, and the rest waves are in series 2. We 

plot all the waves in the wave theory validity range diagram, see figure 3.13, where the horizon-

tal axis is a measure of the water shallowness while the vertical axis is a measure of the wave 

steepness. The waves in series 1 are not far from the limitation of the linear wave theory, but 

the waves in series 2 require higher order theories. Some of the waves in series 2 are outside of 

the validity region of the Stokes 5th wave theory, but after tests it seems that we can still use 

Stokes 5th waves there without visible unphysical ‘’humps’’ on the wave profile. In this section 

we will still use stream function method with 11 coefficients to generate incident waves, i.e. 

11th order, so that all the waves can be handled correctly. In addition, we will also use Airy 

waves as bad approximation to check how the incident wave model will influence the results. 
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 Figure 3.13 Figure 3-13 All the waves plotted in the theory validity range diagram 

 

Since the measurement of the incident wave elevations during the model tests is also available, 

it is worth to investigate these data to make sure that the wave inputs to Wasim are exactly the 
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same as those in the experiments. The following picture is plot of the time history of wave 2. 

The elevations are not as steady state as expected. 

 

Figure 3-14 Time history of wave 2 elevations 

The elevation signal is modulated by an envelop which has a frequency about 0.766 rad/s and 

may due to reflected waves from the basin sides. If we assume deep water condition for wave 2, 

it will take about 8 seconds for the wave to travel back to the ship model from the basin sides. 

Another considered factor which may pollute the model tests is so called seiching phenomenon, 

but it is less dangerous as the natural period of the basin is around 70 seconds (the basin has 

length/depth ratio 110, so the natural period of the basin can be evaluated by the highest natu-

ral sloshing period in shallow water).  

The following table gives the mean values and standard deviations of the wave heights and 

wave periods calculated from the incident wave measurements. The measurements of wave 1 

and wave 12 are not available. 
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Wave Hmean Hstd Hstd/Hmean Tmean Tstd Tstd/Tmean 

2 0.03108 0.00065 2.0921 % 1.16963 0.00545 0.4663 % 

3 0.04277 0.00022 0.5092 % 1.24045 0.00360 0.2900 % 

4 0.04704 0.00026 0.5501 % 1.30770 0.00369 0.2824 % 

5 0.04344 0.00060 1.3854 % 1.37150 0.00331 0.2414 % 

6 0.05818 0.00028 0.4831 % 1.43278 0.00356 0.2483 % 

7 0.05803 0.00058 0.9992 % 1.54771 0.00408 0.2634 % 

8 0.07314 0.00047 0.6494 % 1.65402 0.00507 0.3063 % 

9 0.07250 0.00082 1.1378 % 1.75386 0.00553 0.3150 % 

10 0.08707 0.00027 0.3152 % 1.85050 0.00568 0.3069 % 

11 0.08676 0.00028 0.3243 % 1.94111 0.00737 0.3797 % 

13 0.16968 0.00349 2.0542 % 1.16958 0.01207 1.0319 % 

14 0.17633 0.00343 1.9451 % 1.24150 0.01898 1.5288 % 

15 0.19314 0.00203 1.0527 % 1.30714 0.01221 0.9338 % 

16 0.19943 0.00307 1.5383 % 1.37313 0.01779 1.2958 % 

17 0.23395 0.00470 2.0087 % 1.43558 0.01258 0.8765 % 

18 0.24333 0.00248 1.0211 % 1.55000 0.03700 2.3869 % 

19 0.28674 0.00424 1.4776 % 1.66227 0.02354 1.4159 % 

20 0.32126 0.00461 1.4349 % 1.75950 0.02350 1.3356 % 

21 0.34414 0.00472 1.3719 % 1.86075 0.03226 1.7337 % 

22 0.35921 0.00518 1.4417 % 1.95528 0.02401 1.2278 % 

Table 3-5 Statistics calculation of the wave parameters from the experiment measurements 

The std/mean ratios are acceptable so the mean values may represent the wave conditions well. 

Some of the mean wave height and mean wave period values differ a certain amount from 

those values directly given in the model test report, i.e. the values in table 3-4. In this case, we 

use the mean values multiplied with the scale factor as inputs to Wasim.  

 

3.4.3 Post-process the experiment results 

One strange observation has been found before the post-processing. The heave responses are 

quite unsteady state while the time histories of the pitch responses seems to have better quali-

ty. The following two pictures give an example. 
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Figure 3-15 Heave responses of the ship model when incident wave is wave 2 

 

Figure 3-16 Pitch responses of the ship model when incident wave is wave 2 
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One possible reason is that the heave motions are not measured at the ship model’s center of 

gravity, but then the wrongly measured heave motions should still be quite steady state as the 

measurement will be a linear combination of the heave and pitch motions, which both are as-

sumed to be steady state and have the same frequency as the excitation. Another possible rea-

son is the influence of the reflected waves from the basin sides. As mentioned earlier in the pre-

vious section, the incident wave time history is modulated by a high frequency envelop. This 

may cause the observed oscillation of the heave amplitudes since heave motions are most af-

fected by wave amplitudes while pitch motions are most affected by wave slopes. Unluckily, this 

oscillation of the heave amplitudes makes the post-processing of the heave signal cost quite a 

bit of time. If we FFT the response signal and compare the 1st and 2nd order responses with the 

corresponding results calculated from Wasim, the comparison will not be a good assessment of 

the new implementations to Wasim, because ship motions calculated by Wasim are always 

steady state without oscillation of amplitudes when the incident waves are regular.  So instead 

we end with to compare the mean values of the response amplitudes. 

There are two approaches to calculate the mean amplitudes. We can divide the time history of 

responses into separate windows which has a length equals to the excitation period, and then 

find the extreme value among all the local maximums and minimums within each window. Fig-

ure 3.17 presents an example. Another approach is to smooth the response time histories be-

fore we calculate the mean amplitudes so that the unnecessary local maximums and minimums 

can be filtered out. Then we find the position of all the remaining local maximums and mini-

mums to further calculate the mean amplitudes. The algorithm of smoothing is based on convo-

lution of a scaled window with the signal. The mean amplitude values are still calculated from 

the unsmoothed data so that the error due to smoothing will not be included, see figure 3.18. 

Both approaches will give the same results, but the latter one is quicker as it requires less loop-

ing.  



85 
 

 

Figure 3-17 Calculate mean amplitudes by dividing the time history into separate windows 

 

Figure 3-18 Calculate mean amplitudes by smoothing the data first 
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Then we calculate the mean amplitudes and the corresponding standard deviations. The stand-

ard deviation gives an estimation of error band.  

Wave |��|����

(m) 

|��|��� |��|���

��
��

����

  
|��|����  

(deg) 

|��|���  |��|���

��
��

����

  
Time start 

(s) 

Time end 

(s) 

2 0.00276 0.00029 10.58 % 0.50821 0.01049 2.06 % 100 150 

3 0.00406 0.00105 25.79 % 0.94326 0.01392 1.48 % 100 150 

4 0.00510 0.00071 13.82 % 1.17830 0.01125 0.95 % 100 150 

5 0.00598 0.00047 7.81 % 1.26044 0.00945 0.75 % 100 150 

6 0.01002 0.00021 2.11 % 1.78074 0.00821 0.46 % 80 120 

7 0.01304 0.00027 2.07 % 1.85342 0.00851 0.46 % 80 120 

8 0.01877 0.00031 1.67 % 2.25561 0.00977 0.43 % 80 120 

9 0.02180 0.00040 1.85 % 2.18413 0.00938 0.43 % 80 120 

10 0.02853 0.00031 1.08 % 2.60883 0.00920 0.35 % 80 100 

11 0.03039 0.00024 0.80 % 2.48974 0.01179 0.47 % 80 100 

13 0.01129 0.00262 23.21 % 2.28477 0.08843 3.87 % 120 150 

14 0.01200 0.00148 12.31 % 3.41069 0.08551 2.51 % 100 120 

15 0.01821 0.00112 6.12 % 4.72382 0.06865 1.45 % 100 120 

16 0.02565 0.00140 5.45 % 5.68399 0.10553 1.86 % 80 120 

17 0.03874 0.00165 4.25 % 7.04654 0.13021 1.85 % 80 100 

18 0.05718 0.00132 2.31 % 8.04996 0.08167 1.01 % 80 100 

19 0.07865 0.00115 1.46 % 9.36943 0.10840 1.16 % 80 100 

20 0.10360 0.00656 6.33 % 10.21011 0.53364 5.23 % 80 100 

21 0.11915 0.01109 9.31 % 10.02668 0.48275 4.81 % 80 100 

22 0.12279 0.00698 5.69 % 10.08579 0.89505 8.87 % 80 100 

Table 3-6 Statistics calculation of the model responses from the experiment measurements 

 

3.4.4 Comparison of the results 

Two mesh resolutions have been applied in Wasim. The finer one gives a bit better answers ac-

cording to the experiment results. Even higher resolutions have not been tested because the 

mentioned meshing can already predict quite accurate rigid body motions. 



87 
 

Mesh Resolution on the ship boundary Resolution on the free surface Time step 

1 44 (girthwise) × 15 (along the height) 44 (girthwise) × 119 (axial) 0.1s 

2 80 (girthwise) × 30 (along the height) 80 (girthwise) × 164 (axial) 0.05s 

Table 3-7 Description of the mesh resolutions 

 

For each wave condition, a linear analysis with Airy incident wave and a nonlinear analysis with 

the combination of stream function incident wave plus nonlinear free surface conditions alter-

native 2 will be run in Wasim. The results in wave 3, 4, 5, 13 and 14 will not be presented, be-

cause these wave conditions have the same kA as some of the rest but larger standard devia-

tions. The approach alternative 1 has not been tested, but we plan to do so if alternative 2 can-

not give acceptable results. The following pictures compare the heave and pitch amplitudes cal-

culated by Wasim with correponding mean amplitudes collected from the experiment results. 

The error bands are based on the standard deviations calculated earlier in table 3-6. The num-

bers in the pictures denote wave condition. The finer mesh is used for all the analyses. 

 

Figure 3-19 Comparison of dimensionless heave amplitudes in wave series 1 
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Figure 3-20 Comparison of pitch amplitudes in wave series 1 

 

Figure 3-21 Comparison of dimensionless heave amplitudes in wave series 2 
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Figure 3-22 Comparison of pitch amplitudes in wave series 2 

 

 The response is not increasing or decreasing monotonously when kA increases. This is 

because neither k or A remains constant in all the wave conditions, i.e. the wave condi-

tions given does not have control variables. 

 The numerical results from Wasim seems to be good when comparing with the pitch re-

sponses from the experiments, especially when the nonlinear free surface conditions al-

ternative 2 is applied, but noticeable deviations can be observed in several waves when 

we compare the heave responses. Unlikely, we cannot make a concrete assessment of 

Wasim’s accuracy of predicting heave motions since the quality of heave measurement 

from the experiments by itself is questionable.  

 The difference between the results from the linear and nonlinear analysis is quite small 

overall, except in wave 22 where the responses are largest. Three extra analyses are thus 

made because nonlinearity seems to affect the response amplitudes by most in this 
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wave condition. The green rectangular is very close to the red point while the green cir-

cle is some distance away from the green triangular, which gives us an impression that 

the incident wave model affects the results more than the free surface conditions do. 

This may due to that the wave diffractions and radiations are relatively small so that the 

free surface conditions do not play an important role, and instead the incident wave is 

dominating. It is worth to mention here that whether ilin=0 or 3 is applied makes the 

most difference in the force responses (more details can be found in my project thesis 

p39), ilin=3 is mandatory if the incident wave is nonlinear. 

We then plot the elevations of wave diffraction plus wave radiation, the incident wave eleva-

tions and the total wave elevations at three positions around the ship. The figure below pre-

sents only the positions so the meshing is not used in any analysis. 

 

Figure 3-23 Positions where the time history of the wave elevations are plotted 

 

The elevations in the following three pictures are collected from the nonlinear analysis at the 

red point in wave 22 in figure 3-22. The elevations of wave diffraction plus wave radiation are 

much smaller than the incident wave elevations, so whether ilin_surf=0 or 6 is applied does not 

affect the motion responses significantly. It is the incident wave condition and the body  
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Figure 3-24 The time history of the wave elevations in front of the ship bow 

 

Figure 3-25 The time history of the wave elevations beside midship 
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Figure 3-26 The time history of the wave elevations behind the ship stern 

boundary condition which decides the motion responses by most, and the body boundary con-

dition is always evaluated at the mean position when solving memory flow. On the other side, 

the nonlinearity in the incident waves affects the motion amplitudes very little, except in wave 

condition 22 and 21 which has a period about 1.96s and 1.86s respectively (16.36s and 15.57s in 

full scale) close to the pitch resonance. 

At last, we take the wave condition 22 where in figure 3-22 the difference between the red and 

blue points is largest, and keep the wave period constant while decrease the wave height to 

20m, 15m, 10m, 5m and 1m respectively. The purpose is to check if the combination of the 

stream function method and the free surface conditions alternative 2 will gives results converg-

ing to the linear answers. The pitch responses have also been divided by wave amplitude so that 

the linear answers will become a horizontal line. The following two figures give evidence of the 

good consistence with linear theory regarding the new implementations to Wasim. 
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Figure 3-27 Heave responses from the nonlinear analysis converge to the linear results 

 

Figure 3-28 Pitch responses from the nonlinear analysis converge to the linear results 
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4 Summary and comments 

Generation of incident waves by stream function method is now available in Wasim and verified. 

The method not only covers the Stokes 5th, but also extends the validity range for possible wave 

inputs. This will be an important update for Wasim considering nonlinear analyses in shallow 

water. But the use of Dalrymple’s approach is still not perfect due to the disadvantage when 

handling extremely long waves, so further implementation of Fenton’s approach may be rea-

sonable. 

The stream function method and the free surface conditions alternative 2 seems to cooperate 

well through several verification analyses. Although not all the tests are in shallow water due to 

limited public references available to be compared with, we assume that the water shallowness 

affects mainly the nonlinearity in waves by more asymmetry forming in the wave profile when 

potential theory is applied. We focus thus by most at how the nonlinearity will change the re-

sponse results. 

In the wave diffraction problem, nonlinear free surface conditions are quite necessary to predict 

accurate load response when kA gets value larger than 0.1. As we assume that the body bound-

ary condition remains the same in both linear and nonlinear analyses, then the free surface 

conditions rule how waves will be diffracted, which is directly associated with the dimension of 

wetted surface on the body, i.e. how the free surface conditions are implemented is the most 

essential factor to force integration. The nonlinearity in the incident wave, on the other side, 

determines the asymmetry of the incident wave profile which further determines the instanta-

neous wave kinematics impacting on the body. This nonlinearity may give a vertical translation 

to load responses, but it will not change the load amplitudes so much until kA increases to 0.2. 

According to the comparisons, the nonlinear free surface conditions alternative 2 combined 

with stream function method gives the most satisfying results. 

In the “body motion” problem, the wave diffractions and radiations are so small that we cannot 

throw a concrete vote to the nonlinear free surface conditions, though the results are a bit 

more compatible to the experiment results when the nonlinear free surface conditions are ap-

plied. Whether this superiority will rise up with growing wave diffractions and radiations cannot 
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be decided at present without further testing. The nonlinearity in the incident wave affects the 

motion amplitudes very little except for the excitations approaching to body’s resonance fre-

quency. 

After all, I need to say that this master thesis is very interesting, and I have learned a lot from 

both literature and practical sides. Actually it is a great combination of theories and implemen-

tations. In addition, I also want to mention some of my impressions and several comments by 

the following. 

 It may take much longer for verification and evaluation than to implement some theory 

or method when we consider both stability and accuracy. 

 When comparing with experiment results, we should not always trust these numbers as 

reference. It is worth to keep a critical mind and make sure that they are in good quality. 

 Post-processing plays also an important role as the results may be sensitive to the pro-

cess algorithm. Fourier analysis is a traditional way and can be the first choice to handle 

the result signal. FFT may be the best for signals which have some random parameter 

while harmonic analysis suits better for regular signals. But we should pay attention if 

the regular signal has a horizontal asymmetric profile. To choose a proper algorithm will 

be time saving if there are huge amounts of data, e.g. to find every local maximums can 

be realized by several approaches: by looping through all the values, by differentiating 

the signal, and can also be done by some fancy approach such as genetic algorithm. 

 HydroD (the housing of Wasim, which provides GUI for some pre- and post-process func-

tionality) can generate the mesh of free surface automatically, and the size of free sur-

face is determined based on the dimension of the body. But this may lead to too small 

free surface area for some shallow water analysis, i.e. the radius of free surface is short-

er than the wave length, because slender bodies are dominating in shallow water and 

relatively long waves become frequent. The limited free surface area will act as a tank 

and cause oscillations due to reflected waves. Therefore it would be better if the size of 

free surface is determined based on the wave length instead when the program detects 

a small water depth. 
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 Considering long crested waves, Airy wave, Stokes 5th wave and stream function wave 

are now available in Wasim. It would be nice to include also pre-established or measured 

wave time history as input to Wasim. This may extend the program from prediction by 

idealized modeling to kind of postmortem analysis. 
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Appendix A Linearization of free surface conditions for 3D 

wave body interaction 

 

i) The kinematic free surface condition: 

�
�

��
+ ∇���� ∙ ∇� ∙ [� − �] = 0 , and introduce Galilean transform  

�

��
=

�

��
− ����⃗ ∙ ∇ 

⇒ �
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��
− ����⃗ ∙ ∇ + ∇���� ∙ ∇� � = �
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��
− ����⃗ ∙ ∇ + ∇���� ∙ ∇� �  

L.H.S: 
��

��
= 0   since z is only coordinate of a certain point on the free surface and it does not 

follow a water particle, so it is not a function of time. 

 ����⃗ ∙ ∇z = 0   since ∇z = (0,0,1) and ����⃗  has no k-component. 

 ∇���� ∙ ∇z =
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Apply Taylor expansion for small � about z=0 for all z-dependent terms, e.g. 
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���
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= 0 on � = 0 

⇒
��
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− �����⃗ − ���� ∙ ∇� =  

����

��� ∙ � +
�
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(�� + ��) on � = 0 

Now we consider only the memory flow and introduce ��  and ��  due to incident wave. 
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And further we introduce the linear kinematic free surface condition for the incident wave. 
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ii) Dynamic free surface condition: 
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⇒ �
�
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− �����⃗ − ∇��� ∙ ∇� (�� + ��) = −�� + ����⃗ ∙ ∇�� −

�

�
(∇��)� on � = 0 

Now we consider only the memory flow and introduce ��  and ��  due to incident wave. 
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And further we introduce the linear dynamic free surface condition for the incident wave. 
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