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Abstract 

This master thesis describes and discusses an experimental study on the hydrodynamic forces 
acting on objects in a moonpool, carried out at MARINTEK in 2013. The experiments were 
done using a simplified 2-dimensional moonpool model with two different configurations; 
one base case with a sharp inlet and no perforated walls inside the moonpool, and one 
configuration attempting to model the moonpool of the vessel Seven Viking, which has a 
rounded inlet and perforated walls. Both moonpools were tested without objects, while the 
Seven Viking-model was also tested with two objects inside the moonpool, both of the same 
geometry (square cross sections) but of different sizes. 
 
In the past, a considerable amount of research has been devoted to the wave elevation in an 
empty moonpool, a problem which has proven difficult to describe with sufficient accuracy 
unless the most complicated numerical methods are applied. However, very little is known 
regarding the hydrodynamic forces acting on objects in moonpools. Simplified methods, 
recommended by DNV (Det Norske Veritas), for determining these forces exist (DNV 2011). 
These methods are based on the following assumptions: 
- The presence of an object does not alter the fluid motions in the moonpool to a significant 

degree. 
- The forces on the object can be determined using Morison’s equation with correction 

factors based on the level of blockage, as for an object in a tube or channel. 
The main motivation for carrying out the current model tests was to compare the measured 
forces with the forces predicted by such a simplified method, and thereby attempting to 
determine the validity of the method and its assumptions. 
 
The experiments revealed that introducing objects in a moonpool changes the wave elevation 
dramatically, even for quite small objects. The overall wave elevation amplitude is strongly 
reduced and the resonance period is altered. Therefore it is no surprise that the simplified 
calculation methods fail to predict not only the magnitude of the hydrodynamic forces on the 
objects, but also the trends. 
 
If, on the other hand, the true fluid motions (found from the experiments when the object is 
inside the moonpool) are used as the basis of the force calculations, the predicted forces turn 
out to be quite close to the measured forces. This shows that, at least in this particular case, 
the assumption about the validity of Morison’s equation may be justified to some extent. This 
scheme is however not very useful in real life, as the fluid motions when an object is inside 
the moonpool are generally not known unless model tests have been performed beforehand, in 
which case the forces are likely to be measured directly anyway. 
 
Throughout the current model tests, the technique of PIV, particle image velocimetry, has 
been used for visualizing the flow field inside and in the vicinity of the moonpools. The 
results have shown how the formation of vortices are considerably less triggered by the 
rounded inlet of the Seven Viking-moonpool compared to the base case with the sharp inlet. 
This is also reflected in the transfer functions of the wave elevation in the moonpools where it 
can be seen that the Seven Viking-moonpool has less non-linear damping than the base case. 
The PIV results also show that there seems to be only a small amount of flow through the 
perforated walls of the Seven Viking-moonpool.   
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Sammendrag (Norwegian translation of abstract) 

Denne master-oppgaven beskriver og diskuterer en eksperimentell studie av de 
hydrodynamiske kreftene som virker på objekter i en moonpool. Eksperimentene ble gjort på 
MARINTEK i 2013. En forenklet 2-dimensjonal moonpool-modell med to forskjellige 
geometrier ble benyttet; en grunnmodell med skarpt hjørne i innløpet og uten perforerte 
sidevegger og en modell av moonpoolen til skipet Seven Viking som har avrundet innløp og 
perforerte vegger. Begge modellene ble testet uten objekter, mens Seven Viking-modellen ble 
testet også med to objekter i moonpoolen. Begge objektene hadde samme kvadratiske 
tverrsnitt men var av forskjellig størrelse. 
 
Tidligere har mye forskning blitt gjort for å finne bølgehevningen i en tom moonpool, noe 
som har vist seg å være vanskelig å få til med tilstrekkelig grad av nøyaktighet med mindre de 
mest avanserte numeriske metodene benyttes. På den andre siden har krefter på objekter i en 
moonpool blitt studert lite. Det finnes forenklede metoder som anbefales av DNV, Det Norske 
Veritas, (DNV 2011) for å finne disse kreftene. Metodene er basert på følgende antagelser: 
- Tilstedeværelsen av et objekt i moonpoolen forandrer ikke vannets bevegelses-

karakteristikk i betydelig grad. 
- Krefter på objektet kan finnes ved hjelp av Morison’s ligning med korreksjonsfaktorer 

basert på objektets blokkeringsforhold, som for et objekt i et rør eller i en kanal. 
Den viktigste grunnen for å utføre modelltestene var å sammenligne de målte kreftene i 
forsøkene med kreftene beregnet med en slik forenklet metode for å finne ut om metoden og 
antagelsene den er basert på er gyldig. 
 
Eksperimentene viste tydelig at selv et relativt lite objekt i en moonpool dramatisk forandrer 
vannets bevegelseskarakteristikk. Den totale bølgehevningsamplituden blir kraftig redusert og 
resonansperioden endres. Derfor er det ikke overraskende at den forenklede 
beregningsmetoden ikke er i stand til å beregne hverken størrelsen på eller trendene til de 
hydrodynamiske kreftene.  
 
Hvis derimot den faktiske væskebevegelsen (funnet i forsøkene med objekt i moonpoolen) 
brukes som basis for kraftberegningene blir de resulterende beregnede kreftene ganske like de 
målte kreftene. Dette indikerer at antagelsen om at Morison’s ligning kan benyttes kan være 
gyldig, i hvert fall i dette spesifikke tilfellet. Derimot er ikke dette resultatet så nyttig i 
virkeligheten, for væskebevegelsene i en moonpool med et objekt er vanligvis ikke kjent på 
forhånd, med mindre modelltester har blitt gjort. Og i så fall vil man vanligvis ha målt 
kreftene direkte uansett. 
 
PIV, particle image velocimetry, har blitt benyttet i forsøkene beskrevet i denne oppgaven for 
å visualisere strømningen i og rundt moonpoolen. De resulterende strømningsfeltene har vist 
at det dannes betydelig mindre virvler ved utløpet til Seven Viking-moonpoolen sammenlignet 
med grunnmodellen med de skarpe hjørnene. Dette reflekteres også i transfer-funksjonene for 
bølgehevingen, som viser at Seven Viking har lavere grad av ikke-lineær dempning. PIV-
resultatene viser også at det er ganske lite fluidstrøm gjennom de perforerte veggene i 
moonpoolen. 
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Preface 

This master thesis is the product of my work during my tenth and final semester at NTNU, 
The Norwegian University of Science and Technology, Department of Marine Technology, in 
the spring of 2013. 
 
The overall topic of the thesis, hydrodynamics in moonpools, was selected during my 
internship in the Naval Discipline of Subsea 7 Stavanger in the summer of 2012. The topic 
was suggested by Tor-Bjørn Idsøe Næss because he believed it would be both academically 
challenging for me as well as being beneficial for Subsea 7.  
 
After devoting a project thesis to a background and literature study of the topic in the fall of 
2012, I got an overview of what would be interesting to study in greater detail. From the start 
I was very motivated to make use of the partnership between NTNU and MARINTEK and 
grab the opportunity to do model tests while I had the chance. I learned that a basic 2D 
moonpool model already existed which previously had been used by Trygve Kristiansen 
amongst others. After a lecture held by Jan Visscher about PIV (“particle image velocimetry”) 
I conceived the idea of applying this technique on the moonpool model. Jan was very positive 
to this as it gave him a chance to test PIV on a new application, and so was Trygve because of 
his interest in the flow fields inside and in the vicinity of moonpools.  
 
The final piece of the puzzle fell neatly into place when Statoil agreed to finance Tor-Bjørn 
Idsøe Næss and Subsea 7’s proposed series of more comprehensive model tests on the 
moonpool of the Subsea 7-operated vessel Seven Viking (of Ulstein design), the main 
motivation of which was to study the effect and behaviour of objects inside the moonpool. 
These experiments were planned and carried out by Kjetil Berget at MARINTEK, who also 
saw the potential of comparing the results from his tests with the simpler 2-dimensional set-up 
I planned to use. Because of this, the majority of my experiments have been done with a 
configuration made to resemble the moonpool of Seven Viking. Statoil generously agreed to 
finance the necessary fabrications also for my experiments, and Ulstein kindly gave me 
permission to let me use their moonpool design. 
 
Doing model tests at MARINTEK has been a good experience for me, in which I have gotten 
an insight into experimental hydrodynamics I probably never would have gotten otherwise. I 
think I will benefit greatly from this experience also later in my academic career, even though 
it is likely I will not be this directly involved in model testing again. 
 
I am very pleased with the results I have obtained from the experiments and I consider my 
findings to shed – at least a flicker – of new light on the topic of my thesis. Additionally, I 
think the use of PIV revealed several interesting phenomena, despite the fact that probably 
only a fraction of the potential of the technique was put to use. 
 
I have received a lot of help and feedback from many people during my work. First of all I 
would like to thank Professor Bjørnar Pettersen, my advisor at NTNU, for displaying a 
sincere interest in my education and for being helpful in arranging the model tests at 
MARINTEK. 
 
At all stages of my work I have been impressed, and almost overwhelmed, at the level of 
support I have gotten from everybody I have been in contact with at MARINTEK. Jan 
Visscher has spent much of his time helping me with the PIV set-up and analyses. Alexander 
Sandnes also played an important role in setting up the PIV system. Torgeir Wahl and 
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especially Terje Rosten (who are both NTNU-employees) were immensely helpful in setting 
up the lab and arranging the instrumentation. Kjetil Berget has given me a lot of feedback on 
my results and good advice in the planning phase. He has also included me in and given me 
access to his parallel moonpool experiments. Trygve Kristiansen has been very supportive in 
all stages of my work and has been an important consultant. 
 
Last but not least I wish to express my gratitude towards Tor-Bjørn Idsøe Næss and Petter 
Moen of the Naval Discipline of Subsea 7 Stavanger. They have both been unconditionally 
supportive of my work and have shown genuine concern for my learning outcome of the 
thesis. Tor-Bjørn has put a huge effort into the topic of moonpools himself and has therefore 
been a vital consultant for me, and finally he was also the main initiator of the aforementioned 
MARINTEK model tests carried out by Kjetil Berget. 
 
 
 

 
 

Leiv Aspelund 
 
 

Trondheim, June 7th 2013 
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Nomenclature 

CFD  Computational fluid dynamics 
DNV  Det Norske Veritas 
NTNU  Norwegian University of Science and Technology 
PIV  Particle image velocimetry 
RAO  Response amplitude operator 
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1. Introduction 

Subsea development is an area in the oil and gas industry which has seen a lot of growth over 
the last years. The number of subsea operations has increased and so has the complexity of the 
operations. Larger structures are being installed, and it is desirable to be able to work in more 
severe environmental conditions. 
 
Most subsea operations involve deploying structures, umbilicals, diving bells or remotely 
operated vehicles (ROV’s) from a vessel into the sea. This can be done by lifting the item in 
question over the ship side, but in many cases it is more beneficial to use a moonpool. A 
moonpool can be thought of as a bottomless well in the ship hull. Most subsea construction 
and installation vessels today are equipped with moonpool(s). Figure 2 shows a picture of the 
Subsea 7-operated vessel Skandi Seven with its main moonpool visible on deck. 
 

 
Figure 2 - Skandi Seven with moonpool (DOF) 

 
Moonpools are especially well suited for IMR (inspection, maintenance and repair) operations 
as these usually do not involve deployment of very large structures, but they are on the other 
hand often carried out for longer periods of time and in more severe sea states. 
 
The generally assumed advantages of deployment through a moonpool include (DNV 2011): 
- The horizontal fluid motions in the moonpool are small. 
- The moonpool is often located close to the vessel’s roll and pitch centre, and therefore the 

ship motions are smaller than at the side. 
- Moonpools often have special deployment systems which may eliminate the need for 

lifting with a crane. 
- In arctic conditions the moonpool offers some shelter for drifting ice. 
 

Moonpool 
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Although the horizontal fluid motion in general is very small inside moonpools, the vertical 
fluid motion is another story. It may sound reasonable to assume that also the vertical motions 
are reduced compared to the motions at the ship side, but given the right (or wrong) 
circumstances it can actually be quite the opposite.  
 
The vertical fluid motion inside a moonpool has proven hard to predict. Additionally, very 
little research on the vertical hydrodynamic forces acting on objects in a moonpool has been 
done. DNV, Det Norske Veritas, offers guidelines for the practical analysis of a wide range of 
marine operations including operations through moonpools (DNV 2011). The validity of 
some of the assumptions made for the moonpool analyses are however somewhat uncertain, 
as will be discussed and pointed out in this thesis. 
 

Scope of experimental research for thesis 

The main motivation for carrying out the experimental research described in this thesis was to 
shed new light on the problem of determining forces on objects inside a moonpool. The 
formal thesis description can be found in Appendix C. 
 
The experiments were mainly meant for studying trends, i.e. to investigate how the variation 
of different parameters affected the resulting motions and forces. A simplified 2-dimensional 
moonpool set-up was studied. Two different moonpool geometries were used; one basic 
model with a sharp inlet and no perforated walls and one made to resemble the moonpool of 
the Subsea 7-operated vessel Seven Viking, which has a rounded inlet and perforated walls.  
 
The basic moonpool was included primarily as a validation case for comparison with previous 
model tests done by Kristiansen et al. (Kristiansen et al. 2011). The Seven Viking-moonpool 
was chosen because more advanced 3-dimensional experiments were carried out 
simultaneously at MARINTEK on the same moonpool design, which resulted in a nice 
opportunity to compare the results from the 2D and 3D set-ups.  
 
A flyer of the vessel Seven Viking, of Ulstein design, can be found in Appendix B. It is a new 
vessel completed in 2012, specifically designed for carrying out IMR operations in harsh 
conditions, in which the moonpool will be used extensively. Therefore, comprehensive model 
testing of its moonpool was considered to be necessary, and Statoil, who will be the main 
costumer, agreed to finance not only the 3-dimensional experiments but also the simplified 2-
dimensional model tests described in this thesis. 
 
Both 2-dimensional moonpool models, the base case and the Seven Viking-model, were tested 
without objects for a range of periods and excitation amplitudes. Also, the Seven Viking 
moonpool was tested with two different objects inside. Both objects had square cross sections, 
but were of different sizes. 
 
The methodology outlined in DNV’s guidelines for analysis of moonpool operations (DNV 
2011) was applied on the same conditions as in the model tests. Comparison of the forces 
calculated with this method with the measured forces in the experiments was an essential part 
of the thesis, the point of which was to assess whether such a basic calculation method is able 
to predict forces with sufficient accuracy. 
 
Another major point of interest was to apply PIV, particle image velocimetry, on the 
moonpool model to visualize the flow. PIV is a non-intrusive technique in which small 
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seeding particles are dissolved into the fluid, illuminated by a laser and photographed at short 
time intervals. Using algorithms based on correlation between succeeding time steps, it is 
possible to track the particle movements and thus to determine the velocity fields of the fluid. 
This was assumed to be an interesting part of the experiments regardless of the outcome, 
because the flow inside a moonpool had never before been visualized in this way and 
consequently the experiments became an opportunity to use PIV on a new application. 
 
Furthermore, it was hoped that the PIV method could reveal important flow phenomena such 
as the predicted vortex shedding at the moonpool inlet. Another point was to try to determine 
whether there is any significant flow through the perforated moonpool walls or not, as this 
part of the moonpool is usually incorporated in the design mainly because of tradition and 
there has not been any unambiguous results proving their value in the damping of the fluid 
motion. Finally, by studying the surface elevation of a moonpool, one gets the impression that 
the fluid motion is quite homogeneous, i.e. the fluid moves symmetrically in the vertical 
direction only and in a tidy manner. PIV was used for determining the validity of this 
assumption. 
 

Structure of thesis 

Section 2 describes key background theory and research done on moonpools. The basic flow 
characteristics are discussed along with both simple and more complex methods of 
determining the fluid motions. Some previous experiments related to objects inside 
moonpools are discussed. After this, DNV’s guidelines for analysis of moonpool-operations, 
the validity of which this thesis aims to test, are presented. Finally, a short summary of some 
of the important short-comings in the current knowledge of moonpools is given. 
 
The rest of the thesis is mainly devoted to the current 2-dimensional model tests. First, in 
section 3, a presentation of the experimental set-up is given, describing the model itself, the 
instrumentation and the PIV set-up. This is followed by section 4, which describes the 
analysis methods that have been applied on the measured data and the PIV images. 
 
In section 5, all results from the current model tests are presented and discussed. The section 
starts with the basic validation moonpool before moving on to the moonpool of Seven Viking 
with and without objects inside. Some PIV-figures are included here, but due to the large 
amount of plots produced, most of them have been put in an appendix and are only referred to 
in the results section. The results are discussed as they are presented. Because of the many 
points of interest in the experiments, it seemed appropriate to structure the report in this way. 
 
There will always be uncertainties related to model tests. The most important issues are 
discussed in section 6. 
 
Section 7 compares the results from the current experiments with the other 3-dimensional 
model tests done for Seven Viking and its moonpool, while section 8 compares the 
calculations based on the guidelines provided by DNV with the actual test results. 
 
Finally, in section 9, a summarizing conclusion is given which highlights the most important 
findings, discusses their significances and briefly proposes further work.  
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2. Background theory and previous work 

This section gives an overview of relevant background theory. The first chapter concerns 
fundamental flow mechanisms. After this follows a simplified scheme for describing the 
overall fluid motions in the moonpool, which is helpful for getting a basic understanding of 
the problem. More advanced methods have also been applied on the topic; some of these are 
presented as well. Historically, far less effort has been put into research of objects inside 
moonpool, but some studies have been performed and are presented here. At the end of the 
section, the practical guidelines for analysis of moonpool operations provided by DNV are 
presented. Finally, a short summary of the shortcomings in the knowledge of moonpools is 
included. 
 

Fundamental flow characteristics 

Piston and sloshing modes 

A moonpool is usually modelled as a trapped body of water with motions described by a 
combination of piston and sloshing modes. The piston mode is a type of motion where the 
water can be seen as a “plug” which oscillates in the vertical direction. There is only one 
piston mode. A sloshing mode is a situation where there is a standing wave inside the 
moonpool. This implies both horizontal and vertical fluid motions. 
 
Molin studied the modes of moonpools using linearized potential theory where the goal was 
to establish simple expressions for the natural frequencies associated with each mode (Molin 
2001).  
 
Potential theory is based on the following three assumptions (White 2008): 
- Incompressible fluid 
- Irrotational fluid 
- Non-viscous fluid 
Here, the fluid in question is water and therefore the first assumption is reasonable because 
water, for most practical purposes, can be regarded as incompressible. However, the two other 
assumptions can in some cases lead to results which differ significantly from reality. For the 
moonpool-elevation case especially the assumption about irrotationality is problematic, as 
will be discussed later. 
 
In a fluid domain which fulfils the requirements of potential theory a function φ called the 
velocity potential can be found. In two dimensions this function is defined so that 
 

d
u

dx
d

w
dz

ϕ=

ϕ=
            (1) 

 
where u is the velocity in the x-direction (horizontal) and w is the velocity in the z-direction 
(vertical). The pressure p can then be found anywhere in the fluid with Bernoulli’s equation 
(White 2008): 
 

21
| | constant

2

d
p gz

dt

ϕ+ ρ + ρ + ρ ∇ϕ =         (2) 
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where ρ is the fluid density and g is the gravitational constant. 
 
In Molin’s research, infinitely deep water was assumed, and the vessel itself was fixed. The 
horizontal dimensions of the vessel were assumed to be considerably larger than the 
horizontal dimensions of the moonpool. 
 
First a 2D moonpool with breadth b and draught h was studied. This corresponds to an 
imaginary moonpool with finite breadth and infinite length. It was found that as long as the 
moonpool was not very shallow (compared to the breadth) the modes could be regarded as 
uncoupled. 
 
For the 2D results, the piston mode is called the 0-mode, while the sloshing modes are called 
mode 1, 2, 3 etc. 
 
In reality, the piston motion in a moonpool induces waves that travel away from the vessel. In 
order to dissipate these waves (and their energy) in the numerical model, two potential sinks 
were positioned some distance H from the centre of the moonpool. The resulting equation for 
the natural frequency of the piston mode is given as (Molin 2001): 
 

2
0 3

ln
2 2

g

b H
h

b

ω

π

=
    + +    

    

         (3) 

 
where g is the gravitational constant. To evaluate this it is necessary to make a choice for H 
which intuitively must be larger than b. Molin compared his formula with experimental tests 
and found that taking H/b=4.5 gave good results. Inserting this into the formula results in: 
 

2
0

2

2

0.7363 9
ln

2 4

0.736

D

D

g g g

h b h bb
h

ω
κ

π
κ

= = ≈
+ ⋅ +    + +    

    

≈

      (4) 

 
The sloshing modes do not, at least according to the idealized potential theory, emit energy 
from the moonpool and no sinks need to be introduced. The natural frequencies for the first 
three sloshing modes are given by (Molin 2001): 
 

2
1

2
2

2
3

coth 1.030

2
2 coth 1.488

3
3 coth 1.666

h
g

b b

h
g

b b

h
g

b b

π πω

π πω

π πω

 = + 
 

 = + 
 

 = + 
 

        (5) 

 
The three first sloshing modes will result in standing waves inside the moonpool with surface 
shapes approximately as indicated on the sketch in Figure 3. 
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Figure 3 - Idealized surface shapes of sloshing modes 

 
By taking 
 

2
i

i

T
π

ω
=            (6) 

 
the natural periods of the piston mode and the three first sloshing modes can be investigated 
closer. Examining the natural periods is important in order to determine which modes are 
likely to be found in a moonpool. By looking at a scatter diagram, e.g. for the North Sea 
(Faltinsen 1990), one can see that sea states with peak periods of 4 seconds or lower are rarely 
observed, and if they are observed, they have very low total energy (low significant wave 
height). Therefore, a system with natural period of 4 seconds or lower will not be excited to a 
significant extent by normal sea states. 
 
In order to investigate the effect of varying horizontal extension, the natural periods are 
plotted for a moonpool with a draught of 5m and breadth ranging from 3m to 25m in Figure 4.  
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Figure 4 - Natural periods at constant draught 

 
If the draught is varied instead, the result will be as Figure 5. Here the breadth is set to 7m. 
 

 
Figure 5 - Natural periods at constant breadth 
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The behaviour of the natural periods of the sloshing modes is very interesting. The natural 
periods are almost exclusively dependent on the horizontal extension of the moonpool. 
Molin’s motivation for his study was to examine very large moonpools. A barge with a 
moonpool with a horizontal extent of 80m x 20m is mentioned and if Figure 4 is extrapolated 
it can be seen that the natural periods of the sloshing modes may have natural periods higher 
than 4 seconds. However, the horizontal extent of moonpools found on normal offshore 
installation vessels is typically between 5 and 12m, which implies that all the sloshing modes 
will have natural periods below 4 seconds. This means that for ships with conventional 
moonpools only the piston mode is of practical importance. 
 
Unlike the sloshing modes, the piston mode is dependent on both the draught and the breadth 
of the moonpool.  
 
So far a 2D moonpool with infinite length has been considered, but Molin went further and 
developed an expression for the resonance frequency of the piston mode for a 3D moonpool 
as well. The moonpool has draught h, breadth b and finite length l. The equation is (Molin 
2001): 
 

2
0

3( , )

g

h b f b l
ω =

+ ⋅
          (7) 

 
where f3 is a function of the relationship between b and l. This equation is identical to the 
equation for the 2D frequency, except that the value κ has been replaced by the function f3 
which is given as (Molin 2001): 
 

2 2 2
1 1

3 2 2 2

1 1 1
sinh sinh 1 1

3 3

l l b b l l b
f

b b l l b b lπ
− −

       = + + + − + +                
   (8) 

 
This equation is quite complex. It is plotted in Figure 6 for l/b ranging from 0.2 to 5. 
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Figure 6 - Values of f3 

 
The value of f3 where l/b=1 (square-shaped moonpool) is highlighted and will from now on 
be called 
 

3 , 0.473D squareκ ≈           (9) 

 
From the graph, it may look like the 2D-value, κ2D=0.736, could correspond to a 3D case with 
a length/breadth ratio of around 2.7 but it would in fact not be correct to compare these results 
directly. The reason is, according to Molin, that the 2D case is somewhat artificially simulated 
as “there can be no piston mode in two dimensions unless some tricks are applied to simulate 
the outer free surface”.  
 
For comparison between the 2D “infinite length” results and the 3D results with l=b, the plot 
in Figure 7 shows the corresponding natural periods for ratios between draught and breadth 
ranging from 0.4 to 2.5. The natural period is made dimensionless by multiplying with the 
square root of (g/h), i.e. the y-axis is given as 
 

g
T

h
            (10) 
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Figure 7 - Natural period of piston mode 

 
The general trend is that the 3D square moonpool has a lower natural period than the 
corresponding 2D moonpool. However, the difference is not very large; between 5% and 15% 
for the interval seen here. 
 
As mentioned in the beginning of this chapter, Molin used potential theory to solve the 
problem. Potential theory represents an idealized world which in some cases may differ 
significantly from reality. So how accurate are the equations for the natural periods presented 
here? 
 
Molin himself compared his results with equivalent set-ups modelled in a commercial 
potential theory panel program. He found satisfactory agreement for the natural periods. One 
should of course remember that the commercial potential theory programs also have their 
shortcomings when it comes to moonpool simulations, but these shortcomings are found 
mainly to be related to the amplitude of the wave elevation at resonance and not in the 
prediction of the natural period (Kristiansen et al. 2011).  
 
Therefore, following this argument, it seems natural to conclude that the formulae derived 
here is very helpful for the prediction of natural periods of moonpools. However, these 
equations are only valid for moonpools with a constant cross section. For more complex 
geometries some modifications are necessary. 
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Flow separation and vortex shedding at inlet 

With the approach of Molin, the modes of the motions inside a moonpool can be determined 
and the implication for conventional offshore construction vessels is that the piston mode is 
dominating. This means that the water inside the moonpool can be regarded as a water plug 
oscillating in the vertical direction. Additionally, the resonance period can be found quite 
accurately.  
 
However, it turns out that the amplitude of the motion will generally be over predicted using 
normal potential theory, especially near resonance. This clearly suggests that there are 
important damping-effects present in the flow inside the moonpool which, due to the 
restrictions imposed by potential theory, are not captured. The only source of damping that 
potential theory is able to predict is the energy loss from radiated waves. 
 
By empirically adding quadratic damping to the equation of motion for the water plug, it is 
possible to get results which are quite close to those obtained from model tests (Aalbers 
1984). But doing this does not increase the understanding of the flow conditions inside the 
moonpool, other than providing a hint that it is a non-linear effect. 
 
Kristiansen et al. did a study to shed new light on the source of this non-linear effect 
(Kristiansen et al. 2008). The results indicated that vortex shedding and flow separation at the 
inlet of the moonpool is the source of the non-linear damping. A 2D numerical wavetank 
based on non-linear potential theory was used as a basis. On its own, this scheme is not able 
to capture effects of flow separation and vortex formation. Therefore an inviscid vortex 
tracking method was included in the model.  
 
The analysed numerical wave tank can be seen in Figure 8. Symmetry is assumed at the 
vertical line in the middle of the moonpool, so that this wavetank only represents half of the 
full domain. 
 

 
Figure 8 - Numerical wave tank (Kristiansen et al. 2008) 

 
Ω is the fluid domain, SF is the free surface, SB is the fluid boundary at the body and S0 is the 
fluid boundary at the tank walls and at the line of symmetry. 
 
For the general fluid domain, potential theory (as described earlier in this section) is assumed, 
i.e. there exists a velocity potential φ which satisfies: 
 

2 0      in  ϕ∇ = Ω           (11) 
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and where the fluid velocities, u and v, are defined as: 
 

 ,   u v
x y

ϕ ϕ∂ ∂= =
∂ ∂

          (12) 

 
If unmodified potential theory is used to describe the flow around a sharp corner, the result 
will be a singularity at the corner point where the velocities will approach infinity. This is of 
course not representative of a real flow which will separate at the corner. Vorticity, 
represented by a free shear layer, is shed into the fluid domain. In Kristiansen et al.’s model, 
the separated free shear layer is assumed to be thin, so that the vorticity can be represented by 
a strip. Figure 9 illustrates how the shear layer is shed from the sharp corner. 
 

 
Figure 9 - Shear layer separation 

 
The s-axis represents a local 1D coordinate system which follows the free shear layer all the 
time. At the corner of the moonpool, s=0.  
 
Bernoulli’s equation is used as the basis of the vortex tracking method. It is given as: 
 

21

2
p gy c

t

ϕρ ρ ϕ ρ∂+ + ∇ + =
∂

        (13) 

 
where p is the pressure, ρ is the fluid density, g is the gravitational constant and c is an 
arbitrary constant. As specified on Figure 9, there is a jump in the velocity potential across the 
free shear layer. On one side the potential is denoted φ+, on the other it is φ-. However, 
according to Prandtl’s boundary layer equations there is no pressure drop across a thin shear 
layer (White 2008). Inserting into Bernoulli’s equation results in: 
 

2 21 1
0

2 2t t

ϕ ϕ ϕ ϕ
+ −

+ −∂ ∂− + ∇ − ∇ =
∂ ∂

        (14) 

 
The difference between the potentials is defined as the circulation intensity: 
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ϕ ϕ+ −Γ = −            (15) 
 
and a velocity vector Uc is defined as: 
 

1
,

2C x x y y

ϕ ϕ ϕ ϕ+ − + − ∂ ∂ ∂ ∂= + + ∂ ∂ ∂ ∂ 
U         (16) 

 
This results in 
 

0
t

∂Γ + ⋅∇Γ =
∂ CU           (17) 

 
This is an advection equation, implying that Γ does not change when following at path 
defined by Uc. By integrating Uc in time, the developing geometry, xs, of the free shear layer 
can be found. 
 
At the corner, s=0, from where the separation occurs, the Kutta condition is imposed. This 
requires the potential to vary smoothly at the corner, instead of producing a singularity as will 
happen with unmodified potential theory. To achieve this, the potential on the body at s=0 is 
set to the same value as Γ at this point, 
 

0(0)Γ = Γ            (18) 

 
How Γ changes at the separation point is also found from Bernoulli’s equation: 
 

21

2 SU
t

∂Γ = ±
∂

           (19) 

 
where Us is the fluid velocity just outside the boundary layer at the corner on the side where 
the shedding occurs. 
 
The theory presented above was implemented into the numerical wavetank. In theory, the 
scheme should be able to track the free shear layers for any time interval. However, it turned 
out that the vorticities soon became too complicated to keep track of, hence some 
manipulation had to be done.  
 
When the flow past the corner is harmonic, two vortex pairs will be shed every half cycle. The 
pairs will consist of two vortices which have the same absolute strength, but with opposite 
directions. It is assumed that these will influence each other in a way that makes them travel 
away from the corner and into the fluid domain. The shedding process, as well as the 
manipulation of the numerical scheme can be described by the aid of Figure 10. 
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Figure 10 - Illustartion of vortex shedding process over one cycle (Kristiansen et al. 2008) 

 
With reference to the small letters in the figure: 
a) The ambient flow is going out of the moonpool. A free shear layer is shed from the corner, 

and it is beginning to curl up. 
b) The vortex sheet has made a spiral. 
c) The ambient flow is turning. Because of interaction with the wall, another vortex sheet 

spiral has started to form; the vorticity is going in the other direction compared to the first 
vortex.  

d) The two original vortex sheet spirals have been replaced by two discrete vortices 
positioned where the vortex spirals had their centre. 
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e) The ambient flow has now started going into the moonpool. A new vortex sheet spiral is 
starting to form as in step a, except that it is now inside the moonpool. 

f) The two “old” discrete vortices are identified as a vortex pair where the two vortices are 
equally strong but with different signs. They are assumed to travel away from the body, 
and they are therefore deleted. 

g) The new vortex sheet spiral inside the moonpool continues to form as the ambient flow 
into the moonpool slows down and is about to turn. 

h) Because of interaction with the wall, a second vortex sheet spiral (again with the opposite 
direction) is starting to form. The ambient flow has started going out of the moonpool. 

i) One cycle is completed. The two vortex sheet spirals have been gathered into two discrete 
vortices and a new vortex sheet spiral is starting to form just as in step a. The two discrete 
vortices are about to be deleted. 

 
With this treatment of the shed vortices, the numerical scheme became stable. The question 
now was how well it predicted the moonpool wave elevation. To determine this, calculated 
surface elevation amplitudes were compared with experimental tests with a corresponding set-
up. A variety of different conditions and geometries were tested. Included here is one 
example, presented in Figure 11. 
 

 
Figure 11 - Non-dimensional amplitude of response (Kristiansen et al. 2008) 

 
The figure shows the non-dimensional wave elevations inside the moonpool (line and points 
on top) and “far away” at a point outside the moonpool. Results are included from unmodified 
linear potential theory (which doesn’t include vortex shedding), nonlinear simulations without 
wake (which include non-linear free surface but not vortex shedding), nonlinear simulations 
with wake (includes vortex shedding) and experimental results.  
 
The experimental results are represented by two values. The reason for this is that the wave 
beaches in the tank were rather ineffective (or poorly tuned) so that the reflected waves are 
assumed to be of some importance. Therefore, one value termed “t=Tr2” was extracted before 
the reflected waves reached back to the moonpool and another termed “steady state” was 
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extracted from a longer time series when the elevation had reached a steady state. The bar 
drawn between these two values is meant to indicate uncertainties in the experiments and 
should not be interpreted as a statistical confidence interval. 
 
There are two points to be made from Figure 11: 
- All numerical methods predict a correct resonance frequency and correct amplitude of the 

motions at frequencies far away from resonance. 
- Only the scheme which includes vortex shedding predicts accurate amplitude close to 

resonance frequency. 
 
Based on Kristiansen et al.’s work, it is natural to conclude that the effect which contributes to 
the non-linear damping is indeed flow separation and vortex shedding at the inlet of the 
moonpool. 
 
Consequently, the inlet of a moonpool should be constructed in a way that maximizes the 
vortex shedding. If the inlet has rounded edges, there will only be modest vortex shedding 
effects. If on the other hand the inlet has a sharp corner, the vortex-induced damping will be 
considerable. This is the inlet type Kristiansen et al. studied.  
 
Adding appendages (plates) at the inlet, as in Figure 12, results in an even better design with 
respect to wave elevation. 
 

 
Figure 12 - Moonpool with damping plates at inlet 

 
According to Graham (Graham 1980) the forces (i.e. the damping) caused by vortex shedding 
is larger for a sharp plate than for a square. Therefore an appendage as seen on the figure will 
be better than a straight inlet. This has also been shown in model tests, e.g. by Torres et al. 
(Torres et al. 2008) and Kristiansen et al. (Kristiansen et al. 2011). The drawback of 
appendage plates, from a practical point of view, is that they reduce the effective area of the 
moonpool. 
 
Many moonpools also have perforated walls inside them as indicated on Figure 13. Whether 
this increases the damping of the piston mode or not is a disputed question. 
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Figure 13 - Moonpool with damping plates and perforated walls 
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Derivation of simplified mass/spring model 

Physical systems with periodic motions are often described using a simplified mass/spring 
model. Here, the derivation of such equations for a moonpool’s piston mode is presented. 
Two different approaches by Aalbers (Aalbers 1984) and Madsen (Madsen 1980) are 
included. 
 
The equations derived in this section are valid for moonpools with constant cross sectional 
area A. T is the mean fluid level in the moonpool, i.e. the distance from the bottom of the 
moonpool to the mean free surface. ζ(t) is the instantaneous surface elevation from mean 
level. Because the fluid in the moonpool is regarded as a plug of water, the vertical fluid 
motion in the entire moonpool is assumed to be identical to the surface elevation. ζS is the 
heave motion of the ship at the position of the moonpool and ζB is the vertical motion of the 
body in the moonpool. ρ is the fluid density. 
 

Aalbers’ equation 

Aalbers starts by looking at a moonpool in a fixed vessel. For a control volume taken over the 
entire fluid domain inside the moonpool, the momentum conservation equation can be written 
on the following integral form: 
 

j j j jk k

d d

v dV v v ndS f dV P n dS
t

δ
δ Ω Ω Ω Ω

ρ + ρ ⋅ = ρ +∫∫∫ ∫∫ ∫∫∫ ∫∫
� �

      (20) 

 
where Ω is the volume, dΩ is the surface, v is the velocity in all directions, n is the normal 
vector on the surface, f is a volume force and P is the external pressure. Now, assuming 
gravity g is the only volume force and that the only velocity component in the moonpool is 
the vertical velocity, ζ, the equation reduces to 
 

( ) 2( ) ( ) jk k

d

A T A Ag T P n dS
t

δ
δ Ω

ρ + ζ ζ − ρ ζ = ρ + ζ + ∫∫ɺ ɺ        (21) 

 
The pressure forces as described here acts only on the top and bottom of the moonpool and 
only normal on the fluid surface. This implies that there are no effects of viscosity included. 
Applying Bernoulli’s equation gives an expression for the pressure difference: 
 

2

2

0.5

0.5 higher order terms

jk k

d s

P n dS gT ndS
t

gT a b

Ω

ζ ζ

∂φ= − ρΑζ − ρΑ − ρ
∂

= − ρΑζ − ρΑ − ζ − ζ + 

∫∫ ∫∫ɺ

ɺ ɺɺ ɺ

      (22) 

 
where φ is the velocity potential of the fluid and a and b are the added mass and damping 
coefficients. The last transform resulting in the added mass and damping terms comes from 
the Haskind relations. Inserted, the equation of motion becomes: 
 
( ( ) ) higher order terms =0A T a b Agζ ζρ + ζ + ζ + ζ + ρ ζ +ɺɺ ɺ       (23) 
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At this point Aalbers introduces a term for taking non-linear damping effects into account. 
These effects include friction and vortex shedding. The term is on the following form: 
 

2 |b ζ | ζɺ ɺ             (24) 

 
The next step is to take the vertical ship motions, ζS ,into account. The non-linear damping 
term now becomes dependent of the moonpool motions relative to the ship. In addition, 
Aalbers allows the moonpool to affect the vessel’s damping and added mass. This is modelled 
by including a term with an added mass interaction coefficient, d, and a term with a damping 
interaction coefficient, e. Finally, if wave excitation forces Fwave are included the resulting 
governing equation becomes: 
 

2( ( ) ) | | ( ) =FS S S S waveA T a b b Ag d eζ ζρ + ζ + ζ + ζ + ζ − ζ ζ − ζ + ρ ζ + ζ + ζɺɺ ɺ ɺ ɺ ɺ ɺ ɺɺ ɺ     (25) 

 
The equation is relatively simple, but it contains non-linear terms and therefore requires a 
solution in the time domain unless linearized approximations are introduced. The equation 
also contains several coefficients. According to research done by Aalbers, all of them can be 
determined theoretically with a reasonable degree of accuracy with the exception of the non-
linear damping coefficient. Aalbers recommends using empirical results from model tests for 
this parameter. 
 
Based on comparisons with model tests, Aalbers concludes that this equation is useful for 
understanding the behaviour of the water column inside a moonpool, assuming the 
coefficients are determined with sufficient accuracy. 
 

Madsen’s equation 

Madsen uses a slightly different approach and includes some extra non-linear terms in his 
final equation. The first step is to establish the momentum P of the fluid in the moonpool, 
given by 
 

( ' )P A T T= ρ + +ζ ζɺ            (26) 
 
where the term ρAT’ represents the added mass and T’ is an equivalent length suggested by 
(Fukuda 1977) to be 
 

' 0.45T A=             (27) 
 
The factor of 0.45 relates to the κ-factor found by Molin (Molin 2001).  
 
According to Newton’s second law of motion the external forces on an object equals the 
momentum differentiated with respect to time, that is 
 

2( ') all external forces
dP

A T T A A
dt

= ρ + ζ + ρ ζ + ρ ζζ =∑ɺɺ ɺ ɺɺ       (28) 

 
The external forces consist of wave forces (Fwave), restoring forces (-ρgAζ), and non-linear 
damping forces. The force acting on the fluid at the inlet of the moonpool can be written as: 
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2entrance S SF A
γ= − ρ | ζ − ζ | (ζ − ζ )ɺ ɺ ɺ ɺ          (29) 

 
where γ is a constant which can be set to 1 for flow running out of the moonpool (Massey 
1975). For flow running in, it depends on the geometry. This term is meant to include effects 
of flow separation. An empirical non-linear damping term is also included in a similar way: 
 

, 2damping other S SF A
β= − ρ | ζ − ζ | (ζ − ζ )ɺ ɺ ɺ ɺ         (30) 

 
where β is an empirical constant. Collecting all force terms yields the final equation for the 
fluid motion in the moonpool: 
 

2( ')
2 S S waveA T T A A A gA F

β + γρ + ζ + ρ ζ + ρ ζζ + ρ | ζ − ζ | (ζ − ζ ) + ρ ζ =ɺɺ ɺ ɺɺ ɺ ɺ ɺ ɺ    (31) 

 
For verification of the equation, Madsen did a series of model tests. He concludes that the 
equation gives a satisfactory description of the fluid motions inside the moonpool, although 
also in this case the non-linear damping had to be determined based on model tests. The γ-
factor alone was not enough to get a good correspondence between numerical and 
experimental results. 
 

Differences and similarities 

The two equations are essentially the same, with the exception of the terms proportional to the 
velocity. The non-linear damping term derived by Madsen looks different from Aalber’s 
equation, but it is just described by a combination of several constants instead of only b2.  
 
Aalbers includes a linear damping term that is not included by Madsen. On the other hand, 
Madsen includes an extra non-linear damping term that is proportional to the absolute fluid 
velocity squared (the other non-linear damping term is proportional to the relative velocity 
squared). This is one of the terms that Aalbers calls “higher order terms” and neglects. Both 
these terms turn out to be of little significance compared to the main non-linear damping term. 
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Body inside moonpool 

Madsen takes it one step further than Aalbers and expands his equation to include a body 
inside the moonpool. The hydrodynamic forces on the object are assumed to be given by 
Morison’s formula (for relative motion):  
 

1
(1 ) | | ( )

2body M M B B D B BF V C VC A C= ρ + ζ − ρ ζ − ρ ζ − ζ ζ − ζɺɺ ɺɺ ɺ ɺ ɺ ɺ       (32) 

 
where CM is the added mass coefficient for the body, CD is the drag coefficient, V is the 
volume of the body and AB is the vertical projected area of the body. 
 
The body will also give a contributing term to the change in momentum of the fluid in the 
moonpool given by: 
 

B
Body effect

dP
V

dt −

= −ρ ζɺɺ           (33)
 

 
The minus sign is explained by the fact that “the momentum in the surrounding liquid caused 
by the bell moving upwards with a velocity is equivalent to that of the same volume of water 
moving downwards with the same velocity” (Madsen 1980). 
 
Combining these new terms with the equation already derived for the empty moonpool results 
in Madsen’s final equation: 
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| | ( ) (1 )( )

2

S S

B D B B M B wave

A T T A A A gA
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    (34)
 

 
Also this equation, when solved in the time-domain, was found to give good agreement with 
experiments, as long as the coefficients were determined. 
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Advanced numerical methods applied on moonpools 

Solution of the Navier-Stokes equations (CFD) 

The Navier-Stokes equation is a non-linear partial differential equation which is derived from 
Newton’s second law of motion. It is valid for a fluid particle and is in theory capable of 
describing any fluid motion when solved. Assuming incompressibility and Newtonian fluid 
(which is true for water), the equation can be written on the following form: 
 

2v
v v g p v

t

∂ ρ + ⋅∇ = ρ − ∇ + µ∇ ∂ 

�
� � �

         (35) 

 
where ρ is the fluid density, v is the velocity vector, g is the gravitational constant, p is the 
pressure and µ is the fluid viscosity. This is a vector equation, so it can be split into three 
components. This results in an equation system with three equations and four unknowns 
(three velocity components and pressure). The continuity equation is used to close the system: 
 

0v∇ ⋅ =�            (36) 
 
Except for a few very simple cases, the only way to solve the Navier-Stokes equation is to 
discretize the fluid domain and solve an integral form of the equation for each element. This is 
often called computational fluid dynamics, or just CFD. CFD can be very time-consuming 
even for powerful modern computers. Because of this, simplifications are often necessary. For 
the moonpool-elevation case most work has been done in two dimensions, which makes the 
problem considerably less challenging. 
 
To account for the free surface, a volume of fluid model is often used. The volume of fluid, 
VOF, method makes it possible to solve a problem with two fluids, in this case air and water. 
In every cell of the discretized fluid domain, a separate equation which determines the 
fraction of one of the fluids in the cell is solved (Ferziger et al. 2002). If this fraction is 
denoted c (must by definition be between 0 and 1) the extra transport equation can be written 
as 
 

0
c

cv
t

∂ + ∇ ⋅ =
∂

�
           (37) 

 
There are two major drawbacks with the method; it increases computational time and it 
cannot represent an exact sharp boundary (like a free surface) on its own. 
 
Heo et al. compared several methods for calculating the wave elevation in an empty 
moonpool including a potential scheme and a CFD scheme, both in two dimensions (Heo et 
al. 2010).  Figure 14 shows the analysed cases. The twin-hull structure is given a forced 
harmonic motion with an amplitude of 0.0025m. 
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Figure 14 - Analysed case (Heo et al. 2010) 

 
B=0.36m, d=0.18m and L=0.18m (Case A) and L=0.36m (Case B). 
 
The results from both the potential and the CFD approach are presented in Figure 15 for Case 
A and Case B, along with potential and experimental results for a similar set-up, found by 
Faltinsen et al. (Faltinsen et al. 2007). 
 

 
Figure 15 - Non-dimensional response amplitude (Heo et al. 2010) 

 
The non-linear potential method, termed “w_potential” produces almost exactly the same 
results as the linear method of Faltinsen, i.e. the inclusion of non-linear terms does not give 
any significant improvement for this application. However, the authors claim that “the wave 
height is so small that nonlinearity is not occurred”, suggesting that more severe motions may 
give different and, assumingly, better results with a nonlinear code.  

 
The CFD-results are termed “viscous” in Figure 15. Due to the small motions, the flow was 
assumed to be laminar and no turbulence model was adopted. A VOF-method was used. 
 
For case A the results from the CFD calculations are generally very good. At resonance this 
method predicts elevations which are quite close to those obtained in the model tests while 
both potential schemes over-predict the elevation. 
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The results from case B are not as unambiguous. The CFD results coincide very well with the 
experimental results also here except at resonance; where for some reason the calculation 
significantly over-predicts the elevation. Unfortunately Heo et al. do not discuss why this 
happened and it is hard to tell whether there is a flaw in the method itself or whether 
something simply went wrong for this particular simulation. 
 
In spite of this single discrepancy, Heo et al. concludes that “CFD can simulate the flow 
characteristics of the two-dimensional moonpool including the piston mode, and the overall 
accuracy compared to the experimental results is acceptable”. 
 
A possible simplification of the Navier-Stokes equation is to disregard the viscosity term. The 
equation is then reduced to the so-called Euler-equation. In order to investigate the effect of 
viscosity Heo et al. tried this approach as well. A consequence of this assumption is that there 
will be no friction between the fluid and the walls of the moonpool. The results were 
compared with the results from the full Navier-Stokes equation and it turned out that the 
effect of friction was of little importance compared to the effect of vortex shedding (vortex 
shedding effects at a sharp corners are captured also by the Euler equation). This is also the 
conclusion of Aalbers (Aalbers 1984) who states that “the magnitude of the frictional 
damping is very small and may be neglected in comparison with the potential damping and 
energy loss due to vortices". 
 
 

Kristiansen’s hybrid scheme 

Two key points made so far in this section are: 
- CFD can in most cases predict the moonpool elevation with sufficient accuracy. However, 

the method is computationally very demanding. This makes it an unpractical tool if many 
configurations or environmental conditions need to be analysed. 

- Potential theory will in general over-predict the motions in a moonpool especially at 
resonance because of its inability to include flow separation. 

 
Kristiansen et al. found a clever way to combine the best characteristics of both methods 
while at the same time eliminating the weaknesses (Kristiansen et al. 2011). The presence of 
the free surface is the main reason why a full CFD simulation is so computationally 
demanding for this application. The free surface has to be dealt with by an interface-capturing 
method, usually VOF as described earlier. However, Kristiansen realized that the surface and 
the water close to the surface can be simulated with sufficient accuracy using potential theory. 
On the other hand, only CFD can predict the fluid motions at the entrance of the moonpool 
where the crucial vortices are formed. 
 
Keeping these principles in mind, Kristiansen constructed a numerical model where the fluid 
domain is divided in two: 
- The fluid at and near the surface is governed by linear potential theory. Also, far away 

from the body potential theory is used for all water depths. 
- In the rest of the fluid domain, the full Navier-Stokes equations are applied. 
The resulting discretized fluid domain of the numerical wavetank can be seen in Figure 16 
where the potential theory domain is blue and the CFD domain is red. Like many others, 
Kristiansen assumed symmetry about the moonpool centre. 
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Figure 16 - Numerical fluid domain decomposition (Kristiansen et al. 2011) 

 
Kristiansen applied his hybrid scheme on various geometries of the moonpool inlet. He then 
compared his results with model tests. One of the resulting response plots can be seen in 
Figure 17. 
 

 
Figure 17 - Non-dimensional response amplitude (Kristiansen et al. 2011) 
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In this figure the amplitude ratio of the moonpool elevation, Ag/η3a is plotted. The lower 
curve, Af/η3a, is the wave elevation outside the moonpool. Results from Kristiansen’s hybrid 
code, a conventional linear potential code and experiments are included. As usual, potential 
theory over-predicts the elevation especially at periods close to resonance. The hybrid code is 
however almost spot on. Some minor discrepancies are found, but this is partly assumed to be 
an effect of wave reflections from a poorly adjusted wave beach. 
 
Other inlet geometries were tested as well. Figure 18 shows the results from a moonpool with 
damping plates. The rest of the parameters, including the forcing amplitude, are the same. 
 

 
Figure 18 - Non-dimensional response amplitude (Kristiansen et al. 2011) 

 
The same trends can be seen here; potential theory overestimates the response while the 
hybrid code coincides very well with the experiments. Additionally, it is very interesting to 
compare the results for these two geometries. The response amplitude of the moonpool with 
the damping plates are considerably lower than the for the moonpool without any appendages.  
The natural period is also higher. 
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Research on hydrodynamic coefficients of objects in moonpool 

Morison’s equation, as previously described in this section, is frequently proposed as a tool 
for determining the hydrodynamic forces on an object in a moonpool, i.e. the total force is a 
sum of drag and added mass forces. Both these contributions are dependent on coefficients, 
one for drag and one for added mass.  
 
Drag and added mass coefficients are thoroughly studied for basic objects such as circular or 
square cylinders in an unrestricted fluid domain. The fluid domain inside a moonpool is 
however far from unrestricted. In some ways the situation resembles that of an object inside a 
confined tube or channel, conditions which have been given some attention in the past, e.g. in 
the work by Sharma et al. (Sharma et al. 2004), although mostly for flows of low Reynolds 
numbers, typically lower than 103.  For flow past a body, the Reynolds number is defined as: 
 

Re
VD

ν
=            (38) 

 
where V is the undisturbed incoming fluid velocity, D is the diameter of the object and ν is 
the kinematic viscosity of the fluid. In full scale moonpool situations the Reynolds number is 
usually in the area between 105 and 108. 
 
For objects in a tube or channel the blockage ratio is an important parameter, defined as 
 

object
blockage

channel

A
r

A
=           (39) 

 
where Aobject is the projected area of the object and Achannel is the cross sectional area of the 
channel or tube (or moonpool). When the forces on objects in such confined spaces are 
determined using Morison’s equation, correction factors based on the blockage ratio are often 
applied. 
 
A comprehensive description of blockage effects for circular cylinders for the full range of 
Reynolds numbers has been published by M.M. Zdravkovich (Zdravkovich 2003). 
Zdravkovich divides the effect of blockage ratio into three classes: 
 
Blockage ratio Effect on flow and forces 

< 0.1 Blockage effects are small and may be ignored 
0.1 < 0.6 Flow is modified, corrections of coefficients are necessary 

> 0.6 Flow is radically altered and correction factors are meaningless 
 
It is an interesting observation that blockage ratios above 0.6 are considered above the limit of 
what can be handled by correction factors as the flow in these regimes behave completely 
different.  
 
Another issue to account for in a moonpool situation is the oscillating ambient flow. Vortices 
are often shed from the kind of bluff bodies one would deploy through a moonpool. When the 
ambient flow turns, the vortices may return back to the body and affect it. The most important 
parameter for this effect is the Keulegan-Carpenter number, defined as: 
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2
VT A

KC
D D

π= =           (40) 

 
where V is the undisturbed oscillating fluid velocity amplitude, D is the diameter of the 
object, T is the period of the fluid oscillation and A is the amplitude of the fluid motion. The 
most critical KC range is from around 4 to 25 (Pettersen 2007), in which the returning 
vortices are assumed to be of considerable importance. For higher KC numbers the situation 
resembles steady flow (Faltinsen 1990). The limits of this range depend on many factors, 
including the shape of the object. The critical range may also be different for confined fluid 
domains, as the vortex shedding characteristics has been found to be dependent on the 
blockage ratio (Singha et al. 2010). In a moonpool situation it is not unusual to experience KC 
numbers in the critical range. 
 

Madsen’s experiments 

As part of a moonpool research project, experiments were done by Madsen for models of 
three different diving bells oscillating inside a tube of varying diameter (Madsen 1980). The 
three diving bells can be seen in Figure 19. 
 

 
Figure 19 - Tested diving bells (Madsen 1980) 

 
From left to right, the models are termed I, II and III. They all comprise of a sphere with 
different piping configurations around them. Unfortunately a clean sphere was not tested. 
 
Madsen termed the blockage ratio (Ab/At) and presented his resulting correction factors as 
functions of this. 
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For the added mass coefficient, Cm, the results turned out as seen in Figure 20. 
 

 
Figure 20 - Added mass plot (Madsen 1980) 

 
The increase in the added mass coefficient seems to follow the line in the figure reasonably 
well. The resulting equation describing the ratio between added mass in a restricted flow and 
added mass in an unrestricted flow is: 
 

2.25

1 1.9 bM

M t

AC

C A∞

 
= +  

 
          (41) 

 
It should be noted that Madsen also found that Cm is dependent on the length of the tube only 
when Ab/At approaches 1. 
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A similar result was found for the drag coefficient. Figure 21 shows how the drag varies. 
 

 
Figure 21 - Drag plot (Madsen 1980) 

 
Here, the equation for the plotted line is: 
 

2.25

1 9.2 bD

D t
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= +  

 
          (42) 

 
Madsen also discovered that the drag coefficient was practically independent of the velocity 
magnitude. 
 
Based on these experiments the two proposed equations for drag and added mass seem to be 
quite good. It should be noted that both drag and added mass coefficients are dependent on the 
blockage ratio raised to the same power; 2.25. The proposed correction factors also appear to 
work well for blockage ratios up to 0.8, in spite of Zdravkovich’s statement that 0.6 is the 
limit for the validity of correction factors. It may be a coincidence that Madsen got such a 
good fit, but it may also be that the limit is different for objects not of a perfect circular shape. 
 
Although the experiments seem to produce very nice results it is important to remember they 
are done for objects in a tube and not for objects in realistic moonpool conditions. The 
shortcomings of this approach will be discussed later in this section. 
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DNV’s recommended practices for moonpool operations 

For analyses and planning of offshore operations, DNV (Det Norske Veritas) provide 
guidelines and recommendations. In Modelling and Analysis of Marine Operations (DNV 
2011) an entire section is dedicated to moonpool operations. Most of the section is devoted to 
a so-called simplified analysis, while a more advanced approach is outlined at the end of the 
section. Both methods will be presented here. 
 

Simplified analysis 

The methodology described here is based on the following assumptions: 
- The dimensions of the moonpool are small compared to the breadth of the ship. 
- Only vertical forces and motions of the water and the object in the moonpool are 

considered, i.e. only the piston mode is taken into account. 
- The blocking effect of objects in the moonpool is moderate. 
 
The governing equation of motion for the water and the body inside the moonpool is given as: 
 

33( ) | | ( ) | | ( ) ( )S S S B B BM A C C K F t+ ζ + ζ − ζ ζ − ζ + ζ − ζ ζ − ζ + ζ =ɺɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ     (43) 

 
where M is the mass of the water inside the moonpool, A33 is the added mass of the water 
plug, ζ is the vertical motion of the water plug, ζS is the heave motion of the ship, ζB is the 
vertical motion of the body in the moonpool, CS is the damping coefficient for the relative 
motion between the water and the ship, CB is the damping coefficient for the relative motion 
between the water and the body, K is the water plane stiffness and F(t) is the wave excitation 
force on the water plug. Figure 22 shows the model. 
 

 
Figure 22 - Simplified moonpool model (DNV 2011) 
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This is a simplified form of the equations derived by Aalbers and Madsen as described earlier. 
The equation recommended by DNV makes the following simplifications: 
- The volume of the moving water inside the moonpool is constant. 
- The inertia term from Morison’s equation is not included in the equation for determining 

the fluid motion in the moonpool. 
- There is no linear damping coefficient between the motion of the water and the motion of 

the ship, only quadratic damping is taken into account. 
- The added mass and damping of the absolute motion of the ship is not considered.  
The last simplification implies that the moonpool motions do not affect the motions of the 
ship. This may be reasonable as it is already assumed that the moonpool is small compared to 
the ship. 
 
DNV recommends using normal linear transfer functions for the motions of the vessel as is 
normal practice for a wide range of modelling situations. Also, for the external forces acting 
on the water in the moonpool the use of transfer functions are suggested. The transfer 
functions for the forces will then be on the form: 
 

( )
W

W

F t
G =

ζ
            (44) 

 
where GW is the transfer function and ζW is the surface elevation of the incoming undisturbed 
wave. For the simplified approach DNV models the total force as a sum of the force from the 
undisturbed wave (Froude-Krylov-force) and the force from the ship motion (diffraction 
force). The force can be evaluated at the moonpool inlet and will be: 
 

2
33( ) ( ) ( ) ( )kD

FK Diffraction FK S W SF t F t F t p A A A ge AG−= + = + ζ = ρ ζ − ω κɺɺ    (45)
 

 
where pFK is the Froude-Krylov-pressure, g is the gravitational constant, k is the wave 
number, ω is the wave frequency, GS is the linear transfer function for the vessels heave at the 
moonpool position and κ is a constant that can be set between 0.45 and 0.47 for rectangular 
moonpools and 0.48 for circular moonpools. κ relates to Molin’s research (Molin 2001) as 
previously discussed in this section. 
 
In this equation it is implied that the added mass of the water plug is given as 
 

33A A Aρ κ=            (46) 

 
which, if κ is set to 0.45, is the same as Madsen recommends (Madsen 1980). 
 
An equation for the resonance period of the moonpool is derived from continuity and energy 
conservation. For a moonpool with a varying cross section area A the resonance period can be 
taken as (DNV 2011): 
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where T0 is the resonance period, g is the gravitational constant, z is the vertical axis ranging 
from –D at the bottom of the moonpool to 0 at the free surface, A(z) is the varying cross 
sectional area of the moonpool, A(0) is the area at the surface and A(-D) is the area at the 
inlet. If the moonpool has a constant cross section the equation reduces to 
 

0

2
T D A

g
κπ= +           (48)

 
 
which can be directly related to the equation found by Molin (Molin 2001). 
 
The non-linear damping of the water motions inside the moonpool can be quite large and as 
shown elsewhere it is of vital importance. DNV presents a crude approach for determining the 
non-linear damping coefficient, CS. Using linearized theory to extract the damping from 
model tests, DNV recommends the following equation: 
 

0

3
2

8SC KM
π= ωζ ηi i  `         (49) 

 
where ω is the angular frequency of the motion, ζ0 is the amplitude of the relative motion, η is 
the linearized damping ratio, K is the water plane stiffness and M is the mass of the water 
inside the moonpool including the added mass. η is called relative damping and varies from 
0.08 to 0.45 depending on the damping devices installed. A list of typical values for the 
relative damping for different moonpool designs is included, but the selection of η does 
involve a certain level of guessing. 
 
To illustrate the effect of different damping levels, DNV includes a figure with RAO’s 
(response amplitude operators) for the relative moonpool wave elevation for different 
damping levels. The RAO’s are defined as: 
 

 S
S

W W

RAO G
ζ − ζ ζ= = −

ζ ζ
         (50) 

 
i.e. they provide the link between the relative wave elevation in the moonpool and the 
incoming undisturbed waves. As defined here, the transfer function for the vessel heave at the 
position of the moonpool, Gs, which is assumed to be known, is therefore subtracted. The 
subtraction of the vessel heave has been done in all included example moonpool RAO’s and it 
is important to keep in mind that these contain also this variable. 
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The example RAO’s can be seen in Figure 23. 
 

 
Figure 23 - Example RAO's (DNV 2011) 

 
The figure clearly underlines the importance of a good prediction of the damping level. Even 
a small change can give a very different response at resonance. However, as already discussed 
elsewhere, determining the damping is not straight forward.  
 
Assuming the damping level of the moonpool is determined, it is now possible to calculate an 
RAO for the moonpool to be analysed, and when the vessel heave RAO is subtracted the 
result should be similar to the examples seen in Figure 23. With an RAO there is also an 
associated phase angle, but this is not given much attention in the guidelines.  
 
For calculation of forces on objects inside the moonpool, the method assumes “small-body” 
forces. This implies that the total force can be described by a combination of inertia and drag 
forces, i.e. Morison’s equation is applicable. To account for the confined space inside the 
moonpool, DNV provides a simple relationship between the added mass coefficient for an 
unlimited fluid domain and a confined domain and a similar relationship for the drag 
coefficient (DNV 2011): 
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where CA and CA0 are the added mass coefficients for confined and unlimited fluid domain, 
CD and CD0 are the corresponding drag coefficients, Ab is the projected area of the body and A 
is the cross-sectional area of the moonpool. 
 
The formula for the added mass coefficient is identical to what Madsen found in his 
experiments (Madsen 1980) as described earlier. However, the drag formula provided by 
DNV does not match Madsen’s results. For comparison, the two formulas have been plotted 
in Figure 24 for a blockage ratio from 0 to 0.8. 
 

 
Figure 24 - Comparison of drag formulas 

 
The two formulas give almost identical results for small blockage ratios, but from around a 
blockage ratio of 0.5 DNV’s formula produces a much higher drag than Madsen’s formula. 
The fact that Madsen got experimental results very close to his formula for a blockage ratio of 
almost 0.8 makes DNV’s formula questionable (especially as it is implied that it can be used 
for a blockage ratio up to 0.8, where it is more than twice as big as Madsen’s formula). 
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Comprehensive calculation method 

If the object covers more than 80% of the moonpool area or if the lifted object is not rigidly 
connected to the vessel, DNV recommends a more comprehensive calculation method.  
 
The first step in this method is to find transfer functions for the excitation force at the 
moonpool inlet. These should be found using a diffraction theory program with a panel 
model, and not from the scheme used in the simplified method. 
 
Secondly, the operation should be modelled in time-domain, including non-linear effects. 
However, the fluid in the moonpool is still only seen as an oscillating water plug with no 
horizontal motions.  
 
DNV emphasizes that the non-linear damping of the moonpool elevation should be included, 
but they do not give any further recommendations for determining the damping coefficient. 
As previously discussed, only CFD-based schemes can numerically predict a realistic fluid 
motion in a moonpool. Still, DNV states that  
 

“The use of Computational Fluid Dynamics (CFD) may not be recommended for 
moonpool dynamics. Even though CFD can analyse the fluid dynamic interaction between the 
lifted object and the water plug inside the moonpool, it is difficult to couple with the dynamic 
characteristics of ship in waves and the response of the lifting system. Force predictions may 
hence be uncertain.” 
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Shortcomings in the knowledge of moonpools 

In the past, most effort has been put into examining the fluid motions inside an empty 
moonpool. It has been showed many times that relatively simple numerical schemes based on 
potential theory are able to predict the resonance period with acceptable accuracy and the 
equation DNV proposes for this seems reasonable. However, the amplitude of the response is 
much harder to predict unless model tests or very computationally demanding numerical 
schemes are applied. DNV provides generic RAO’s to select from, but this involves some 
level of guesswork and is a questionable approach, especially because even small changes in 
the non-linear damping have a very large impact on the fluid motions near resonance. There is 
definitely need for a tool which is able to predict the wave elevation without being as 
complicated as a full CFD scheme. Kristiansen’s hybrid code could possibly be a solution, but 
it is still in the development stage. 
 
For determining the forces on objects in a moonpool, there is a large gap in the knowledge 
concerning the interaction between the fluid motion and the forces on the objects. The 
underlying assumptions in previous work are:  
- The flow does not change its characteristics to a significant extent when an object is 

positioned inside the moonpool. 
- The forces acting on the object can be found using Morison’s equation with correction 

factors based on blockage ratio (as for a flow in a confined channel). 
These are bold assumptions. Consider the following: The water plug in a moonpool oscillates 
in the vertical direction. It has a finite amount of energy. When an object is placed in the 
moonpool, the fluid will exert a force on it. This will reduce the total energy of the fluid, 
which again will reduce the total force on the object etc. This is an iterative process, and 
although its exact behaviour is basically unknown, it is obvious that the first assumption (that 
the presence of the object does not alter the flow characteristics) is not absolutely correct. The 
question is not whether the flow is altered or not, the question is how much it is altered and 
how much the changes affect the force calculations. 
 
The current model tests described in the rest of this thesis aims to quantify the magnitude of 
the forces exerted on objects in a moonpool and to identify how the presence of the object 
affects the ambient flow. It is also of great interest to compare the results from the model tests 
with estimates based on the simplified methods outlined by DNV which are based on the 
assumptions discussed above. 
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3. Experimental set-up 

The experiments described in this thesis have been performed at MARINTEK in April 2013. 
In order to simulate a two dimensional moonpool, two rigidly connected and partially 
submerged rectangular bodies have been used as seen on Figure 25.  
 

 
Figure 25 - Replication of Kristiansen's set-up 

 

Replication of Kristiansen’s set-up 

The first part of the experiments was devoted to recreating one of the set-ups used by 
Kristiansen for the validation of his numerical results (Kristiansen et al. 2011). This set-up 
comprised of an empty moonpool with a sharp inlet and a constant cross section and is 
referred to as “base case” throughout the thesis. With reference to Figure 26, the main 
dimensions for this part were as follows: 
Breadth B:  36cm 
Breadth at inlet b: 18cm 
Draught D:  18cm 
Water depth h:  103cm 
The horizontal dimensions of the tank itself were 0.6m x 13.7m. 
 

Moonpool 

Body Body 

Rigid 
connection 

Actuator 
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Figure 26 - Main dimensions 

 
Forced harmonic heave motion of the moonpool was the only source of excitation. To achieve 
this, the model was connected to an actuator controlled by a computer. The only necessary 
input was the vertical zero level and the amplitude and period of the motion. However, the 
actuator did not produce the exact prescribed amplitudes. Therefore a displacement gauge was 
mounted on the model in order to record the actual heave motions. 
 
Six wave probes were used to record the wave elevation inside the moonpool and two were 
mounted on the outside, 0.7m to the side of each body. The arrangement of the wave probes is 
illustrated as viewed from above in Figure 27. Kristiansen used an additional wave probe 
inside the moonpool, but in this case only eight channels were available and the six internal 
wave probes were assumed to be sufficient. 
 

 
Figure 27 - Wave probe arrangement 

 
Wave beaches were installed at the two ends of the tank. This was necessary in order to 
minimize wave reflections. Reflecting waves are often problematic in 2-dimensional 
experiments like this because the waves do not radiate their energy in the same manner as 3-
dimensional short-crested waves. Wave beaches usually work by forcing the waves to break. 
However, many of the waves produced in these experiments had very small amplitudes and 
hence did not break that easily. The solution, as discovered by Kristiansen, was to position the 
top end of the beaches just below the surface. This made the waves roll over the beach and get 
“trapped” on the other side. This turned out to be quite effective. 
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Seven Viking-model 

The same basic set-up was used for the Seven Viking-model, with some modifications. The 
moonpool on Seven Viking has rounded damping plates at the inlet and perforated walls. 
Figure 28 shows the model. A description of the vessel itself can be found in Appendix B. 
 

 
Figure 28 - Seven Viking-moonpool model 

 
The main full scale dimensions of the Seven Viking-moonpool are: 
Breadth at inlet:  7.175m 
Breadth at water line:  8.39m 
Draught:   6.5m 
 
Details of the design of the inlet and the perforated walls are not included in this thesis due to 
confidentiality issues. 
 
The inlet geometry was modified by exchanging the original corners of the base case model 
by a set of new corners. In order to keep the same dimension of the actual inlet, the distance 
between the two bodies which make up the model was increased to 210.5mm. The geometric 
scale factor of the model thus became 
 

39.8611λ =            (52) 
 
The perforated walls of the model were produced in 5mm aluminium to ensure enough 
stiffness. This is not according to scale and accordingly the gap between the perforated walls 
and the solid vessel, as seen in Figure 29, is smaller than in reality. This discrepancy might 
have an impact on the results, but for studying trends (which is the main point of the model 
tests) it matters very little. 
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inlet 

Perforated 
wall 
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Figure 29 - Perforated walls closeup 

 
The Seven Viking-model was also tested with two objects with square cross-sections inside the 
moonpool. The dimensions of the cross sections of the objects were 3x3m and 4x4 in full 
scale, which implied blockage ratios of 0.42 and 0.56 respectively. The 3x3m object is termed 
“small” and the 4x4m object is termed “large” throughout the rest of the thesis. In the 3-
dimensional model tests carried out by Kjetil Berget, an object corresponding to the large 
object was tested as a validation case (with full scale dimensions of 4x4x4m). 
 
The objects were positioned at the bottom of the moonpool, i.e. the bottoms of the objects 
were flush with the bottom of the moonpool and were rigidly connected to the model in two 
points using aluminium profiles equipped with force transducers, as seen in Figure 30.  
 

 
Figure 30 - Small object in moonpool 
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PIV set-up 

Because it was assumed that the flow inside the moonpool would have small out of plane 
motions it was decided that a 2-dimensional PIV set-up would be sufficient. Figure 31 shows a 
sketch of the set-up as seen from above. 
 
 

 
Figure 31 - PIV set-up from above 

 
The laser beam was guided to underneath the water tank using mirrors. It was then spread into 
a thin sheet of light using a lens and directed upwards, so that it illuminated a cross section of 
the 2-dimensional moonpool close to the centre as indicated on Figure 33 and visualized in 
Figure 32. Great care had to be taken when adjusting the laser beam so that the light sheet 
would hit the right cross section of the moonpool without being tilted in any direction.  
 

 
Figure 32 - PIV in use 
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Figure 33 - PIV set-up from the side 

 
A laser designed to emit pulses at 1kHz was used. Such a high frequency was not required for 
this experiment and the operating frequency was therefore set to 500Hz. This is still higher 
than strictly necessary, but it was not recommended to use the laser too far from its design 
frequency. 
 
A high speed camera was positioned at the side of the water tank perpendicular on the light 
sheet. The camera had a resolution of 1024x1024 pixels. It was capable of recording time 
series of 8 seconds for the frequency used in the tests, corresponding to 5-6 oscillations of the 
moonpool. 
 
Polyamide particles with a diameter of 80µm were selected as seeding particles after testing a 
few options. This seemed to work fine. 
  



Leiv Aspelund – Master thesis – NTNU 2013 
 

44 
 

4. Analysis methods 

Wave elevation transfer functions 

Because all tests were performed with regular waves, producing transfer functions (RAO’s) 
for the wave elevation inside and outside the moonpool was fairly straight forward. 
Everything was done in Matlab in the following order: 
- Time sequences of steady wave response were selected manually from visual inspection 

of the time series of the wave probes. An example is shown in Figure 34 where the 
responses of the wave probes inside the moonpool are plotted. The red square indicates a 
selected time interval. Notice how steady the response is. 

 

 
Figure 34 - Example of wave elevations in moonpool 

 
- The six wave probes inside the moonpool were averaged, as were the two outside. 
- For the first part of the tests, the motions of the model itself were subtracted from the 

wave motions in order to determine the absolute wave motions instead of the measured 
relative motions. For the second part, which involved the Seven Viking-model, the relative 
motions were used instead. 

- For the selected interval, all wave maxima and displacement maxima were identified and 
averaged. It may sound unnecessary to find the displacement in this manner; it is after all 
given as input to the actuator. However, there was always a small discrepancy between the 
prescribed and the actual motions, illustrated by an example in Figure 35. Here, the 
prescribed amplitude was 100mm, but the actual amplitude is around 90mm. 
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Figure 35 - Example of measured heave 

 
- The values for the transfer functions were found by dividing the averaged maximum wave 

elevations by the averaged maximum heave displacements, and thus producing 
dimensionless RAO’s on the form: 
 

moonpool wave
wave elevation transfer

heave
=       (53) 

 

Force transfer functions 

The force transfer functions are defined as the force on the object divided by the moonpool 
wave elevation in a corresponding empty moonpool, i.e. 
 

sectional force
force transfer

empty moonpool wave elevation
=       (54) 

 
It may sound like an illogical choice at first to divide by the corresponding empty moonpool 
wave elevation instead of the actual wave elevation with the object. The reason for this choice 
is that a transfer function should connect an unknown quantity (in this case: the force) with a 
known quantity, and the wave elevation inside the moonpool with an object inside is usually 
not known. However, based on model tests, CFD or perhaps on-sight measurements, the wave 
elevation in an empty moonpool may be predicted. 
 
In the 2-dimensional tests the resulting force is given as force per length, giving the force 
transfer functions a dimension of: 
 

/force length

length
           (55) 

 
which, for convenience in full scale, is presented as: 
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m
 
  

           (56) 

 
The methodology for determining the force transfer functions follows mainly the same 
procedure as for the wave elevation: 
- The same time intervals were selected as for the wave elevations. 
- The signals from the two force transducers were added together. 
- Because only the hydrodynamic force was of interest, the inertia force was subtracted 

from the total force using the formula: 
 

hydrodynamic total inertia total object objectF F F F m a= − = −       (57) 

 
The acceleration of the object was assumed to be equal to the acceleration of the rest of 
the model, which is probably a valid assumption due to the rigid connection. The 
acceleration was determined by differentiating the heave time series twice. 

- The resulting force signals had high-frequency components in addition to the expected 
heave-frequency components. These were removed using a built-in smoothing function in 
Matlab called “mslowless”. Figure 36 shows an example of a force time series before and 
after the smoothing. 
 

 
Figure 36 - Example of raw and smoothed force signal 

- All the force maxima in the selected intervals were identified and averaged. 
- The final force transfer functions were found by dividing the averaged force maxima by 

the corresponding averaged wave elevation maxima. 
 
 

Force coefficients 

The underlying assumption for this part is that the hydrodynamic force can be described using 
Morison’s equation, i.e. the total force has one component proportional to acceleration (mass 
term) and one component proportional to velocity squared (drag term).  
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Simple theory of harmonic motion tells that the velocity is at its maximum when the 
displacement is zero (the wave elevation is between a minimum and a maximum). At this 
instant the acceleration is also zero. Therefore, the total force at this instant will be completely 
governed by the velocity-term (i.e. the drag term) and is given by: 
 

1

2D p DF A C w wρ=           (58) 

 
where ρ is the fluid density, Ap is the projected area of the object, CD is the drag coefficient 
and w is the vertical fluid velocity. By rearranging, CD can be determined from: 
 

total, zero displacement

2
zero displacement

1
( )

2

D

p

F
C

A wρ
=          (59) 

 
Similarly, when the acceleration and displacement is at a maximum, the velocity is zero. 
Therefore, at these instants, the total force will only comprise of the mass force which is given 
as: 
 

(1 )D A zF C Vaρ= +           (60) 

 
where ρ is the fluid density, V is the volume of the object, CA is the added mass coefficient 
and az is the vertical fluid acceleration. Again by rearranging, CA can be found from: 
 

total, max displacement

z, max displacement

1A

F
C

Vaρ
= −          (61) 

 
The total force is found using the same approach as outlined in the methodology for the force 
transfer functions. The fluid velocity and acceleration is found by differentiating the wave 
elevation once and twice respectively.  
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PIV analysis 

In this chapter the principles behind the particle image velocimetry technique is presented, as 
described by Visscher in his PhD thesis (Visscher 2011) and Adrian et al. (Adrian et al. 2011). 
A complete description of the background theory of PIV is beyond the scope of this thesis, but 
can be found in the mentioned references. 
 
The raw output from a PIV test is a series of images of the laser-illuminated particles. Figure 
37 shows an example frame from a test with the Seven Viking-model.  
 

 
Figure 37 - PIV picture of Seven Viking-model 

 
To obtain the flow velocity fields from these images a methodology based on correlation 
between succeeding image frames is applied. The images are divided into squares (or cells) of 
e.g. 16x16 pixels. It is assumed that all particles inside one cell have a uniform motion from 
one frame to the next. The validity of this assumption depends on how large the velocity 
gradient in the flow is compared to the size of the cells. In order to identify the correct motion 
of the particles a correlation function between two time steps is applied. The correlation 
function will have a peak which corresponds to the most likely motion and, ideally, this also 
corresponds to the true motion. This scheme is applied for all cells at all time steps. 
 
This rather clever scheme should in theory be flawless. In reality however, there are several 
issues which may affect the quality of the results including: 
- The image quality. The software must be able to identify the seeding particles from the 

background. This requires a camera with sufficient resolution and good optics, correct 
focus and well illuminated seeding particles. 

- The particle density. Some particles will move out of the cell from one time step to 
another, while others may move out of plane. Therefore it is necessary to have enough 
particles in order to get good correlation. At the same time too many particles will make it 
impossible to obtain a meaningful correlation function. 
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Part of body 
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- The magnitude of the particle motion from one time step to another. If the particles move 
too much it is difficult to trace them. On the other hand, it is important to keep in mind 
that a computer operates with discretized quantities and only sees the particle motions as a 
change in pixels. Consider as an example that the true motion from one time step to 
another corresponds to 0.5 pixels. Based on the discretized correlation function, the 
computer will probably decide that the motion is either 0 or 1 pixel, both of which are 
very wrong. Because of this it is important to make sure the time step is large enough to 
allow the particles to move a significant distance. There is a numerical scheme which 
partially overcomes this problem (which will be discussed later) but it is not perfect and 
hence should not be relied on too much. 

 
The software PIVview2C was used for the PIV-analyses in these experiments. The program 
allows the user to create a parameter-file based on one image pair and then employ the 
parameters for all time steps. This was done through a batch-script in Matlab. The following 
parameters were set in the parameter-file: 
- A mask was created to cover the body. Figure 38 shows the mask for the validation 

moonpool. Notice also the wave probes, which were not removed in this particular case, 
and the reflections of the laser on the tank walls.  
 

 
Figure 38 - PIV picture with mask 

 
- A cell size of 16x16 pixels was selected with 50% overlap between cells. 
- A multi grid refinement-scheme was selected, meaning the program evaluates every time 

step three times with cell sizes decreasing from 64x64 to 16x16 pixels in three steps.  
- On the final refinement-step, sub-pixel image shifting was enabled. This is a numerical 

scheme applied on the discretized correlation functions. The functions are approximated 
numerically using Whittaker reconstruction, allowing the correlation peak to lie between 
the discretized values. B-spline interpolation of the third order was used to identify peaks. 

- Two criteria for identification of outliers (vectors very different from their neighbour 
vectors) were used; a maximum displacement criterion set to 20px and a normalized 
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median test set to 3. Outliers were then tried replaced by a secondary peak in the 
correlation function (assuming the wrong peak had been selected in the first place) or, if 
that failed, interpolated from the surrounding vectors. 

 
Correlation was performed on images taken with 8ms delay. This was found to be the best 
compromise for having the particles move a sufficient but not too large distance each time 
step. 
 
Time-averaging over three time steps was done manually after the processing of the images, 
i.e. for a generic vector xi at time step i the time-averaged vector was obtained as 
 

1 1

3
i i i

i

x x x
x − ++ +=           (62) 

 
This led to smoother results and because of the high sampling frequency, 500Hz, it is assumed 
that any fluctuations cancelled out by this scheme were only the result of numerical 
instabilities. 
 
Additionally, phase averaging was applied in order to cancel out random flow effects and 
hence to get a stronger representation of the cyclical phenomena such as the vortex 
formations. This averaging was done over five cycles of the motion, i.e. a generic vector x at 
time t was phase-averaged as: 
 

( )
5

0
1

1
( ) ( 1)

5Phase
i

x t x t i T
=

= + −∑          (63) 

 
where T0 is the period of oscillation. The method worked as intended, i.e. it gave a nice 
representation of the cyclical effects. However, it should be kept in mind that this involves 
manipulation of the results and it is important to be aware of what is lost in this process. This 
is discussed later in sections 5 and 6.  
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5. Results and discussion 

In this section results from the various set-ups and configurations are presented and discussed. 
It should be noted that all forcing amplitudes are prescribed amplitudes, and not measured. 
 
All PIV results have been acquired using the same excitation parameters; 15mm heave 
amplitude and 1.17s period. For the Seven Viking-moonpool this corresponds to 0.6m 
amplitude and 7.39s period in full scale. All results are phase-averaged, unless stated 
otherwise. 
 

Replication of Kristiansen’s set-up 

For this particular part of the experiments all results are presented in model scale. All transfer 
functions show the absolute wave elevation, i.e. not relative to the model. 
 
Kristiansen applied two different forcing amplitudes on his basic set-up; 2.5mm and 5mm. 
His resulting transfer functions are compared to those found in the current experiments in 
Figure 39 and Figure 40. In the figures, the solid lines are the results from potential theory, the 
squares are results from Kristiansen’s hybrid scheme, the solid black circles are the results 
from the previous experiments and the red circles are from the current model tests. 
 

 
Figure 39 - Non-dimensional response amplitude 2.5mm (Kristiansen et al. 2011) 

Black circles: Previous model tests. Red circles: Current model tests. 
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Figure 40 - Non-dimensional response amplitude 5mm (Kristiansen et al. 2011) 

Black circles: Previous model tests. Red circles: Current model tests. 
 
The results are generally satisfactory. In both cases there seem to be a small shift of the 
resonance period, but the discrepancy is small. The amplitudes of the plots also show an 
acceptable fit, especially for the wave elevations inside the moonpool. The only significant 
difference is the elevation outside the moonpool for 5mm excitation. The reason for this 
disagreement could perhaps be due to how the wave beaches were set up. Although they 
seemed to work fine it is hard to tell whether they were damping the waves in exactly the 
same manner as in Kristiansen’s model tests. Another reason could be the magnitude of the 
heave excitation as this is very important for the response level (because of the non-linear 
damping). Even though the amplitude is set to e.g. 5mm, the actual amplitude is somewhat 
lower which again leads to a lower damping level and it is possible that the discrepancy 
between prescribed and actual amplitude was different in the current and in Kristiansen’s 
experiments. 
 
In general the current results are as close to the previous results as can be expected within 
reason. There are many factors present which may affect the results and it is almost 
impossible to reproduce experiments 100%. 
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Two additional excitation amplitudes were also tested; 10mm and 20mm. Figure 41 shows the 
transfer functions for all four cases. All four transfer functions have similar shapes, the 
difference lies in the magnitude, especially around resonance regions. Again, the reason for 
the decrease in response at higher excitation amplitudes is the non-linear damping as 
discussed in section 2, i.e. the damping level increases when the motions increase.  
 

 
Figure 41 - Absolute wave elevation transfer functions, base case 
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The flow field has been visualized for one whole oscillation cycle with an excitation 
amplitude of 15mm and period of 1.17s. Snapshots of the whole cycle can be seen in 
Appendix A. One whole cycle is 360 degrees, and the start (0 degrees) is defined as the 
instance when the flow is at a high point inside the moonpool. An example snapshot can be 
seen in Figure 42. In this figure the flow is 135 degrees into the cycle, meaning it is on the way 
out of the moonpool and will reach a low point in 45 degrees. Notice the large vortices below 
and to each side of the moonpool entrance. The vortices have been separated at the inlet edges 
and are at this point completely free from the walls. This flow field bears a strong 
resemblance to that predicted by the theory of Kristiansen et al. (Kristiansen et al. 2008) 
which is described in section 2.  
 

 
Figure 42 - PIV vectors, base case, flow out of moonpool 

 
It appears that the vortices formed inside the moonpool when the flow enters do not reach the 
same strength as those formed when the flow is going out, see Figure 43. This is probably an 
effect of the limited size of the moonpool. Still, even though the vortices are not that apparent, 
there is a significant “wake zone” close to the walls of the moonpool at inflow where the 
motions are small which is a consequence of the vorticity induced at the corner of the inlet. 

Vortice 
center 
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Figure 43 - PIV vectors, base case, flow into moonpool 

 
Although the pictures from this particular case suffers somewhat from what is assumed to be a 
low level of seeding particles, the development of the vortices can still be seen fairly well. It 
is interesting to see how quickly the vortices lose their intensity after they get detached from 
the body, though this might partially be a result of the phase-averaging applied to these 
velocity fields.  
 
Figure 44 shows vertical velocity profiles at the inlet of the moonpool over one cycle. The 
profiles at 0 and 180 degrees are left out in order to make the plots less chaotic. The velocities 
are almost zero at these instances anyway. 
 
At first glance, the velocity profiles demonstrate how uniformly the water flows across the 
moonpool inlet. This is a result of the piston mode motion in which the fluid acts like a water 
plug oscillating in the vertical direction only. A similar result is obtained from the wave 
probes which measure the free surface. 
 
However, by looking closer at the velocity profiles, it can be seen that the velocities close to 
(but not right next to) the moonpool walls are, most of the time, larger than the velocities in 
the middle. In a moonpool the fluid flows from a practically unconfined domain into a 
confined domain and vice versa, i.e. it experiences sudden contraction and expansion and the 
velocities will therefore be highest at the sharp corners of the contraction/expansion. This 
effect is also higher for inflow than for outflow. 
 
On the other hand, the velocities right next to the walls (in the wake zones), especially for the 
inflow, are small as already discussed in connection with Figure 43. 
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Figure 44 - PIV, base case, velocity profiles 
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Two final test series were performed on the basic moonpool model in which the water level 
was lowered to 163mm, which is the same draught as was used for the Seven Viking-
moonpool studied in the rest of the experiments (with a scaling ratio of 39.8611). The 
resulting relative transfer functions, seen in Figure 45, are plotted in full scale as are all results 
for the Seven Viking-model.  
 

 
Figure 45 - Moonpool wave transfer functions, base case w/Seven Viking draught 

 
The resonance period is around 7.3s in full scale and 1.16s in model scale, i.e. a bit lower than 
for the case with the higher water level. This is as expected according to the potential theory 
derived by Molin discussed in section 2.  
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Seven Viking-model 

This case is modelled after an existing moonpool, with a scaling ratio of 39.8611. Therefore it 
seems natural to present the results in full scale. Furthermore, all transfer functions describe 
relative motions between the water and the model, i.e. the frame of reference is moving with 
the model. However, because of the simplified set-up the results are probably not completely 
representable of the real Seven Viking-moonpool, see section 7. 
 

Empty moonpool 

The transfer functions for the wave elevations inside the empty moonpool at all tested heave 
amplitudes can be seen in Figure 46. 
 

 
Figure 46 - Moonpool wave transfer functions, Seven Viking empty 

 
The transfer functions have shapes as expected. The resonance period does not change much 
for different excitation amplitudes and the curves approach unity for high periods. The 
magnitude of the resonance peak does not decrease very much as the forcing amplitude 
increase, in contrast to the transfer functions seen in Figure 41 and Figure 45. This is an 
indication of a relatively low level of non-linear damping which can be explained by the 
rounded inlet edges of this particular moonpool, which are less prone to trigger vortex 
shedding than the sharp inlet in Kristiansen’s base case. The resonance period is also slightly 
higher than that for the base case with the same draught as the Seven Viking. 
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The velocity fields produced with PIV show why the non-linear damping is less prominent. In 
Figure 47 the flow at 135 degrees into the cycle is visualized. The excitation parameters are 
the same as for the PIV images of the basic validation moonpool. Again, the whole cycle can 
be seen in Appendix A. It is evident that although there is a vortex formation at the outlet, it is 
smaller than for the moonpool with the sharp edges. Also, in this case the vortices do not 
seem to separate from the body as easily as they do for the moonpool with the sharp corners. 
 

 
Figure 47 - PIV vectors, Seven Viking empty, flow out of moonpool 
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The difference is even larger for the inflow as seen in Figure 48. For the sharp-cornered 
moonpool there is a large wake region close to the moonpool walls. This effect is hardly 
present at all in this case except for a thin boundary layer, which is due to wall-friction. 
Moreover, there are little or no signs of vortices. 
 

 
Figure 48 - PIV vectors, Seven Viking empty, flow into moonpool 

 
It is also worth noticing how little the water seems to flow through the perforated walls. The 
fluid motions appears to be almost completely vertical except for close to the free surface 
during the outflow, where there are some signs of horizontal velocity components. The flow 
through the perforated walls is possibly of a random nature rather than periodic, and therefore 
the effect may be cancelled out to some extent by the phase-averaging. Corresponding 
velocity fields without phase-averaging for the empty Seven Viking-moonpool can be seen in 
Appendix A, and it is evident from these that there may be more horizontal velocities than 
what can be seen from the phase-averaged plots. See also section 6 for a discussion of what is 
lost in the phase-averaging. 
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The velocity profiles of the inlet, displayed in Figure 49, show that the wake zones close to the 
walls are much smaller here than in the base case. On the other hand, the flow in the rest of 
the moonpool displays a very similar behaviour for both moonpool configurations. 
 

 
Figure 49 - PIV, Seven Viking empty, velocity profiles 
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Objects in moonpool, wave elevation 

Introducing the objects in the moonpool turned out to drastically alter the transfer functions 
for the wave elevations. The transfer function for the small object with a blockage ratio of 
0.42 can be seen in Figure 50 and for the large object with blockage ratio of 0.56 in Figure 51. 
 

 
Figure 50 - Moonpool wave transfer functions, Seven Viking small object 
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Figure 51 - Moonpool wave transfer functions, Seven Viking large object 
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In order to illustrate the differences even better, the transfer functions for one selected heave 
amplitude, 0.4m, for the wave elevation in the empty moonpool, with the small object and the 
large object can all be seen together in Figure 52. 
 

 
Figure 52 - Moonpool wave transfer functions, Seven Viking, empty, small and large 

 
These plots demonstrate that the presence of an object in a moonpool increases the resonance 
period and considerably decreases the response amplitude; and the larger the object, the larger 
the changes are. When an object is positioned at the bottom of a moonpool, as they were in 
the tests, it acts as a constrictor of the inlet and hence the changes of the transfer functions are 
quite reasonable, based on the findings of Kristiansen et al. (Kristiansen et al. 2011) amongst 
others. 
 
The extent to which even the small object changes the fluid motion inside the moonpool is 
striking. It is an indication of how incorrect it may be to model operations involving 
deployment through a moonpool using only transfer functions for an empty moonpool. 
 
The PIV velocity fields for the small object, evaluated at the same instances and for the same 
excitation parameters as for the empty moonpools, can be seen in Figure 53 and Figure 54. 
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Figure 53 - PIV vectors, Seven Viking small object, flow out of moonpool 

 

 
Figure 54 - PIV vectors, Seven Viking small object, flow into moonpool 
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Especially the velocity field of the outflow is attention-grabbing as it nicely illustrates the 
difference between flow separation from a rounded (the moonpool) and a sharp corner (the 
object). The sharp corner triggers vortex shedding to a much higher extent. This is also visible 
in the inflow, although the vortices are quite supressed by the narrow gap. The increased 
vortex shedding with the object inside the moonpool also leads to higher non-linear damping 
of the wave elevation, which is reflected in the transfer functions for the wave elevation; there 
is larger difference between the response levels at resonance with objects than there is 
without. 
 
The same trends can also be seen for the outflow in Figure 55 with the large object in the 
moonpool. 
 

 
Figure 55 - PIV vectors, Seven Viking large object, flow out of moonpool 

 
The wave transfer functions show that the amplitude of the wave elevation inside the 
moonpool is much lower with objects than it is without. If the wave elevation was to remain 
the same, the velocities would have to be much larger with objects than without to preserve 
the same volume flow. This is however not the case as seen in the PIV results. The velocities 
are actually smaller with an object than they are without. This is a consequence of the 
interaction between the object and the fluid which is mentioned at the end of section 2. 
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Objects in moonpool, force measurements 

The force transfer functions for the small object are presented in Figure 56 and for the large 
object in Figure 57. 
 

 
Figure 56 - Force transfer functions, small object 
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Figure 57 - Force transfer functions, large object 

 
Because of the way the transfer functions are defined (force divided by the corresponding 
elevation in the empty moonpool) the curves have a low point around the empty moonpool 
resonance region, where the actual wave elevation with the object is much smaller than for the 
empty moonpool. Correspondingly, there are high points around the resonance region of the 
actual wave elevation. 
 
It is remarkable how little the force transfer magnitude changes with excitation amplitude, 
except at the peaks in the force transfer functions. This implies a more or less linear 
relationship between the force and the excitation amplitude, which again implies, if one for a 
moment assumes the hydrodynamic force to be a combination of added mass and drag force, 
that the force is added mass-dominated. It should be kept in mind that this will not necessarily 
be the same in full scale. 
 
If it is assumed that the total hydrodynamic force can be completely described by Morison’s 
equation, i.e. the force is a sum of added mass and drag forces, it is possible to extract 
estimates for the drag and added mass coefficients using the method described in section 4. 
The resulting added mass coefficients for both objects are shown in Figure 58 and Figure 59. 
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Figure 58 - Ca, small object 

 
Figure 59 - Ca, large object 

 
The results are quite inconsistent. The coefficients change significantly as the amplitude and 
period change. The results for the drag coefficients are even more fluctuating as seen in Figure 
60 and Figure 61. 
 

 
Figure 60 - Cd, small object 

 
Figure 61 - Cd, large object 

 
The drag coefficients are unstable to an extent which makes them not very trustworthy. One 
reason for this may be that the added mass-term is much larger than the drag-term and the 
drag-force is so small that even small changes have a large impact. Moreover, it is apparent 
that the lowest forcing amplitudes are the most unstable, especially at the highest periods. 
This is, not coincidentally, the cases with the lowest fluid velocities. Because the drag 
coefficient is found by dividing a quantity by the velocity squared, it is not unnatural that the 
results may turn out undependable when the velocity is small. 
 
Although they may not have much quantitative value, the extracted estimates of the added 
mass and drag coefficients demonstrate the difficulties of precisely predicting the forces on 
objects in moonpools using Morison’s equation. 
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6. Uncertainties 

As for any kind of experiment, there were several uncertainties related to the model tests and 
their validity. The most important issues are discussed in this section. 
 

Scale effects 

The geometrical scaling ratio in the experiments was approximately 1:40. As with most 
marine model testing a Froude scaling scheme is used, implying equality of the ratio of inertia 
and gravitational forces which again implies that surface waves can be scaled directly. Effects 
arising from viscosity (which require equality in Reynolds number) are on the other hand not 
directly scalable (Steen 2012). 
 
Assuming surface waves are more important than viscous effects is probably reasonable in 
this case. However, the important vortex shedding phenomenon is partially a consequence of 
viscosity and it should be kept in mind that this effect might appear different in full scale. 
 
Also, with regards to forces on the objects in the moonpool, the Reynolds number may have 
some importance although this is often more important for spherical objects than the 
rectangular shapes considered in the current experiments. 
 

2 dimensions 

Although a 2-dimensional section of a moonpool was studied in which it was assumed that the 
lengthwise flow characteristics (into the plane) was constant, it is important to keep in mind 
that in real life everything is always in three dimensions. Even in an experiment like this it is 
impossible to completely avoid 3-dimensional effects. One indication of this can be seen in 
the time series of the individual wave probe signals inside the moonpool at large motions as 
the example in Figure 62 reveals.  
 

 
Figure 62 - Difference between middle and side in moonpool 

 
For the case shown here there is a significant difference between the wave probes in the 
middle of the moonpool versus the wave probes at the sides (wave probes 5 and 6, see Figure 
27). The case shown here is however one of the most extreme situations and for most 
instances the discrepancy was hardly noticeable. 
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While the wave elevation in most situations is practically uniform throughout the moonpool, 
there may be other smaller 3-dimensional fluid effects which are harder to identify. This could 
especially be the case for the vortices which are formed at the moonpool inlets. The PIV set-
up used in these tests identifies the vortices in one section of the moonpool, but a more 
sophisticated set-up would be necessary in order to study any changes in the vortex 
formations along the moonpool. However, this lies outside the scope of the current 
experiments. 
 
As will be shown later in section 7, the 2-dimensional set-up produces somewhat different 
results than a more realistic 3-dimensional set-up does. Because of this, the 2-dimensional set-
up should mainly be used for studying trends. 
 

Degrees of freedom 

In these tests only heave motion of the model is considered. While this is by far the most 
critical motion for excitation of the water inside a moonpool, it is not hard to imagine that the 
flow field might be affected also by horizontal translatory motions and perhaps even more by 
rotational motions like roll or pitch. It is possible that one would see more horizontal fluid 
motions inside the moonpool if these degrees of freedom were included. 
 

Harmonic motions 

The experiments described in this thesis have been performed with regular harmonic motions 
of the model. An alternative approach is to use irregular motions described by the statistical 
properties of excitation spectra.  
 
In reality, wave and vessel motions will always be irregular, which is a good reason for using 
the same approach also in model tests. However, doing this can sometimes make it harder to 
reveal the fundamental effects present in the tests which, in some ways, may get covered by a 
cloak of statistics. There are ways of extracting also the fundamental effects out of irregular 
tests, i.e. through methods based on Fourier transforms, but because the current tests mainly 
aimed to study fundamental effects and their trends (as opposed to get conditions as close to 
reality as possible), it was decided that regular motions would be the best choice. Especially 
the PIV tests would have been difficult to get any meaningful results from with irregular 
motions. 
 

Still water 

The wave elevation inside the moonpool (and outside) is, in these experiments, a consequence 
of the forced heave motion of the model only. There are no ambient incoming waves. In the 
real world on the other hand, incoming waves induce heave motions of the vessel, which 
again induce the moonpool wave elevation. If one assumes that the incoming waves causes 
the moonpool wave elevations only in this indirect manner, then it makes sense to study only 
the link between the heave and the moonpool wave. Not only does this make the results more 
generic, it also reduces the number of unknowns in the tests. 
 
However, this assumption may not be completely true. It is likely that the inclusion of 
incoming waves could have affected the results to some extent. 
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Confined depth 

The water depth in the experiments was around 1m. The maximum period of the radiated 
waves was 1.6s, and therefore, using the dispersion relation (Faltinsen 1990), the maximum 
wave length was roughly 
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This is well within the limits of what can be considered to be “deep water”, i.e. the radiated 
surface waves should not be significantly affected by the confined water volume. 
 
However, there may be other effects present beside the surface waves. Whenever the model 
was given the highest level of excitation (20mm), dirt on the bottom of the tank underneath 
the model was slowly pushed to the side, indicating a non-zero average flow which went 
down from the model to the bottom of the tank before it was separated to each side. This 
might have affected the results, especially for the higher amplitudes, but it is hard to say in 
which way and to what extent. 
 

Wave reflections 

A substantial effort was put into tuning the wave beaches to dampen out the radiated waves as 
efficiently as possible. The principally identical experiments done by Kristiansen et al. 
(Kristiansen et al. 2008) revealed how large impact fine tuning of the beaches had on the 
results.  
 
The results from the validation case of the current experiments, where Kristiansen’s set-up 
was recreated, showed good agreement. While this is a good indication of a successful tuning 
of the beaches, it is impossible to completely dampen out all radiated waves in an experiment 
like this. 
 

Measurement uncertainties 

With all kinds of measuring devices, there are limits to how accurately they can measure the 
desired quantity and also to the data acquisition frequency. The latter issue has not been a 
major concern in these experiments, as all important effects have cycles of more than 0.9 
seconds. The sampling frequency was set to 50Hz (except for the PIV measurements which 
were set to 500Hz) which is assumed to be sufficient (Steen 2012). 
 
With regards to accuracy all measurement devices were controlled at regular intervals in order 
to reveal deviations. Both the position and the force measurements were very stable 
throughout the tests. The wave probes were slightly more problematic and needed minor 
recalibration from time to time, e.g. at the start of a test session.  
 

Uncertainties in PIV measurements 

PIV equipment requires great care when setting up. It is important to adjust the laser beam 
meticulously in order to achieve a thin light sheet in the correct position. This was done by 
visual inspection, and therefore there are limits to how precisely the beam can be set up. The 
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camera also calls for careful adjustment of position and focus. It is assumed that both these 
things were done to a satisfactory level. 
 
In Figure 36 it can be seen that there were some reflections from the laser on the tank walls. 
The resulting velocity vectors in these areas are probably somewhat affected by this. The 
presence of the wave probes also disturbed the PIV measurements to some extent. 
 
The first PIV results were puzzling. Although the main flow phenomena appeared to be 
correct, there was a small yet significant “pulsating” of the vertical velocity. Figure 63 shows 
the vertical velocity at a specific point in the moonpool over a few seconds. 
 

 
Figure 63 - PIV signal with noise 

 
The signal comprises roughly of two harmonic motions; one corresponding to the excitation 
frequency and one with a frequency of around 48.5Hz. The latter one is clearly not physical, 
but it took a while to figure out the source of the noise. It turned out it was the cooling system 
of the laser which induced the vibrations through the wooden floor and probably made the 
camera “pitch” with this frequency. Figure 64 shows the energy spectrum derived from a time 
series produced by an accelerometer positioned on the floor. 
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Figure 64 - Energy spectrum of floor vibrations 

 
The peak corresponds to the noise frequency in the velocity signal. After the cooling pump 
was put on a foam mat, the vibrations disappeared and so did the noise in the PIV results. 
 

Uncertainties in PIV analysis 

Analysis of PIV pictures will always involve compromises. The size of the evaluation cells is 
a trade-off between stability and detail level. Careful selection of time-step is also vital in 
order to have the particles move sufficiently but not too much between each frame. The time 
step in these tests was set to 8ms which was necessary in order to get good results from the 
slow-moving regions of the flow. However, a consequence of this may be that the particles in 
the high speed regions, e.g. inside the vortices, may have somewhat higher displacements than 
ideal. This may have led to less accuracy in these regions. 
 
All PIV results presented here are also time-averaged, i.e. the mean values of three frames are 
always used. Due to the high sampling rate in these tests (500Hz) this is assumed not to filter 
out any physical motions. The results are also, with some exceptions, phase-averaged over 
five cycles. This approach is good for identifying periodic flow phenomena but it is important 
to keep in mind that this scheme removes effects related to randomness such as turbulence. 
 
For a quick visualization of what the phase-averaging cancels out, Figure 65 and Figure 66 
shows a snapshot of the empty Seven Viking-moonpool in which the standard deviation of the 
horizontal and vertical velocities for the five phase-averaged cycles have been estimated 
respectively. 
 

Noise frequency peak 
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Figure 65 - Standard deviation of horizontal velocities over 5 cycles 

 
Figure 66 - Standard deviation of vertical velocities over 5 cycles 
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The standard deviations reveal significant velocity components which are cancelled out by 
phase-averaging. The regions which suffer most from this are the regions closest to the 
moonpool walls, which is not very surprising as these are “wake” regions in which the flow 
typically has a very random nature. 
 
In Appendix A, PIV results for a cycle without phase-averaging for the empty Seven Viking-
moonpool is included. These results are not very unlike the phase-averaged results, but they 
are somewhat less symmetric and slightly more chaotic. 
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7. Comparison with 3D model tests 

In April 2013 Kjetil Berget carried out model tests on the moonpool of Seven Viking at 
MARINTEK on the request of Tor-Bjørn Idsøe Næss of Subsea 7. These tests involved a 3-
dimensional moonpool with a scaling ratio of 1:25. The moonpool section was put into a 
generic ship hull and connected to an actuator capable of producing motions in all degrees of 
freedom, but only heave was applied in these tests. 
 
These 3D-tests are assumed to quite accurately describe the fluid motions in the real full scale 
Seven Viking-moonpool. Because of this, quantitative results are not included in this thesis 
due to confidentiality issues. 
 
While irregular motions were used for most of the tests (in which Fourier transforms were 
applied to extract the transfer functions), some test runs were also done with regular motions. 
For the empty moonpool, the wave elevation transfer functions can be seen in Figure 67. 
 

 
Figure 67 - 3D Moonpool wave transfer functions, Seven Viking empty 

 
There are several differences compared to the results from the 2D tests as seen in Figure 46. 
The resonance period is lower in the 3D case. This is as expected, according to Molin’s work 
as described in section 2.  
 
Moreover, it seems the non-linear damping level is higher in the 3D case as well. Not only are 
all amplitudes lower than in the 2D case, the differences between the excitation levels are also 
more prominent. It is no surprise that the damping level is higher in 3D, where the flow is 
damped by inlets and perforated walls on four sides as opposed to only two sides in 2D. Also, 
in the 2D case the volumes behind the perforated walls were unrealistic small because of the 
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thick aluminium plates as discussed in section 3. In the 3D case, this issue was less important 
because of the lower scaling ratio. 
 
An object corresponding to the large object in the 2D tests was also tested in the 3D 
experiments. The resulting wave transfer functions can be seen in Figure 68. 
 

 
Figure 68 - 3D Moonpool wave transfer functions, Seven Viking large object 

 
The same trends can be seen as for the 2D tests; the resonance period increases and the 
response amplitude decreases. However, both these effects are smaller in the 3D case 
compared to the 2D case. This is probably because the blockage factor is different even 
though the full scale dimensions are equal. In 2D, the blockage factor is: 
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The differences between the 2D and the 3D tests indicate that the 2D experiments should 
mainly be used for studying trends as opposed to regarding their results directly relatable to 
reality.  
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8. Comparison of experimental results with simplified calculations 

It was of great interest to investigate how a simplified numerical scheme could predict the 
results obtained from the model tests. In this section DNV’s recommended practice for 
moonpool operations has been applied (DNV 2011) on the same conditions as in the current 
2-dimensional model tests of Seven Viking with both objects. This methodology is outlined in 
section 2. 
 
A heave excitation amplitude of 0.4m is used throughout the calculations. 
 
The first step is to determine the resonance period of the moonpool. This is done using the 
formula (DNV 2011): 
 

0

0

2 (0) (0)
( )

( ) ( )z D

A A
T dz A D

g A z A D=−

π= + κ −
−∫         (67) 

 
where T0 is the resonance period, g is the gravitational constant, z is the vertical axis ranging 
from –D at the bottom of the moonpool to 0 at the free surface, A(z) is the varying cross 
sectional area of the moonpool, A(0) is the area at the surface and A(-D) is the area at the 
inlet. κ is a constant which DNV recommends to be set between 0.45 and 0.47. However, this 
is valid only for a 3-dimensional moonpool. Molin, who originally derived the result, 
proposed a value of 0.736 for a 2-dimensional case and this value is used here (Molin 2001). 
 
To make the calculations more trivial, the rounded edges of the moonpool inlet has been 
assumed to be sharp squares instead. The resonance period of the empty moonpool then 
becomes: 
 

0, 7.20DNVT s=            (68) 

 
which, compared to the model test results for the empty moonpool, is actually quite accurate. 
This formula is based on potential theory which has often been shown to be capable of 
determining the resonance period of moonpools (Heo et al. 2010). 
 
The next step would be to determine the damping level. After this has been selected, a generic 
moonpool transfer function can be calculated. DNV provides example transfer functions of 
moonpool elevation divided by the incoming wave. These are however not directly relatable 
to the current experiments, because forced heave with no incoming waves have been used and 
transfer functions between the moonpool wave elevation and the model heave have been 
found instead. Therefore, throughout the rest of the calculations, the actual transfer function 
(for the empty moonpool) obtained in the current model tests, which can be seen in Figure 69, 
is used. Using the actual transfer function also eliminates the uncertainties related to selecting 
the correct damping level and hence makes it easier to investigate the validity of the force 
calculations isolated from the rest of the methodology and its uncertainties. 
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Figure 69 - Moonpool wave transfer function, Seven Viking empty 

The force calculations are based on Morison’s equation as described in section 2. First, drag 
and added mass coefficients must be determined for motion in an unconfined fluid domain. 
This is simple in this case, as the objects in question are squares. The coefficients, given by 
DNV (DNV 2010), are set to: 
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To correct for the confined fluid domain inside the moonpool, DNV proposes correction 
formulas given by (DNV 2011): 
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where CA and CA0 are the added mass coefficients for confined and unlimited fluid domain, 
CD and CD0 are the corresponding drag coefficients, Ab is the projected area of the body and A 
is the cross-sectional area of the moonpool. 
 
For the small square, with a blockage ratio of 0.42, the corrected coefficients then become: 
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And for the large, with blockage of 0.56: 
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The combined maximum sectional hydrodynamic forces are now found from Morison’s 
equation given by: 
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     (73) 

 
where ρ is the fluid density, b is the breadth and height of the object, az is the vertical fluid 
acceleration and w is the vertical fluid velocity. w and az are found from the moonpool RAO 
using the standard relations for harmonic motions: 
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      (74) 

 
where T is the period, ζ is the wave elevation in the moonpool, ζs is the heave motion of the 
vessel and RAO(T) is the RAO for each considered period. 
 
The results are plotted as force transfer functions and compared to those found in the model 
tests and can be seen in Figure 70. 
 
The plot clearly indicates how the simple method fails to predict not only the magnitude of 
the forces but also the trends. The main reason for this is probably because the method 
assumes that the flow field inside the moonpool is unaffected by the presence of the objects, 
but the RAO’s from the model tests with empty moonpool, with the small object and with the 
large object show that this assumption is highly questionable as demonstrated in Figure 71. 
Not only is the overall wave elevation strongly reduced with objects inside the moonpool, the 
peak is also shifted to a higher period. 
 



Leiv Aspelund – Master thesis – NTNU 2013 
 

82 
 

 
Figure 70 - Force transfer function comparison 

 
 

 
Figure 71 - Moonpool wave transfer functions, Seven Viking, empty, small and large 
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If instead the RAO’s of the moonpool with an object inside is used as a starting point for the 
calculations, the scheme yields considerably better results as seen in Figure 72. 
 

 
Figure 72 - Force transfer function comparison, expanded 

 
Although the forces also in this case are overestimated, the discrepancies are acceptable, and 
equally important, the trends are captured very well. These results give some credibility to the 
formulas for correction of the drag and added mass coefficients. 
 
One could almost be tempted to conclude that the forces on objects in moonpools can indeed 
be estimated using this scheme, provided that a transfer function for the wave elevation in the 
moonpool with the actual object is known. However, the problem lies in determining this 
transfer function, which is not a trivial task unless model tests (or perhaps cfd calculations) 
have been performed. And in such experiments the forces can easily be directly found 
anyway, which is also a more reliable method. 
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9. Conclusions 

Due to the many simplifications, and especially because of the 2-dimensional set-up, the 
results from the current experiments may not be directly relatable to real moonpools in full 
scale. Not only is there a difference in response level, there is also a discrepancy in the 
resonance period. On the other hand, the model tests have revealed very interesting trends 
which are assumed to exist also in real conditions.  
 
The most important findings are related to the tests with objects in the moonpool. It is 
remarkable how the fluid motion in the moonpool gets altered also for the smallest object 
which has a relatively modest blockage ratio. It is often assumed that such “small” objects do 
not alter the ambient flow to a significant degree. Although this could be reasonable for some 
applications, the current experiments strongly indicate that this assumption does not hold for 
the fluid motions in moonpools. 
 
The dramatic change in the moonpool wave elevation transfer function when an object is 
introduced, is the main reason why the methodology for calculating the forces on the objects 
as outlined by DNV gives such poor results. On the other hand, the calculations based on the 
actual transfer functions with an object inside the moonpool gave much better results which 
would have been acceptable for analysis of moonpool operations. This gives some credibility 
to the method of correcting hydrodynamic coefficients based on the blockage ratio (assuming 
the fluid flow is also corrected), though it is hard to say whether equally good results would 
have been found for other conditions, moonpool geometries etc. 
 
It seems the core of the problem of analysing moonpool operations lies in determining the 
correct wave elevation transfer functions, especially for moonpools with objects inside. 
Historically, a considerable effort has been put into developing methods and tools for 
determining the surface elevation in empty moonpools. Much progress has been made, but the 
reliable methods are still too complicated and time-consuming for practical use. Additionally, 
practically no effort has so far been put into finding the corresponding transfer functions with 
objects inside the moonpools, which, in the current experiments, have been found to be 
crucial for correct estimation of the forces on the objects. 
 
Today, the only reliable method for predicting forces on objects in moonpools appears to be 
experimental testing. It would probably be very beneficial to carry out a comprehensive series 
of generic model tests involving a range of typical moonpool designs and several objects of 
various sizes and levels of perforation at different positions in the moonpool. By doing this it 
would perhaps be possible to extract trends for how the moonpool wave transfer functions 
changes for various types of objects, which could hopefully lead to the development of 
reliable empirical methods. Or, if no general trends can be found, it would be an incentive for 
putting more effort into developing numerical tools. 
 
The use of PIV has been a great asset in the experiments. Although the most crucial 
measurements were obtained from conventional wave probes and force transducers, the 
ability to visualize the flow field was an immense help for understanding the causes as 
opposed to only observing the consequences. It is likely that PIV is a technique which will be 
more and more used in the future, and the complexity of the problems which it is applied to 
will increase. For research on moonpools the potential is huge. Especially when it comes to 
optimizing the design of a moonpool it would probably be very valuable to study in detail e.g. 
how the perforated walls should be designed to allow for the ideal amount of flow through 
them or which inlet configuration leads to the most vortex formation. 
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The current tests indicate that the Seven Viking-moonpool could have had a higher level of 
non-linear damping and therefore also less fluid motions simply by having a sharp-cornered 
inlet which would have resulted in stronger vortices being formed. 
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Appendix A: PIV results 

  





PIV results 

Included here are the PIV results for all configurations for a whole oscillation cycle. 
 
All cases have an excitation amplitude of 15mm (corresponding to approximately 0.6m in full 
scale for the Seven Viking-model) and a period of 1.17s (approximately 7.4s in full scale for 
the Seven Viking-model). 
 

Vector plots 

The vector plots show snapshots of the flow at eight instances over a full cycle. The vectors 
are plotted over a colour-map which displays the velocity magnitudes. 
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Seven Viking, empty moonpool 







 



Seven Viking, small object 







 



Seven Viking, large object 







 



Velocity profiles at moonpool inlet 

The plots show snapshots of the velocity profiles at the moonpool inlet over one cycle. 

Base case 

 

Seven Viking, empty 

 



Seven Viking, small object 

 

 

Seven Viking, large object 

 

  



Vector plots, Seven Viking empty, without phase-averaging 
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Appendix B: Seven Viking information flyer 

  



The Seven Viking is a state-of-the-art 
vessel, with the innovative X-BOW® it 
is designed to meet the high demands 
of Inspection Maintenance and Repair 
(IMR), Survey and Light Construction 
in some of the harshest environments.  
The versatility of the vessel allows 
for Scale Treatment and Light Diving 
Support services.

•	 Length 106.5m x breadth moulded 24.5m

•	 Service Speed: 16.0 knots

•	 Accommodation: 90 persons

•	 AHC Offshore crane: 135 Te @13m

•	 2 x Workclass ROVs

•	 1 x Observation class ROV

seabed-to-surface

Type:  
IMR, Survey & Light 
Construction 

Classification:  
DnV 1A1 with the following 
class notations: SF, E0, 
DYNPOS-AUTR, CLEAN 
DESIGN, NAUT-AW, 
COMF-V(3), DEICE, ICE-C, 
HELDK-SH(CAA-N), WS, LFL*

Seven 
Viking



 

Cranes 
Main Crane 

AHC Offshore crane  135t @13m

Maximum reach 30m
Wire length 2,000m
AHC whip line 10t @ 31m
Whip line wire length 1000m
Operational limit 5.0m Hs
 Man riding
Auxiliary Cranes
Telescopic crane for 
provision 1 x 15 Te
Telescopic cranes in 
MHS hangar 2 x 3 Te
Telescopic crane on pallet 1 x 3 Te
Telescopic crane in 
ROV hangar  1 x 1 Te 

Module Handling System
MHS fully integrated in hangar with cursor system for controlled 
launch and recovery of modules to 2,000msw in conditions up 
to 5m Hs.

Capacity to handle modules up to 70 Te and 10m height
Skidding system with storage capacity of up to 8 skidding 
pallets, including 4 indoor storage positions.

Winches: 1 x 70 Te, 1 x 20 Te, 3 x 5 Te.

Integrated AHC winch with dedicated HPU for 12 lines hydraulic 
downline.

ROV 
All ROV systems in enclosed ROV hangar
2 x Workingclass ROVs (Schilling HD), rated to 3,000 msw, 
launched over side by A-frames. AHC Umbilical winch, 2,500m 
umbilical

1 x Observation ROV (SubAtlantic Mohican), rated to 2,000 
msw, launched by A-frame. AHC Umbilical winch, 1,800m 
umbilical.

Operational limit  5.0m Hs for all systems

Scale Treatment
Scale treatment pumping spread and special product tanks 
integrated in vessel
Pumping capacity 30-2,800 l/min @ 0-345 bar
Pre heating to 90 deg
Mixing units for small volumes of additives.  

Operation control
Joint operation control room for Shift Supervisor, MHS control, 
ROV control, Scale Treatment control, third party control and 
survey with direct view to MHS.

General Information
Classification DnV 1A1 with the following class 

notations: SF, E0, DYNPOS-
AUTR, CLEAN DESIGN, NAUT-
AW, COMF-V(3), DEICE, ICE-C, 
HELDK-SH(CAA-N), WS, LFL*

Built Norway 2012
Flag State Authority Norway

Dimensions
Length Overall 106.5m
Breadth moulded  24.5m
Draught (operational)  6.5m
Draught (max) 8.0m
Freeboard at operational 
draught 5.0m
Freeboard at max draught 3.5m

Main Data
Service Speed  16.0 knots
Accommodation 90 persons (64 single cabins, 13 

semi-single cabins)
Personnel elevator
Mid Ship Helideck for SuperPuma and Sikorsky S-92, Ø26.1m 

Power generation and propulsion
Generators 2 x 4,320 kW main diesel 

2 x 1,824 kW main diesel
 1 x 250 kW emergency generator
Propulsion 3 x 3 MW contra rotating azimuth 
Thruster 1 x 1.4 MW retractable compass
 1 x 1.4 MW combi retractable 
 1 x 1.7 MW tunnel 
 SCR (NOx Catalyst) on exhaust

Tank Capacities (100%) 
Fuel	MDO	 2,100m3

Fresh water (potable)  1,300m3

Fresh Water   200m3

MEG / Brine  600m3

Special Products, LFL  450m3

Working Deck
Deck strength 10t/m2

Deck area  approx 830m2

Weld-free seafastening
Twist locks are integrated in part of the working deck for quicker 
mobilisation/demobilisation of standard containers.
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