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Abstract 

The nonlinear computer program USFOS is used extensively by oil and engineering 

companies worldwide to evaluate the ultimate limit strength and accidental limit state 

behaviour of offshore structures, notably in conjunction with reassessment of existing 

platforms. In this context it is often necessary to take into account strength reserves on 

both components and connections (joints). Generally the nonlinear behaviour of 

components in the form of buckling or large deflection, plastic bending is well known, 

while the behaviour of tubular joints during extreme plastic deformations is more 

uncertain. To large degree one has to rely on relatively few experimental data. MSL in 

UK has developed joint strength formulas expressed as nonlinear P-d curves. Such 

curves have been implemented in USFOS, but they give sometimes strange results, 

e.g.- the ductility limit is reached before ultimate strength. Ductility limits are also 

only given for axial forces and not bending moments. An alternative to physical 

testing is to perform virtual experiments by means of nonlinear finite element analysis. 

Provided that simulations are verified against available experimental data, parametric 

studies of various geometrical configurations and load conditions may expand the 

data basis. The objective of the work is to perform nonlinear analysis with ABAQUS 

of various joints and contribute to the development of the data basis. The thesis is a 

continuation of the specialization project done in 9
th

 semester.  

 

Simulation of joints with ABAQUS is performed to verify the procedure with respect 

to force-deformation behaviour and strain development. Single joints and the same 

joints as a part of a frame system plane frame system have been simulated. In this 

paper, non-linear analysis with ABAQUS of X-joints is performed and the simulation 

results are verified against existed data and studies. Conclusions and further 

recommendations are given. 

 

The results show that behavior of the joint is different when analyzed independently 

from when in frame system. The reason is that when a single joint is analyzed, the 

force doesn’t change direction. While in a frame system, the braces has a significant 

influence to the joint, as the braces can buckle, rotate, etc. which changes the direction 

of the force acting on the joints. When the through member is in tension, the other two 

braces will compress it to a very large extent, which leads to a large strain 

development. That can also explain why the frame system is more stable when the 

joint is rotated by 90 degree. It is the most critical condition when the separate braces 

are in compression, which should be avoided in reality.  

 

Key words: Ductility limits  Tubular joints  Non-linear Analysis
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The nonlinear computer program USFOS is used extensively by oil and engineering 

companies world wide to evaluate the ultimate limit strength and accidental limit state 

behaviour of offshore structures, notably in conjunction with reassessment of existing 

platforms. In this context it is often necessary to take into account strength reserves on 

both components and connections (joints). Generally the nonlinear behaviour of 

components in the form of buckling or large deflection, plastic bending is well known, 

while the behaviour of tubular joints during extreme plastic deformations is more 

uncertain. To large degree one has to rely on relatively few experimental data. MSL in 

UK has developed joint strength formulas expressed as nonlinear P-d curves. Such 

curves have been implemented in USFOS, but they give sometimes strange results, 

e.g.- the ductility limit is reached before ultimate strength. Ductility limits are also 

only given for axial forces and not bending moments.  

 

An alternative to physical testing is to perform virtual experiments by means of 

nonlinear finite element analysis. Provided that simulations are verified against 

available experimental data, parametric studies of various geometrical configurations 

and load conditions may expand the data basis. The objective of the work is to 

perform nonlinear analysis with ABAQUS of various joints and contribute to the 

development of the data basis.  

 

The work is proposed to be carried out in the following steps. 

 

1. Literature study. Describe the characteristic behaviour of tubular joints up to 

ultimate strength and in the post-ultimate strength region. Establish an 

overview of experiments that have been conducted and identify needs for 

additional data. Review of MSL joint strength formulations and how these 

have been implemented in USFOS  

2. Perform simulation of selected experiments with ABAQUS to verify the 

simulation procedure with respect to force-deformation behaviour and strain 

development. A mesh size convergence study may be performed. 

3. Perform analysis with USFOS and of single joints and the same joints as a 

part of a frame system plane frame system. Identify the force-deformation 

relationships for the joints up to initiation of fracture. The USFOS model 

shall be based on a beam element modelling and nonlinear spring 
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representation of the joint. 

4. Perform analysis of the single and integrated joints studied in pt. 3 using 

ABAQUS and USFOS using shell finite element modelling of the joints. The 

critical strain for crack initiation of the joint shall be discussed. The results of 

pt.3 and pt.4 shall be compared. 

5. Compare the results form the numerical simulations with code formulation. 

Propose modified joint formulations if need be.  

6. Conclusions and recommendations for further work 

 

Useful references: OMAE 2008-57650, OMAE2011-49874 

 

Literature studies of specific topics relevant to the thesis work may be included. 

 

The work scope may prove to be larger than initially anticipated.  Subject to approval 

from the supervisors, topics may be deleted from the list above or reduced in extent. 

 

In the thesis the candidate shall present his personal contribution to the resolution of 

problems within the scope of the thesis work. 

 

Theories and conclusions should be based on mathematical derivations and/or logic 

reasoning identifying the various steps in the deduction. 

 

The candidate should utilise the existing possibilities for obtaining relevant literature. 

 

Thesis format 

The thesis should be organised in a rational manner to give a clear exposition of results, 

assessments, and conclusions.  The text should be brief and to the point, with a clear 

language.  Telegraphic language should be avoided. 

 

The thesis shall contain the following elements:  A text defining the scope, preface, list 

of contents, summary, main body of thesis, conclusions with recommendations for 

further work, list of symbols and acronyms, references and (optional) appendices.  All 

figures, tables and equations shall be numerated. 

 

The supervisors may require that the candidate, in an early stage of the work, present a 

written plan for the completion of the work.  The plan should include a budget for the 

use of computer and laboratory resources, which will be charged to the department.  

Overruns shall be reported to the supervisors. 

 

The original contribution of the candidate and material taken from other sources shall be 

clearly defined.  Work from other sources shall be properly referenced using an 

acknowledged referencing system. 
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1. Introduction                           

Over the last decade, there has been substantial revision of the static strength design 

and assessment provisions for offshore tubular joints. Accurate predictions of the 

static collapse and push-over analyses of jacket structures become progressively more 

important due to the increasing number of aging platforms worldwide. In recent years, 

re-using of platforms originally designed for different environment conditions is 

gaining acceptance, and this accentuates the need for accurate re-assessment of 

structural performance. The accuracy of frame analysis depends primarily on three 

factors: the accurate representation of member behavior, proper modeling of joint 

behavior and the joint-frame interaction. Simulation of nonlinear member behavior 

has been developed accurately throughout the years. Realistic representation of the 

nonlinear joint behavior for many of the joint types used in offshore structures 

requires further understanding. 

 

Nonlinear computer programs are used extensively by oil and engineering companies 

worldwide to evaluate the ultimate limit strength and accidental limit state behaviour 

of offshore structures, notably in conjunction with reassessment of existing platforms. 

It is often necessary to take into account strength reserves on both components and 

connections (joints). Generally the nonlinear behaviour of components in the form of 

buckling or large deflection, plastic bending is well known, while the behaviour of 

tubular joints during extreme plastic deformations is more uncertain. To large degree 

one has to rely on relatively few experimental data. MSL in UK has developed joint 

strength formulas expressed as nonlinear P-d curves. Such curves have been 

implemented in USFOS, but they give sometimes strange results, e.g. the ductility 

limit is reached before ultimate strength. Ductility limits are also only given for axial 

forces and not bending moments. 

 

In this paper, non-linear analysis with ABAQUS of X-joints is performed and the 

simulation results are verified against existed data and studies. Conclusions and 

further recommendations are given. 
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2. Codes, and guidelines                   

2.1 NORSOK standard N-004 for tubular joints
 [1]

 

In this paper, X-joints are mainly considered about, so the properties of X-joints are to 

be focused. 

2.1.1 Definition of geometrical parameters for X-joints 

The validity range for application of the equations defined in 2.1 is as follows: 

0.2 ≤ β ≤ 1.0 

10 ≤ γ ≤ 50 

30° ≤ θ ≤ 90° 

The above geometry parameters are defined in Figure 2.1: 

 

Figure 2.1 Definition of geometrical parameters for X-joints 

2.1.2 Basic resistance 

Tubular joints without overlap of principal braces and having no gussets, diaphragms, 

grout, or stiffeners should be designed using the following guidelines.  

 

The characteristic resistances for simple tubular joints are defined as follows: 

NRd=
fyT

2

γ
M
sinθ

Q
u
Q
f
                                                                                                     (2-1) 
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MRd=
fyT

2d

γ
M
sinθ

Q
u
Q
f
                                                                                                     (2-2) 

where 

NRd = the joint design axial resistance 

MRd = the joint design bending moment resistance 

fy  = the yield strength of the chord member at the joint 

γ
M

 = 1.15 

2.1.3 Strength factor Q
u
 

Qu varies with the joint and action type. As to the X-joints,  

Axial tension:  

23β for β≤0.9 

21+(β-0.9)(17γ-220) forβ>0.9 

Axial compression 

(2.8+14β)Qβ 

Where Qβ is a geometric factor defined by: 

Q
β
=

0.3

β(1-0.833β)
 for β>0.6 

Q
β
=1.0      for β≤0.9   

2.1.4 Chord action factor Q
f
 

Q
f
 is a design factor to account for the presence of factored actions in the chord. 

Q
f
=1.0-λA

2
  

where 

λ = 0.030 for brace axial force  

= 0.045 for brace in-plane bending moment  

= 0.021 for brace out-of-plane bending moment  

The parameter A is defined as follows: 

A=C1 (
σa,Sd

fy
)
2

+C2 (
σmy,Sd
2 +σmz,Sd

2

1.62fy
2 )                                                                                 (2-3)  

Where 

σa,Sd   = design axial stress in chord 

σmy,Sd = design in-plane bending stress in chord 

σmz,Sd  = design out-of-plane bending stress in chord 

fy       = yield strength 
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C1, C2 = coefficients depending on joint and load type  

For X-joints under brace axial loading C1=20, C2=22. 

For X-joints under brace moment loading C1=25, C2=30. 

The chord thickness at the joint should be used in the above calculations. The highest 

value of A for the chord on either side of the brace intersection should be used. 

2.1.5 Design axial resistance for X and Y joints with joint cans 

For Y and X joints with axial force and where a joint can is specified, the joint design 

resistance should be calculated as follows: 

NRd=(r+(1-r) (
Tn

Tc
)
2

)Ncan,Rd                                                                                   (2-3) 

Where 

Ncan,Rd  NRd from based on chord can geometric and material properties, including 

Qf calculated with respect to chord can 

Tn       Nominal chord member thickness 

Tc       Chord can thickness 

r                 Lc/2.5D        for joints with β ≤ 0.9 

                  (4β – 3) Lc/1.5D for joints with β > 0.9 

 Lc      Effective total length  

Figure 2.2 shows examples of calculation of 𝐿𝑐 . In no case shall r be taken as greater 

than unity. 

 

Figure 2.2 examples of calculation of Lc 
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2.2 NORSOK standard N-004 for ductility 

It is a fundamental requirement that all failure modes are sufficiently ductile such that 

the structural behavior will be in accordance with the anticipated model used for 

determination of the responses. In general all design procedures, regardless of 

analysis method, will not capture the true structural behavior. Ductile failure modes 

will allow the structure to redistribute forces in accordance with the presupposed 

static model. Brittle failure modes shall therefore be avoided or shall be verified to 

have excess resistance compared to ductile modes, and in this way protect the 

structure from brittle failure. 

The following sources for brittle structural behavior may need to be considered for a 

steel structure: 

1) Unstable fracture caused by a combination of the following factors: 

- Brittle material; 

- A design resulting in high local stresses; 

- The possibilities for weld defects. 

2) Structural details where ultimate resistance is reached with plastic deformations 

only in limited areas, making the global behavior brittle, e.g. partial butt weld loaded 

transverse to the weld with failure in the weld. 

3) Shell buckling. 

4) Buckling where interaction between local and global buckling modes occur. 

NORSOK standard N-004 Rev. 2, October 2004 

NORSOK standard Page 18 of 287 

In general a steel structure will be of adequate ductility if the following is satisfied: 

1) Material toughness requirements are met, and the design avoids a combination of 

high local stresses with possibilities of undetected weld defects. 

2) Details are designed to develop a certain plastic deflection e.g. partial butt welds 

subjected to stresses transverse to the weld is designed with excess resistance 

compared with adjoining plates. 

3) Member geometry is selected such that the resistance does not show a sudden drop 

in capacity when the member is subjected to deformation beyond maximum resistance. 

An unstiffened shell in cross-section class 4 is an example of a member that may 

show such an unfavorable resistance deformation relationship. For definition of 

cross-section class see NS 3472 or NSENV 1993 1-1. 

4) Local and global buckling interaction effects are avoided. 

2.3 Nonlinear finite element analysis 

Non-linear analysis methods have been available for more than 40 years, but it is first 

during the last decade that these methods have found broad application for offshore 

structures. This is particularly true when it comes to assessment of existing structures. 
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Modern codes for offshore structures allow the use of nonlinear methods and are also 

giving some guidance on how to execute the analyses
 [2]

. Nevertheless, performing 

non-linear analysis involves many new and demanding challenges both for the analyst 

and also for those that are reviewing the work. 

3. Characteristic behavior of tubular joints 

and theoretical basis of the thesis 

3.1 Brief introduction
[3]

 

The characteristics of load-deformation of X-joints are different under different 

loading conditions, which represents the input for nonlinear spring models in the 

frame analysis. Before the ultimate joint strength is reached a bilinear model is 

employed in consistence with the plastic limit load approach for all loading conditions. 

For brace axial compression, a re-development of the joint strength occurs at a large 

deformation level due to the direct contact of the compression braces which are 

observed in the BOMEL 2D and 3D frame tests. The re-gained strength level equals 

the brace yield strength, corresponding to δy = 0.5d0. 

The strength re-development’s initialization depends on the 𝛽 ratio, as shown in figure 

3.1, which defines 𝛿𝑖  at the initial contact of the two braces. For joints with 

large 𝛽 ratios, however 𝛿i becomes impractically small (𝛿𝑖= 0 for 𝛽= 1.0). Since the 

large 𝛽 joint can undergo certain deformation before the two braces contact one 

another, 𝛿 i takes the maximum of 0.1d0 and 0.5d0sin(cos
-1𝜓 ). The 0.1d0 is a 

suggested value in the USFOS joint recommendations (USFOS, 2003). 

 
Figure 3.1 Deformation level at the initial contact of two braces for X-joints under 

brace axial compression. 
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This is confirmed by an isolated joint analysis by ABAQUS. Contact algorithm is 

implemented in the analysis so that no self-penetration of the chord inner surface is 

allowed. The deformation mode at the end of the analysis is shown in Figure 3.2 

together with the load deformation response. Once the two braces are in contact, the 

joint strength will go fast towards the yield strength. 

For brace axial tension, the reduction in strength beyond the ultimate load level 

accounts for the fracture failure in the joint at a large deformation level. As USFOS 

recommends, the crack initiation is assumed to be at a deformation level of 0.1d0. The 

joint strength beyond the first crack depends on the extent of crack in the joint. An 

estimation of the cracked joint strength is based on the 30% of the intact cross-section 

area, or, Pcr = 0.3Pu, which is arbitrary to simulate the crack failure. It is required by 

numerical analyses in USFOS that a reduction is needed in the load deformation curve. 

These load-deformation parameters are investigated in the sensitivity study. 

 

Figure 3.2 X-joint: (a) deformation mode; and (b) load-deformation curve
[4]

. 

 

Figure 3.3 Bilinear load-deformation characteristics for nonlinear spring elements
 [5] 
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The load-deformation relation re-plotted in Figure 3.3 can be evaluated with reference 

to the bilinear model. The load level PE corresponding to the limit of elasticity is 

assumed to be cPu, where c defines the ratio of the elastic limit load over the plastic 

limit load and remains less than 1.0. Since the ultimate joint strength in the current 

study is based on the plastic limit load at which  
Wp

WE
=3.0. The total work 

(WT=WP+WE) equals (k0= cPu/δE): 

WT=
1

2

c2Pu
2

k0
+
1

2
(1+c)Pu(δu-δE)=

1

2

Pu
2

k0
[c2+(1+c)c(

δu

δE
 -1)]                                           (3-1) 

WE=
1

2

Pu
2

k0
                                                                                                                    (3-2) 

WT

WE

=c2+(c+c2) (
δu

δE
-1)=4                                                                                           (3-3) 

δu=
c+4

c+1

Pu

k0
                                                                                                                  (3-4) 

or 

c=
4Pu-k0δu

k0δu-Pu
                                                                                                                (3-5) 

Based on Equation 3-1 to 3-5, δushould satisfy the conditions as denoted in equation 

below, since 0 < c < 1. 

Pu

0.4k0
<δu<

Pu

0.25k0
 

The secant stiffness of the joint at ultimate strength level is thus between 0.25k0 and 

0.4k0. 

3.2 Initial Joint Stiffness k0 

From the initial steps of the FE analysis we obtain the initial joint stiffness, where the 

stress-state in the joints remains essentially elastic. The initial joint stiffness is cast in 

a non-dimensional format based on the non-dimensional strength and deformation 

parameters adopted in the current study, and the joint stiffness follows a power 

function of 𝛾. The functions are shown in Equation 3-6 and 3-7
[6]

. 

k0=
Psinθ/fyt0

2

δ/t0
=
P

δ

d0sinθ

fyt0
2
                                                                                           (3-6) 

k0(γ,β)=f1(β)γ
f2(β)                                                                                                    (3-7) 

 

 

 

Table 3.1 X-joint stiffness for different brace loads
[7] 

Loading k0 (
P

δ

d0sinθ

fyt0
2 )or(

M

ϕ

sinθ

fyt0
2d
) 

FE/k0 

Mean Standard No. of 
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Deviation data 

Axial 1185γ(0.8β
2
+0.15β-0.4) 1.00 0.08 40 

IPB (410β2-337β+91)γ(-0.46+1.15) 1.00 0.04 15 

OPB 123β
(1.8+0.095γ)

γ
(2.9β2-4.4β+2.5)

 1.02 0.05 15 

The coefficients in Equation 3-6 and 3-7 are assumed to depend on 𝛽, and determined 

by regression analysis. In Eq. 3-7, f1(β) and f2(β) follow the polynomial relationship. 

The stiffness formulation k0 is tabulated in Table 3.1. The statistical comparison with 

respect to FE data is incorporated in the same table. 

3.2 Ultimate Joint Strength 

The ultimate strength equation is simplified based on the exact ring model solution 

proposed by van der Vegte (1995)
[8]

. The X-joint strength formulation is shown in 

Equation 3-8 for brace axial compression, axial tension, IPB and OPB respectively. 

Modifications have been included to incorporate the dependence for thick-walled 

joints. 

Pusinθ

fyt0
2
=

p
1

(1-p
2
β
γ)
γ(p3+p4β)                                                                                          (3-8) 

Mu,ipbsinθ

fyt0
2d1

=p
1
β
p2γp3                                                                                                   (3-9) 

Mu,opbsinθ

fyt0
2d1

=p
1
γf(β)                                                                                                   (3-10) 

Table 3.2 X-joint strength formulation for different brace loads 

Loading 
Pusinθ

fyt0
2 or

Musinθ

fyt0
2d1

 

FE/k0 

Mean 
Standard 

Deviation 

No. of 

data 

Axial 
8.8

(1-0.4βγ)
γ(-0.2+0.56β) 0.98 0.08 51 

IPB 3.1βγ0.65 1.00 0.07 15 

OPB 3.8γ0.53β
2.4

 0.99 0.08 15 

 

Table 3.2 shows the final equations for X-joints obtained using nonlinear regression 

analyses. Table 3.2 also shows the statistical comparison of the proposed equation and 

FE data. The representation for X-joints under tension is based on the ultimate joint 
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strength instead of the strength corresponding to the first crack, since fracture failure 

does not become dominant until it achieves a large deformation level, which is 

different from ISO formulation. 

3.3 Coefficients c and δu 

To form a complete bilinear model, the coefficient c needs to be determined to 

evaluate PE (= cPu) and ME (= cMu). For X-joints, a convenient value of 0.8 is 

assumed for c under all loading conditions. 

 

Table 3.3 Comparison of 𝜹𝒖by Eq. 8.4 and FE results for X-joints 

Loading No. of data 

δuor ϕ
u
(FE) /δu or ϕ

u
(Eq. 

3-4 & 3-5) 

Mean Standard Deviation 

Axial 40 0.98 0.08 

IPB 15 1.00 0.07 

OPB 15 0.99 0.08 

 

The joint deformation δu is calculated using Equation 3-4 and compared to the joint 

deformation obtained from the FE analysis. Table 8.4 shows a good agreement in the 

deformation level between Equation 3-4 and the FE data, which indicates the 

appropriateness of the c value assumed. 

3.3 MSL Joint behavior and ductility limits 
[9] 

3.3.1 General 

 

The current joint capacity check included in USFOS covers simple tubular joint and is 

based on capacity formulas and description of the joint behavior developed during the 

MSL Joint Industry Projects. In addition to the original MSL formulations, code 

variants from Norsok, ISO and API are also implemented.   

 

3.3.2 MSL variants 

 

The MSL Joint Industry Projects developed several sets of capacity formulas based on 

a large database of laboratory test results.  
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The original MSL versions include 

•Mean Ultimate   

•Characteristic Ultimate   

•Characteristic First Crack 

 

Mean Ultimate represents the statistical mean failure of the joints tested (top of the 

force-displacement curve, "the most probable failure load").   

Characteristic Ultimate is based on the same data, but the as the title say, the capacity 

is reduced in order to account for the spreading in the test results.  

Characteristic First Crack is in most cases equal to "Characteristic Ultimate" but is 

further reduced in some cases in order to avoid degradation of the joint for repeated 

loading. This version is recommended for structures subjected to repeated load actions, 

e.g. wave loading.   

 

3.3.3 Code variants 

Note that the first crack characteristic capacity equations in the code variants are 

implemented in USFOS excluding the safety factors given in the codes. The 

additional safety level required by the code for the various limit states analyzed must 

in USFOS be included on the load side (by increasing the applied loads). 

 

The MSL capacity check formulas have been adopted and adjusted by Norsok and 

ISO. The code variants are based on the MSL First Crack capacity formulas. The (Qu) 

expressions are nearly identical, but the correction factor for chord utilization differs 

from MSL. Also the interaction between axial force, in-plane and out-of-plane 

bending differs. The code variants put more weight on the out-of plane bending 

component. 

 

The formulas are also based on the MSL database, however, the database used to 

develop the latest joint capacity equations for API RP2A are extended using results 

from FE analyses. API RP2A (21st edition) is currently (2009) the most updated code 

with respect to joint capacity.  

 

In this paper Norsok-004 is discussed and the other codes are neglected. 

3.3.4 Joint P-D curves 

The following expressions show the original MSL proposed relationship between the 

joint force/moments and joint displacements/rotations. 
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P=ϕPu (1-A [1- (1+
1

√A
) exp(-B

δ

ϕQ
f
FyD

)]

2

)                                                         (3-11) 

M=ϕMu (1-A [1- (1+
1

√A
) exp(-B

θ

ϕQ
f
Fy
)]

2

)                                                         (3-12) 

 

 

 

Table 3.4 Coefficients A and B 

Joint 

Type 
Load Type 

Coefficient 

A B 

X 

Compression ((γ-4)sin3θ) /62 600β+13500 

Tension 0.001 
12000𝛽

+ 1200 

IPB 0.001 9700𝛽 + 6700 

OPB 0.001 8600𝛽 + 1200 

 

Where γ and β are the parameters shown in section 2.1.1.  

3.3.5 MSL Ductility limits 

The MSL proposed ductility limits of X-joints for axial deflection are: 

Mean:  

δ

D
=0.13-0.11β 

Characteristic: 

δ

D
=0.089-0.075β 

 

In USFOS, the ductility limit is implemented by reducing the axial joint capacity to a 

small number for deformations larger than the ductility limit. No formulations are 

identified for mean and characteristic fracture criteria related to other degrees of 

freedom. 

 

From the limits it is seen that the ductility limits are very conservative. It is no more 

than 0.13 times the out diameter. While during the analysis by ABAQUS, it is seen 

that the joints can deform much larger than the limit before they reach the yield stress 

limit, which will be shown later. 
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3.4 The BWH instability criterion
[10] 

3.4.1 Introduction 

When exploring the limits of metal sheets it is important to give reasonable prediction 

of fracture. This is true for metal forming processes and in crash worthiness analyses 

where failure may reduce the resistance of a structure significantly. In industrial 

forming processes, the Keeler–Goodwin approach, see Keeler and Backhofen 

(1964)
[11]

 and Goodwin (1968)
[12]

, has for many years been the dominating method to 

estimate failure. In this method, the principal strains (ε
1
,ε2) at incipient plastic 

instability are plotted in a forming limit diagram (FLD). Figure 3.4 illustrates an 

example of such a diagram. 

 
Figure 3.4 Typical forming limit diagram. 

Proportional strain paths are assumed when the FLD is established which means that 

the ratio between the minor principal strain rate ε̇2 and major principal strain rate ε̇1 

remains constant during deformation. This may not necessarily be the case in 

processes where large deformation occurs, e.g., industrial metal forming applications 

and sheet metal deformation in collision processes. The loading path may be changed 

due to various effects, such as material hardening, changed specimen geometry and 

contact. Several authors have reported that non-proportional strain paths may change 

the forming limits of materials, e.g., Ghosh and Laukonis (1976)
[13]

 and Graf and 

Hosford (1993)
[14]

. Awareness of this effect was raised during the 1970s, through 

FLDs derived from experiments on pre-strained specimens, e.g., Ghosh and Laukonis 

(1976)
[15]

. Later documentation on this was published during the 1980s and 1990s; see 

for example Rocha et al. (1985)
[16]

, Graf and Hosford (1993)
[17]

. Although its 

generality may be questioned, the Keeler–Goodwin method has not changed much 

from its initial form. Reasons for this may be that FLDs are intuitive and easy to use. 

More complex methods require more resources, both from computers and the ones 
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applying them. 

 

A simple alternative to strain based FLDs is stress based FLDs. Such diagrams were 

first presented by Arrieux et al. (1982)
[18]

, and later by Stoughton (2000, 2001)
[19]

, 

Stoughton and Zhu (2004)
[20]

 and Wu et al. (2005)
[21]

. The idea is that stress based 

criteria remains more or less unaffected by altered strain paths. Furthermore, the 

nature of this type of formulation is simple and easily implemented into a finite 

element (FE) code. 

 

The BWH criterion is meant to offer a simplified way to estimate the onset of local 

necking. The verification of the BWH criterion is carried out in two separate series of 

analyses. The first one is a set of analytical considerations, which is compared with 

FLDs found in literature. The second set of analyses is performed numerically using 

the finite element code LS-DYNA, see Hallquist (2007a, b)
[22]

. The finite element 

simulations are further compared with benchmark tests (large scale bulge tests) 

provided by Tornqvist (2003)
[23]

. 

 

3.4.2 The BWH instability criterion 

The forming limit diagram, as it is most often presented, is an intuitive way of 

displaying the limits of materials. However, as it has been highlighted, it is only 

strictly valid for proportional straining, i.e., the strain rate ratio β=ε̇2/ε̇1 remains 

constant. Ghosh and Laukonis (1976)
[24]

 and Graf and Hosford (1993)
[25]

 have shown 

that for non-linear strain paths, the FLD may change. One simplified way of 

circumventing this problem is to adopt stress based forming limit curves (FLC). This 

methodology has been strongly argumented for by Stoughton, see for example 

Stoughton (2000, 2001)
[26]

 and Stoughton and Zhu (2004)
[27]

. Stresses can be directly 

coupled to the plastic strain rates through the relations between the strain rates and the 

conditions for yielding and plastic flow. If the yield function and the potential for 

plastic flow are assumed identical, the relations between strain rates and stresses can 

be found from the associated flow rule 

ε̇ij=λ̇
∂f

∂σij
                                                                                                                 (3-13) 

where ε̇ij and σij denotes plastic strain rate and stress tensor on index form, k is the 

plastic multiplier, and f describes the yield function. If J2 flow theory and plane 

stress conditions are assumed, the relation between the strain rate ratio b and the 

principal stresses σ1 and σ2 can be expressed as 

α=
σ2

σ1
=
1+2β

β+2
                                                                                                           (3-14) 

Note that only for plastic strains is this relation valid. Elastic strains are neglected, 

which is reasonable since plastic strains are much larger. In Figure 3.5, an example of 



Ductility limits of tubular joints                      

16 

a strain based FLD (a) and a stress FLD (b) is shown. The difference between these is 

that the stress based FLC remains fixed in the stress space for non-linear strain paths, 

while the strain based FLC may change for various combinations of non-proportional 

straining. 

 

3.4.2.1 Hill’s local necking criterion 

Hill (1952)
[28]

 proposed a criterion for local necking in the negative β regime. He 

assumed that a local neck will form with an angle ϕ to the direction of the major 

principal stress. Within this neck, the strain increments along the narrow necking band 

will be zero. The orientation of the neck may be expressed as ϕ=tan-1 (1/√-β), which 

yields rational results only for negative values of b. At the instant a neck is formed, 

the effects from strain hardening and the diminution in thickness balance each other 

exactly. This means that the fractions within the material reach a maximum value at 

the point of local necking. This gives traction increments equal to zero, dT1=0, at the 

point of necking, which leads to the following local necking criterion 

dσ1

dε1
=σ1(1+β)                                                                                                          (3-15) 

Assuming that the material stress–strain curve can be represented by the power law 

expression, σeq=Kεeq
n  , where (K, n) are material parameters and (σeq, εeq) are the 

equivalent stress and strain, and that proportionality between stress rates and stresses 

can be assumed, i.e., 

α=
σ̇2

σ̇1
=
σ2

σ1
                                                                                                                (3-16) 

the equivalent strain at local necking can be expressed as 

εeq=
2n

√3

√β2+β+1

1+β
                                                                                                     (3-17)  

 

Figure 3.5 Forming limit diagrams in (a) strain space, (b) stress space. Both figures 
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illustrate the same materials. Note that the figure (b) is normalized by the powerlaw 

parameter K in σeq=Kεeq
n , where (σeq, εeq) are the equivalent stress and strain 

If proportional straining is assumed, the familiar strain based Hill’s expression 

appears 

ε1
*=

ε̂1

1+β
                                                                                                                   (3-18) 

Here ε̂1  is equal to the power law exponent n, although measured values may 

sometimes yield better correlation with experiments. As equation Eq. 3-18 is based on 

proportionality it has limited use. Alternatively, a path independent stress based FLC 

may be found directly from Eq. 3-17 and the power law expression. This gives the 

equivalent stress at local necking (note that also here refers to the power law exponent 

n) 

εeq=

(

 
2ε̂1

√3

√β2+β+1

1+β

)

 

n

                                                                                            (3-19) 

This results in the following major principal stress 

σ1=
2K

√3

1+
β
2

√β2+β+1

(
2

√3

ε̂1

1+β
√β2+β+1)

n

                                                                    (3-20) 

A similar derivation has been shown by Stoughton and Zhu (2004)
[29]

. 

 

3.4.2.2 The Bressan–Williams shear instability criterion 

Hill’s local necking criterion yields only rational results for negative β values. In the 

positive regime, other methods of estimating the onset of local necking are needed. A 

popular solution to this goes through the methodology established by Marciniak and 

Kuczynski (1967) (M–K)
[30]

. This procedure introduces pre-existing defects within 

the material, which trigger local necking. The defects are often introduced as a groove 

within a material element. During deformation, the strain field is solved incrementally. 

Local necking is initiated once the material within the groove starts to strain at a 

significantly higher rate than the surrounding material and the strain rate ratio b 

within the emerging neck approaches zero (plane strain). The M–K method describes 

in a physical way the initial stage of local necking and as for stress based approaches, 

it does handle non-proportional straining. The drawback, however, is that it becomes 

computationally demanding if used in finite element analyses. Either one has to apply 

a high number of small elements in order to include small imperfections, or the M–K 

procedure needs to be introduced into each finite element. Hence, a much simpler 

stress based instability criterion known as the Bressan–Williams criterion (BW) is 

adopted, Bressan and Williams (1983)
[31]

. Contrary to the M–K method, the BW 
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criterion may be solved analytically and can be used for failure estimation with 

reasonable precision at a low cost. 

 

In plasticity, the main mechanism of deformation comes from slip arising from shear 

on certain preferred combinations of crystallographic planes. Furthermore, it has been 

observed by experiments that failure planes in sheet metal lie close to the direction of 

maximum shear stress, see Bressan and Williams (1983)
[32]

. It is therefore reasonable 

to assume that the instability may take place before any visual signs of local necking. 

Thus, a shear stress based instability criterion may well be useful in estimating the 

point of local necking. As presented by Bressan and Williams (1983), the BW 

criterion has a simple expression and has been applied with good results. The basis for 

the BW expression follows three basic assumptions. First of all, the shear instability is 

initiated in the direction through the thickness at which the material element 

experiences no change of length. This indicates a critical through thickness shear 

direction. Secondly, the instability is triggered by a local shear stress which exceeds a 

critical value. This means that the initiation of local necking is described as a material 

property. Finally, elastic strains are neglected. This is reasonable since the elastic 

strains are small compared to the plastic strains at local necking. 

 

From Fig. 3, and from the assumptions above, a mathematical formulation for the BW 

criterion can be found. As illustrated in Figure 3.6a, the inclined plane through the 

element thickness at which shear instability occurs (indicated by the plane normal xn) 

forms an angle π/2-θ to the shell plane. The material experiences zero elongation in 

this direction, indicating that ε̇t=0. This gives the following relation between the angle 

of the inclined plane and the principal strain rates 

 ε̇t=
 ε̇1+ ε̇2

2
+
 ε̇1- ε̇3

2
cos 2 (θ+

π

2
)=0                                                                          (3-21) 

Where cos 2(θ+π/2)= cos 2θ, which further gives 

cos 2θ =
 ε̇1+ ε̇3

 ε̇1- ε̇3
                                                                                                       (3-22) 

 

Figure 3.6 (a) Local shear instability in a material element. Note that no elongation 
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takes place in the xt direction. (b) Shows the stress components in a Mohr’s circle. 

 

Assuming plastic incompressibility,  ε̇3=- ε̇1(1+β), the angle θ can be found as a 

function of the ratio β 

cos 2θ =-
β

2+β
                                                                                                           (3-23)  

The corresponding stress state can be obtained from the rules of stress transformation, 

or simply by drawing up Mohr’s circle, Figure 3.6b. This gives the following relation 

between the inclined plane and the stresses involved 

τcr=
σ1

2
sin 2θ                                                                                                             (3-24) 

where τcr is the critical shear stress. Finally, equations may be combined into the 

expression which gives the BW criterion 

σ1=
2τcr

√1- (
β
2+β

)
2

                                                                                                        (3-25) 

A similar derivation is given by Brunet and Clerc (2007)
[33]

. Bressan and Williams 

initially suggested calibration either from uniaxial tensile tests or biaxial tests. 

Another alternative may be calibration at plane strain, β= 0, through notched 

specimens or simply from Hill’s analysis. If the BW criterion is calibrated from Hill’s 

expression at plane strain, the critical BW shear stress takes the following form 

τcr=
1

√3
K (

2

√3
ε̂1)

n

                                                                                                  (3-26) 

Also here, ε̂1 is equal to the power law exponent n. 

 

3.4.2.3. The Bressan–Williams–Hill criterion 

The BW criterion was initially intended for the positive quadrant of the FLD, but the 

mathematical expression is also valid for negative values. However, as the strain rate 

ratio becomes negative, the validity of the BW criterion becomes questionable. Hence, 

in order to cover the full range of β, the Hill and BW criteria have been combined into 

one criterion, from now on referred to as the BWH criterion. Formulated in terms of 

the strain rate ratio, β, the criterion reads 

σ1=
2K

√3

1+
1
2
β

√β2+β+1

(
2

√3

ε̂1

1+β
√β2+β+1)

n

,              β≤0 
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σ1=
2K

√3

(
2

√3
ε̂1)

n

√1- (
β
2+β

)
2

,                                                    otherwise 

 

The BWH criterion is illustrated in both strain and stress space in Figure 3.5 for 

various hardening exponents, n. 

 

3.5 Introduction of Nonlinear Analysis
[34] 

3.5.1. General  

Structural analysis, the finite element method included, is based on the following 

principles: 

 Equilibrium (expressed by stresses) 

 Kinematic compatibility (expressed by strains) 

 Stress-strain relationship 

 

When doing linear analysis it is assumed that displacements are small and the material 

is linear and elastic. When the displacements are small, the equilibrium equations can 

be established with reference to the initial configuration, which means that the strains 

and displacement gradients (derivatives) have linear relation corresponding to 

Hooke’s law. 

 

However when the ultimate strength of structures such that buckle and collapse is to 

be calculated, small displacements and linear material assumptions are no longer 

available and accurate. If the change of geometry is accounted for, when establishing 

the equilibrium equations and calculating the strains from displacements, a 

geometrical nonlinear behavior is accounted for. Analogously, material nonlinear 

behavior is associated with nonlinear stress-strain relationship. 

 

Nonlinearity may be also related to the boundary condition, i.e. when a large 

displacement leads to contact. Boundary non-linearity occurs in most contact proble- 

ms, in which two surfaces come into or out of contact. The displacements and stresses 

of the contacting bodies are usually not linearly dependent on the applied loads. This 

type of non-linearity may occur even if the material behavior is assumed linear and 

the displacement are infinitesimal, due to the fact that that the size of the contact area 

is usually not linearly dependent on the applied loads, i.e. doubling the applied loads 

does not necessarily produce double the displacement. If the effect of friction is incl- 
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uded in the analysis, then slick-slip behaviour may occur in the contact area which 

adds a further nonlinear complexity that is normally dependent on the loading history. 

 

There are several areas where nonlinear stress analysis may be necessary: 

 Direct use in design for ultimate and accidental collapse limit states. Modern 

structural design codes refer to truly ultimate failure modes and not only first 

yield and analogous modes. 

 Use in the assessment of existing structures whose integrity may be in doubt due 

to (a) visible damage (crack, etc.) concern over corrosion or general ageing. The 

above will largely relate to the ultimate limit state because, in many cases, the 

serviceability limit state will already have been exceeded and yet key question 

still remain such as: Is the structure safe? Should it be repaired and if so, how will 

any proposed strengthening work? Can it be kept in service for a little time 

longer? 

 Use to help to establish the causes of a structural failure. 

 Use in code development and research: (a) to help to establish simple ‘code 

based’ methods of analysis and design, (b) to help understand basic structural 

behavior and (c) to test the validity of proposed ‘material models’. 

 

With the new generation of inexpensive yet powerful computers, solution cost is no 

longer the major obstacle it has been. However, the complexity of nonlinear stress 

analysis still remains to provide the ‘expert’ as well as the unwary novice with many 

headaches. 

 

Nonlinear analyses are applied in all the ways mentioned above. However, a signify- 

cant increase in the use of nonlinear stress analyses in the assessment of existing stru- 

ctures is envisaged and eventually in the direct design of more routine structures. This 

will occur as hardware becomes cheaper and faster and software becomes more robust 

and user-friendly. 

 

It will simply become easier for an engineer to apply direct analysis rather than code 

based charts. However, problems will arise because the latter often include ‘fiddle 

factors’ relating to experience, uncertainty, etc. The advent of more computer-based 

analysis procedures will lead to the need for a ‘surrounding’, probably computer 

based, 'code' to incorporate the ‘partial factors’ including those factors (often now 

hidden) relating to the degree of uncertainty of the analysis. The analysis would have 

to be directly embedded in a statistical reliability framework. 

 

3.5.2 Nonlinear material behavior 

A material is called nonlinear if stresses σ and strains ε are related by a strain 
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dependent matrix rather than a matrix of constants. Thus the computational difficulty 

is that equilibrium equations must be written using material properties that depend on 

strains, but strains are not known in advance. Plastic flow is often a cause of material 

nonlinearity. The present section deals with formulation of elastic-plastic problems by 

considering the one dimensional case. 

 

Assume that yielding has already occurred, and then a strain increment dε takes place. 

This strain increment can be regarded as composed of an elastic contribution dεe and 

a plastic contribution dεpso that dε=dεe+dεp. The corresponding stress increment can 

be written in various ways 

dσ=Edεe=E(dε-dεp)  dσ=Etdε and dσ=H
'dεp 

Where H' is called the plastic tangent modulus as given by ∂σ/∂εp. Substitution of 

the first and third into the second yields 

H'=
1

1
Et
-
1
E

 or Et=E (1-
E

E+H'
)                                                                                    (3-27) 

where Et is the tangent modulus. When written in this form, the expression for Et is 

similar to a more general expression used for multiaxial states of stress. If E is finite 

and Et=0, then H'=0, and the material is called “elastic-perfectly plastic”. 

 
  Figure 3.7 characteristic features of one-dimensional stress-strain relationships. 

 

A summary of elastic-plastic action in uniaxial stress is as follows: 

 

1) The yield criterion states that yielding begins when |σ| reaches σ , where in 

practice σ  is usually taken as the tensile yield strength. Subsequent plastic 

deformations may alter the stress needed to produce renewed or continued yielding; 

this stress exceeds the initial yield strength σ  if Et>0. 

 

2) A hardening rule, which describes how the yield criterion is changes by the history 

of plastic flow. For example, imagine that the material first has been loaded to point B 
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and then unloading occurs from point B to point C in Figure 3.7a. With reloading 

from point C, response will be elastic until σ>σB, when renewed yielding occurs. 

Assume then that unloading occurs from point B and progresses into a reversed 

loading as shown in Figure 3.7b. If the yielding is assumed to occur at |σ|=σB the 

hardening is said to be isotropic. However, for common metals, such a rule is in 

conflict with the observed behavior that yielding reappears at a stress of approximate 

magnitude σB-2σ  when loading is reversed. Accordingly, a better match to observed 

behavior is provided by the “kinematic hardening” rule, which (for uniaxial stress) 

says that a total elastic range of 2σ  is preserved. 

 

3) A flow rule can be written in multidimensional problems. It leads to a relation 

between stress increments dσ and strain increments dε. In uniaxial stress this relation 

is simply dσ=Etdε, which describes the increment of stress produced by an increment 

of strain. Note, however, that if the material has yet to yield or is unloading, 

then dσ=Edε, (e.g., Figure 3.7a, complete unloading from point B leads to point C and 

a permanent strain εp). 

3.5.3 Solution techniques 

While in linear analysis the solution always is unique, this may no longer be the case 

in non-linear problems. Thus the solution achieved may not necessarily be the 

solution sought. 

The resultant of internal forces can be expressed as 

Rint=∑(ai)
T
S
i

i

                                                                                                     (3-28) 

and the total equilibrium can be expressed as 

Rint=R                                                                                                                     (3-29) 

Hence, the equations that need to be solved are formulated in terms of a total and an 

incremental equation of equilibrium 

∑(ai)
T
S
i

i

=R                                                                                                          (3-30) 

KI(r)dr=dR                                                                                                             (3-31) 

For a given external load, R the displacement vector r is sought. 

Various techniques for solving these non-linear problems exist. Herein three types of 

methods will be briefly described, namely: 

  Euler-Cauchy method) 

  (Newton-Raphson method) 

  

In this paper, these methods are not considered, but the advanced solution is 

considered. 
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3.5.4 Advanced solution procedures 

General 

The solution procedure described so far are combination of incremental load coupled 

with full or modified Newton-Raphson iterations. Because the plastic flow rules are 

incremental in nature elasto-plastic problems should strictly be solved using small 

incremental steps. For, no matter how accurately flow rules and keeping on the yield 

surface may be satisfied within an increment, the solution is only in equilibrium at the 

end of each increment after equilibrium iterations. However, often acceptable 

solutions can be obtained with large steps. 

 

Although incremental-iterative techniques provide the basis for most nonlinear finite 

element computer programs, additional sophistications are required to produce 

effective, robust solution algorithms. An extensive of more refined methods are 

discussed e.g. in Chapter 9 of Crisfield (1991). In this section a brief review of such 

methods is given. 

 

In the present section emphasis will be placed on arc-length techniques for solving 

these problems. Prior to their introduction, analysts either used artificial springs, 

switched from load to displacement control or abandoning equilibrium iteration in the 

close vicinity of the limit point. In relation to structural analysis, the arc-length 

method was originally introduced by Riks [1972] and Wempner [1971] with later 

modifications being made by a number of authors. 

 

The limit point represents the ultimate strength. There are several reasons: 

i) In many cases it may be important to know not just the collapse load, but whether 

or not this collapse is of a “ductile” or “brittle “nature. 

ii) The structure with the characteristic displayed in Fig. 12.22 may represent a 

component in structure. The ultimate behavior of a redundant structure consisting of 

such components would depend upon the post-ultimate beyond limit point, L) 

behavior of the component. 

Method 

As a starting point the global equilibrium equation is written as: 

g(r, λ)=Rint(r)-λRref=                                                                                            (3-32) 

where Rref is a fixed external load vector and the scalar λ is a load level parameter. 

Equation above defines a state of “proportional loading” in which the loading pattern 

is kept fixed. Non-proportional loading will be briefly mentioned later in this section. 

 

The essence of the arc-length method is that the solution is viewed as the discovery of 

a single equilibrium path in a space defined by the nodal variables, r and the loading 

parameter, λ. Development of the solution requires a combined incremental (also 

called predictor) and iterative (also called corrector) approach. 
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Many of the materials (and possibly loadings) of interest will have path-dependent 

response. For these reasons, it is essential to limit the increment size. The increment 

size is limited by moving given distance along the tangent line to the current solution 

point and then searching for equilibrium in plane that passes through the point thus 

obtained and that is orthogonal to the same tangent line (Figure 3.8c). 

 

In figure 3.8c the arc-length control strategies in the solution of nonlinear equations 

are illustrated and compared with load and displacement control. For instance if load 

incrementation is applied, the iterations are carried out to correct the displacements. 

When the arc-length method is applied the iterations are carried out with respect to 

both the load and displacements. 

 

Figure 3.8Geometric representation of different control strategies of non-linear 

solution methods for single d.o.f. 

a) Load control, b) state control, c) arc-length control 

The arc length is formulated as an additional variable involving both the load and 

displacement. The increment in the load-displacement space can be described by a 

displacement vector  r and a load increment parameter  λ, such that  R = λRref. 

This formulation results in an additional equation to be solved. The advantage of the 

extra equation is that the solution matrix never becomes ‘singular’ even at the limit 

points. Therefore, the solution matrix is re-assembled with N+ 1 variable, where N is 

the total number of the variables (degrees of freedom) of the system. However, the 

disadvantage is that the solution matrix becomes unsymmetric in some formulations, 

which may incur an increase in computing time and/or computer storage, particularly 

for very large problems. First the increment (predictor) from the “First point” is made 

along the tangent. Then, this solution is corrected iteratively to reach the “Second 

point” and so on. 

 

Several methods exist to obtain the arc length, for example by making the iteration 

path follow a plane perpendicular to the tangent of the load-displacement curve, as 

shown in Figure 3.9. Alternatively, instead of a normal plane, more sophisticated 

paths such as spherical or cylindrical planes can be followed, and the solution matrix 

can be manipulated to become symmetric (see, for example, Crisfield [1991]). 
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Figure 3.9: Schematic representation of the arc-length technique. 

A geometrical interpretation of the incremental iterative approaches by Riks 

Wempner and Ramm is sketched in Figure 3.10. While in Ramm’s method the 

iterative corrector is orthogonal to the current tangential plane during the iteration, it 

is orthogonal to the incremental vector ( r0, r0)in the Riks-Wempner methods. 

 

Figure 3.10 Arc-length control methods (Crisfield, 1991) 

An alternative iterative method is so-called orthogonal trajectory iterations (Fried, 

1984). the first step in this method can be illustrated by reference to Figure 3.8. The 

first iteration is then assumed to be orthogonal to the vector S’P’ instead of SP. The 

resulting iterative solution will appear as shown in Fig. 12.33. 

 

Haugen (1994) found that this method was more efficient than the normal plane 

iterations. 



Ductility limits of tubular joints                      

27 

 

Figure 3.11 Arc-length method with orthogonal trajectory iterations. 

Automatic incrementation 

To achieve computational efficiency the load increment should be chosen depending 

upon the degree of nonlinearity of the problem. Methods have been established based 

on the curvature of the nonlinear path (den Heijer and Rheinboldt, 1981) or the 

so-called current stiffness parameter (Bergan et al, 1978): 

Sp
i
=
 r1

T
 R1

 λ1
2

 λi
2

 ri
T
 Ri

                                                                                           (3-33) 

Sp
i
 refers to increment No.i.  

The initial value of Sp
i (Sp

1) is 1.0. For stiffening system it will increase. For softening 

system it will decrease. If Sp
i changes sign the sign of the increment should be changed. 

 

Numerical experiments show that nearly the same numbers of iterations are requested 

to restore equilibrium when the increments were chosen according to the approach of 

Bergan et al.( 1978). 

 

Ramm (1981) proposed another approach for estimating the necessary increment  λ 

(load incrementation) or  λ (for arc-length method). The new arc-length, ln is 

obtained by 

 ln= l0 (
Id

I0
)
1/2

                                                                                                        (3-34) 

where  0 is the “old” arc-length, and Id and I0 are the desired number of iterations 
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(given as input) and the number of iterations when the old arc-length was used. This 

approach requires a suitable estimate of the initial arc-length. 

 

An alternative tactic is to apply load incrementation for early increments and switch 

to arc-length control once a limit point is approached. 

 

The current stiffness parameter can be used to decide the switch from load 

incrementation (or displacement control) to the arc-length method. An alternative 

indicator of when the limit point is approached is the check of negative values on the 

diagonal of the incremental stiffness matrix, i.e. negative pivot elements in the 

solution algorithm. 

 

In particular the current stiffness parameter may be used to control the solution 

strategy at limit points or bifurcation points. Alternative changes may be made when 

the current stiffness is below a limit value, namely 

 the sign of the incrementation is changed 

 iteration may be suppressed and a simple incrementation may be used. Iterations 

are then resumed when   
𝑖

 increases beyond a specific limit (see Figure 3.12). 

 

Figure 3.12 Possible choice of solution algorithm for a problem with limit point 

 

Non-proportional loading 

 

The solution procedures in this chapter have been based on the equilibrium 
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relationship of (12.101) which implies a single loading (or displacing) vector, Rref, is 

proportionally scaled via λ. For many practical structural problems, this loading 

regime is too restrictive. For example, we often wish to apply the “dead load” or 

“self-weight” and then monotonically increase the environmental load. Even more 

general load conditions may be required. Fortunately, many such loading regimes can 

be applied by means of a series of loading sequences involving two loading vectors, 

one that will be scaled (the previous Rref) and one that will be fixed Rref. The external 

loading can then be represented by 

R= R̅ref+λ Rref                                                                                                       (3-36) 

so that the out-of-balance force vector becomes 

g= Rint-R̅ref-λ Rref                                                                                                   (3-37) 

 

3.5.5 Direct integration methods 

General 

Up to now the methods for directly solving the statistic nonlinear equation have been 

based on incrementation of loads or displacements possibly combined with iterative 

methods. These are often considered standard methods for solving nonlinear problems 

(e.g. in ABAQUS). 

An alternative approach is to use so-called finite difference methods for direct 

integration of the dynamic equation of motion: 

 r̈(t)+ ṙ(t)+Kr(t)=R(t)                                                                                     (3-38) 

to solve the static problem : Kr R. Nonlinear structural effects make K a function 

of r, K(r) .This means that the loading R is increased (artificially) or as a function of 

time. The loading time needs to be sufficiently long so that the inertia and damping 

forces do not have an effect on the behavior on the static problem that is to be solved. 

 

A finite difference approximation is used when the time derivatives of (12.106) (r̈ 

and ṙ) are replaced by differences of displacement (r) at various instants of time. 

The direct integration methods are alternatives to modal methods, and they can be 

used to successfully treat both geometric and material non-linearities. The finite 

difference methods are called explicit if the displacements at the new time step, t + t, 

can be obtained by the displacements, velocities and accelerations of previous time 

steps. 

r(t+ t)=f{r(t),ṙ(t),r̈(t),r(t- t),ṙ(t- t),r̈(t- t), } 

Or 

ri+1=f{ri,ṙi,r̈i,ri-1,ṙi-1,r̈i-1, }                                                                        (3-39) 

This is as opposed to the implicit finite difference formulations where displacements 

at the new time step  +    are expressed by the velocities and accelerations at the 

new time step, in addition to the historical information at previous time steps. 

ri+1=f{ṙi+1,r̈i+1,ri,ṙi,r̈i, } 
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Many of the implicit methods are unconditionally stable and the restrictions on the 

time step size are only due to requirements of accuracy. Explicit methods, on the other 

hand, are only stable for very short time steps. 

 

Central difference method 

 

To illustrate this approach, one of the explicit solution methods, the central difference 

method is described in the following. The central difference method is based on the 

assumption that the displacements at the new time step, t+ t, and the previous time 

step, t- t, can be found by Taylor series expansion. 

ri+1=r0(t)+ tṙi+
 t2

2
r̈i+

 t3

6
r⃛i+ (with r0(t)=ri)                                                      (3-40) 

ri-1=ri- tṙi+
 t2

2
r̈i-
 t3

6
r⃛i+                                                                                      (3-41) 

The terms with time steps to the power of three and higher are neglected. Subtracting 

Eq. (3-40) for Eq. (3-41) yields: 

ri+1-ri-1=2 tṙi                                                                                                           (3-42) 

Adding Eq. (3-40,3-41) yields: 

ri+1+ri-1=2r+ t
2r̈i                                                                                                     (3-43) 

Rearranging Eq. (3-42, 3-43), the velocities and accelerations at the current time step 

can be expressed as: 

ri=
1

2 t
{ri+1-ri-1}                                                                                                       (3-44) 

r̈i=
1

 t2
{ri+1-2ri(t)+ri-1}                                                                                             (3-45) 

Finally inserting Eqs. (3-44, 3-45) into the dynamic equation of motion gives: 

{
1

 t2
 +

1

2 t
 } ri+1=Ri(t)-Kri(t)+

1

 t2
 {2ri-ri-1}+

1

2 t
 ri-1                                     (3-46) 

If the mass matrix,  , and the damping matrix,  , are diagonal, the equations will be 

uncoupled, and the displacements at the next time step, t+ t, can be optained without 

solving simultaneous equations. 

 

The characteristic features of Eq. (3-46) are best illustrated by an example. Let us 

consider a system with three global directions of freedom. The mass matrix,   and 

damping matrix   are assumed to be diagonal. 

 

Eq. (3-46) may then be written as: 

{
1

 t2
[

M11 0 0

0 M22 0

0 0 M33

]+
1

2 t
[

C11 0 0

0 C22 0

0 0 C33

]} [

r1(i+1)
r2(i+1)
r3(i+1)

]= [

R1(i)
R2(i)
R3(i)

] - [

K11 K12 K13
K21 K22 K23
K31 K32 K33

] [

r1(i)
r2(i)
r3(i)

]+ 
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1

 t2
[

M11 0 0

0 M22 0

0 0 M33

] {2 [

r1(i)
r2(i)
r3(i)

] - [

r1(i-1)
r2(i-1)
r3(i-1)

]}+
1

2 t
[

C11 0 0

0 C22 0

0 0 C33

] [

r1(i-1)
r2(i-1)
r3(i-1)

]              (3-47)  

The first equation in Eq. (3-47) is explicitly written as: 

{
1

 t2
M11+

1

2 t
C11} r1(i+1)=R1(t)-K11r1(i)-K12r2(i)-K13r3(i)+

1

 t2
M11{2r1(i)-r1(i-1)}+ 

1

2 t
C11r1(i-1)                                                                                                              (3-48) 

This shows that   ( +1) can be directly, explicity determined by the response at time t. 

There is no coupling between displacements,   (𝑖  )at the time  +   . 

 

Because the expressions for the displacements are explicitly given, there is no need to 

invert the tangent stiffness matrix at every time step. The explicit method also has the 

advantage of drastically reducing the need for computer memory capacity. The 

stiffness forces, or internal force vector, can be found by summation of element 

contributions. The global stiffness vector,  , need not to be stored in the computers 

core memory. 

 

As already mentioned, Eq. (3-49) is conditionally stable and requires that 

 t<
2

 max
                                                                                                                                  (3-49) 

where  max is the highest natural frequency of 

det(K- 2 )=0                                                                                                         (3-50) 

The maximum frequency of Eq. (3-50) is bounded by the maximum frequency of the 

constituent unassembled and unsupported elements. When finding the maximum 

natural frequency of an element, one will see that the time step,  t, must be short 

enough that information does not propagate across more than one element per time 

step. The maximum allowable time step will therefore be limited by a characteristic 

length, λe, of the element and the acoustic wave speed, c. 

 t<
λe

c
 

Higher order elements yield higher maximum frequencies and should be avoided 

when doing explicit integration. Many alternative methods exist. 

 

Solution of static problems 

 

The explicit method is very well suited to treat dynamic problems. As indicated above 

the method can also be used to solve static problems. 

 

It is obvious that the period of the loading, or the amount of time for the loading to 

reach its maximum value, must be much larger than the largest Eigen period to avoid 

dynamic effects as determined from the lowest Eigen frequency found for Eq.(3-50). 
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The response of the structure is also dependent on the magnitude of the loading, not 

only on the period, and this complicates the picture. In addition, failures due to 

collapse or cracking of parts of the structure will cause vibrations. These events will 

not be captured by a traditional static analysis. 

 

All effects taken into account; if the time of the loading to reach its maximum level is 

conservatively chosen to be 30 times the longest Eigen period of the system, the 

dynamic effects have shown to be negligible. 

 

Another problem with explicit analyses is that post-collapse behavior cannot be traced 

if the loading is given as applied forces. In many cases this can be avoided by 

switching to displacement control. If displacement control is not possible or desirable, 

implicit solution procedures using arc length solution methods can be used. 

 

An advantage with the explicit solution procedure is that it is very easy to use. The 

user of an explicit finite element program is left with the difficulty of applying loads 

sufficiently slowly to avoid dynamic phenomena and sufficiently fast to avoid too 

large computational efforts times. 

In static analyses, and even in dynamic analyses, the computational time van be 

considerably reduced by changing mass densities in elements. The time step will be 

governed by the smallest element in the model. Artificially increasing the mass of 

small elements will reduce the acoustic wave speed and hence allow longer time steps. 

Similarly very large elements can be given mass reduction and hence be less affected 

by inertia forces. Systematic increase and reduction of element masses can be 

performed to improve computational efficiency, but the details in these methods will 

not be elaborated on. 

 

3.6 Introduction to riks method in ABAQUS
[35] 

During the preparation when studying ABAQUS, a lot of documents are read. In order 

to perform the post-buckling analysis, the method of riks needs to be used.  

 

The Riks method: 

 is generally used to predict unstable, geometrically nonlinear collapse of a 

structure  

 can include nonlinear materials and boundary conditions; 

 often follows an eigenvalue buckling analysis to provide complete information 

about a structure's collapse;  

 can be used to speed convergence of ill-conditioned or snap-through problems 

that do not exhibit instability. 



Ductility limits of tubular joints                      

33 

3.6.1 Unstable response 

Geometrically nonlinear static problems sometimes involve buckling or collapse 

behavior, where the load-displacement response shows a negative stiffness and the 

structure must release strain energy to remain in equilibrium. Several approaches are 

possible for modeling such behavior. One is to treat the buckling response 

dynamically, thus actually modeling the response with inertia effects included as the 

structure snaps. This approach is easily accomplished by restarting the terminated 

static procedure and switching to a dynamic procedure when the static solution 

becomes unstable. In some simple cases displacement control can provide a solution, 

even when the conjugate load (the reaction force) is decreasing as the displacement 

increases. Another approach would be to use dashpots to stabilize the structure during 

a static analysis. Abaqus/Standard offers an automated version of this stabilization 

approach for the static analysis procedures. 

 

Alternatively, static equilibrium states during the unstable phase of the response can 

be found by using the “modified Riks method.” This method is used for cases where 

the loading is proportional; that is, where the load magnitudes are governed by a 

single scalar parameter. The method can provide solutions even in cases of complex, 

unstable response such as that shown in Figure 3.13. 

 

Figure 3.13 complex, unstable response 

The Riks method is also useful for solving ill-conditioned problems such as limit load 

problems or almost unstable problems that exhibit softening. 

 

In simple cases linear eigenvalue analysis (“Eigenvalue buckling prediction,” )may be 

sufficient for design evaluation; but if there is concern about material nonlinearity, 

geometric nonlinearity prior to buckling, or unstable postbuckling response, a 

load-deflection (Riks) analysis must be performed to investigate the problem further. 
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The Riks method uses the load magnitude as an additional unknown; it solves 

simultaneously for loads and displacements. Therefore, another quantity must be used 

to measure the progress of the solution  Abaqus/Standard uses the “arc length,” l, 

along the static equilibrium path in load-displacement space. This approach provides 

solutions regardless of whether the response is stable or unstable.  

 

3.6.2 Proportional loading 

If the Riks step is a continuation of a previous history, any loads that exist at the 

beginning of the step and are not redefined are treated as “dead” loads with constant 

magnitude. A load whose magnitude is defined in the Riks step is referred to as a 

“reference” load. All prescribed loads are ramped from the initial (dead load) value to 

the reference values specified. 

 

The loading during a Riks step is always proportional. The current load magnitude, , 

is defined by 

Ptotal=P0+λ(Pref-P0) 

Where 𝑃0 is the “dead load,” Pref is the reference load vector, and λ is the “load 

proportionality factor.” The load proportionality factor is found as part of the solution. 

Abaqus/Standard prints out the current value of the load proportionality factor at each 

increment. 

3.6.3 Incrementation 

Abaqus/Standard uses Newton's method to solve the nonlinear equilibrium equations. 

The Riks procedure uses only a 1% extrapolation of the strain increment. 

 

You provide an initial increment in arc length along the static equilibrium path  lin, 

when you define the step. The initial load proportionality factor,  λin, is computed as 

 λin=
 lin

lperiod
 

Where lperiod is a user-specified total arc length scale factor (typically set equal to 1). 

This value of  λin is used during the first iteration of a Riks step. For subsequent 

iterations and increments the value of λ is computed automatically, so you have no 

control over the load magnitude. The value of λ is part of the solution. Minimum and 

maximum arc length increments,  lmin  and lmax  , can be used to control the 

automatic incrementation. 
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3.6.4 Input File Usage:            

*STATIC, RIKS 

Abaqus/CAE Usage:     

Step module: Create Step: General: Static, Riks 

Direct user control of the increment size is also provided; in this case the incremental 

arc length is kept constant. This method is not recommended for a Riks analysis since 

it prevents Abaqus/Standard from reducing the arc length when a severe nonlinearity 

is encountered. 

Input File Usage:            

*STATIC, RIKS, DIRECT 

Abaqus/CAE Usage:     

Step module: Create Step: General: Static, Riks: Incrementation: Type: Fixed 

Ending a Riks analysis step 

Since the loading magnitude is part of the solution, you need a method to specify 

when the step is completed. You can specify a maximum value of the load 

proportionality factor, or a maximum displacement value at a specified degree of 

freedom. The step will terminate when either value is crossed. If neither of these 

finishing conditions is specified, the analysis will continue for the number of 

increments specified in the step definition. 

3.6.5 Bifurcation 

The Riks method works well in snap-through problems—those in which the 

equilibrium path in load-displacement space is smooth and does not branch. Generally 

you do not need take any special precautions in problems that do not exhibit 

branching (bifurcation). “Snap-through buckling analysis of circular arches,” Section 

1.2.1 of the Abaqus Example Problems Manual, is an example of a smooth 

snap-through problem. 

The Riks method can also be used to solve postbuckling problems, both with stable 

and unstable postbuckling behavior. However, the exact postbuckling problem cannot 

be analyzed directly due to the discontinuous response at the point of buckling. To 

analyze a postbuckling problem, it must be turned into a problem with continuous 

response instead of bifurcation. This effect can be accomplished by introducing an 

initial imperfection into a “perfect” geometry so that there is some response in the 

buckling mode before the critical load is reached. 
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3.6.6 Introducing geometric imperfections 

Imperfections are usually introduced by perturbations in the geometry. Unless the 

precise shape of an imperfection is known, an imperfection consisting of multiple 

superimposed buckling modes must be introduced (“Eigenvalue buckling 

prediction,”). Abaqus allows you to define imperfections  see “Introducing a 

geometric imperfection into a model,” Section 11.3.1. 

 

In this way the Riks method can be used to perform postbuckling analyses of 

structures that show linear behavior prior to (bifurcation) buckling. An example of 

this method of introducing geometric imperfections is presented in “Buckling of a 

cylindrical shell under uniform axial pressure”. 

 

By performing a load-displacement analysis, other important nonlinear effects, such 

as material inelasticity or contact, can be included. In contrast, all inelastic effects are 

ignored in a linear eigenvalue buckling analysis and all contact conditions are fixed in 

the base state. Imperfections based on linear buckling modes can also be useful for the 

analysis of structures that behave inelastically prior to reaching peak load. 

 

3.6.7 Introducing loading imperfections 

Perturbations in loads or boundary conditions can also be used to introduce initial 

imperfections. In this case fictitious “trigger” loads can be used to initiate the 

instability. The trigger loads should perturb the structure in the expected buckling 

modes. Typically, these loads are applied as dead loads prior to the Riks step so that 

they have fixed magnitudes. The magnitudes of trigger loads must be sufficiently 

small so that they do not affect the overall postbuckling solution. It is your 

responsibility to choose appropriate magnitudes and locations for such fictitious loads; 

Abaqus/Standard does not check that they are reasonable. 

 

3.6.8 Obtaining a solution at a particular load or 

displacement value 

The Riks algorithm cannot obtain a solution at a given load or displacement value 

since these are treated as unknowns—termination occurs at the first solution that 

satisfies the step termination criterion. To obtain solutions at exact values of load or 

displacement, the solution must be restarted at the desired point in the step 
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(“Restarting an analysis”) and a new, non-Riks step must be defined. Since the 

subsequent step is a continuation of the Riks analysis, the load magnitude in that step 

must be given appropriately so that the step begins with the loading continuing to 

increase or decrease according to its behavior at the point of restart. For example, if 

the load was increasing at the restart point and was positive, a larger load magnitude 

than the current magnitude should be given in the restart step to continue this behavior. 

If the load was decreasing but positive, a smaller magnitude than the current 

magnitude should be specified. 

 

3.6.9 Restrictions 

1. A Riks analysis is subject to the following restrictions: 

 

2. A Riks step cannot be followed by another step in the same analysis. Subsequent 

steps must be analyzed by using the restart capability. 

 

3. If a Riks analysis includes irreversible deformation such as plasticity and a restart 

using another Riks step is attempted while the magnitude of the load on the structure 

is decreasing, Abaqus/Standard will find the elastic unloading solution. Therefore, 

restart should occur at a point in the analysis where the load magnitude is increasing if 

plasticity is present. 

 

4. For postbuckling problems involving loss of contact, the Riks method will usually 

not work; inertia or viscous damping forces (such as those provided by dashpots) 

must be introduced in a dynamic or static analysis to stabilize the solution. 

3.6.10 Abaqus settings. 

1. Initial conditions 

Initial values of stresses, temperatures, field variables, solution-dependent state 

variables, etc. can be specified  “Initial conditions in Abaqus/Standard and 

Abaqus/Explicit,” Section 32.2.1, describes all of the available initial conditions. 

 

2. Boundary conditions 

Boundary conditions can be applied to any of the displacement or rotation degrees of 

freedom (1–6) or to warping degree of freedom 7 in open-section beam elements 

Amplitude definitions cannot be used to vary the magnitudes of prescribed boundary 

conditions during a Riks analysis. 

 

3.Loads 
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The following loads can be prescribed in a Riks analysis: 

Concentrated nodal forces can be applied to the displacement degrees of freedom (1–

6);  

 

Distributed pressure forces or body forces can be applied  see “Distributed loads,” 

Section 32.4.3. The distributed load types available with particular elements are 

described in Part VI, “Elements.” 

 

Since Abaqus/Standard scales loading magnitudes proportionally based on the 

user-specified magnitudes, amplitude references are ignored when the Riks method is 

chosen. 

 

If follower loads are prescribed, their contribution to the stiffness matrix may be 

unsymmetric; the unsymmetric matrix storage and solution scheme can be used to 

improve computational efficiency in such cases. 

 

4. Predefined fields 

Nodal temperatures can be specified (see “Predefined fields,” Section 32.6.1). Any 

difference between the applied and initial temperatures will cause thermal strain if a 

thermal expansion coefficient is given for the material (“Thermal expansion,” Section 

25.1.2). The loads generated by the thermal strain contribute to the “reference” load 

specified for the Riks analysis and are ramped up with the load proportionality factor. 

Hence, the Riks procedure can analyze postbuckling and collapse due to thermal 

straining. 

 

The values of other user-defined field variables can be specified. These values affect 

only field-variable-dependent material properties, if any. Since the concept of time is 

replaced by arc length in a Riks analysis, the use of properties that change due to 

changes in temperatures and/or field variables is not recommended. 

 

5. Material options 

Most material models that describe mechanical behavior are available for use in a 

Riks analysis. The following material properties are not active during a Riks analysis: 

acoustic properties, thermal properties (except for thermal expansion), mass diffusion 

properties, electrical properties, and pore fluid flow properties. Materials with history 

dependence can be used; however, it should be realized that the results will depend on 

the loading history, which is not known in advance. 

 

The concept of time is replaced by arc length in a Riks analysis. Therefore, any effects 

involving time or strain rate (such as viscous damping or rate-dependent plasticity) 

are no longer treated correctly and should not be used. 

 



Ductility limits of tubular joints                      

39 

6. Elements 

Any of the stress/displacement elements in Abaqus/Standard (including those with 

temperature or pressure degrees of freedom) can be used in a Riks analysis (see 

“Choosing the appropriate element for an analysis type,” Section 26.1.3). Dashpots 

should not be used since velocities will be calculated as displacement increments 

divided by arc length, which is meaningless. 

 

7. Output 

Output options are provided to allow the magnitudes of individual load components 

(pressure, point loads, etc.) to be printed or to be written to the results file. The current 

value of the load proportionality factor, LPF, will be given automatically with any 

results or output database file output request. These output options are recommended 

when the Riks method is used so that load magnitudes can be seen directly. All of the 

output variable identifiers are outlined in “Abaqus/Standard output variable 

identifiers,” Section 4.2.1. 
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4. Numerical model and validation            

In this chapter, X-joint models are mainly studied. BOMEL X-braced Frame II[5] was 

chosen to build the X-joint model (168OD×5.1DT). The X-joints will be modeled 

singly and as a part of a frame. For the isolated joint models, 3 load cases are 

considered. During the study, it is found that the X-joint’s brace which is in 

compression is more critical under large load, and when in frame it shows the similar 

features. Also critical strain is discussed. 

4.1 Review of the specialization project 

4.1.1 Model Generation 

In the specialization project, in order to perform a simulation of an X-joint with 

ABAQUS, and the length of the brace is decided to be 5 times as the outer diameter 

(840mm). 

 

Figure 4.1The joint chosen for building model 

As ABAQUS is not the professional software for generating models, PATRAN is 

recommended to generate the model. The X-joint is divided into 4 parts by the 

intersection in the middle. So it is needed to connect the parts after importing into 

ABAQUS. However the effect is not very satisfactory. Mesh near the intersection 

cannot be aligned due to insufficient accuracy. Thus software HyperMesh is then 

needed to draw mesh on the surface. Then the four parts become one assembly. Figure 

4.2 shows interface of HyperMesh. 
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Figure 4.2 Auto-meshing the joint by using HyperMesh 

After Hypermesh, the four separate parts become together as one part, the intersection 

places are connected well to each other. Now it can be imported to ABAQUS for 

doing the analysis.  

 

Figure 4.3 Mesh and model in ABAQUS 

Three load cases are to be used which is shown in Figure 4.4 

N1 is compression force and N2 is tension force. 

Load case 1: N2=0, 

Load case 2: N2=N1 

Load case 3: N2=0.5N1 



Ductility limits of tubular joints                      

43 

 

Figure 4.4 Load distributions on the joint 

4.1.2 Analysis results 

First axial resistance defined by Norsok-004 is calculated by using the formulations 

mentioned in Chapter 2. 

The above geometry parameters of the model: 
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NRd=
fyT

2

γ
M
sinθ

Q
u
Q
f
=
345×5.12

1.0×1
Q
u
Q
f
=270814.4N 

Estimated values are made for σmy,Sd and σmz,Sd. 

The history output is set to displacement of the reference point and Load proportional 

factor. The displacement-load curves are plotted after the calculation. The 

force-deformation behaviour of the joint in different cases is shown in Fig. 4.5. 

 

Figure 4.5 Displacement-LPF curves  

From Figure 4.5 we can see that the curves’ tendencies are similar: at the first stage 

displacement changes little while the LPF rises sharply, and then the slope of the 

curves become smaller. At the end the slope becomes near to zero, i.e. the 

displacement is increasing while the LPF doesn’t change much, which corresponds to 

the plastic deformation. Also the figure indicates the comparison with resistance 

calculated by Norsok004. We can see that the Norsork004 resistance is much smaller 

than the magnitude of the inflection point of the curves, which indicates that the code 

calculated values are conservative. More reasonable measures may be recommended. 

 

The three curves are compared also. From Figure 4.5 we can see the capacity of the 

joints is more sufficient when no axial tension load is applied on them. When axial 

tension load is added to the joints, the LPF is smaller at the same displacement than 

the one without tension load. The larger the tension load is, the less sufficient capacity 

the joints show. 

N2=0N1 

N2=0.5N1 

N2=N1 

Resistance calculated by 

norsok-004 
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However, the curves obtained are not so satisfactory because the curve is always on 

the rise without descent stage, which is inconsistent with the actual reality.  

 

4.2 Work in master thesis 

In the master thesis project, a lot more work has been done for this joint model. And 

the curves obtained in specialization project are proved to be not so correct, though 

deformation type is similar with the experimental test. The major reason of this is due 

to non-linear effects not taken into account. 

4.2.1 The application of Riks method 

 

The line-perturbation is the eigenvalue analysis of buckling. It is a linear analysis, 

while non-linear buckling analysis is to be performed. In order to do so, initial 

imperfection is to be imported.  

 

ABAQUS has three methods to identify initial imperfection: taking a linear 

combination of the branch buckling model, taking the results based on static analysis, 

specifying directly. The first method is normally used, and the procedures are as 

follows: 

 

1. Write the eigenmodes in the default global system to the results file as nodal data  

2. Add the eigenmodes to the perfect geometry as the initial imperfection, and the 

associated scale factor is largest in the 1
st
 modeshape. The scale factor is usually taken 

as the multiple of the geometry parameters, for example, 0.1 times of the shell 

thickness, etc. 

3. Analyze by using the riks method. 

Defining an imperfection based on eigenmode data 

Input File Usage:          

*IMPERFECTION, FILE=results file, STEP=step, NSET=name 

Defining an imperfection based on static analysis data 

In order to use the eigenvalue file, the model keywords of the buckle is to be 

modified.  

*node file,  

*u 

Add these two sentences to the keywords. The location is shown in figure below.  
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4.2.2 Model generation 

First, the material is optimized by adding hardening area in order to make it closer to 

the reality. 

 

The yield criterion states that yielding begins when stress reaches yield stress, in 

practice usually taken as the tensile yield strength. Subsequent plastic deformation 

may alter the stress needed to produce renewed or continued yielding 

 Yield Stress Plastic Strain 

1 355 0 

2 410 0.05 

3 450 0.1 

4 480 0.15 

 

 

Figure 4.6 Material stress and strain relation curve 

As required in the master thesis task, analysis is to be performed with single joints and 
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joints as a part of a frame system plane frame system, so a model of single joint as a 

part of a frame system is built as shown in Figure 4.7. And a push-over analysis is to 

be performed.  

 

Figure 4.7 Single joint as a part of a frame system 

The dimension of the frame are shown in Figure 4.8 

 

Figure 4.8 Dimension 
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The constraint type of coupling is used as the interaction between the frame edges and 

the joint (See Figure 4.9). 

 
Figure 4.9 Interaction used between frame and joint 

In reality, a through member is usually used when a joint is built by the same method 

mentioned, i.e. the joint consists of a through member and two separate braces welded 

to the through member, which is shown in Figure 4.10. 

 

Figure 4.10 new joint model with a through member 

Similarly, a model of this single joint as a part of a frame system is built with the 

same dimension. 
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Figure 4.11 single joint as a part of a frame system (new) 

4.2.3 Analysis results 

Different sets are made to record the change of variables, the comparison of which are 

shown in figures below. 

1) Improved curve of force-deformation relationship of the old single joint model 

 

Figure 4.12 Improved curve of force-deformation relationship of the old single joint 

model 

From the figure it is seen that the curve has a significant declining segment, which is 

totally different from the curve obtained in specialization project. The force rises 
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sharply at the first stage until it reaches the critical load, after which it declined 

rapidly with the increase of the displacement. The difference can be explained by 

whether non-linear effects are taken into account or not, which, in ABAQUS, is 

reflected by choosing nlgeom or not (geometry in non-linear). 

 

The deformation and plot of stresses of the joint in different stages are shown in 

Figure 4.13. 

 

Figure 4.13 the deformation and plot of stresses of the joint in different stages 

As shown in the figure 4.13, the joint has a very obvious buckling, as the compression 

brace warps and compresses the tension braces. 

2) The curve of force-deformation relationship of the new single joint model 

 

Figure 4.14 the curve of force-deformation relationship of the new single joint model 

The curve of force-deformation relationship of the new single joint model shows the 

same trend as the old single one, also the deformation and plot of stresses of the joint 

in different stages.   

 

Figure 4.15 the deformation and plot of stresses of the joint in different stages 
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3) Comparison of the two curves of the two different models. 

 

Figure 4.16 Comparison of the force-displacement relation curve of the old and new 

joint model 

From the figure it is seen that the new joint model has a larger critical load than the 

old one, which proves that the through member makes a contribution to the capacity 

of the joints. 

4) The old single joint as a part of a frame system 

The LPF and global displacement relation curve is shown in Figure 4.17 

 

Figure 4.17 the LPF and global displacement relation 

From the Figure 4.17 it is seen that in the curve at the first stage displacement changes 

little while the LPF rises sharply, and then the slope of the curves become smaller. 

This is similar with the result of the specialization project. But in fact they are 

different, for which non-linear effect has been taken into account, and the result can 

be explained by the figures below. 
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Figure 4.18 deformation and plots of stresses of the frame in different stages 

 

Figure 4.19 deformation and plots of stresses of the joint in frame in different stages 

From the Figure 4.18, it is not difficult to see that the joint fails before the total frame 

system fails, i.e. the frame doesn’t show buckle yet. The two compression braces 

squeeze the tension brace very seriously. At the very end of the simulation they even 

touch each other, and compress the tension brace to the opposite direction, which 

doesn’t meet the actual condition. This indicates that the joint without a through 

member is weak and its capacity is not so satisfactory. 

5) The new single joint as a part of a frame system 

 

Figure 4.20 LPF-displacement relation  

The curve in Figure 4.20 has 3 extreme points, dividing the whole process into 4 

stages. Pictures in Figure 4.22 show the detail of the joint in different stages in 

correspondence with Figure 4.21. 
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a.1
st
 stage                            b.2

nd
 stage  

  
c. 3

rd
 stage                            d. 4

th
 stage 

Figure 4.21 deformation and plots of stresses of the frame in different stages 

In Figure 4.21(a), the whole frame starts to deform, and yielding occurs in the joint, 

which corresponds to point A in Figure 4.20. 

In Figure 4.21(b), the frame has tilted to a certain extent, and the lower brace in 

compression starts to buckle and can take no more load corresponding to point B in 

Figure 4.20. 

In figure 4.21(c), the frame system starts to regain strength because the rest of braces 

take the load instead, which corresponds to point C. 

Figure 4.21(d) shows the end of the simulation, and the frame system has undergone a 

drastic shift compared to the initial position. 

  

            a. 1
st
 stage                            b. 2

nd
 stage 
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c. 3
rd

 stage                           d. 4
th

 stage 

Figure 4.22 the detail of the joint in frame in different stages in correspondence with 

Figure 4.20 

 

Figure 4.23 the relationship of the axial force of the upper compression brace and the 

length of the compression joint brace 

Figure 4.23 shows the relationship of the axial force of the upper compression brace 

and the length of the compression joint brace (rotate deformation of the joint 

neglected). Similar with the force-displacement curve of new single joint as a part of a 

frame system, it has also 3 extreme points (Yielding occurs at Point A, Buckle starts at 

Point B, and the brace starts regaining strength at Point C).  

 

6) Strain development of the joint 

In order to study the strain of the joint, 3 sets are created to observe the strain 

development of different position of the joint, the positions of which are shown in Fig. 

4.24. 
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Figure 4.24 positions of the sets created in ABAQUS 

According to Hagbart S. Alsos
[36]

, The BWH criterion is made dependent on the mesh 

size, in order to imitate fracture after onset of local necking. The equivalent strain at 

fracture is illustrated in terms of the element size in Figure 4.25. 

 

Figure 4.25 Equivalent plastic failure strains for different element sizes  

In this case 
l

t
=0.67, therefore as a estimation, the joint starts to fail when strain of 

some place reaches 0.8 approximately. 

SET 8 

SET 9 

SET 10 
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Figure 4.26 Strain-displacement relations of 4 nodes of set 8 

 

Figure 4.27 Strain-displacement relations of 4 nodes of set 9 
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Figure 4.28 Strain-displacement relations of 4 nodes of set 10 

Figure 4.26 to 4.28 show the relationship of strain and global displacement. Set 8 

shows the largest strain, which can be explained by that it has the largest deformation 

due to the extrusion of the braces. And also it reaches the critical strain limit (0.8). 

This means that the ductility of set 8’s position is the most critical and starts to fail, 

and should be strengthened to meet the strength requirements.  

A comparative analysis 

As a comparison, the joint model is rotated by 90 degree to let the through member in 

compression.  

 

Figure 4.29 Rotated joint 

The force-displacement curve are shown in Figure 4.30. 
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Figure 4.30 Comparison of the force-displacement curves 

From the figure it is easy to see that if through member is made in compression, the 

critical load when yielding occurs is larger than when it is made in tension. And the 

displacement of the frame is much smaller than the previous one. This is because the 

buckling of the braces is out-of-plane buckling, while the previous one is in-plane 

buckling. That means that this kind of frame is more stable than previous one. 

 

Figure 4.31 out-of-plane buckling 
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5. Conclusions                             

The two main objectives of this thesis have been to review of MSL joint strength 

formulations and to perform simulation with ABAQUS of various joints verify the 

simulation procedure with respect to force-deformation behavior and strain 

development and to contribute to the development of the data basis. 

 

From the review of the MSL joint strength formulations revealed the current 

regulations of the joints about the resistance, ductility, etc. The ductility limit is 

reached before ultimate strength, which is conservative after the simulation by 

ABAQUS.  

 

Simulation with ABAQUS shows some interesting results. The X-joints show very 

good ductility feature which is far beyond the ductility limits recommended by codes 

and regulations. That means after the joints’ deformation exceed the ductility limits, 

they still have fairly sufficient capacity to resist deformation.  

 

The force-displacement curves are more reasonable after non-linear effects are taken 

into account. 

 

A joint without a through member shows a weaker capacity than the one with a 

through member, which means that a through-member joint can make better 

contribution to the strength of the structure than a non-through-member joint does 

when in same condition.  

 

The behavior of the joint is different when analyzed independently from when in 

frame system. The reason is that when a single joint is analyzed, the force doesn’t 

change direction. While in a frame system, the braces has a significant influence to 

the joint, as the braces can buckle, rotate, etc. which changes the direction of the force 

acting on the joints.  

 

When the through member is in tension, the other two braces will compress it to a 

very large extent, which leads to a large strain development. That can also explain 

why the frame system is more stable when the joint is rotated by 90 degree. It is the 

most critical condition when the separate braces are in compression, which should be 

avoided in reality.  
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6. Recommendations for further work        

Far from enough verification and validation is done. Also more variables need to be 

controlled and analyzed.  

 

In this paper, only X-joints are analyzed, and the X-joints are the simplest ones, i.e. 

the two braces are of same length, diameter and wall thickness. In the future, other 

types of joints such as T joints or K joints may also be analyzed and compared. Also 

different brace geometry can be applied to see the effect they have to the joints 

capacity. 

 

Due to limited time, analysis of the frame with usfos nonlinear joint has not been 

finished. So it is necessary to do it in the future. 

 

In addition, the conservativeness concluded in this paper shows that current codes and 

regulations may be recommended to modify to reduce the conservativeness.  
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