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Scope of work

Background: The marine personnel on the COSL Pioneer has experienced larger than
expected roll motions of the rig. During an investigation of a line failure incident
Global Maritime identified roll motions that were magnitudes higher than expected.
By examination of the roll motion log one could clearly see that the low frequency
motions were the dominant part. The reason for this behaviour is not identified, but
some issues with the DP control indicate that the excessive roll motions can be a result
of thrust-induced motions.

Task: The student is expected to make a model of the rig and run analyses in time
domain in order to reproduce the registered motions during an identified weather sit-
uation. All necessary vessel data and a log from MRU and DP system will be made
available. The student is free to investigate options that can explain the excessive mo-
tions. However, she should also stay in touch with Global Maritime/COSL Drilling
Europe as there is planned to be carried out adjustments of the DP settings on the rig.
This work can provide useful information.

The thesis should include a discussion of possible reasons for the excessive roll motions
and a conclusion with the most probable reason and also possible actions for reducing
these motions.

In the thesis the candidate shall present her personal contribution to the resolution of
problems within the scope of the thesis work.

Theories and conclusions should be based on mathematical derivations and/or logic
reasoning identifying the various steps in the deduction.

The candidate should utilise the existing possibilities for obtaining relevant literature.

The thesis should be organised in a rational manner to give a clear exposition of results,
assessments and conclusions. The text should be brief and to the point, with a clear
language. Telegraphic language should be avoided.

The thesis shall contain the following elements: A text defining the scope, preface,
list of contents, summary, main body of thesis, conclusions with recommendations for
further work, list of symbols and acronyms, references and (optional) appendices. All
figures, tables and equations shall be numerated.

The original contribution of the candidate and material taken from other sources shall
be clearly defined. Work from other sources shall be properly referenced using an
acknowledged referencing system.

Supervisor: Prof. Odd M. Faltinsen

Deadline: June 10, 2013
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Introduction

The first automatic ship steering mechanism for course keeping was developed by Elmer
Sperry in the beginning of the 20th century[1]. A large amount of work has been done
since then and today’s dynamic positioning systems are very advanced. There are
many parameters that have to be tuned in order to achieve optimal performance and
the tuning of dynamic positioning systems in sea-trials alone may take up to ten days
to complete.

The main purpose of a dynamic positioning system is to counteract low-frequency mo-
tions in the horizontal plane. Unfortunately, due to the position of the thrusters and the
low hydrostatic stiffness of semisubmersibles, they also induce roll and pitch moments.
If the forces exerted by the thrusters oscillate with the vessel’s roll or pitch resonance
frequencies, they may cause large unwanted rotations of the vessel. The natural periods
in roll and pitch are usually large for semisubmersibles due to their low water-plane area
and low metacentric height. It is suspected that this phenomenon presented itself on
the drilling rig COSL Pioneer on January 25th 2012.

The objective of this thesis is to investigate whether the excessive roll motions regis-
tered on January 25th 2012 were thruster-induced, but also look for other causes that
might have increased the roll motion. Since too little information regarding the dy-
namic positioning system was available, the work was concentrated on the theoretical
background and use of the chosen software as well as the programming of a dynamic
positioning system in order to study its effects and try to generate thruster-induced
motions.

The potential flow solver Wadam, with the programming interface HydroD, was chosen
for the frequency-domain analysis of the bare hull. The output from Wadam was
imported to the time-domain analysis program OrcaFlex together with information
about the environment and mooring system. The dynamic positioning system was
represented by forces and moments calculated in a separately written Python-script
using a PID Controller.

Background theory and earlier work regarding thruster-induced roll motion is discussed
in Chapter 1. Chapter 2 treats the work performed in Wadam and its theoretical
background. The modelling of COSL Pioneer in OrcaFlex and how OrcaFlex performs
time-domain simulations can be found in Chapter 3. Computational difficulties that
were encountered during the work and sensitivity studies are described in Chapter 4.
Chapter 5 presents the set-up for different time-domain simulations. Results from the
frequency-domain and time-domain analyses may be found in Chapter 6 and Chapter
7, respectively. Discussion of the results, conclusions and suggestions for further work
are presented in Chapter 8.
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Summary

Excessive roll motions were registered on the drilling rig COSL Pioneer on January
25th 2012. Calculations performed by Global Maritime showed less roll motions than
registered, but were consistent with the other five degrees of freedom. It was suspected
that the excessive motions could have been induced by the low-frequency forces from
the thrusters. The main objective of this thesis was to regenerate and identify the cause
of these excessive roll motions.

A frequency-domain analysis of the bare hull was performed in HydroD, with the poten-
tial flow solver Wadam. A panel model and structural data for the frequency-domain
analysis were provided by Global Maritime. The hydrodynamic data from Wadam was
exported to OrcaFlex, the program used for the time-domain analysis. The rig and
its anchor lines were modelled in OrcaFlex while the drilling riser was omitted from
the analysis due to its small influence on the motions of the rig. The forces from the
thrusters were calculated in a separate program written in the programming language
Python. A very simple dynamic positioning system was applied since only scarce infor-
mation about the thrusters and the dynamic positioning system was made available.

The thruster forces calculated in the Python-program were implemented in OrcaFlex as
two forces and a moment acting in the earth-fixed horizontal plane. The thruster forces
were calculated using an algorithm for a Proportional Integral Derivative controller,
also known as a PID controller. A PID controller has three controller gain coefficients
that were estimated on the basis of a uncoupled and linear simplification of the real
system. Simulations were also run for the same PID controller with gains that were 50%
higher and 50% lower than the original estimate. A simulation without any inclusion
of thruster forces was run and used as reference.

No thruster-induced motions were registered in the time-domain simulations with PID
controllers. The transverse thruster force was therefore replaced with a harmonic force
with a period in roll equal to that of the simulation with the PID controller and in
a direction that was initially in phase with the roll motion. However, the harmonic
thruster load increased the roll motions, but they were still significantly smaller than
on January 25th 2012.

A real dynamic positioning system calculates the thruster forces on the basis of the
low-frequent horizontal motions of the vessel. This was initially attempted, but then
abandoned as the second-order Butterworth filter that OrcaFlex applies in order to
filter low-frequency from wave-frequency motions introduced a phase lag. The phase
lag was of approximately 25°and the caused the amplitudes of the motion to diverge.

The standard deviations for surge, sway, heave, roll and pitch from all the simulations in
OrcaFlex were compared to the standard deviations of the registered motions between
18:00 and 18:55 on January 25th 2012. The registered motions had standard deviations
that were approximately twice as large in roll and had half the values in heave. The
standard deviations in surge, sway and yaw were of the same magnitude in the time-
domain simulations and on January 25th 2012.

The deviations between the registered motions and the simulations are assumed to be
predominantly due to the simplifications regarding the thrusters. The most signifi-
cant simplifications were the forces’ point of application, direction and that the wave
frequency motion was included in the calculation of the forces.
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Sammendrag

Rullebevegelser som var større enn forventet ble registrert på boreriggen COSL Pioneer
25. januar 2012. Beregninger foretatt av Global Maritime viste lavere rullebevegelser
enn de som ble registrert, men var i overensstemmelse med bevegelsene i de andre
frihetsgradene. Det var antatt at de store rullebevegelsene kan ha blitt forårsaket av
lavfrekvente krefter fra thrusterne. Hovedformålet med denne masteroppgaven var å
regenerere de registererte rullebevegelsene og identifisere årsaken til at rullebevegelsene
var større enn forventet.

En analyse i frekvensdomenet ble utført ved å modellere skroget til COSL Pioneer i
HydroD og løst ved hjelp av potensialteori i programmet Wadam. En panelmodell og
strukturelle data ble fremskaffet av Global Maritime. Hydrodynamiske data for skro-
get ble deretter eksportert til OrcaFlex, programmet som ble brukt til tids-domene
analyser. Riggen med ankerlinene ble modellert i OrcaFlex, mens borestrengen ble
utelatt fra beregningene ettersom den ikke ville hatt noen betydelig effekt på riggens
bevegelser. Kreftene fra thrusterne ble beregnet i et separat program og ble skrevet i
programmeringsspråket Python. Et veldig forenklet dynamisk posisjoneringssystem ble
brukt ettersom kun svært begrenset informasjon om det faktiske dynamiske posisjoner-
ingssystemet var tilgjengelig.

Kreftene fra thrusterne som ble beregnet i Python-programmet ble implementert i Or-
caFlex som to krefter og et moment som ble påsatt i det globale horisontale planet.
Kreftene fra thrusterne ble beregnet med en algoritme for en Proportional Integral
Derivative kontroller, ofte kalt en PID kontroller. En PID kontroller har tre parametere
som ble estimert på bakgrunn av en ukoblet, lineær forenkling av det virkelige systemet.
Simuleringer ble også kjørt med kontroller parametere som var 50% høyere og 50% la-
vere enn det originale estimatet. En simulering som ble kjørt uten noen thrusterkrefter
ble brukt som referanse.

Ingen thruster-induserte rullebevegelser ble registrert i tidsdomene-simuleringene med
PID kontrollere. De tverrgående kreftene fra thrusterne ble derfor byttet ut med en
harmonisk kraft som hadde en periode lik den gjennomsnittelige perioden i rull som
ble registrert under simuleringen med den originale PID kontrolleren og hadde en ret-
ning slik at den var i fase med rullebevegelsen i begynnelsen av simuleringen. Dette
økte rullebevegelsene, men rullebevegelsene var fortsatt mye mindre enn det som ble
registrert på COSL Pioneer den 25. januar 2012.

Et ekte dynamisk posisjonerings system beregner kreftene fra thrusterne på bakgrunn
av de lavfrekvente horisontale bevegelsene til fartøyet. Dette ble forsøkt, men forkastet
ettersom det andre-ordens Butterworth filteret som OrcaFlex bruker for å skille ut
lavfrekvente bevegelser også introduserte en faseforskjell. Denne faseforskjellen var på
rundt 25° og fikk amplituden til bevegelsene til å divergere.

Standardavviket til bevegelsene i jag, svai, hiv, rull og stamp for alle simuleringene i
OrcaFlex ble sammenlignet med standardavviket for de bevegelsene som ble registrert
mellom 18:00 og 18:55 25. januar 2012. De faktiske bevegelsene hadde et standardavvik
som var cirka dobbelt så stort i rull og halvparten så stort i hiv. Standardavvikene i
jag, svai og stamp var av samme størrelsesorden for simuleringene i OrcaFlex og som
for de registrerte bevegelsene fra januar 2012.

Avviket mellom de registrerte bevegelsene er antatt å være hovedsaklig grunnet foren-
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klingene som ble gjort under modelleringene av kreftene fra thrusterne. Spesielt gjelder
dette punktet kreftene ble påført, retningen til kreftene og at alle komponentene av
alle de horisontal bevegelsene til riggen ble inkludert i beregningen av disse kreftene
istedenfor kun de lavfrekvente bevegelsene.
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Nomenclature

α Parameter in the Jonswap Spectrum

α Ratio of group velocity and phase velocity used for calculation of wave-drift
damping

β Direction of incoming wave

βe Encounter heading

α First-order rotation vector

ξ Location of source in computation of velocity potential

ξ Translational displacement vector in the calculation of the second-order pressure

δ Phase angle

δd Phase lag of wave drift QTF

ε Offset from set-point

Γ Gamma function

γ Parameter in the Jonswap Spectrum

=[x] Imaginary part of the complex number x

λ Expansion factor

ν Poisson ratio

ω Frequency of oscillation

ω0 Arbitrary frequency of oscillation used in Newman’s approximation method

ωe Encounter frequency of oscillation

Φ Total velocity potential

φ Velocity potential

φ0 Velocity potential of the incoming wave

φ1 First-order velocity potential

φ2 Second-order velocity potential

φD Diffraction velocity potential

φR Radiation velocity potential

φexc Excitation velocity potential

ψ Heading of vessel

<[x] Real part of the complex number x

ρ Water density

σ Standard deviation

σA Parameter in the Jonswap Spectrum
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σB Parameter in the Jonswap Spectrum

τ Period of oscillation

τe Encounter period

θ Wave direction variable

θP Principal wave direction

ε Mean axial strain

ϕ Component of radiation velocity potential for degree of freedom j

ξ Complex amplitude of rigid body motion in discretization of radiation potential

ζ Wave amplitude

ζmax Maximum wave elevation

Qdiag Diagonal QTF value

2q Spreading exponent

n Normal vector

r Vector of point on body

x Position vector

A Cross sectional stress area

a Acceleration

ad Amplitude of wave drift QTF

Ae Aranha scaling factor

ADOF Vessel projected are above or beneath the waterline in surge where DOF = surge,
sway or yaw

Akj Added mass coefficient

B Damping coefficient matrix

Bkj Damping coefficient

B10 Buoy with buoyancy of 100 MN

B5 Buoy with buoyancy of 50 MN

C Effective curvature in the calculation of the moment of the line segments

C Restoring coefficient matrix

Cd Drag coefficient

Cg Wave group velocity

Cp Wave phase velocity

CDOF Vessel wind or current coefficient where DOF = surge, sway or yaw

Ckj Restoring coefficient

C76 Chain with bar diameter of 76 mm
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C84 Chain with bar diameter of 84 mm

D Diameter of line segment

DOF Degree of freedom

DP Dynamic positioning

E Modulus of elasticity

F Force matrix

f Frequency variable

fi Random frequency used in the calculation of the Impulse Response Function

fm Parameter in the Jonswap Spectrum, frequency of maximum spectral value

G Green’s function

g Constant of gravity

GMT Transverse metacentric height

H Rotation matrix

HS Significant waveheight

i Variable denoting number of frequency wave component in an irregular sea, un-
less specified otherwise

IRF Impulse Response Function

j Degree of freedom for rigid body motion, unless specified otherwise

k Degree of freedom for force or moment, unless specified otherwise

k0 Wave number

Kd Controller gain for derivative controller

Ki Controller gain for integrative controller

Kn Seabed normal stiffness

Kp Controller gain for proportional controller

L Length of line segment

l Variable denoting number of directional wave component in an irregular sea,
unless specified otherwise

LF Low frequency oscillations

M Inertial coefficient matrix

m Variable denoting number of a wave component in an irregular sea, unless spec-
ified otherwise

N Number of wave components in a given sea state

n Variable denoting number of a wave component in an irregular sea, unless spec-
ified otherwise

nk Unit vector normal to body
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Nt Number of current time step in OrcaFlex

OCIMF Oil Companies International Marine Forum

p Hydrodynamic pressure

p Position

PID Proportional Integral Derivative (controller)

Qd Quadratic Transfer Function for the difference-frequency load for a pair of wave
components

Qde Value of Quadratic Transfer Function modified for encounter effects

QTF Quadratic transfer function

RAO Response Amplitude Operator or transfer function

s Sign of Qdiag(β, τ))

s Time-lag variable used in the calculation of the Impulse Response Function

Sb Wet surface of body

Sd(θ) Directional spectrum

Sf (f) Frequency wave spectrum

SWL Water line area

S(f,θ) Wave spectrum

t Time variable

Tc Mean crest period between local maxima

Te Effective linear axial stiffness

Tw Wall tension

Tz Zero-crossing period

u Velocity

UL Vessel low-frequency velocity in the wave direction

v Velocity

vc Current velocity

VIV Vortex Induced Vibrations

W Wire

WDL Wave Drift Load

WF Wave frequency oscillations

Xk Exciting force or moment

xii



Contents
Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Thruster induced roll motion 1

2 Wadam -
Frequency domain analysis of hull 3
2.1 Input of physical conditions in Wadam . . . . . . . . . . . . . . . . . . 3
2.2 Computational choices in Wadam . . . . . . . . . . . . . . . . . . . . . 4
2.3 Output from Wadam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Restoring matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Damping, added mass and linear load transfer functions . . . . 6
2.3.3 Quadratic load transfer functions - mean drift forces . . . . . . . 7

3 OrcaFlex -
Time-domain analysis 9
3.1 General data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Integration and time steps . . . . . . . . . . . . . . . . . . . . . 10

3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Water and seabed properties . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Current and wind . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 First order wave loads . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Wave-drift loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Wave-drift damping . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 Stiffness, added mass and damping . . . . . . . . . . . . . . . . 19
3.3.5 Manoeuvring loads . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.6 Current and wind loads . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Anchor Line System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 General Line properties and boundary conditions . . . . . . . . 24
3.4.2 Line types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Subsurface buoys . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Theoretical background for the calculations of the line loads . . 25

3.5 Drilling riser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Complete DP systems and simplifications . . . . . . . . . . . . . 29
3.6.2 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.3 Implementation in OrcaFlex . . . . . . . . . . . . . . . . . . . . 31

xiii



4 Computational difficulties and sensitivity studies 34
4.1 Convergence issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Filtering and instability issues . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Sensitivity Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Bending stiffness of the lines . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Length of segments in the anchor lines . . . . . . . . . . . . . . 36
4.3.3 Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.4 Cutoff Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.5 Dividing Period . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Set-up of simulations in OrcaFlex 38
5.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Decay test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Set-up of time-domain simulations . . . . . . . . . . . . . . . . . . . . . 38

6 Results from frequency-domain analysis in Wadam 40
6.1 Motion transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Linear load transfer function . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Quadratic load transfer functions . . . . . . . . . . . . . . . . . . . . . 43

7 Results from analyses in OrcaFlex 46
7.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Decay test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Comparison of time-domain simulations in OrcaFlex . . . . . . . . . . . 47

7.3.1 Comparison of simulations with and without thruster forces . . 47
7.3.2 Effect of different gain coefficients . . . . . . . . . . . . . . . . . 51
7.3.3 Effect of constant thruster force to counteract mean environmen-

tal loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.4 Harmonically oscillating thruster forces . . . . . . . . . . . . . . 55

7.4 Comparison of time-domain simulations in
OrcaFlex and registered time-history . . . . . . . . . . . . . . . . . . . 57

8 Discussion and conclusions 60
8.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.1.1 Modelling of the thrusters . . . . . . . . . . . . . . . . . . . . . 60
8.1.2 Modelling of the rig . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.1.3 Modelling of the environment . . . . . . . . . . . . . . . . . . . 61
8.1.4 Dividing Period . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.1.5 Duration of the simulation . . . . . . . . . . . . . . . . . . . . . 61

8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3 Suggestions for further work . . . . . . . . . . . . . . . . . . . . . . . . 63

A Mathematical details on how to find the velocity potentials i
A.1 Application of Green’s Theorem to find velocity potentials . . . . . . . i
A.2 Application of Green’s Theorem in Wadam . . . . . . . . . . . . . . . . iii

A.2.1 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . iii
A.2.2 Fluid domain and velocity potentials . . . . . . . . . . . . . . . iii
A.2.3 Radiation potential . . . . . . . . . . . . . . . . . . . . . . . . . iv
A.2.4 Excitation potential . . . . . . . . . . . . . . . . . . . . . . . . . iv
A.2.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

xiv



B The Generalised-α method vi

C Separate python script:
PIDthruster.py vii

D Separate python script:
harmonicThruster.py ix

E Wadam Input x

F OrcaFlex Input xii
F.1 General data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
F.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
F.3 Vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
F.4 Anchor Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
F.5 Buoys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

xv



List of Figures

1.1 Illustration of roll moment caused by thruster forces . . . . . . . . . . . 1
1.2 Time history of thruster forces with and without roll damping controller 2
1.3 Time history of position with and without roll damping controller . . . 2

2.1 Panel Model for use in frequency-domain analysis. . . . . . . . . . . . . 3

3.1 Overview of coordinate systems in OrcaFlex. . . . . . . . . . . . . . . . 10
3.2 JONSWAP frequency spectrum . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Directional spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Methods for stretching of wave kinematics above the mean free-surface. 14
3.5 Vertical current profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Impulse Response Function, roll-roll component. . . . . . . . . . . . . . 20
3.7 Current load coefficients from wind-tunnel test performed by FORCE

Technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Wind load coefficients from wind-tunnel test performed by FORCE Tech-

nology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Overview of the mooring system of COSL Pioneer. . . . . . . . . . . . 23
3.10 Segmentation of a Line in OrcaFlex. . . . . . . . . . . . . . . . . . . . 26
3.11 Mathematical model of a Line in OrcaFlex. . . . . . . . . . . . . . . . . 26
3.12 Overview dynamic positioning system. . . . . . . . . . . . . . . . . . . 30

4.1 Definition of the passband of a filter. . . . . . . . . . . . . . . . . . . . 34
4.2 Phase lag as a function of frequency of oscillation for Butterworth filter

of order n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Motion transfer functions, translational DOF. . . . . . . . . . . . . . . 41
6.2 Motion transfer functions, rotational DOF. . . . . . . . . . . . . . . . . 41
6.3 Load transfer functions, translational DOF. . . . . . . . . . . . . . . . 42
6.4 Load transfer functions, rotational DOF. . . . . . . . . . . . . . . . . . 42
6.5 Wave drift transfer functions, roll. . . . . . . . . . . . . . . . . . . . . . 43
6.6 Wave drift transfer functions in roll by Hong for other semisubmersible

used for evaluation of wave drift transfer functions in roll from Wadam. 44
6.7 Wave drift transfer functions, translational DOF. . . . . . . . . . . . . 44
6.8 Wave drift transfer functions, pitch and yaw. . . . . . . . . . . . . . . . 45

7.1 Mean values for motions in time-domain simulations calculated with and
without thruster forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Standard deviations for motions in time-domain simulations calculated
with and without thruster forces . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Mean and standard deviation for different components of the applied
load in the local y-direction from simulation with standard settings for
the PID controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.4 Time-domain roll motion from simulation computed without the inclu-
sion of thruster forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.5 Time-domain roll motion from simulation computed with the inclusion
of thruster forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.6 Time-domain thruster force in the y-direction of the vessel from simula-
tion computed without the inclusion of thruster forces . . . . . . . . . . 51

xvi



7.7 Mean value and standard deviation for the y- position from time-domain
simulations computed with thrusters using different controller gains. . . 52

7.8 Mean value and standard deviation for the thruster forces in vessel y-
direction from time-domain simulations computed with thrusters using
different controller gains. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.9 Mean value and standard deviation for rotation about the global x-axis
from time-domain simulations computed with thrusters using different
controller gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.10 Mean value and standard deviation for the moment around the global x-
axis due to thruster forces from time-domain simulations computed with
thrusters using different controller gains. . . . . . . . . . . . . . . . . . 53

7.11 Mean value and standard deviation for the rotation around the global
y-axis from time-domain simulations computed with thrusters using dif-
ferent controller gains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.12 Mean value and standard deviation for the moment around the global y-
axis due to thruster forces from time-domain simulations computed with
thrusters using different controller gains. . . . . . . . . . . . . . . . . . 54

7.13 Mean values of motions from time-domain simulations computed with
thruster forces computed with and without a constant component. . . . 55

7.14 Standard deviations of motions from time-domain simulations computed
with thruster forces computed with and without a constant component. 55

7.15 Mean value and standard deviation of applied load in the global y-
direction for thruster with PID controller and for thruster exerting a
harmonic load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.16 Extraction from the time-domain simulation for thruster forces exerting
a harmonic load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.17 Mean value for motions from time-domain simulations with thruster with
PID controller and for thruster exerting harmonic load. . . . . . . . . . 57

7.18 Mean value for motions from time-domain simulations with thruster with
PID controller and for thruster exerting harmonic load. . . . . . . . . . 57

7.19 Standard deviation of motions for all simulations and for registered mo-
tions from January 25th 2012. . . . . . . . . . . . . . . . . . . . . . . . 58

7.20 Time-domain roll motion from simulation computed with inclusion of
thruster forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.21 Registered roll motion of COSL Pioneer on January 25th 2012 between
18:35 and 18:55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xvii



List of Tables

2.1 Key properties of COSL Pioneer for survival condition . . . . . . . . . 4

3.1 Wave data for 25.01.12 19:00-19:10 . . . . . . . . . . . . . . . . . . . . 13
3.2 Anchor line components. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Anchor line types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Subsurface buoys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Results from tuning of PID controller. . . . . . . . . . . . . . . . . . . 33

5.1 Input to Applied Loads (External Function) which calculated the thruster
forces in the OrcaFlex time-domain simulations. . . . . . . . . . . . . . 39

6.1 Hydrostatic stiffness calculated in Wadam. . . . . . . . . . . . . . . . . 40

7.1 Static equilibrium position for COSL Pioneer. . . . . . . . . . . . . . . 46
7.2 Results from decay test in OrcaFlex . . . . . . . . . . . . . . . . . . . . 46
7.3 Statistical properties for motions in the simulation without thruster forces. 48
7.4 Statistical properties for motions in the simulation with thruster loads

calculated with standard settings of the PID Controller. . . . . . . . . . 48
7.5 Percentual difference between statistical properties of the motions of the

simulations calculated with and without thruster forces. . . . . . . . . . 48

E.1 Wadam input, Physical data . . . . . . . . . . . . . . . . . . . . . . . . x
E.2 Wadam input, Execution Directives . . . . . . . . . . . . . . . . . . . . xi

F.1 OrcaFlex input, General Data . . . . . . . . . . . . . . . . . . . . . . . xii
F.2 OrcaFlex input, Sea and Seabed . . . . . . . . . . . . . . . . . . . . . . xiii
F.3 OrcaFlex input, Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
F.4 OrcaFlex input, Wind and Current . . . . . . . . . . . . . . . . . . . . xiv
F.5 OrcaFlex input, Vessel data 1 . . . . . . . . . . . . . . . . . . . . . . . xv
F.6 OrcaFlex input, Vessel data 2 . . . . . . . . . . . . . . . . . . . . . . . xvi
F.7 OrcaFlex input, Anchor Line End Coordinates . . . . . . . . . . . . . . xvii
F.8 OrcaFlex input, Lines, Computational choices . . . . . . . . . . . . . . xviii
F.9 OrcaFlex input, Line Types. . . . . . . . . . . . . . . . . . . . . . . . . xix
F.10 OrcaFlex input, Sections and segments, Lines 1-4 . . . . . . . . . . . . xx
F.11 OrcaFlex input, Sections and segments, Lines 5-8 . . . . . . . . . . . . xxi
F.12 OrcaFlex input, Subsurface Buoys . . . . . . . . . . . . . . . . . . . . . xxii

xviii



1 | Thruster induced roll motion

As the weather conditions on earth become more extreme the drilling process becomes
more dependent on stationkeeping. Wind, waves and current induce motions which can
be counteracted by mooring, dynamic positioning systems or both. Wave-frequency
motions cannot be counteracted by thrusters since they do not react fast enough and
because such use would cause to much wear and tear of the thrusters. The thrusters
are therefore only used to counteract low-frequency forces. Due to the position of the
thrusters and the relatively low hydrostatic stiffness of semisubmersibles, the thruster
forces cause roll and pitch moments while counteracting the horizontal, low-frequency
wave-drift forces. This is illustrated in Figure 1.1.

Figure 1.1: Illustration of roll moment caused by thruster forces

Semisubmersibles usually have large natural periods in roll and pitch due to the low
waterplane area and may therefore oscillate with frequencies close to those of the forces
and motions in the horizontal plane. The thrusters may induce large resonance motions
in roll or pitch if the period of oscillation of the thrusters and the natural periods in
roll or pitch coincide and have the same phase. According to Sørensen and Strand[2],
the thrusters may amplify the pitch and roll motions of a semisubmersible with up to
two degrees in the resonance frequency range[2]. Huse and Børresen[3] state that the
thrusters may induce damping of the same order of magnitude as the viscous damping
in heave, pitch and roll.

The thrusters do not necessarily increase the roll and pitch motions, provided that
the phase of the thruster forces is controlled, they may even reduce them. Sørensen
and Strand[2] proposed a multi-variable control law accounting for both vertical and
horizontal plane motions. Their controller provided a thruster force given by

Fthruster = −Kpe−Kdė + AwiFi + Kiz−KwF̂wind −Krpderot (1.1)

where the first, second and fourth term are the proportional, derivative and integrative
terms of a horizontal PID controller, which will be described in more detail in Chap-
ter 3.6.2. The third term is an anti-wind up term which counteracts wind-up of the
integrative term and the fifth term is a wind feed forward control law counteracting
the wind forces. The sixth and final term is the roll-pitch-damping term which may be
written as FxFy

Fψ

 =

 0 gxq
gyp 0
gψp 0

 · [p̂
q̂

]
(1.2)

where p̂ and q̂ are the estimated roll and pitch rates and gxq, gyp and gψp are their
respective controller gains. For further details of Equation 1.1, the reader is referred
to the paper by Sørensen and Strand[2]. Their study showed that the pitch and roll
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motions could be significantly reduced by the multi-variable controller without any large
increase in thruster force compared to a horizontal controller. This can be seen from
the time-domain simulation with the horizontal and multi-variable controllers applied
to the semisubmersible West Future, found in Figure 1.2 and Figure 1.3. The applied
draught and displacement of West Future are 24 meters and 45 000 ton compared to
15.75 meters and 34 330 ton for COSL Pioneer.

A pitch-damping controller similar to that of Sørensen and Strand was applied and
studied by Jenssen[4]. The pitch rate was multiplied by a controller gain, as in the
second row of Equation 1.2. Jenssen discovered that a too high gain would influence
the surge motion negatively and thereby increase the pitch motion. This is one example
of why it is important to select the gain coefficients carefully. Jenssen[4] estimated that
for a well tuned pitch controller the improvement could be as much as ten times in
relative damping without any significant additional thrust.

Figure 1.2: Time history of thrust com-
ponents in sway, roll and yaw. Analysis
and figure by Sørensen and Strand[2].

Figure 1.3: Time history of sway posi-
tion, roll and yaw angles. Analysis and
figure by Sørensen and Strand[2].
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2 | Wadam -
Frequency domain analysis of hull

The potential solver Wadam was chosen to calculate the hydrostatic and hydrodynamic
properties of the bare hull of COSL Pioneer. It is run by the hydrodynamic design tool
and integrated program package HydroD[5]. Wadam uses first- and second-order three-
dimensional potential theory to calculate the different load components acting on the
body[5]. This chapter describes the input to Wadam and explains the computational
choices. The complete input can be found in Appendix E.

2.1 Input of physical conditions in Wadam

The properties of the hull of COSL Pioneer were represented by a panel model and a
mass model. The panel model was used to calculate hydrodynamic loads according to
potential theory and the mass model was used to calculate inertia forces.

Figure 2.1: Panel Model for use in frequency-domain analysis.

Global Maritime provided the panel model and structural data such as the weight, radii
of gyration and transverse metacentric height of COSL Pioneer. The panel model can
be seen in Figure 2.1 and consists of 6628 panels.

Graphs of the motion transfer functions for COSL Pioneer were provided by Global
Maritime and used as reference for the results from Wadam. Several analyses were
performed in Wadam in order to find an estimate for the viscous damping. An additional
damping in heave of five percent of the critical damping ensured that the peak value
was equal to the reference peak value.

The structural data found in Table 2.1 was used as input for the mass model. The
center of gravity was found by iterating until the transverse metacentric height in an
even keel condition had the correct value.

Added mass and damping coefficients as well as transfer functions were computed for
periods of oscillation for the incoming waves between 2.5 and 30 seconds with intervals
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Mass 34 330 ton
Transverse metacentric height 2.7 m
Longitudinal center of gravity -0.0454 m
Transverse center of gravity 0 m
Vertical center of gravity 4.87 m
Radius of gyration, roll 39.5 m
Radius of gyration, pitch 38.9 m
Radius of gyration, yaw 44.6 m

Table 2.1: Key properties of COSL Pioneer for survival condition

of 0.25-1 seconds. The exact intervals can be found in Table E.1. As the vessel is
symmetric about the longitudinal axis, the transfer functions were only computed for
incoming wave directions between 0-180°, with an interval of 15°. The transfer functions
are presented in Chapter 6.

2.2 Computational choices in Wadam

The computational choices were based on two main aspects; accuracy of the results and
running time. As the author had very little experience with the software, the following
choices were made on the basis of recommendations in the Wadam User Manual [5].

To limit running time, a direct LU factorisation method was chosen for the solution of
the potential theory integral equations (given in Appendix A.2.5) and the mass matrices
were calculated in HydroD.

Mean-drift forces were computed by pressure integration in six degrees of freedom.
Control volume calculations were also available, but disregarded since they only provide
results for surge, sway and yaw. The mean-drift force coefficients would later be used
by OrcaFlex in order to calculate second-order wave loads on the vessel using Newman’s
approximation. See Chapter 2.3.3 and Chapter 3.3-Wave Drift Loads, for further details
on the calculations.

An analytical integration of the logarithmic singularities of the Green’s functions was
chosen on the background of recommendations in the Wadam User Manual[5]. Ana-
lytical integration was recommended for panel models that contain panels with large
width-to-length ratio, which can be seen in the columns of the panel model in Figure
2.1. One node Gauss numerical integration was chosen for the Green’s functions and its
derivatives. Four node Gauss integration would yield more accurate results, but would
also have significantly increased the running time of the computation.

The distance between the panel centroids are compared to a panel dimension of the
user’s choice. The panel dimension can either be the square of the area of the panel or
the maximum diagonal, the latter being the default option which was chosen for this
analysis.
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2.3 Output from Wadam

The desired output from Wadam consisted of the stiffness matrix, the damping ma-
trices, the added mass matrices, the linear load transfer function and the quadratic
load transfer function. All but the restoring matrix are frequency dependent and were
calculated for all prescribed frequencies of oscillation. The desired output was stored
in a Wamit-formatted output file and directly imported to OrcaFlex.

This chapter summarizes how Wadam obtained the desired output for OrcaFlex as
described in the Wadam User Manual[5], the Wamit User Manual[6] and Marine Hy-
drodynamics by Newman[7]. If the reader is not familiar with classical potential wave
theory, he or she is referred to Fluid Mechanics by Frank M. White[8].

2.3.1 Restoring matrix

As the panel model only consisted of a floating hull without risers or anchor lines, the
only contribution to the stiffness matrix was the hydrodynamic stiffness of the hull.
The hydrostatic coefficients calculated by Wadam were calculated with the formulas
given in the Wamit User Manual[6][9] which are given below.

C33 = ρg

∫∫
SWL

n3dS (2.1a)

C34 = ρg

∫∫
SWL

yn3dS (2.1b)

C35 = −ρg
∫∫

SWL

xn3dS (2.1c)

C44 = ρg

∫∫
SWL

y2n3dS + ρg∇zb −mgzg (2.1d)

C45 = −ρg
∫∫

SWL

xyn3dS (2.1e)

C46 = −ρg∇xb +mgxg (2.1f)

C55 = ρg

∫∫
SWL

y2n3dS + ρg∇zb −mgzg (2.1g)

C56 = −ρg∇yb +mgyg (2.1h)

ρ is the water density, g is the constant of gravity, SWL is the water line area, n3 is the
normal vector in the z-direction, ∇ is the volume displacement and m is the mass of
the body. Subscripts b and g denotes the center of buoyancy and the center of gravity,
respectively. Cjk is the coefficient for the force or moment in the j’th degree of freedom
due to a motion in the k’th degree of freedom.

Equation 2.2 is valid for the remaining combinations of i,j = 3..6. The restoring coeffi-
cients of the horizontal plane i,j=1,2,6 are zero.

Ckj = Cjk except for (ij) = (46) or (56) (2.2)
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2.3.2 Damping, added mass and linear load transfer functions

Potential theory contributions

Wadam applies first-order potential theory to calculate the potential, excitation and
radiation forces and moments. The vessel is represented by a three-dimensional panel
model where each panel is represented by a source with constant strength. The flow is
assumed to be ideal and the velocity potential of the fluid domain thereby satisfies the
Laplace equation, given below in Equation 2.3. The assumption of harmonic oscillations
allows for the simplification given in Equation 2.4.

∇Φ = 0 (2.3)

Φ = <(φeiωt) (2.4)

The combined free-surface condition enforces that a fluid particle on the free surface
always stays on the free surface and that the pressure on the free surface is equal to the
atmospheric pressure [10]. The combined free-surface condition has to be satisfied on
the free surface and is given by the following equation.

g
∂φ

∂z
− ω2φ = 0 on z = 0 (2.5)

Since the problem at hand is linear the velocity potential, φ, can be divided as

φ = φexc + φR = φ0 + φD + φR (2.6)

φ0 is the velocity potential of the incoming wave. φD is the diffraction velocity potential
due to the presence of the vessel and the reflection of the incoming waves. φexc is the
sum of the velocity potential of the incoming wave and the diffraction velocity potential.
φR is the radiation velocity potential due to the motion of the vessel and is given by
Equation 2.7.

φR = iω
6∑
j=1

ξjϕj (2.7)

In Equation 2.7, ξ is the complex amplitude of rigid body motion and j denotes the
degree of freedom. Equations 2.8a and b have to be satisfied on the body in order to
ensure no fluid flow through the body.

∂ϕj
∂n

= nj (2.8a)

φexc = 0 (2.8b)

where

r = (x, y, z) = point on the body
n = (n1, n2, n3) = unit vector pointing normally outwards from the body

r× n = (n4, n5, n6)

The global excitation and radiation velocity potentials are determined by solving the in-
tegral equations (Equation 2.9 and Equation 2.10) which are obtained by using Green’s
theorem with the free-surface potentials as the Green’s functions. The velocity poten-
tials are assumed to be constant over each of the panels and the given integral equations
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are discretizised by the panels in the panel model in order to find the velocity potentials
in the fluid domain. The integral equation for the radiation potentials is given by

2πϕj(x) +

∫∫
Sb

[
ϕj(ξ)

∂G(ξ,x)

∂nξ
dξ − njG(ξ,x)

]
dξ = 0 (2.9)

The integral equation for the excitation potential is given by

2πφexc(x) +

∫∫
Sb

φexc(ξ)
∂G(ξ,x)

∂nξ
dξ = 4πφ0(x) (2.10)

A derivation of the integral equations, explanations of their components as well as
how they are discretizised can be found in Appendix A. When the radiation velocity
potential is found, Equation 2.11 and Equation 2.12 are used to calculate the coefficients
of the frequency-dependent damping and added mass matrices.

Bkj(ω) = −ω =
[
ρ

∫∫
Sb

nkϕjdS
]

(2.11)

Akj(ω) = <
[
ρ

∫∫
Sb

nkϕjdS
]

(2.12)

In Equation 2.11 and Equation 2.12, Sb is the wetted surface of the body, ϕj is the
radiation velocity potential components given by Equation 2.7 and nk is the component
of the normal vector pointing out of the body in the direction of the force. The exciting
forces and moments are calculated by integrating the dynamic pressure of the excitation
velocity potential over the wet surface of the body, as given by Equation 2.13. These
forces and moments are then divided by the wave amplitude in order to find the linear
load transfer function.

Xk = −iωρ
∫∫

Sb

nkφexcdS (2.13)

2.3.3 Quadratic load transfer functions - mean drift forces

The second order mean-drift forces and moments are calculated by pressure integration
for all six degrees of freedom. The second order hydrodynamic loads acting on the hull
are calculated by integrating the Bernoulli pressure over the wetted area of the body
to second order accuracy. The second order Bernoulli pressure can be written as

p2nd order = −ρgz − ρ∂φ1

∂t
−

�
�
���
zero mean contribution

ρ
∂φ2

∂t
− 1

2
ρ∇φ1∇φ1 (2.14)

The time-average of the contribution from the second-order potential is zero and can
therefore be omitted from the calculation of the mean-drift forces[11].

If n = (n1, n2, n3) are the components of a unit vector pointing out of the body in the
body fixed coordinates x = (x,y,z) and (n4, n5, n6) are given by x×n, then the forces
and moments acting on the hull can be given by

F =

∫∫
Sb

npdS (2.15)
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where Sb is the instantaneous wetted surface of the body. In a space fixed coordinate
system, the unit vector N is given as

N = n + α× n + Hn (2.16)

where α is the first-order rotation vector and H is quadratic in the first-order motions.
The definition of H can be found in the paper by Ogilvie [12]. The pressure on the
instantaneous position on the body as stated by Lee et. al [11] is then given by

p2nd order =− ρg(z + ξ3 + α1y − α2x)− ρ∂φ1

∂t
−

�
�

���
zero mean contribution

ρ
∂φ2

∂t

− 1

2
ρ∇φ1 ·∇φ1 − ρ(ξ + α× x) ·∇∂φ1

∂t
− ρgHx · ∇z

(2.17)

where ξ is the translational displacement vector. Inserting 2.16 and 2.17 into Equation
2.15 and adjusting Sb to correct for first order change in wave run up yields the represen-
tation of the forces and moments up to second order[11]. These forces and moments are
divided by the square of the wave amplitude to obtain the Newman quadratic transfer
function.
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3 | OrcaFlex -
Time-domain analysis

Time-domain analyses were performed in the program OrcaFlex, which is developed by
Orcina. Hydrodynamic data for the rig was imported from Wadam, while anchor lines
were modelled directly in OrcaFlex and thruster forces were calculated in a separate
Python program. The riser was omitted from the analysis due to its complexity and
small effect on the roll motion.

The next sections will describe the input to OrcaFlex, explain the choices made for the
analysis and outline the calculation methods of OrcaFlex. A complete set of the input
to OrcaFlex can be found in Appendix F.

3.1 General data

3.1.1 Coordinate systems

The coordinate systems in OrcaFlex are illustrated in Figure 3.1. The z-axes of the
global and the vessel coordinate systems are directed upwards. The z-axis of the lines
are directed from End A to End B, End A is fixed at the seabed and End B is connected
to the Vessel.

Rotations are defined as positive when the rotation is clockwise looking in the pos-
itive direction of the axis of rotation. As an example, positive rotation around the
Z-axis(Rotation 3) is rotation from the positive X-axis towards the positive Y-axis.
When rotations of the vessel is performed during time-domain analyses, rotations of
the Vessel is performed in the following order:

Rotation around the z-axis→ Rotation around the y-axis→ Rotation around the x-axis

3.1.2 Statics

The static analysis calculates the equilibrium position of the system, which is used as
a starting point for the dynamic analysis[13]. The calculation of the static equilibrium
position of the vessel includes hydrostatic and inertial loads of the vessel, connection
loads from the mooring system, mean wave-drift loads and the constant part of wind
and current loads.

OrcaFlex provides two different methods for calculation of the static equilibrium; ’Whole
System Statics’ and ’Separate Buoy and Line Statics’. The former calculates the equi-
librium position of all the components of the model in a single iterative process. The
latter applies an inner and an outer loop. The inner loop computes the static equilib-
rium position of the lines in the model whereas the outer computes the position of the
buoys and vessels. Whole system statics was chosen because it is generally both faster
and more robust[13].
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Figure 3.1: Overview of coordinate systems in OrcaFlex. The vessel is in it’s equilibrium
position and seen from above.

The static equilibrium is obtained by calculating the out-of-balance forces of the initial
positions of the objects in the model and using the out-of-balance forces to estimate
the next possible equilibrium position. This is repeated until a satisfactory accuracy,
which is defined by the user, is obtained.

The statics convergence parameters, such as the maximum number of iterations and
the tolerance of error, were set to default as this is normally satisfactory according to
the OrcaFlex User Manual[13].

3.1.3 Dynamics

The dynamic simulation was divided into two parts; a period for build-up and a period
for the simulation. The wave and system dynamics are slowly built up from zero to
full level during the build-up period. The objective of the build-up is to avoid sudden
transients when the simulation is started[13].

The results were saved at an interval of 0.1 second and saved with single precision,
which gives about seven significant figures[13].

3.1.4 Integration and time steps

The two available integration methods in OrcaFlex are explicit Euler integration and
implicit integration using the Generalised-α scheme. Both methods use the static equi-

10



librium position as the initial position for all objects in the model. For each time step
forces and moments are calculated for all lines and bodies. The equation of motion is
set up for all lines and bodies as given in Equation 3.1.

M(p) · a = F (p, v)−B(p, V )− C(p) (3.1)

All terms in Equation 3.1 are vectors. M(p)·a are the mass inertial forces and moments,
F(p,v) are the external forces, B(p,v) are the damping contributions and C(p) are
the stiffness contributions. p are the positions, v are the velocities and a are the
accelerations. The equation of motion is solved at the beginning of the time step if
the explicit integration scheme is used and at the end of the time step if the implicit
integration scheme is used.

When implicit integration is applied, iterations have to be performed for each time-
step as the position, velocity and acceleration are unknown at the end of a the time
step [13]. The consequence of this is that the implicit integration is significantly more
time-consuming than the explicit integration for one time-step. However, the implicit
integration is typically more stable for longer time steps and is therefore often the
faster choice[13]. The implicit method was chosen because it was recommended by
Orcina User Support[14] on the grounds that it generally runs more efficiently.

The Generalised-α method is described in Appendix B and may be considered as a syn-
thesis of the HHT-α and the WBZ-α methods. It is unconditionally stable and accurate
to the second order[15]. High-frequency dissipation is used to damp high-frequency re-
sponse while simultaneously minimizing undesired low-frequency dissipation[15]. The
numerical details can be found in Appendix B.

The simulation was performed with a time-step of 0.1 second, limited to 100 iterations
per time-step and equilibrium positions were measured against the default tolerance of
25·10−6.

3.2 Environment

Weather data was provided by Global Maritime for the day and night of January 25th
2012. The data collected between 18:00 and 18:55 was chosen for the computational
analysis described in this chapter.

3.2.1 Water and seabed properties

The average temperature during the chosen period was four degrees Celsius, which was
used to determine the kinematic viscosity by the 1978 ITTC Performance Prediction
Method [16] for sea water. The water density was assumed to be constant and as no
description of the seabed was provided, the seabed was constructed as a flat surface at
the given depth of 109 meters.

3.2.2 Waves

The wave elevation was generated by using an energy density spectrum to create a
set of random wave components. The phases assigned to each linear wave component

11



are pseudo-random. A random set of phases are generated and then saved such that
the same wave train can be simulated repeatedly. The energy spectrum is given by a
frequency spectrum multiplied by a directional spreading spectrum as given below.

S(f, θ) = Sf (f) · Sd(θ) (3.2)

The Jonswap spectrum was the chosen frequency spectrum and is given, as by Isherwood[17],
in Equation 3.3. The significant wave height, HS, the zero crossing period, Tz and the
incoming wave direction, θp were extracted from weather data for January 25th 2012.
The parameters γ, α, σ and Tp or fm were calculated by OrcaFlex with Equations 3.4a-f
because accurate values for these parameters were not available.

Sf (f) =
αg2

16π4
f−5e−

5
4
( fm

f
)4γb (3.3)

The parameters in the Jonswap spectrum are given by

b = e−
1
2
σ−2( f

fm
−1)2 (3.4a)

s =
2πHs

gT 2
z

(3.4b)

γ =

{
10.54− 1.34s−1/2 − e−19+3.775s−1/2 for s≥ 0.037
0.9 + e18.86−3.67s

−1/2 for s < 0.037
(3.4c)

α = s2(2.964 + 0.4788γ
1/2 − 0.3430γ + 0.04225γ3/2) (3.4d)

fm =
1

Tz
(0.6063 + 0.1164γ

1/2 − 0.01224γ) (3.4e)

σ =

{
σA = 0.07 for f ≤ fm
σB = 0.09 for f < fm

(3.4f)

Equations 3.4 d and e are only valid for 0.6 < γ < 8.0 and the given σ.

The directional spectrum is given by

Sd(θ) = K(q) cos2q(θ − θp) for− π/2 ≤ θ − θp ≤ π/2 (3.5)

where K(q) is given by

K(q) = π−
1/2 Γ(q + 1)

Γ(q + 1/2)
(3.6)

2q is the spreading exponent, θ is the wave direction, θp is the principal wave direction
and Γ is the Gamma function. The spreading exponent was chosen to be equal to that
of another analysis in the same weather conditions performed by Global Maritime.

The minimum and maximum relative frequencies were set to their default values of 0.5
and 10 as the OrcaFlex User Manual[5] indicates that these usually provide a good
representation of the continuous spectrum. This means that the integration of the
spectrum will start at a frequency of 0.5·fm and stop at 10·fm, where fm is the frequency
of the peak of the spectrum given by Equation 3.4. The wave amplitude of a wave
component with a given frequency and direction is given by

ζil =
√

2S(ωi, βl)∆ω∆β (3.7)
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Significant wave height, Hs 8.8 m
Zero-crossing period, Tz 9.2 s
Principal wave direction, θP 152°
Spreading exponent, 2q 10
Number of wave directions 9
Number of wave components per direction 100

Table 3.1: Wave data for 25.01.12 19:00-19:10

Figure 3.2: JONSWAP frequency spectrum

A summary of the wave input data can be found in Table 3.1, the frequency spectrum
in Figure 3.2 and the directional spectrum in Figure 3.3.

Linear wave theory is not applicable for the calculation of the kinematics of the waves
above the mean water level because it only defines the wave kinematics up to the mean
free surface. OrcaFlex offers three different kinds of stretching of the wave kinematics
above the mean free-surface, they are listed below and illustrated in Figure 3.4.

• Vertical stretching: Replaces the values for z>0 with the values at the mean
water level (z=0).

• Wheeler stretching: Linearly stretches (wave crest) or compresses (wave trough)
the values along the z-axis.

• Extrapolation stretching: Linearly extrapolates the tangent at the mean water
level.

Several studies comparing these methods have been performed in order to determine
which is the superior to the others, but the results have been inconsistent[18]. The
Wheeler method seems to be working well, but may underpredict the velocities in the
region around z=0 for large and steep waves[19]. Stansberg et. al [20] estimated that
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Figure 3.3: Directional spectrum. The dots represent the discretisation of the spectrum.

Figure 3.4: Methods for stretching of wave kinematics above the mean free-surface.

the order of magnitude of this reduction is given as

∆u

u0
≈ k0ζmax (3.8)

where u is the horizontal velocity, k0 is the wave number and ζmax is the maximum wave
elevation. According to the results of Longridge et. al [21], Wheeler stretching provide
more accurate results than linear extrapolation.

Zhang et. al [18] presented a study on the three stretching methods with the objective
of studying the influence of wave field characteristics. Both experimental and numer-
ical results were used for comparison with the theoretical approximations. A regular
wave was used to conceptually represent a narrow-banded spectrum and a wave train
with two regular wave components was used to conceptually represent a broad-banded
spectrum. Their results indicated that the Wheeler method is a better approximation
for broad-banded spectra and that the linear extrapolation stretching is superior for

14



narrow-banded spectra[18]. As illustrated by Figure 3.2, the frequency spectrum is
fairly narrow-banded, which means that according to Zhang et. al [18], the extrapola-
tion stretching should be chosen.

The extrapolation stretching was chosen on the grounds of the aforementioned studies
and because it is the most conservative option.

3.2.3 Current and wind

As detailed specifications were not provided, the current was defined as a constant flow
with a velocity of 0.5 m/s propagating in northern direction. A power law distribution,
given by Equation 3.9, was applied in order to satisfy the boundary condition of zero
velocity at the seabed.

vc(z) = vc,seabed + (vc,surface − vc,seabed) ·
(

z − zseabed
zsurface − zseabed

) 1
exponent

(3.9)

In Equation 3.9, vc is the current velocity and ’exponent’ determines the degree of the
decay. The value of the exponent was not known and was determined such that it
increased to 0.5 m/s rather quickly. The exponent was set to 30 and the current profile
can be seen in Figure 3.5.

Figure 3.5: Vertical current profile

The wind velocity was determined from weather data provided by Global Maritime
for the location of COSL Pioneer on January 25th 2012. The wind was modelled as
constant with a velocity of 25.8 m/s with a direction of 154 degrees.
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3.3 Vessel

The static equilibrium for all six degrees of freedom of the vessel was computed in an
iterative process in connection with the rest of the model and was set to be the starting
position for the dynamic analysis.

There are various alternatives for the calculation of the motions of the vessel. OrcaFlex
provides the opportunity to superimpose two main vessel motions; Primary Motion
and Superimposed Motion. As there was no reason to separate the contributions to the
motion of COSLPioneer, the Superimposed Motion was set to None and the Primary
Motion of the rig was calculated in six degrees of freedom.

OrcaFlex separates low-frequency motion from wave-frequency motion when computing
the different loads acting on the vessel. The low- and high-frequency motions are
separated by a period of oscillation given by the user, the Dividing Period. The Dividing
Period should ideally be set such that all significant low-frequency contributions oscillate
with periods sufficiently longer than the Dividing Period. Similarly, all significant wave-
frequency contributions should oscillate with periods well below the Dividing period.
As recommended by OrcaFlex User Support[14], the Dividing Period was calculated
with the formula below.

Dividing Period =
1

1/2(Wave Frequency + Low Frequency)
(3.10)

The Wave Frequency was set to the frequency of the peak of the spectrum, fm, given
by Equation 3.4e and the Low Frequency was set by using the highest natural period
from the decay test in OrcaFlex (anchor lines included). This method gave a Dividing
Period of 25 seconds.

The included environmental forces acting on the vessel are listed below, many of which
depend on the motion of the vessel. The parentheses indicate whether the forces are
dependent on the low-frequency Primary Motion (LF), the wave-frequency Primary
Motion (WF) or both.

• First order wave loads (LF)

• Wave drift loads (LF)

• Wave drift damping (LF)

• Added mass and damping (WF+LF)

• Current loads (LF)

• Wind loads (LF)

The loads do not necessarily depend on the primary motion directly. They may for
example only be affected by the primary motion change of heading and the conse-
quent change of incoming direction of the waves[14]. The following sections contain a
description of how OrcaFlex calculate the load components listed above.

3.3.1 First order wave loads

The first order wave loads are defined by the linear load transfer functions, or Response
Amplitude Operators(RAOs). The Load RAOs define the exciting force (or moment)
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induced by regular waves as a function of wave amplitude, wave period of oscillation
and the incoming direction of the wave. For a given sea state and a given degree of
freedom, the first order wave load is given as

First order wave load =
N∑
i=1

N∑
l=1

RAOload(ωi, βl)ζil cos(ωit− δi) (3.11)

where i and l denotes the wave frequency and directional components, ζil is given by
Equation 3.7 and it’s spectrum, S, is given by equations number 3.2-3.5.

The Load RAOs for COSL Pioneer were calculated in Wadam and imported to OrcaFlex
via Wamit output files. They may be found in Figure 6.3 and Figure 6.4.

OrcaFlex performs linear interpolation for wave frequencies and directions that do not
have available RAOs. Periods shorter than the shortest period given will be found
by taking the RAO to be zero at a period of zero and then performing linear inter-
polation between zero and the shortest period. For periods higher than the highest
frequency given, the RAO is given the value equal of the RAO of the highest frequency
available[13]. The OrcaFlex User Manual[13] recommends to use steps of 30° or less
and steps of 15° were applied for this analysis.

3.3.2 Wave-drift loads

Wave-drift loads are second-order, difference-frequency loads calculated using Quadratic
Transfer Functions (QTFs). The QTFs define the force (or moment) induced by the
interaction of two regular waves with certain amplitudes, periods of oscillation and
incoming directions. The force (or moment) on the vessel induced by the two wave
components oscillate with the difference in frequency of oscillation between the two
wave components. A wave component’s interaction with itself induce a mean-drift load
that is included in both the static and dynamic calculations[13].

When a Full QTF calculation is used to calculate the Wave Drift Load (WDL) in a given
degree of freedom, the load is given as the sum of the contributions from the interaction
of every wave component in the sea state with all the others, as given below.

WDL =
N∑
m=1

N∑
n=1

<[Qd(τm, τn, βm, βn)]ζmζne
i((ωm−ωn)t−(δm−δn)) (3.12)

m and n denotes the numbers of two wave components and N is the total number of
wave components. The value of the QTF for a given degree of freedom and a given
wave pair (components m and n) is given by

Qd(βm, βn, τm, τn) = ad(βm, βn, τm, τn)e−iδd(βm,βn,τm,τn) (3.13)

where ad(βm, βn, τm, τn) is the wave drift response amplitude divided by the product
of the wave amplitudes for the two wave components and δd(βm, βn, τm, τn) is the cor-
responding phase lag. The calculation of Equation 3.12 requires a double summation
over all the wave components. The running time is proportional to N2 which causes the
calculations are to be very computationally expensive[13].

OrcaFlex provides the option of applying Newman’s approximation method. The New-
man approximation only use the diagonal of the QTF-matrices and approximate the
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off-diagonal terms by averaging the diagonal terms. Newman used the arithmetic mean
of the diagonal terms, whereas OrcaFlex use the geometric mean as later developed by
Standing et. al [22]. The QTF component for a given wave pair in OrcaFlex is given by

Qd(βm, βn, τm, τn) =

{
sm
√
|Qdiag(βm, τm) ·Qdiag(βn, τn)| if sm = sn

0 if sm 6= sn
(3.14)

where s gives the sign of Qdiag(β, τ)). s has the value +1 if Qdiag is positive and -1 if
it is negative. Equations 3.12 and 3.14 give the following expression for the Wave Drift
Load.

WDL =
N∑
m=1

N∑
n=1

<

[
sm + sn

2

√
|Qdiag(βm, τm) ·Qdiag(βn, τn)|

]
ζmζne

i((ωm−ωn)t−(δm−δn))

(3.15)
As described by Standing et. al [22], the wave drift load can be written as

WDL = <

[( N∑
m=1

sm + sn
2

√
|Qdiag(βm, ωm)|ζmei((ωm−ω0)t−δm)

)

·
( N∑

n=1

√
|Qdiag(βn, ωn)|ζnei((ωn−ω0)t−δn)

)] (3.16)

where m and n denotes the number of the wave components, N is the total number
of wave components and ω0 is an arbitrary frequency. The Newman approximation
reduces the double summation to single summations[10]. Newman’s approximation
gives satisfactory results when the components of the QTFs do not have large varia-
tions with frequency and the main contribution comes from components with similar
frequency[10]. Unless there is a large spread in the wave directions, the components that
are far away from the diagonal (which oscillates with a larger frequency) are usually
not as significant[13].

The QTFs are imported to OrcaFlex in the same way as the Load RAOs. The method
using Newman’s approximation was chosen because the interval of interest is oscillations
with small frequencies, i.e. the components close to the diagonal, and because this
reduces the running time significantly.

When Newman’s approximation is applied and the diagonal value of the QTFs are used,
the interpolation is performed separately for the direction and the period of oscillation.
The default value is zero for infinite period and is linearly extrapolated on frequency
towards zero for zero frequency (infinite period). The value for the shortest specified
period is used for all shorter periods.

3.3.3 Wave-drift damping

Wave drift-damping is caused by the rapid oscillation of the waves interacting with the
slow-drift motion of the vessel[23]. This type of damping can be observed by comparing
free-decay tests in still water to free-decay tests in regular waves[10].

The wave-drift damping in OrcaFlex is calculated using the encounter effects approach
of Molin, from Aranha’s original deep water analysis with shallow water extensions,
according to the results of Malenica et al.[24][13]. The method is outlined below and
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can be found in the OrcaFlex User Manual[13]. The method uses modified QTF values
that allow for encounter effects and are given by

Qde(β, β, τ, τ) = AeQd(βe, βe, τeτe) (3.17)

where

Ae = 1 +
(
ω
∂α

∂ω
− 2
)UL
Cg

= Aranha scaling factor (3.18a)

α =
Cg
Cp

(3.18b)

βe = β +
UT
Cg

= encounter heading (3.18c)

τe =
2π

ωe
= encounter period (3.18d)

ωe = ω
(
1− UL

Cp

)
= encounter frequency (3.18e)

Cg =
∂ω

∂k0
= wave group velocity (3.18f)

Cp =
ω

k0
= wave phase velocity (3.18g)

k0 is the wave number, U is the vessel low-frequency velocity at the wave drift QTF
origin and L and T denote components in the longitudinal wave direction and the
transverse of the wave direction, respectively.

By altering the diagonal QTF values before applying Newman’s approximation method,
OrcaFlex can include the effect of the time-varying wave-drift damping[13]. Both the
current’s effect on the wave drift load and the damping effect on the vessel’s low-frequent
motion are included since the velocity applied is the low-frequent velocity relative to
the current. OrcaFlex only applies wave-drift damping in surge and sway[13].

3.3.4 Stiffness, added mass and damping

The restoring loads as well as the components of added mass and damping loads that
are not frequency dependent are calculated as given below.

F = −Kx (3.19)

F is an array containing the loads on the vessel in six degrees of freedom, K is the
stiffness, damping or added-mass coefficient matrix and x is an array containing the
offset, velocity or acceleration, respectively.

The frequency-dependent added-mass and damping forces are included by use of the
method proposed by Cummins and implemented by Wicker[13]. The Impulse Response
Function, IRF, is calculated and applied by the use of a convolution integral at each
time-step. The convolution integral takes the previous vessel motion into account. The
frequency-dependent added-mass and damping forces exerted on the vessel is given by
Equation 3.20[13]. The infinite-frequency added-mass matrix is calculated and included
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in the inertial matrix of the vessel. The following equations (3.20, 3.21 and 3.22) are
given in the OrcaFlex User Manual[13].

F(t) = −A(∞)a(t) +

∫ Tc

0

IRF(s)v(t− s)ds (3.20)

A(∞) is the added mass for infinite-frequency approximated by Equation 3.21, a is the
acceleration, T c is the Cutoff Time (discussed at the end of the section), IRF is the
Impulse Response Function given by Equation 3.22, v is the velocity, t is the current
time and s is a time-lag integration variable. The IRF is assumed to be zero for time
lags larger than the Cutoff Time[13]. The infinite-frequency added mass is given by

A(∞) = A(fi) +
1

2πfi

∫ Tc

0

IRF (s) sin(2πfi · s)ds (3.21)

where fi is a random frequency for which the added-mass and damping coefficients
are known and the rest of the terms are the same as for Equation 3.20. The Impulse
Response Function is given by

IRF(t) = 4

∫ ∞
0

B(f) cos(2πf · t)df (3.22)

The IRF matrix is calculated from the user-specified, frequency-dependent damping
matrices. The damping coefficients are assumed to vary linearly between the given fre-
quencies, go to zero at zero frequency and decay proportionally with f−3 for frequencies
higher than the highest given frequency.

Equation 3.20 and Equation 3.21 should ideally be integrated from time zero up to
infinity. However, the IRFs decay and approach zero with increasing time lag, as seen
in Figure 3.6 for the roll-roll component. The IRFs for the other combinations of degrees
of freedom have similar qualities. The user has to set the Cutoff Time such that all
significant contributions are included. After a study of all the IRFs, the Cutoff Time
was set to 100 seconds. A sensitivity analysis was performed in order to evaluate the
Cutoff Time and these results are given in Chapter 4.3.4.

Figure 3.6: Impulse Response Function, roll-roll component.
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3.3.5 Manoeuvring loads

Manoeuvring loads arise from rigid body motions in inviscid fluid and depend on the
low-frequency added mass as well as the translational and rotational velocities of the
vessel[13]. The manoeuvring loads are given by

F1 =
6∑
j=1

[A2ju6uj − A3ju5uj] (3.23a)

F2 =
6∑
j=1

[A3ju4uj − A1ju6uj] (3.23b)

F3 =
6∑
j=1

[A1ju5uj − A2ju4uj] (3.23c)

F4 =
6∑
j=1

[A2ju3uj − A3ju2uj + A5ju6uj − A6ju5uj] (3.23d)

F5 =
6∑
j=1

[A3ju1uj − A1ju3uj + A6ju4uj − A4ju6uj] (3.23e)

F6 =
6∑
j=1

[A1ju2uj − A2ju1uj + A4ju5uj − A5ju4uj] (3.23f)

where Aij is the added mass coefficient and uj is the low-frequency velocity. These
manoeuvring loads are calculated with the added mass matrix for the lowest given
frequency and for velocities relative to the current. OrcaFlex omits the components of
the Munk moment (given in Equation 3.24) from Equation 3.23f because the current
loads are explicitly calculated and are therefore already included when the current loads
are calculated with the OCIMF method.

Munk moment = A11u2u1 − A12u2u2 + A21u1u1 − A22u1u2 (3.24)

3.3.6 Current and wind loads

OrcaFlex uses the Oil Companies International Marine Forum (OCIMF) method for
current and wind loads on a stationary vessel. This is extended in OrcaFlex by altering
the current and wind velocities to account for the low-frequency primary velocity of the
vessel itself and apply the relative velocity past the vessel[13]. The wind and current
loads are calculated by the OCIMF formulae found in Equations 3.25 a, b and c.

Fsurge = 1/2Csurgeρv
2Asurge (3.25a)

Fsway = 1/2Cswayρv
2Asway (3.25b)

Myaw = 1/2Cyawρv
2Ayaw (3.25c)

A wind-tunnel test was performed by FORCE Technology for COSL Pioneer. The
current and wind load coefficients and corresponding areas were collected from these
results. The load coefficients can be found in Figure 3.7 and Figure 3.8.
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Figure 3.7: Current load coefficients from wind-tunnel test performed by FORCE Tech-
nology.

Figure 3.8: Wind load coefficients from wind-tunnel test performed by FORCE Tech-
nology.
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3.4 Anchor Line System

COSL Pioneer has eight anchors and anchor lines. Eight subsurface buoys are attached
to lines number 6 and 7 (see Figure 3.9) in order to provide clearance to pipelines on
the sea bed.

Figure 3.9: Overview of the mooring system of COSL Pioneer.

The forces on COSL Pioneer from its anchor lines were modelled using Lines in Or-
caFlex. The anchor lines of COSL Pioneer are made up of two different types of chain
and subsurface buoys as well as wires. The subsurface buoys are represented by Or-
caFlex Attachments connected to the lines. The chain and wire properties are described
in Chapter 3.4.2 whereas the buoys are described in Chapter 3.4.3. Table 3.2 describes
the composition of all the lines. The complete input to OrcaFlex may be found in
Appendix F.

Line 1 C84 (250 m), C76 (1013 m), W (398 m)
Line 2 C84 (500 m), C84 (1013 m), W (398 m)
Line 3 C84 (250 m), C84 (1013 m), W (350 m)
Line 4 C84 (250 m), C76 (1013 m), W (350 m)
Line 5 C84 (250 m), C76 (1013 m), W (398 m)
Line 6 C76 (1013 m), W (167 m), B10, W (20 m), B10,

W (280 m), B5, W (20 m), B5, W (313 m), W (341 m)
Line 7 C76 (1013 m), W (227 m), B10, W (20 m), B10,

W (280 m), B5, W (20 m), B5, W (253 m), W (341 m)
Line 8 C84 (250 m), C76 (1013 m), W (398 m)

Table 3.2: Anchor line components. The components are listed from anchor to vessel.
Lengths of Line Sections are given in the parentheses. Abbreviations are explained in
Table 3.3 and Table 3.4.
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3.4.1 General Line properties and boundary conditions

Each line in OrcaFlex is constructed from one or several sections with a specific Line
Type and attachments which are connected to specific nodes in the lines. As torsion and
bending of the anchor chains and wires do not have any significant effect on the vessel
motions, torsion of the lines were omitted and the end connections of the lines were
set to be free to rotate. Calculation of wake effects requires significant computation[13]
and were assumed to have a small influence on the results. These effects were thus
disregarded. The frequencies of oscillation of Vortex Induced Vibrations (VIV) are
significantly larger than the area of interest for this case and VIV were therefore ignored.

Each of the Line Sections were discretizised in to a number of segments (see description
of segments in Chapter 3.4.4). The number of segments were defined by Target Segment
Length. Larger variations call for a better degree of accuracy, therefore two meter
target segment length was applied in the vicinity of change of line type and at seabed
touchdown where the curvature of the lines are larger. Ten meter target segment length
was applied for the other parts of the lines. The complete input regarding target segment
lengths can be found in Table F.10 and Table F.11.

Calculation parameters regarding convergence were kept at their default values, except
for Line 5 which presented convergence issues. The number of iterations was increased
from default at 400 to 2000 iterations for Line 5. The default convergence parameters
can be found in Table F.8.

3.4.2 Line types

Each line in the OrcaFlex model consists of one or several different Line Types. The
main properties of the line types used for the anchor lines can be found in Table 3.3.

ChainNVR4-76 ChainNVR4-86 Wire(6x49WS+IWRC)
Abbreviation C76 C86 W
Diameter 0.076 m 0.086 m 0.090 m
Mass 0.1127 ton/m 0.1340 ton/m 0.0320 ton/m
Break load 6 003 kN 7 210 kN 7 250 kN
Axial stiffness 508 158 kN 620 973 kN 667 983 kN

Table 3.3: Anchor line types

As mentioned, the chains and the wire were assumed to have zero torsional stiffness
and as the lines did not have any significant compressibility the bulk modulus was set
to infinity as suggested in the OrcaFlex User Manual[13]. Some convergence problems
were encountered due to slack in the lines and the bending stiffness was set to 0.1 kNm2

as suggested by OrcaFlex User Support, this is discussed in more detail in Chapter 4.1.
Structural damping of the lines was assumed to be insignificant for the vessel motions.

Drag and lift coefficients and corresponding diameters were provided by Global Mar-
itime for the chains. The OrcaFlex Line Type Wizard was applied to obtain the drag
and lift parameters for the wire as well as added mass, inertia and seabed friction
coefficients for all three line types.
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Line clashing was assumed not to occur and was therefore not calculated. This was
beneficial since line clashing calculations significantly increase the running time for the
simulation.

3.4.3 Subsurface buoys

The subsurface buoys connected to lines number 6 and 7 were modelled as Clumps in
OrcaFlex. Clumps are defined by mass, volume, height, added mass and drag areas and
coefficients. Accurate description of the buoys connected to COSL Pioneer were not
available. The net buoyancy was given and the remaining parameters were determined
by estimates. The buoys were assumed to be rectangles of quadratic cross section that
had heights twice the width. The drag coefficient of the buoys was estimated to be 1.5
and the added mass coefficient to be 1. The volume was found by estimating the mass
of the buoy and correcting the volume to give the right buoyancy. The main properties
of the buoys can be found in Table 3.4.

Buoy5 Buoy10
Abbreviation B5 B10
Mass 0.1 ton 0.2 ton
Volume 4.97 m3 9.94 m3

Height 2.71 m 3.41 m

Table 3.4: Subsurface buoys

3.4.4 Theoretical background for the calculations of the line
loads

Line model

The lines consist of nodes connected by segments, as can be seen in Figure 3.10. The
different properties of the lines are divided between the segments and the nodes, the
segments handle the axial and torsional properties while the nodes hold the other prop-
erties such as mass, weight, buoyancy and drag. The bending properties are modelled
as rotational springs and dampers between the segments and the nodes as seen in Figure
3.11.
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Figure 3.10: Segmentation of OrcaFlex Line. Figure by Orcina[13]

Figure 3.11: Mathematical model of a Line in OrcaFlex. Figure by Orcina[13]
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Calculations

The forces and moments acting on the lines in OrcaFlex are assembled at the nodes,
each node assimilates the forces from half of the segments on either side. The forces
and moments on a mid-node are calculated in the following order:

Tension Forces→ Bend Moments→ Shear Forces→ Torsion Moments→ Total Load

The effective linear axial tension is given by

Te = Tw + (poAo − piAi) (3.26)

where po and pi is the outer and inner pressure and Ao and Ai is the outer and inner
cross sectional stress area. The pressure effects are small as neither the wire nor the
chains have any contents (i.e. Ai=0). When implicit integration is applied, the wall
tension, Tw, is given by

Tw = EAε− 2ν(p0A0 − piAi) (3.27)

where E is the modulus of elasticity and ε is the mean axial strain given as

ε =
L− λL0

λL0

(3.28)

where λ is the time-varying expansion factor of the segment, due to for example thermal
expansion. The bending moment for linear isotropic bending stiffness is

M = EI|C| (3.29)

where EI is the bending stiffness and C is the effective curvature which is given by

C =
α

1/2L0

(3.30)

where α is the angle between the segment axial axis and the axial direction of the line
(see Figure 3.11). The shear force is given by

Shear Force = z × M2 −M1

L
(3.31)

where z is the segment axial direction and M1 and M2 are the bending moments on
either side of the segment. Drag forces acting on the lines are given by Equations
3.32a-c, which are valid for both wind and current loads.

Fx = P · 1/2ρAxCdxVn|Vn| (3.32a)
Fy = P · 1/2ρAyCdyVn|Vn| (3.32b)
Fz = P · 1/2ρAzCdzVz|Vz| (3.32c)

where

Ax = DnL

Ay = DnL

Az = πDaL
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P is the proportion of the line that is wet or dry, for current and wind loads, respectively.
Cd is the drag coefficient, A is the projected area and V is the fluid velocity relative to
the line in the normal or axial direction. The hydrodynamic lift force is given by

Flift = P · |nn × nz| · 1/2ρDnlCl|Vt|2nl (3.34)

where nn is a unit vector in the seabed outward normal direction, nz is a unit vector in
the node z-direction, Dn is the normal lift diameter, Cl is the lift coefficient, Vt is the
component of the relative velocity in the transverse direction nt and nl is a unit vector
in the lift force direction given by

nl = nz × nt = nz ×

(
nn × nz
|nn × nz|

)
(3.35)

where nt is the flow direction for lift purposes (normal to the line axis and in the seabed
plane). The added mass of the line in a given direction is given as

Fadded mass = −Camfluidaline + Cmmfluidafluid (3.36)

where Ca is the added mass coefficient for the given direction, Cm is the inertia coefficient
for the given direction, mfluid is the mass of the fluid displaced by the line, aline is the
acceleration of the line in the given direction and afluid is the acceleration of the fluid
in the given direction. The first term is due to the extra inertial force due to added
mass and acceleration of the line relative to the earth. The second term is caused by
the accelerating fluid exerting forces on the line.

Restoring loads due to interaction with the seabed are calculated with the following
formula.

Freaction = KnAd (3.37)
Kn is the seabed normal stiffness, A is the area of contact and d is the depth of the
penetration into the seabed. There are no seabed damping forces acting on the lines
when implicit integration is applied.

Torsion forces and moments may be calculated, but these calculations are not described
here as they are excluded from the analysis in this thesis. The total force and moment
acting on a mid-node is finally given as the sum of the recently mentioned effects,
connection loads and non-structural loads such as weight and buoyancy. The final forces
and moments are used to calculate resulting translational and rotational acceleration
of the node which is integrated to find the position and velocity at the next time step.

Compression

Wires and chains can support very little compression and the compression of these line
types was therefore set to ’Limited’ in OrcaFlex. This means that OrcaFlex issues a
warning if the compression of the line exceeds the Euler load. The Euler load is given
by

FEuler =
π2EI

L2
0

(3.38)

EI is the bending stiffness and L0 is the unstretched length of the element. The chains
can in reality not support any compression at all and the bending stiffness is in reality
zero. However, when the bending stiffness of the wires were set to zero, the analyses
became unstable when the lines became slack. The bending stiffness of the chains was
therefore given a small value, 0.1 kNm2, in order to circumvent this instability issue.
This is discussed further in Chapter 4.1.
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3.5 Drilling riser

The drilling riser was disconnected at the Lower Marine Riser Package (LMRP) at the
time of interest. The riser was connected to the rig by a flex-joint which would not
transfer any significant moment to the rig. After a discussion with employees at Global
Maritime it was decided to omit the riser from the time-domain analysis.

3.6 Thrusters

The thruster forces were computed in a separate program and included in the OrcaFlex
time-domain analysis as Applied Loads acting on the Vessel. Only a very simple dy-
namic positioning (DP) system was implemented in the time-domain analysis as the
information regarding the thrusters and the DP system was very limited.

3.6.1 Complete DP systems and simplifications

Dynamic positioning systems are made with many variations but they are often based
on the same principles, as presented in Figure 3.12[25]. Sensors on-board the vessel
use different methods to measure the position of the vessel. Signal processing is the
reception, analysis and check of signals from the sensors. Filtering of the signals re-
moves noise caused by the sensors and separates low-frequency and wave-frequency
components[1]. Only the low-frequency motions and velocities should be counteracted
by the thrusters. State estimation and wave filtering is performed by the vessel ob-
server. In the case of a lost signal the vessel observer have to make predictions for
the necessary signals, this situation is called dead reckoning[1]. The controller uses the
filtered signals to calculate the necessary forces in surge, sway and the necessary yaw
moment from the thrusters. This information is sent to the thruster allocator which
uses an optimalization technique to calculate the most efficient way to distribute the
forces of the thrusters[25].

Because the DP system of this thesis did not collect signals from sensors in the real
world, but could obtain them directly from the time-domain simulation, signal process-
ing and a vessel observer were not necessary. OrcaFlex could have provided the separate
program with the current position in all degrees of freedom and separated between low-
and high-frequency motions, which meant that filtering was not necessary either. This
possibility was not used for reasons explained in Chapter 4.2.

Thruster allocation is a complex optimalization process that requires information re-
garding the power management system as well as detailed information about the func-
tionality of the thrusters. The allocation algorithm should be optimised with respect
to maintenance issues, fuel consumption, available power in addition to the necessary
thrust[1]. This task was omitted since the necessary data was not available. The dy-
namic positioning system was simplified such that the required forces were calculated
from the vessel’s position only. The reason why the wave-frequency part of the motion
was also included in the analyses is explained in Chapter 4.2. The calculated forces in
the global x- and y- direction and the required moment around the global z-axis were
applied at the correct draught at the center of the rig.
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Figure 3.12: Overview dynamic positioning system. Figure by Sørensen [26]

3.6.2 PID Controller

The method which was implemented in order to calculate the necessary forces and
moment was a Proportional Integral Derivative controller, commonly known as a PID
controller. The PID controller was presented by Nicholas Minorsky in 1922 and was
motivated by a study of how a helmsman steered a ship[1]. The offset from the desired
position, the integration of the previous offset and the derivative of the offset are used
as input to calculate the required corrections. A linear horizontal-plane positioning
feedback controller of the PID type is given as

FT,k = −RT
e Kpe−Kdṽ −RTKiz (3.39)

where
x = [x, y, ψ]T

z = x− xd

v = ẋ

ṽ = v −RT (ψd)xd

R(ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


e = RT (ψd)(x− xd)

Re = RT (ψd)R(ψ)

x is current horisontal position and heading in the global (earth-fixed) coordinate sys-
tem. z is the integrator states and xd is the desired position. v is the velocity and ṽ is
the velocity deviation vector, which in the current problem is equal to the velocity as
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the desired velocity is zero. R(ψ) is the rotation matrix and e is the three dimensional
deviation vector. Kp, Kd and Ki are the three-dimensional non-negative controller gain
matrices that need to be determined.

As a further simplification, the three degrees of freedom were considered to be uncoupled
and the only forces and moments to be determined were the forces in the global x- and
y- direction and the moment around the global z-axis. The force calculated by the
simplified PID controller for a given degree of freedom could then be expressed as

F (t) = −Kpε(t)−Ki

∫ t

0

ε(t′)dt′ −Kd
dε(t)

dt
(3.40)

where F(t) is the control signal or the required force or moment, ε(t) is the difference
between the current value and the set-point. K p is the gain for the proportional con-
troller, K i is the gain for the integral controller and K d is the gain for the derivative
controller.

3.6.3 Implementation in OrcaFlex

The thruster forces were included in OrcaFlex as ’Applied Loads’; forces in the global
x- and y-direction and a moment around the global z-axis. The Applied Loads were
applied at origo in the horizontal plane at the draught of the thrusters, given in global
coordinates: (0m,0m, -16.1m). These forces and moment were calculated in a separate
program and incorporated in the OrcaFlex simulation via an ’External Function’.

An External Function communicates with an external program and OrcaFlex via the
programming interface OrcFxAPI[27]. The External Function is defined by the name
of the program, what programming language it is written in and which version of the
programming language that is used as well as which functions in that program it should
run. The program was the script ’PIDthruster.py’, which can be found in Appendix C
and was written using the programming language Python[28].

At the beginning of the simulation, OrcaFlex creates one instance of the External
Function per data item that uses it. Three instances are created in this model; one for
the force in the global x-direction, one for the force in the global y-direction and one for
the moment around the global z-axis. The External function then collects parameters
given in the External Function data form in the OrcaFlex model that will be used
for the entire simulation. For each iteration of each time-step the External Function
collects necessary data from the simulation, such as current low-frequency position and
heading, and returns the required values, thruster forces and moments.

Mathematical discretization

The equation implemented in the python script is a discretisation of Equation 3.40,
given by Equation 3.41.

F (nt) = −Kpε(nt)−Ki

Nt∑
nt=0

ε(n′t)∆t
′ −Kd

∆ε(nt)

∆t
(3.41)
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where

ε(nt) = (Current Position−Desired Position)

∆ε(nt) = (Current Error− Last Error)
∆t′ = ∆t = Time Step
nt = Time Step number variable
Nt = Current Time Step
Kp = Proportional gain
Ki = Integrative gain
Kd = Derivative gain

The three gain coefficients, Kp, Ki and Kd were initially unknown and needed to be
determined for surge, sway and yaw.

Tuning of the PID controller

The proportional and derivative gains were determined by using a simplified method
by Faltinsen[10] and slightly altering the method to include stiffness from the mooring
system. A single degree of freedom slow-drift motion is given by

(M + A)η̈ + (B +BDP )η̇ + (C + CDP ) = F SW + FW + FC (3.43)

where M is the mass, A is the added mass, B is the hydrodynamic damping, BDP is
the damping from the DP system, C is restoring force from the anchor lines, CDP is the
restoring force from the DP system, F SW is the force from the slow-drift wave excitation
force, FW is the slowly-varying wind force and FC is the slowly-varying current force.

For this PID controller, the set-point is constant and equal to the equilibrium position
of COSL Pioneer without any environmental loads. By comparing Equation 3.40 and
Equation 3.43 one can see that the proportional term of Equation 3.40 is equivalent to
the restoring term, CDP , of Equation 3.43 and the derivative term of Equation 3.40 is
equivalent to the damping term, BDP , of Equation 3.43. It is assumed that the forces on
the right hand side of the equation have a zero mean. Equation 3.43 can then provide
an estimate for the proportional controller by assuming harmonic motions and using
the equation for the undamped natural period as shown below.

Kp = CDP =

(
2π

Tn

)2

(M + A)− C (3.44)

Tn is the natural period of the system for the given degree of freedom. As recommended
by Faltinsen[10], the damping coefficient of the DP system was set to 60% of critical
damping to provide an estimate for the derivative controller.

Kd = BDP = 1.2
√

(M + A)(C + CDP ) (3.45)

The method by Faltinsen does not provide an equivalent for the integral gain. However,
the same method for the restoring and damping forces of the PID controller is also
presented by Fossen[29]. Fossen gives an estimate for the integral gain as

Ki =
1

Tn
Kp (3.46)
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The stiffness from the anchor lines were found by manually changing the offset in
OrcaFlex and using the following equation to calculate the stiffness.

C =
F − Fequilibrium

offset
(3.47)

This was done for several offsets in all three degrees of freedom, ranging from 1-20
meters in surge and sway and 1-20° in yaw. The final stiffness was chosen by studying
the registered motions of COSL Pioneer January 25th 2012 and choosing the stiffness
corresponding to the offsets of the largest registered motions. The added-mass coeffi-
cient was taken as the one for the longest period given, 30 s, and the natural periods
applied were determined by decay tests in OrcaFlex(mooring system included). The
results of the aforementioned work and study can be found in Table 3.5.

Surge Sway Yaw
Stiffness mooring system, C 460 kN/m 520 kN/m 10 500 kNm/°

Natural period, Tn 42.3 s 66.7 s 88.0 s
Proportional gain, Kp 500 kN/m 105 kN/m 488 895 kNm/°

Integrative gain, Ki 12 kN/ms 1.6 kN/ms 5 556 kNm/s°

Derivative gain, Kd 7 744 kNs/m 7 935 kNs/m 8 392 479 kNms/deg°

Table 3.5: Results from tuning of PID controller.

Equation 3.41 and the gain coefficients found in Table 3.5 are the basis for the thruster
forces that were applied via the Applied Loads setting in OrcaFlex. However, several
simulations were run with and without forces from the thrusters, with different gain
coefficients and one simulation was run with a harmonic load instead of the load calcu-
lated by the PID controller. The set-up for these simulations can be found in Chapter
5 and the results in Chapter 7.
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4 | Computational difficulties and sen-
sitivity studies

4.1 Convergence issues

The first simulations proved to be dynamically unstable due to slack in the downstream
lines. The slack occurred because most of the environmental loads acted in the same
direction; north. OrcaFlex uses the out-of-balance force in order to find the static or
dynamic equilibrium for the nodes of the lines. This means that when a line goes slack,
the tension goes to zero and OrcaFlex will encounter difficulties when trying to find the
equilibrium position.

The instability was helped by assigning a small bending stiffness of 0.1 kNm2 to the lines
in order to avoid slack and reducing the number of segments in the lines. Line number
5 (see Figure 3.9) presented more difficulties than the other lines and the maximum
number of iterations was increased for this line only.

4.2 Filtering and instability issues

Originally, the program PIDThruster used the low-frequency position of the vessel to
calculate the thruster forces. The motion of the vessel was filtered by OrcaFlex into
low-frequency and high-frequency motion using a second-order Butterworth filter.

The Butterworth filters are low-pass filters which are optimized in order to make the
passband as flat as possible[30], see Figure 4.1 for illustration. A phase lag is introduced
when the Butterworth filter is applied and its magnitude depends on the Dividing Period
and the order of the filter, as seen in Figure 4.2.

Figure 4.1: Definition of the passband of a filter. Figure from Sørensen[30]

The Dividing Period of 25 seconds (oscillation frequency equal to 0.25 rad/sec) and a
second-order Butterworth filter gave a phase lag of approximately 25 degrees. The first
simulations gave rise to unanticipated divergence of the motion amplitudes. This was
assumed to be a result of the phase lag introduced by the filter causing the forces and
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moments to be applied at the wrong time and thereby causing negative damping of the
system. When the filtration of the motion that was used as input to the PID controller
was removed, the increasing amplitude of the motions disappeared.

Figure 4.2: Phase lag as a function of frequency of oscillation for Butterworth filter of
order n. Figure by Sørensen[30]

4.3 Sensitivity Studies

Some of the parameters set in the time-domain simulations were based on the estimate
of the author and were tested to see if the estimated values could significantly influence
the results of interest. The parameters tested were changed in the direction of what was
assumed to yield a less stable analysis and then compared to the original simulation.
A simulation with the standard settings given in Appendix F was used as reference
and will henceforth be referred to as the Normal Simulation. No thruster forces were
applied for the simulations in the sensitivity study.

The statistical parameters used for the sensitivity study are listed below and were
compared for the motion, position and acceleration in all six degrees of freedom. These
parameters will from here on be referred to as the Test Parameters.

• Mean up-crossing period, Tz, estimated as the average time between successive
up-crossings of the mean value

• Mean crest period, Tc, estimated as the average time between successive local
maxima

• Standard deviation, σ, given by equation 4.1

• Mean value

• Maximum value

• Minimum value

The standard deviation is given by

σ =

√∫ ∞
0

Svalue(f)df (4.1)

35



where Svalue is the spectrum for the value of interest. In order to obtain a basis for the
statistical Test Parameters, the simulations had a duration of 20 minutes. The difference
between the Normal Simulation and the test simulations for the Test Parameters was
studied with an accuracy of one percent.

4.3.1 Bending stiffness of the lines

A sensitivity test was performed for the bending stiffness of the lines because, as men-
tioned in Chapter 3.4.1 and Chapter 4.1, the lines were given a non-physical bending
stiffness. The test simulation applied a bending stiffness of 0.02 kNm2, which was twice
the value of the bending stiffness for the Normal Simulation.

The change of bending stiffness did not result in any difference of the Test Parameters
with the given degree of accuracy and was therefore assumed not to affect the results.

4.3.2 Length of segments in the anchor lines

The second test simulation was performed with altered target segment lengths for all
the anchor lines (see Chapter 3.4.1 for explanation of target segment length). The
target segments lengths were increased from ten to twelve meters or from two to three
meters. Sections and segment lengths are described in Chapter 3.4.1 and the complete
set-up for the Normal Simulation is found in Table F.10 and Table F.11.

The alteration of the of the target segment lengths did not cause any variation of the
Test Parameters for motions and velocities and only small variations of 1-2% were regis-
tered for the accelerations. On the basis of these results, the target segment lengths were
assumed not to have any significant effect on the motions, velocities and accelerations
of the Vessel for this analysis.

4.3.3 Time Step

In order to test the sensitivity of the time step in the simulation, it was increased from
0.1 s to 0.15 s. This change presented no variation of the Test Parameters for the
motions and only small variations of 1-2% was observed for heave and pitch velocities.
There was differences of up to 21% for the accelerations, but when accelerations of less
than 0.1 m/s2 and 0.1 deg/s2 were omitted, the results did not show any significant
percentual change. The time step of 0.1 second was assumed to give a sufficient degree
of accuracy for the analysis.

4.3.4 Cutoff Time

The use of the Cutoff Time is described at the end of Chapter 3.3.4. It was set to
100 seconds in the Normal Simulation and reduced to 80 seconds for the sensitivity
study. This rather large change in Cutoff Time did not present any variation in the
Test Parameters for the motions. A 5% difference in the mean vertical velocity was
registered, but this was assumed to be insignificant since the absolute value was less
than 0.1 m/s. Only small variations of 1-2% were observed for the accelerations with
absolute values larger than 0.1 m/s2 and 0.1 deg/s2.

36



On the basis of the study of the Impulse Response Functions(see Chapter 3.3.4) and
this sensitivity analysis, the Cutoff Time of 100 seconds was deemed to be sufficiently
high.

4.3.5 Dividing Period

As described in Chapter 3.3 and Chapter 4.2, the Dividing Period separates the low-
and high- frequency responses. The Dividing Period was set to 25 seconds in the Normal
Simulation and was tested by changing it to 18 and 35 seconds.

Change of Dividing Period yielded larger differences in the Test Parameters than for
the other tests. Test Parameters of absolute value of less than 0.1 (s, m, deg, m/s,
deg/sec, m/s2 or deg/sec2) are not included in the discussion below.

For the Dividing Period of 18 seconds, the roll and pitch motions showed the largest
deviations with approximately 10% in the standard deviation, 10-15% in the up-crossing
period and 4-42% difference for the maximum and minimum values measured. The
differences for the Dividing Period of 35 seconds were smaller, but still of significance.
The maximum and minimum values in roll and pitch showed differences of 2-25%, but
all of the other parameters varied with 5% or less.

These results show that the Dividing Period may have a significant impact on the results
and especially the most important parameter for this thesis; the roll motion.

A period of 18 seconds corresponds to a frequency of 0.056 Hz, a period of 35 seconds
corresponds to a frequency of 0.029 Hz and a period of 25 seconds corresponds to a
frequency of 0.04 Hz. The energy of the spectrum located at these frequency ranges
can be evaluated by considering the wave spectrum in Figure 3.2.

As mentioned at the end of Chapter 3.2.2, the integration of the spectrum of COSL Pi-
oneer starts at a frequency of 0.042 Hz (see Chapter 3.2.2). This implies that responses
oscillating with frequencies less than this will be excluded. In other words, a frequency
of 35 seconds define all responses as wave frequency responses. When all motion is
regarded as wave-frequency motion, the loads listed below will not be dependent on the
motion of the vessel (as described in Chapter 3.3) but only on the environmental loads.

• First order wave loads

• Wave drift loads

• Wave drift damping

• Current loads

• Wind loads

The sensitivity test did not clarify whether the Dividing Period is accurate nor whether
it is too small or too large. The original value of 25 seconds was applied for the analyses,
but the effect of the Dividing Period should be taken into consideration when the results
are evaluated.
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5 | Set-up of simulations in OrcaFlex

5.1 Static analysis

The calculation method for the static analysis is described in Chapter 3.1.2 and the
input to the OrcaFlex model is found in Appendix F. The starting point for the static
analysis was at the origin with zero heel and trim at a heading of -175 degrees.

5.2 Decay test

In order to find the natural periods of COSL Pioneer while including all the effects
such as hydrodynamic damping and stiffness from the anchor lines, a decay test was
performed in OrcaFlex. The dynamic simulation was started with the Vessel in non-
equilibrium position in all degrees of freedom and the time-domain simulation was run
without any waves, wind or current present. The natural periods were taken as the
mean up-crossing periods for the motions of the simulation.

5.3 Set-up of time-domain simulations

As mentioned, the time-domain simulations are based on the input described in ap-
pendix F. The programs that were used to calculate the thruster forces, PIDthruster.py
and harmonicThruster.py, can be found in Appendix C and Appendix D and a descrip-
tion of their implementation in OrcaFlex is given in Chapter 3.6.3. All simulations had
a duration of 20 minutes and had the same settings with regard to the environment,
mooring system and inertial and hydrodynamic properties of the hull.

The only input that was varied for the simulations was the Applied Loads (the thruster
forces). All the simulations are briefly listed below and the complete input to the
External Function can be found in Table 5.1. The name of the simulations are listed in
bold text and are followed by a description of the thruster forces that were included as
Applied Loads. The programs and parameters used in the calculation of the thruster
forces can be found in Table 5.1.

• noThruster: No forces from thrusters were included.

• normalThruster: Loads from the thrusters were calculated with the program
PIDthruster. The controller gains are given in Table 3.5 and the set-points in the
global x- and y- directions and rotation about the global z-axis may be found in
the ’Still Water’ column in Table 7.1.

• lowGainsThruster: Loads from the thrusters were calculated as for normalThruster,
but with 50% lower controller gains.

• highGainsThruster: Loads from the thrusters were calculated as for normalThruster,
but with 50% higher controller gains.
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• statNormalThruster: Loads from the thrusters were calculated as for nor-
malThruster with the inclusion of static loads that counteracted the mean-drift
forces, constant current forces and constant wind forces.

• harmonicThruster: Loads from the thrusters applied in the global x-direction
and moment around the global z-axis were calculated as for normalThruster. The
load applied in the global y-direction was a harmonic load of amplitude 3000 kN
oscillating with a period equal to the mean up-crossing period for the roll motion
from the simulation normalThruster.

Simulation Global X-force Global Y-force Global Z-moment
noThruster None None None

normalThruster

PIDtruster:
target1 = 0.153 m
kp1 = 500 kN/m

ki1 = 12 kN/ms

kd1 = 7744 kNs/m

stat1 = 0 kN

PIDtruster:
target2 = -2.2473 m
kp2 = 105 kN/m

ki2 = 1.6 kN/ms

kd2 = 7935 kNs/m

stat2 = 0 kN

PIDtruster:
target6 = -174.7363 °
kp6 = 488895 kNm/°

ki6 = 5556 kNm/°s

kd6 = 8392479 kNms/°

stat6 = 0 kNm

statNormalThruster

PIDtruster:
target1 = 0.153 m
kp1 = 500 kN/m

ki1 = 12 kN/ms

kd1 = 7744 kNs/m

stat1 = 1875 kN

PIDtruster:
target2 = -2.2473 m
kp2 = 105 kN/m

ki2 = 1.6 kN/ms

kd2 = 7935 kNs/m

stat2 = 535 kN

PIDtruster:
target6 = -174.7363 °
kp6 = 488895 kNm/°

ki6 = 5556 kNm/°s

kd6 = 8392479 kNms/°

stat6 = -12820 kNm

lowGainsThruster

PIDtruster:
target1 = 0.153 m
kp1 = 250 kN/m

ki1 = 6 kN/ms

kd1 = 3872 kNs/m

stat1 = 0 kN

PIDtruster:
target2 = -2.2473 m
kp2 = 53 kN/m

ki2 = 0.8 kN/ms

kd2 = 3968 kNs/m

stat2 = 0 kN

PIDtruster:
target6 = -174.7363 °
kp6 = 244298 kNm/°

ki6 = 2778 kNm/°s

kd6 = 4196240 kNms/°

stat6 = 0 kNm

highGainsThruster

PIDtruster:
target1 = 0.153 m
kp1 = 750 kN/m

ki1 = 18 kN/ms

kd1 = 11616 kNs/m

stat1 = 0 kN

PIDtruster:
target2 = -2.2473 m
kp2 = 157.5 kN/m

ki2 = 2.4 kN/ms

kd2 = 11903 kNs/m

stat2 = 0 kN

PIDtruster:
target6 = -174.7363 °
kp6 = 733343 kNm/°

ki6 = 8334 kNm/°s

kd6 = 12588719 kNms/°

stat6 = 0 kNm

harmonicThruster

PIDtruster:
target1 = 0.153 m
kp1 = 500 kN/m

ki1 = 12 kN/ms

kd1 = 7744 kNs/m

stat1 = 0 kN

harmonicTruster:
amp = 3000 kN

PIDtruster:
target6 = -174.7363 °
kp6 = 488895 kNm/°

ki6 = 5556 kNm/°s

kd6 = 8392479 kNms/°

stat6 = 0 kNm

Table 5.1: Input to Applied Loads (External Function) which calculates the thruster
forces in the OrcaFlex time-domain simulations. The input consist of the name of
external function and the parameters defined on the External Function data form.
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6 | Results from frequency-domain anal-
ysis in Wadam

The hydrodynamic stiffness calculated in Wadam can be found in Table 6.1. The
damping and added mass matrices are not presented in this chapter because they contain
a large amount of data, but they can be found in the OrcaFlex-file in the electronic
attachment.

Heave Roll Pitch
Heave 8319.37 kN/m -0.01878 kNm/m -0.8063 kNm/m

Roll -0.01878 kN/° 908.374E3 kNm/° 0.920185 kNm/°

Pitch -0.8063 kN/° 0.920185 kNm/° 1.94314E6 kNm/°

Table 6.1: Hydrostatic stiffness calculated in Wadam.

The principal incoming direction of the waves in the vessel local coordinate system is 33°.
The transfer functions were not calculated for all degrees, but OrcaFlex interpolated
to obtain the missing components. The transfer functions are shown for an incoming
direction of 30°, which was the closest of the incoming directions for which the transfer
functions were calculated in Wadam.

6.1 Motion transfer functions

The motion transfer functions were calculated in Wadam and provide the motion re-
sponse of COSL Pioneer as if it were freely floating without any loads from thrusters or
anchor lines. The linear motion transfer functions are included here as a reference to
the reader in order to provide an understanding of the motion characteristics of COSL
Pioneer.

As can be seen by the Figure 6.1, there are two cancellations for the heave RAO, the
first is caused by phase difference between the pontoons and the second is caused by a
cancellation period.
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Figure 6.1: Motion transfer functions, translational DOF.

Figure 6.2: Motion transfer functions, rotational DOF.

41



6.2 Linear load transfer function

The load transfer functions calculated in Wadam were imported to OrcaFlex and are
shown in Figure 6.3 and Figure 6.4. All degrees of freedom have their peaks in an area
of the Jonswap spectrum with significant energy, see Figure 3.2.

Figure 6.3: Load transfer functions, translational DOF.

Figure 6.4: Load transfer functions, rotational DOF.
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6.3 Quadratic load transfer functions

As can be seen by Figure 6.5, Figure 6.7 and Figure 6.8, there are larger variations
for the second-order quadratic load transfer functions than for the linear motion and
load transfer functions. As the author did not have any experience with quadratic
load transfer functions, they were compared to other studies of wave drift forces on
semisubmersibles to see if they were reasonable. The accuracy of the quadratic load
transfer functions could be of large significance if second-order wave loads are the reason
for the excessive slowly-varying roll motions. The quadratic load transfer functions were
compared to the work by Hong et. al [31], Hermans[32] and Schellin and Kirsch[33].

Figure 6.5: Wave drift transfer functions, roll.

The roll quadratic transfer function (QTF) found in Figure 6.5 was compared to the
work of Hong et. al [31]. Note that the graphs by Hong are plotted against frequency
and not period. The roll QTF calculated in Wadam is more jagged than the QTF
calculated by Hong et. al, found in Figure 6.6, and the absolute value of the peak for
a period of seven seconds is 73% smaller. It is not the same semisubmersible, but the
difference in displacement is only 10% and the difference in draught only 9%.

The surge and sway QTFs found in Figure 6.7 are similar to the ones calculated by
Schellin and Kirsch[33] and Hermans[32], but like the roll QTF they are more jagged.

The work by Hong et. al [31] and Voogt and Soles[34] show that the roll wave drift
forces are strongly dependent on the heel angle of the semisubmersible. This effect is
not included in the current analysis as the wave drift forces are calulated in an even
keel condition, but should be taken into consideration if the Vessel should experience a
mean heel angle.
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Figure 6.6: Wave drift transfer functions in roll for comparison. Figure by Hong et. al.

Figure 6.7: Wave drift transfer functions, translational DOF.
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Figure 6.8: Wave drift transfer functions, pitch and yaw.
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7 | Results from analyses in OrcaFlex

7.1 Static analysis

The set-up for the static analysis is described in Chapter 5.1. The final equilibrium
position in still water can be found in the left column of Table 7.1 and was used as the
set-point for the thrusters.

The static equilibrium was also calculated with the inclusion of mean-drift forces, con-
stant current loads and constant wind loads and is given in right column in Table 7.1.
This equilibrium position was used as the starting point for the dynamic analysis.

Still water equilibrium
Included constant wave,
wind and current forces

X - position 0.25 m 4.13 m
Y - position -2.26 m -1.35 m
Z - position -0.20 m 0.19 m
X - rotation 0.63° 1.33°
Y - rotation -0.02° -0.57°
Z - rotation -174.6° -175.6°

Table 7.1: Static equilibrium position for COSL Pioneer, calculated both in still water
and with the inclusion of mean-drift forces and constant wind- and current forces.

7.2 Decay test

A description of the decay test can be found in Chapter 5.2. The objective of the
decay test was to find the natural periods of COSL Pioneer with the effects of anchor
lines included. The results were used to determine the Dividing Period and the gain
coefficients of the PID controller, as described in Chapter 3.3 and Chapter 3.6.3. The
mean up-crossing period from the 20 minute simulation can be found in Table 7.2.

Mean up-crossing period
Surge 46.2 s
Sway 68.4 s
Heave 19.4 s
Roll 52.6 s
Pitch 37.1 s
Yaw 88.1 s

Table 7.2: Results from decay test in OrcaFlex
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7.3 Comparison of time-domain simulations in OrcaFlex

The time-domain results are computed with the input found in appendix F unless
specified otherwise. The set-up for the different time-domain simulations can be found
in Chapter 5.3. Sources of error will be discussed in Chapter 8.1.

It should be noted that the mean, maximum and minimum values discussed in this
chapter are not the absolute mean values relative to the global origin, but mean values
given relative to the set-point for the thrusters in the global coordinate system. The
set-point for the thrusters is given in the ’Still Water’ column in Table 7.1. The thruster
forces (Applied Loads) are given in the local coordinate system of the vessel which is
rotated approximately -175°about the global z- axis, as can be seen in Figure 3.1. The
rotations around the global x-,y- and z-axes will be referred to as Rotation 1, Rotation
2 and Rotation 3, respectively.

All of the Test Parameters studied during the sensitivity studies are listed in Chapter
4.3 and were also used for the evaluation of the time-domain simulations. The Test
Parameters were evaluated for all degrees of freedom for the motions of the rig and
for the forces from the thrusters, but only a limited selection will be presented and
discussed. The focus in the description of the results will be on the the mean values
and the standard deviation as they give a measure of the efficiency of the thrusters and
the degree of motion of the rig. The roll motion and applied load in the y- direction
will be more thoroughly evaluated than the other motions and forces. The statistical
properties were calculated in OrcaFlex and post-processed in Microsoft Excel.

7.3.1 Comparison of simulations with and without thruster forces

Statistical properties for the the simulations noThruster and normalThruster, described
in Chapter 5.3, can be found in tables number 7.3, 7.4 and 7.5. The equation used to
calculate the percentual differences in Table 7.5 is given below.

Difference =
Value(normalThruster)− Value(noThruster)

Value(noThruster)
(7.1)

The thruster loads were programmed to counteract the motions in the horizontal plane
but could also, as discussed in Chapter 1, induce roll and pitch motions. Whether
or not roll and pitch motions were increased by the thrusters was dependent on the
phase of the thruster forces and the phase of the roll and pitch motions. The program
written to calculate the thruster forces did not include any settings to account for these
phases or the frequency of oscillation of the forces. The rate of occurrence of roll- and
pitch-induced motions could therefore not be anticipated, nor was it possible to foresee
whether the thrusters would have a positive or negative effect on the roll and pitch
motions.

As can be seen in Table 7.5, Figure 7.1 and Figure 7.2, the thrusters generally reduced
the motions but increased the value of the mean heel and trim angles. The mean up-
crossing and crest periods were also reduced, except for the mean crest period in roll.
Reduced motions and periods of oscillations indicate that the thrusters were generally
diminishing the motions of the rig.
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X (m) Y (m) Z (m) Rot 1 (°) Rot 2 (°) Rot 3 (°)
Mean 4.27 0.76 0.41 0.60 -0.58 -1.04
Standard Deviation 1.51 0.83 2.67 0.88 1.30 0.97
Mean up-crossing period, Tz (s) 18.34 15.37 18.82 12.89 22.42 41.12
Mean crest period, Tc (s) 11.64 11.89 16.04 10.33 11.52 9.56
Maximum value 11.22 4.760 7.09 3.415 2.66 1.364
Minimum value 0.03 -2.02 -7.4314 3.13 -4.83 -3.31

Table 7.3: Statistical properties for motions in the simulation noThruster. The input
for noThruster is described in Appendix F and Table 5.1

X (m) Y (m) Z (m) Rot 1 (°) Rot 2 (°) Rot 3 (°)
Mean 0.003 0.17 0.42 0.71 -1.74 -0.14
Standard Deviation 1.07 0.66 2.57 0.84 1.22 0.06
Mean up-crossing period (s) 13.21 13.56 18.57 12.24 15.46 9.62
Mean crest period (s) 11.42 11.77 16.03 10.60 11.18 7.90
Maximum value 4.16 3.14 7.20 3.28 2.75 0.01
Minimum value -3.43 -1.49 -7.25 -2.73 -6.85 -0.725

Table 7.4: Statistical properties for motions in the simulation normalThruster. The
input for normalThruster is described in Appendix F and Table 5.1

X Y Z Rot 1 Rot 2 Rot 3
Mean -99.9% -77% 2% 19% 202% -87%
Standard Deviation -29% -20% -4% -4% -6% -94%
Mean up-crossing period -28% -12% -1% -5% -31% -77%
Mean crest period -2% -1% 0% 3% -3% -17%
Difference between max and min -32% -32% -0.5% -8% 28% -84%

Table 7.5: Percentual difference between statistical properties of the motions in the
simulations noThruster and normalThruster.
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Stationkeeping efficiency of the thrusters

As can be seen from Table 7.5 and Figure 7.1, the thruster forces significantly reduce
the mean offset for all horizontal motions. Figure 7.2 shows that the standard deviation
was slightly reduced for all degrees of freedom except for yaw, for which the standard
deviation was reduced to almost zero.

Figure 7.1: Mean value for motions in noThruster and normalThruster.

Figure 7.2: Standard deviations for motions in noThruster and normalThruster.

As can be seen in Figure 7.3, the Applied Loads accounted for almost half of the total
loads acting in the local y-direction and the mean load has the opposite sign of the
other forces, as it should.

The thrusters’ influence on the roll motion

The time-domain roll motion in the simulations noThruster and normalThruster can
be found in Figure 7.4 and Figure 7.5 and the applied load in the local y-direction can
be found in figure 7.6. The standard deviation of the applied load in the vessel local
y- direction is about half of the total force in that direction, as seen in Figure 7.3.
Figure 7.4 and Figure 7.5 show that there is only a small difference between these two
simulations with regard to the roll-motion. As seen in Table 7.5, the mean deviation
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Figure 7.3: Mean and standard deviation for different components of the total load in
the local y-direction for normalThruster.

from the desired roll angle increased with 19% and the standard deviation actually
decreased with 4%.

The up-crossing period of the low-frequency roll motion from the simulation nor-
malThruster was 33.7 seconds, which is not close to the natural period in roll found from
the decay test, which was 52.6 seconds. The period of oscillation of the slowly-varying
roll motion from the registered motions from January 25th 2012 was in the order of
magnitude of one minute. This indicates that there are dominant low-frequency forces
that were not properly modelled.

Figure 7.4: Time-domain roll motion for noThruster
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Figure 7.5: Time-domain roll motion for normalThruster

Figure 7.6: Time-domain thruster force in the vessel local y-direction for nor-
malThruster

7.3.2 Effect of different gain coefficients

This chapter will discuss the effect of different gain coefficients. As described in Chapter
5.3, simulations were performed for controller gains that were 50% higher and 50% lower
than the controller gains used in the simulation normalThruster. The controller gains
used in the simulation normalThruster can be found in Table 3.5 and all the controller
gains can be found in Table 5.1. The equation for the PID controller is given by equation
3.40 and given below for reference.

F (t) = −Kpε(t)−Ki

∫ t

0

ε(t′)dt′ −Kd
dε(t)

dt
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Stationkeeping efficiency of the thrusters

The results show that increasing controller gains lead to smaller mean offset for all
horizontal motions and smaller standard deviation for the motion in all degrees of
freedom.

The global y-position (relative to the set-point) and the applied load in the vessel local
y-direction were used to demonstrate the stationkeeping efficiency of the thrusters.
The mean value and standard deviation for the three sets of gain coefficients for the
global y-position and the applied load in the vessel local y-direction can be found in
Figure 7.7 and Figure 7.8. These figures show that increased gain coefficients lead to
larger thruster forces in the opposite direction of the offset which leads to smaller mean
offset and smaller standard deviation of the motion. The global y-position and rotation
around the global z-axis show the same tendencies. It can from this be concluded that
the thruster forces are acting as desired in the horizontal plane.

Figure 7.7: Mean value and standard deviation for the y- position for different controller
gains.

Figure 7.8: Mean value and standard deviation for the Applied Ly-force for different
controller gains.
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The thrusters’ influence on the roll motion

The mean value and standard deviation of the rotation around the global x-axis and
the applied moment around the local x-axis were used to illustrate the effect of the
thrusters on the roll motion. The applied moment around the local x-axis is mainly a
result of the applied load in the global y-direction and the rotation around the global
x-axis has approximately the same value and opposite sign as the rotation around the
local x-axis of the vessel. The rotation around the global x-axis can be found in Figure
7.9 and the applied moment around the local x-axis of the vessel can be found in Figure
7.10.

It can be seen from Figure 7.8, Figure 7.9 and Figure 7.10 that increased gain coefficients
lead to larger forces in the local y-direction and thereby induce a moment around the
local x-axis and cause a larger mean roll angle. However, there does not seem to be a
clear connection between the standard deviation of applied moment around the local x-
axis and the standard deviation of the resulting roll motion. This may be connected to
the phase of the applied load and the roll motion. There does seem to be a connection
for the pitch motion, which can be seen in Figure 7.11 and 7.12. The pitch motion show
the same qualities regarding the mean value as the roll motion.

Figure 7.9: Mean value and standard deviation for Rotation 1 for different controller
gains.

Figure 7.10: Mean value and standard deviation for the Applied X-moment for different
controller gains.

Compared to normalThruster, lowGainsThruster decrease the mean up-crossing period
in roll by 1% and highGainsThruster increase it with 5%. However, both lowGain-
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sThruster and highGainsThruster increase the mean up-crossing period in pitch with
3%, so there does not seem to be a definite connection.

Figure 7.11: Mean value and standard deviation for Rotation 2 for different controller
gains.

Figure 7.12: Mean value and standard deviation for the Applied Y-moment for different
controller gains.

7.3.3 Effect of constant thruster force to counteract mean en-
vironmental loads

In an attempt to reduce the standard deviation of the motion caused by the thrusters,
constant thruster forces were added in order to counteract the mean-drift forces, the
constant current load and the constant wind load. The simulation statThruster is
equal to normalThruster except for an additional, constant load in the global x- and
y- directions and a constant moment around the global z-axis which were of equal
magnitude and opposite direction of the forces mentioned above. These forces were
calculated at the same time as the static equilibrium position when the mean-drift
loads and constant wind- and current-loads were included.

The extra constant thruster forces increased the mean offset in the global x- and y-
directions, but had no significant value on the rotation around the global z-axis. The
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Figure 7.13: Mean value of motions for normalThruster and statThruster

Figure 7.14: Standard deviation of motions for normalThruster and statThruster

magnitude of the standard deviations of the motions did not decrease, but were acu-
tally slightly increased. The constant contribution to the PID controller cannot be
recommended on the basis of these results.

7.3.4 Harmonically oscillating thruster forces

The dynamic positioning system governed by a PID controller did not induce any roll or
pitch motions of significance and an attempt was made to induce increased roll motions
with harmonically oscillating thruster forces. The thruster force from the PID controller
acting in the global y-direction was replaced with a harmonic load oscillating with the
mean up-crossing period of the roll motion from the simulation normalThruster. This
simulation, harmonicThruster is described in Chapter 5.3.

The amplitude of the thruster forces in the simulation harmonicThruster was 3000
kN, which was chosen in an attempt to obtain the same standard deviation of the
thruster forces in the global y-direction in the simulation normalThruster. The results
show that the standard deviation of the global applied y-force was 15% smaller for
harmonicThruster than for normalThruster, which can be seen in Figure 7.15. The
reason why the harmonicThruster has a mean value is because it is given as the Applied
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Load in the local y-direction and therefore has a small contribution from the thruster
forces applied in the global x-direction.

Figure 7.15: Mean value and standard deviation of applied load in the global y-direction
for harmonicTruster and normalThruster.

The phase of the thruster forces in the global y- direction for the harmonicThruster
simulation was chosen such that it should excite the roll motion. This can be seen
in the extraction from the time-domain simulation in Figure 7.16. It should be noted
that the coordinate system of the rotation and the applied force are rotated almost
180°relative to each other, as seen in Figure 3.1.

Figure 7.16: Extraction from the time-domain simulation harmonicThruster, rotation
around global x-axis to the left and applied load in local y- direction to right.

The mean value and standard deviation from the simulation harmonicThruster is given
in Figure 7.17 and Figure 7.18. The harmonic load increased the mean value of the offset
in the global y-direction and decreased the mean roll angle. The standard deviation
for the rotation around the global x- axis was increased by 6%, while the standard
deviation of the applied force was decreased 15%. While the harmonic load did increase
the standard deviation of the roll motion compared to the PID controller, the standard
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deviation was still significantly smaller than what was registered on January 25th 2012
as will be seen in Chapter 7.4.

Figure 7.17: Mean value of motions for normalThruster and harmonicThruster

Figure 7.18: Standard deviation of motions for normalThruster and harmonicThruster

7.4 Comparison of time-domain simulations in
OrcaFlex and registered time-history

The standard deviation for the motions from the simulations in OrcaFlex and the
registered motions between 18:00 and 18:55 on January 25th 2012 are compared in
Figure 7.19.

Figure 7.19 shows that the standard deviations for surge, sway and pitch with thruster
forces is of the same magnitude as for the registered motions. The standard deviation
in roll is, as for the calculations of Global Maritime, approximately half of those of the
registered motions. The standard deviation in heave is approximately twice as large as
the one for the registered motions.

A 20 minute time-history of the registered roll motion of COSL Pioneer on January
25th 2012 can be found in Figure 7.21 and the roll motion from the simulation nor-
malThruster can be found in Figure 7.20. It would not be relevant to compare the
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Figure 7.19: Standard deviation of motions for all simulations and for registered motions
from January 25th 2012.

motions directly as the actual wave realizations are different, but it can be seen that
the roll motions from January 25th 2012 have a slowly-varying component that the
OrcaFlex-simulation is missing.

Figure 7.20: Time-domain roll motion for normalThruster
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Figure 7.21: Registered roll motion of COSL Pioneer on January 25th 2012 between
18:35 and 18:55.
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8 | Discussion and conclusions

8.1 Discussion of the results

None of the time-domain simulations were in agreement with the standard deviations
of the registered motions. Many simplifications were made in order to assemble the
computational model and several of these simplifications were quite extensive. This
chapter will present and discuss sources of error and their implications.

8.1.1 Modelling of the thrusters

The main discrepancy in the physical modelling was the calculation and application of
the thruster forces. The magnitude, direction and point of application are not consistent
with reality. The forces from six thrusters located in six different places on the rig, which
in reality may act in six different directions were simplified by two forces and a moment
located at a fixed point in the global coordinate system. Since the applied thruster
forces were acting in the global horizontal plane, they were not acting in the local
horizontal plane of the rig and exerted therefore forces acting in the local z-direction of
the vessel as well. Because the origin of the vessel coordinate system does not coincide
with the origin of the global coordinate system, the yaw moment from the thrusters
were not applied at the center of the vessel.

The program that calculated the thruster forces did not account for the limitations of the
thrusters. The maximum available force from all six thrusters combined is 3450 kN, but
all the simulations had maximum values of the resulting force of between 11 000 kN and
20 000 kN. Also, the moment from the thrusters was not calculated from the thruster
forces, but was acting separately from the forces. None of the physical properties, such
as cavitation issues or the Coanda effect, of the thrusters were included.

Given that the problems mentioned above were accounted for, the thruster forces would
still not be consistent with reality, unless the calculation of the thruster forces were
based on information about the actual dynamic positioning system. As mentioned in
the introduction, real dynamic-positioning systems are very complex and are therefore
not easily replicated. The implemented PID controller was very simple, not based
on facts about the real DP system and attempted to counteract the wave-frequency
motion as well as the low-frequency motion. The latter simplification decreased the
period of oscillation of the thruster forces, which meant that it would become more
difficult to induce resonance motion in roll because of the large natural period roll for
COSL Pioneer.

The consequences of the approximations made when modelling the thrusters have prob-
ably been crucial, it is however not clear in what way this has affected the results. The
only thing that is certain is that the magnitudes of the thruster forces are too large.
This indicates that the results from the simulations noThruster and lowGainsThruster
are probably more realistic than the others.
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8.1.2 Modelling of the rig

The riser was not included in the calculations at all. The riser is not assumed to
transfer any moment of significance due to its flex-joint connection, but if more accurate
calculations are required, it should be included. The center of gravity was set based on
a process of iterations in order to obtain the correct transverse metacentric height and
should be fairly accurate, but is most likely not exact.

The quadratic transfer functions are jagged, which indicate that they may have a low
degree of accuracy. This may have occurred because the panel model had too large or
poorly distributed panels. Newman’s approximation was applied for the calculation of
the second-order wave drift forces and since there are several incoming directions, this
is not necessarily a valid approximation for the required degree of accuracy.

Viscous damping has not been carefully evaluated. Five percent of the critical damping
was added in heave for the calculation of the hydrodynamic data. The pontoons have
relatively sharp edges that will cause eddy-making damping. Five percent of critical
damping may be too little and the eddy-making damping is also dependent on the
amplitude and frequency of the motion, which has not been taken into consideration.
This could maybe explain the large standard deviation for the heave motion. Viscous
damping in the other degrees of freedom was not included in the analysis and could
lead to unrealistically large motions of the rig.

8.1.3 Modelling of the environment

The waves, wind and current were based on statistical values from January 25th 2012.
The wind and current velocities were modelled as constant. The gusts of the wind
will not be important for the low-frequency response, but slow variations in wind and
current velocities could influence the results. No vertical variation of the wind was
included, which presents another deviation from reality.

8.1.4 Dividing Period

As discussed in Chapter 4.3.5, the Dividing Period could have a significant impact on
the results and its value was determined on the basis of a qualified guess. Also, if the
low-frequency and wave-frequency responses oscillate with periods that are of similar
magnitude, the Dividing Period would be impossible to set as it should be in between
and far away from both.

8.1.5 Duration of the simulation

The duration of the simulations is 20 minutes, which is approximately 20 times the
length of the natural period in roll and may be possibly too short to obtain valid
statistical parameters. A sensitivity study should be performed to validate the length
of the simulations.
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8.2 Conclusions

The main goal of this thesis was to run time-domain analysis in order regenerate the
motions of the drilling COSL Pioneer on January 25th 2012 and identify the cause of
the excessive roll-motions that were registered. Time-domain analyses were performed
but the statistical properties of the roll motions were not reproduced.

The thruster forces were calculated in a program written by the author and implemented
in OrcaFlex as two forces and a moment acting in the earth-fixed horizontal plane. The
thruster forces were calculated using an algorithm for a Proportional Integral Derivative
controller. No clear conclusion could be drawn from these results regarding thruster-
induced motions.

The deviations between the registered motions and the simulations are assumed to be
predominantly caused by the simplifications regarding the thruster. The most severe
simplifications of the thruster forces were the point of application, the direction of the
forces and that the forces attempted to counteract all the horizontal motion of the rig
and not only the low-frequency motion, as it should have. The increased frequency
of oscillation of the thruster forces diminished the chances that resonance of the roll
motion could not be excited by the thruster forces.

A harmonically oscillating force was applied in order to demonstrate the effect of
thruster-induced roll motion. The harmonically oscillating force had a 15% smaller
standard deviation than the PID controlled thruster forces, but still yielded an increase
of the standard deviation in roll of 6%. This proved that the thrusters can increase the
roll motion as long as the forces oscillate with the same period of oscillation and are in
phase with the roll motion.

The second-order drift forces were suspected to be an alternative cause for the excessive
roll motions, but the up-crossing period of the second-order drift forces was approxi-
mately 17 seconds (compared to the natural period in roll of approximately 53 seconds)
and can from these results not be regarded as likely to be the cause. However, it is
suspected that the quadratic transfer functions were inaccurate and it is possible that
the drift-forces were modelled inaccurately and the second-order drift forces should
therefore not be eliminated as a possible cause for the excessive roll motions.

The standard deviation in heave from the time-domain simulation was almost twice as
large as that of the registered motions from January 25th 2012. The cause for this was
not identified should therefore be further studied.

As the cause of the excessive motions was not identified and no excessive motions were
reproduced, no recommendations for improvement can be given.
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8.3 Suggestions for further work

Suggestions for further work on the modelling of the thruster forces is listed below in
order of increasing degree of required amount of work.

1. Apply the thruster forces in the global coordinate system at the mean horizontal
position of the vessel.

2. Apply the thruster forces in the coordinate system of the vessel

3. Perform more simulations and other variations of the controller gains and vary
the proportional, derivative and integral gains separately.

4. Allow for coupled degrees of freedom in the PID controller and further refine the
model to include restriction according to available power.

5. Apply a Kalman filter or experiment with increasing the Dividing Period such
that the thruster forces can be calculated based on the low-frequency motion
only. The Kalman filter is not implemented in OrcaFlex, so the filtration of the
motions will then have to be performed by an External Function that needs to be
written.

6. Expand the model of the thruster forces to include the thruster allocation and
apply the correct thruster forces for all six thrusters at their actual location.

7. If the necessary information is available, refine the controller in accordance with
the actual dynamic positioning system of COSL Pioneer

Other suggestions connected with other parts of the analysis:

1. Identify the cause of the excessive heave motions in the time-domain simulations.

2. Perform a sensitivity analysis to study the influence of the discretization of the
panel model and adjust the panel model if necessary.

3. Calculate the quadratic transfer functions with shorter intervals between the pe-
riods.

4. Calculate full quadratic transfer functions and perform time-domain simulations
without the use of Newman’s approximation.

5. Perform a model test or use numerical methods to include the effects of viscous
damping more accurately.

6. Include vertical variation of the wind and time- variation of the wind and current
velocity.

7. Perform a sensitivity study in order to validate the length of the simulations.

8. Study the numerical methods of the applied software to see if the numerical meth-
ods have any influence on the results

9. There are many results from OrcaFlex that were not evaluated during the work
of this thesis, such as other load components and study of the time-history for
the other parameters. These results could provide useful data for further analyses
and should be studied more closely. They should also be compared to real time-
histories for COSL Pioneer if they are available.
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10. If the calculations are in agreement with the registered motions and the motions
were indeed thruster-induced, attempt to vary the settings of the dynamic posi-
tioning system such that the excessive motions can be reduced.
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A | Mathematical details on how to
find the velocity potentials

This appendix contains a rendering of the methods outlined in theWadam User Manual[5],
the Wamit User Manual[6] and Marine Hydrodynamics by Newman[7].

A.1 Application of Green’s Theorem to find velocity
potentials

This section explains the derivation of Equation A.8 which is applied in Wadam as
explained in section A.2.

Let the two potentials φ and ϕ describe the fluid domain bounded by S with the
volume V and let them satisfy the Laplace equation (Equation2.3). The application of
the divergence theorem give Green’s second identity.∫∫

S

[
φ
∂ϕ

∂n
− ϕ∂φ

∂n

]
dS =

∫∫∫
V

∇(φ∇ϕ− ϕ∇φ)dV (A.1)

n is a unit normal vector pointing out of the fluid. Further calculations and the appli-
cation of the Laplace equation gives∫∫

S

[
φ
∂ϕ

∂n
− ϕ∂φ

∂n

]
dS =

∫∫∫
V

∇(φ∇ϕ− ϕ∇φ)dV

=

∫∫∫
V

(φ∇2ϕ+∇φ∇ϕ− ϕ∇2φ−∇ϕ∇φ)dV

= 0

(A.2)

The velocity potential at point (x,y,z) due to potential source of unit strength at point
(ξ, η, ζ) is given as

ϕ =
1

4πr
=

1

4π
√

(x− ξ)2 + (y − η)2 + (z − ζ)2
(A.3)

where (ξ, η, ζ) are given in the coordinates (x,y,z).

The next step is to insert ϕ from Equation A.3 in to Equation A.2, but the expression
for ϕ does not satisfy the Laplace equation at the exact location of the source since
denominator is zero there. To avoid this problem the surface S is replaced by the two
surfaces S and Sε, where S is the previous boundary and Sε is a infinitesimal sphere
surrounding the source. The surface of integration is no longer continuous, and strictly
speaking Equation A.2 should no longer be valid. This is solved by introducing a small
tube with infinitesimal radius connecting the surfaces S and Sε. The contribution to
the integral from the area of the tube goes to zero as its radius goes to zero and can
therefore be omitted. The integration can then be performed over the surface S and
the surface of the sphere with infinitesimal radius ε surrounding the point source as
follows.

1

4π

∫∫
S+Sε

[
φ
∂

∂n

(1

r

)
− 1

r

∂φ

∂n

]
dS = 0 (A.4)
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The equation may be rewritten as

1

4π

∫∫
S

[
φ
∂

∂n

(1

r

)
− 1

r

∂φ

∂n

]
dS = − 1

4π

∫∫
Sε

[
φ
∂

∂n

(1

r

)
− 1

r

∂φ

∂n

]
dS (A.5)

The integration may be performed over either set of coordinates as the value of φ in
Equation A.3 is unchanged if the source point and field point are switched. Equation
A.6 performes the integration over ξ, η, ζ using that φ is assumed to be constant for
very small ε. As ε becomes very small, the normal vector n is approximated by -r. This
gives

− 1

4π

∫∫
Sε

[
φ
∂

∂n

(1

r

)
− 1

r

∂φ

∂n

]
dξ = − 1

4π

∫∫
Sε

φ
∂

∂n

(1

r

)
dξ +

1

4π

∫∫
Sε

1

r

∂φ

∂n
dξ

= − 1

4π

∫∫
Sε

φ
1

r2
dξ +

1

4π

∫∫
Sε

1

r

∂φ

∂n
dξ

≈ − 1

4π
φ(x, y, z)

1

ε2
4πε2︸︷︷︸

area of sphere

+
1

4π

∫∫
Sε

1

r

∂φ

∂n
dξ︸ ︷︷ ︸

Goes to zero as ε goes to zero

≈ −φ(x, y, z)
(A.6)

Inserting Equation A.6 into Equation A.5 gives the following equation for a source point
inside the surface S.

φ(x, y, z) = − 1

4π

∫∫
S

[
φ
∂

∂n

(1

r

)
− 1

r

∂φ

∂n

]
dξ (A.7)

A source on the surface of S may be circumvented by half sphere with radius ε. A
derivation analogue to the one of Equation A.7 gives

φ(x, y, z) = − 1

2π

∫∫
S

[
φ
∂

∂n

(1

r

)
− 1

r

∂φ

∂n

]
dξ (A.8)

For source place outside of S the integral is zero, in accordance with Equation A.2.

− 1

4π

∫∫
S

[
φ
∂

∂n

(1

r

)
− 1

r

∂φ

∂n

]
dξ = 0 (A.9)

As ∂φ
∂n

is generally known for a moving body Equation A.8 can be used to find the
unknown potential. According to Newman[7] there are computational advantages if
the source potential is modified such that it satisfies the same boundary conditions as
φ. The Green function, given in Equation A.10, may then substitute 1

r
in the source

potential given by Equation A.8.

G(x, ξ) =
1

r
+H(x, ξ) (A.10)

The function H may be any function that satisfies the Laplace equation and can there-
fore be chosen such that G satisfies that boundary conditions of the fluid domain. If it
also satisfies ∂G

∂n
= 0, the unknown term in Equation A.8 disappears. Inserting Equation

A.10 into Equation A.8 gives

2πφ(x) +

∫∫
S

[
φ(ξ)

∂G(x, ξ)

∂n
−G(x, ξ)

∂φ(ξ)

∂n

]
dξ = 0 (A.11)
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A.2 Application of Green’s Theorem in Wadam

The application of Green’s theorem inWadam is described in theWamit User Manual[6],
Chapter 15 and given in this section.

A.2.1 Green’s function

The Green function for finite water applied in Wadam is given by Equation A.12 and
satisfies both the free surface and radiation conditions.

G(x, ξ) =
1

r
+

1

r′
+ 2

∫ ∞
0

dk
(k +K) cosh

(
k(z +H)

)
cosh

(
k(ζ +H)

)
k sinh(kH)−K cosh(kH)

e−kHJ0(kR)

(A.12)
The parameters in the Green’s functions are given by

r2 = (x− ξ)2 + (y − η)2 + (z − ζ)2

r′2 = (x− ξ)2 + (y − η)2 + (z + ζ + 2H)2

K =
ω2

g

J0(x) = Bessel function of zero order
H = water depth

A.2.2 Fluid domain and velocity potentials

The fluid domain is bounded by the surface of the body, Sb, the free surface, SFS and
a far-field boundary, S∞. The velocity potentials satisfying the Laplace equation in the
domain are the radiation velocity potential, φR, the diffraction potential, φD and the
potential of the incoming wave, φ0.

Since the velocity potentials φ0, φD and φR as well as the Green function, G, satisfy the
free-surface boundary condition then the following simplification can be made.∫∫

SFS

[
φ
∂G

∂n
−G∂φ

∂n

]
dξ = 0 for φ = φ0, φD or φR (A.13)

Since the velocity potentials φD and φR become very similar to Green function, G, at
the limits of the fluid domain then the following simplification can be made.∫∫

S∞

[
φ
∂G

∂n
−G∂φ

∂n

]
dξ = 0 for φ = φD or φR (A.14)

This reduces Equation A.11 to Equation A.15 for the diffraction and radiation poten-
tials.

2πφ(x) +

∫∫
Sb

[
φ(ξ)

∂G(ξ,x)

∂nξ
− ∂φ

∂n
G(ξ,x)

]
dξ = 0 for φ = φD or φR (A.15)
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A.2.3 Radiation potential

Equation A.15 is valid for the radiation potential, φR, and thereby for all the individual
components, ϕj (defined in Equation 2.7). This gives

2πϕj(x) +

∫∫
Sb

[
ϕj(ξ)

∂G(ξ,x)

∂nξ
dξ − ∂φj

∂n
G(ξ,x)

]
dξ = 0 (A.16)

Inserting Equation 2.8a into Equation A.16 yields Equation A.17, which is discretizised
and implemented in Wadam. The discretisation is explained in Chapter A.2.5.

2πϕj(x) +

∫∫
Sb

[
ϕj(ξ)

∂G(ξ,x)

∂nξ
dξ − njG(ξ,x)

]
dξ = 0 (A.17)

A.2.4 Excitation potential

Application of Equation A.11 with φ equal to the velocity potential of the incoming
wave,φ0, to the fictitious volume bounded by the free surface and the surface of the
body gives

2πφ0(x) +

∫∫
Sb+SSF

[
φ0(ξ)

∂G(ξ,x)

∂nξ
− ∂φ0

∂n
G(ξ,x)

]
dξ = 0 (A.18)

Insertion of Equation A.13 into Equation A.18 gives

2πφ0(x) +

∫∫
Sb+S

[
φ0(ξ)

∂G(ξ,x)

∂nξ
− ∂φ0

∂n
G(ξ,x)

]
dξ = 0 (A.19)

This is the integral for the fictitious volume inside the body and the normal vector
is pointing out into the real fluid. By altering the normal vector to pointing into the
fictitious fluid and out of the real fluid Equation A.19 may be rewritten as

2πφ0(x) =

∫∫
Sb

[
φ0(ξ)

∂G(ξ,x)

∂nξ
− ∂φ0

∂n
G(ξ,x)

]
dξ (A.20)

Equation A.21 is obtained by replacing φ with diffraction potential ϕD in Equation
A.15.

2πφD(x) +

∫∫
Sb

[
φD(ξ)

∂G(ξ,x)

∂nξ
− ∂φD

∂n
G(ξ,x)

]
dξ = 0 (A.21)

Inserting for φD = φexc − φ0 gives

2πφexc(x) +

∫∫
Sb

[
φexc(ξ)

∂G(ξ,x)

∂nξ
− ∂φexc

∂n︸ ︷︷ ︸
=0 on SB

G(ξ,x)
]
dξ

= 2πφ0(x) +

∫∫
Sb

[
φ0(ξ)

∂G(ξ,x)

∂n
− ∂φ0

∂n
G(ξ,x)

]
dξ

(A.22)

Inserting Equation A.20 into Equation A.22 gives Equation A.23 which is discretisised
and implemented in Wadam. The discretization is explained in Chapter A.2.5.

2πφexc(x) +

∫∫
Sb

φexc(ξ)
∂G(ξ,x)

∂nξ
dξ = 4πφ0(x) (A.23)
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A.2.5 Discretization

Equation A.17 and Equation A.23 are then discretizised by each panel in the panel
model. The radiation and excitation potentials are taken to be constant over each
panel. The integral Equation A.23 and Equation A.17 may then be discretizised for a
model with N panels as given below.

2πϕ(xi) +
N∑
k=1

Dikϕk =
N∑
k=1

Sik
(∂ϕ
∂n

)
k

(A.24)

2πφ(xi) +
N∑
k=1

Dikφk = 2πφ0(xi) (A.25)

The coefficients in Equation A.24 are given by

Dik =

∫∫
Sk

∂G(ξ,xi)

∂nξ
dξ

Sik =

∫∫
Sk

G(ξ,xi)dξ

The integrals are enforced at the points xi taken at the center of the panels. The set
of equations given by Equation A.24 and Equation A.25 are used to find the radiation
and excitation potentials which are used to compute the damping and added mass
coefficients as well as the the load transfer functions.
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B | The Generalised-α method

The Generalised-α method was presented by Chung and Hulbert [15] and is presented
here. The basic form of the method is given for a linear system as

MẌ + CẊ + KX = F (B.1)

where X is the vector of displacements. The method is given by Equations B.2-B.6.

pn+1 = pn + ∆tv + ∆t2
(
(1/2− β)an + βan+1 (B.2)

vn+1 = vn + ∆t
(
(1− γ)an + γan+1 (B.3)

Man+1−αm + Cvn+1−αf
+ Kpn+1−αf

= F(tn+1−αf
) (B.4)

pn+1−αf
= (1− αf )pn+1 + αfpn (B.5a)

vn+1−αf
= (1− αf )vn+1 + αfvn (B.5b)

an+1−αm = (1− αm)an+1 + αman (B.5c)
tn+1−αf

= (1− αf )tn+1 + αf tn (B.5d)

αf , αm, β and γ are algorithmic parameters that need to be determined. p, v and a
are the estimated displacements, velocities and accelerations, respectively. The initial
conditions are given by

p0 = X(0) (B.6a)

v0 = Ẋ(0) (B.6b)
a0 = M−1(F(0)−Cv(0)−Kd(0) (B.6c)
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C | Separate python script:
PIDthruster.py

import sys
import math
import OrcFxAPI

class th rus t ( ob j e c t ) :

# Se t t i ng i n i t i a l va lue s . ’ I n i t i a l i s e ’ i s only run once .
def I n i t i a l i s e ( s e l f , i n f o ) :

# Reading parameters from OrcaDlex data form :
paramsDict = {}
for key , va lue in i n f o . ObjectParameters . i tems ( ) :

paramsDict [ key ] = f l o a t ( va lue )
s e l f . params = OrcFxAPI . objectFromDict ( paramsDict )

# Co l l e c t i n g the time−s tep from the OrcaFlex model
s e l f . t imeStep = in f o . Model . g ene ra l . Impl ic i tConstantTimeStep

# There i s one in s t ance o f t h i s ex t e rna l f unc t i on
# per data item that uses i t . As long as the app l i ed
# load c a l c u l a t i o n s are uncoupled , each in s t ance
# w i l l keep track o f the r equ i r ed data in the
# a t t r i b u t e s o f each in s t ance .
s e l f . i n t = 0 .0
s e l f . i n t L a s t I t e r a t i o n = 0 .0
i f i n f o . DataName . s t a r t sw i t h ( ’ GlobalAppliedForceX ’ ) :

s e l f . prevpos = s e l f . params . t a rg e t1
s e l f . p r evpo sLa s t I t e r a t i on = s e l f . params . t a rg e t1
s e l f . t a r g e t = s e l f . params . t a rg e t1
s e l f . kp = s e l f . params . kp1
s e l f . k i = s e l f . params . k i1
s e l f . kd = s e l f . params . kd1
s e l f . kd = s e l f . params . kd1
s e l f . s t a t = s e l f . params . s t a t1

i f i n f o . DataName . s t a r t sw i t h ( ’ GlobalAppliedForceY ’ ) :
s e l f . prevpos = s e l f . params . t a rg e t2
s e l f . t a r g e t = s e l f . params . t a rg e t2
s e l f . kp = s e l f . params . kp2
s e l f . k i = s e l f . params . k i2
s e l f . kd = s e l f . params . kd2
s e l f . p r evpo sLa s t I t e r a t i on = s e l f . params . t a rg e t2
s e l f . s t a t = s e l f . params . s t a t2

i f i n f o . DataName . s t a r t sw i t h ( ’ GlobalAppliedMomentZ ’ ) :
s e l f . prevpos = s e l f . params . t a rg e t6
s e l f . p r evpo sLa s t I t e r a t i on = s e l f . params . t a rg e t6
s e l f . t a r g e t = s e l f . params . t a rg e t6
s e l f . kp = s e l f . params . kp6
s e l f . k i = s e l f . params . k i6
s e l f . kd = s e l f . params . kd6
s e l f . s t a t = s e l f . params . s t a t6
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# ’ Ca lcu la te ’ i s run f o r each i t e r a t i o n o f each time step
# and c a l c u l a t e s the f o r c e s based on the cur rent p o s i t i o n
def Calcu la te ( s e l f , i n f o ) :

i f i n f o . DataName . s t a r t sw i t h ( ’ GlobalAppliedForceX ’ ) :
a c tua l = i n f o . Ins tantaneousCalcu lat ionData . Pos i t i on [ 0 ]

e l i f i n f o . DataName . s t a r t sw i t h ( ’ GlobalAppliedForceY ’ ) :
a c tua l = i n f o . Ins tantaneousCalcu lat ionData . Pos i t i on [ 1 ]

e l i f i n f o . DataName . s t a r t sw i t h ( ’ GlobalAppliedMomentZ ’ ) :
Xaxis = i n f o . InstantaneousCalcu lat ionData . Or i entat i on [ 0 ]
a c tua l = math . degree s (math . atan2 ( Xaxis [ 1 ] , Xaxis [ 0 ] ) )

else :
raise Exception ( ’Cannot␣ f i nd ␣name␣ o f ␣ va lue ␣ to ␣be␣determined ’ )

# I f i t ’ s a new time step then ’ prevpos ’ and ’ i n t ’ are
# updated to be the va lue s from the prev ious i t e r a t i o n o f
# the imp l i c i t s o l ve r , i f i t ’ s the f i r s t time step then
# they w i l l take the i n i t i a l va lue s that were s e t in
# I n i t i a l i s e :
i f i n f o . NewTimeStep :

s e l f . prevpos = s e l f . p r evpo sLa s t I t e r a t i on
s e l f . i n t = s e l f . i n t L a s t I t e r a t i o n

# Ca l cu l a t ing the e r r o r and the f o r c e s cor re spond ing to
# the three terms in the PID c o n t r o l l e r :
e r r o r = actual−s e l f . t a r g e t
Fp = − s e l f . kp∗ e r r o r
Fi = s e l f . i n t − s e l f . k i ∗ e r r o r ∗ s e l f . t imeStep
Fd = − s e l f . kd∗( actua l−s e l f . prevpos ) / s e l f . t imeStep

# Stor ing data from th i s i t e r a t i o n ready to be used i f
# t h i s i s the l a s t i t e r a t i o n f o r the cur rent time step :
s e l f . p r evpo sLa s t I t e r a t i on = actua l
s e l f . i n t L a s t I t e r a t i o n = Fi

# The f o r c e from the t h ru s t e r s i s sent back to OrcaFlex
# and the data item ( Applied Load ) that was asked f o r
i n f o . Value = Fp+Fi+Fd+s e l f . s t a t
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D | Separate python script:
harmonicThruster.py

import sys
import math
import OrcFxAPI

class th rus t ( ob j e c t ) :

def Calcu la te ( s e l f , i n f o ) :

# Ca l cu l a t e s va lue o f the harmonic load :
i n f o . Value = −3000∗math . s i n ( (2∗math . p i /12) ∗ i n f o . SimulationTime )

ix



E | Wadam Input

ENVIRONMENT
Gravity 9.80665 m/s2

Water density 1025 kg/m3

Water kinematic viscosity 1.609E-6 m2/s

Water depth 109 m

Frequency Set

(2.5s - 9s): Interval of 0.25s
(9s - 11s): Interval of 0.5s
(11s - 17s): Interval of 1s
(17s - 21s ): Interval of 0.5s
(21s - 30s): Interval of 1s

Direction Set 0°-180°, interval of 15°
HYDRO STRUCTURE

Panel Model T11.FEM
Translation of model -15.75 m
Symmetry planes of panel model None
Number of panels 6628

MASS MODEL
Coordinate system COG Centered Coordinate system
Buoyancy Calculated from panel model
Total mass 34 330 000 kg
Center of gravity -0.0454 m, 0 m, 4.87 m
Radii of gyration rx = 39.5 m, ry = 38.9 m, rz = 44.8 m

Table E.1: Wadam input, Physical data
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EXECUTION DIRECTIVES
Tolerance waterline 5%
Tolerance center of grav-
ity

5%

Characteristic length 104.5 m
Drift Forces Pressure integration (6DOF)
Roll damping None
Equation solver Direct matrix solver, maximum iteration size: 15 000
Print Normal print

Result files
- SIF formatted
- Calculate eigenvalues
- Use global origin as reference point

Logarithm Singularity Analytical
Numerical integration One node gauss
Panel dimension Maximum diagonal

Other
- Save temp. Wamit files
- Calculate mass matrices in HydroD

Table E.2: Wadam input, Execution Directives
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F | OrcaFlex Input

F.1 General data

STATICS
Statics method Whole System Statics
Buoy degrees of freedom included in Static Analysis None
Starting Velocity None
Statics convergence parameters:
- Max iterations 5000
- Tolerance 1E-6 (Default value)
- Min Damping 1 (Default value)
- Max Damping 10 (Default value)

DYNAMICS
Duration Build-up 10 s
Duration Stage 1 1200 s
Logging:
- Precision Single
- Target Sample Interval 0.1 s

INTEGRATION AND TIME STEPS
Integration method Implicit
Time step 0.1 s
Maximum number of iterations 100
Tolerance 25E-6

RESULTS
Spectral Density Fundamental Frequency 0.01 Hz

DRAWING
North Direction defined 0 deg

Table F.1: OrcaFlex input, General Data
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F.2 Environment

SEA
Surface Z 0 m
Kinematic viscosity 1.609E-6 m2/s
Temperature 4 °C
Reynolds Number Calculation Not applied

SEA DENSITY
Density Variation None
Water density 1.025 ton/m3

SEABED
Type Flat
Seabed Origin (0m,0m,-109m)
Direction Not applied
Slope 0
Seabed Model Linear
Normal Stiffness 100 kN/m/m2

Shear Stiffness 0 kN/m/m2

Damping 0

Table F.2: OrcaFlex input, Sea and Seabed
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WAVES
Simulation Time Origin 0 s
Kinematic Stretching model Extrapolation stretching
User Specified Seeds 12345
Spectrum Discretisation Method 9.5d
Direction -28 deg
Significant Waveheight, HS 8.8 m
Zero Crossing Period 9.2 s
Wave Origin (0m,0m)
Wave Time Origin 0 s
Wave Type JONSWAP
γ 2.7
Peak Frequency, fm 0.0831 Hz
Peak Period, Tp 12.0337 s
Wave Directions
- Spreading Exponent 10
- Number of Directions 9
Number of Wave Components per Direction 100 (Default)
Relative Frequency Range
- rmin 0.5 (Default)
- rmax 10 (Default)
Maximum Component Frequency Range Not limited

Table F.3: OrcaFlex input, Waves

CURRENT
Ramp During Build-Up No
Horizontal Current Variation No
Vertical Current Variation
- Method Power Law
- Speed Surface 0.5 m/s
- Speed Seabed 0 m/s
- Exponent 30
- Direction 0 deg

WIND
Include Wind Loads on Vessels and Lines
Vertical Wind Variation None
Air Density 0.0013 ton/m3

Air Kinematic Viscosity 15E-6 m2/s
Wind Type Constant
Wind Speed 25.8 m/s
Wind Direction 26 deg

Table F.4: OrcaFlex input, Wind and Current
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F.3 Vessel

VESSEL
Length 104.5 m
Initial Position x=0m, y=0m, z=0m, heel=0°, trim=0°,

heading=0°
Calculation
- Included in Static Ananlysis 6 DOF
- Primary Motion Calculated (6 DOF)
- Superimposed Motion None
- Included Effects Applied Loads, Wave Load(1st order),

Wave Drift Load(2nd order), Wave Drift
Damping, Added Mass and Damping,
Manoeuvring Load, Current Load and
Wind Load

- Primary Motion is Treated as Both low- and wave- frequency
- Dividing Period 25s
Applied Loads
- Point of Application (0m,0m,-16.1m)
- Local Applied Load X PIDThruster
- Local Applied Load Y PIDThruster
- Local Applied Moment Z PIDThruster
Multiple Statics No

VESSEL TYPE
Structure
Vessel Typical Length 104.5 m
Mass 34 330 ton
(Radii of Gyration) (r44=39.5m, r55=38.9m, r66=44.6m)
Moment of Inertia I44=53 563 ton·m2, I55=51 948 ton·m2,

I66=68 288 ton·m2

Center of Gravity x=-0.0454m, y=0m, z=4.87m

Table F.5: OrcaFlex input, Vessel data 1
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VESSEL TYPE
Conventions
Displacment RAO rotation amplitude Not applied
Waves are referred to by Periods
RAO phases are ’Leads’ in ’degrees’ relative to wave

’crest’
Postive directions Surge is ’forward’, sway is ’port’,

heave is ’up’, roll is starboard ’down’,
pitch is bow ’down’, yaw is bow to
’port’

Symmetry XZ-plane
Displacement RAOs None
Load RAOs
Imported from Wamit output file calculated in

Wadam (Stop Before Second Force)
Origin 0m,0m,0m
Phase Origin 0m,0m,0m
Wave Drift QTFs
Specification Method Newman’s approximation
Imported File Wamit output file calculated in

Wadam
Origin 0m,0m,0m
Stiffness, Added Mass and
Damping
Reference origin x=-0.045m, y=0m, z=4.87m
Equilibrium position z=4.87m, Heel=0°, Trim=0°
Imported file, damping and added
mass

Wamit output file calculated in
Wadam (Stop Before Second Force)

Restoring coefficients

C33=8 319kN/m
C34=-0.019kN/deg
C35=-0.806kN/deg
C44=908 374 kNm/deg
C45=0.920kNm/deg
C55=1 943 140kNm/deg

Other Damping None
Current Load
Areas and area moment Surge:655m2 Sway:1263m2 Yaw:131984m3

Load Coefficients From FORCE wind tunnel tests
Current load origin -26.5m, -26m, -8.75m
Wind Load
Areas and area moment Surge:1975m2, Sway:2231m2, Yaw:233140m3

Load Coefficients From FORCE wind tunnel tests
Wind load origin -26.5m, -26m, 24m

Table F.6: OrcaFlex input, Vessel data 2
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F.4 Anchor Lines

LINES: End X- and Y-Coordinates
Line number End A (Global axes) End B (Vessel axes)
Line 1 (-1625m, 458m) (29.7m, -33.9)
Line 2 (-902m, 1716m) (22.8m, -33.9m)
Line 3 (576m, 1800m) (-23.4m, -34m)
Line 4 (1446m, 776m) (-30.1m, -34.1m)
Line 5 (1605m, -527m) (-29.7m, 34m)
Line 6 (1019m, -1941m) (-22.9m, 34m)
Line 7 (-667m, -2089m) (23.3m, 34.1m)
Line 8 (-1711m, -913m) (29.9m, 34.1m)

Table F.7: OrcaFlex input, Anchor Line End Coordinates
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LINES
Include Torsion No
Top End End B
P-y model None
Connected to object End A: Anchored, End B: Vessel1
End Orientation Azimuth: Calculated by OrcaFlex Decli-

nation, Gamma = 0
Height above Seabed 0m
Release at start of stage Not applicable
Connection stiffness None
Included in Statics Catenary
Full Statics Yes
Include Seabed Friction Yes
Expansion Factor None
Clash Check No
Bre-bent curvature No
Contents None (Density = 0)
Catenary convergence (Default values)
- Max iterations 100
- Delta -5E-9
- Tolerance 50E-9
- Min damping 1
- Shooting factor 1.5
- BackTrack factor 2
- Mag.of Std. Error 0.2
- Mag. of Std. Change 0.6
Full Statics Convergence (Default values)
- Method Line Search
- Max iterations 400 (except for Line 5:2000)
- Delta Not applied
- Tolerance 1E-6
- Min damping 1
- Max damping 10
Drag & Wake Formulation
- Drag formulation Standard
- Reacts to wake No
- Generates wake No
VIV Not applied
Results Log results. Arc length axis: Horizontal

Table F.8: OrcaFlex input, Lines, Computational choices
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LINE TYPES
Name Chain

NVR4-76
Chain
NVR4-84

WIRE (6x49
WS+IWRC)

Category General General General
Wizard input diameter 0.076 m (Dbar) 0.084 m (Dbar) 0.090
Outer diameter *0.137 m *0.151 m 0.090 m
Inner diameter 0 m 0 m 0 m
CG Offset Not applied Not applied Not applied
Bulk modulus Infinity Infinity Infinity
Mass 0.1127 ton/m 0.134 ton/m 0.032 ton/m
Compression limited Yes Yes No
Allowable tension 6 003 kN 7 210 kN 7250 kN
Minimum Bending radii Not applied Not applied Not applied
Bending stiffness 0.1kN 0.1 kN 0.1 kN
Axial stiffness 508 158 kN 620 973 kN 667 983 kN
Poisson ratio 0.3 0.3 0.3
Torsional Stiffness 0 0 0
Drag coefficient X/Y-dir 2.6 2.6 1.8
Drag coefficient Z-dir 1.4 1.4 0
Lift coefficients 0 0 0
Drag/lift diameters 0.076 m 0.084 m 0.090 m
Added Mass coefficient X/Y-dir 1 1 1
Added Mass coefficient Z-dir 0.08 0.08 0.08
Inertia coefficients X/Y/Z 1+Ca 1+Ca 1+Ca

Contact Diameter *0.255 m *0.281 m 0.090 m
Line Clashing None None None
Stress Diameters *0.137 m *0.151 m 0.090 m
Allowable Stress Not applied Not applied Not applied
Tensile Stress Loading factor 1 1 1
Bending Stress Loading factor 1 1 1
Shear Stress Loading factor 1 1 1
Torsional Stress Loading factor 1 1 1
Seabed Friction Coefficients 0.6 0.6 0.6

Table F.9: OrcaFlex input, Line Types. Values marked with * are calculated by the
OrcaFlex Line Wizard
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LINE SECTIONS
Line Segment Segment type Segment

Length [m]
Target Seg-
ment length
[m]

Line1 Section 1 NVR4-84 240 10
Line1 Section 2 NVR4-84 10 2
Line1 Section 3 NVR4-76 10 2
Line1 Section 4 NVR4-76 889 10
Line1 Section 5 NVR4-76 40 2
Line1 Section 6 NVR4-76 64 10
Line1 Section 7 NVR4-76 10 2
Line1 Section 8 WIRE (6x49

WS+IWRC)
10 2

Line1 Section 9 WIRE (6x49
WS+IWRC)

388 10

Line2 Section 1 NVR4-84 1263 10
Line2 Section 2 NVR4-84 40 2
Line2 Section 3 NVR4-84 200 10
Line2 Section 4 NVR4-84 10 2
Line2 Section 5 WIRE (6x49

WS+IWRC)
10 2

Line2 Section 6 WIRE (6x49
WS+IWRC)

388 10

Line3 Section 1 NVR4-84 1331 10
Line3 Section 2 NVR4-84 40 2
Line3 Section 3 NVR4-84 132 10
Line3 Section 4 NVR4-84 10 2
Line3 Section 5 WIRE (6x49

WS+IWRC)
10 2

Line3 Section 6 WIRE (6x49
WS+IWRC)

340 10

Line4 Section 1 NVR4-84 240 10
Line4 Section 2 NVR4-84 10 2
Line4 Section 3 NVR4-76 10 2
Line4 Section 4 NVR4-76 646 10
Line4 Section 4 NVR4-76 646 10
Line4 Section 5 NVR4-76 40 2
Line4 Section 6 NVR4-76 307 10
Line4 Section 7 NVR4-76 10 2
Line4 Section 8 WIRE (6x49

WS+IWRC)
10 2

Line4 Section 9 WIRE (6x49
WS+IWRC)

340 10

Table F.10: OrcaFlex input, Sections and segments, Lines 1-4

xx



LINE SECTIONS
Line Segment Segment type Segment

Length [m]
Target Seg-
ment length
[m]

Line5 Section 1 NVR4-84 240 10
Line5 Section 2 NVR4-84 10 2
Line5 Section 3 NVR4-76 10 2
Line5 Section 4 NVR4-76 817 10
Line5 Section 5 NVR4-76 40 2
Line5 Section 6 NVR4-76 136 10
Line5 Section 7 NVR4-76 10 2
Line5 Section 8 WIRE (6x49

WS+IWRC)
10 2

Line5 Section 9 WIRE (6x49
WS+IWRC)

388 10

Line6 Section 1 NVR4-76 830 10
Line6 Section 2 NVR4-76 40 2
Line6 Section 3 NVR4-76 133 10
Line6 Section 4 NVR4-76 10 2
Line6 Section 5 WIRE (6x49

WS+IWRC)
10 2

Line6 Section 6 WIRE (6x49
WS+IWRC)

1131 10

Line7 Section 1 NVR4-76 854 10
Line7 Section 2 NVR4-76 40 2
Line7 Section 3 NVR4-76 109 10
Line7 Section 4 NVR4-76 10 2
Line7 Section 5 WIRE (6x49

WS+IWRC)
10 2

Line7 Section 6 WIRE (6x49
WS+IWRC)

1131 10

Line8 Section 1 NVR4-84 490 10
Line8 Section 2 NVR4-84 10 2
Line8 Section 3 NVR4-76 10 2
Line8 Section 4 NVR4-76 809 10
Line8 Section 5 NVR4-76 40 2
Line8 Section 6 NVR4-76 144 10
Line8 Section 7 NVR4-76 10 2
Line8 Section 8 WIRE (6x49

WS+IWRC)
10 2

Line8 Section 9 WIRE (6x49
WS+IWRC)

388 10

Table F.11: OrcaFlex input, Sections and segments, Lines 5-8
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F.5 Buoys

CLUMPS
Name Buoy5 Buoy10
Mass 0.1 ton 0.2 ton
Volume 4.97 m2 9.94
Height 2.71 m 3.41 m
Align with Line axes Line axes
Drag area, X/Y-dir 3.67 5.83
Drag area, Z-dir 1.83 m 2.91 m
Drag coefficient 1.5 1.5
Added mass coefficient 1 1

Table F.12: OrcaFlex input, Subsurface Buoys
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