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Abstract

A one dimensional numerical model with a k-ε closure has been modified to account for
the presence of submerged aquatic vegetation when modelling tidal boundary layers. The
model has previously been compared against field measurements taken outside the coast
of the Hebrides, but did not manage to accurately predict the boundary layer for most
part of the water column. Especially the velocity closest to the sea bed was heavily
overpredicted.

The goal of this study has been to find a way to reasonably incorporate the effect of veg-
etation into the already existing numerical model, and to investigate if this modification
will improve the accuracy of the predicted tidal boundary layer.

By first studying how the flow mechanisms are being altered due to the presence of a
submerged canopy (meadow of individual plants), consensus was found that they best
could be accounted for by spatially averaging the governing equations in addition to the
common temporal averaging. This way the spatial heterogeneity of the flow due to the
complex geometry of the canopy would be accounted for.

The spatial averaging results in an additional form drag term in the momentum equation.
In the conservation equation for turbulent kinetic energy, the spatial averaging result in
an additional production term. This term accounts for the generation of turbulence in the
wakes behind individual stems. Due to this extra production of turbulent kinetic energy,
an additional production term of the dissipation of this energy had to be included into
the conservation equation for the dissipation.

The modified model was validated against flume experiments, and the results from other
available k-ε models, for unidirectional flow through submerged vegetation. The com-
parison against the other numerical models was good. The comparison against flume
experiments showed that the model was able to predict the velocity profiles within the
canopy well. However, the accuracy regarding the above-canopy flow appeared to depend
on the density of the canopy. However, comparison with flume data for a wider spread
of canopy densities has to be preformed before any concluding statements can be made.
Overall, the results from the validation was promising.

The model was also modified to account for wave-current damping, and validated against
available flume data. The results were good. However, the pressure gradient needed to
drive the wave-current flow had to be significantly larger than the pressure gradient needed
to drive a pure current with similar depth averaged velocity. Therefore, more research is
needed to draw any applicability conclusions for including wave-current interaction into
the tidal model.

The modelled vegetation for the tidal flow was very sparse. Because no accurate data for
the canopy outside the Hebrides was available during this study, the canopy parameters
had to be estimated visually from an underwater photo. Therefore, different canopy
parameters was tested to investigate the sensitivity towards the predicted boundary layer.

Overall, the modified model was able to predict the tidal boundary layer with increased
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accuracy compared to only accounting for the vegetation in the bed roughness. Espe-
cially, the mean velocity closest to the bed was significantly improved as opposed to the
old model. However, the results from only including the bed roughness gave increased
accuracy for the data point closest to the surface. In comparison, the present model
underpredicted the mean velocity in this region.

Although the exact geometry of the vegetation is uncertain, the concluding remark is that
the general result is better when directly accounting for the vegetation as opposed to only
using the bed roughness. Especially if the main area of interest is the lower part of the
tidal boundary layer.
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Sammendrag

En endimensjonal k-ε model har blitt modifisert for å ta hensyn til neddykket vegetasjon
i beregninger av grensesjikt for tidelvannsstrøm langs en flat havbunn. Modellen har
tidligere blitt brukt til å modellere grensesjiktet til tidevannsmålinger fra kysten utenfor
Hebridene, men har ikke presterte å generere nøyaktige resultater for mesteparten av
vannsøylen. Spesielt hastighetene for området nær havbunnen er ikke godt reprodusert
av denne modellen.

Målet med dette arbeidet har vært å finne en fornuftig måte å ta hensyn til effekten av
vegetasjon i likningene for k-ε modellen, i tillegg til å studere om disse endringene bidrar
til bedre resultater i forhold til feltmålingene.

Fra litteraturen ble det det funnet at den mest hensiktsmessige måten å inkludere ef-
fekten av vegetasjon i likningene på er gjennom å integrere dem over flatearealet til et
tilstrekkelig stort område. På den måten vil heterogeniteten i strømmen på grunn av
geometrien til vegetasjonen bli tatt hesyn til i likningene. Dette blir gjort i tillegg til den
vanlige tidsintegreringen for å fjærne de tidsavhengige fluktureringene til den turbulente
strømmen.

Denne metoden fører til et nytt ledd i konserveringslikningene for moment på grunn av
formmotstand mellom strømmen og plantene. I tillegg fører det til et nytt produksjonsledd
av turbulent kinetisk energi på grunn av turbulens som dannes i waken bak individuelle
planter. På grunn av den økte produksjonen av turbulens vil også konserveringslikningen
for dissipasjonen av denne energien få ett nytt produksjonsledd.

Gjennom validasjon mot eksperimentelle data, samt resultater fra andre k-ε modeller,
ble det funnet at den modifiserte modellen ga god overenstemmelse med de tilgjengelige
sammenlikningsdataene. Hastighetene inne i vegetasjonen ble godt modellert av modellen,
mens hastighetene over vegetasjonen ga indikasjoner på at de kan være avhengig av selve
tettheten til plantefeltet. Flere sammenlikninger trengs for å bekrefte denne påstanden.
Totalt sett var validajonen vellykket.

Effekten av bølge-strøm dempning ble også lagt til koden for sammenlikning med eksper-
imentelle data. Det ble funnet at den nødvendige trykkgradienten for å drive strøm med
bølger måtte være betydelig større enn den nødvendige trykkgradienten for å drive en ren
strøm med tilsvarende dybdemidlet hastighet. Det er derfor behov for mer validering av
bølge-strøm interaksjonen før den kan bli tilført tidevannsmodellen.

Vegetasjonen utenfor kysten av Hebridene er veldig spredt. De nødvendige vegetasjon-
sparameterene måtte estimeres ettersom ingen nøyaktig data var tilgjengelig i løpet dette
arbeidet. Den modifiserte modellen har derfor blitt kjørt med ulike inputdata for veg-
etasjonen for å danne en formening om i hvilken grad resultatene blir påvirket av disse
parameterene.

Den modifiserte modellen viser at den generelt presterer å generere et grensesjiksprofil i
større samsvar med måledataen enn den gamle modellen som bare tar hensyn til ruheten
på bunnen. Spesielt vil strømhastighetene nært bunnen blir bedre predikert av den modi-
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fiserte modellen. For målepunktet nærmest overflaten vil den gamle modellen gi en bedre
estimering av strømhastighetene.

Selv om det er en usikkerhet knyttet til inputparameterene for vegetasjonen, vil den
generelle konklusjonen være at grensesjiktsprofilet blir bedre estimert av å direkte inklud-
ere effekten av vegetasjonen i modellen, sammenlignet med bare å ta hensyn til den i
estimatet av ruheten på bunnen. Dette viser seg å gjelde til og med for veldig spredt
vegetasjon som tilfellet er utenfor Hebridene. Spesielt hvis hastighene nært bunnen er av
størst interesse, vil en inkluderingen av vegetasjonene være betydelig for nøyaktigheten
av tidevannsprofilet.
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1 Introduction

Interaction between gravity forces acting on Earth from the Moon and the Sun, and the
relative motion between these masses, produces water surface elevations known as tides.
Due to their oscillatory behaviour, tides can be viewed as waves with large wavelengths
and long periods called tidal periods. Because of the large wavelength, these tidal waves
often act like shallow water waves even at large water depths. The horizontal component
of the orbital particle trajectories will in most cases be so dominant that the tidal waves
can be regarded as tidal currents instead.

Due to the friction between the tidal current and the sea bed, a boundary layer is formed
with a corresponding shear force acting on the bed. This shear force is of importance
as it may cause erosion at the sea bed. When this occur, the general shape of the
boundary layer becomes important as it determines the capacity the tidal current has to
further transport the sediments. In addition to transport of sediments and pollution, the
tidal current will also affect the transport of biological material such as plankton, hence
impacting the marine life in general.

From the above mentioned reasons, the importance of understanding tidal boundary layers
becomes apparent. Much research has gone into the modelling of these boundary layers,
along with closely related mechanism such as sediment transport. Numerical models are
effective tools for doing so. Because tidal currents often are turbulent, this must also be
incorporated into the models.

In near shore regions there is another effect that becomes important in the modelling
of tidal boundary layers. Near shore regions are often covered with submerged aquatic
vegetation. In terms of erosion and sediment transport this will alter the mechanisms
for unobstructed flow by introducing additional damping of the tidal current within the
vegetation.

Extensive work has been done in studying oscillatory tidal flow using numerical solvers,
but without the presence of vegetation. Apart from one-equation and simpler models,
Holmedal and Myrhaug (2013) used the two equation k-εmodel to predict the tidal ellipses
and velocity time series against field data from the Celtic Sea. The boundary conditions
at the surface was then altered to include the shear effects from wind, and sediment
transportation with or without wind was investigated. In addition, more computationally
expensive methods has been used for modelling oscillatory boundary layers such as LES
(Salon and Armenio (2011)) and the DNS (Sakamoto and Akitomo (2008)) methods.

The effect of vegetation upon boundary layers is also a widespread research topic. Fore-
most this was a topic under meteorology in the study of wind flowing over terrestrial
canopies. However, the topic has long since become relevant for the marine and aquatic
communities. Most of these studies only consider the effect of the vegetation in open
channels or marshlands, and not as part of a tidal system. The word canopy is heavily
used throughout this thesis, and translates to a meadow of individual plants. This means
that the characteristics of a plant may not directly correspond to the characteristics of
the whole canopy.
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The presence of plants has often been simplified by regarding it as a an addition to the
general bed roughness. However, for sufficiently dense aquatic vegetation, it is well estab-
lished that this is not the case (Nepf (2012a)). For numerical modelling of flow through
vegetation, the effect of the vegetation therefore has to be included in a different way.
Wilson and Shaw (1977) assumed that the heterogeneity in the flow due to individual
plants could be accounted for by spatially averaging the governing equations in addition
to the already introduced temporal averaging. Raupach and Shaw (1982) later modified
the derivation, although arrived at the same conclusion. The spatial averaging of the mo-
mentum equations results in an additional form drag due to the energy extracted from the
mean flow due to the work against the plants. Spatial averaging of the conservation equa-
tion for turbulent kinetic energy results in an additional production term transforming
the energy from the mean flow into additional turbulence in the wakes behind individual
plant stems.

Shimizu and Tsujimoto (1994) preformed numerical analysis with a k-ε closure of uniform
flow through a submerged canopy. They used the additional terms introduced by the
spatial averaging in the momentum and k-equation. An additional term was added to the
ε-equation to account for the dissipation of the wake-produced turbulence. The inclusion
of the additional terms to the k- and ε-equation introduces additional coefficients to
help improve the generality of the model under different vegetation conditions. Shimizu
and Tsujimoto (1994) obtained these additional constants by fitting their model results
to experimental data from flume experiments. After determining the coefficients, their
model was run against additional experimental trails to verify its generality. I addition, the
transition zone that appears when flow enters a submerged canopy from a non-vegetated
region was investigated.

López and García (2001) used both a k-ε and a k-ω closure to model open channel
flow through submerged vegetation. The inclusion of the additional form drag, wake-
production and dissipation are similar to Shimizu and Tsujimoto (1994). However, they
used a more theoretical approach to determine the additional constants. They found that
the k-ε and a k-ω models predicted the flume data with similar accuracy. The same k-ε
model was also used to model sediment transport (López and García (1998)).

Defina and Bixio (2005) compared the numerical models from Shimizu and Tsujimoto
(1994) and López and García (2001) with an explicit two-layer model. The two-layer
model separates the flow into one lower layer governed by the effect of the vegetation and
one upper layer treating the vegetation as a roughness. Applying a continuity requirement
between the two regions then gives the total velocity profile.

Neary (2003) preformed k-ω simulations for the case of steady state flow through sub-
merged vegetation. Although the model is different from the k-ε model through the
numerical solving of the near wall region, the inclusion of the canopy form drag and
wake-production is similar. He compared the two different pairs of constants provided
by Shimizu and Tsujimoto (1994) and López and García (2001) and found that the they
gave similar results for the mean velocity profiles and the Reynolds stress. However, nei-
ther pair gave good results for the streamwise turbulence intensity, but the coefficients of
Shimizu and Tsujimoto (1994) were considered better. However, this conclusion is some-
what bias due to the fact that their model results were only compared with the flume data
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provided by Shimizu and Tsujimoto (1994). The same data they used for determining the
coefficients in the first place. Neary (2003) also support the conclusion from López and
García (2001) in the sense that the k-ω model gave no significantly better results than
the k-ε model.

One of the disadvantages of the numerical models introduced by Shimizu and Tsujimoto
(1994), López and García (2001) and Neary (2003) is that they don’t account for the
additional vortex generation that might occur due to the shear force between the top of
the canopy and the unobstructed flow. Uittenbogaard (2003) proposed a modification
to the k-ε model to account for this problem. The modification results in an increased
production of dissipation within the canopy. Dijkstra and Uittenbogaard (2010) used this
modification along with their own force balance to account for the flexibility of vegetation
in the k-ε model.

King et al. (2012) proposed a more complex method of incorporating the effect of vegeta-
tion into a numerical model. The basic conservation equations was that of the standard
k-ε model. However, the conservation of turbulent kinetic energy was split into one con-
servation equation for the wake-generated turbulence and one conservation equation for
the shear generated turbulence. Hence, these two conservation equations had to be solved
simultaneously as the shear generated turbulence was transformed into wake-scaled turbu-
lence when interacting with the stem wakes. Correspondingly, two conservation equations
for the dissipation had to be solved simultaneously as well. Although the model produced
good results, additional coefficients had to be introduced.

Ghisalberti and Nepf (2004) stressed the importance of the shear-generated vortices at
the top of the canopy and developed their own numerical model. They neglected the
production of wake-scaled turbulence. Instead they developed a conservation equation for
the turbulent kinetic energy consisting only of the generation of shear-scale turbulence
from the top of the canopy and its dissipation into wake-scale turbulence as the vortices
penetrated into the canopy. However, this model is only applicable for steady state flow,
and is only valid within the range of the shear-scale, or canopy-scale, vortices.

The model of López and García (2001), along with their proposed coefficients, was de-
veloped further by Ma et al. (2013) to incorporate wave propagation through the canopy,
and the effect of wave breaking.

In addition to the above-mentioned RANS models, Stoesser (2009) performed LES simu-
lations for submerged rigid cylinders and encountered shear-generated vortices from the
top of the canopy affecting the in-canopy flow. This is in agreement with what had been
recorded by Ghisalberti and Nepf (2004).

In this study, the numerical k-ε model used by Holmedal and Myrhaug (2013) to pre-
dict tidal boundary layers will be modified to account for submerged vegetation. Grøn-
ningsæter (2015) compared the model against field measurement from the coast outside
the Hebrides, but did not succeed in predicting the lower portion of the tidal boundary
layer when only accounting for the bed roughness. Hence, the modified code will be vali-
dated and applied to the same field measurements to investigate if the results improve if
the effect of vegetation is incorporated into the model.
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2 The Coriolis force

The Coriolis force is essential when working with tidal flows. From a numerical modelling
perspective it is the only parameter separating a tidal flow from a regular unidirectional
flow. In this chapter the Coriolis force will be derived and explained for a point P moving
along the Earth’s surface.

Earth rotates about its own axis as well as moving relative to the Sun. If P is an object
moving along Earth’s surface then the absolute position of P can be expressed as

rP = rE + rP/E. (2.0.1)

rE is the position of Earth relative to the Sun, and rP/E is the relative position between
P and Earth’s centre (see figure 2.1a). By differentiating twice with respect to time, it
can be shown (see Meriam and Kraige (2013)) that the absolute acceleration of point P
becomes,

aP = aE + ω̇×r + ω×(ω×r) + 2ω×vrel + arel (2.0.2)

where the first three terms are the acceleration of P if P were a fixed point on Earth’s
surface, and the last two terms are the acceleration of P relative to the Earth’s axis.
Hence, aE is the translational acceleration of the Earth relative to the Sun, and vrel
and arel are the translational velocity and acceleration, respectively, of P relative to the
Earth’s axis. r is the same as rP/E, and ω and ω̇ are the angular velocity and acceleration
of Earth, respectively.

Because the angular acceleration of Earth around its axis, and the translational acceler-
ation of Earth relative to the Sun are small compared to the other terms, they can be
neglected. Hence, ω ≈ 0 and aE ≈ 0. Also, the term ω×(ω×r), acting normal to the
Earth’s axis, will be approximately zero and hence neglected (see Myrhaug (2012)). The
absolute acceleration of an object P moving along the face of the Earth will therefore be
simplified to

aP = arel + 2ω×vrel, (2.0.3)

where the last term is called the Coriolis acceleration. Because P is moving with the
relative velocity vrel, the Coriolis force will always act normal to the path of motion. The
total force on P can be written in terms of Newtons 2. law, F = maP , where F has the
same direction as vrel. Utilizing equation (2.0.3) and rearranging gives,

marel = F−m2ω×vrel (2.0.4)

Because Earth’s rotation is counter clockwise this will result in a Coriolis force acting
90 degrees to the right of the objects path of motion on the Northern hemisphere, and
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90 degrees to the left on the Southern hemisphere (see figure 2.1b). At the equator the
Coriolis force will be zero. The Coriolis force is not a physical force felt on Earth, but a
result of P moving along a rotating reference system.

The magnitude of the Coriolis acceleration is

ac = |2ω×vrel| = 2ωvrel sin θ = fvrel, (2.0.5)

where f is the Coriolis parameter and θ is the latitude. Therefore, f is dependent on the
latitude the object is moving at.

(a) Illustration of the fixed system (the Sun)
and the relative system the Earth with an

object P moving along the face of the Earth. (b) The different vector configurations on
the Northern and Southern hemisphere
resulting in different directions of the

Coriolis force.

Figure 2.1: Reactions from Earth being a relative reference system.

2.1 The Rossby number

When to account for the Coriolis acceleration depends on the relative magnitude between
the Coriolis acceleration and arel. The relative importance between these two acceleration
components are expressed by the Rossby number. Looking at a particle travelling in the
x-direction with speed u, the inertial acceleration can be expressed as u(∂u/∂x). Using a
characteristic length L and a characteristic speed u0 gives u0(u0/L). The same analogy
for the Coriolis acceleration yields f0u0 where f0 is the Coriolis parameter at the given
latitude. Hence the Rossby number becomes

R0 = u0

Lf0
. (2.1.1)
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When R0 >> 1 the inertial forces are dominating, and vice versa. For the tidal flow
modelled in this study it is assumed that Re << 1. Hence, the convective terms in the
momentum equations can be neglected. This is called the low Rossby number approxi-
mation.
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3 Tides

Tides are oscillatory water surface elevations. They are created as a result of two ex-
traterrestrial effects, namely the centrifugal force acting on Earth due to the rotation of
the Earth-Moon system around its own axis, and the gravitational forces acting on Earth
from astronomical objects. The most dominant astronomical object is the Moon, and the
second most important is the Sun. The rest of them can normally be neglected.

This chapter will give a simplified mathematical description of why tides occur, and then
more effects will be added to explain some of their complexity. The theory in this chapter
is adopted from Myrhaug (2012).

The force balance resulting in the generation of tides can be obtained by once again
considering the absolute acceleration in equation (2.0.2) of a point P located at the Earth’s
surface,

aP = aE + ω̇×r + ω×(ω×r) + 2ω×vrel + arel (3.0.1)

Contrary to chapter 2, point P will now refer to a specific location on earth, hence P is
not moving relative to Earth. This means that the Coriolis acceleration ac = 2ω×vrel and
the translational acceleration (arel) between point P and the Earth’s centre disappears.
The term ω̇×r is small and can be neglected in accordance with chapter 2. ω×(ω×r) is
directed normal to Earth’s rotational axis and does not contribute to any resulting tidal
force. Hence, equation (3.0.1) reduces to

aP = aE, (3.0.2)

where aP is the absolute acceleration of a fixed point P on Earth, and aE is the trans-
lational acceleration of Earth relative to the Sun. aE can be expressed with regards to
the acceleration of the Earth-Moon system relative to the Sun. The rotational axis of the
Earth-Moon system is at its combined centre of mass, and has the angular acceleration
Ω. The system is depicted in figure 3.1.
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Figure 3.1: Illustration of the rotation of the Earth-Moon system where Ω is
the angular velocity of the Earth-Moon system around its combined centre of

mass, and ω is the angular velocity of the Earth around its own axis.
(Reproducted after Myrhaug (2012))

Hence, the absolute acceleration of point P can be expressed as

aP = aE = aT + Ω×(Ω×rE) (3.0.3)

where aT is the translational acceleration of the Earth-Moon system relative to the Sun, Ω
is the angular velocity of the Earth-Moon system, and rE is the position of the rotational
axis of Earth relative to the rotational axis of the Earth-Moon system.

The translational acceleration aT of the Earth-Moon system relative to the Sun can be
neglected, leaving the absolute acceleration of a fixed point P on Earth to be

aP = Ω×(Ω×rE). (3.0.4)

The acceleration in equation (3.0.4) is the centripetal acceleration working between the
rotational axis of the Earth-Moon system and the rotational axis of Earth. On Earth this
will be felt as a centrifugal force,

S0 = mΩ×(Ω×rE) (3.0.5)

where m is the mass of the Earth. As noted, the direction and magnitude of S0 is
independent of the position of P.

The other forces acting on Earth is the gravitational force from the Moon and the Sun.
By first considering the effect from the Moon alone, the gravitational force G on Earth
is given by Newton’s law of universal gravitation
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G = G
mM

|R|2
R
|R|

, (3.0.6)

where G is the gravitational constant, m is the mass of any object or unit at point P,
M is the mass of the Moon, and R is the vector from the centre of the Moon to point
P. Contrary to the centrifugal force, the gravitational force varies both in magnitude and
direction depending on the position of point P. This creates the resulting tidal force T
along the face of the Earth which forces the water levels to rise. Figure 3.2 shows the
resulting force component T at different locations (P ) on Earth denoted with index 0,1
and 2. Only at the centre of the Earth will the centrifugal force be balanced by the
gravitational force, S0 = G0.

Figure 3.2: Illustration of the resulting tidal force T as it arises at different
positions (P ) along the face of the Earth. (Myrhaug (2012))

Assuming that the surface of the Earth consist only of water, the tidal force T will result
in a simplified tidal pattern as shown in figure 3.3. As illustrated in both figure 3.2 and
3.3 the rotational axis of Earth is assumed to be perpendicular to the position vector
between the centre of Earth and the Moon.

Figure 3.3: Illustration of how the tidal force creates changes in the water
surface elevation around Earth.
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In addition to the gravitational force from the Moon, the gravitational force due to the
Sun must also be accounted for. Figure 3.4 gives a simplified illustrating of how the
combined gravitational effect from the Moon and the Sun results in something called a
spring tide and a neap tide. The spring tide occurs when the Earth, the Moon and the
Sun are in alignment, while the neap tide occurs when they are in a 90◦ misalignment.

Figure 3.4: Simplified illustration showing the combined effect of the solar
and lunar tides (as observed if looking directly down at the North Pole).

Their interaction results in a case of high tides (spring tide) when the Earth,
the Moon and the Sun are aligned, and a case of low tides (neap tide) when

they are in a 90◦ misalignment. (Reproduced after Myrhaug (2012))
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The models described so far are only suitable to describe the generation of the water
surface elevations. The tidal system becomes more complex when considering the impact
from land areas, ocean topology and that the Earth and the Moon rotates in different
planes, as well as following elliptic paths.

Because all the tidal effects are oscillatory, the total tidal effect can be decomposed into
different tidal components (or constituents). The tidal components are given letters with
index numbering to easily distinguish between the different tidal effects.

M2 is the tidal component due to the gravitational force from the moon alone. It has a
period of 12.42 hours, accounting for the 24 hours rotation of the Earth as well as the
small distance travelled by the Moon due to its rotation around Earth. N2 and L2 are also
tidal components due to the moon, and accounts for the elliptical path of the Earth-Moon
system. Similarly, S2 is the main tidal constituent due to the Sun alone, and has a period
of 12 hours due to Earth rotating once around its own axis in 24 hours. There are also
tidal constituents to account for the relative declination between the Earth and the Moon,
as well as between the Earth and Sun.

The constituents marked with index one are diurnal constituents, meaning that they only
peak once every solar-day (24 hours). The constituents marked with index two are semi-
diurnal, meaning they peak twice every solar-day. Whether a particular location on Earth
has a diurnal or a semi-diurnal tidal system (one or two high tides each day) depends on
the resulting tidal system after superposition of all the individual constituents.

Because the tides are oscillating, the Coriolis force will also affect the tidal pattern by
deflecting the tidal wave to the right on the northern hemisphere, and to the left on the
southern hemisphere. This, along with the constraints by land areas, result in what is
known as an amphidromic systems. These are tidal waves rotating around an amphidromic
point with zero tidal range (zero water elevation). The tidal range increases with distance
away from this point. The time it takes for one tidal wave to complete one rotation around
the amphidromic point is called the tidal cycle of that particular amphidromic system. A
typical amphidromic system is depicted for the North Sea in figure 3.5. The plain lines
indicates the rotation of the tidal waves measured in 1/24 of a lunar day (24.84 hours),
while the dotted lines indicates the tidal range.
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Figure 3.5: Amphidromic system for the North Sea. (Myrhaug (2012))

Although the tidal flows are complex, they are completely predictable.

3.1 Tidal currents

As already indicated, the oscillating tides can be considered as tidal waves, often rotating
as part of an amphidromic system. The wave length of these tidal waves are so large that
they can be considered as shallow water waves even at large water depths. As opposed to
deep water waves where the particle trajectories are circular and decays infinitely towards
the sea bed, the shallow wave particle trajectories does not. Instead, they stay elliptical
all the way to the sea bed. For tidal waves the vertical velocity component of the elliptical
particle trajectories becomes so small that the wave induced flow can be considered as
horizontal. Therefore, the wave induced velocities due to a tidal wave can be described
as a tidal current. The oscillation period of this current is the same as the governing tidal
period at the specific location.
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4 Turbulence Modelling

4.1 RANS equations

The two governing equation being solved by any CFD solver, when excluding heat transfer,
is the continuity equation and the Navier-Stokes equations. For incompressible flow these
are expressed in tensor form as (4.1.1) and (4.1.2), respectively.

∂uj
∂xj

= 0 (4.1.1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xj

(
ν

[
∂ui
∂xj

+ ∂uj
∂xi

])
, (4.1.2)

where xi = [x, y, z] denotes the x- ,y- and z-direction of the flow and ui = [u, v, w] is
the velocity components in each direction, respectively. The Navier-Stokes equations in
(4.1.2) are basically Newtons 2. law. The terms on the left hand side are the instantaneous
change of velocity and the convection term, while the terms on the right hand side are
the pressure gradient and a viscous friction or stress term due to the fluids kinematic
viscosity, ν.

For turbulent flow each velocity component can be said to consist of one mean component
and one fluctuating component, in time. Therefore the total velocity can be written,

ui = ui + u′i. (4.1.3)

where the overbar represents the mean component and the prime indicates the fluctuating
component. The same anology can be used for the pressure, hence

p = p+ p′ (4.1.4)

Inserting (4.1.3) into the continuity equation (4.1.1) and time averaging gives the resulting
continuity equation for the mean velocity in equation (4.1.5). By inserting (4.1.3) and
(4.1.4) into the Navier-Stokes equations (4.1.2), and time averaging the result, we get the
time averaged Navier-Stokes equations for turbulent flow (4.1.6). Hence, equation (4.1.1)
and (4.1.2) has been transformed into,

∂uj
∂xj

= 0 (4.1.5)

∂ui
∂t

+ ∂(uiuj)
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xj

(
ν

[
∂ui
∂xj

+ ∂uj
∂xi

]
− u′iu′j

)
(4.1.6)
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Equation (4.1.6) is called the Reynolds-Averaged Navier-Stokes (RANS) equations. The
last term in (4.1.6) is important, and is included in the stress term as an addition to the
viscous stress. It is called the Reynolds Stress and often denoted as τij = −u′iu′j.

There is no natural way of calculating the Reynolds Stress, but one way to solve it is
through the use of the Boussinesq approximation,

τij = −u′iu′j = νt

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3kδij. (4.1.7)

In equation (4.1.7), νt is called the turbulent eddy viscosity, k is the turbulent kinetic
energy defined as k = 1

2(u′iu′i) and δij is the Kronecker delta. Now the problem has been
reduced from modelling the Reynolds stress to determining the eddy viscosity, νt. Note
that the eddy viscosity is not a physical value, only a way of approximating the Reynolds
stress.

The last term of equation (4.1.7) is included to ensure that the normal turbulent stresses
indeed becomes k = 1

2(u′iu′i). In equation (4.1.6), we are only interested in the pressure
gradient and not the pressure itself. Because of this the last term of (4.1.7) can be added
to the pressure. Therefore p is redefined as p = pn+(2/3)k where pn is the mean pressure
in equation (4.1.6). The substitution of (4.1.7) into (4.1.6) then becomes

∂ui
∂t

+ ∂(uiuj)
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xj

(
(ν + νt)

[
∂ui
∂xj

+ ∂uj
∂xi

])
(4.1.8)

Because the laminar viscosity normally is much smaller than the turbulent eddy viscosity,
it is often neglected, giving the following final expression for the time averaged momentum
equation for turbulent flow

∂ui
∂t

+ ∂(uiuj)
∂xj

= − ∂p

∂xi
+ ∂

∂xj

(
νt

[
∂ui
∂xj

+ ∂uj
∂xi

])
. (4.1.9)

However, we are left with a new unknown, namely the turbulent eddy viscosity νt. As
a response, different turbulence models have been created for the purpose of solving for
this unknown.

4.2 Turbulence models and solvers

Note that not all turbulence models are based on the Boussinesq approximation in (4.1.7).
Therefore, not all of them are handling the closure problem with finding an estimate for
the eddy viscosity, νt. However, these are often considered to be the simplest models, and
to give the overall best accuracy to numerical cost ratio for most modelling purposes.

The most acknowledged perception of the eddy viscosity is that it is the product of a
length scale le and a velocity scale Ve of the turbulent eddies within the flow. Hence,
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νt = leVe (4.2.1)

There are several ways of defining the velocity and length scale. The simplest way is to
assume they are constant, hence νt is constant. A more applicable method is to assume
that the velocity scale is changing over the depth while the length scale remains constant.
This is the basics of what is referred to as the mixing length model. If the formulation
of the turbulent velocity or length scale requires no additional conservation equations
besides the continuity and RANS equations, then they are called zero equation models.

The turbulent velocity scale is often characterised using the turbulent kinetic energy k.
This parameter has its own conservation equation. If the turbulent length scale is kept
constant, the model is now called a one-equation model. A well known one-equation
model is the Spalart-Allmaras model designed for aerodynamic flows.

The most accurate formulation of the eddy viscosity is to use the conservation equation for
the turbulent kinetic energy, and couple it with a conservation equation for the dissipation
of turbulent kinetic energy. Now the model is called a two-equation model because νt is
dependent on two conservation equations. The most known two-equation models are
probably the k-ε and k-ω models, where the k-ε is the one used for this study.

As stated, it is also possible to solve the RANS equations without using the Boussinesq
approximation. The Reynolds Stress Transport models is based on solving conservation
equations for the Reynolds Stresses directly. However, this is more complex than the eddy
viscosity models.

The RANS equations are themselves simplifications. It is possible to solve the Navier-
Stokes equations without time averaging them first. The method is then called DNS
(Direct Numerical Simulation) and is done by solving the fluctuating velocity part of
(4.1.3) instead of removing it by temporal averaging. This is not a turbulence model as
the turbulence is actually being solved. However, in order to capture the small velocity
fluctuations in the flow, this method requires a very dense grid of computational cells,
and are therefore computationally expensive.

A number of hybrid methods have been developed from the DNS approach. LES (Large
Eddy Simulation) is a growing approach where the requirement of a very dense grid of
computational cells is avoided by only using DNS on the flow where the grid can support
it. The model then uses the RANS equations for the fluctuations that are too small to be
captured by the main grid. This is still an expensive approach, but less expensive than
pure DNS.

A hybrid method of the LES is the DES (Detached Eddy Simulation). This approach
uses LES as the standard solver, but is pre-modelled to use the RANS equations near
walls or other regions where the general boundary layer is assumed to be known. There
are two popular extensions of this model, namely the DDES (Delayed Detached Eddy
Simulation) and the IDDES (Improved Delayed Detached Eddy Simulation). The main
difference is the handling of the LES/RANS transitions.
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4.3 k-ε model

In this study the k-ε model will be used to provide the closure for the RANS equations.
There are several variations to this model, but the one used in this study is the standard
high Reynolds number version presented in Launder and Spalding (1974). It evolves
around the Boussinesq approximation, and is a two equation model in the sense that it
provides conservation equations for both the turbulent kinetic energy k and the dissipation
of turbulent kinetic energy, denoted ε. The turbulent kinetic energy and the dissipation
is coupled to the eddy viscosity νt through the the relation,

νt = Cµ
k2

ε
(4.3.1)

where Cµ normally is considered a constant.

The conservation equation for the turbulent kinetic energy, k, can be derived from the
Navier-Stokes equations. First substituting (4.1.3) into (4.1.2), and then subtracting with
the time averaged Navier-Stokes equations (4.1.6), gives a conservation equation for the
turbulent fluctuations u′i. Multiplying with u′i, and time averaging, gives the conservation
equation for the turbulent kinetic energy k where k = 1

2u
′
iu
′
i. The complete derivation is

found in Hinze (1975). The conservation equation for ε is not strictly mathematical. The
following conservation equations for k and ε are presented as in Launder and Spalding
(1974),
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= ∂
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∂xj
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ε2

k
(4.3.3)

where,

(Cµ, Cε1, Cε2, σk, σε) = (0.09, 1.44, 1.92, 1.00, 1.30), (4.3.4)

are standard constants (Rodi (1993), Launder and Spalding (1974)). From the left, the
terms in equation (4.3.2) and (4.3.3) are the instantaneous change of the quantity, the
convection term, the transport term, the production term and the dissipation term.

4.4 Wall functions

In turbulent flows over smooth walls or surfaces, the boundary layer can be said to be
decomposed into four regions. Closest to the wall the flow will be laminar, and viscous
effects will dominate the flow characteristics. This layer is called the viscous sublayer.
A small distance further from the wall, turbulent effects will be present, but viscous
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effects are still dominant. This is the buffer layer. After the buffer layer, turbulent effects
becomes dominant over the viscous ones and we call the layer for the overlap layer. Then,
far enough from the wall the flow will be more or less unaffected by the presence of the
wall, and we move into the fully turbulent region of the flow. The different regions are
illustrated in figure 4.1.

Figure 4.1: Log-plot of u+ = u/u∗ as a function of z+ = zu∗/ν. The law of
the wall (u+ = z+) and the log-law are plotted against experimental data to

show their regions of validity. (Cengel and Cimbala (2010))

The standard k-εmodel, as presented in (4.3.2) and (4.3.3), is only valid for fully turbulent
flow, meaning high Reynolds numbers. The presence of a smooth no-slip wall introduces
local low Reynolds number regions close to the wall in which the standard k-ε is not
valid due to the dominating viscous effects. The solution is to introduce so called wall
functions. These are semi-empirical formulas that give an approximation of the boundary
layer where the viscous effects are present, without the need to numerically solve these
regions. This is beneficial both because the solution becomes more accurate due to the
k-ε equations actually being valid, but also because it saves computational costs due to
less grid refinement is needed near the wall (Rodi (1993)).

The normal way wall functions are implemented is by utilizing the empirical expression
for the overlap layer. This formula is found from experiments and is called the logarithmic
law or simply the log-law. Its general form is shown in (4.4.1) as portrayed in Rodi (1993),

u(z) = u∗
κ
ln(Ez+), (4.4.1)

where E is a roughness parameter and κ is the von Karman constant assigned the value
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of 0.4 (Holmedal and Myrhaug (2013)). The nondimensional first cell thickness is given
as z+ = zu∗/ν, and u∗ is called the friction velocity, defined as

u∗ =
√
τw
ρ
, (4.4.2)

where τw is the wall shear stress. Because the friction velocity u∗ is a function of the wall
shear stress, equation (4.4.1) has coupled the fluid velocity outside the viscous sublayer
to the laminar shear stress τw at the wall.

For a smooth surface the roughness parameter can be set as E = 9 (Rodi (1993)). For
a hydraulically rough surface, the roughness parameter can be approximated as E =
30ν/u∗kn (López and García (2001)). The latter expression substituted into equation
(4.4.1) gives,

u(z) = u∗
κ
ln( z

z0
). (4.4.3)

where z0 = kn/30 is called the bottom roughness or bed roughness, and kn is the Nikuradse
roughness which is related to the sand grain diameter of the surface.

Because the ocean sea bed is rough, the rough log-law in (4.4.3) will be used to model
the tidal flow. If nothing else is specified the bottom roughness is z0 = 0.0006 cm.

For the application of the k-ε-model, Rodi (1993) proposed the following initial conditions
for k and ε at a wall or surface,

k = u2
∗√
Cµ

(4.4.4)

ε = C3/4
µ

k3/2

κz
(4.4.5)

From initial guesses of the velocity at the first node (node 1) at distance z from the
surface, the wall function in equation (4.4.3) can be rearranged to explicitly give the
friction velocity u∗. By substituting the friction velocity into equation (4.4.4) and (4.4.5),
the bed roughness z0 will be directly coupled to the turbulence generation and dissipation
at node 1. Hence, the initial turbulence generation at the first computational cell will
be coupled to the surface roughness without actually resolving that part of the boundary
layer.

4.5 Wave-current damping

Waves are often present when considering tidal currents. The orbital motion of the water
particles under the waves will induce an additional damping on the current velocity. The
simplest way of accounting for this additional wave induced damping is to incorporate it
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into the current through the bed roughness z0 in equation (4.4.3). Figure 4.2 illustrates
the relation between the mean velocity profile of a pure current flow and a current-wave
flow, and how they can be connected to the bed roughness. Instead of the actual bed
roughness z0, the current-wave flow can be modelled using the fictive bed roughness za.

Figure 4.2: Illustration of the relation between a pure current and a
current-wave flow with regards to the bed roughness. (Reproduced from

Nielsen (1992))
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5 Canopy flow

In order to model tidal flow over submerged aquatic vegetation, understanding how the
canopy effects the mean flow mechanisms must be accomplished. Both canopy density,
canopy height to depth ratio, the shape of the plants, and their stiffness affects the flow
in different ways. This chapter will give a brief overview of these effects and the physical
mechanisms they induce onto the mean flow.

The theory explained in this chapter is primarily based on the extensive overview of
canopy related flow given in Nepf (2012a) and Nepf (2012b).

5.1 Canopy parameters

Some parameters are frequently used in the terminology of canopy flow. The plant frontal
area per canopy volume, a, is expressed as the stem diameter d over the square of the
averaged distance ∆S between each stem,

a = d

∆S2 , (5.1.1)

with unit [1/m]. The representative canopy diameter d will normally vary with the height
of real life aquatic canopies. Hence, so will the frontal area per volume, a. Integrating a
over the canopy height gives the frontal area per bed area which is a non-dimensional value
for the canopy density. It is often referred to as the roughness density (Nepf (2012a)),

λf =
∫ h

0
adz (5.1.2)

where h is the canopy height. Hence, for a canopy represented by rigid circular cylinders,
the canopy density becomes λf = ah. Another parameter frequently used by Nepf (2012a)
is the solid volume fraction φ, defined as the cross sectional area of the plant stem divided
by the bed area ∆S2.

5.2 Emergent canopies

Emergent canopies are canopies that penetrates the water surface, and therefore covers
the entire depth of water column. These types of canopies introduce two additional ef-
fects on the mean flow. Firstly, they introduce a drag force on the flow, hence damping
it throughout the whole depth. Secondly, energy is taken from the mean flow and trans-
formed into turbulence in the wakes behind each individual plant stem. The length scale
of this generated turbulence will depend on the density of the canopy. If the averaged
spacing between the plant stems (∆S) are larger than the stem diameter (d), then the
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wake generated turbulence will be of the order of the stem diameter. However, for canopies
with density causing the averaged spacing between the stems to be smaller than the stem
diameter, the turbulence length scale will be of the order of the averaged stem spacing
∆S (Nepf (2012a)).

Because the canopy is emergent, all turbulent eddies that normally would exist in a
turbulent flow, are rescaled into length scales corresponding to either d or ∆S. If the
water depth is large compared to d or ∆S this will result in an negligible vertical transport
of turbulence due to the turbulent length scale being inferior to the water depth.

For most cases, the averaged stem spacing is larger than the diameter d. The length-scale
of the wake-generated turbulence is therefore of the order of the stems, and commonly re-
ferred to as stem-scale turbulence. In this study, all wake-generated turbulence is referred
to as stem-scale turbulence.

5.3 Submerged canopies

Submerged canopies are canopies where the plant height is smaller than the water depth,
H > h. It is normal to distinguish between different H/h-ratios. In addition to the
emergent condition H/h = 1, the submerged condition is described as shallow submerged
if H/h < 5, and deeply submerged if H/h < 10. The latter is normally the case for
flow over terrestrial canopies. Due to lighting conditions most aquatic canopies are found
within the shallow submerged region. The rest of this chapter will therefore focus on the
effects occurring in this region.

The main difference between the flow through an emergent and a shallow submerged
canopy is what happens in the transition between the canopy and the undisturbed flow
above the canopy. There will be two separate effects depending on the relative density of
the canopy. If the canopy is sparse (λf << 0.1), Nepf (2012a) states that the bed friction
is larger than the canopy drag, and the presence of the canopy can be included in the bed
roughness parameter z0 in equation (4.4.3). The boundary layer will therefore follow the
normal logarithmic profile as shown in figure 5.1a.

If the canopy is sufficiently dense (λf >> 0.1), the canopy drag will be significantly
larger than the bed friction, and the inclusion of the canopy drag into the bed roughness
will be erroneous. In this case, the additional drag imposed on the flow by the canopy
leads to the generation of a shear layer at the top of the canopy. The shear layer has
an inflection point that leads to flow instabilities and vortex generation near the top of
the canopy. There is consensus in the meteorological and water research community to
draw the analogy between the interaction of in-canopy flow and above-canopy flow with
that of a mixing layer. Hence, the occurring flow instabilities are commonly referred to
as Kelvin-Helmholtz instabilities. The vortices generated are referred to as shear-scale or
canopy-scale vortices, and for the case of shallow submergence these vortices are normally
dominating the vertical transport of turbulence between the canopy and the unobstructed
flow. Contrary to the vortex generation in a mixing layer, the canopy-scale vortices quickly
reaches a finite size as the additional energy going into the vortices through vortex pairing
equals the energy being taken away by the canopy drag (Ghisalberti and Nepf (2004)).
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The length-scale of these vortices will be further dependent on the canopy density. Nepf
(2012a) states that if 0.1 < CDah < 0.23 (with CD ≈ 1), the canopy-scale vortices
penetrates to the sea bed as shown in figure 5.1b. This is called the transitional region,
and if δe is the distance the vortex penetrates into the canopy, then δe = h. For denser
canopies (CDah > 0.23) the canopy drag will absorb too much energy from the vortices
hence preventing them from reaching the sea bed. In this case they will penetrate a
distance δe < h into the canopy as shown in figure 5.1c. The distance to the surface
will also be a limiting factor for the generation of canopy-scale vortices. Nepf and Vivoni
(2000) concluded that if H/h < 2, the generation of canopy-scale vortices would, to some
degree, be restricted by the free surface.

The density limits discussed, and depicted in figure 5.1, are crude. Nepf (2012a) states,
from earlier findings, that a pronounced shear layer occurs for CDah > 0.1 (CD ≈ 1),
while no shear layer is observed if CDah < 0.04.

(a) Sparse, ah << 0.1 (b) Transitional, ah ≈ 0.1 (c) Dense, ah >> 0.1

Figure 5.1: Illustration of how the canopy density effects the flow pattern
(Nepf (2012a)).

As mentioned, the canopy-scale vortices will be dominating the vertical turbulent trans-
port over their range in the water column. In the case of δe < h the canopy-scale vortices
will separate the canopy into two distinct layers. The layer defined by the region δe will
have a large vertical turbulent transport due to the canopy-scale vortices stirring the flow.
The layer closest to the sea bed will be dominated by the same stem-scale turbulence as
for the emergent canopy, hence causing a limited amount of transport. Ghisalberti and
Nepf (2006) named the first zone the exchange zone and the latter the wake zone. From
an ecology point of view, both zones are important as the exchange zone provides rapid
water renewal and removal of contaminant, while the wake zone has the ability to trap
nutrients.

As pointed out by Nepf (2012a), what separates the flow through an aquatic canopy from
the flow through a terrestrial (deeply submerged) canopy is that the large H/h-ratio of the
terrestrial canopy results in the regular boundary-layer turbulence to out-scale the canopy-
scaled turbulence. In an aquatic canopy the limited H/h-ratio prevents the growth and
extend of the boundary layer between the canopy and the free surface, hence making the
canopy-scaled vortices the dominant ones. Figure 5.2 illustrates the different turbulence
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scales for flow over a dense canopy. Larger H/h-ratios result in more dominant boundary
layer turbulence. However, for H/h < 5, as is often the case for aquatic vegetation,
the canopy-scale vortices will be the most dominant ones. Note that the boundary layer
turbulence generated by the sea bed normally is negligible in comparison with the wake-
scale turbulence (Nepf et al. (1997)).

Figure 5.2: Illustration of the different vortex-scales important for canopy
flow. Note that the boundary layer turbulence generated by the sea bed

normally is negligible.

5.4 Flexible canopies

The stiffness of an aquatic plant is a function of both its rigidity and its buoyancy. Im-
portant to consider is also that many aquatic species have entrapped air pockets as part
of their structure, hence contributing largely to its buoyancy. Nepf and Vivoni (2000) di-
vides the effect of canopy flexibility into four regimes of motion corresponding to increasing
flexibility, namely erect, gently swaying, strong coherent swaying and prone. The flow
mechanisms described in this chapter applies only to the rigid and gently swaying state.
The strong coherent swaying and pronated state will have additional flow mechanisms
(Nepf and Vivoni (2000)).

The strong coherent swaying is a phenomenon commonly referred to a monami (Nepf
(2012a)). It occurs if the instantaneous force from the canopy-scale vortices, penetrating
into the canopy, overcomes the stiffness of the plants. As opposed to unobstructed vortices,
the canopy-scale vortices will have a decrease in rotational speed due to the canopy drag.
This causes their centre of rotation to be deflected upwards in regards to the top of the
canopy. Coupled with the decrease in rotational speed, this gives the canopy-scale vortices
a significant translational speed along the top of the canopy, forcing the canopy to deflect
forward and down. The propagation of the canopy-scale vortices then causes the wave-like
motion of the canopy, known as monami.
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The monami effects the flow in terms of a larger penetration depth into the canopy
at intervals corresponding to when the canopy is displaced the most (Ghisalberti and
Nepf (2002)). However, it decreases the turbulent vertical transport through the canopy
compared to if the canopy was rigid (Ghisalberti and Nepf (2006)).
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6 Spatial averaging

As mentioned in the introduction, the governing equations must be spatially averaged
in order to account for the heterogeneity in the flow due to the geometry of the vegeta-
tion. Wilson and Shaw (1977) were supposedly the first to systematically and thoroughly
performing this averaging process.

They proposed two different methods to performe this averaging. The first method (re-
ferred to as scheme I) involved spatially averaging over a wide enough area so that the
mean flow became independent of both the canopy geometry and the temporal fluctua-
tions of the turbulence. The second method (scheme II) involved first taking the temporal
average to make the mean flow independent of the temporal fluctuations (same procedure
as for deriving the RANS equations in section 4.1), and then performing a spatial average
to account for the canopy geometry. They concluded that the two procedures gave equal
results. However, Raupach and Shaw (1982) argued that this wasn’t necessarily the case
as the second averaging scheme produces additional terms that should be given some more
attention.

For the spatial averaging in scheme I, the velocity and pressure are decomposed in a
similar manner as the temporal decomposition in equation (4.1.3) and (4.1.4), namely by
a mean and a fluctuating component,

ui = 〈ui〉+ u′′i (6.0.1)

p = 〈p〉+ p′′ (6.0.2)

In equation (6.0.1) and (6.0.2), angle brackets represents the spatially mean value, and
the double primes represents how the velocity and pressure fluctuates with respect to
the horizontal plane. Substitution of equation (6.0.1) and (6.0.2) into the Navier-Stokes
equations, and spatially averaging over a large enough area gives the resulting momentum
equation under scheme I.

The momentum equation under scheme II is derived by first taking the temporal aver-
aged to obtain equation (4.1.6). The time averaged mean component of the velocity and
pressure are then decomposed into a spatial mean and a spatial fluctuating component as
for scheme I, hence

ui = 〈ui〉+ u′′i (6.0.3)

p = 〈p〉+ p′′ (6.0.4)

Equation (6.0.3) and (6.0.4) are then substituted into equation (4.1.6), and spatially
averaging this equation will produce the momentum equation under scheme II.
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The spatial averaging in full will not be reviewed here as it is fairly complicated and
lengthy. The resulting equations from both schemes are given in appendix A as a brief
overview of their general shape. For a full overview of the equations, and some of the
things to be aware of when deriving them, the reader is advised to study the papers of
Wilson and Shaw (1977) and Raupach and Shaw (1982). Their papers are fully dedicated
on explaining the complete derived equations and part of the procedure needed to derive
them.

This chapter is a coarse overview of the most important effects from the spatial averaging
process that are directly coupled with how the momentum and k-ε equations are modified
in order to account for the vegetation.

6.1 Momentum equation

As stated, Raupach and Shaw (1982) argued that the two different averaging schemes did
not produce the exact same results. Scheme II produces what Raupach and Shaw (1982)
refer to as dispersive fluxes 〈u′′i u′′j 〉. These are additional stress terms that result from
the correlation between the time-averaged and spatially averaged velocity. According
to Raupach and Shaw (1982) these dispersive fluxes were more than just mathematical
byproducts in spite of that they, up to the release of their paper, had not been directly
measured in experiments. Besides the dispersive fluxes, the results from scheme I and
scheme II were the same.

Poggi et al. (2004) performed flume experiments using rigid submerged cylinders, and
managed to measure these dispersive fluxes. The results were compared with the Reynolds
stress to determine the relative importance between the two, and was repeated for several
cylinder densities. Poggi et al. (2004) found that the dispersive fluxes are less than 10%
of the Reynolds stress for dense canopies (ah > 0.1), but reaches 35% for the most sparse
canopy tested (ah = 0.03). Regardless of density, the dispersive fluxes are only significant
in the lower portion of the canopy (z/h < 0.5). For (z/h > 0.5) they are significantly
smaller and have opposite signs compared to the measured Reynolds stress. If this is a
result of the canopy-scale vortices was not commented on in the paper. However, according
to Nepf (2012a), the flow follows a logarithmic boundary layer profile if CDah < 0.04,
(CD ≈ 1). Hence, no canopy-scale vortices can occur at these low densities.

The general conclusion in the literature appears to be that the dispersive fluxes are neg-
ligible for dense canopies (ah > 0.1).

In addition to the dispersive stresses, what Raupach and Shaw (1982) found was that the
spatial averaging of the momentum equations generated two additional terms, namely a
viscous drag term

fV = ν〈∇2u′′〉, (6.1.1)

and a pressure drag term
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fD = 1
ρ

〈
∂p′′

∂x

〉
, (6.1.2)

where u′′ and p′′ are the spatial fluctuation of the time averaged velocity and pressure,
respectively. As stated, overbars represent the temporal mean of quantities while angle
brackets represents the spatial mean. ν, ρ and ∇ are the laminar viscosity, water density
and Laplace operator, respectively. Both terms removes energy from the momentum
equations. The terminology in equation (6.1.1) and (6.1.2), and the rest of the equations
presented in this chapter, are adopted from averaged scheme II.

The viscous term is assumed neglectable compared to the form drag. The form drag is
widely assumed to follow the quadratic drag law, hence

fD = 1
ρ

〈
∂p′′

∂x

〉
≈ 1

2CDa〈ui〉
2 (6.1.3)

where CD is the drag coefficient representing the averaged form drag of the canopy, and
a is the frontal area per volume of the canopy, given in equation (5.1.1).

The use of a quadratic drag law can be questioned when applied to flexible vegetation.
The displacement of the blades due to the current will lead to both a reduced frontal area
of the canopy, and most probably a more streamlined configuration of the plants. Several
authors have therefore proposed having the drag force fD vary with the velocity to the
power of a parameter depending on the flexibility, rather than the standard quadratic law
(Nepf (2012a)). However, Nepf (2012a) states that the increased accuracy gained from
doing so often will be overshadowed by the uncertainty of both the drag coefficient CD
and the frontal area per volume, a, for a real life canopy.

6.2 TKE equation

As discussed in chapter 5, the interaction between the mean flow and the canopy will
produce additional turbulent kinetic energy (TKE). Only accounting for the vegetation
in the momentum equations will therefore lead to erroneous results. Wilson and Shaw
(1977) and Raupach and Shaw (1982) both derived the TKE equations using the same
schemes as for the momentum equations (scheme I and scheme II).

Similar to the derivation of the momentum equations, Scheme II produces dispersive
terms in the TKE equation. However, the most interesting addition to the TKE equation
is an additional turbulence production term. This production term corresponds to the
additional turbulence generated in the stem wakes as discussed in section 5.2. In order
for scheme I and scheme II to result in the same expression for the wake production term,
a couple of assumptions must be made. First, the dispersive terms must be neglected.
Secondly, the turbulent length scales created by the stem wakes must be larger than the
Kolmogorov microscale. This is the smallest turbulent length scale that can exist in a
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flow before the eddy is dissipated to heat. Physically, this means that no turbulent kinetic
energy is dissipated directly to heat trough viscous drag.

Under these two assumptions, the additional TKE production terms from both schemes
coincide. Under the terminology of scheme II it becomes

Pw = 1
ρ
〈ui〉

〈
∂p′′

∂x

〉
, (6.2.1)

were 〈ui〉 is the spatial mean of the temporal mean velocity, and 〈∂p′′/∂x〉 is the spatial
mean of the spatial fluctuating pressure gradient of the temporal mean pressure. Applying
the approximation in equation (6.1.3), the additional TKE production can be expressed
as

Pw = 1
ρ
〈ui〉

〈
∂p′′

∂x

〉
≈ 1

2CDa〈ui〉
3 = fD〈ui〉, (6.2.2)

where fD is the canopy form drag given in equation (6.1.3). Because this is the extra
turbulence generated in the wakes behind individual stems, it is commonly referred to as
the wake-production term.

López and García (2001) argues that the assumption of no heat dissipation due to viscous
drag does not always hold. Nepf and Vivoni (2000) states that it is reasonable to fully
exclude the dissipation from viscous drag if the Reynolds number is Re = dU/ν > 200,
with d as the stem diameter of blade length and U as the inflow velocity. Below this
Reynolds number the approximation in (6.2.2) will overpredict the TKE generation from
the stem wakes.

Instead of denying the validity of equation (6.2.1) if the viscous dissipation is not negligi-
ble, López and García (2001) states that the problem can be sorted through the inclusion
of a coefficient to represent the amount of energy that is actually being transformed from
the mean flow into TKE. Hence

Pw = CfkfD〈ui〉, (6.2.3)

where Cfk is the coefficient representing the amount of work, generated by the form drag
against the flow, that is transformed into TKE. Cfk = 1 then means that all the work
created by the flow against the form drag of the canopy is transferred into turbulent
kinetic energy. The inclusion of this coefficient is not something new, as it has been done
previously by for instance Shimizu and Tsujimoto (1994). However, López and García
(2001) coupled it to the averaging schemes and gave it a physical meaning.

For the modelling of vegetation as circular cylinders, López and García (2001) states that
Cfk = 1 in general is a valid approximation.
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6.3 Dissipation equation

The dissipation of the turbulent kinetic energy is not described by either Wilson and Shaw
(1977) or Raupach and Shaw (1982), as they did not study the k-ε model in particular.
Because of the additional TKE produced by the wake-scale turbulence, the conservation
of dissipation of TKE, ε, must be modifies as well. López and García (2001) used the
following expression to model the additional dissipation of the wake-scale turbulent kinetic
energy,

Dw = Cε1
ε

k
CfεfD〈ui〉 (6.3.1)

where k is the turbulent kinetic energy, ε is the dissipation of turbulent kinetic energy,
and Cε1 is the standard coefficient given in equation (4.3.4). Cfε is a new coefficient that
must be related to the amount of wake-produced TKE. Therefore it must be related to
Cfk. López and García (2001) coupled these two coefficients by assuming a state of steady
horizontal flow through a canopy consisting of infinitely long vertical cylinders (similar to
emergent vegetation over a large water depth). All transport terms can be approximated
to zero as discussed in section 5.2, therefore reducing the TKE equation to an equilibrium
between the wake-generated turbulence and the dissipation,

CfkfD〈ui〉 = ε (6.3.2)

Correspondingly, the ε-equation would be an equilibrium between the additional produc-
tion rate of dissipation due to the wake-scale turbulence and the viscous dissipation to
heat,

Cε1
ε

k
CfεfD〈ui〉 = Cε2

ε2

k
(6.3.3)

Substitution of equation (6.3.2) into equation (6.3.3) gives the following expression for
Cfε,

Cfε = Cε2
Cε1

Cfk (6.3.4)

Assuming Cfk = 1, and applying the standard coefficients in equation (4.3.4), López
and García (2001) stated that Cfε = 1.33 is a reasonable value to use for the additional
coefficient in equation (6.3.1).

6.4 Limitations

The most obvious limitation of the terms derived to account for the vegetation is that they
only consider the turbulence generated from the stem wakes. The canopy-scale vortices

33



are therefore not accounted for in the conservation equations for either the momentum or
the TKE. This is of concern since the canopy-scale vortices will dominate the turbulent
transport over the smaller stem-scale turbulence (see section 5.3).

Ghisalberti and Nepf (2004) derived their own numerical model accounting for the canopy-
scale vortices. They used a one-equation closure scheme, hence only considering the
conservation equation for momentum and TKE. The form drag in equation (6.1.3) is
incorporated into their momentum equation as it would for a normal k-ε model. However,
by confining their model to apply only within the height-span of a canopy-scale vortex,
they neglected the general TKE production and the TKE production from the stem
wakes. By also neglecting the viscous dissipation and the transport terms, they end
up with a conservation between the canopy-scale TKE production, expressed using the
Reynolds stress, and the dissipation as the canopy-scale turbulence is broken into wake-
scale turbulence with the canopy. They obtained good results, however the limited range
for which it is valid, and its underlying assumptions, are not compatible with the k-ε
model.

Uittenbogaard (2003) utilized a k-ε model, but modified the dissipation term (6.3.1) in
order to account for the canopy-scale vortices. The modified equations are presented as
in Baptist et al. (2007) and Dijkstra and Uittenbogaard (2010). Instead of the additional
dissipation term in equation (6.3.1), he defined

Dw = 1
τeff

Cε2fD〈ui〉 (6.4.1)

where τeff is the smaller τint and τgeom, given as

τint = k

ε
, τgeom =

(
L2
p

C2
µfD〈ui〉

)1/3

(6.4.2)

and where,

Lp = C1

(
1− Ap
n

)1/2

. (6.4.3)

τint and τgeom are referred to as the intrinsic and geometrical times scale, respectively. Lp
is defined as the available length scale within the canopy. Hence, the geometrical time
scale is connected with the geometrical length scale of the canopy. The analogy is that
when canopy-scale vortices penetrates into the canopy they are forced into the smaller
wake-scale turbulence, and that the result is increased production of dissipation.

The rest of the terms in equation (6.4.1)–(6.4.3) are, Cµ = 0.09, C1 is a geomtery factor
(=1 for cylinders), n = a/d[1/m2], and Ap is the same as the volume fraction φ defined
in section 5.1.

Noting that Cε2 ≈ Cε1Cfε if Cfε = 1.33, then τeff = τint produces the same expression
in (6.4.1) as equation (6.3.1). Although the purpose of this modification is justified, the
origin and mathematical background for the equations are not thoroughly explained.
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7 Numerical model

7.1 Governing equations

The model used in this study is a one dimensional finite difference model utilizing a
staggered grid. The velocity components in the x and y direction are calculated at each
node while the k and ε values are calculated between each node. The nodes are spaced in
a logarithmic fashion throughout the water column with higher density closer to the bed
in order to capture the boundary layer profile.

Utilizing that the length scales are far greater than the depth scales, a scaling analysis
can be made. Equation (4.1.9) can be simplified into,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ∂

∂z

(
νt
∂u

∂z

)
(7.1.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ∂

∂z

(
νt
∂v

∂z

)
(7.1.2)

0 = ∂p

∂z
(7.1.3)

This is called the boundary layer approximation. In addition, the Coriolis force must
be incorporated for tidal flow. If the Rossby number is small enough (see section 2.1)
the convection terms will be negligible compared to the Coriolis acceleration. From a
modelling perspective this means that the momentum equations are reduced from being
partial differential equations to ordinary differential equations, making them easier to
solve.

In addition, the form drag expressed by the quadratic drag law in equation (6.1.3) is
included. Hence, equation (7.1.1) and (7.1.2) can be written as

∂u

∂t
= −1

ρ

∂p

∂x
+ ∂

∂z

(
νt
∂u

∂z

)
+ fv − fDx (7.1.4)

∂v

∂t
= −1

ρ

∂p

∂x
+ ∂

∂z

(
νt
∂v

∂z

)
− fu− fDy (7.1.5)

where fv is the component of the Coriolis force acting in x-direction and fu is the one
acting in the y-direction. fDx and fDy are the direction specific form drag in x- and
y-direction, respectively. Hence,

fDx = 1
2CDau|u| (7.1.6)
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fDy = 1
2CDav|v| (7.1.7)

Performing a scaling analysis for the k and ε equation in (4.3.2) and (4.3.3), and including
the additional wake production (6.2.3) and dissipation (6.3.1), they become

∂k

∂t
= − ∂

∂z

(
νt
σk

∂k

∂z

)
+ νt

((
∂u

∂z

)2

+
(
∂v

∂z

)2)
− ε+ Pw (7.1.8)

∂ε

∂t
= − ∂

∂z

(
νt
σε

∂ε

∂z

)
+ Cε1

ε

k
νt

((
∂u

∂z

)2

+
(
∂v

∂z

)2)
− Cε2

ε2

k
+Dw (7.1.9)

where (Cε1, Cε2, σk, σε) = (1.44, 1.92, 1.00, 1.30), and Pw and Dw are expressed as

Pw = Cfk
1
2CDa|u|

3 (7.1.10)

Dw = Cε1
ε

k
Cfε

1
2CDa|u|

3 (7.1.11)

Here, u is the resulting velocity vector (u, v).

The coefficients Cfk and Cfε are taken from López and García (2001) and has the value
of 1 and 1.33, respectively (see section 6.2 and 6.3).

Above the canopy (z > h) the drag coefficient is defined zero, CD = 0, hence reducing the
momentum equations ((7.1.4), (7.1.5)) and the k-ε equations ((7.1.8), (7.1.9)) to what
they would have been for an unobstructed tidal flow.

There is no separate equation for the pressure gradient in equation (7.1.4) and (7.1.5).
However, by assuming that the upper part of the water column can be modelled as
potential flow, the viscous term in equation (7.1.4) and (7.1.5) can be neglected. Hence,
the following conservation equations arise

∂u

∂t
= −1

ρ

∂p

∂x
+ fv (7.1.12)

∂v

∂t
= −1

ρ

∂p

∂y
− fu (7.1.13)

By using field measurements of the velocity time series, the pressure gradient for the
upper part of the water column can be solved explicitly as,

−1
ρ

∂p

∂x
= ∂u0

∂t
− fv0 (7.1.14)
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−1
ρ

∂p

∂y
= ∂v0

∂t
+ fu0 (7.1.15)

where u0 and v0 are extrapolated from the time series at each given time t. And since
the pressure gradient is constant in z-direction (7.1.3), the pressure gradients in equation
(7.1.4) and (7.1.5) are known.

All pressure and velocity terms in equation (7.1.4) – (7.1.15) are averaged in both time
and space.

7.2 Boundary conditions

At sea bed:

At the sea bed the log-law in equation 4.4.3 for a rough surface is used, hence

u(z) = u∗
κ
ln( z

z0
), (7.2.1)

For the modelling of tidal flow the bed roughness is set to z0 = 0.0006 cm.

The horizontal velocity components are zero due to the no-slip condition, hence

u = 0, v = 0 at z = z0 (7.2.2)

The boundary conditions for k and ε are given by Rodi (1993), and couples the bed
roughness z0 to the initial values of k and ε as explained in section 4.4,

k = u2
∗√
Cµ

(7.2.3)

ε = C3/4
µ

k3/2

κz
(7.2.4)

At free-surface:

At the free surface zero gradient is applied to all the parameters, hence

∂u

∂z
= 0, ∂v

∂z
= 0, ∂k

∂z
= 0, ∂ε

∂z
= 0 (7.2.5)

37



38



8 Field measurements

The field measurements for the tidal current are collected by the University of the High-
lands and Islands (UHI), preformed under the MERIKA (Marine Energy Research Inno-
vation and Knowledge Accelerater) initiative. Their goal is to work towards creating a
research hub in Europe within the field of renewable marine energy.

The measurements were taken 700 meters outside the coast of the Hebrides during the
months of February and May 2013. The mean depth at the location is 12.9 meters.
They were conducted with an AWAC (Acoustic Wave and Current) system that uses the
Doppler effect to measure the movement of water particles. The sea bed was relatively flat
around the position of the measurements, indicating that ocean topology should not effect
the recordings. Measurements were done from a distance of 0.75 meters above the sea
bed, corresponding to the head of the transducer. From there, recordings of the particle
velocities at four locations throughout the water column, hereafter referred to as cell 1,
cell 2, cell 3 and cell 4, were made. Their respective distance from the sea bed was 2.15
meters, 4.15 meters, 6.15 meters and 8.15 meters (see figure 8.1).

Figure 8.1: Illustration of the AWAC and the vertical position of the
measurements relative to the sea bed.

The tidal current velocities was measured every other half an hour with three samplings
at 10 minute intervals. Each sampling was done over 10 seconds and the velocities was
averaged to get the resulting current velocity. The data was then filtered to remove any
frequencies considered to be outside the spectre of the most relevant tidal constituents
(see Grønningsæter (2015)).
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Figure 8.2 shows the AWAC as positioned on the sea bed. In the background the silhou-
ettes of the aquatic vegetation can be seen.

Figure 8.2: Photo showing the AWAC as it sits on the sea bed outside the
Hebrids. In the background the silhouettes of the canopy is shown.

Although measurements were taken for both February and May, only the May data will
be considered as the February data was effected by a storm occurring in the beginning of
that month.
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9 Validation against open channal flow
through submerged vegetation

Before the k-ε model can be run for tidal flow, the inclusion of the canopy related terms
in the governing equations must be validated. All the experiments validated against in
this chapter are performed in flumes with steady unidirectional flow. Hence, only the
u-component of the velocity is calculated, and the convection terms are still zero. The
governing equations are therefore (7.1.4), without the Coriolis term (f = 0), and the k-ε
equations in (7.1.8) and (7.1.9). Although the flow is steady, the instantaneous velocity
term in (7.1.4) is kept for convenience as the code is written for unsteady flows.

Under the boundary layer approximation the pressure gradient is constant (equation
(7.1.3)), and is normally defined in the experiments as gravity times an energy slope
or a surface slope, S. Hence, the pressure gradient in equation (7.1.4) is given as

−1
ρ

∂p

∂x
= gS, (9.0.1)

where g = 9.81[m/s2] and S is the energy slope defined in the experiments.

The insides of a flume are normally smooth, and the boundary condition at the bottom
should theoretically be that of equation (4.4.1) with a smooth roughness parameter, E.
However, the turbulence generated from the shear layer at the bottom of the flume will
only dominate a thin region closest to the bed before the stem-wake turbulence becomes
the dominant source of turbulence (Nepf et al. (1997)). Therefore, the choice of wall
function to couple the bed shear stress to the initial values of k and ε will not be of
significant importance for the overall results. Hence, the rough boundary condition in
equation (7.2.1) is assumed valid if a small bottom roughness z0 is applied. Nepf et al.
(1997) measured the turbulence intensities for emergent vegetation, and found that the
bed shear turbulence dominated less than 10 % of the water depth even for sparse stem
spacings with a volume fraction φ of only 0.6 % (see section 5.1). The remaining boundary
conditions are also the same as given in section 7.2.

9.1 Rigid cylinders

For the case of a canopy represented by rigid cylinders, the model has been validated
against flume data from Shimizu and Tsujimoto (1994), Dunn et al. (1996) and Ghisalberti
and Nepf (2004). The numerical results from the k-ε models of Shimizu and Tsujimoto
(1994) and López and García (2001) are also included as part of the validation.

Table 9.1 shows the different parameters needed for the validation. Note that Ghisalberti
and Nepf (2004) performed four different trials (B, C, H and J) where they varied several
of the parameters given in table 9.1 between each trial.
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H[m] h[m] a[1/m] S,×10−5 CD λf

Shimizu and Tsujimoto (1994) 0.0747 0.041 10.0 213 1.0 0.41
López and García (2001) 0.34 0.12 1.09 360 1.13 0.13

Ghisalberti and Nepf (2004) (B) 0.467 0.139 2.5 0.18 1.4 0.35
Ghisalberti and Nepf (2004) (C) 0.467 0.139 3.4 2.5 1.1 0.47
Ghisalberti and Nepf (2004) (H) 0.467 0.138 8.0 10 0.79 1.1
Ghisalberti and Nepf (2004) (J) 0.467 0.138 8.0 1.3 0.92 1.1

Table 9.1: Experimental parameters from the flume experiments presented in
López and García (2001), Shimizu and Tsujimoto (1994) and Ghisalberti and
Nepf (2004). The parameters H, h, a, S, CD and λf are the water depth,

canopy height, frontal area per volume (5.1.1), energy slope, drag coefficient
and roughness density (5.1.2), respectively.

The experimental parameters presented in López and García (2001) are the ones used by
Dunn et al. (1996) in their experiments. Unidirectional flow was run through a recircu-
lating flume. The canopy was represented by rigid vertical cylinders mounted onto a false
bottom plate. Their arrangement was in a staggered pattern with variable density. A
honeycomb grid was positioned upstream of the canopy in order to straighten the inflow
onto the canopy. Velocity profiles were measured at four different locations in the longitu-
dinal direction of the tank. Each profile consisted of 10 measurement points each. These
profiles were then spatially averaged to obtain the resulting mean velocity profile for the
canopy. All the velocity profiles were measured inside the stem wakes, however it was
stated that they were not measured too close. The measuring locations were also taken
far enough downstream of the leading edge of the canopy in order to avoid transitional
effects.

Although Dunn et al. (1996) measured changing values for the canopy drag coefficient,
the mean value of CD = 1.13 is used for the present model in accordance with López
and García (2001). The modelled velocity profile, using the same input parameters as
the numerical model of López and García (2001) in table 9.1, has been plotted against
the predicted velocity profile from their k-ε model and the experimental data from Dunn
et al. (1996). The comparison is displayed in figure 9.1.
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Figure 9.1: Comparison of the predicted velocity profile between the present
k-ε model, the k-ε model from López and García (2001) and experimental

data from Dunn et al. (1996). u is the spatially averaged mean velocity and z
is the water depth. The vertical dashed and dash-dot line indicate the water

surface H and the canopy height h, respectively.

It can be noticed from figure 9.1 that the boundary layer closest to the wall becomes
extremely thin. Therefore, the characteristics of the no-slip boundary condition in equa-
tion (7.2.2) is not obvious. However, this is connected with the bottom roughness z0
being small, and that the model is not able to resolve such a thin layer close to the wall.
However, the no-slip boundary condition is incorporated and the effect of the bottom
roughness is insignificant for the reasons mentioned in the beginning of this chapter. The
same applies for the rest of the modelled velocity profiles in this chapter.

To further justify the use of a bottom roughness for the prediction of flume data, appendix
B shows the resulting velocity profiles from running the model with different values for
z0. They are compared against the flume data from Dunn et al. (1996) and the rest of
the input parameters are the ones given by López and García (2001) in table 9.1.
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Besides from that, it can be seen that our model predicts the experimental velocity profile
in figure 9.1 well. Both k-ε models coincide well with the experimental results within the
canopy height. Above the canopy both the present model and the model of López and
García (2001) overpredicts the results. However, the present model predicts the above-
canopy flow with better accuracy than the one from López and García (2001).

The reason behind these different results produced by two apparently equal k-ε models
may come from the calculation López and García (2001) uses to find the eddy viscosity
νt in (4.3.1). Instead of applying the generally accepted coefficient Cµ = 0.09, they used
an iterative calculation process (see López and García (2001)), hence introducing Cµ
as a depth dependent variable. They also used a Dirichlet boundary condition for the
dissipation at the surface as opposed to the Neumann condition in (7.2.5).

Shimizu and Tsujimoto (1994) compared their numerical results with flume measurements
over a canopy of equally spaced rigid cylinders. The velocity profiles were found using
a hot-film anemometer. Figure 9.2 shows the modelled velocity profile from the present
model, plotted against the numerical and experimental results presented by Shimizu and
Tsujimoto (1994).
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Figure 9.2: Comparison of the predicted velocity profile between the present
k-ε model, the k-ε model from Shimizu and Tsujimoto (1994) and flume

experiments presented by Shimizu and Tsujimoto (1994). u is the spatially
averaged mean velocity and z is the water depth. The vertical dashed and

dash-dot line indicate the water surface H and canopy height h, respectively.

The comparison in figure 9.2 is promising, and the present model predicts the flume
experiments accurately throughout the whole water column.

The results also shows a good fit with the numerical results from Shimizu and Tsujimoto
(1994). However, they used different values for the coefficients Cfk and Cfε than the
ones adopted from López and García (2001) for the present model. Instead of the more
theoretical values of Cfk = 1 and Cfε = 1.33, they determined the coefficients from
numerical fitting with flume data (not with the presented data in figure 9.2). From doing
so they ended up with Cfk = 0.07 and Cfe = 0.16. That is a significant difference from
López and García (2001). Based on the reasoning in section 6.2 and 6.3 this corresponds
to only 7 % of the work done by the mean flow against the stems is being transformed
into wake-turbulence. However, the low coefficient for the wake-generated turbulence
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is coupled with a corresponding low coefficient for the wake dissipation, although the
proposed relation in equation (6.3.4) does not hold.

Based on the reasoning in section 6.2 and 6.3, and the results of figure 9.2, the coefficients
from López and García (2001) are considered more suited for the present model.

Contrary to Dunn et al. (1996), Ghisalberti and Nepf (2004) averaged their experimental
results in the crosswise direction of the tank. They used three 3D acoustic Doppler
velocimetry (ADV), and pointed out the importance of the recordings being done outside
of the sidewall boundary layers. The cylinders were spaced randomly, and the inflow
was first run through a vertical grid of cylinders to remove inherent turbulence and then
straightened. The experimental flume data, along with the predicted velocity profile from
the present k-ε model, are displayed in figure 9.3.
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(c) Exp. H (λf = 1.1)
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Figure 9.3: Comparison of the predicted velocity profile from the present
model and flume experiments performed by Ghisalberti and Nepf (2004). u is
the spatially averaged mean velocity and z is the water depth. The vertical
dashed and dash-dot line indicate the water surface H and canopy height h,
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It is seen that the model predicts the mean velocity profile for experiment B (figure
9.3a) and C (figure 9.3b) particularly well, with a close fit over the whole water depth.
Against experiment H (figure 9.3c) and J (figure 9.3d) the model accurately predicts
the mean velocity within the canopy. However, above the canopy the mean velocity
is underpredicted by the model for both experiment H and J. This is opposite of the
overpredicion encountered for the data from Dunn et al. (1996) in figure 9.1. The results
from figure 9.3 are interesting as erroneous effects due to the measuring equipment and
flume set-up does not effect the relative trend between the predicted profiles and the data.
Hence, the trend of underpredicted velocity above the canopy, for high canopy densities,
stands stronger than the trend of overprediction for relative sparse canopies from the one
experiment by Dunn et al. (1996).

The modification of the dissipation due to canopy-scale vortices given by Uittenbogaard
(2003) (see section 6.4) was implemented for experiment H and J. Ghisalberti and Nepf
(2004) estimated these runs to have slightly larger canopy-scale vortices than experiment
B and C. However, the modification gave no alteration of the results. The general obser-
vation during this study has been that increasing the production of ε contributes only in
removing energy from the system, hence reducing the mean velocity even more. However,
no thorough investigation of this tendency was performed.

Based on the observations in figure 9.1 - 9.3, a very coarse statement can be made that
our model works best within the range of 0.13 < λf < 1.1. When λf = 0.13 the model
overpredicts the mean velocity above the canopy, while for λf = 1.1 the mean velocity
appears to be underpredicted for the same region. Within the canopy all the modelled
velocity profiles accurately predicts the flume data. Naturally, investigation of a wider
spread of densities has to be performed to firmly make such a statement.

It should also be pointed out that there are other flow parameters being changed between
the runs than just the roughness density. Comparison between the densities are chosen as
its importance on the generation of canopy-scale vortices are emphasized by Nepf (2012a)
(chapter 5).

Nepf (2012a) states that canopy-scale vortices occurring for canopies with λf ≈ 0.1 will
penetrate all the way to the sea bed. This will alter the turbulent transport throughout
the whole canopy layer, as well as the turbulent transport from the canopy to the above-
canopy flow. This might explain some of the discrepancy between the modelled velocity
above the canopy and the flume data from Dunn et al. (1996). However, it does not
explain the good prediction of the mean velocity within the canopy.

It should also be pointed out that Ghisalberti and Nepf (2004) obtained significantly better
velocity predictions for experiment H, using their own numerical code. Their model is
based entirely on the conservation of shear-generated, canopy-scale, turbulence between
the canopy and the unobstructed flow, and its dissipation to stem-scaled turbulence as the
vortices penetrate the canopy. However, the underlying assumptions behind their model
is not directly compatible with the present k-ε model.
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9.2 Flexible vegetation

A thorough investigation of flow through a flexible canopy was performed by Nepf and
Vivoni (2000). The flume used is the same as in Ghisalberti and Nepf (2004). The
flexible plants consisted of six thin vinyl blades attached to a short stem. The geometry
and rigidity are made to simulate that of real vegetation. Velocity measurements were
performed using both acoustic Doppler velocimetry and laser Doppler velocimetry, and
were measured far enough downstream to avoid the transitional effects from the canopy’s
leading edge. Three measurements were taken in the lateral direction and then spatially
averaged.

The frontal area per volume, a, is varying with the plant height. Nepf and Vivoni (2000)
estimated a by tracing the shape of 10 individual plants over grid paper and then averaging
the results. The drag coefficient is also depth dependent, and was calculated from the
steady momentum equation using the Reynolds stress as measured in the experiment.
Both the depth varying frontal area per volume a(z) and the depth varying drag coefficient
CD(z) was incorporated into the present model. Table 9.2 shows the relevant parameters.

H[m] h[m] a[1/m] S,×10−4 CD λf

Nepf and Vivoni (2000) 0.44 0.16 a(z) 2.0 CD(z) 0.71

Table 9.2: Flume data from Nepf and Vivoni (2000) for submerged flexible
vegetation. The parameters H, h, a, S, CD and λf are the water depth,

canopy height, frontal area per volume (5.1.1), energy slope, drag coefficient
and roughness density (5.1.2), respectively. a and CD are depth dependent

(see Figure 3 in Nepf and Vivoni (2000))
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Figure 9.4: Comparison of the predicted velocity profile from the present
model and flume experiments performed by Nepf and Vivoni (2000). u is the

spatially averaged mean velocity and z is the water depth. The vertical
dashed and dash-dot line indicate the water surface H and canopy height h,

respectively.

Figure 9.4 shows the comparison between the present model and the experimental results
by Nepf and Vivoni (2000). The velocity profile appears to be overpredicted within the
canopy and underpredicted above the canopy. Following the analogy of having a particular
density interval for which the model is valid, this indicates that the upper limit of λf = 1.1
should be lowered to λf = 0.71. However, in contrast to figure 9.3c and 9.3d, the mean
velocity within the canopy is not equally well predicted.

Regarding the applicability of inserting a(z) and CD(z) directly into the model, it is
uncertain if a(z) were obtained for plants at rest or under the impact of the current. This
would probably be of some importance as CD was measured from a state where the plants
were under impact of the current.

Dijkstra and Uittenbogaard (2010) compared their numerical model with the same ex-
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perimental data as in figure 9.4, but used a different pressure gradient to drive the flow.
Instead of using the surface slope S as given in the experiment, they tuned S until it gave
the same depth averaged velocity as the experimental results. Compared to the modelled
velocity profile in figure 9.4 this corresponds to an increase of the pressure gradient (gS).
Applying the same procedure for our model we get the results in figure 9.5. The boundary
conditions was lowered slightly to correspond to the range of given experimental points.
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Figure 9.5: Comparison of the predicted velocity profile from the present
model and flume experiments performed by Nepf and Vivoni (2000), when
driving the flow with pressure gradient corresponding to a depth averaged
velocity of 0.10m/s. u is the spatially averaged mean velocity and z is the
water depth. The vertical dashed and dash-dot line indicate the water

surface H and canopy height h, respectively.

There is a general improvement in the middle depth range, of the mean velocity predic-
tion between figure 9.4 and 9.5. Because the pressure gradient is constant, increasing
it naturally results in a more overpredicted mean velocity within the canopy, while the
underpredicted velocity above the canopy is improved.
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The flume data given in figure 9.3a–9.5 shows a backward facing mean velocity in the
vicinity of the free surface. Because the same flume has been used to obtain all this data,
this tendency is assumed to be due to be erroneous effects related to the flume, and not
actual physical results.

Dijkstra and Uittenbogaard (2010) incorporated the flexibility of the plants into their
k-ε model. However, they state that this was not a governing factor for the results as
the plants used by Nepf and Vivoni (2000) was relatively rigid. They also used the
modification for the wake dissipation by Uittenbogaard (2003) (see section 6.4). This was
also implemented into the present model. However, the implementations did not effect
the results.

In summary, it appears that the canopy-related implementations performed for the present
model is able to reproduce the boundary layers of unidirectional flow thorough submerged
vegetation with acceptable accuracy. Especially the velocities within the canopy is well
predicted by the present model.
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10 Wave-current interaction on flow through
submerged vegetation

In many real life applications waves will occur alongside currents. To investigate the
applicability of the model with regards to wave-current interactions, it was run against
experimental flume data performed by Hu et al. (2014). They used stiff wooden rods
to represent the submerged vegetation, and had them uniformly spaced along a false
bottom inside the flume. The velocity was measured by four EMFs (Electromagnetic Flow
Meters) probes within the canopy, spaced one meter apart in the longitudinal direction.
The velocity profiles at each EMF were obtained by moving the EMFs vertically. Then
spatial averaging of the individual profiles were performed to obtain a representative
mean velocity profile for the canopy. In addition to wave-current measurements, Hu et al.
(2014) performed comparison trials for the cases of pure current and pure waves through
the same canopy.

Forces acting on four individual stems, also spaced one meter apart in the downstream
direction, were measured by directly attaching the cylinders to force transducers mounted
into the false bottom. Through spatial averaging, the drag coefficient for the canopy was
estimated with respect to changing Reynolds number, Re. For pure wave and wave-
current flow Hu et al. (2014) obtained the following analytical expression for the drag
coefficient as function of Re,

CD = 1.04 +
(

730
Re

)1.37

300 < Re < 4700. (10.0.1)

Here, the Reynolds number is defined as

Re = Umaxd

ν
, (10.0.2)

where d is the stem diameter (d = 0.01m), ν is the kinematic viscosity, and Umax is given
as Umax = Umean + Uw. Uw is the amplitude of the horizontal component of the particle
velocity at the free surface, and Umean is to be understood as the depth averaged current
velocity acting on the canopy when accounting for the effect of the wave-current damping
(see section 4.5).

The measured drag force is not given for the relevant velocity profiles. For consistency
the formulation in equation (10.0.1) will be used to find the drag coefficient going into
the canopy drag force in equation (7.1.6). Only the depth averaged velocity for a pure
current through the canopy is given explicitly in the paper (Uc = 0.15m/s). Hence, Umean
has to be estimated. Using the resulting velocity profile for the wave-current flow given
in Hu et al. (2014), Umean was estimated as Umean = 0.13m/s. Because their velocity
measurements does not cover a significant portion of the water column closest to the
surface, this will be a crude estimate.
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Under this assumption the resulting drag coefficient for wave-current flow is calculated
using (10.0.1) and (10.0.2). With Uw = 0.20m/s, the result is as displayed in table 10.1.

Umax[m/s] Re CD

wave-current Umax = Umean + Uw = 0.33 3300 1.17

Table 10.1: Reference velocity Umax for wave-current flow with resulting
Reynolds number Re and drag coefficient CD.

Equation (10.0.1) is not confirmed to hold for pure current flow. It is assume that the
drag coefficient for the current is approximately the same as for the wave-current flow.

In addition to the pressure induced by the waves, the wave-current flow will have a
pressure component due to the current as well. Assuming these can be superpositioned
the following pressure gradient goes into equation (7.1.4),

−1
ρ

∂P

∂x
= −ζAω2sin(ωt) + gS. (10.0.3)

The first term on the right hand side of (10.0.3) is the hydrostatic pressure gradient due
to the waves, where ζA is the wave amplitude, ω = 2π/T , and T is the wave period. The
last term is the constant pressure gradient due to the current alone. The terminology from
equation (9.0.1) is kept, although referring to a surface slope S is inappropriate when the
surface is covered with waves.

As noted, the boundary layer approximation is assumed valid for the wave-current flow.
Hence the dynamic pressure from the waves is assumed to be constant throughout the
water depth in accordance with equation (7.1.3). This is not completely accurate as the
vertical particle velocity at the top of the surface is of the same order as the horizontal
velocity. However, the assumption becomes more accurate towards the bottom of the
flume as the vertical particle velocity decreases exponentially with the depth.

Because no pressure gradient is given as input by Hu et al. (2014), the pressure gradient
due to the current (in practice meaning S) was tuned until the total pressure gradient
for the wave-current flow generated a depth averaged velocity corresponding to Umean =
0.13m/s. The same procedure was followed for the pure current flow, only with Uc =
0.15m/s, instead of Umean.

The relevant flume parameters, along with the estimated depth-averaged velocity for the
wave-current flow, are given in table 10.2.
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H[m] h[m] a[1/m] CD[−] ζA[m] T [s] U [m/s] λf

pure current 0.5 0.36 5.55 1.17 - - 0.15 2.0
pure waves 0.5 0.36 5.55 1.30 0.05 1.6 - 2.0
wave-current 0.5 0.36 5.55 1.17 0.05 1.6 0.13 2.0

Table 10.2: Flume data from Hu et al. (2014). The parameters H, h, a, CD,
ζA, T , U and λf represents the water depth, canopy height, frontal area per

volume, drag coefficient, wave amplitude, wave period, depth averaged
velocity and roughness density, respectively.

The model can not be run for the case of pure waves as the boundary layer approximation
does not hold. However, the experimental results from Hu et al. (2014) are shown in figure
10.1 as they illustrate a negative period averaged velocity profile for the case of only waves.
It should be mentioned that this backward going current also occurred in the experiment
when waves were run through the flume without the canopy present. This indicates that
the entire discrepancy can not be coupled to the waves interacting with the canopy, but
rather more inherent effects. If the waves in the experiment were not perfectly sinusoidal
this could lead to a resulting current when averaging over the intentional wave period.
This could be a result of friction between the waves and the side walls in the case of no
vegetation, but could also be coupled to the vegetation when this was present. Figure
10.1 therefore indicates that there may be a similar effect on the wave-current data.
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Figure 10.1: Experimental data from Hu et al. (2014) for waves propagating
through a submerged canopy. Plotted against the theoretical period averaged

velocity if second order effects are neglected. u is the period averaged
velocity and z is the water depth. The vertical dashed and dash-dot line

indicate the water surface H and the canopy height h, respectively.

Before running the model for wave-current flow, it was compared against the pure current
flow similar to the validation in chapter 9. Figure 10.2 shows the modelled velocity
profile plotted against the experimental result from the case of a pure current through
the submerged canopy. Interestingly, the results somewhat contradicts the findings in
chapter 9 where the model was found to underpredict the above-canopy velocity when
the density became large (λf = 1.1). However, the H/h-ratio is significantly smaller in
this experiment than what was used by Ghisalberti and Nepf (2004) in figure 9.3c and
9.3d. For H/h < 2, the constraints on the canopy-scale vortex growth due to the surface
is believed to be significant (Nepf and Vivoni (2000)). With a ratio of H/h ≈ 1.4, the
experiments from Hu et al. (2014) are well within this region. This indicates that the
canopy-scale vortices predicted to occur in the experiments from Ghisalberti and Nepf
(2004) will be confined by the free surface in the experiments of Hu et al. (2014). Hence,
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they will have limited growth possibilities and a smaller chance of affecting the flow. This
might be the reason why the model manage to more accurately predict the data from
Hu et al. (2014) than the data from Ghisalberti and Nepf (2004) for such high canopy
densities.

In accordance with chapter 9, the mean velocity within the canopy in figure 10.2 is well
predicted by the present model.
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Figure 10.2: Predicted mean velocity profile plotted against experimental
measurements from Hu et al. (2014) for a current through a submerged

canopy. u is the spatially averaged mean velocity and z is the water depth.
The vertical dashed and dash-dot line indicate the water surface H and the

canopy height h, respectively.
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Figure 10.3: Predicted mean velocity profile plotted against experimental
measurements from Hu et al. (2014) for both current and waves moving in
the same direction through a submerged canopy. u is the unidirectional
spatially averaged mean velocity and z is the water depth. The vertical

dashed and dash-dot line indicate the water surface H and the canopy height
h, respectively.

By implementing the pressure gradient in equation (10.0.3), the wave-current flow was
predicted. Figure 10.3 shows the modelled velocity profile for the wave-current flow plotted
against the experimental data from Hu et al. (2014). The comparison shows that the model
manage to accurately reproduce the velocity profile from the experiments. However, the
effects causing the negative current for pure waves in figure 10.1 will most probably also
be present in the case of wave-current flow. If these effects causes a positive or a negative
current is difficult to predict as the reactions causing these effects may change from the
state of pure current to the state of wave-current flow. The same goes for its magnitude.
However, it is fair to mention this possible discrepancy when validating the applicability
of the model for the case of wave-current flow.
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It should also be mentioned that the energy slope S needed to drive the wave-current flow
had to be twice of that used to drive the pure current flow. Only then did the model
produce the depth averaged velocity of Umean = 0.13m/s.
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Figure 10.4: Comparison between the numerically predicted velocity profiles
for the case of pure current and wave-current flow through a submerged

canopy. u is the spatially averaged mean velocity and z is the water depth.
The vertical dashed and dash-dot line indicate the water surface H and the

canopy height h, respectively.

A comparison between the velocity profile from the pure current and wave-current flow
is plotted in figure 10.4. Although the damping due to the wave-current interaction is
inherent due to the way the pressure gradient was set, it is consistent with the findings
of Hu et al. (2014) within the range of their measurements.

The case of wave-current flow over submerged vegetation is an interesting topic. The
particle trajectories that are damping the flow in the case of unobstructed wave-current
flow does not automatically give the same effect when vegetation is covering a significant
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part of the water column.

However, as only one validation against wave-current data were performed in this study,
further validation is needed to conclude the applicability of the wave-current implemen-
tation. Especially the high pressure gradient needed to obtain the correct depth average
velocity is of concern. If the pressure gradient due to the current is fixed, it’s doubt-
ful that it will be able to overcome the heavy damping of the mean velocity resulting
from the wave-current implementation. Therefore, the effect of wave-current flow is not
implemented when modelling the tidal boundary layers.
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11 Tidal flow through submerged
vegetation

The model in chapter 7 will be run against the tidal measurements from the Hebrides (see
chapter 8). As opposed to the unidirectional current and wave-current flows in chapter
9 and 10, the constant pressure gradient will now be determined from the velocity time
series using equation (7.1.14) and (7.1.15). Wave-current effects are not included for the
following simulations.

11.1 Plant properties

The largest uncertainty for the following calculations is that of determining a reasonable
frontal area per volume, a, and drag coefficient, CD, to represent the canopy at the
location of the measurements. These two parameters are crucial for the representation
of the drag force induced on the flow by the vegetation. The plant species is of the type
Laminaria hyperborea. This specie is characterized by a long circular stem with a dense
bundle of leafs at the top. The contour of the plants can be seen in the background of
figure 8.2. The stem is quite robust and stiff, justifying that it can be modeled as a rigid
circular cylinder. However, from figure 8.2 the leafs appear to be more flexible, and are
bending under the impact of the current. Because the model does not account for plant
flexibility, the leafs must be simplified in a manner that accounts for their damping of
the flow. As a simple estimate, the leafs are modelled as ellipses cut along their minor
axis. The relative size of the minor and major axis must be determined from what gives
the the best representation of the drag, rather than the shape itself. This is because the
model treats any surfaces as a rigid solid object, meaning that the shape of the leaf must
be smaller than what their contours indicate in order to avoid overpredicting the drag.

Figure 11.1 shows the estimated leaf shape, along with its variable semi-minor (ax) and
semi-major (by) axis.
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Figure 11.1: Illustration showing the leaf shape estimated as an ellipse cut
along its minor axis. Hence, ax and by is the semi-minor and semi-major

axis, respectively. ds is the stem diameter.

11.2 Parameter comparison

Because the relative size of the plant parameters discussed in the section above are un-
known, the model will be run against several plant properties to investigate how each
effects the result. Assuming an equally spaced grid of plants, the frontal area per volume,
a, can be found by the plant diameter d and the stem spacing ∆S. The stem diameter
will be constant and are denoted ds. However, the overall plant diameter d will be depth
dependent due to the leaf geometry given by ax and by. Hence, the frontal area per
volume (see equation (5.1.1)) will be depth dependent.

A total of seven different runs are preformed. Table 11.1 gives a description of each model
along with their input parameters.
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Model H[m] h[m] ds[m] ∆S[m] CD ax[m] by[m] λf

A1 12.9 3 0.08 3 1 0.3 0.5 0.048
A2 12.9 3 0.08 3 1 0.2 0.4 0.037
A3 12.9 3 0.08 3 1 0.1 0.3 0.029

A2S4 12.9 3 0.08 4 1 0.2 0.4 0.021
A2S5 12.9 3 0.08 5 1 0.2 0.4 0.013
A2H2 12.9 2 0.08 3 1 0.2 0.4 0.028
A2H4 12.9 4 0.08 3 1 0.2 0.4 0.046

Table 11.1: List of the different input parameters used for running the model.
H is the mean water depth,h the canopy height, ds the stem diameter, ∆S

the stem spacing, CD the plant drag coefficient, λf the roughness density, and
ax and by the semi-minor and semi-major axis of the leaf area, respectively.

As stated, the stem diameter ds is kept constant. Taking into account the growth of algae
on the plant stems, as seen from figure 8.2, an estimated diameter of ds = 8 cm seems to
be a reasonable approximation. Because ∆S is significantly larger than ds, changing ds
will have a minimal effect on the frontal area per volume, a.

Figure 11.2 shows the relative decrease in leaf area between the three runs A1, A2 and A3.
In the following calculations it is assumed that the frontal area of the leaf is positioned
perpendicular to the flow. Because the flow is two dimensional in the horizontal plane,
the frontal area per volume, a, of the leaf is decomposed into a x- and y-component. The
stem is circular, hence no decomposition of a is needed over the stem.
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Figure 11.2: Plot showing the three different leaf areas used in the model
runs A1, A2 and A3.
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It should also be noted from table 11.1 that the drag coefficient is assumed to be constant
over the whole canopy height. Because the shape of the plant starts as a cylinder at the
stem and transforms into more of a plate at the leaf this is most certainly not the case.
However, the effect of an increasing form drag at the leaf will be somewhat similar to an
increase of the leaf area itself. Therefore, the drag coefficient will be kept constant for the
sake of simplicity.

In figure 11.3 the modelled mean velocities for the different leaf areas have been plotted
against the field data taken during May (see chapter 8). For comparison, the result from
running the model using only the bed roughness z0 is included. The bed roughness used
is z0 = 0.0006 cm which was found to give the best fit with the May data when not
accounting for the vegetation (see Grønningsæter (2015)). The velocity profile from using
only the bed roughness is reproduced under the same procedure as in Grønningsæter
(2015). The reason why the present model covers more of the water depth is because it
was run with 200 grid points as opposed to 100. This was done to increase the number
of computational nodes over the leaf area.

Regardless of the different leaf areas, figure 11.3 shows that the velocity prediction of the
lower three measurement points of the May data is greatly improved by accounting for
the vegetation. However, the top data point is more accurately predicted by only using
a bed roughness. Besides that, it is also noted that the relative small differences in leaf
area between A1, A2 and A3 has a significant impact on the in-canopy velocity. This is
the case despite of the vertical extend of the leaf area only being a fraction of the vertical
extend of the stem.

Above the canopy, the mean velocity profiles for both A1, A2 and A3 appear to converge
towards a fixed value. This is reasonable as the effect of the wake-scaled turbulence should
diminish with increasing distance from the canopy. However, the result using only the
bed roughness z0, converge to a different mean velocity towards the free surface than the
results from A1, A2 and A3. This indicates that the numerical effect of including the
canopy does not diminish entirely towards the free surface.
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Figure 11.3: Comparison between the modelled velocity profile using different
leaf areas, the field data from May, and the modelled velocity using only the
bed roughness (z0 = 0.0006 cm). u is the spatially averaged mean velocity

and z is the water depth.
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Figure 11.4: Comparison between the modelled velocity profile using different
stem spacings ∆S, the field data from May, and the modelled velocity using
only the bed roughness (z0 = 0.0006 cm). u is the spatially averaged mean

velocity and z is the water depth.

In figure 11.4, case A2 is recomputed using larger stem spacings ∆S. The results are
compared with the May data and with the results using only the bed roughness.

It is seen that the increasing stem spacing results in a larger mean velocity over most
of the water column. The increased velocity is most significant within the canopy, and
decreases in magnitude towards the free surface.This is in conjunction with the model
results in figure 11.3, showing the tendency of the velocity converging towards the free
surface.

Changing the stem spacing ∆S is believed to produce larger deviations between the
predicted velocity profiles compared to changing the leaf area (in essence the diameter
d). This is coupled to the fact that the frontal area per volume a, and hence the canopy
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drag force, is a function of ∆S2 as opposed to being linearly dependent on the diameter
d (see equation (5.1.1)). Remembering that the canopy drag force also is part of the
wake production (6.2.3) and the wake dissipation (6.3.1) terms, the estimation of the
stem spacing becomes of great concern when modelling real life canopies. Even so, all the
velocity profiles in figure 11.4 gives improved accuracy with regards to the three lower data
points from the Hebrides. There is still a deviation at the highest data point compared
with only using the bed roughness.
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Figure 11.5: Comparison between the modelled velocity profile using different
canopy heights h, the field data from May, and the modelled velocity using
only the bed roughness (z0 = 0.0006 cm). u is the spatially averaged mean

velocity and z is the water depth.

Figure 11.5 shows the modelled mean velocity profiles using leaf area A2, but with varying
canopy height. As expected, the mean velocity within the canopy is unchanged between
run A2, A2H2 and A2H4. The only difference is the vertical extend of the canopy drag.
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In conjunction with figure 11.3 and 11.4, it seems that the gap in predicted velocity to-
wards the free surface between the present model and the one only using the bed roughness
is inherent to the numerical modelling itself, and not so much to the input parameters.
It appears that a compromise must be made between accurate velocity prediction toward
the surface and accurate velocity prediction towards the sea bed when using the present
model.

To summarise, the general observation from figure 11.3–11.5 is that the lower three field
measurements for the mean velocity is more accurately predicted by including the effects
of the canopy. On the other hand, the velocity measurement closest to the surface is
better predicted by only including the bed roughness.
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Figure 11.6: Comparison between the most accurate modelled velocity profile
from the present model, the field data from May, and the modelled velocity
using only the bed roughness (z0 = 0.0006 cm). u is the spatially averaged

mean velocity and z is the water depth.
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Although there is a large uncertainty connected with the estimated canopy parameters
in table 11.1, they appear to provide reasonable mean velocity profiles. The best fit is
probably the one of A2. As a final comparison, A2 has been plotted in figure 11.6 along
with the May data and the pure roughness profile.

Important to remember is that the sea bed is more complex than just the presence of
the vegetation. In addition, there are rocks and boulders with the possibility of imposing
additional effects onto the field data. These effects are naturally not accounted for by the
model.

The present results also contradicts the perception given by Nepf (2012a) that for canopy
densities of λf << 0.1, the effect of the canopy can be included into the bed roughness.
This does not appear to be the case for the modelled tidal flow. The lowest plant density
tested for is the one for A2S5 with λf = 0.013, and the modelled velocity profile still
predicts the overall field data better than by only using the bed roughness.

It should be noted that the velocity profiles predicted by the the present model indicates
a region of shear at the top of the canopy. As described by Nepf (2012a) (see section
5.3) the presence of a shear layer, with an inflection point, at the top of the canopy is
the criteria for the generation of canopy-scale vortices. If these vortices are present in
the field measurements from the Hebrides, they will not have been accounted for by the
model. The modelled shear layer also contradicts the observations by Nepf (2012a), where
no shear layer were observed for flow over canopies with CDah < 0.4.

Another concern with the present model is that it might be erroneous for such low canopy
densities as tested for in the present field measurements. As noted from chapter 6, the
dispersive fluxes occurring in the momentum equation, and the conservation equation for
turbulent kinetic energy, had to be neglected to arrive at the governing equations used
by the present model. Poggi et al. (2004) measured the dispersive stress occurring in
the momentum equation to be 35 % of the Reynolds stress when doing experiments with
sparse rigid cylinders with density λf = 0.03. The modelled canopy density is of the
same order, hence making the presence of these fluxes a significant source of uncertainty
regarding the modelled velocity profiles.
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12 Conclusion

The presence of the vegetation was incorporated into the Navier-Stokes equations through
the inclusion of an extra form drag term. In the k-ε equations, the presence of the
vegetation result in an additional production term due to the turbulence generated in
the wakes behind individual plants. In addition, an extra dissipation term is added
to assist the dissipation of this extra wake-scale turbulence. The form drag and wake-
production term are generated when spatially averaging the momentum equations and the
conservation equation for turbulent kinetic energy over a large enough area. This is done
in addition to the regular temporal averaging in order to account for the heterogeneity in
the flow due to the complex geometry of the canopy.

When validating the modified model against flume data for unidirectional flow, it was
able to predict the velocity profiles within the canopy well. For canopies of relative low
density the velocity profile was accurately reproduced throughout the whole water column.
For relatively dense canopies the above-canopy flow became overdamped compared to
the flume data. However, this tendency appeared to disappear if the water depth to
canopy heigh ratio (H/h) was small. A possible explanation to this observation is that
the generation of canopy-scale vortices are limited by the free surface for small H/h-
ratios. Because the canopy-scale vortices are not accounted for in the numerical model,
this might explain the improvement in predicted velocities for the flume experiment with
low H/h-ratio. Overall, the flume experiments indicated acceptable accuracy for the
implementation of the canopy-related terms into the numerical model.

For the case of wave-current flow, an accurate prediction of the flume data were obtained
from superposition of the hydrostatic pressure gradient from the waves and the hydrostatic
pressure gradient from the current. When comparing the procedure with the case of a
similar flow without waves present, it was found that the wave-current flow needed a
significantly larger current induced pressure gradient to obtain a similar depth averaged
velocity. However, further validation is needed to assess the applicability of including
wave-current interaction when modelling tidal flow over submerged canopies.

When accounting for the submerged vegetation, the model is able to reproduce the field
data from the Hebrieds with good accuracy. In particular, the prediction of the mean
velocity of the lower half of the water column is significantly improved compared to only
using a bed roughness parameter. This may be of significant relevance for applications
where the near-bed velocity is of importance.

The upper part of the water column appears to be better predicted when only applying
the bed roughness. In comparison the present model overdampes the mean velocity profile
in this region. This is a modelling related problem as the canopy-related terms obviously
effects the above-canopy flow as well as the in-canopy flow.

Due to the presence of an inflection point in the modelled velocity profiles for field data,
there exist a possibility of canopy-scale vortices being generated near the top of the
canopy. The generation of these vortices are not accounted for in the model. Also, due
to the canopy being very sparse, neglecting the dispersive terms in the derivation of the
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canopy related governing equations may not be strictly valid. However, this must be
further looked into.

Although the modelled vegetation for the tidal flow is sparse, the results show that the
effect of the vegetation can not simply be included in the bed roughness. The inclusion of
the vegetation in the momentum and k-ε equations produce an overall better prediction
of the tidal boundary layer, especially in the region closest to the sea bed.
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13 Further work

The present model have shown great improvement in predicting the overall mean velocity
profile of a tidal current. Some areas of investigation still remain.

Although a solution for the canopy-scale vortices already has been proposed, more inves-
tigation has to be put into its applicability and limitations before it can be included into
the model. Also, the presence itself of canopy-scale vortices for highly sparse canopies has
to be further looked into.

More work should also be directed towards the applicability of the model with regards
to the dispersive fluxes. These fluxes may be of significant importance for very sparse
canopies, and their impact on the predicted velocity profiles should be further investigated.

Last, the attempt to include wave-current effects into the prediction of flow over sub-
merged vegetation should be further validated since only one comparison with experi-
ments were found during this study. It is also unclear how wave-current effects can be
included into analysis for tidal flow through submerged vegetation.
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A Spatially averaged governing equations

Equation (A.0.1)–(A.0.4) shows the spatially averaged governing equation as presented
by Raupach and Shaw (1982).

Scheme I

Spatially averaging over a large enough area produce the following conservation equation
for momentum,

∂〈ui〉
∂t

+ 〈uj〉
〈ui〉
∂xj

+ ∂

∂xj
〈u′′i u′′j 〉 =

−1
ρ

∂〈p〉
∂xi
− 1
ρ

〈
∂p′′

∂xi

〉
+ ν∇2〈ui〉+ ν〈∇2u′′i 〉

(A.0.1)

Angle brackets indicate spatial mean and double primes denotes a spatially fluctuating
value. From the left the different terms are; instantaneous change of velocity, convection,
Reynolds stress, pressure gradient, form drag, viscous stress and viscous drag. Term 5
and 7 are additions to the normal RANS equations (4.1.6).

Spatially averaging the conservation equation for turbulent kinetic energy produces equa-
tion (A.0.2). The turbulent kinetic energy is k = 1
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From the left the terms are; instantaneous change of k, convection, shear production,
inertial and pressure transport, viscous term and wake-production term. The two last
terms are additional terms compared to the normal k-equation (4.3.2).

Scheme II

First temporal and then spatial averaging of the Navier-Stokes equations results in the
following conservation equation for momentum,
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Overbars represent temporal mean values, single primes represent temporal fluctuating
values, double primes represent spatially fluctuating values, and angle brackets repre-
sent spatially mean values. From the left; instantaneous change, convection, dispersive
flux/stress, Reynolds stress, pressure gradient, form drag, viscous stress and viscous drag.
For this scheme, three additional terms arise compared to (4.1.6). In addition to the
viscous and form drag, a dispersive stress term appears.

The same averaging procedure results in the following conservation equations for the
turbulent kinetic energy, where k = 1
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′
j

′′ ∂ui
∂xj

〉 (A.0.4)

From the left the terms are; instantaneous change, convection, shear production, inertial
transport, dispersive transport, pressure transport, viscous term and wake-production
term. Compared to equation (A.0.2), the wake-production term is expressed differently,
and there is an additional dispersive transport term.
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B Roughness sensitivity

Figure B.1 shows the model run with different bottom roughness’s z0 against the exper-
imental data from Dunn et al. (1996). It illustrates the small dependency between the
boundary condition at the bottom of the flume and the overall prediction of the mean
velocity profile.
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Figure B.1: Modelled velocity profiles for different values of the bottom
roughness z0. Plotted against the experimental data from Dunn et al. (1996).
u is the unidirectional spatially averaged mean velocity and z is the water
depth. The vertical dashed and dash-dot line indicate the water surface H

and the canopy height h, respectively.
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