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Abstract

Background: Choosing the appropriate sample size is an important step in the design of a
microarray experiment, and recently methods have been proposed that estimate sample sizes for
control of the False Discovery Rate (FDR). Many of these methods require knowledge of the
distribution of effect sizes among the differentially expressed genes. If this distribution can be
determined then accurate sample size requirements can be calculated.

Results: We present a mixture model approach to estimating the distribution of effect sizes in data
from two-sample comparative studies. Specifically, we present a novel, closed form, algorithm for
estimating the noncentrality parameters in the test statistic distributions of differentially expressed
genes. We then show how our model can be used to estimate sample sizes that control the FDR
together with other statistical measures like average power or the false nondiscovery rate. Method
performance is evaluated through a comparison with existing methods for sample size estimation,
and is found to be very good.

Conclusion: A novel method for estimating the appropriate sample size for a two-sample
comparative microarray study is presented. The method is shown to perform very well when

compared to existing methods.

Background

One of the most frequently used experimental setups for
microarrays is the two-sample comparative study, i.e. a
study that compares expression levels in samples from
two different experimental conditions. In the case of rep-
licated two-sample comparisons statistical tests may be
used to assess the significance of the measured differential
expression. A natural test statistic for doing so is the t-sta-
tistic (see e.g. [1]), which will be our focus here. In the
context of two-sample comparisons it is also convenient
to introduce the concept of 'effect size'. In this paper effect
size is taken to mean: the difference between two condi-

tions in a gene's mean expression level, divided by the
common standard deviation of the expression level meas-
urements.

In an ordinary microarray experiment thousands of genes
are measured simultaneously. Performing a statistical test
for each gene leads to a multiple hypothesis testing prob-
lem, and a strategy is thus needed to control the number
of false positives among the tests. A successful approach to
this has been to control the false discovery rate (FDR) [2],
or FDR-variations like the positive false discovery rate
(PFDR) [3].
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To obtain the wanted results from an experiment it is
important that an appropriate sample size, i.e. number of
biological replicates, is used. A goal can, for example, be
set in terms of a specified FDR and average power, and a
sample size chosen so that the goal may be achieved [4].

In the last few years many methods have been suggested
that can help estimate the needed sample size. Some early
approaches [5,6] relied on simulation to see the effect of
sample size on the FDR. Later work established explicit
relationships between sample size and FDR. A common
feature of the more recent methods is that they require
knowledge of the distribution of effect sizes in the experi-
ment to be run. In lack of this distribution there are two
alternatives. The first alternative is simply specifying the
distribution to be used. The choice may correspond to
specific patterns of differential expression that one finds
interesting, or it can be based on prior knowledge of how
effect sizes are distributed. Many of the available methods
discuss sample size estimates for specified distributions
[7-11]. The second alternative is estimating the needed
distribution from a pilot data set. Ferreira and Zwinder-
man [12] discuss one such approach. Assuming that the
probability density functions for the test statistics are sym-
metric and belonging to a location family, they obtain the
wanted distribution using a deconvolution estimator.
One should note that, for the sample sizes often used in a
microarray experiment, the noncentral density functions
for t-statistics depart from these assumptions. Hu et al.
[13] and Pounds and Cheng [14] discuss two different
approaches. Both methods recognize that test statistics for
differentially regulated genes are noncentrally distributed,
and aim to estimate the corresponding noncentrality
parameters. From the noncentrality parameters, effect
sizes can be found. Hu et al. consider, as we do, t-statistics
and estimate the noncentrality parameters by fitting a 3-
component mixture model to the observed statistics of
pilot data. Pounds and Cheng consider F-statistics and
estimate a noncentrality parameter for each observation.
They then rescale the estimates according to a Bayesian g-
value interpretation [15]. A last approach that needs men-
tion is that of Pawitan et al. [16], which fits a mixture
model to observed t-statistics using a likelihood-based cri-
terion. The approach is not explored as a sample size esti-
mation method in the paper by Pawitan et al., but it can
be put to this use.

In this article we introduce a mixture model approach to
estimating the underlying distribution of noncentrality
parameters, and thus also effect sizes, for t-statistics
observed in pilot data. The number of mixture compo-
nents used is not restricted, and we present a novel, closed
form, algorithm for estimating the model parameters. We
then demonstrate how this model can be used for sample
size estimation. By examining the relationships between
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FDR and average power, and between FDR and the false
nondiscovery rate (FNR), we are able to choose sample
sizes that control these measures in pairs. To validate our
model and sample size estimates, we test its performance
on simulated data. We include the estimates made by the
methods of Hu et al., Pounds and Cheng and Pawitan et
al.

Results and Discussion

Notation, assumptions and test statistics

Throughout this text ¢, (1) represents the probability den-
sity function (pdf) of a t-distributed random variable with
v degrees of freedom and noncentrality parameter 1. A
central t pdf, t,(0), can also be written ¢, At, (A1) evaluated
at x is written t,, (x; A).

Assume gene expression measurements can be made in a
pilot study. For a particular gene we denote the n; meas-

urements from condition 1 and the n, from condition 2
by Xy, (i=1,...ny)and X, (j=1, ..., n,). Let (14, 07 ) and

(1,, 62) be expectation and variance for each X, and Xy
respectively. For simplicity we focus in this paper on the
case where 67 =02 =07 . As is common in microarray
data analysis, the X;;s and X,s are assumed to be normally

distributed random variables.

Measured expression levels are often transformed before
normality is assumed.

A statistic frequently used to detect differential expression
in this setting, is the t-statistic. Two versions of t-statistics
can be used, depending on the experimental setup. In the
first setup, measurements for each condition are made
separately. Inference is based on the two-sample statistic

\/"1712("1+"2)_1(?_<1—?_<2) (1)

Jnr+na-2) (g -1)sZ4(np-1)s3]

T, =

e — n
where X, :nklzi_leki and

S¢ =(n;, - 1)_12?;‘1 (X;; — X;,)? . Under the null hypoth-

esis Hy: py = iy, Ty has a t,, ., _, pdf. If, however, H, is

not true, and there is a difference z, - 11, = & the pdf of the

statistic is a tnﬁnz_z(éa’l\/nlnz(m +n,)"" . This setup

includes comparing measurements from single color
arrays and two-color array reference designs. In a second
kind of experiment, measurements are paired. In the case
of, for example, n two-color slides that compare the two
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conditions directly, then n, = n, = n, and the statistic used
is

d
e (2)
S5 /n
where d= n_lz; (X4 —X4) and

Si :(n—l)_lz;(di —E)z . Now, under Hy: 1, = 1, T,
hasasat, ,pdf. If 4, - 4, = & however, the pdf of T,isat,
a(&ot \/ﬁ)

In both experimental setups we note that the pdf of t-sta-
tistics for truly unregulated genes is t, (0). For truly regu-
lated genes the pdfis t, (8), with # O reflecting the gene's
level of differential expression. We also note that this Jis
proportional to the gene's effect size, £/o . The & can be
considered realizations of some underlying random vari-
able A, distributed as h(6). Under our assumptions the
observed t-scores should thus be modelled as a mixture of
t, (0)-distributions, with the h(o) as its mixing distribu-
tion. The h(0) is not directly observed and must be esti-
mated.

In the following, the t-statistics calculated in an experi-
ment are assumed to be independent. This assumption,

and the assumption that 6 =63 =6, may not hold in

the microarray setting. In the Testing section we examine
cases where these assumptions are not satisfied to see how
results are affected.

Algorithm for estimating effect sizes

Let y; j = 1, ..., m denote observed t-statistics for the m
genes of an experiment, having Yjs as corresponding ran-
dom variables. Let f(y) be their pdf. Our mixture model
can then generally be stated as

v h) =1t (; ©) dh(9),

where h(0) is any probability measure, discrete or contin-
uous. To estimate h(8) we want to find a probability meas-
ure that maximizes the likelihood, L(h), of our
observations, where

UORS § 20!
i=1

It has been shown [17] that to solve this maximization
problem, when L(h) is bounded, it is sufficient to consider
only discrete probability measures with m or fewer points
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of support. Motivated by this we choose h() to be a dis-
crete probability measure, and aim to fit a mixture model
of the form

8 8
)= ) mity (r:8) = moty (1,0 + Y 7t (1 57)

i=0 i=1

3)
The h(9) is thus a distribution where Pr(6=¢;) = 7, (i =0,

... §), and Zf:o m; =1. The second form of f(y) in (3) is

due to knowing that § = 0 for unregulated genes.

We now aim to find the parameters of a model like (3)
with a fixed number of components g + 1. It is clear that
finding these parameters can be formulated as a missing
data problem, which suggests the use of the EM-algorithm
[18]. Although this approach has been discussed in earlier
work [13,16], a closed form EM-algorithm that solves the
problem has not been available until now. The main dif-
ficulty with constructing the algorithm is the lack of a
closed form expression for the noncentral t pdf. In the
remainder of this section we show how the needed algo-
rithm can be obtained.

As is usual with EM, random component-label vectors Z;,
..., Z,, are introduced that define the origin of Yy, ..., Y,,.
These have Z; = (Z)); equal to one or zero according to
whether or not Y;belongs to the ith component. A Z; is dis-

tributed according to

z

_ _ 2 R0j %1 j
Pr(Z;=2;)=nmy"my" 7,

where the z; is a realized value of the random z,

We proceed by recognizing the fact that a noncentral t pdf
of is itself a mixture. The cumulative distribution of a var-
iable distributed according to t, () is (see [19])

71(575)2

w
[e2

i
2

E,(y:6)= %J‘o v e dsdv.

221“(;)

Differentiating F, (y) with respect to y, and substituting
v=+/vu,yields

1
N2
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vu2

6 2
- ——{r— | -
R(i6)= | e 2[ “] vﬁ)(ﬁu)vle 2 du,
(4)

1
22 F(
This form of the noncentral t pdf can be identified as a

N <

mixture of normal N (2,12) distributions, with a
u

scaled y, mixing distribution for the random variable U.
Based on the characterization in (4) we can introduce a
new set of missing data uj;, (i=0,..8j=1,.. m)thatare

realizations of Uy, and defined so that (Y}|u;, z; = 1) fol-

ij’

6 1

ujj ! u%

this form, as a mixture of mixtures, is a vital step in finding
the closed form algorithm.

lowsa N distribution. Restating the model in

The y;s augmented by the z;s and us form the complete-
data set. The complete-data log-likelihood may be written

g m
log L,(,8) = > " z;log(m f(y; | uy 25 = g (1)),

i=0 j=1
(5)

where 7= (7, ..., ), 6= (6, ..., &) and f,(y|u, z) and g (u)
are the above-mentioned normal and scaled y, distribu-
tion, respectively. The E-step of the EM-algorithm requires
the expectation of L. in (5) conditional on the data. Com-
bining (4) with (5) we find that we need the expectations

E(Zijb’j) and E(Uijb’jf Zjj = 1).

Calculating the first expectation is straightforward (see
e.g. [20]) and is found to be

ity (v j:6i)

E(Zij | Yj) = .
38 o Fity (7i5)

(6)

Calculating the second expectation is harder, but by using
Bayes theorem we find that it can be stated as (now omit-
ting indices for clarity)

BU; |y =0 = | ufwlpai @)
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_ Jm ufe(ylu,z)8c(w) (8)
0

Io fe(ylv',2)gc(w)dw

where f (uly, z) is the pdf of (Uyly; z;;= 1). Note that g (u|z)
= &.(u) since U;; and Z;; are independent.

The integral in (8) must now be evaluated. To do this, we
note that the denominator of the integrand is itself an
integral and that it does not depend on the integrating var-
iable u. In effect, (8) is thus the ratio of two integrals. After
a substitution of variables in both integrals,

(w=u\y?+v) and (w=1u\/y?+v), we find that this

ratio can be rewritten in terms of H h-functions as

-y .51.
Hhy41 .

2
v+l RS v

E(Uij|yjlzij=1)=\/ 5 ,
) al S
] Hh, Y jOi

lyjz+v

)

k-3 (wx)?

where Hhy,(x) = j:%e dw for an integer k > 0.

The properties of the H hj-functions are discussed in [21].

A particularly nice property is that it satisfies the recur-
rence relation

(k+1)Hhy,, () =-xHhy,(x) + Hhy, ., (x).

1.2

With easily calculated Hh_j(x)=e 2"

o 1,2

Hhy(x) = _[ e 2" du, we have a convenient way of com-
X

puting (9).

The M-step requires maximizing the L, with respect to 7
and 6. This is accomplished by simple differentiation and
yields maximizers

m
R 1
Pi =Ezzij (10)
j=1
) zm= Zi‘)/ ”1
T ij
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Equations (6) and (9) - (11) constitute the backbone of
the needed closed form EM-algorithm to fit a mixture
model like (3) with ¢ + 1 components. Parameter esti-
mates are updated according to the scheme

) k k
i) ul(j )= E_wgwm Uy | Virzii =1), Zl(j )= E_wgm (Z; | V)

m (k). (k)

SIS B I RN R o b IO
ii.) m; =— zi’, 0; ) = ®
m & m
j=1 j=1%ij

On convergence, the estimated 7 and ¢ are used as the
parameters of a h(J) with g + 1 point masses. As discussed
above we fix ¢, = 0.

An issue that has received much attention is estimating
the proportion of true null hypotheses when many
hypothesis tests are performed simultaneously (e.g.
[3,22,23]). In the microarray context this amounts to esti-
mating the proportion of truly unregulated genes among
all genes considered. Referring to (3) we see that this
quantity enters our model as 7. To draw on the extensive
work on 7,-estimation, we suggest using a known con-
servative 7,-estimate to guide the choice of some model
parameters. This is discussed below. In our implementa-
tion we use the convex decreasing density estimate pro-
posed in [24], but a different estimate may be input.

Assessing the appropriate number of components in a
mixture model is a difficult problem that is not com-
pletely resolved. An often adopted strategy is using meas-
ures like the Akaike Information Criterion (AIC) [25] or
the Bayesian Information Criterion (BIC) [26]. We find
from simulation that, in our setting, these criteria seem to
underestimate the needed number of components (refer
to the Testing section for some of the simulation results).
This is possibly due to the large proportion of unregulated
genes often found in microarray data. With relatively few
regulated genes, the gain in likelihood from fitting addi-
tional components is, for these criteria, not enough to jus-
tify  the parameters
implementation we use g = log,((1 - 7, ) m), where 7, is

additional used. In our

the above-mentioned estimate. This choice is motivated
by experience, but has proven itself adequate in our
numerical studies. It also reflects the fact that a single
component should provide sufficient explanation for the
unregulated genes, while the remaining ¢ components
explain the regulated ones. A different g may be specified
by users of the sample size method.

A complication that could arise when fitting the mixture

model is that one or more of the {§;}{,, could be
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assigned to ¢ = 0, or very close to it, thus affecting the fit
of the central component. To avoid this, we define a small
neighbourhood around ¢, = 0 from which all g remaining

components are excluded. A g, i # 0, that tries crossing

into this neighbourhood while fitting the model, is sim-
ply halted at the neighbourhood boundary. The boundary

is determined by finding the smallest § for which it is
possible to tell apart the ¢, (0) distribution from a ¢, ( 5)
one, based on samples of sizes 7,m and (1 - 7,) m/g,

respectively. The latter sample size assumes regulated
genes to be evenly distributed among their components.
The samples are taken as evenly spaced points within the
0.05 and 0.95 quantiles of the two distributions. The cri-
terion used to check if the two samples originated from
the same distribution is a two-sample Kolmogorov-Smir-
nov test with a significance level of 0.05. The rationale
behind this criteron is that, for the ¢ components associ-
ated with regulated genes, we only want to allow those
that with reasonable certainty can be distinguished from
the central component. Again, the 7, used is the estimate

discussed above.

Another difficulty related to fitting a mixture model is that
the optimal fit is not unique, something which might
cause convergence problems. The difficulty is due to the
fact that permuting mixture components does not change
the likelihood function. In our implementation we do not
have any constraints that resolve this problem. We did,
however, track the updates of our mixture components in
a number of test runs and did not see this problem occur.

In summary, our approach provides estimates, {5,}%,

and {r;}%,, of the noncentrality parameters in the data
and a set of weights. Together these quantities make up an
estimate of the distribution k(). As seen in the section on
test-statistics a ¢ is proportional to the effect size, £/ o. No
estimates or assumptions are thus made on the numerical
size of the means or variances in the data. We only esti-
mate a set of mean shift to variance ratios.

Algorithm for estimating sample sizes for FDR control

An important issue in experimental design is estimating
the sample size required for the experiment to succeed.
We now outline how to choose sample sizes that control
FDR together with other measures, and how the model
discussed above can be used for this purpose.

Table 1 summarizes the possible outcomes of m hypothe-
sis tests. All table elements except m are random variables.
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Table I: Outcomes of m hypothesis tests

Hj accepted H, rejected Total
H, true Ay Ry my
H, false A, R m,
Total M, Mg m

From Table 1 the much used positive false discovery rate
(pFDR) |3] can be defined as E(R,/Mg|Mg > 0). In [3] it is
also proven that, for a given significance region and under
assumed independence for the tests, we have

pFDR = Pr(H, true|H, rejected), (12)
and that, in terms of p-values p and a chosen p-value cut-
off ¢, (12) can be rewritten as

oo

pFDR(x) = Pr(p<a)

(13)

Equation (13) is important in sample size estimation as it
provides the relationship between pFDR, significance
region and sample size. Sample size will determine Pr(p
<a) since the shape of the t-distributions depends on n;,
n,. (An explanation is provided at the end this section).
The application of (13) to sample size estimation was first
discussed by Hu et al. [13].

Using (13), and a fitted mixture model, one can estimate
the sample size that achieves a specified « and pFDR. The
remaining issue is choosing an appropriate & and pFDR.
The pFDR is an easily understood measure, and its size
can be set directly by users of the sample size estimation
method. How to pick ¢, on the other hand, is not as clear.
One solution to this is to restate (13) as relationships
between ¢, pFDR and other statistical measures. Hu et al.
present one such relationship. They suggest picking the o
by specifying the expected number of hypotheses to be
rejected, E(My). Their idea is substituting Pr(p <a) =
E(Mg)/m in (13) to get

, — PFDR E(MR)
g m

(14)

In words, instead of specifying an «, one can specify
E(Mp). This way of obtaining &, however, has a shortcom-
ing. It provides little direct information to the user about
the experiment's ability to recognize regulated genes. In
our view, a more informative way to choose « would be
to let the user specify quantities such as average power or
the false nondiscovery rate (FNR). We now discuss how
this can be accomplished.

http://www.biomedcentral.com/1471-2105/9/117

Power is defined as the probability of rejecting a hypoth-
esis that is false. In the microarray multiple hypothesis set-
ting, average power controls the proportion of regulated
genes that is correctly identified. Setting « through an
intuitively appealing measure as average power would
thus be helpful. A relationship between « and average
power can be found by rewriting the denominator of the
right side in (13) as

Pr(p <a) = Pr(p <a|H, true) z, + Pr(p <a|H, false)(1 - x,).

Recognizing Pr(p <a|H, false) as average power, (13) can
be inverted to find

_ pFDR 1-7g
1-pFDR 7

- average power.

(15)

Combining (15) and (13) one can now find sample sizes
that achieve a specified pFDR and average power, with no
need of specifying «.

Another interesting measure to control is the false nondis-
covery rate (FNR), the expected proportion of false nega-
tives among the hypotheses not rejected. In other words,
the FNR controls the proportion of regulated genes erro-
neously accepted as unregulated. We use a version of the
FNR discussed in [15] called the pFNR = E(A,/M,|M, > 0),
which, under the same assumptions as for the pFDR, can
be stated as

PFNR = Pr(H, false|H, accepted).

Rewriting this probability in terms of pFDR and « yields

_ 1-pFDR-7p (16)

1-pFNR—pFDR
Again, specifying a pFNR will correspond to a specific
choice of a. The pFNR approach to setting « could be
interesting to use. One should note, however, that in the
microarray setting this measure can sometimes be hard to
apply. The reason is the potentially large M,, due to a high
proportion of unregulated genes. A large M, makes pFNR
numerically small, and a reasonable size may be hard to
set.

Having chosen a pFDR and « (from average power or
PENR), we need to find a sample size that solves (13). To
do this, we express Pr(p <) via our mixture model (3) as

Pr(p<a) =
r>lvo

|f (v: h)dy, (17)
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where y, is the t-score corresponding to a p-value cutoff &
for testing the null hypothesis. Since f(y) is a weighted
sum of t,()s, the integrals needed to be taken are simply
quantiles of (noncentral) t-distributions. Sample size
affects (17) because all t, (O)s to be integrated are on the

form tsl(n)(fiai_lsz(n)), with s;(n) and s,(n) dependent
on 1, and n,. (Refer to pdfs of (1) and (2)). If the effect
sizes {£,07'}8,, and the weights {r;}%, were known we

could evaluate (17) for all s,(n), s,(n).

These parameters can, however, be found from the fitted
model. To obtain the effect sizes we can equate

8. =07 "s,(),i=(0,....g), where 7 is the sample size
used in the fit. The weights are estimated directly. Having
expressed Pr(p <) in terms of sample size we aim to find

one that solves (13). This problem can be reformulated as
finding the root of the function

8
S(n) = pFDRZ[ ﬂiJ | ‘tsl(n)(gio-i_lsz(n))dy ]_ ol
i=0 >lYo

For finding the root of S(n) we implement a bisection
method.

Testing

To evaluate our approach we implemented the EM-algo-
rithm and the sample size estimation method described
above. We then ran tests on simulated data sets. For rea-
sons discussed above we focused on controlling average
power, along with the pFDR, in our sample size estimates.

When using simulated data sets it is possible to calculate
the true sample size needed to achieve a given combina-
tion of pFDR and average power. To evaluate the perform-
ance of our method we compared our estimates to the true
values. For comparison with existing approaches we also
included the estimates made by the methods of Hu et al.
[13], Pounds and Cheng [14] and Pawitan et al. [16].

Use of existing methods

In their paper Hu et al. discuss three different mixture
models. In our comparison we used their truncated nor-
mal model, as this seemed to be the favored one. To pro-
duce sample size estimates using this model one needs to
input the wanted pFDR and E(My). As we wished to con-
trol pFDR along with average power, we calculated the
E(Mpy) corresponding to each choice of pFDR and average
power as E(My) = average power-m(1 - 7,)/(1 - pFDR).
All tests were run with default parameters as found in the

http://www.biomedcentral.com/1471-2105/9/117

source code. In the implementation of Hu et al., however,
three parameters (diffthres, iternum, gridsize) were miss-
ing default values. Reasonable choices (0.01,10,100) were
kindly provided by the authors.

For the method of Pounds and Cheng one needs to input
quantities called anticipated false discovery ratio (aFDR)
and anticipated average power. For the estimates pre-
sented here we used the corresponding pFDR and average
power combination. As Pounds and Cheng work with F-
statistics, the t-statistics calculated in our tests were trans-
formed accordingly. (If T follows a ¢, distribution, then T2
is distributed as F, ). In their implementation Pounds
and Cheng set an upper limit, nmax, on the sample size
estimates, and replace all estimates above nmax with
nmax itself. The default value of nmax = 50 was replaced
with nmax = 1000 in our tests. The reason for this was that
sample size estimates of more than 50 could, and did,
occur in the tests. Using a low nmax would then affect the
comparison to the other methods. Apart from nmax all
tests were run with default parameters as found in the
source code.

In [16] Pawitan et al. discuss a method for fitting a mixture
model to t-statistics. The fitted model is used to make an
estimate of the proportion of unregulated genes, 7,. The
use of their method for sample size estimation is men-
tioned, but is not further explored or tested. The only
input needed to fit a model is the number of mixture com-
ponents. In our tests, this number was determined using
the AIC, as suggested by Pawitan et al. in their paper. In
the implementation of Pawitan et al. the assignment of
non-central components close to the central one is not
restricted. A preliminary test run using their unadjusted
model fit showed that sample size estimates were greatly
deteriorated by this. In our tests we therefore adjusted
their fitted model by collapsing all non-central compo-
nents within a given threshold (|d] < 0.75) into the central
one. Our model adjustment corresponds to the 7,-estima-
tion procedure used in the implementation of Pawitan et
al. For our test runs we used our procedures to produce
sample size estimates based on the models fitted by this
method.

Test procedure and results

For the test results presented here we used m = 10000
genes, and n; = n, = 5 measurements per group. For the
proportion of unregulated genes we examined the cases of
7= 0.7 and 7, = 0.9.

In a first set of tests we considered sample size estimates
in the case of normally distributed measurements and
equal variances. In this setting we simulated data with and
without a correlation structure. The true distribution of
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noncentrality parameters for the m, = (1 - z,)m regulated

genes was generated in the following way: A random sam-
ple was drawn from a N(1,0.52) and a N(-1,0.52) distribu-
tion. Both samples were of size m;/2, and together they

made up the {£,};", for the regulated genes in data set.

The measurement variances were set to

6% =0l =05 =0.5%. The noncentrality parameters of

the regulated genes were then calculated as

(&0 mny(ny +ny) 7' 1 (Refer to discussion of (1)).

Based on our experience with microarray data analysis the
above choices seem plausible for log-transformed micro-
array measurements. Since the true noncentrality parame-
ters are all known, the true sample size needed to achieve
a particular pFDR and average power can be calculated.

Correlation was introduced using a block correlation
structure with block size 50. The reasoning behind such a
structure was discussed in [27]. All genes, regulated and
unregulated, were randomly assigned to their blocks. A
correlation matrix for each group was then generated by
first sampling random values from a uniform U(-1, 1) dis-
tribution into the off-diagonal elements of a symmetric
matrix. Then, using the iteration procedure described in
[28], we iterated to find the positive semidefinite matrix
with unit diagonal that was closest to our randomly gen-
erated one.

Using the above approach we simulated data. For each test
case we generated 50 data sets and made sample size esti-
mates based on these. In an initial test run we wanted to
evaluate our choice of using a larger number of mixture
components, g than what is suggested by the AIC or BIC
criterion. To do so, two models were fitted to each simu-
lated data set using our algorithm. One model had our
chosen number of mixture components, the other had the
number indicated by the AIC. Sample size estimates were
then produced for both models. The reason for comparing
with the AIC instead of the BIC is that the BIC, in this set-
ting, will favor even fewer components than the AIC. In
this initial run only uncorrelated data were used. The sam-
ple size estimation results are listed in Table 2. The aver-
age number of components chosen by the AIC and our
method were, respectively, 6.1 and 11.8 for 7, = 0.7 and
5.0 and 10.1 for 7, = 0.9. Based on our findings we con-
cluded that there may be an advantage to using more
components than suggested by the AIC, and we used this
larger number of components in the remaining tests. We
then turned our attention to comparing the different
approaches to sample size estimation. Uncorrelated and
correlated data were generated and sample size estimates
were produced using all four methods. The results are

http://www.biomedcentral.com/1471-2105/9/117

Table 2: Evaluating the number of mixture components.

b pFDR power True JMB (sd) AIC (sd)
0.7 0.05 0.6 6 6 (0.3) 7 (0.5)

0.7 0.05 0.7 8 8 (0.5) 8(0.8)

0.7 0.05 0.8 Il 10 (1.1) 15 (4.0)
0.7 0.05 0.9 24 22 (2.5) 52 (22.5)
0.7 0.0l 0.6 9 9(0.7) 9 (0.5)

0.7 0.0l 0.7 Il 11(0.8) 12 (1.0)
0.7 0.0l 0.8 16 15 (1.8) 25 (8.4)
0.7 0.0l 0.9 35 35 (3.6) 79 (34.4)
0.9 0.05 0.6 9 8 (I.1) I1(3.8)
0.9 0.05 0.7 Il I (2.4) 15 (5.6)
0.9 0.05 0.8 16 15 (4.1) 21 (8.5)
0.9 0.05 0.9 35 24 (7.9) 33 (13.7)
0.9 0.0l 0.6 Il I (1.9) 15 (6.3)
0.9 0.0l 0.7 14 14 (3.2) 21 (8.8)
0.9 0.0l 0.8 21 20 (6.3) 29 (12.7)
0.9 0.0l 0.9 45 32 (11.1) 44 (21.8)

True and estimated per group sample sizes for simulated data sets
having 7= 0.7 and 7= 0.9, and for different pFDR and average
power cutoffs. The reported sample size estimate is the average of 50
such estimates rounded off to the nearest integer. The standard
deviation (sd) was based on the corresponding 50 data sets. For each
data set the estimation method introduced in this paper was used
with two different choices for g, the number of mixture components.
The JMB column (from the author names) lists the result using a g as
discussed in this paper. The AIC column lists the results using the AIC
criterion for choosing g.

found in the upper half of Table 3. In general it seems that
our estimates are close to their true values. Results are
slightly better when there is no correlation between genes.
As was to be expected, accuracy decreases, and standard
deviation increases, with increasing power. This is proba-
bly related to the difficult problem of describing the dis-
tribution of noncentrality parameters well near the point
of no regulation, i.e. close to § = 0. The estimates of Hu et
al. seem largely to be further from the true value than our
estimates, and to be more conservative, but have lower
standard deviation. The deviation from the true value is
particularly high in estimates for high power. The esti-
mates of Pounds and Cheng seem to deviate from the true
value, be more conservative than our estimates and have
higher standard deviation. The conservativeness of the
estimates of Pounds and Cheng is seen from their own
numerical tests as well, in which the estimated actual
power exceeds the desired power. The estimates of Paw-
itan et al. appear to be better than those of Hu et al. and
Pounds and Cheng, but still seem to be further from the
true value than our estimates, and to have higher standard
deviation. For high power there is a tendency of underes-
timating the needed sample size using this method.

Tests with normally distributed measurements were also
run, in which the {£,};", were drawn from gamma distri-

butions and where variances differed according to the
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model discussed below. Results were similar to those dis-
cussed above (not shown).

In a second set of tests we wanted to simulate data from a
model having the characteristics of a true microarray
experiment. We also wanted to see how sample size esti-
mates were affected if the assumptions of normality and
equal variances did not hold. To accomplish this we based
our simulation on the Swirl data set, which is included in
the limma software package [29], and on a model for gene
expression level measurements discussed by Rocke and
Durbin [30]. The model of Rocke and Durbin states that

w=a+ uen+ g (18)
where w is the intensity measurement, u is the expression
level, o is the background level and € and # are error

terms distributed as N (0, ¢2) and N (0, G;) respec-

tively. Using the estimation method discussed in their
paper we estimated the parameters of (18) for the Swirl

data set. The estimated parameters (&, 0,,0,) were, for

the mutant: (394.12, 150.84, 0.18), and for the wild-type:
(612.99,291.40, 0.19). To generate a set of log-ratios rep-
resentative of the same data we performed a significance
analysis as outlined in the limma user's guide. Using a cut-
off level of 0.10 for the FDR-adjusted p-values, we
obtained a set of 280 log-ratios for genes likely to be reg-
ulated. Log-ratios for the regulated genes in our tests were
sampled from this set with replacement. The true expres-
sion levels were generated by sampling from the back-
ground-corrected mean intensities of the genes in the
mutant data set. To simulate microarray data for two con-
ditions the following procedure was used: A set of log-
ratios, and the true expression levels for one condition,
were sampled. The true expression levels for the other
condition were then calculated. Using the above-men-
tioned model, with their respective sets of parameters,
measurements were simulated for both conditions and
then log-transformed. To introduce correlation in this set-
ting we added a random effect, y, to the log-transformed

measurements for each correlated block of genes. The y
was drawn from a N (0, 0.50'5) distribution. The block

size was again assumed to be 50, and the genes were
assigned randomly to each block. The true sample size
requirements were in this case estimated by repeatedly
drawing data sets from the given model and calculating
their average power and FDR on a fine grid of cutoff values
for the t-statistics. A direct calculation is possible since the
regulated genes are known.

http://www.biomedcentral.com/1471-2105/9/117

After generating a model as described above we again sim-
ulated data with and without a correlation structure. For
each test setting we sampled 50 data sets and made sam-
ple size estimates from the data using all four methods.
The results are summarized in the lower half of Table 3.
For the methods of Hu et al. and Pounds and Cheng the
trend is the same as in the first set of tests. Our method
seems to slightly overestimate the needed sample size,
while the method of Pawitan et al. now interestingly pro-
vides the estimates closest to the true value. The standard
deviations for the estimates of Pawitan et al. are still some-
what higher than ours.

Note that, since the implementations of Hu et al. and
Pounds and Cheng support only sample size estimates
based on two-sample t-statistics (1), all tests listed are
based on this statistic. Our implementation supports both
types, and tests were also run to check the case of one-
sample t-statistics (2). The results were similar to those of
the two-sample t-statistics (not shown).

Conclusion

We have in this article discussed a mixture model
approach to estimating the distribution of noncentrality
parameters, and thus effect sizes, among regulated genes
in a two-sample comparative microarray study. The
model can be fitted to t-statistics calculated from pilot
data for the study. We have also illustrated how the model
can be used to estimate sample sizes that control the pFDR
along with other statistical measures like average power or
PENR. In the microarray setting our results will often also
be approximately valid when using the FDR and FNR
instead of the pFDR and pFNR. This is due to, referring to
Table 1, that one frequently will have Pr(My) ~ 1 and
Pr(M,) = 1 in this setting. Sample size estimation methods
like the one presented are useful in the planning of any
large scale microarray experiment.

We examined the accuracy of our sample size estimates by
performing a series of numerical studies. The conclusions
are that our estimates are reasonably accurate, and have
low variance, for moderate cutoffs in the error measures
used. For stringent cutoffs we see a larger variance and a
somewhat lowered accuracy. Overall our method seems to
provide better results than the available sample size esti-
mation methods of Hu et al. and Pounds and Cheng. We
have also evaluated a method by Pawitan et al. for fitting
a mixture model and its use in sample size estimation. The
results using the method are good, and our tests suggest
that optimizing the method of Pawitan et al. for use in
sample size estimation could be interesting.

The decreased accuracy for stringent cutoffs found in the
estimates is probably due to the difficult task of describing
the distribution of regulated genes well near the point of
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Table 3: Evaluating sample size estimates from different methods.

http://www.biomedcentral.com/1471-2105/9/117

No correlation

With correlation

7, pFDR power True JMB (sd) HZW (sd)  PC (sd) PMMP (sd) True JMB (sd) HZW (sd)  PC (sd) PMMP (sd)
0.7 0.05 0.6 6 6 (0.4) 11 (0.0) 11 (1.6) 6 (0.4) 6 6 (0.5) 11 (0.0) I (1.4) 6 (0.5)
0.7 0.05 0.7 8 8 (0.6) 18 (0.2) 14 (2.8) 7 (1.0) 8 8 (1.0) 18 (0.0) 14 (2.3) 7 (0.9)
0.7 0.05 0.8 I 11 (1.5) 39 (0.7) 20 (4.8) 9 (2.5) I Il (2.0) 38 (0.5) 19 (4.1) 9 (2.0)
0.7 0.05 0.9 23 24 (34) 146 (2.4) 30 (9.5) 13 (6.5) 23 23 (45) 145 (1.6) 29 (7.9) 15 (6.8)
0.7 0.0l 0.6 9 9 (0.5) 17 (0.5) 16 (2.7) 9 (0.9) 9 9(0.7) 17 (0.5) 16 (2.4) 8(0.8)
0.7 0.0l 0.7 I I1(l.1) 28 (0.5) 2| (4.6) 10 (1.7) I I (1.7) 28 (0.5) 21 (3.8) 10 (1.7)
0.7 0.0l 0.8 16 16 (2.4) 60 (1.1) 28 (7.9) 13 (4.5) 16 16 (3.3) 60 (0.8) 27 (6.4) 13 (3.4
0.7 0.0l 0.9 34 37 (6.0) 231 (4.2) 42 (145) 18 (10.0) 32 36(7.5) 229 (2.8) 40 (11.9) 22 (11.3)
09 0.05 0.6 9 9 (2.1) 16 (0.5) 24 (7.8) 9 (3.9 8 9 (2.6) 16 (0.5) 23 (6.6) 9 (3.1)
09 0.05 0.7 I I'1(3.5) 27 (0.8) 31 (11.4) 11 @7.0) 10 12 (4.1) 27 (0.8) 30 (9.7) I'1(6.6)
09 0.05 0.8 16 16 (5.2) 59 (1.7) 41 (16.7) 15 (11.1) 14 16 (5.9) 58 (1.7) 41 (144) 15(11.8)
09 0.05 0.9 34 26(7.6) 227(6.6) 60 (26.8) 21 (17.9) 29 25(8.5) 225 (6.7) 59 (23.1) 22(18.8)
0.9 0.0l 0.6 Il 12 (3.3) 22 (0.7) 33(11.8) 12 (6.0) I 12 (4.1) 22 (0.6) 32 (9.9) 12 (4.9)
09 0.0l 0.7 14 15 (5.3) 38 (1.2) 43 (16.9) 15(10.4) 13 16 (6.0) 37 (1.2) 42 (144) 15(9.9)
09 0.1 0.8 21 21 (7.4) 82 (2.6) 56 (24.3) 20 (15.6) 19 21 (84) 81 (2.7) 55(20.9) 21 (16.8)
09 0.0l 0.9 46  35(10.0) 318(10.0) 79(37.2) 27 (24.3) 38 33(11.3) 316(11.3) 78(320) 29 (25.1)
0.7 0.05 0.6 6 6(0.2) 6 (0.0) 10 (1.0) 6 (l.1) 6 6(0.3) 6 (0.0) 10 (1.1) 5(0.7)
0.7 0.05 0.7 7 8(0.7) 8(0.3) 12 (1.7) 8 (2.4) 7 8(0.7) 8 (0.1) 12 (1.8) 7 (1.6)
0.7 0.05 0.8 9 I (1.4) 16 (0.4) 16 (2.9) 10 (4.9) 9 I (1.5) 16 (0.2) 16 (3.2) 10 (3.8)
0.7 0.05 0.9 14 234.1) 56 (1.2) 24 (5.5) 18 (11.3) I5 24 (53) 56 (1.0) 25 (6.1) 14 (7.8)
0.7 0.0l 0.6 8 8 (0.6) 8 (0.0) I (1.7) 8(2.2) 8 8(0.7) 8 (0.0) 14 (1.8) 8 (1.0)
0.7 0.0l 0.7 10 I1(l.1) 12 0.1) 14 (2.8) 11 (4.3) 10 I (1.3) 12 (0.1) 18 (2.8) 10 (3.1)
0.7 0.0l 0.8 13 16 (2.5) 23 (0.5) 24 (4.6) 15 (8.4) 15 16 (2.5) 23 (0.3) 24 (5.0) 13 (6.4)
0.7 0.0l 0.9 26 36(7.2) 84 (1.8) 35 (8.4) 27 (17.8) 30 37(88) 83 (1.3) 34 (9.4) 20 (12.0)
09 0.05 0.6 8 10 (2.0) 7 (0.4) 21 (8.2) 8 (1.6) 8 10 (2.3) 8 (0.4) 24 (8.5) 9 (3.6)
09 0.05 0.7 9 13 (3.3) 11 (0.7) 27 (12.1) 10 (3.9) 9 13 (3.4) 12 (0.7) 32(128) 11 (5.7)
09 0.05 0.8 12 18 (5.5) 21 (1.2) 37 (19.0) 13(8.0) 13 19 (5.0) 23 (1.5) 44 (19.7) 14 (8.7)
09 0.05 0.9 24 31 (85) 76 (4.6) 54 (30.2) 18 (14.5) 25 31(79) 855.4) 65 (32.6) 20 (14.5)
09 0.1 0.6 I 13 (3.1) 9 (0.5) 29 (12.6) 11 (24) I 13 (3.6) 10 (0.6) 34(132) 12 (5.6)
09 0.0l 0.7 13 17 (5.0) 16 (0.6) 38(18.5) 14 (6.2) 14 19 (5.0) 17 (0.8) 45 (19.6) 15(8.2)
09 0.1 0.8 18 25(8.1) 28 (1.5) 50 (27.2) 17 (11.8) 19 26(7.1) 31 (1.9) 60(29.2) 19(123)
09 0.0l 0.9 51 43 (11.4) 103 (6.2) 72 (42.8) 23(19.8) 53  43(109) 115(7.9) 88 (46.3) 26 (19.7)

True and estimated per group sample sizes for simulated data sets having 7, = 0.7 and 7 = 0.9, and for different pFDR and average power cutoffs.
The reported sample size estimate is the average of 50 such estimates rounded off to nearest integer. The standard deviation (sd) was based on the
corresponding 50 data sets. Estimates made using the method discussed in this paper are termed JMB in the table (from the author names), while

estimates made by the methods discussed by Hu et al. [13], Pounds and Cheng [14] and Pawitan et al. [16] are termed HZW, PC and PMMP

respectively.

no regulation, that is near ¢ = 0. It is important that the
characterization of such genes is precise, but also that it
does not affect the estimated distribution of the unregu-
lated genes. Our solution in this article was to introduce a
small neighbourhood around 6 = 0 in which no other
components are fitted. Better ways of differentiating
between the two distributions close to 0 could be a subject
of further study.

In our tests we also checked how correlation among the
genes would affect the sample size estimates. We found
that the estimates were only moderately affected. Never-
theless, we believe that estimation methods that incorpo-
rate correlation among genes is an important topic for
future studies.

For the microarray setting the use of a moderated t-statis-
tic, as discussed in [31], is often more appropriate than
the ordinary t-statistic. For our method to be directly
applicable to this type of statistic one would need to know
that moderated t-statistics for unregulated genes follow a
central t-distribution, and one would need the distribu-
tion's degrees of freedom. In [31] this distributional result
is shown to hold, with augmented degrees of freedom for
the central t-distribution. One would also need to know
that moderated t-statistics for a regulated gene, with some
given degree of regulation, follow a noncentral t-distribu-
tion, and one would need the distribution's degrees of
freedom and noncentrality parameter. For this second
result we are not aware of any findings. If this second
result is shown to hold, then our method can be applied
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to moderated t-statistics as well. Testing the performance
of our algorithm with moderated t-statistics, even without
the second result, could also be interesting.

In our work we focus on average power as the control
measure used along with the pFDR. One should note that
having an average power of 0.9 means being able to cor-
rectly identify 90% of the regulated genes. In many exper-
iments achieving this may not be interesting. One
example is studies that aim only at identifying the small
set of marker genes that best distinguishes one sample
from the other. Other examples are experiments that,
when comparing a treated and untreated tissue sample,
only are interested in the most heavily affected regulatory
pathways. In both these examples a power well below 0.9
could suffice. Our estimates are in this case particularly
useful since they seem to be both accurate, and have low
variance, for moderate power cutoffs with a low pFDR.

Although our main goal in this paper was fitting a model
to be used in sample size estimation we would like to
emphasize that the fitted model itself does provide some
interesting information. One example is a direct estimate
of =, the proportion of unregulated genes, which we
often found to be better than the one made by existing
methods.

Other subjects for future work include a speed-up of the
algorithm. The convergence of a straightforward EM-algo-
rithm is known to be rather slow, and methods that
improve on it will be implemented. Another issue that
may be investigated further is picking the number of
model components. As already mentioned, using a few
more components than suggested by the traditionally
used information criteria would often improve sample
size estimates substantially. A different approach might be
needed to choose the number of components in this set-
ting.

The methods discussed in this article are applicable to any
two-sample comparative multiple hypothesis testing situ-
ation where t-tests are used, and not only to problems in
the microarray setting.
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