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A two-step site and mRNA-level model for
predicting microRNA targets
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Abstract

Background: Despite experiments showing that the number of microRNA (miRNA) target sites is critical for miRNA
targeting, most existing methods focus on identifying individual miRNA target sites and do not model
contributions of multiple target sites to miRNA regulation. To address this possible fault, we developed a miRNA
target prediction model that recognizes the individual characteristics of functional binding sites and the global
characteristics of miRNA-targeted mRNAs.

Results: Benchmark experiments showed that this two-step model generally had a higher overall performance
than other established miRNA target prediction algorithms and that the model was especially suited to identify
true miRNA targets among genes that all contain conserved target sites.

Conclusions: This improved performance could partly be explained by the model not relying on conservation
when predicting targets. The critical factors for the model’s performance, however, were mRNA-level features that
characterized the number and strength of individual target sites within the mRNA. The model is available for
online predictions or as pre-computed predictions on the human genome http://tare.medisin.ntnu.no/mirna_target.

Background
MicroRNAs (miRNAs) are a class of non-coding RNAs
that can regulate many protein coding genes by base-
paring to messenger RNA (mRNA) targets [1]. Their
roles in gene regulation have been identified in numer-
ous biological processes, such as developmental timing,
apoptosis, and cell proliferation [2,3]. The precise
mechanism of miRNA targeting is unknown, but animal
miRNAs have a small region called “seed” site (Figure
1), which is located at positions 2-7 of the 5’ end of
miRNAs and is known to contribute to target recogni-
tion significantly [4]. Most target sites are found in the
mRNA 3’ untranslated region (UTR) [1,5,6] and are well
conserved among closely related species [2]. A high
number of coding genes, except for those with short 3’
UTRs such as house keeping genes, are likely regulated
by one or multiple miRNAs [7].
Because of the important genome-wide regulatory

roles of miRNAs, many computational approaches have
been developed to obtain high-throughput genome-wide

miRNA target predictions in animals [4,8,9]. Most exist-
ing algorithms first perform sequence search on 3’
UTRs to find regions that have complementarity to
miRNAs preferably at their seed sites. As this initial step
usually results in thousands of potential target sites and
many false positives, most algorithms take additional
features into consideration; for example, evolutionary
conservation filters can decrease the false positive rate,
but such filters are effective only for conserved miRNAs
with sites of conserved function. Several other features
have been experimentally and computationally identi-
fied, and we have categorized them into two groups:
(i) individual target site level features and (ii) global
mRNA level features. The six target site level features
currently known are (i.a) site conservation, (i.b) addi-
tional base paring in 3’ portion of miRNA, especially at
positions 13-16 of miRNA [5,10], (i.c) AU-rich context
within 30 nucleotides upstream and downstream from
the seed site [5], (i.d) avoidance of the region from the
stop codon to 15 nt downstream in 3’ UTR [5,11], (i.e)
tendency of targeting near both ends of 3’ UTR when
the length of the 3’ UTR is > 2000 [5,12], and (i.f) site
accessibility [13,14]. Furthermore, there are three known
mRNA level features: (ii.a) high cooperativity of two
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miRNA target sites when the distance between them is
17-35 nt [15], (ii.b) length of 3’ UTR [4], and (ii.c) the
number of potential target sites per 3’ UTR [16].
Although some algorithms base their predictions on

only one of these additional features, such as conservation
[12] or accessibility [13,14], the algorithms commonly use
different combinations of features [9]. Most existing algo-
rithms focus on identifying individual target sites, how-
ever; few model miRNA targeting at the level of the
mRNA and only PicTar tries to explicitly model the con-
tribution of multiple target sites to miRNA regulation [17].
Here, we describe a novel two-step classification

model that recognizes the individual characteristics of
functional binding sites and the global properties of
mRNAs regulated by candidate miRNAs. We base the
model on support vector machines (SVM) [18], use
large-scale microarray datasets to train and test the
model, and benchmark the model against five popular
algorithms - TargetScan [5], miRanda (MicroCosm)
[16,19], PicTar, PITA [13], and mirTarget2 [20]. As
these five algorithms represent different prediction stra-
tegies and can have different strengths and weaknesses,
we have used six different benchmarks that account for
overall predictions, highly specific predictions, predic-
tions of conserved sites, and method-specific data varia-
tions. Our method performs better than or equivalent to
the other existing algorithms in the six benchmarks
when tested on different cross-validation experiments or
on an independent test set.

Results and Discussion
Our goal was to create and test a miRNA target predic-
tion approach that modeled both the characteristics of
individual target sites and the global properties of
mRNAs regulated by candidate miRNAs. Although there
are few experimentally validated miRNA targets, several
datasets from microarray experiments where miRNAs
were ectopically expressed are available for public use
[5,6,21]. High-throughput proteomics experiments have
shown that most miRNA targets are regulated at both
the mRNA and protein level [22,23], which means that
these microarray data are relevant and useful for devel-
oping miRNA targeting models. In addition, there are
several microarray experiments for small interfering
RNA (siRNA) off-target effects [24,25]. Transfected siR-
NAs are known to act like miRNAs [26,27] and degrade
numerous unintended (off-target) mRNAs. Conse-
quently, microarray datasets for siRNA off-targets can
be used to reveal aspects of miRNA regulation. Unlike
miRNA target sites, however, off-target sites for such
artificial and exogenous siRNAs are not evolutionary
conserved.
We collected four such microarray datasets - two

miRNA and two siRNA datasets - to use as training
data to develop our method. Based on an analysis of
how different seed types covered the positive and nega-
tive target candidates within these datasets (see Addi-
tional file 1:Supplementary Results), we chose to
develop a target-site model that included both stringent
and non-stringent seed sites. Our hypothesis was that by
including non-stringent seed sites and training two sepa-
rate SVMs on target site and mRNA-level features, we
would create an accurate miRNA target prediction
method with high sensitivity and overall prediction
performance.

SVM prediction performs well with target site features
The first step of our two-step SVM classification
approach was to construct a target site level classifier
that can separate positive target sites from negative tar-
get sites. To construct this target site level classifier, we
included several features known or presumed predictive
of miRNA targeting (Additional file 1:Table S1). Four
sub-steps were applied and then iterated until the most
effective classifier was found. First, 10-fold cross-valida-
tion was performed to evaluate the prediction ability.
Second, a receiver operating characteristic (ROC) curve
was plotted to visualize the result of the 10-fold cross-
validation and the area under the ROC curve (AUC)
was used as a performance measure. The ROC curve
and its AUC value, or “ROC score”, is a simple but
powerful measure of overall classification performance
as the curve shows a classifier’s sensitivity and specificity
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Figure 1 miRNA seed types. Nine seed types are categorized in
two groups; “Stringent” (8mer, 7mer-A1, and 7mer-m8) and “Non-
stringent” (6mer, GUM, GUT, LP, BM and BT). GUM and GUT allow
one GU wobble in the seed region. GUM has the U on miRNA
whereas GUT has the U on the target. LP, BM and BT allow one
mismatch. LP has one loop, BM has one bulge on miRNA, and BT
has one bulge on the target.
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across all thresholds. Third, as an SVM can take both
linear and non-linear kernels with different parameters,
models with different kernels were assessed. Fourth, to
check the classifier’s robustness across different experi-
mental settings, classifiers were constructed from only
three microarray experiments instead of four and tested
on the remaining microarray set.
These iterative tests found that a classifier with non-

linear, homogeneous polynomial kernel (parameters
degree 5 and cost factor 2) showed the best perfor-
mance with the ROC score 0.70 (Figure 2A). The small
standard errors in the ROC plot indicated that all classi-
fiers from this 10-fold cross-validation had similar
prediction power and that the models gave robust classi-
fications. This conclusion was supported by similar
results for models trained on three of the four microar-
ray experiments (Additional file 1:Figure S1). Moreover,
all the four classifiers from different combinations of
three microarray datasets could classify the remaining
one dataset with good ROC scores (Figure 3A-D). These
results indicated that our target site level classifiers were
stable and accurate across experimental conditions, irre-
spective of whether the sequences were miRNAs or
siRNAs.

Seed type shows the strongest influence on target site
level training
It is important to identify the influence of the features
on the SVM’s prediction accuracy, as this can reveal
new information about miRNA target recognition. To
evaluate the influence of all the target site level features
used in our model, 10-fold cross-validation was per-
formed repeatedly with eliminating only one feature at a
time, and then ROC scores were compared. These

experiments showed that the “seed type” was the stron-
gest feature with a reduced ROC score of 0.03 (Addi-
tional file 1:Table S2). Reduced ROC scores indicate
that the feature is important, as the SVM would have
more prediction power with the feature included. Other
features showed little or no decline of ROC scores, but
none had substantial negative effects.

Genes with long 3’ UTRs tend to have few positive target
sites in microarray experiments
While constructing and analyzing the mRNA level train-
ing data, we noticed that genes with more than 8 poten-
tial target sites appeared to be underrepresented among
the positives. This was contrary to our expectations, as
experimental data indicate that additional target sites
give increased target repression [28]. Additional analyses
revealed two trends. First, genes with long 3’ UTRs (>
5000 nt) did generally not appear to be miRNA targets -
irrespective of the genes’ number of potential miRNA
target sites (Figure 4). Second, positive targets generally
had a higher density of potential target sites (Kolmo-
gorov-Smirnov test, p-value: 4e-11) - that is, number of
sites divided by the 3’ UTR length - than negative target
candidates had (Additional file 1:Figure S2).
One possible explanation for this result is competition

between transfected RNAs and endogenous miRNAs
[29]. Genes with long 3’ UTRs tend to be targeted by
several endogenous miRNAs, therefore the transfected
RNAs may have less effect on these genes. Another pos-
sible explanation for this result is that genes with long
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Figure 2 Target site and mRNA level classifiers provide robust
and accurate predictions. The ROC curve shows the average true
positive rate (sensitivity) vs. false positive rate of the10-fold cross-
validations for the target site (A) and mRNA level (B) classifiers. Error
bars show standard errors; the dotted line illustrates random
prediction; AUC indicates the average and the standard error of the
average of the area under the curve (AUC; ROC Score) of the ten
individual cross-validation test results

Target site
Jackson

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.62

Target site
Lim

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.66

Target site
Birmingham

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.64

Target site
Grimson

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.71

A B C D

mRNA
Jackson

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.68

mRNA
Lim

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.89

mRNA
Birmingham

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.74

mRNA
Grimson

FPR

TP
R

0.0 0.4 0.8

0.
0

0.
4

0.
8

0.90

E F G H

Figure 3 Target site and mRNA level classifiers generalize to
microarray datasets not seen during training. The ROC graphs
show the performance of four target site level classifiers (A-D) and
four mRNA level classifiers (E-H) trained on three microarray datasets
and tested on the remaining one dataset. Dotted lines illustrate
random prediction. The ROC score is shown in the box. TPR
indicates True positive rate, while FPR indicates False positive rate.
Figure headings state the dataset used for testing.
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3’ UTRs have fewer target sites within these active
regions because active sites are preferentially located
close to the stop codon or poly-A site within long 3’
UTRs [5]. However, we found that the positive targets
and negative target candidates had a similar number of
target sites within the regions close to the stop codon
and poly-A site (data not shown). Thus, a high density
of target sites within the middle region of long 3’ UTRs
appeared to be important for target regulation.
We used two approaches to take this unexpected dis-

tribution of true positive targets into consideration.
First, a new binary feature was introduced to distinguish
the genes with less than 7 potential target sites from the
others. Second, 1000 randomly selected non-target
genes with more than 7 target sites were explicitly
added to the training data. Because of a practical limita-
tion on the maximum number of training data, most
of these none-target genes with long 3’ UTRs would
otherwise have been excluded if we had constructed
the training data by random sampling. These two
approaches had a positive effect on target predictions
for genes with many target site candidates (Additional
file 1:Figure S3).

mRNA features improve SVM predictions
The second step of our two-step SVM classification
approach was to construct an mRNA level classifier that
can separate down-regulated genes from non down-
regulated genes. This subdivision enabled us to incorporate

features related to the predicted strength of individual
target sites and the distance between these sites that had
not been used in other algorithms before (Additional file
1:Table S3). We used the same four steps as for the
target site level to find the most effective mRNA level
classifier.
The classifier showed the best performance when a

linear kernel with default parameters was used (ROC
score 0.80). As for the target site level, the ROC curve
for the classifier had small standard errors, indicating
robust classifications (Figure 2B). Target predictions also
retained good performance with classifiers trained with
only three microarray datasets (Additional file 1:Figure
S4). These classifiers could also predict the remaining
data set with good accuracy (Figure 3E-H), but the clas-
sifiers showed increased variation between the datasets
compared with the corresponding target site level classi-
fiers. Whereas the mRNA level classifiers greatly
improved upon the target site level classifiers’ perfor-
mance on the miRNA data (compare panels B and F,
and D and H in Figure 3), the mRNA level classifiers
gave smaller improvements on the siRNA data (panels
A and E, and C and G in Figure 3). Thus, the targets for
exogenous siRNAs were more difficult to predict than
the targets for endogenous miRNAs were - at least in
the datasets used in these experiments. This could not
be explained by different preferences for strand loading
between the miRNAs and siRNAs, as removing the siR-
NAs where the intended guide strand was not clearly
preferred for RISC incorporation did not improve the
SVM’s performance (data not shown). Despite these dif-
ferences, the mRNA level classifier showed good
improvement compared with the target site level classi-
fier and could predict target genes with high accuracy.

Number and strength of putative miRNA target sites
strongly predict miRNA regulation
As for the target site level features, we wanted to deter-
mine to what extent the different mRNA level features
influenced target predictions. We therefore performed a
similar evaluation of feature influence for the mRNA
level. The result showed that the “distribution of discri-
minant values” was the strongest feature with a reduced
ROC score of 0.04 (Additional file 1:Table S4). Eliminat-
ing other features had little effect on the ROC scores,
but additional analyses showed that at least the target-
site distance features contributed to separate the down-
regulated from the unaffected genes (see Additional file
1:Supplementary Results). As the “distribution” feature
essentially counted the number of high-scoring putative
target sites within the mRNA, these results showed that
strong target sites are important for miRNA regulation.
The target site level feature analyses indicated that tar-

get site accessibility and conservation had little or no
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Figure 4 Fewer positive target sites for genes with long 3’
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effect on the SVM’s predictive performance and addi-
tional analyses at the mRNA level confirmed these
results (see Additional file 1:Supplementary Results). As
computing site accessibility and conservation require
substantial computational resources, we excluded these
features from the final model. Recently, a tool based on
support vector regression (SVR) reported improved tar-
get prediction performance [30]. We also tested whether
using SVR instead of classification would further
improve the results, but instead found that SVR gave
reduced performance (see Additional file 1:Supplemen-
tary Results).

Two-step SVM shows strong prediction ability and
outperforms other algorithms when tested on
independent dataset
Both the 10-fold cross-validation and single dataset
hold-out experiments showed that the two-step SVM
classifiers could predict miRNA target sites in unseen
data with high accuracy. Nevertheless, to further test the
SVM classifiers, we evaluated the classifiers on an inde-
pendent test set and compared their performance with
those of other existing target prediction algorithms. We
included seven popular miRNA target prediction algo-
rithms - PITA All, PITA Top, TargetScan, TargetScan
with conserved genes, miRanda (MicroCosm), mirTar-
get2, and PicTar - in the comparisons, and used the
Linsley dataset because only mirTarget2 had used this
microarray dataset as a training set. The predictions of
three algorithms - our SVM approach, PITA All, and
TargetScan - were generated without conservation infor-
mation, but the predictions of the other algorithms were
generated with conservation information as features or
filters. We included mirTarget2 as a reference - despite
mirTarget2 using the Linsley dataset for training -
because the algorithm, similar to our two-step SVM,
adopted a machine learning approach.
The algorithms’ predictions had little overlap because

all algorithms used different definitions of potential tar-
get sites. Hence, it was important to use different data-
sets to assess and compare the algorithms’ prediction
performance precisely. We used six types of datasets as
benchmarks; these were, ROC with All genes, ROC10*n,
ROC with 7mer + Conservation, and ROC with Tar-
getScan, miRanda, and PicTar datasets (see Additional
file 1:Supplementary Methods).
The “ROC with All genes” dataset was comprised of

all the records from the microarray dataset. Down regu-
lated (positive) and unaffected (negative) genes were
decided solely by the microarray results regardless of
seed matching or any other definitions set by different
algorithms. The purpose of using this dataset was to
evaluate the algorithms’ overall performance on the
entire microarray experiment. The resulting ROC curves

showed that our SVM approach outperformed the other
seven algorithms in terms of sensitivity and overall tar-
get recognition (Figure 5A). The number of positive
genes found by our SVM approach was 564, which was
the largest among all the algorithms (Additional file 1:
Table S5). In comparison, PITA All found a similar
number of positive genes, but its predictions were less
specific than our SVM’s predictions were. At similar
true positive rates, PITA All returned more false posi-
tives, which resulted in a difference in ROC score of
0.05 between SVM and PITA All. Similar to PITA, miR-
anda returned less specific predictions than the other
algorithms did, although miRanda’s predictions were
more specific than PITA All’s at similar true positive
rates. miRanda also had the lowest sensitivity of the dif-
ferent algorithms. Apart from differences in sensitivity,
the remaining algorithms had similar prediction specifi-
cities; mirTarget2 appeared to give slightly more specific
predictions than the other algorithms did, but our SVM
appeared to have the highest specificity of the methods
for which the Linsley set truly was an independent test
set. These differences were small, however, and only
apparent for the algorithms’ most sensitive predictions.
To elucidate the algorithms’ performance at highly

specific target predictions, we turned to the “ROC10*n“
benchmark (Figure 5B), which is a modified version of
ROC50 [31] that shows the algorithms’ performance up
to 10 * n false positive predictions (n is the number of
miRNAs in the dataset; n = 9 for the Linsley set).
Although the SVM’s ROC10*n score is slightly lower
than those of the two TargetScan versions and mirTar-
get2, the SVM again has the highest sensitivity of the
algorithms (excluding mirTarget2 and PicTar). Similarly,
PITA All again shows very low sensitivity, whereas Pic-
Tar and miRanda have similar performance. Thus, the
results from the ROC10*n benchmark indicate that our
SVM approach has very good performance with top
scored genes (Figure 5B).
As many of the algorithms only considered stringent

seed types and filtered predictions based on conserva-
tion, we constructed the “ROC with 7mer + Conserva-
tion” benchmark. The benchmark only consisted of the
genes with stringent seeds found in conserved regions.
Consequently, the benchmark essentially only consid-
ered the most likely candidate miRNA target genes and
showed how good the different algorithms are at finding
the real targets among genes that all are likely targets.
Despite that our approach was not optimized for this
type of dataset, the SVM delivered more sensitive and
specific predictions than the other methods (Figure 5C;
again excluding mirTarget2). Interestingly, the algo-
rithms optimized for recognizing conserved stringent
seed targets - TargetScan with conserved genes, PITA
Top and PicTar - all had markedly lower performance
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than the SVM. One likely explanation for this result is
that other non-conserved seeds within the genes are
important for miRNA targeting as well. Supporting this
hypothesis, TargetScan - which also considers non-
conserved seeds - had a markedly better performance
than TargetScan with conserved genes. miRanda showed
especially poor performance on the conservation bench-
mark, but this was likely because the miRanda predic-
tions had very few overlaps with the benchmark dataset
due to different conservation filtering. Indeed, miRanda
had better performance on its method-specific bench-
marks (Figure S5, S7, and S9). The three method-
specific benchmarks that use different definitions of
sequence conservation and separate benchmark tests on
the four training datasets also showed similar results as
the 7mer + Conservation benchmark (Additional file 1:
Figure S5-S9). Thus, lack of conservation does not guar-
antee lack of function, and effectively incorporating all
seed types in a common prediction framework, such as
our SVM, appears to be essential for correctly prioritiz-
ing lists of candidate miRNA targets.

Two-step SVM’s improved performance holds when
detecting protein level targets
Although several recent studies have suggested the pos-
sibility of mRNA repression as miRNA’s major regula-
tory mode [22,23], it is still interesting to verify the
prediction power at both mRNA and protein levels. We
therefore used two publically available proteomics data-
sets of miRNA targeting, Baek [22] and Selbach [23], as
training sets to create a new proteomics-based two-step

SVM classifier and as independent datasets to test the
mRNA-based two-step SVM classifier. The proteomics-
based SVM showed comparable performance to the
mRNA-based SVM (Additional file 1:Figure S14), which
indicated that features important for predicting mRNA-
level miRNA targets are also relevant for predicting pro-
tein-level targets. Indeed, when we benchmarked the
mRNA-based classifiers against the Selbach and Baek
datasets, the SVM outperformed the other seven algo-
rithms in most cases and especially on the ROC10*n

benchmarks (Table 1; Figure 6). Note that on these two
sets, which were true independent test sets for mirTar-
get2 and therefore should be more representative of the
method’s performance than the Linsley set, mirTarget2
had similar or slightly lower performance than the two
TargetScan versions. These results as well as additional
benchmark results (Additional file 1:Figure S15, S16;
Table S8, S9) suggest that our two-step SVM approach
is also effective at detecting target genes at protein level.

Different criteria of dataset selection do not affect SVM
performance
We trained and tested our model with alternative data
selection criteria to analyze the influence of data selec-
tion on the target prediction power. We verified two
data selection criteria, (i) inclusion and exclusion of up
regulated targets in the negative record sets, and (ii) dif-
ferent log ratio threshold values to create positive record
sets. The results suggest that our SVM approach is very
flexible and robust, and it can retain its performance
even when trained and tested on datasets created by
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Figure 6 Benchmark results on proteomics data confirms the two-step SVM’s strong performance. Receiver operating characteristic (ROC)
graphs show the performance of 8 different target prediction algorithms on the two proteomics datasets, Selbach (A, B, and C) and Baek (D, E,
and F). The benchmarks used for the evaluation were (A) and (D) ROC with All genes, (B) and (E) ROC10*n, (C) and (F) ROC with 7mer +
Conservation. See Figure 5 for details regarding the algorithms.

Table 1 ROC scores of one transcriptomics and two proteomics datasets

Dataset SVM PITA TScan miRan PITAT TS_C mirT2 PicTa

Linsley All 0.81 0.76 0.75 0.55 0.60 0.61 0.63 0.58

ROC10*n 0.0129 0.0018 0.0173 0.0105 0.0035 0.0170 0.0196 0.0113

7m+C 0.73 0.61 0.69 0.43 0.57 0.59 0.67 0.57

Selback All 0.64 0.61 0.61 0.52 0.55 0.55 0.54 0.53

ROC10*n 0.0253 0.0042 0.0212 0.0079 0.0138 0.0213 0.0231 0.0210

7m+C 0.71 0.61 0.69 0.42 0.60 0.63 0.60 0.58

Baek All 0.56 0.56 0.56 0.51 0.52 0.53 0.52 0.52

ROC10*n 0.0193 0.0046 0.0157 0.0081 0.0148 0.0174 0.0086 0.0131

7m+C 0.59 0.60 0.62 0.44 0.56 0.61 0.54 0.54

Three benchmarks, All, ROC10*n, 7m+C (7mer+Conservation), were performed on one transcripomics (Linsley) and two proteomics (Baek and Selback) datasets.
The ROC scores were calculated for eight algorithms, SVM, PITA, TScan (TargetScan), miRan (miRanda), PITAT (PITA Top), TS_C (TargetScan with conserved genes),
mirT2 (mirTarget2) and PicTa (PicTar)
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different parameter settings (see Additional file 1:Sup-
plementary Results).

Conclusions
We have presented and evaluated a novel two-step
SVM-based miRNA target prediction model that recog-
nizes the individual characteristics of functional binding
sites and the global characteristics of miRNA-targeted
mRNAs. When tested on several different benchmarks,
the model generally outperformed other well-known
miRNA target prediction algorithms. In particular, the
two-step SVM showed a much stronger ability to iden-
tify true miRNA targets among genes that all are likely
targets with conserved stringent seed sites.
The model relies on several target site and mRNA

characteristics and its design is flexible so that it is
easy to integrate new characteristics when such are
reported. Our current model does not include target
site accessibility and conservation information, how-
ever, as our tests showed that these were not important
features in our model. This result is very important for
genome-wide analysis because assessing target site con-
servation and especially target site accessibility have
high computational costs. Consequently, the model can
for example be used online for identifying siRNA off-
targets.
By modeling miRNA targeting in two steps - recogni-

tion of individual target sites and regulation of mRNA -
we have incorporated several new characteristics
neglected by other tools, such as miRNAs’ distance
dependence for synergistic regulation. Moreover,
through this two-step modeling, we have introduced
several features that effectively capture the number and
relative strength of individual target sites within target
candidates. Our results show that these features are the
most important characteristics for identifying miRNA-
regulated genes.
A potential limitation is that our model is trained on

data from over-expression experiments, which to some
extent are affected by interactions with endogenous
miRNAs [29]. Including data from Argonaute (AGO)
pull-down [32-35] or miRNA knock-down [21-23]
experiments could reduce potential bias from such
interactions, but may also introduce additional bias.
Most of the current AGO pull-down experiments were,
for example, done with ectopically expressed and tagged
AGO-fusion proteins [32-34]. As for miRNA knock-
down, there are currently few datasets available.
Another potential limitation is that our model was

trained on data from human cell lines. Although the
miRNA regulatory mechanisms appear to be shared in
animals, we cannot discount species-specific variation,
which may result in the current human-optimized
model having sub-optimal performance in, for example,

invertebrates. Testing and optimizing the model on
high-throughput data from additional species - especially
species that are remotely related to humans - would
therefore be interesting future work.
Even though our new model represents a significant

step towards accurate miRNA target prediction, it is still
challenging to achieve very precise target predictions
because many miRNAs have spatial, temporal, or cell-
type-specific expression. Integrating target predictions
with expression profiles of miRNAs and putative targets
can be one way to improve predictions; for example, by
taking into account miRNA saturation [29], target con-
centration [36], or expression of RNA binding proteins
[37]. Our two-step SVM should be ideal for such ana-
lyses, as it has a high sensitivity and better overall per-
formance compared with existing target prediction
methods.

Methods
Datasets
We downloaded the Jackson [25], Lim [6], Grimson [5],
and Linsley [21] datasets from the Gene Expression
Omnibus (GEO) database [GEO:GSE5814, GEO:GSE2075,
GEO:GSE8501, GEO:GSE6838] [38] and the Birming-
ham [24] dataset from the ArrayExpress database
[ArrayExpress:E-MEXP-668] [39]. We mapped microar-
ray probes to human RefSeq transcripts (hg18) based on
GEO and ArrayExpress annotations and downloaded 3’
UTR sequences from the University of California, Santa
Cruz [40]. Two proteomics datasets, Selbach [23] and
Baek [22], were obtained from the original publications
along with miRBase and RefSeq IDs. MicroRNA and
siRNA sequence data (Additional file 1:Table S6) were
obtained from miRBase (release 14.0) [19] and from the
original publications, respectively. We used several cri-
teria, including p-values and log intensity ratios (see
Additional file 1:Supplementary Methods), to divided
the data into positive (down-regulated) and negative
genes.

Construction of target site level features
Potential target sites were identified by nine seed types
(8mer, 7mer-A1, 7mer-m8, 6mer, GUM, GUT, LP, BM
and BT) in human 3’ UTRs between position 15 from
the stop codon and the 3’ end. Partially overlapping
sites were only allowed among the sites with 8mer,
7mer-A1, 7mer-m8, and 6mer. The precedence of
selecting a target site among overlapping sites was
defined as 8mer = 7mer-A1 = 7mer-m8 = 6mer > GUM
> GUT > LP > BM > BT. Consequently, if a GUM and
GUT site overlapped, the GUM site was selected. Target
sites and their corresponding miRNAs were aligned
using the emboss needle software [41]; see Additional
file 1:Table S7 for needle parameters.
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We used 24 target site level features (Additional file 1:
Table S1). Site accessibility features were created by the
PITA software (version 3) by considering either no
flanking regions or flanking regions consisting of 3 nts
upstream and 15 nts downstream of the site [13]. Evolu-
tionary conservation scores were calculated from phast-
Cons 44, phyloP 44, and multiz 17-way [42-44] scores
downloaded from UCSC. The phastCons 44 scores were
used to calculate the average score of the whole target
site (position 1 to 20), whereas the phyloP 44 scores
were used as the conservation scores of the seed site
(position 1 to 8). All feature values were normalized
into values ranged between -1 and 1 by a linear trans-
form based on the feature’s minimum and maximum
values among the sites in the training set.

Construction of mRNA level features
Construction of mRNA level training data was done in
three steps. First, discriminant values, which are the out-
put values from SVM classification, were obtained from
the target site level 10-fold cross-validation test sets. In
our model, these discriminant values represented the
predicted regulatory strength of each target site. Second,
discriminant values were matched to mRNAs such that
an mRNA with for example three miRNA target sites
would have three discriminant values - one value for
each site. Third, the discriminant values and other infor-
mation about the target sites and the 3’ UTR were used
to calculate 17 mRNA level features (Additional file 1:
Table S3).
SVMs require fixed-length feature vectors, but the

number of target sites varies between mRNAs. Conse-
quently, to represent the number and predicted strength
of individual target sites within a given mRNA, we used
a feature representation that encoded the overall distri-
bution of target site level discriminant values. For each
mRNA, this feature consisted of 16 values that counted
the number of target site discriminant values that fell
within given percentile ranges of the overall discrimi-
nant value distribution. Specifically, two feature values
counted the number of upper and lower extreme discri-
minant values greater than and less than two standard
deviations away from the distribution mean. The
remaining 14 feature values counted the number of dis-
criminant values falling within the bins defined by the
25.00, 43.75, 57.81, 68.36, 76.27, 82.20, 86.65, 89.99,
92.49, 94.37, 95.78, 97.19, 98.6, and 100 percentiles
when the upper and lower extreme values were removed
from the discriminant value distribution. We used these
percentile thresholds because we expected a high resolu-
tion at the upper tail of the discriminant value distribu-
tion to be useful for predictions. Supporting this
hypothesis, replacing these 14 thresholds with 14

uniformly spaced thresholds gave markedly poorer SVM
performance (data not shown).

Target site/mRNA level training
We used the PyML library (Version 0.72) [45] for SVM
training, 10-fold cross-validation, classification, and eva-
luation, and the R package ROCR [46] to plot Receiver
Operating Characteristics (ROC) curves and to calculate
the area under the ROC curve (AUC).
To optimize our model, we tested a linear kernel and

three non-linear kernels - Gaussian, homogeneous poly-
nomial, and inhomogeneous polynomial. In addition to
the four kernel types, three parameters - cost factor (C),
gamma (g), and degree (d) - were tested. The parameter
ranges were C = 2(2n - 5) (0 ≤ n ≤ 11), g = 2(2n - 13) (0 ≤
n ≤ 10), and d = n (2 ≤ n ≤ 8) as previously recom-
mended [47].

Data retrieval for benchmarks
Prediction data were downloaded from the PITA, Tar-
getScan, MicroCosm, miRDB, and PicTar websites (see
Additional file 1:Supplementary Methods).

Additional material

Additional file 1: Supplementary information. The file contains five
sections of supplementary information, and the sections are:
Supplementary Methods (3 subsections), Supplementary Results (6
subsections), Supplementary Tables (15 tables), Supplementary Figures
(22 figures), and the Reference.
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