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Woody plants in boreal to arctic environments and high mountains survive prolonged
exposure to temperatures below −40◦C and minimum temperatures below −60◦C, and
laboratory tests show that many of these species can also survive immersion in liquid
nitrogen at −196◦C. Studies of biochemical changes that occur during acclimation,
including recent proteomic and metabolomic studies, have identified changes in
carbohydrate and compatible solute concentrations, membrane lipid composition, and
proteins, notably dehydrins, that may have important roles in survival at extreme low
temperature (ELT). Consideration of the biophysical mechanisms of membrane stress
and strain lead to the following hypotheses for cellular and molecular mechanisms of
survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures
above the lipid phase transition temperature (−20 to −30◦C), preventing phase changes
that result in irreversible injury. (2) High concentrations of oligosaccharides promote
vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would
prevent deleterious interactions between membranes. (3) Dehydrins bind membranes
and further promote vitrification or act stearically to prevent membrane–membrane
interactions.
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INTRODUCTION

Much of the more than 100-year-old body of literature on low temperature (LT) tolerance in plants
is focused on herbaceous crop species such as cereal grasses, potato, alfalfa and, more recently,
Arabidopsis, with more limited work on woody plants including fruit and ornamental species and
some important forest species (e.g., Sakai and Larcher, 1987; Gusta et al., 2009; Wisniewski and
Gusta, 2014). These species may be subject to stress, injury, or death due to LT stress when grown
under marginal or changing temperature regimes. Therefore, an understanding of the genetics and
mechanisms of LT tolerance may ultimately lead to improved stress resistance and productivity
through breeding or genetic engineering. These studies have yielded considerable insight into the
molecular and biophysical mechanisms and functional genomics of tolerance of temperatures as
low as −50◦C. However, relatively little attention has been paid to plants that naturally survive
some of the lowest temperatures on Earth, which are the subject of this review. We will show
that extreme low temperature (ELT) tolerance is qualitatively different from more levels that are
moderate and likely involves unique biochemical and biophysical survival startegies.

In the taiga forest regions of Siberia and Canada, temperatures range from record lows of around
−64◦C to record highs of 36◦C, thereby spanning a full 100◦C. The mean monthly temperatures
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for December, January, and February are all around −40◦C.
Many of the plants and animals in this extreme environment
overwinter under the protection of snow or in the soil. In
contrast, evergreen pine (Pinus), spruce (Picea), and fir (Abies)
species, along with deciduous larch (Larix) and a few angiosperm
tree and shrub species, remain exposed above the snow and
survive the extreme cold, variable light, dry conditions, and high
winds of the regions’ winters. Similarly, plants in arctic regions
and habitats where there is little snow may be exposed to ELT
and other stresses for months at time.

Exposed plants in these harsh environments likely employ
mechanisms of LT tolerance that go well beyond those of the well-
studied species. An understanding of how these plants survive
can contribute to crop improvement and technologies for dry
and frozen preservation of foods, drugs, and other biological
materials (e.g., Langis and Steponkus, 1990; Tada et al., 1990;
Siow et al., 2007). Because the phenology of dormancy and LT
tolerance may be affected by global warming (Kramer et al.,
2000), which is generally expected to be greatest in winter and
at higher latitudes, results of this work may also be applied in
understanding and predicting the implications of global warming
for individual tree species and forest ecosystems, especially in
boreal regions.

EXPLORING THE LIMITS

Minimum survival temperatures vary according to the natural
environment, acclimation state, and growth form of the plant
and, in many cases, may vary among different organs and tissues
within the plant (Larcher, 2003). Tissues of chilling intolerant
lowland tropical plants that never experience subfreezing
temperatures can be killed at temperatures between 0 and 10◦C,
while tissues that can survive these temperatures but not freezing
temperatures are referred to as chilling tolerant. Plants from
regions with episodic or persistent seasonal temperatures below
0◦C are usually described using pairs of the words frost, freezing,
or cold and tolerant, hardy, or resistant, with the terms tolerance,
hardiness, and resistance used to describe the phenomenon of
survival at LT. In this review we use the terms LT tolerant
and tolerance to cover the full spectrum of hardiness levels,
with the following temperature ranges and abbreviations used
to categorize plants at the lower end of the range: moderate
low temperature (MLT), −20 to −40◦C; intermediate low
temperature (ILT), −40 to −60◦C; and ELT, <−60◦C. While the
focus is on ELT tolerant plants, comparisons between these three
groups will help highlight the special features of ELT tolerance.

Plant species and varieties can be ranked or categorized by
minimum temperatures in their natural ranges or known survival
under field conditions, with the hardiness zones defined by
US Department of Agriculture often used as a reference (e.g.,
Bannister and Neuner, 2001). More systematic exploration of LT
tolerance requires quantitative estimates of minimum survival
temperatures for whole plants or plant tissues. These can be
assessed by a wide variety of methods. Typically, whole plants or
plant parts are exposed to a range of subfreezing temperatures
in a temperature-controlled chamber, although some studies

have applied LT treatments to intact plants in the field (e.g.,
Taschler et al., 2004). LT stress results in various observable or
measurable symptoms of injury including death of whole plants,
visible necrosis of specific tissues and organs, or less obvious
cellular symptoms that can be detected by vital staining, osmotic
responsiveness, chlorophyll fluorescence, or measurement of
relative electrolyte leakage (REL) in affected tissues. The latter
gives a useful measure of injury because a general symptom
of cellular injury is a loss of semipermeability of the plasma
membrane, which then results in the release of intracellular
electrolytes (Dexter et al., 1932; Palta and Li, 1980; Steponkus,
1984). These kinds of measurements are often used to determine
a minimum survival temperature or construct temperature
response curves and interpolate the temperature resulting in
50% plant or tissue death, LT50, (Figure 1A). Under natural
conditions, trees may be subject to more complex environmental
conditions than those imposed in laboratory tests, such as
prolonged LT, repeated freezing and thawing, solar warming
followed by rapid cooling, or light stress, so that laboratory
estimatesmay not correspond tominimum survival temperatures
in the field. In general, laboratory estimates of LT50 or minimum
survival temperature are somewhat to well below the minimum
temperatures encountered in the sampling location or natural
range of the species in question. When different methods are
directly compared, they often give generally similar estimates of
LT50 (e.g., Burr et al., 1990), and LT50 values based on the same
or similar methods can be compared among different tissues and
species or track relative changes in LT tolerance over time.

Using these methods, ELT tolerance has been documented in
at least 28 angiosperm and 45 gymnosperm species (Table 1).
Much of this comparative work was done by Sakai (Sakai, 1970,
1983; Sakai and Okada, 1971), including a wide-ranging study
of over 70 MLT to ELT tolerant angiosperm and gymnosperm
species sampled from North American climate regions ranging
from warm temperate to boreal (Sakai and Weiser, 1973).
More recently, Strimbeck et al. (2007) compared midwinter LT
tolerance parameters in 24 conifer species growing in a common
environment at a botanical garden in Trondheim, Norway and
Kreyling et al. (2015) compared autumn, winter, and spring
LT tolerance in 27 angiosperm and conifer tree species in a
botanical garden in Bayreuth, Germany. Both gardens are located
in regions with relatively mild winter climates. Despite this, LT
tolerance varied according to the climate in the region of origin
with Siberian and Canadian species exhibiting full ELT tolerance,
indicating that LT tolerance is under strong genetic control.

Table 1 lists numerous cases where stem, bud or needle
tissues survive quenching (immersion) in liquid nitrogen (LN2)
at −196◦C after slow cooling to some intermediate temperature.
Sakai (1960) was the first to demonstrate and explore this
phenomenon. He used regrowth tests to demonstrate that twigs
of Morus, Salix, and Populus species can survive LN2 quenching
(Sakai, 1960) or even quenching in liquid helium at −269◦C
(Sakai, 1962b) provided they are first slowly cooled to −30◦C.
In later work, he found that twigs of some Salix and Populus
species could completely survive quenching from temperatures
as high as −15◦C (Sakai, 1965). Survival of LN2 quenching after
precooling to temperatures in the −20 to −40◦C range has been
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FIGURE 1 | (A) Example of REL data and temperature response curves for
fully acclimated needles from MLT and ELT tolerant species (Picea sitchensis
and Picea obovata, respectively). Different symbols represent three different
trees for each species. Horizontal and vertical dashed lines show location of
the parameters RELmax and Tm, respectively for P. sitchensis (adapted from
Strimbeck et al., 2007). (B,C) Changes in temperature response curves and
Tm during acclimation for P. sitchensis (B) and P. obovata (C) (adapted from
Strimbeck et al., 2008).

TABLE 1 | Minimum temperatures (◦C) for complete survival in tissues of
ELT tolerant angiosperm (A) and gymnosperm (B) tree and shrub species
reported in the literature, based on laboratory freezing tests.

(A) Angiopserms

Species Buds Stem/ bark Source

Acer saccharum −80 −80 f

Betula nigra <−80 <−80 f

Betula papyrifera −15LN −15LN f

Betula pubescens −40LN l,k

Betula tauschii −15LN e

Cornus sericea −40LN h

Fraxinus excelsior −50LN o

Morus alba −30LN b

Populus balsamifera −15LN −15LN f

Populus sieboldi −30LN b

Populus tremuloides −15LN −15LN f, j

Populus trichocarpa <−60 <−60 f

Quercus macrocarpa <−60 <−60 f

Quercus robur −50LN o

Quercus rubra −50LN o

Robinia pseudoacacia −70LN c

Salix koriyanagi −30LN b

Salix nigra <−80 <−80 f

Salix sachalinensis −15LN d,e

Salix scouleriana <−60 <−60 f

Tilia americana <−80 <−80 f

Tilia cordata −50LN o

Tilia tomentosa −50LN o

Ulmus americana <−80 <−80 f

Celtis occidentalis (−40) <−80 f

Fraxinus pennsylvanica (−40) <−70 f

Juglans nigra (−30) <−80 f

Populus deltoides (−50) <−80 f

(B) Gymnosperms

Species Buds Needles/leaves Stem/bark Source

Abies balsamea −30LN −30LN <−80 f,e,n

Abies sibirica −70 <−80 n,g

Larix dahurica −70 g

Larix decidua −50LN o,e

Larix laricina −15LN −15LN f,e,g

Larix sibirica <−120 −70 e,g

Juniperus communis −60 −60 g

Picea abies −50LN o,n

Picea engelmanii −60 <−70 <−70 f,e,i

Picea glauca <−80 <−80 <−80 f,e,g,n

Picea mariana <−80 <−80 <−80 f,e,g

Picea obovata −70 <−80 n,g

Picea pungens −60 <−80 <−80 f

Pinus aristata −90 −90 −90 e,f

Pinus banksiana −30LN −30LN −30LN f,e,g

Pinus cembra −70 <−80 n,g

Pinus contorta −90 −90 −90 e,f,g

Pinus koraiensis −90 −90 −60LN e,g,n

Pinus monticola −90 −90 −90 e,f

(Continued)
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TABLE 1 | Continued

(B) Gymnosperms

Species Buds Needles/leaves Stem/bark Source

Pinus mugo −90 −90 −90 e

Pinus nigra −50LN o

Pinus parviflora −90 −90 −90 e

Pinus peuce −90 −50LN −90 o,e

Pinus pumila −90 −90 −90 e,g

Pinus reinosa −90 −148 −60LN f,e,j

Pinus rigida −70 −70 −70 e

Pinus rostrata −90 −90 −90 e

Pinus strobus −50LN −50LN −30LN f,a,e,g

Pinus sylvestris −90 −30LN −60LN e,g,m,n,o

Thuja occidentalis −50LN −50LN −50LN f,e

Tsuga canadensis <−60 −70 −60 f,e

Abies lasiocarpa (−40) <−80 <−80 f

Abies concolor (−40) <−80 <−80 f,e,g

Abies holophylla (−25) (−25) −70 e

Abies nephrolepis (−45) −70 −70 g

Abies procera (−40) −70 g

Abies sachalinensis (−45) −70 −70 f, e

Abies veitchii (−25) −70 −70 e,g

Picea abies (−35) <−70 <−70 e

Picea asperata (−45) −70 g

Picea glehnii (−45) <−70 <−70 e,g

Picea jezoensis (−45) −70 g

Picea omorika (−30) <−70 <−70 e

Picea rubens (−35) −60 −60 e

Pseudotsuga menziesii (−50) −70 −80 f

“LN” indicates survival of liquid nitrogen quenching after slow cooling to the given
temperature. “<” indicates survival at the lowest temperature employed in LT
testing, so that survival at lower temperatures has not been verified. Parentheses
denote minimum survival temperatures above −60, defined as the upper limit of
ELT. Reported values give the greatest degree of LT tolerance reported in the
literature, with the reference for the table values given first in the Source column
and secondary sources listed after. Sources: a, Parker, 1959; b, Sakai, 1960; c,
Siminovitch et al., 1968; d, Sakai, 1970; e, Sakai and Okada, 1971; f, Sakai and
Weiser, 1973; g, Sakai, 1983; h, Guy et al., 1986; i, Burr et al., 1989; j, Sutinen
et al., 1992; k, Rinne et al., 1998; l, Cox and Stushnoff, 2001; m, Repo et al., 2001;
n, Strimbeck et al., 2007; o, Kreyling et al., 2015.

confirmed in subsequent work on various ELT tolerant species
(Table 1). While ELT tolerance can be generally defined as the
ability to survive freezing, at least under laboratory conditions,
to temperatures below −60◦C, these and numerous other studies
show that tissues of species from boreal and arctic environments
can survive at temperatures approaching absolute zero (−273◦C)
indicating “absolute” LT tolerance.

The majority of ELT tolerant species originate in boreal
interior or cold temperate mountain regions where minimum
temperatures fall below −40◦C. Where LT50 or minimum
survival temperatures for buds are > −60◦C the species cannot
be considered fully ELT tolerant even though other tissues may
survive at lower temperatures (Table 1). Most of these partially
ELT tolerant species originate in somewhat warmer climate
regions. In some cases, LT tolerance has been shown to vary
within a species’ range or among seed sources within the range
(e.g., Sakai and Weiser, 1973), with ELT tolerance found in the
colder parts of the range.

BEYOND LT50: INTERPRETING
TEMPERATURE RESPONSE CURVES

Table 1 shows that numerous ELT tolerant species can completely
survive at temperatures as low as −80◦C or even immersion in
LN2 at −196◦C. In studies employing scoring of whole plant
survival or visible injury symptoms as the main response variable,
it is not possible to determine LT50 if none of the freezing
treatments produce at least 50% injury. Similarly, in studies
using REL or other relative measures, LT50 cannot be determined
unless the lowest test temperature completely kills the tissue to
give a reference value for 100% injury. This is why most of
the studies shown in Table 1 give minimum temperatures for
complete survival, often the minimum temperature that can be
achieved by the laboratory freezing system, rather than LT50s. In
a few cases, we have reinterpreted published freezing response
data to estimate minimum survival temperature in order to be
consistent.

Electrical conductivity measurements are made by soaking
samples in deionized water, sometimes with a low concentration
of detergent to improve sample wetting, for a specified amount
time, and then measuring the conductivity of the solution with
an electrode. REL is generally calculated as the conductivity
of a control or freeze-stressed sample to the conductivity of
the same sample after it is killed by heat. Although there
is considerable variation in the details of the method and
subsequent analysis, it remains as one of the most widely used
methods of assessing plant LT tolerance due to its convenience
and reproducibility. REL can in principle vary from 0 to 1
(or 0–100%) depending on the degree of injury produced by
freezing treatment. In practice, REL is generally around 0.1–0.2
in unstressed samples because sample preparation often involves
cutting the tissue that damages some cells. It is also usually <1.0
even in freeze-killed samples, most likely because autoclaving
releases ions bound in proteins or other cell components.
Sigmoid response curves can be fitted using a logistic or similar
function (e.g., Anderson et al., 1988), which allows objective
estimation of REL at the lower and upper asymptotes (RELmin
and RELmax).

Freezing treatment of even the most ELT tolerant species
gives reproducible sigmoid REL response curves, albeit with a
lower amplitude than in more sensitive species (Figure 1A).
In these curves, RELmax indicates the maximum response to
stress that can be achieved by slow freezing and provides an
important second measurement for comparative assessment of
LT tolerance in ELT versus MLT species. In fully acclimated
MLT tolerant species, maximum REL values produced by
freezing stress (RELmax) are usually around or above 0.7,
while in ELT tolerant species they may range from 0.2
to 0.4 (Figure 1A), even after LN2 quenching (Strimbeck
et al., 2007). The muted increase in REL in the latter group
indicates that there is some sub-lethal physiological effect at
the cellular level, most likely on the plasma membrane, that
results in moderate electrolyte leakage across the membrane
that may be reversed during recovery from LT stress (Arora
and Palta, 1986). Tm is the midpoint temperature of this
process, and can be used as an estimate of LT50 in MLT
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and more LT sensitive species or tissues, but not for those
that partially or fully survive freezing stress as indicated by
RELmax values < 0.7 (and corroborated by direct observation
of injury symptoms as discussed below). The ratio Tm/RELmax,
here called LT tolerance index (LTTI), provides a useful one-
dimensional index of relative LT tolerance (Strimbeck and
Schaberg, 2009). LTTI remains above −50 in needles of warm
temperate and oceanic conifer species such as Sitka spruce
(Picea sitchensis), but nears −200 in fully acclimated needles
of ELT tolerant species such as Siberian spruce (Picea obovata)
(Figure 2).

In conifer needles, freezing stress followed by exposure to
light results in visible symptoms ranging from mild, reversible
chlorosis to red–brown necrosis indicating tissue death. These
can be quantified by image analysis and compared to REL
measurements (Strimbeck et al., 2007). Necrosis occurs only
at REL > 0.5, with complete necrosis generally occurring at
REL > 0.7. In ELT tolerant species, temperatures below Tm
or liquid nitrogen quenching from −30◦C or lower result
in mild to moderate chlorosis, but there is no necrosis and
REL remains below 0.5 in both cases. Field observations and
laboratory experiments indicate that chorosis is a reversible
symptom of light x LT stress (Baronius et al., 1991; Adams,
1996) that may be exacerbated by sublethal LT stress. These
observations confirm that ELT tolerant needles survive slow
freezing at temperatures down to −60◦C and LN2 quenching
from temperatures below −30◦C, and provide a reference
scale for interpretation of REL measurements in conifer
needles.

ENVIRONMENTAL CONTROL OF
ACCLIMATION AND DEACCLIMATION

Seasonal changes in LT50 or other estimates of LT tolerance
have been used to characterize acclimation and, less frequently,
deacclimation under natural or controlled-environment
conditions. These measurements are often used to characterize
the phenology or rate of acclimation, identify environmental
signals that control or affect the process, or study biochemical,
gene expression, or other biological changes involved in LT
tolerance. The main environmental factors that initiate and
control acclimation are photoperiod in the form of increasing
night length in late summer and chilling temperatures in late
summer and autumn (Christersson, 1978; Bigras et al., 2001;
Li et al., 2004). In some species and ecotypes, the photoperiod
requirement can be bypassed by sufficient exposure to LT
(Tanino et al., 2014). Deacclimation is driven mainly by warm
temperatures, independent of photoperiod, resulting in increased
risk of precocious deacclimation and subsequent LT injury in
plants growing outside their natural range or as a result of
global warming. Functional genomic and population genetic
studies have identified photoperiod- and temperature-sensitive
acclimation pathways under control of C-repeat binding factors
(CBFs) in Arabidopsis (Thomashow, 1999; Lee and Thomashow,
2012), Prunus (Artlip et al., 2013; Wisniewski et al., 2015), and
ELT tolerant Populus (Benedict et al., 2006; Menon et al., 2015)
and Betula (Welling and Palva, 2008) species.

For ELT tolerant woody plants, Weiser (1970) proposed a
three-stage model with the first stage initiated by decreasing

FIGURE 2 | Daily maximum and minimum temperatures and seasonal acclimation and deacclimation in Picea sitchensis (an MLT tolerant species
from a temperate oceanic environment) and P. obovata (an ELT tolerant Siberian species). Colored backgrounds indicate acclimation phases in P. obovata
determined by cluster analysis of metabolomic data: pink, pre-acclimation; yellow, early acclimation; green, late acclimation; blue, fully acclimated (adapted from
Strimbeck et al., 2008; Angelcheva et al., 2014).
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photoperiod, the second stage by chilling temperatures or
relatively high subfreezing temperatures, and the third stage by
exposure to LTs in the −30 to −50◦C range. He concluded that
prolonged exposure to temperatures below −30◦C is necessary
for woody plants to achieve ELT tolerance. However, just a
few years later Weiser coauthored a study showing that several
ELT tolerant conifer and angiosperm species can attain LN2
quench tolerance in an artificial acclimation procedure that
involved sequential storage at −3, −5, and −10◦C for 14, 7,
and 3 days, respectively (Sakai and Weiser, 1973). A recent
comparative study of acclimation in ELT and MLT tolerant
conifer species showed that the ELT tolerant species acclimated
more rapidly than their MLT tolerant counterparts, and were able
to survive temperatures of −40◦ by late October (Figure 2), even
though temperatures remained above freezing during much of
the acclimation period (Strimbeck et al., 2008). Thus, substantial
acclimation can occur in ELT tolerant species in the absence of
freezing temperatures, while MLT tolerant species may be more
responsive to subfreezing temperatures, as suggested in a review
of LT tolerance in conifers (Bigras et al., 2001).

While exposure to MLT or ILT may not be required for
full acclimation, other studies (Sakai, 1966; Bigras et al., 2001;
Beck et al., 2004; Søgaard et al., 2009) suggest that exposure to
night frost is required for complete acclimation in ILT and ELT
tolerant species, with some suggesting that a single frost event
could act as a signal for further acclimation. However, some
of these studies are based on field observations without a no-
frost control, or, in controlled environment studies, temperature
treatments may be confounded with other factors such as the
duration of LT exposure or parallel changes in photoperiod.
Some observed differences in response to night frost may also
be due differences in the age and growing conditions of the
plants used in the study, with potted seedlings in controlled
environments potentially responding differently than saplings or
mature trees under field conditions. There is also some indication
that MLT tolerant species may be more responsive to night
frost than ELT tolerant species (Bigras et al., 2001; Strimbeck
and Kjellsen, 2010). A series of controlled-environment studies
on potted P. abies plants maintained under early to mid-
autumn photoperiods and temperature regimes found no effect
of one or two nights at −6◦C and only inconsistent effects
of up to 16 frost nights or 7 days of continuous freezing as
compared to unfrozen controls (Strimbeck and Kjellsen, 2010).
Taken together, seasonal acclimation studies and at least some
controlled environment studies indicate that acclimation in ELT
species may be relatively inflexible and driven largely by short
photoperiod and chilling temperatures, with only a minimal, if
any, requirement for exposure to subfreezing temperature for
complete acclimation.

Extreme low temperature species live in environments with
severe winters, where temperatures usually remain below freezing
for the entire midwinter period. These environments occur
at higher latitudes where global warming has been and is
generally predicted to be more extensive than at lower latitudes.
This raises the possibility that winter warming may disrupt
the phenology of dormancy and the acclimation–deacclimation
cycle for trees and other plants in boreal and arctic regions,

resulting in injury or death of exposed tissues or whole plants.
Winter thaws are periods when temperatures remain above
0◦C in environments where seasonal temperatures normally
remain below freezing. Increases in the frequency, duration, and
intensity of these events are a potential consequence of global
warming, and have been observed in some locations. Winter
thaws can result in precocious deacclimation, and, if followed
by a return to sufficiently cold temperatures, could result in LT
injury.

Studies of deacclimation in plants in general show that some
species or genotypes deacclimate rapidly, while others are more
or less deacclimation resistant (Kalberer et al., 2006). As an
example of the former, the MLT to ILT tolerant species P. rubens,
growing in a natural mid-elevation stand, deacclimated by as
much as 14◦C during a relatively extreme winter thaw (Strimbeck
et al., 1995). Plants in stable environments with relatively small
temperature fluctuations may be less deacclimation resistant
because the first occurrence of thaw weather is a reliable signal
of the arrival of spring. Some support for this hypothesis
was found in a comparative study of generally MLT tolerant
Rhododendron species (Arora and Rowland, 2011). However,
the same principle could apply to ELT tolerant plants in
boreal and arctic environments with stable subzero temperatures
throughout the winter and where prolonged winter thaws are
historically rare or non-existent. The deacclimation response
could also be affected by dormancy status, which in turn may be
affected by environmental temperature. Bud forcing experiments
show that many woody plants transition from deep endormancy
to ecodormancy after fulfillment of a chilling requirement
ranging from a few weeks to a few months below some threshold
temperature, usually occurring by midwinter (e.g., Rinne et al.,
2001). Ecodormant tissues could be more responsive to winter
thaws than fully endodormant tissues.

Little work has been done on deacclimation in ELT tolerant
species. In a controlled-environment study, Ögren (2001) found a
deacclimation response to thawing in Pinus contorta but none in
high-latitude Swedish provenances of Pinus sylvestris and P. abies.
Although the study does not report LT50s, the latter two species
are typically ELT tolerant in northern and interior parts of their
ranges. In seasonal monitoring of frost tolerance parameters
in conifer needles, Tm in both MLT and ELT tolerant species
groups fluctuated slightly in apparent response to winter thaw
and frost periods but the ELT tolerant species maintained LN2
quench tolerance throughout the midwinter period (Strimbeck
et al., 2008). Thus it appears that ELT tolerant species may not be
completely insensitive to thaw weather, but are able to maintain
nearly complete midwinter LT tolerance even in environments
that are far milder than those in their natural range.

Biochemistry of Extreme Low
Temperature Tolerance
The seasonal acclimation–deacclimation cycle involves
extensive changes in gene expression, biochemistry, and cellular
ultrastructure (Sakai and Larcher, 1987; Li et al., 2004; Kalberer
et al., 2006). These have been documented in numerous studies
observing these changes during acclimation and deacclimation
under natural and controlled environment conditions or, less
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frequently, via correlation with quantitative measures of LT
tolerance. These kinds of studies have identified changes in
levels of various compounds that are generally consistent during
acclimation to different levels of LT tolerance and can help
identify important biochemical and physicochemical process
that enable cells to survive LT stress. Identification of biochemical
changes that occur late in the acclimation process, during the
transition from MLT to ELT tolerance, may help identify
compounds and processes that are unique to ELT tolerance.

Metabolomic analysis offers a relatively new way to obtain a
broad overview of biochemical processes involved in acclimation.
A metabolomic study of cold and heat shock responses in
Arabidopsis identified significant changes in 311 polar solutes
in response to cold shock versus 143 responding to heat shock
(Kaplan et al., 2004). Response profiles to both heat and cold were
dominated by increases in numerous carbohydrates including
mono-, di-, and trisaccharides, sugar alcohols, and sugar-derived
organic acids. There were also increases in several protein and
non-protein antioxidants, amino acids and oligopeptides. Non-
polar compounds such as fatty acids were not assayed. This study
provides important baseline metabolomic data for an herbaceous
plant with limited LT tolerance (LT50 of about −11◦C after cold
treatment) that can be compared with early and late stages of
acclimation in MLT to ELT tolerant plants.

In ametabolomic study of an ELT tolerant species, Angelcheva
et al. (2014) used GC-MS to screen chloroform/methanol/water
extracts from P. obovata needle samples collected every 2–
4 weeks from late summer through midwinter. In total 223
metabolites accumulated and 52 were depleted in the overall
acclimation process. A total of 68 these were identified in
MS libraries, 21 of which increased during acclimation in
both P. obovata and Arabidopsis, while 10 compounds showed
opposite trends in the overall acclimation process. Orthogonal
projections to latent structures discriminant analysis (OPLS-DA;
Trygg and Wold, 2002) grouped the nine sample dates into
four phases, corresponding to pre-acclimation (15 August), early
acclimation (4 September – 8 October), late acclimation (23
October), and fully acclimated (5 November – 2 January) phases.
These acclimation phases and the relative concentrations of 11
metabolites that changed the most over the acclimation period
are shown in Figure 3. These results generally confirm and extend
those of earlier studies showing changes in various biochemical
classes during acclimation as reviewed below, and give important
clues to the identity and role of compounds involved in ELT
tolerance.

Sugars
One of the most consistent changes occurring in plants during
acclimation at all levels of LT tolerance is the accumulation of
sugars, especially sucrose and its α-galactosyl derivatives raffinose
and stachyose, usually by conversion of stored starch reserves
(Sakai and Larcher, 1987). It is generally accepted that sugars have
important cryoprotectant functions in LT tolerance in general,
but their role in differentiating ELT tolerant from less tolerant
plants and tissues is less certain.

Relatively few studies of ELT tolerant woody plants
present both carbohydrate data and quantitative estimates

of LT tolerance. In seasonal studies of Robinia pseudoacacia
(Siminovitch et al., 1953) and Morus bombycis (Sakai, 1962a)
stems, sucrose accumulated in early acclimation to about −25◦C
but leveled off as acclimation continued to lower temperatures,
with this pattern reversed during deacclimation in the spring.
Results for sucrose were similar for Pinus strobus needles,
while raffinose was more closely associated with the acquisition
and maintenance of ELT tolerance (Parker, 1959). Raffinose and
stachyose but not sucrose concentrations correlated strongly with
minimum survival temperatures during acclimation in Populus
tremuloides (Cox and Stushnoff, 2001). In a study lacking
direct measurement of LT tolerance, raffinose concentrations in
Cornus sericea bark and wood increased in autumn, remained
high during winter, and decreased in the spring months, while
sucrose concentrations remained relatively low in winter but
increased in the spring (Ashworth et al., 1993). In a 2-year
study also lacking LT tolerance data, raffinose concentrations in
Pinus strobus and Juniperus virginiana increased strongly and
remained high during the winter months, while sucrose levels
fluctuated in apparent response to environmental temperature
throughout the winter. Concentrations of both sugars were
considerably higher in these two northern species as compared
to less LT tolerant Pinus and Cupressocyparus species (Hinesley
et al., 1992). In needles of six MLT and ELT tolerant conifer
species, concentrations of raffinose measured over 13 sample
dates correlated strongly with Tm and RELmax, with somewhat
weaker correlations for stachyose (Table 2; Strimbeck et al.,
2008). Correlations for sucrose, glucose, and fructose were weak
or in the opposite direction. The inverse correlations for sucrose
may be explained by its conversion to oligosaccharides during
acclimation. Raffinose and stachyose comprised 25–50% of the
total measured sugar in fully acclimated needles in both MLT
and ELT tolerant groups. A general result that emerges from
these studies is that sucrose does not have an important role in
ELT tolerance, while raffinose and stachyose seem to be more
important.

These types of changes in carbohydrate levels were confirmed
in metabolomic analysis of acclimation in P. obovata (Figure 3;
Angelcheva et al., 2014). They were accompanied by a relatively
minor but potentially important 1.5x increase in trehalose
(Angelcheva et al., 2014), a trisaccharide that is closely linked
to desiccation tolerance in animals (Crowe et al., 1984; Crowe
et al., 1996). While oligosaccharide accumulation clearly plays an
important role in woody plant MLT to ELT tolerance, there does
not at present seem to be a unique pattern of sugar accumulation
associated with ELT tolerance.

Lipids and Fatty Acids
Like sugar accumulation, fatty acid desaturation and changes
in lipid composition are broadly linked to acclimation to
both chilling and freezing temperatures (Sakai and Larcher,
1987; Li et al., 2004). In ELT tolerant plants, total lipid and
phospholipid content increased during acclimation in Robinia
pseudoacacia (Siminovitch et al., 1968) and Morus bombycis
(Yoshida, 1984), with phospholipid increases closely mirroring
LT tolerance in both cases and in Populus sp. (Yoshida and Sakai,
1973).
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FIGURE 3 | Relative concentrations of 11 metabolites during cold acclimation in Picea obovata. Colored backgrounds indicate acclimation phases
determined by cluster analysis of metabolomic data: pink, pre-acclimation; yellow, early acclimation; green, late acclimation; blue, fully acclimated (adapted from
Angelcheva et al., 2014).

In general, fatty acid composition shifts toward more
unsaturated and long chain types, which are thought to
help maintain membrane fluidity and prevent or lower

the temperature of membrane phase changes (Uemura and
Steponkus, 1999). These kinds of changes have been noted in a
few ILT and ELT tolerant species, including Populus sp. (Yoshida
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TABLE 2 | Correlation coefficients (r values) between low temperature tolerance parameters and sugar contents over 13 sample dates in needles of
Abies, Picea, and Pinus species in temperate and boreal groups and Picea obovata.

Temperate (n = 117) Boreal (n = 106) Picea obovata only (n = 31)

Tm RELmax Tm RELmax Tm RELmax

Sucrose 0.008 0.081 0.092 0.187∗ 0.400∗ 0.644∗∗∗

Glucose 0.105 −0.165 0.153 0.342∗∗∗ 0.378∗ 0.620∗∗∗

Fructose −0.091 0.122 0.039 −0.022 0.111 0.062

Raffinose −0.687∗∗∗ −0.414∗∗∗ −0.677∗∗∗ −0.819∗∗∗ −0.831∗∗∗ −0.822∗∗∗

Stachyose −0.263∗∗ −0.151 −0.272∗∗ −0.377∗∗∗ −0.559∗∗ −0.548

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 (Strimbeck et al., 2008).

and Sakai, 1973) Morus bombycis (Yoshida, 1984), Picea abies
(Senser, 1982), Pinus sylvestris (Martz et al., 2006), Pinus strobus
(Deyoe and Brown, 1979), and P. obovata (Angelcheva et al.,
2014).

Changes in lipid composition are less consistent. In Morus
plasma membranes, phosphatidylethanolamine (PE) increased
and phosphatidylcholine (PC) decreased during acclimation,
while in total lipids from Populus, both types increased, with
PC showing the greater increase. During acclimation in P. abies
thylakoid and chloroplast envelope fractions, phospholipids
increased at the expense of galactolipids (Senser and Beck, 1982),
but Pinus strobus thylakoid membranes showed opposite changes
(Deyoe and Brown, 1979). Increases in phospholipids, especially
PC, have been experimentally linked to membrane stability
and survival during freezing of liposomes and rye protoplasts
(Uemura and Steponkus, 1999; Uemura et al., 2006). Changes in
lipid biochemistry clearly play an important role in LT tolerance
in general, but changes unique to ELT tolerance as compared to
more moderate LT tolerance are currently unclear.

Amino Acids and Polyamines
Increases in amino acids and polyamines are another consistent
response to LT and other abiotic stresses in plants (Krasensky
and Jonak, 2012). These compounds are generally though to act
as compatible solutes that can accumulate at high concentrations
for osmotic adjustment without disrupting cell function. Various
studies of ELT tolerant plants have shown increases in these
compounds during acclimation. Proline and the non-protein
amino acid glycine betaine are commonly associated with
LT tolerance in herbaceous plants. Proline and various other
amino acids increase during acclimation in woody plants, with
tryptophan showing consistent increases in the ELT tolerant
conifers Picea glauca, Picea mariana, Pinus resinosa, and Picea
obovata (Odlum et al., 1993; Kim and Glerum, 1995; Angelcheva
et al., 2014).

Ornithine and its polyamine derivatives putrescine and
spermidine are often found to increase in response to stress
(Krasensky and Jonak, 2012). Ornithine and putrescine increases
have been observed during acclimation in Pinus sylvestris (Sarjala
and Savonen, 1994), Populus sp. (Jouve et al., 1995), and Picea
obovata (Angelcheva et al., 2014). Many of these same changes are
also observed in the relatively LT sensitive Arabidopsis (Kaplan
et al., 2004), and so are not uniquely associated with ELT
tolerance.

Proteins
In stem parenchyma cells of Robinia pseudoacacia, soluble
protein content on a dry weight basis nearly doubles during
acclimation, remains at high levels during the winter months, and
decreases again during deacclimation (Siminovitch et al., 1968).
This increase may involve enzymes and regulatory proteins
involved in the biochemical processes described above and
proteins with signaling, regulatory, protective or restorative
functions for tolerating or recovering from LT stress as well as
other winter stresses such as oxidative stress. Protein extracts
can be screened for differential expression using 2D-gel based
proteomic methods, and a subset of them can be identified or
classified by various mass spectrometry methods.

Using these methods, proteomic changes during LT stress
and acclimation have been explored in various tissues and
cellular compartments of several herbaceous crop and model
species with limited LT tolerance (Kosova et al., 2011).
Hundreds of differentially accumulated protein spots have been
identified in these studies, but typically, only a subset of these
can be identified or classified using MS databases. Results
generally indicate changes in enzymes involved in carbohydrate
metabolism consistent with the sugar accumulation patterns
noted above; modification of the photosynthetic system in green
tissues; up-regulation of antioxidant systems; and accumulation
of proteins involved in defense and stress responses. The
latter group includes pathogenesis related (PR) proteins, late
embryogenesis abundant (LEA) proteins, including dehydrins,
that are widely associated with dehydrative stress, and heat shock
proteins (HSPs) and other proteins with known or putative
chaperone functions. In woody plants, proteomic changes in
early acclimation have been characterized in Populus sp. leaves
(Renaut et al., 2004) and Prunus persica bark (Renaut et al.,
2008), with results generally similar to those for herbaceous
species. A lingering challenge is to identify and characterize
the many unknown proteins detected in these studies, some
of which could play important roles in LT acclimation and
tolerance.

A 2-D DIGE (difference in-gel electrophoresis) study of
proteomic changes during acclimation in P. obovata found 250
differentially accumulated spots (Kjellsen et al., 2010). Of 110
proteins that showed a net accumulation during acclimation, 78
accumulated mainly in early acclimation, 28 in late acclimation,
and 24 in both stages. The largest change observed for any protein
during acclimation was a 17x increase, mainly in late acclimation,

Frontiers in Plant Science | www.frontiersin.org 9 October 2015 | Volume 6 | Article 884

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Strimbeck et al. Extreme low temperature tolerance

of a 33 kDa dehydrin. A 35 kDa non-dehydrin protein similar
to an uncharacterized P. sitchensis protein increased by about
8x, while all other significant increases were in the 1.5–3x range,
including a second 35 kDa P. glauca-like dehydrin that increased
by about 3x. Other accumulated proteins included HSPs, AAA+
ATPases, a few other classes with possible roles in acclimation,
and proteins associated with oxidative stress, photosynthesis, and
some metabolic pathways.

Dehydrins are a subset of LEA proteins, first identified and
characterized in the 1990s (Close, 1996), that are produced or
accumulate in response to dehydrative stress in vascular plants,
with most species producing one or more of several distinct
types that vary widely in size and structure. Increases in dehydrin
levels are associated with LT acclimation in numerous species,
including ELT tolerant species such as Betula pubescens (Rinne
et al., 1999), Cornus sericea (Sarnighausen et al., 2002), Pinus
sylvestris (Kontunen-Soppela and Laine, 2001), Picea glauca
(Liu et al., 2004), and Picea obovata (Kjellsen et al., 2013). In
the latter species, 50, 34, and 32 kDa dehydrins accumulated
during acclimation and dissipated during deacclimation, and
immunoblotting using a more sensitive immunity-purified
K-segment antibody detected three additional bands at 30, 28,
and 26 kDa in fully acclimated needles. In the same study,
transcripts of eight dehydrin genes increased in abundance
during acclimation and decreased during deacclimation, while a
ninth dehydrin followed a reverse pattern. The strong association
of dehydrins with LT stress response and acclimation, as well as
other kinds of stress, indicate that they have an important role
in LT stress tolerance at all levels. While they fall in the same
structural classes as in other species, some of the dehydrins in ELT
tolerant species could have important functional characteristics
that help confer ELT tolerance.

ULTRASTRUCTURE

Ultrastructural reorganization during LT acclimation has been
described in needle or bark tissues of a few MLT to ELT tolerant
species. In mesophyll cells of P. abies needles, the central vacuole
is replaced by numerous small vesicles, chloroplasts and other
organelles are clumped together at one end of the cell and starch
granules disappear (Soikkeli, 1978). In fully acclimated P. abies
chloroplasts, the thylakoid membranes separate and become
disorganized, with few grana and numerous intermembrane
plastoglobuli (Senser et al., 1975). Similar changes in chloroplast
distribution and structure occur in Abies balsamea (Chabot
and Chabot, 1975) and Pinus sylvestris (Martin and Oquist,
1979) needles under both natural and artificial acclimation
conditions. During early acclimation in Populus x canadensis
ray parenchyma cells (Sauter et al., 1996), large vacuoles
present in summer disappear and protein storage vacuoles
and oleosomes accumulate. Later in the process, starch stored
in numerous amyloplasts disappears completely, while dense
aggregations of vesicular and cisternal endoplasmic reticulum
develop at the cell periphery. In Robinia psuedoacacia bark
tissues, the plasma membrane invaginates and forms numerous
small vesicles and the ER also becomes vesiculated (Pomeroy

and Siminovitch, 1971). Generally similar changes occur in MLT
tolerant Prunus persica cortical and xylem parenchyma cells
(Wisniewski and Ashworth, 1986). While there are differences in
the interpretation of the origin of various vesicular structures, it
seems clear that LT acclimation involves massive reorganization
of cellular membranes including thylakoids. Disappearance of
starch granules is generally consistent with the starch to sugar
conversion noted in biochemical studies, and in at least some
cell types, there is an increase in protein and lipid storage
structures.

SYNTHESIS

A principle components analysis of LT tolerance parameters,
sugar concentrations, and dehydrin transcripts measured during
a complete acclimation–deacclimation cycle shows that about
90% of the variance in the total data set can be explained
by the first two principle components (Figure 4). Raffinose,
stachyose, and dehydrin transcripts all generally increase during
acclimation, with a subset of dehydrins accumulating in early
acclimation, while accumulation of the sugars and three other
dehydrins accelerates in late acclimation. These changes are
rapidly reversed during deacclimation. This overview emphasizes
the importance of these two components in LT tolerance. In this
section, we offer some hypotheses to explain how sugars and

FIGURE 4 | Principle component biplot of LT tolerance, sugar, and
dehydrin (Dhn and CAP) data for P. obovata. Red lines indicate direction
and strength of each variable. Tm and RELmax both decreased during
acclimation, so greater low temperature tolerance was generally associated
with higher levels of all sugars and dehydrins except sucrose and Dhn7. Dates
and arrows indicate mean principle component scores for samples from three
trees on each date. Data for 26 September and 24 April were excluded due to
missing values for sugars and dehydrins, respectively (data from Strimbeck
et al., 2008; Kjellsen et al., 2013).
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dehydrins function to allow plant cells and tissue to survive ELT
stress.

In freezing tolerant plant and animal tissues, ice formation
is extracellular and results in the dehydration of living cells as
intracellular water is drawn to extracellular ice masses. Thus,
freezing stress translates into dehydration stress at the cellular
level (Sakai and Larcher, 1987). Freeze dehydration becomes
more severe with decreasing temperature, and can result in
cellular dehydration to less than 10% of original water content at
temperatures of −40◦C or lower, as are commonly encountered
during winter in boreal regions. This basic interpretation of
freezing as a dehydration stress has been understood for more
than a century (reviewed in Levitt, 1980), and numerous
hypotheses linking freeze dehydration stress to cell injury and
death have been proposed. Xylem ray parenchyma cells and bud
primordia in many temperate zone woody species avoid severe
dehydration by deep supercooling, but this avoidancemechanism
has a lower tolerance limit of−40 to−50◦C and does not occur in
ELT tolerant plants (Wisniewski et al., 2009). More recently, the
focus has been on the plasma membrane as the primary site of
injury (Steponkus, 1984; Wolfe and Bryant, 1999; Uemura et al.,
2006).

Eukaryotic cells are packed with membranes. Reductions in
cell volume caused by desiccation or freeze dehydration will
inevitably force these membranes closer together. Hydration
repulsion between closely appressed membranes in dehydrated
cells may translate into lateral strain within the membrane
with various deleterious effects (Wolfe and Bryant, 1999) that
can explain the increase in REL that occurs during freezing
stress. Therefore, preventing close approach of membranes or
preventing membrane denaturation in partially dehydrated cells
may be of primary importance in surviving desiccation and
freeze dehydration stress. Oligosaccharide accumulation, changes
membrane lipid composition, and dehydrins all have potential
roles in this strategy.

Relative electrolyte leakage-temperature response curves
(Figure 1) show that an increase in electrolyte leakage across the
plasma membrane is a basic and measurable response to LT or
freeze-dehydration stress. The LT tolerance parameters Tm and
RELmax offer two different ways to quantify this response. Tm
is an estimate of the midpoint temperature of the response to
freezing stress, regardless of whether the tissue survives or not.
RELmax represents the amplitude of increased leakage that can be
achieved by slow freezing, with values >0.5 generally indicating
partial to complete tissue death.

One likely explanation for the sigmoid shift in REL centered
on Tm is a liquid crystal to gel phase transition or more
drastic reorganization of membranes in response to some
combination of LT and dehydration (Steponkus, 1984; Williams
and Quinn, 1987; Wolfe and Bryant, 1999). This change in
membrane structure results in membrane leakage after thawing.
At temperatures below LT50 in MLT tolerant species, these
kinds of transitions are irreversible, so that the cell is unable
to regain osmotic control after thawing and eventually dies.
However, in ELT tolerant species, where freezing stress results
in only moderate increases in REL, there may be either no
significant reorganization of the membrane at Tm or whatever

reorganization that does occur may be reversible given sufficient
recovery time, as suggested by restoration of semipermeability
following sublethal stress in onion bulb cells (Arora and Palta,
1986). The shift in Tm toward lower temperatures that occurs
during acclimation in all species may be a result of changes
in membrane composition that allow the plasma membrane
to maintain stability at lower temperatures and greater levels
of dehydration. Numerous studies have shown that fatty acid
desaturation and changes in membrane lipid composition occur
during acclimation (Sakai and Larcher, 1987). These changes in
membrane composition can lower phase change temperatures
and affect other membrane behaviors under freezing stress
(Uemura et al., 2006). While the difference between MLT and
ELT tolerance could be partially explained by these kinds of
differences inmembrane composition, in ELT tolerant species the
shift in Tm seems to reach an acclimation limit at about −50◦C
(Figure 1), but these species are able to completely survive much
lower temperatures. This indicates that ELT tolerant species have
other mechanisms for surviving extreme freezing stress.

The signature transition to LN2 quench tolerance that
occurs during slow cooling between −20 and −30◦C in ELT
tolerant species can be explained by cytoplasmic vitrification,
the transition from a fluid to an amorphous solid or glassy
state. Vitrification is thought to be an important mechanism
of desiccation tolerance in seeds and some other desiccation
tolerant plant tissues, and may also occur as a result of freeze
dehydration (Koster, 1991; Buitink and Leprince, 2004). The
glassy state is, in effect, a kind of molecular suspended animation
in which molecular movement, including further dehydration
and deleterious chemical reactions, is effectively arrested at all
lower temperatures.

Although cells at −20 to −30◦C are already substantially
dehydrated, vitrification of intermembrane cytoplasm in this
temperature range would prevent any further dehydration,
which would in turn prevent close approach of membranes
and associated lesions. Cytoplasmic vitrification can dramatically
affect membrane stability under dehydration stress. In model
sucrose-water-lipid systems, vitrification in the sugar-water phase
decreases the temperature of the liquid crystal to gel phase
transition in the lipid phase by up to 57◦C (Koster et al., 2000).
This leads to the specific hypothesis that membrane damage will
be prevented if vitrification occurs at a temperature above Tm.

Evidence of vitrification has been reported in frozen plant
tissues (Hirsh, 1987; Vertucci and Stushnoff, 1992). Glass
transitions can be detected by differential scanning calorimetry
(DSC), electron spin resonance, or nuclear magnetic resonance
methods as a step change in heat capacity or other measures of
molecular mobility. Using modulated temperature DSC, a weak
glass transition has been detected in a few Picea needle samples
at around −22◦C, right in the range where tissues acquire LN2
quench tolerance (Strimbeck and Schaberg, 2009), but not in
most samples under similar or a variety of other experimental
conditions. Glass transitions in frozen plant tissues may be
difficult to detect for two reasons. First, the relatively weak change
in heat capacity of the dehydrated cytoplasm may be diluted
by the presence of large amounts of extracellular ice. Second,
the change in heat capacity may occur over a much broader
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temperature range in complex mixtures, such as the cytoplasm,
as compared to sucrose-water and other simple systems.

Freeze-concentrated sucrose solutions vitrify readily, with
glass transitions at about −41◦C (Goff et al., 2002). The glass
transition temperature is somewhat higher in sucrose-raffinose-
water mixtures, but pure raffinose solutions tend to undergo
eutectic crystallization. In P. obovata, raffinose and stachyose
were closely related to LT tolerance (Table 1, Figure 4),
highlighting the likely roles of these sugars in ELT tolerance.
The increase in trehalose observed in P. obovata (Angelcheva
et al., 2014) may also be significant, as this disaccharide vitrifies
at high temperatures and is strongly associated with desiccation
tolerance in animals (Crowe et al., 1998; Wolfe and Bryant,
1999). While sugars may have other protective effects, the well-
documented vitrification behavior of sugar solutions indicates
that vitrification is likely, if not inevitable, during freeze-
dehydration in the sugar-enriched cytoplasm of LT acclimated
cells.

Glass transition behavior and temperature could also
be affected by other cytoplasmic components, especially
unstructured polymers, which are hypothesized to vitrify via
“molecular entanglement” of polymer chains (Levine and Slade,
1992). This observation suggests a specific role for dehydrins
in ELT tolerance. All dehydrins contain one or more copies of
the K segment, a highly conserved 15 amino acid segment with
the consensus sequence EKKGIMDKIKEKLPG. Some classes of
dehydrins contain from one to several copies of the seven-residue
Y segment ((V/T)D(E/Q)YGNP) and an S-segment with as many
as nine consecutive serine residues. Outside of these conserved
segments, dehydrins are highly hydrophilic and disordered
with little recognizable sequence conservation. Dehydrins have
been proposed or shown to have antifreeze, metal-binding,
antioxidant, protein binding, or membrane binding properties
(Rorat, 2006; Eriksson and Harryson, 2011). The K segment
forms an amphipathic α-helix in non-polar environments (Ismail
et al., 1999) that binds to lipid vesicles (Koag et al., 2003; Koag
et al., 2009; Eriksson et al., 2011). Membrane binding is likely
a key property of dehydrins, suggesting a role in protecting
membranes against dehydration stress. Macromolecules may
be excluded from intermembrane spaces and therefore have

no cryoprotective effect (Wolfe and Bryant, 1999). We propose
that the K segment anchors dehydrins to membranes, with
the unstructured regions of the protein free to interact with
sugars to promote intermembrane vitrification via molecular
entanglement.

While this discussion focuses on vitrification, complete
vitrification may not be an absolute requirement. An increase
in viscosity to an intermediate plastic or rubbery state could
slow molecular motion enough to stabilize cells for weeks or
months (Wolfe et al., 2002). Furthermore, even in the absence
of vitrification, the unstructured regions of dehydrins could act
stearically as “molecular spacers,” preventing the close approach
of membranes and diminishing the strains in membranes caused
by repulsive forces. The different types of dehydrins found in
most plant species (i.e., ten in the Arabidopsis genome and at
least nine in P. obovata), may be targeted to specific membranes
or cell compartments so that all membranes receive sufficient
protection.

Extreme low temperature tolerance is an intriguing
phenomenon with potentially high relevance for the development
or improvement of technologies for dried and frozen
preservation of drugs, foods, cells, tissues, and perhaps even
organs or whole organisms. Beginning with the pioneering work
of Sakai (1960, 1962a, 1965), the LT tolerance characteristics
and geographic distribution of ELT tolerant woody species
have been defined. It seems clear that no one metabolite or
protein is responsible for the ability of plant tissues to survive at
temperatures approaching absolute zero. With the introduction
of screening technologies such as proteomics and metabolomics,
backed up by decades of work on biochemical changes during
acclimation, many of the major molecular actors have been
identified. In vitro and in vivo functional analyses of these
components, separately and in combination, should help to
complete the picture.
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