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(Bogotá, Colombia) in 2009 under the supervision of Dr. Oscar Álvarez working on the 

rheology of concentrated and highly concentrated water-in-oil emulsions. After the 

undergraduate studies, I joined The Dow Chemical Company where I worked as an 

EHS/Process safety engineer. In 2013 I received the title of Master in Chemical Engineering 

from Universidad de los Andes (Bogotá, Colombia) under the supervision of Dr. Oscar 

Álvarez working on a multi-scale approach for the manufacturing of emulsions. In August 

2013 I was appointed the Ph.D fellowship at the Department of Chemical Engineering 

(NTNU) and I was affiliated to two projects: JIP-1 “To advance fundamental knowledge of 

the water-oil separation process in order to make it more energy efficient and energy saving” 

funded by the Research Council of Norway (NFR), AkzoNobel, BP, Nalco-Champion, 

Hamworthy, SaudiAramco, Shell, Statoil ASA, ENI, Kemira and Total; and JIP-

Asphaltenes “Improved Mechanisms of Asphaltene Deposition, Precipitation and Fouling to 

Minimize Irregularities in Production and Transport: A Cost Effective and Environmentally 

Friendly Approach” funded by the Norwegian Research Council (Petromaks II grant), 

University of Alberta (Canada), University of Pau (France) and Universidade Federal do 

Parana (Brazil)  AkzoNobel, BP, Canada Natural Resources, Nalco-Champion, Petrobras, 
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Abstract 

There are numerous problems encountered during extraction, production, transportation and 

refining of crude oil. Most of these problems are typically oil-specific, meaning that they 

depend upon the source of the oil, and sometimes they are reservoir-specific, meaning that 

they depend on the stage of extraction (primary, secondary or enhanced recovery). 

Nevertheless, a great part of the problems are related to the indigenous surface-active species 

such as asphaltenes, naphthenates and resins.  

The definition of asphaltenes rather than being a single molecule is instead based on a 

solubility class. This means that they are polydisperse in nature which leads to differences in 

properties and composition. Asphaltenes are responsible for stabilizing water-in-oil 

emulsions by forming a mechanically strong gel at the interface that prevents droplet 

coalescence. Asphaltenes are also known to precipitate and under certain conditions 

(pressure, temperature, composition) form deposit layers which could lead to plug formation. 

All this issues generate deficits in flow assurance and evidently, increases in the operational 

costs. 

Two strategies might be implemented to further advance in the understanding of the 

mechanisms involved in asphaltene adsorption onto various interfaces (liquid-liquid or solid-

liquid). (i) Fractionation or (ii) model compounds. The first strategy explores the different 

sub-fractions that are obtained at different solvent/precipitant ratios using indigenous 

asphaltenes. The second strategy is to design a molecule, or group of molecules with defined 

functionalities that mimic the main known asphaltene properties, for instance self-association 

in solution and interfacial behavior. 

In this thesis, the different publications were aimed to study and explore possible solutions to 

the several problems stated. In the first and second publications, adsorption and desorption 

aspects of asphaltenes and demulsifiers at the liquid-liquid interface were explored. 

Furthermore, interactions between asphaltenes and demulsifiers were studied via interfacial 

tension measurements and interfacial dilatational rheology. The results shed light on the 

mechanisms involved during chemical demulsification of water-in-crude oil emulsions. In the 

third publication, rheology and sorption aspects of asphaltene model compounds at the liquid-

liquid interface were studied. The main goal of this publication was to establish the interfacial 

properties inherent to asphaltenes captured by a set of asphaltene model compounds 

developed at the Ugelstad laboratory. Similarly, in the fourth publication adsorption of 
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asphaltenes and asphaltene model compounds onto the solid-liquid surface was studied. In 

this study, the determination of the adsorption enthalpy via microcalorimetry allowed to 

elucidate the type of bond and the driving force for adsorption onto surfaces of different 

nature.   

With these publications, a complete study at the liquid-liquid interface and the solid-liquid 

surface was developed for asphaltenes and asphaltene model compounds. This provides a 

fundamental framework for model systems that can be used to understand the behavior in real 

applications. 
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1. Introduction 

 

«Prescription 8: Pulverize the roots of the …-tree, …, and dried river bitumen; pour beer 

over it, rub it with oil, (and) fasten as poultice»
1
 

«Prescription 9: Pour strong beer over the resin of…-plant; heat over a fire; put this liquid in 

river bitumen oil (and) let the (sick) man drink»
1
 

The above two paragraphs are translations from two Sumerian medical tablets inscribed in 

the third millennium B.C. and constitute “by all odds the oldest pharmacopoeia known to 

man”
1
. Oil or bitumen (the two words are indistinguishable from the translations) has been 

known to man since the beginning of civilization itself. Not only as an ingredient for 

medicine, but also as a fundamental material for construction and lighting
1
. 

2. Petroleum 

Beneath the earth’s surface in geological formations, accumulations of economically valuable 

hydrocarbons are found. These compounds when refined are used as fuel (energy, industry, 

heating) and also as raw materials for manufacturing a large assortment of products 

encountered in the everyday life (plastics, fibers). The term petroleum hence refers to both 

refined and unrefined elements
2, 3

. Petroleum use is broad, providing more than half of the 

world’s supply of energy. This situation leads to carbon dioxide buildup (as a natural product 

of combustion) in the earth’s atmosphere which is a greenhouse gas strongly related to 

climate change
4
. Until alternative forms of energy become widely available, the motivations 

for directing efforts towards research for cleaner and more efficient ways of productions are 

self-evident. 

Crude oil is a very complex mixture of different hydrocarbon compounds (paraffins, 

naphthenes, aromatics) and to a minor extent, non-hydrocarbon constituents (nitrogen, 

oxygen, sulphur, nickel, vanadium), which probes difficult to map. Table 1 shows the 

elemental composition range typical of most oils. Keeping in mind that petroleum is a 

continuum, any boundaries, molecular or physical, will cover a wide range of sub-fractions of 

varying boiling point and carbon number
2
. The variations among oil fields and reservoirs 

makes these boundaries inherently arbitrary and thus troublesome to study from a scientific 

approach. An attempt to deal with this great variation and to device standard procedures as a 
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basis for research and laboratory investigations is through fractionation. Evidently, the 

methods by which these fractions are obtained can also vary. While some of the traditional 

methods exploit boiling point differences (distillation) others make use of the differences in 

solubility (solvent treatments), surface activity (adsorption) and chemical reactions (chemical 

fractionation). 

Element Weight 

percentage 

Carbon 83.0-87.0 

Hydrogen 10.0-14.0 

Nitrogen 0.1-2.0 

Oxygen 0.05-1.5 

Sulfur 0.05-6.0 

Metals (Ni and V) <1000 ppm 

Table 1: Elemental composition range for most common crude oils. Table reproduced from 

Speight.
2
 

One of the most used methods is the SARA fractionation procedure that splits the oil into 

four fractions: saturates, aromatics, resins and asphaltenes based on both adsorption and 

solubility. There is no such thing as “one method fits all” for obtaining the petroleum 

fractions. Choosing one or a combination of several methods depends on the type of crude oil 

making fractionation oil-specific
2, 5, 6, 7

. To emphasize the variation and structural complexity 

of the different constituents of crude oil, Fig. 1 shows the changes in the boiling point with 

carbon number and molar mass of some of the representative heavy fractions. 

3. SARA fractionation  

SARA (Saturates, Aromatics, Resins, Asphaltenes) fractionation
8
 is a process that starts with 

the removal of asphaltenes from crude oil by precipitation with n-alkanes. In this sense, this 

part separates asphaltenes based on their solubility. The remaining SAR portion (also known 

as maltenes) is treated via ion-exchange chromatography and adsorption chromatography to 

separate it into the other three fractions. Different ASTM methods (ASTM D2006, ASTM 

D2007, ASTM D893, ASTM D3279, ASTM D4124, IP 143) have been proposed to provide 

a standard way of obtaining asphaltenes. Each method provides asphaltenes with similar 

characteristics that depend on the asphaltene-resin boundary fixed by the precipitant (i.e. n-

alkane). 
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Figure 1. Molecular weight and structures of representative heavy fraction of crude oil as a 

function of their boiling point. Image reproduced from Altgelt and Boduszynski
9
. 

 

If crude oil is mixed with an n-alkane (n-pentane, n-hexane or n-heptane), two phases 

emerge: asphaltenes as precipitate and maltenes as the continuous liquid phase. The type of 

solvent influences the amounts of the fractions obtained. In fact, it has been shown
2, 10

 that 

the amount of asphaltenes precipitated with n-alkanes that have carbon numbers greater than 

7 (i.e. n-heptane) does not reach a plateau which means that the composition of the 

asphaltene samples obtained depend on the n-alkane used (See Fig. 2). Similarly, the 

asphaltene yield does not seem to change for volume of precipitant to volume of feedstock 

ratios greater than 40. It is important to note that all these fractions are solubility classes that 

are defined within the extent of precipitation and not molecules with well-defined structures. 

3.1 Maltenes   

Saturates (S) are normally known as paraffins or paraffin hydrocarbons. They are saturated 

hydrocarbons that do not have ring structures in their structure and include n-paraffins, iso-

paraffins, cycloparaffins (naphthenes), condensed cycloparaffins and alkyl side chains. This 

fraction is the lightest and less polar of crude oil. The amount of n-paraffins in crude oil 

varies depending on the source, however, as a reference point, an oil is considered as 

“paraffininc” if it contains up to 50% of this paraffins. Cycloparaffins (naphthenes) are 

typically present as cyclopentane and cyclohexane and they could account up to 60% of the 

total hydrocarbons
2, 11, 12, 13

. 
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Figure 2. Variation of the amount of asphaltenes precipitated with carbon number of the 

liquid hydrocarbon. Image reproduced from Speight et al.
14

 

 

Aromatics (A) are a nonvolatile constituent common to all oils. This solubility class normally 

contains benzene systems, condensed aromatic systems, aromatic cycloalkyl systems and 

paraffinic chains on naphthene rings
2, 15

. Due to the fact that oil is a continuum the presence 

of aromatics transverses all fractions, in fact, resins and asphaltenes contain also aromatic 

rings in their structure. 

Resins (R) are the polar fraction of crude oil that contains most of the heteroratoms (N, O, S) 

and exhibits a higher H/C ratio compared to asphaltenes. Resins are also defined as a 

solubility class and the boundary between with asphaltenes depends on the type of oil, and 

the method used for extraction as they might overlap. Resins are soluble in the liquids that 

precipitate asphaltenes but insoluble in liquid propane and liquid butane. Normally, resins 

exhibit a lower molecular weight compared to asphaltenes and are key to the stability of 

petroleum as they are attributed an important role in asphaltene aggregation that holds the 

colloidal state of oil
2, 16, 17

. 
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3.2 Asphaltenes 

Asphaltenes (A) are traditionally defined as the most polar fraction of petroleum insoluble in 

n-alkanes (such as n-heptane or n-hexane) but soluble in aromatic compounds (such as 

toluene or xylene).
18, 19

 Asphaltenes are known to self-associate in model solvents as well as 

in real crude oil media
20

. When the carbon number of the solvent is decreased (for example 

from n-heptane to n-pentane) structures that do not self-assemble are precipitated along with 

asphaltenes broadening the chemical identity of the latter. The importance of this remark lies 

in that self-aggregation and interfacial behavior are perhaps key concepts related and 

interrelated to asphaltenes. 

Similar to resins, asphaltenes are considered to be polydisperse in heteroatomic functionality, 

molecular weight and carbon backbone structure
18

.  Asphaltenes are surface active 

compounds that are largely responsible for several problems during production, transport and 

refining of crude oil leading to high production costs
21

. Asphaltenes can precipitate and 

deposit in the reservoirs, wells, pipes and other equipment
22, 23

. They can also stabilize water-

in-oil emulsions (W/O) by forming a gel-like continuum
24

 , or “skin” 
25, 26

, at the oil/water 

interface that hinders coalescence and retards drainage.
27, 28, 29

 It is because of these reasons 

that they receive special attention and their own chapter in this thesis. 

3.2.1 Structure 

The already mentioned differences in functionalities and molecular weight make it difficult to 

have a complete overview of asphaltene properties. To attempt a description of a general 

structure, two models for asphaltenes have been proposed. They are known as the 

“Archipelago” and “Continental” models. In the former, several aromatic sections are 

attached to each other via alkyl chains. In the latter, polycyclic aromatic hydrocarbons 

(PAHs) form a core to which aliphatic chains are attached
30, 31

. Examples of both models are 

presented in Fig. 3. Even though several structures representative of the Archipelago model 

have been tested
32

, the evidence strongly suggests the validity of the continental model. The 

early studies of Groenzin and Mullins
33, 34

, who measured the time-dependent depolarization 

of asphaltene fluorescence for molecular weight purposes, concluded that the Continental 

model is at least the dominant molecular structure of different tested asphaltenes. That is, if 

other structures were to be present simultaneously. Additionally, a recent study
32

 in which 
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several model compounds with an island-type architecture were tested using a single-proton 

ionization method, also pointed out the dominance of the Continental model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Different proposed molecular structures for asphaltenes. Image reproduced from 

Kuznicki et al.
35

 

3.2.2 Molecular weight 

One of the reasons why asphaltene molecular weight has been a source of disagreement and 

controversy is that the molecular weight data normally represents an average value of a 

distribution
18

. Among the several reasons why molecular weight determination is a 

troublesome endeavor are: (i) Asphaltenes have the tendency to associate in dilute solution in 

nonpolar solvents (this means that the reported values could be those of the aggregates and 

not monomers), (ii) asphaltenes exhibit low solubility in some of the liquids used for 

molecular weight measurements and (iii) asphaltene-resin interactions induce discrepancies 

in the results (variation of the aggregation level). Traditional methods for determining 

molecular weight, such as chromatography (pyrolysis/gas chromatography/mass spectrometry 

and/or high performance liquid chromatography) work very well for light hydrocarbon 

compounds (saturates, aromatics), but when dealing with the heavier fraction (i.e. asphaltenes 

and resins) these methods cannot be used
36

. Additionally, different methods report different 

types of molecular weight: number average 𝑀𝑛, weight average 𝑀𝑤 or z-average. 
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Vapor-pressure osmometry (VPO) is based on the thermoelectric effect of the vapor tension 

decrease of a solution compared with the pure solvent. It yields a number average molecular 

weight (𝑀𝑛) that is temperature-dependent given that asphaltene association decreases at high 

values. The values obtained via this technique hence vary according to the experimental 

setup
36

. Size Exclusion Chromatography (SEC) separates asphaltenes according to their 

hydrodynamic volume obtained by passing them onto a support bed. It is a relative method 

that depends upon calibration and yields an average molecular weight (𝑀𝑆𝐸𝐶) and its main 

disadvantage is the adsorption of molecules or aggregates onto the support bed
37

. Small 

Angle Neutron and X-ray Scattering (SANS and SAXS) have been used because of the 

possibility of detecting the presence of heterogeneities and because of the possibility of 

exploring special structures over the nanometer scale. They yield both the weight average 

molecular weight (𝑀𝑤) and the radii of gyration (𝑅𝑔,𝑧). One of the features, disadvantageous 

to some, is that sometimes the scattering data must be treated with a model which considers 

the molecules to be, for example, cylinders, discs or spheres yielding different radii of 

gyration (between 30 and 200 Å) hence different molecular weights
17, 38

. However, model-

independent equations such as the Guinier or Zimm have also been used
39

. Finally, Nuclear 

magnetic resonance (NMR) techniques and pulsed field gradient spin-echo (PFG-
1
H NMR) 

allow the determination of the self-diffusion coefficient which can be correlated with the 

aggregation state and hence the molecular weight of the species in solution
40

. 

As mentioned before, to determine a true molecular weight, it is imperative to be able to work 

with very low asphaltene concentrations (i.e. 1 mg/L). To this date, only a few techniques 

allow such constraint. For example, Mass Spectrometry (MS) is an attractive method for 

which the ionization protocols must be carefully controlled to avoid molecular fragmentation 

and differences in the ionization yields. With this technique, values between 600 and 700 Da 

have been obtained
41

. Time-resolved fluorescence depolarization spectroscopy (FD) is a 

technique in which an exciting photon is polarized creating a direction for the randomly 

oriented chromophores that are part of the asphaltene molecules. Emission then takes place 

after some time that can be correlated to the molecular radius, thus its size
33

. 

Despite the wide range of molecular weights for asphaltenes depending on the method used 

that goes from a few hundred (~500 g/mol) up to several hundredths of thousands (~100000 

g/mol)
33

  and measurements on highly polar solvents (that tend to prevent association but 

aggregates are still found) that have placed the molecular weight in ~2000 ±500 g/mol
42

, a 
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“standard” value of 750 Da is widely used
21

 based on the latest (as of 2010) Mass 

spectrometry and molecular diffusion measurements
43, 44

. As a summary, table 2 shows the 

average molecular weight for asphaltenes obtained via different techniques. 

 

 

 

 

 

Table 2: Asphaltene average molecular weight obtained via various techniques. Table 

reproduced from Speight et al.
45

 

 

3.2.3 Chemical composition 

An important aspect of the chemical composition of asphaltenes is the size of the 

polyaromatic hydrocarbons (PAHs) and the functionality of the heteroatoms. The relationship 

between the number of rings inside the asphaltene core and the solubility/precipitation 

aspects is as follows: if the molecule has a large number of rings, the solubility in toluene 

decreases. Analogously, if the number is too low, the precipitation in n-heptane increases
46, 47

. 

Measurements using Scanning Tunneling Microscopy (STM) showed that the main axis of 

the PAH is ~1nm which corresponds to ~7 fused rings
48

. Measurements on Raman spectra 

and 
13

C NMR reached similar conclusions
49

. 

The issue of how the fused rings are arrayed is another matter of discussion. The source of 

the argument is the resonance structures present in benzene (and other sextet compounds). 

These structures change when two or more rings are present and thus their optical absorption 

spectra changes. Pure sextet compounds (benzene, hexabenzocoronene) are stable and the 

aromatic sextet carbon exhibits blue shifted spectra. Isolated-double-bond carbons on the 

other hand are less stable and exhibit red-shifted spectra
50, 51, 52, 53, 54

. Most of the evidence 

points towards the dominance of aromatic-sextet-carbons inside the PAHs which is in 

agreement with the observations that support the Continental over the Archipelago model. In 

summary, it can be said that the PAHs have ~7 fused rings in their structure and that the 

dominant carbons are not isolated-double bonded. 

Technique Molecular Weight g/mol 

Ultracentrifugation 300000 

Osmotic pressure 80000 

Ultrafiltration 80000-140000 

Boiling point elevation 2500-4000 

Freezing point depression 600-6000 

Vapor pressure osmometry 1000-8000 

Viscosity 900-50000 

Light scattering 1000-4000 
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The second relevant aspect regarding chemical composition has to do with the nature and 

location of heteroatoms such as Nitrogen, Oxygen and Sulfur and to some extent metals such 

as Nickel and Vanadium that have been shown to impact asphaltene properties. These 

constituents cannot be properly determined through proton magnetic resonance studies 

therefore spectroscopic methods are normally used. Some of the methods used to this end are 

XPS (X-ray Photo-Electron Spectroscopy), EXAFS (Extended X-ray Fine Structure) and 

XANES (X-ray Absorption Near Edge Spectroscopy)
45

. Oxygen content has been 

traditionally the less complex heteroatom to detect. However, a large portion of the data is 

related to oxygen functions present in oxidized material which might not correlate to the 

content in native material
45

. Despite this, oxygen has been identified in carboxylic, phenolic 

and ketonic locations and it is less likely to exist in heterocyclic locations
55

. Nitrogen has 

been shown to be present in heterocyclic structures
21

 and largely present in pyrrolic 

(aromatic) form
56

 and some portions in pyridine form. Sulfur occurs in petroleum (and the 

asphaltene fraction) as benzothiophenes, dibenzothiophenes and 

naphthenebenzothiophenes
45

. XANES spectroscopy has been used to confirm the presence of 

tiophene sulfur and sulfide sulfur in asphaltenes
21

. 

Metals such as Nickel, Vanadium and iron are present in crude oil. However, it has been 

shown
57

 that most of these metals are concentrated in the asphaltene fraction or in fractions 

that boil above 540 °C. The occurrence of these metals is typically in complex structures such 

as petroporphyrins and metallo non-porphyrin compounds
58

. However, whether these 

porphyrins are part of the asphaltene structure or not is not known. 

3.2.4 Bulk Properties 

3.2.4.1 Asphaltene self-association 

As seen in the previous section, central to molecular weight determination is asphaltene 

aggregation. In fact, it has been shown that asphaltenes have the tendency to self-aggregate in 

hydrocarbon solutions at concentrations as low as 0.1 g/L in toluene
24, 59

. Association of 

asphaltenes is influenced by their concentration, origin
31

, solvent polarity
18

, temperature, 

pressure and the presence of resins
60

. The mechanisms that lead to aggregation of asphaltenes 

in solution have not been yet established. However, there are some aspects that have been 

identified such as hydrogen bonding, formation of charge-transfer complexes, hydrophobic 

pockets and π-π stacking being the latter the most significant force for dimer formation
61, 62

. 

Furthermore, asphaltene nanoaggregates, whose formation occurs at high energy binding 
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sites, have been described as a “hairy tennis ball” with the alkane chains surrounding it and 

stable against flocculation
59

. It has also been proposed that their shape could be described as 

cylinders with a high degree of polydispersity
63

 or fractal arrangement
64

. 

Asphaltene-resin interactions
65, 66

 seem to play an important role in asphaltene stability in 

solution. One reason for this is that resins have intermediate polarity and higher H/C ratio 

which helps closing the solubility gap between the polar asphaltenes and nonpolar elements 

in the oil matrix
46, 67, 68

. It appears that the presence of resins induces a decrease of the molar 

mass of the asphaltene aggregates
24

. Resins attach to the nanoaggregates that are dispersed in 

the solution as a nano-colloid and when removed, higher molecular weights are observed
18

. 

Also, desorption of resins from the aggregates leads to asphaltene precipitation
44

. This is 

evidently tightly linked with the nature of the solvent. For instance, in good solvents (i.e. 

toluene) swelling of the side chains causes a steric repulsion that consequently causes 

asphaltenes to repel whereas in poor solvents (i.e. heptane) asphaltenes attract via Van der 

Waals forces
69

. 

One of the most popular models for asphaltene aggregations is the Yen model. It was one of 

the first multi-scale attempts to provide a realistic relationship between structure and 

function. The “modified Yen model” or “The Yen-Mullins model” provides a more refined 

approach because it includes the energy contribution of the different structures at the different 

scales
20, 21

. The Yen-Mullins model assumes an asphaltene molecule size of approximately 

1.5nm with a single moderate-sized PAH ring system and peripheral alkane chains 

(continental model). These molecules can form nanoaggregates of ~2 nm with aggregation 

numbers of 6 with a single disordered PAH stack. The nanoaggregates are prone to form 

clusters (~5 nm) with aggregation numbers of approximately eight. Fig. 4 shows a schematic 

of the Yen-Mullins model. The concentration at which the nanoaggregates start to be present 

in solution is known as the critical nanoaggregate concentration (CNAC) and different 

studies
24, 59, 70

 have placed it at ~100 mg/L. 

As a summary, some of the generalities and implications from the Yen-Mullins model are: 

Asphaltene molecules follow the continental model as the most predominant architecture with 

the peripheral alkyl chains providing steric hindrance. Heteroatoms are often found within the 

asphaltene architecture; the presence of charged species is very low, thus their contribution in 

terms of energy is virtually non-existent. The PAH is the primary site of interactions. It is 

polarizable, it exhibits dipole-dipole interactions which are largely responsible for the self-
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association behavior and attractive forces are short-range. Nanoaggregates are thought to be 

rather small, containing only a few asphaltene molecules mainly because of the steric 

hindrance that the side alkyl chains provide once the nanoaggregate is formed; The PAH 

inside a nanoaggregate are not covalently cross-linked to each other. Hence additional 

asphaltene molecules will not contribute to increase the size of the nanoaggregate but instead 

form a new one
20, 46

. Asphaltene Clusters are most likely fractal and given that the 

nanoaggregates are ~2nm, the smallest clusters should be ~6nm. It has been suggested that 

the strong rheological behavior relationship to temperature is because of the variation in 

clustering which could be analogous to crystal growth
20

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The Yen-Mullins model. Asphaltene molecules are assumed to follow the 

Continental model (predominant asphaltene architecture). 

 

3.2.4.2 Precipitation, flocculation and deposition. 

One of the main problems in production, separation, transportation and refining of crude oil is 

precipitation and deposition of heavy organic solids such as asphaltenes. When asphaltene 

deposits are formed, flow-assurance issues arise and this can significantly affect 

environmental and economic aspects of the process.
23, 43, 44

 Even though precipitation always 

precedes deposition, it is not a sufficient condition. This means that asphaltenes can remain in 

the oil, but will not necessarily adhere to any surface. Precipitation of asphaltenes can be 

attributed to several factors
43, 71

: temperature, solubility and composition (mixing the oil with 
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miscible and immiscible diluents, carbon dioxide injection), pressure changes (influence of 

light components), acidification (neutralization of negatively charged asphaltene aggregates) 

and fouling. In light oils that contain smaller amounts of asphaltenes, precipitation is mainly 

due to depressurization whereas in heavy oils it is mainly due to the mixing with other fluids 

such as carbon dioxide or light hydrocarbons.
72

 

On the other hand, asphaltene deposition is a more complex process that may lead to 

equipment plugging (pumps, safety valves), pipeline plugging, well-bore plugging, 

deactivation of other chemicals and emulsion stabilization among others. Flow shear rate, 

equipment material and interactions between asphaltenes and the surfaces are some of the 

keywords of this phenomenon. 

When precipitation and deposition occurs, mitigation techniques such as solvent cleaning, 

mechanical cleaning and inhibitor injection have to be implemented. It is therefore of great 

importance to be able to reliably predict if and when asphaltene problems will occur, more 

specifically, when precipitation happens 
23, 73

. While some of the studies available in the 

literature are performed directly on crude oils, a vast number are performed on asphaltene 

solutions, typically in toluene or xylene which are treated as model systems. The so-called 

asphaltene phase envelope (APE)
74

 presented in Fig. 5 is a diagram typically used to screen 

for precipitation. This diagram delimits the solubility-stability zone for asphaltenes and 

includes, in the case of live oils, the bubblepoint border (an area under which asphaltenes 

may be re-dissolved as the pressure decreases
75

). Asphaltenes tend to be more stable at high 

pressures and low temperatures
76

 and above a certain temperature range, related to the 

solubility parameter of the gas present (i.e. live oils) asphaltenes transition from stable to 

unstable
77

. Some of the techniques used for determining the asphaltene precipitation onset 

include: the gravimetric precipitation method, the acoustic-resonance technique (ART)
78

, 

near infrared spectroscopy (NIR)
79

, quartz crystal microbalance (QCM-D)
80, 81

, refractive 

index (RI)
82

, high pressure methods
74

, isothermal calorimetry
83

 and electromagnetic 

viscometry
84

. Similarly, deposition and asphaltene plug formation are studied through 

capillary flow experiments
72, 85

 and Taylor-Couette (TC)
86, 87

. 
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Figure 5. Asphaltene phase diagram or APE for unstable reservoir fluids showing the 

different liquid (L), vapor (V), wax (W) and asphaltene (A) regions. Image reproduced from 

Hammami et al.
22

 

3.2.5 Surface properties 

Interactions involved in asphaltene aggregation and flocculation are partly responsible for the 

formation and stabilization of emulsions. Asphaltenes can adsorb at liquid-air, liquid-liquid 

interfaces and liquid-solid surfaces and each type of interface (surface) plays a key 

detrimental role in different stages of oil production. For example adsorption at the liquid-

liquid interface is of paramount importance when dealing with emulsions and adsorption at 

the liquid-solid surface is involved in precipitation and deposition. 

3.2.5.1 Adsorption at the liquid-air and liquid-liquid interface. 

Adsorption at the liquid-air air interface normally refers to the formation of foams as an 

undesired consequence of foam flooding for enhanced oil recovery operations (EOR) or as a 

result of the liberation of dissolved gas in live-oils in the separators
88, 89

. This broad subject 

goes beyond the scope of this thesis and for this reason it will not be treated here. 

Adsorption at the liquid-liquid interface is strongly related to the formation and stability of 

emulsions and will be treated in upcoming chapters. 
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3.2.5.2 Adsorption at the liquid-solid surface. 

Asphaltene adsorption at the solid-liquid surface has been studied for a wide range of 

surfaces
90, 91

 that include clay/non-clay minerals and metals. Differences in the adsorbed 

amounts, even within the same surface are not uncommon. 

Asphaltene adsorption onto silica and alumina surfaces is a relevant field of study because of 

the similarities to the naturally occurring rock formations.
92

 Different studies have reached 

similar conclusions in the sense that asphaltene adsorption seems to be dominated by polar 

interactions between the surface and acidic/basic functionalities present in asphaltene 

molecules. Polycyclic aromatic hydrocarbons (PAHs) exhibit a higher affinity towards 

acidified particles which translates to interactions of the type Brønsted and Lewis acidity. In 

general, adsorption onto silica is higher than onto alumina particles
93, 94, 95, 96, 97, 98

. 

Adsorption of asphaltenes onto clay minerals such as kaolinite, illite and montmorillonite, 

and onto non-clay minerals such as quartz (SiO2), calcite (CaCO3), fluorite (CaF2) and 

hematite (Fe2O3) has been of particular interest due to their retention capabilities which 

impacts adsorption and due to their resemblance to reservoir rocks
91, 99, 100, 101

. Generally 

speaking, adsorption onto minerals tends to be similar or higher than silica and alumina
94, 102

; 

the adsorption mechanisms seem to be related to the hydration energies of the cations present 

(Mg
2+

, Ca
2+

, Na
+
, K

+
)
103

 and interactions between asphaltenes and the polar groups (Si-OH, 

Al-OH) that are regarded as slightly acidic active sites for adsorption
91, 104

. 

Adsorption of asphaltenes onto metal surfaces (stainless steel, iron and aluminum) which 

have high implications when discussing pipeline plugs and deposits is normally characterized 

by exhibiting similar to higher adsorbed amounts compared to clay and nonclay minerals
35,36

. 

The differences in adsorption capacities could be attributed to differences in the morphology 

of the particles which affect diffusion and asphaltene origin. Additionally, unlike adsorption 

onto silica and alumina, adsorption onto metal surfaces seems to be driven by electrostatic 

bonding (provided by elements such as Cr, Ni, Si, C, S and P) coupled with the surface 

charge of asphaltenes
105, 106

. 
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4. Emulsions 

4.1 General aspects 

Emulsions (i.e. macroemulsions) are a type of colloidal system in which droplets of a liquid 

are dispersed in a second immiscible liquid. Emulsions are widely used in a variety of 

industrial applications: cosmetics, food, pharmacy, coatings, oil recovery and the so-called 

liquid explosives
107, 108

. These products are a non-equilibrium system, which means that they 

are thermodynamically unstable and consequently two variables must be considered for their 

formation: energy (which must be incorporated through the emulsification process or any 

type of shear) and a surfactant that stabilizes the droplets by ensuring repulsive interactions at 

the interface. 

One way of classifying emulsions is by the nature of the dispersed phase. In this sense, they 

can be considered as water-in-oil (W/O) or oil-in-water (O/W). Here, the terms water and oil 

are used in a rather simplistic way to denote that the phases can be either hydrophilic or 

hydrophobic
109

. As an example, Fig. 6 shows the two types of emulsions. They can also be 

classified according to the microstructure of the continuous phase or the interaction forces 

between the droplets. Depending on the emulsification process, multiple emulsions can also 

be formed. For instance, a water-in-oil-in-water emulsion (W/O/W) consists of oil droplets 

dispersed in a water medium with water droplets inside.
110

 

 

 

 

 

 

 

 

 

 

Figure 6. Oil-in-water emulsion (left) and water-in-oil emulsion (right). Surfactant not 

shown. 
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4.1.1 Formation 

From an energetic standpoint, the kinetically stable emulsions have a total free energy 

associated with the formation of droplets (𝛥𝐺𝑓) than can be expressed through the following 

relationship
111

: 

 𝛥𝐺𝑓 = 𝛾𝐴 − 𝑇𝛥𝑆𝑓 (1) 

 

Equation (1) includes the entropic term related to droplet formation (𝛥𝑆𝑓), the total surface 

area (𝐴), the temperature (𝑇) and the interfacial tension (𝛾). The product 𝛾𝐴 tends to be large 

and in fact, it outweights the entropic term which means that the total energy is positive. This 

translates to a non-spontaneous thermodynamic process that requires either an energy input 

(i.e. emulsification process) or lowering the interfacial tension through a surface active agent 

or a combination of both. In the latter case, repulsive forces (electrostatic or steric) between 

the droplets provide a thermodynamic stabilization. Surfactant-stabilized droplets lose their 

ability to move, thus reducing the probability of collision giving them kinetic stability
112

. 

Evidently, these systems are not completely efficient in the sense that although some 

emulsions can be stable for decades, most of them (if not all) undergo through destabilization 

mechanisms. 

To minimize the surface area, droplets tend to retain a spherical shape and so a relationship 

between the forces that act on the droplets and the interfacial tension can be established. This 

is known as the Laplace pressure (𝛥𝑃) and can be expressed as: 

𝛥𝑃 = 𝛾 (
1

𝑟1
+

1

𝑟2
) (2) 

In which 𝑟𝑖 are the radii of curvature of the droplet (in a spherical droplet they are equal). If 

an external force is to disrupt a droplet, it must overcome the Laplace pressure first.  

4.1.2 Stabilization 

The stability of emulsions or any other disperse system is strongly related to phase 

separation. The mechanisms of emulsion destabilization will be treated in the next section; 

however the important aspect here is that phase stability is dominated by various types of 

forces, short- and long-range
113

. 

Van der Waals Interaction. Most of attractive forces can be described through this type of 

interaction. They arise when spontaneous electric and magnetic polarizations happen, thus an 
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electromagnetic fluctuating field is generated. When measuring these forces, the idea is to 

detect the variation in the electromagnetic wave energy with the distance between droplets
114

. 

Hydrodynamic interactions. When the gap between two approaching droplets is reduced, the 

liquid between them is drained. These forces arise from viscous dissipation. In the case of 

emulsions this gap can be considered as a thin planar film and the liquid is drained due to the 

capillary suction pressure
115

. 

Hydration Forces. These are forces of repulsive nature that are due to the dehydration of the 

polar groups (in a surfactant covered droplet) and a decrease in entropy
115

. 

Electrical Double Layer. Emulsions prepared with electrolyte solutions (for example brine) 

inherently present with electrostatic forces. Naturally, counter-ions are attracted to the surface 

where as co-ions are repelled
115

. The double layer arises from the fact that the counter-ions 

try to get closer to the surface/interface, and the co-ions trying to diffuse back to the 

electrolyte solution. A widely used model to describe this double layer is that of Stern
113

 in 

which part of the charge is within the Stern layer and other part is located in the diffuse layer. 

The interaction is governed by the boundary between these two layers, thus the relevant 

parameter is known as the Stern Potential. For relatively low potentials, the linear form of the 

Poisson-Boltzmann expression is valid
113

. 

The discussion of the electrical double layer is necessarily linked to the DLVO theory. 

Named after its creators (Derjaguin, Landau, Verwey and Overbeek) it was proposed to 

describe the stability of a colloidal suspension as a competition between the Van der Waals 

attractive forces and the repulsive forces associated with the electrical double layer. As with 

any potential energy relationship, attractive forces dominate at very small and very large 

droplet-droplet distance while the repulsive forces act at moderate distances
116, 117

. Fig. 7 

shows a typical DLVO plot. The extent of the magnitudes naturally depends on electrolyte 

concentration and pH and several scenarios can occur. For example, at long Debye lengths 

(highly charged surfaces in dilute electrolyte) the long-range repulsion peaks at the energy 

barrier (1-5 nm); the primary and secondary minima might be identified in slightly more 

concentrated electrolyte solutions. In this case, the energy barrier for particles in the 

proximities of the primary minimum may be too high to overcome, which means that droplets 

will remain disperse; Flocculation occurs in surfaces of low charge density, which means that 
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the energy barrier will be lower. When the value is lower than W=0 (Fig. 7), the colloid 

dispersion is said to be unstable
117

 

Hydrophobic Interaction. This type of interaction is a direct consequence of the hydrophobic 

parts present in an emulsion. In this sense, when hydrogen bonding is not possible (for 

instance negative charges at the interface), an attractive force emerges at certain spots of the 

interface. This force can be large and long-range
118

. 

Structural forces
116

. These types of interactions come from the steric effects that a dense 

packed surface yields. In high internal phase emulsions, droplets are very close to one 

another. When the separation between two surfaces is so small (i.e. comparable to the size of 

a molecule) an oscillatory density profile is generated. With this profile, net attractive and net 

repulsive profiles can be studied. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic of the typical energy potential with distance in DLVO interactions. The 

double layer repulsion and Van der Waals attraction (VDW) are also shown.  The interaction 

energy depends on the particle/droplet size or area in the case of planar surfaces. Original 

image reproduced from Israelachvili
117
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4.1.3 Destabilization 

The study of the mechanisms that eventually lead to phase separation of emulsions is one of 

the most relevant aspects of colloidal science. It fact, it is a major field of research of the 

petroleum industry because emulsified water needs to be removed from the crude oil before 

refining. Emulsions can break down in different ways. Typically, six mechanisms are 

identified: creaming, sedimentation, flocculation, Ostwald ripening, phase inversion and 

coalescence. Emulsions can follow one or multiple mechanisms simultaneously
119

. 

Creaming/Sedimentation. Gravity could play a key role in destabilizing emulsions, because 

of the density difference between the phases of the dispersed system. In W/O emulsions, 

sedimentation can occur due to the fact that water droplets have a higher density than most of 

the known oils
120

. The second element relevant to this mechanism is droplet size. Given that 

Brownian diffusion is exceeded in droplets of 1 µm or more, these two phenomena have a 

high probability of occurring. The rate of creaming/sedimentation can be calculated using 

Stoke’s law
119

. 

𝑣0 =
2

9

𝑅2∆𝜌𝑔

𝜂0
 (3) 

Where R is the radius of the falling droplet, ρ the density difference between the phases, g the 

gravity constant and η0 the viscosity of the medium. This expression is valid for diluted 

emulsions. The creaming/sedimentation rate becomes a complex function of the 

concentration of the dispersed phase until it becomes zero (above the maximum packing 

fraction). A way of accelerating the rate of creaming/sedimentation is to use centrifugation; 

however this may lead to droplet deformation and eventually, to phase separation and 

flocculation
119

. 

Flocculation. The tendency of droplets to aggregate in order to generate a more energetically 

stable state is known as flocculation. This also happens because the van der Waals attractive 

energy exceeds the repulsive energy
121

. The important feature of this type of instability is that 

the droplets keep their individuality, meaning that they do not coalesce. The rate of 

flocculation can be calculated using the following expression (valid only for dilute 

emulsions)
119

: 

𝜏 = 𝐴𝑛0𝑉2(1 + 2𝑛0𝑘𝑡) (4) 
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Where 𝐴 is an optical constant, 𝑛0 is the number of droplets at a time 𝑡 = 0, 𝑉 is the volume 

of droplets and 𝑘 is the constant of flocculation. Flocculation could potentially be addressed 

by means of light scattering techniques such as spectroscopy or by droplet counting methods. 

Stabilization of droplets by means of ionic or nonionic surfactants prevents flocculation due 

to electric double layer interactions and steric impediments. 

Ostwald Ripening. It is a phenomenon that depends on the solubility difference between 

small and big droplets (in a polydisperse system) and the radii of curvature. The principle 

behinf it is mass transfer might. Evidently, this is a thermodynamically-driven process and it 

is due to diffusion
118, 119

. According to the Lifshitz-Slezov-Wagner (LSW) theory, the rate of 

Ostwald ripening w can be calculated using the following expression: 

𝜔 =
𝑑

𝑑𝑡
(𝑟𝑐

3) =
8

9

𝐷𝑆(∞)𝑉𝑚

𝑅𝑇
 (5) 

Where rc is the critical radius of the droplet, D is the diffusion coefficient of the dispersed 

phase in the continuous phase, S is the solubility of a particle of infinite radius, Vm is the 

molar volume of the dispersed phase, R is the gas constant and T the temperature. It is 

important to highlight that this process tends to be very slow compared to other 

destabilization mechanisms.  

Coalescence. Is the mechanism by which two or more droplets merge during contact to form 

a single daughter droplet. This phenomenon is mainly due to the rupture of the thin film 

present at the interface. The film ruptures because the liquid that resides between the small 

gap created by the contacting droplets is drained
122

. Fig. 8 shows a simple schematic 

depicting two droplets in contact and the motion of the surface active molecules towards the 

“Barrier Ring”, leaving a surfactant-free area or in other words, film drainage. The generation 

of a surfactant-free area that leads to coalescence is not as straightforward as shown in Fig. 8. 

In order for this to happen, the so called Gibbs-Marangoni effect must be overcome. This 

phenomenon, given that the surfactant is dissolved in the continuous phase, is a self-

stabilizing mechanism mainly because when two droplets approach each other and surfactant-

free area is being formed, an interfacial tension gradient is created, thus this area will tend to 

adsorb more surfactant and, consequently, prevent coalescence. This is valid only if the 

droplets are poorly covered or when there is a non-equilibrium situation
123

. An important 

concept in coalescence that arises when the interaction between two approaching droplets is 

relevant enough to form the film is that of the disjoining pressure (𝛱). Generally speaking, 
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positive values of 𝛱 represent repulsion between the two surfaces that form the film, and 

negative values of 𝛱 represent an attraction
122

.  

How the film actually breaks is another important part of droplet coalescence studies. 

Different mechanisms have been proposed. First, the capillary-wave mechanism states that 

when the film thickness decreases, the disjoining pressure enhances the amplitude of these 

waves, eventually causing the surfaces to touch (thus breaking the film after a critical 

thickness has been reached
124

. Second, the nucleation of pores states that in a film with 

amphiphilic molecules attached to it as monolayers, due to an energy imbalance, a pore is 

formed and in some cases, the film is broken
114

. Third, the transport of solute across the film 

mechanism is based on heat and mass transfer across the film, which enhances Marangoni 

instabilities causing forced capillary waves which lead to film break
125

. 

 

 

 

 

 

 

 

 

Figure 8. Two surfactant-covered droplets in contact. Image reproduced from Giribabu et 

al.
126

 

4.2 Asphaltene-stabilized emulsions 

Asphaltene adsorption at the liquid-liquid interface is characterized by a rapid initial 

adsorption with a fast diffusion where the main decrease in the interfacial tension is observed. 

The time dependence after this step is minor and is attributed to relaxation processes at the 

interface
25, 127

. The mechanism for emulsion stabilization is attributed to the formation of a 

mechanically strong film or, “skin”, at the interface that prevents droplets from coalescing. 

The skin is most likely the result of asphaltene self-association at the liquid-liquid interface 

and the progressive build-up of a multilayer
128

. In fact, it has been shown
129

 that asphaltenes 

can for instance, stabilize thin organic liquid films at concentrations much lower than 
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maltenes and bitumen. Similarly, the drainage of such films is much faster for the latter case 

which also happens to be the case in which the films are much thinner. Additionally, 

asphaltenes adsorb irreversibly at the oil-water interface
93, 130, 131, 132

. This has been confirmed 

through interfacial tension measurements and Langmuir films. 

Asphaltenes are not considered “classical” surfactants (such as Span 80, Fig. 9) in the sense 

that they are not precisely amphiphilic molecules. Asphaltenes do not exhibit a critical 

micelle concentration (CMC), instead, they form nanoaggregates and clusters that are prone 

to reorganization and relaxation processes
25, 111

. Stability is strongly related to the solvation 

(aggregation) state of asphaltenes, and it has been shown
29, 133

 that when they are close to 

their precipitation onset (in the presence of n-heptane for instance), the emulsions exhibit a 

maximum in their stability. The pH of the aqueous media influences stability mainly because 

of the protonation/deprotonation of the –COOH groups and/or action of basic components. 

Similarly, the presence of electrolytes can contribute to a “salting-out” effect, which makes 

the molecules less soluble in the aqueous phase
111

. 

 

 

 

 

 

 

Figure 9. Chemical structure of Span 80 (sorbitan monooleate) considered as a “classical” 

amphiphilic surfactant. 

 

4.3.1 Rheology of asphaltene interfaces 

Interfacial rheology is a suitable technique to study and characterize asphaltene interfaces. 

With these techniques it is possible to obtain shear, dilatational and mix-field flow types 

which allow elucidating different aspects of asphaltene films. The main difference between 

shear and dilatational is that in simple shear experiments, flow is induced at a constant area, 

while in dilation the area of the interface is changed
111

. This might cause 

adsorption/desorption of material from the interface. In this section, studies using two 
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different geometries (shear) and studies using the pendant drop technique (dilatational) are 

highlighted. 

Studies on interfacial shear rheology
134, 135

 using a biconical geometry showed that 

asphaltenes form films of high elasticity after several hours of aging. This behavior seems to 

be more pronounced for asphaltenes with higher heavy metal content, polarity and lower 

aromaticity
132

. It was also observed that the elastic modulus (𝐺′) and adsorption kinetics are 

enhanced when asphaltene films are formed near the precipitation onset. Furthermore, a 

concentration threshold range of 2-5 g/L was found for the formation of the mechanically 

strong film at the oil/water interface after aging. Introduction of resins seemed to cause a 

rapid reduction in the elasticity of the film. 

Samaniuk et al.
136

 recently studied asphaltenes at the hexadecane/water interface using a 

double wall-ring (DWR) geometry
137

 confirming the effects of concentration and aging. They 

concluded that: (i) asphaltene films at the oil/water interface behave as soft-glassy materials; 

(ii) the crowding of the interface plays a crucial role and, (iii) the concentration/frequency-

dependent data is in agreement with a soft-glassy rheology (SGR) model. Using a similar 

geometry, Harbottle et al.
127

 showed that the microstructure of the asphaltene network film at 

the oil/water interface can be liquid-like or solid-like depending on the initial bulk 

concentration, aging time of the interface and solvent aromaticity. An important observation 

made was that the transition states could be related to the shear yield stress (as the film 

microstructure starts to be dominated by elasticity) which might act as an energy barrier 

against drop coalescence. In fact, consolidated films around asphaltene droplets do not 

coalesce after certain aging times. Naturally, Adsorption kinetics plays a key role in the 

development of the mechanical properties of asphaltene films. It has been shown
138, 139

 that 

asphaltene adsorption is diffusion-controlled at short times with individual molecules, 

transitioning possibly to a barrier-controlled regime in which larger aggregates are involved.  

The literature regarding interfacial dilatational rheological studies (pendant drop technique) 

of asphaltene films at the liquid-liquid interface is extensive
39, 140, 141, 142, 143, 144

. These studies 

report a behavior that is somewhat general to asphaltenes. First, the apparent elastic 

dilatational modulus (E’) increases with time. This is an indication of the kinetic build-up of 

the film, crowding and possible cross-linking of asphaltenes at the interface. Second, a 

maximum in E’ with concentration is observed, the location will depend on the conditions of 
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the experiment and asphaltene origin
140, 142, 143, 145

. And third, if the aged interface is 

contracted, a phenomenon described as crumpling has been observed
142

. 

It is imperative to emphasize that in pendant drop experiments, depending on the dominating 

phenomena, the nature of the measured quantities will vary. For instance, at interfaces largely 

dominated by interfacial tension, the influence of the exchange with the bulk is dominant 

(adsorption/desorption dynamics), whereas extra mechanical stresses are essentially 

negligible; this is often the case for low molecular weight surfactants. At interfaces 

dominated by extra stresses, as in the case of particle monolayers or asphaltenes that clearly 

exhibit a skin, the nature of the elastic response is fundamentally different. Hence, when 

discussing the moduli extracted from dilatational experiments it should be noted that these 

may not always be true material functions. 

5. Model compounds 

Sjöblom et al
146

. recognized two possible approaches to tackle the issue of understanding 

asphaltene properties. One approach is to develop a fractionation plan of the asphaltene 

content to split it into sub-fractions of different functionalities determined by 

precipitant/solvent mixtures. The main disadvantage of this approach is that the obtained 

asphaltene sub-fractions are still polydisperse and heterogeneous, hence accurate 

determination of the agents responsible for adsorption properties is still troublesome. The 

second approach is to design a molecule (or a group of molecules) that mimic the main 

features of asphaltene behavior in terms of self-association and adsorption properties. 

Substantial work on model compounds has been done following primarily the continental 

model with few studies based on the Archipelago model. 

Different model compounds have been synthesized using different approaches thus it is not 

uncommon to find different families of these molecules. Here, model compounds based on 

pyrene, alkylated hexabenzocoronene and perylene are highlighted. 

Akbarzadeh et al.
147

 studied the self-association properties (aggregation number and stability 

of aggregates in solution) of a series of derivatives of the four-ring component pyrene. These 

properties were significantly different than those of the indigenous asphaltenes in similar 

solutions. More specifically, the model compounds formed, in the best cases, dimers and 

trimers where asphaltenes are known to have aggregation numbers between 5-7. This lead to 
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the conclusion that the pyrene-based compounds proposed lack core features that represent 

real systems. Rakotondradany et al.
148

 studied the self-association properties of a model 

compound based on  alkyl hexabenzocoronenes. Their study showed that even at 

concentrations as high as 15 g/L the model compound tends to form dimers, uncharacteristic 

of indigenous asphaltenes. The self-association, cracking and coking properties of 

archipelago pyrene-based model compounds was studied by Tan et al 
149, 150

. The authors 

found that the compounds self-associate due to π-π stacking interactions involving the pyrene 

rings and the bypiridine spacer and that the model compounds in the presence of heteroatoms 

exhibited coke yields comparable to hydrocarbon compounds. Fig. 10 shows some of the 

model compounds used in the previous studies. 

 

 

 

 

 

 

 

 

Figure 10. Model compounds based on pyrene (left) and hexabenzocoronene (right). Original 

image reproduced from Sjöblom et al
146

 

Molecular dynamic simulations (MDS) performed by S. Bhattacharjee and J. Masliyah
35, 151

 

using different model compounds (archipelago, continental and anionic continental) showed 

that, like indigenous asphaltenes, their model compounds tend to self-associate in pure 

solvents by π—π stacking. Similarly, simulations at the oil/water interface showed that 

aggregates of the model compounds are adsorbed and the acidic functionalities seem to form 

hydrogen bonds. They found that the stacked polyaromatic rings are perpendicularly oriented 

to the same interface. Finally, the authors showed that molecules with charged terminal 

groups are tethered to the toluene-water interface contrary to uncharged compounds. Two 

continental-based compounds used in MDS studies are shown in Fig. 11 and it can be noted 

that they have different functionalities. 
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Three studies
150, 152, 153

 of pyrene-based asphaltene model compounds that follow the 

Archipelago model measured the cracking kinetics and the coke yield. The authors showed 

that the initial cracked fragments are recombined to form larger structures through a free-

radical process. These compounds exhibited higher yields of coke compared to indigenous 

hydrocarbon compounds. When the biomarker structure 5α-cholestane was incorporated to 

the model compounds, cracking kinetics and coke yields improved to value ranges 

comparable to indigenous components of oil. The basic structure of these model compounds 

is shown in Fig. 12 in which the blank part in the middle of the molecule is replaced by 

different components. 

 

 

 

 

 

 

 

 

Figure 11. Model compounds used for MDS studies. Different functionalities arise by the 

concentration of heteroatoms. Image partly reproduced from Sjöblom et al
146

. 

 

 

 

 

 

Figure 12. Pyrene-based model compound that follows the Archipelago model. The blank 

space in the middle of the molecule is replaced by groups of different functionalities. Image 

partly reproduced from Sjöblom et al
146

. 
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Finally, a series of perylene-based molecules
35, 151, 154, 155, 156, 157, 158

  with a fixed hydrophobic 

part and branched alkyl chains have shown to mimic different adsorption and self-association 

properties of asphaltenes besides being able to form stable W/O emulsions through the 

formation of an interfacial strong film. For example, the precipitation onset of TP and PAP 

(Fig. 13) were shown to be very close to the precipitation onset of indigenous asphaltenes 

under similar conditions. At pH 9, the acidic molecules (C5Pe, PAP and TP) produced 

interfacial tension curves similar to indigenous asphaltenes and exhibited a higher interfacial 

activity. Surface force measurements showed that the force profiles of C5Pe and indigenous 

asphaltenes are qualitatively similar, indicating the formation of similar structures. The 

stability of the equivalent emulsions (as measured by bottle tests) was also shown to be 

similar between indigenous asphaltenes and the acidic model compound C5Pe. In all cases, 

the model compound BisA (which is a non-acidic non-basic molecule) did not exhibit any 

interfacial activity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. A series of perylene-based asphaltene model compounds of different 

functionalities (different end-groups). Image reproduced from Sjöblom et al
146

. 

 

In this thesis we investigate the sorption properties of two model compounds that are 

perylene-based. These two model compounds are C5PeC11 and BisAC11 and their general 
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properties are presented in table 3. C5PeC11 is a molecule with an acidic end group and 

BisAC11 has aliphatic end groups. The underlying principle of this segregation of 

functionalities (acidic, basic among others) is the experimentally observed differences of 

indigenous asphaltenes obtained through various precipitation methods
159

. 

 

Table 3. General aspects of the model compounds used in this study. 

 

6. Experimental Techniques and Theory. 

6.1. Surface tension (ST) and interfacial tension (IFT) measurements 

6.1.1 The Du Noüy ring. 

The Du Noüy ring is a known technique used for measurements of the interfacial/surface 

tension at the liquid-liquid or liquid-air interface. Fig. 14 shows a simple schematic of the 

ring immersed in two liquids. The cuvette in which the liquids are contained can slowly move 

up and down and the force (𝐹) required for the ring to pass through the liquids (and the 

interface) is registered by a microbalance attached to the ring as a function of time. The 

interfacial tension (𝛾) is related to the measured force via equation (6) in which (𝑟) is the 

radius of the ring and (𝛽) is a correction factor
160

. 

𝛾 =
𝐹

4𝜋𝑟
𝛽 (6) 

This technique is very versatile and preferred over other techniques mainly because its 

resolution tends to be very high (± 0.01 mN/m) and the fact that the force is being directly 

measured and not indirectly calculated. With this technique it is also possible to determine 

the critical micelle concentration (CMC) if the ring set-up is coupled with an accessory that 

delivers aqueous solution in a controlled way. 

 

 

Compound Molar mass g/mol Structure 

C5PeC11 827.12 

 
BisAC11 1035.60 
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Figure 14. The Du Noüy ring. A cuvette filled with two liquids moves in the direction of the 

arrows. A microbalance registers the force needed for the ring to go through the different 

phases as a function of time and this force is related to the interfacial tension. 

Even though this method is widely used, it has several limitations. (i) surface/interfacial 

tensions lower than 1 mN/m are not possible to detect; (ii) measurements at short times (< 1 

min) are not usually possible, hence kinetics of highly surface active agents that reach 

equilibrium rather fast are not possible to determine; (iii) every time the ring passes through 

the surface/interface, the equilibrium state is physically disturbed, which means that a new 

equilibrium state has to be reached. 

6.1.2 Axisymmetric drop shape analysis (ADSA). 

A Gibbs dividing surface is a zero-thickness mathematical surface that allows a division 

between the bulk (in which the concentration of a species is rather constant) and a phase 

boundary (i.e. interface) to which the species has adsorbed and the concentration varies
161

. 

Such surface is generated in the known pendant-drop and micropipette techniques which 

allow a measurement of the interfacial (or surface) tension at the liquid-liquid (or liquid-air) 

interface
162

. In these techniques, when liquid-liquid systems are being studied, a drop of one 

of the liquids is produced in the second immiscible liquid.
163

 The drop can be rapidly 

analyzed through the use of powerful software coupled with CCD cameras. The technique is 

commonly known as axisymmetric drop shape analysis (ADSA), and it is widely accepted as 

a robust and versatile method for measuring the interfacial tension (IFT).
164

 The equilibrium 

surface/interfacial tension data can be described through adsorption isotherms and equations 

of state. For instance, the well-known isotherms of Henry, Langmuir, Frumkin and 
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Freundlich have been widely used to describe the adsorption of several surface active 

compounds onto liquid-air, liquid-liquid interfaces and liquid-solid surfaces.
165, 166

. 

This technique is an indirect method for determining the surface/interfacial tension of a 

system. When a drop is created at the tip of a capillary, its contour is recorded. The digital 

images are then analyzed and fitted to the Young-Laplace equation with an accuracy of 

±0.1mN/m. This equation relates the curvature of a liquid drop and the surface/interfacial 

tension. The built-in software produces a family of theoretical curves by changing the values 

of the surface/interfacial tension. The curve that yields the best fit to the experimental points 

represents the measured surface/interfacial tension. For this procedure the densities of the oil 

and aqueous phase are needed and the volume of the droplet is controlled via constant 

feedback from the images
164

. A simple schematic of the system is given in Fig. 15. 

 

 

 

 

 

 

 

 

Figure 15. Schematic of the ADSA device in which the silhouette of a droplet formed by a 

syringe/pump system is recorded through a CCD camera for analysis. 

Through ADSA it is possible to study: (i) adsorption and desorption kinetics of surface active 

species, (ii) interfacial dilatational rheology, (iii) time-dependent relaxation processes and 

(iv) partitioning  at various interfaces. Through IFT measurements it is possible to assess the 

degree of adsorption of chemical species and this can be extrapolated to the effects on 

emulsions. In the case of asphaltenes at the hydrocarbon-water interface it has been possible 

to establish that adsorption kinetics is characterized by two regimes: a rapid initial adsorption 

at short times followed by small changes in the IFT at longer times. Additionally, the absence 
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of an equilibrium region strongly suggests the presence of important relaxation processes 

such as reorganization and/or multilayer formation
130, 146

. 

If gravity (𝑔) is the only force exerted on the droplet, the Young-Laplace equation becomes: 

∆𝑃 = (∆𝜌)𝑔𝑧 − 𝛾 (
1

𝑅1
+

1

𝑅2
) (7) 

In the above equations, (𝑅𝑖) are the radii of curvature of the droplet/bubble, (𝑧) represents the 

distance analogous to the height of a column and (∆𝜌) the density differences between the 

phases. 

One of the main advantages of this technique is that it is possible to determine the 

interfacial/surface tension at very short times (< 5 s). This allows an analysis of the 

adsorption kinetics in this range. Other advantages include the easy implementation and the 

possibility of performing interfacial dilatational rheology measurements. 

6.1.2.1 Double coaxial capillary. 

This accessory to the ADSA device originally reported by Ferri et al.
167

 and further 

developed by Kotsmár et al.
168

 and Ferri et al.
164

 allows the study of convection-enhanced 

adsorption/desorption kinetics of a liquid-liquid interface. The experimental set-up consists of 

a pendant (or emerging) drop formed at the end of a primary capillary initially at equilibrium 

with a bulk concentration of surface active molecules. The interface is then driven away from 

equilibrium by injecting a surfactant free solution through a secondary syringe/pump system 

generating a change in the dynamic interfacial tension
164

. The interfacial tension is measured 

at all stages of this process which means that desorption mechanisms can be followed. A 

schematic of this system is presented in Fig. 16. 

6.2 Interfacial rheology  

6.2.1 Interfacial dilatational rheology. 

Axisymetrical drop shape analysis (ADSA) has been recognized as a reliable method for 

interfacial rheology measurements
162, 169

 besides being an accurate method for interfacial 

tension experiments. The principle behind interfacial dilatational rheology is that the 

interfacial tension varies when the area (A) of a droplet is changed in an oscillatory manner at 

a given frequency (ω) from an initial (𝐴0) to a value (𝐴𝑎) following equation (8)
170

. 

∆𝐴 = 𝐴 − 𝐴0 = 𝐴𝑎 sin(𝜔𝑡) (8) 
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Figure 16. Schematic of the coaxial capillary system used for desorption experiments. A 

droplet (1) of constant volume is formed via an outer capillary (2) and is let to equilibrate for 

a fixed time. The predetermined volume of solvent or chemical species is pumped via an 

inner capillary (3) at a given flow rate. The interfacial tension is continuously measured 

through all steps. 

The complex dynamic apparent dilatational modulus (𝐸∗) is then typically defined as the 

Fourier transform (ℱ) of the change in interfacial tension (γ) relative to the change in 

interfacial area via equation (9). The complex modulus can also be interpreted by a real and 

an imaginary part. The real part characterizes the elastic properties of the interfacial layer and 

the imaginary part characterizes the viscous properties. These parts are referred as to the 

apparent elastic dilatational modulus 𝐸′ and the apparent viscous dilatational modulus 𝐸′′. 

𝐸∗(𝜔) =
ℱ{∆𝛾(𝑡)}

ℱ{∆𝑙𝑛(𝐴(𝑡))}
= 𝐸′(𝜔) + 𝑖𝐸′′(𝜔) 

(9) 

 

Lucassen and van den Tempel
171

 proposed a model for the variation of the elastic and viscous 

dilatational moduli as a function of the concentration (c) valid for flat surfaces. The main 

underlying assumption of this model is that the adsorption is diffusion-controlled. In this 

model, the elastic and viscous components of the complex modulus depend on the 

independent contributions of the instantaneous elasticity (𝐸0 = 𝛤(𝑑𝛾/𝑑𝛤)) and a parameter 

that accounts for diffusion defined as: 𝛺 = √𝐷/2𝜔(𝑑𝑐/𝑑𝛤) in which (D) is the diffusion 
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coefficient. The elastic and dilatational moduli are therefore calculated using equations (10) 

and (11).  

𝐸′(𝜔) = 𝐸0

1 + 𝛺

1 + 2𝛺 + 2𝛺2
 (10) 

 

𝐸′′(𝜔) = 𝐸0

𝛺

1 + 2𝛺 + 2𝛺2
 (11) 

6.2.2 Interfacial shear rheology and the double wall-ring (DWR) geometry. 

There are several devices and measuring probes available to determine the interfacial 

rheological properties in shear and dilatation mode. In the specific case of shear rheology, a 

common issue is the correct quantification of the flow profiles at the interface and their 

interaction with the flow profiles in the bulk
137, 172

. The Boussinesq number (Bo) relates these 

two flow profiles as the ratio between the surface drag and the subphase drag described in 

equation (12)
137

.  

𝐵𝑜 =
𝜂𝑆(𝑉1/𝐿1)𝑃1

𝜂(𝑉/𝐿𝑆)𝐴𝑆
=

𝜂𝑆

𝜂𝐺
 (12) 

In this equation, 𝜂𝑆 is the surface shear viscosity in steady shear flow, 𝜂 is the average bulk 

viscosity, 𝑉 is the characteristic velocity, 𝐿1 and 𝐿𝑆 are characteristic length scales, 𝑃1 is the 

contact perimeter between the probe and the interface and 𝐴𝑆 is the contact area between the 

geometry and the subphase. The term 
𝐴𝑆𝐿1

𝐿𝑆𝑃1
= 𝐺 is defined as a characteristic length and 

depends on the dimensions of the geometry. The Bo number can be transformed to 

incorporate non-Newtonian and viscoelastic interfaces. The double wall-ring (DWR) 

geometry is a device that minimizes the value of G hence maximizing the Bo number for a 

given 𝜂𝑆/𝜂 ratio. This leads to higher sensitivity in oscillatory and rotational measurements. 

Furthermore, the DWR can be coupled with a Langmuir trough and, in this way, the 

determination of the rheological properties of an interface at different surface coverage is 

possible
137, 172

. 

The DWR + trough setup (Fig. 17) consists of a Pt/Ir ring + Teflon cup accessory placed on a 

Langmuir trough and connected to a stress-controlled rheometer. The cup and the ring have 

openings along their surfaces to ensure a uniform measuring interface inside and outside the 

DWR. The main advantage of this system is that two kinds of measurement can be performed 

at the liquid/air or liquid/liquid interface: steady-state shear flow and oscillatory flow. In this 
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way, surface pressure isotherms, interfacial shear rheology and monolayer or multilayer 

microstructure can be systematically studied. 

For the Langmuir trough part of this setup, it can be said that a Langmuir layer refers to a 

monolayer of molecules adsorbed at a given interface. Langmuir and Langmuir-Blodgett 

(LB) film techniques are suitable for studying such films because of (i) the presence of a 

large interfacial area in which monolayers can be formed hence conformations can be 

inferred, (ii) the monitoring if the interfacial pressure (π-A isotherms) during 

compression/expansion of the interfacial film, (iii) the possibility to transfer such films onto a 

solid substrate to study its topographical features and (iv) the possibility to add any type of 

molecules onto the film to study interactions between already adsorbed species
173, 174, 175, 176

. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Double wall-ring (DWR) + Langmuir trough system adapted to a stress-controlled 

rheometer. The openings in the Teflon cup and the ring (black arrows) allow a uniform 

interface inside and outside the system. Image taken from Hermans and Vermant
172

. 

 

6.3 Microcalorimetry 

Adsorption of a solute from a solution is a physical phenomenon that is normally 

accompanied by a heat effect
177

. If the main features of the surface are known, 

microcalorimetry is a suitable method to follow the adsorption process because the adsorption 
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enthalpy depends on the nature and density of the adsorbing sites, the conformations of the 

adsorbed molecule-(s) and the interactions among adsorbed species (also known as lateral 

interactions).
178, 179

 Fig. 18 shows a typical setup for titration calorimetry experiments. A 

suspension of the adsorbent is stirred inside a calorimetric cell. Once thermal equilibrium has 

been attained, the stock solution of the species of interest is introduced step-by-step into the 

cell and the heat registered through the use of thermopiles. The calorimetric peak (i.e. 

experimental point) is then treated to separate the heat of adsorption from the heat of dilution 

(blank experiment). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Experimental setup of a titration calorimeter. A syringe that contains the stock 

solution of the species of interest is injected to the measuring cell that contains a suspension 

of the adsorbate. The system is continuously stirred and the heat measure via the thermopiles. 

 

6.4. Quartz crystal microbalance with dissipation (QCM-D) 

QCM-D operates based on the property of piezoelectricity. The piezoelectric quartz coated-

crystal is located between the two metal electrodes. By applying an AC voltage across the 

electrodes, the crystal is excited to oscillate. The frequency of oscillation depends on the 

mass adsorbed onto the surface of the crystal. The relationship between the change in 
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frequency (∆𝑓) due to the mass adsorbed (∆𝑚) was established by Sauerbrey
180

 through 

equation (13): 

𝛥𝑚 = −
𝜌𝑞𝑡𝑞

𝑓𝑜𝑛
∆𝑓 =  −

𝜌𝑞𝑣𝑞

2𝑓𝑜
2𝑛

∆𝑓 =  −
𝐶

𝑛
∆𝑓 

(13) 

Where 𝜌𝑞 and 𝑡𝑞 are the mass density and thickness of the crystal respectively, 𝑣𝑞 is the shear 

wave velocity in quartz, 𝑓𝑜 is the fundamental frequency of crystal and 𝑛 is the overtone 

number and C is a constant. The Sauerbrey equation is valid only when the mass adsorbed is 

evenly distributed on the surface, ∆𝑚 is smaller than the mass of the crystal and the adsorbed 

mass is rigidly attached to the surface
180

. 

The change in dissipation due to adsorption is given by equation (14)
181

: 

𝐷 =
𝐸𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑

2𝜋𝐸𝑠𝑡𝑜𝑟𝑒𝑑
 (14) 

Where D is the dissipation factor, 𝐸𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 is the energy dissipated during one period of 

oscillation and 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 is the energy stored in the oscillating system. In the case of formation 

of viscoelastic films on the surface, the Sauerbrey relationship equation (13) is no longer 

valid. 
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7. Main Results 

7.1 Paper 1 

Mixed interfaces of asphaltenes and model demulsifiers part I: adsorption and 

desorption of single components 

In this article, aspects related to competitive adsorption and desorption dynamics between a 

model molecular demulsifier (Brij®-93) and asphaltenes at the liquid-liquid interface are 

studied.  

First, the Langmuir and Frumkin isotherms were successfully used to describe the interfacial 

tension data allowing the determination of the equilibrium adsorption parameters of 

asphaltenes and Brij®-93. Table 7.1.1 shows the equilibrium constants (KL- KF) and the 

maximum adsorbed amount (Γ∞) for both species using both isotherms. In general both 

equations of state (EoS) can be used; however care should be taken because of the 

assumptions behind each model. For example, the Langmuir EoS assumes that there is no 

interaction among adsorbed species which seems to occur given the non-zero value of the 

parameter (A) when using the Frumkin EoS. Based on the K-values it was concluded that the 

model molecular demulsifier is more surface active than indigenous asphaltenes.  

 

 

 

 

 

Table 7.1.1. Equilibrium parameters of asphaltenes and Brij-93 using the Langmuir and 

Frumkin isotherms. 

The values reported in table 7.1.1 are in agreement with the fact that asphaltenes have been 

shown to self-associate in solution; hence interactions at the interface are expected. This 

would be represented by the non-zero value of the parameter A
159, 182

. On the other hand, the 

Asphaltenes Technique KL- KF [m
3
/mol] Γ∞[mol/m

2
] A 

Langmuir ADSA 228 9.54x10
-7 

0 

Du Noüy 106 9.32x10
-7

 0 

Frumkin ADSA 97 9.56x10
-7

 1 

Du Noüy 161 7.85x10
-7

 1 

Brij® 93     

Langmuir ADSA 834 1.06x10
-6 

0 

Du Noüy 300 1.27x10
-6

 0 

Frumkin ADSA 620 1.19x10
-6

 -0.4 

Du Noüy 748 1.19x10
-6

 -0.2 
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negative values for the interaction parameter A could indicate the presence of repulsive 

forces acting at the interface
183

. 

Second, desorption of single compounds from the xylene/water interface was followed 

through the use of a double coaxial capillary system. Fig. 7.1.1 is a mixed plot showing the 

influence of the total volume exchanged, solvent flow rate and adsorption time on desorption 

of asphaltenes induced by xylene. It was found that asphaltenes are irreversibly adsorbed 

(~2% amount desorbed assuming that a Langmuir-based model is valid) at the oil/water 

interface even at low surface coverage and low adsorption times, which confirms the strong 

interactions present. These findings are in agreement to what has traditionally been reported 

for asphaltenes. It has been suggested that the irreversible nature of asphaltene adsorption is 

closely related to the formation of the mechanically strong film which happens to be a 

consequence of the initial fast adsorption of bulk aggregates followed by multilayer 

formation of asphaltenic stacks
25, 155, 184

.    

 

 

 

 

 

Figure 7.1.1. Asphaltene desorption from the xylene/water interface at different experimental 

conditions. 

It was also found that desorption is independent of the solvent flow rate and the total volume 

exchanged. Similarly, Fig. 7.1.2 shows a similar plot of desorption of asphaltenes by xylene. 

In this plot, the effect of the initial asphaltene concentration is only seen at values ranging 

from 1 to 6 g/L. At low concentrations (0.1 g/L), the amount desorbed is lower. These 

experiments were performed to evaluate the effect of initial bulk concentration which is 

related to asphaltene aggregation and hence to sorption aspects. It has been recently pointed 

out
129

 that emulsion stability is not solely driven by a reduction of the interfacial tension. 

There are other mechanisms present such as complex network formation enhanced by π—π 

stacking and H-bonding that influence sorption dynamics and through these experiments it 

was possible to have a glance of those ideas.    
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Figure 7.1.2. Asphaltene desorption from the xylene/water interface at different initial 

concentrations. 

Finally, Fig. 7.1.3 shows a plot of desorption of Brij-93 by xylene at different initial 

concentrations. Experimental conditions are also shown. The results show that the model 

demulsifier Brij®-93 is partly desorbed (~20%) from the xylene/water interface and that the 

effect of the initial concentration is negligible at low values (10 ppm) whereas at high values 

(100-500 ppm) the degree of desorption is similar. This could be attributed to the distribution 

of ethyl oxide (EO) groups in the polydisperse sample or to the polydispersity of the 

aggregates adsorbed which have different adsorption energies. It has been shown
39, 185

 that 

larger aggregates could freeze at the interface which means that only the smaller aggregates 

are able to desorb. The results here would be in agreement with that statement.    

 

 

 

 

 

 

Figure 7.1.3. Brij-93 desorption from the xylene/water interface. 
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7.2 Paper 2 

Mixed Interfaces of Asphaltenes and Model Demulsifiers, Part II: Study of 

Desorption Mechanisms at Liquid/Liquid Interfaces 

The findings of paper 1 were extended in this study to include a second demulsifier of 

different chemical structure and properties and to assess the mechanisms involved during 

desorption induced by demulsifiers.  

The composition of mixed interfaces of asphaltenes and two demulsifiers (Brij®-93 and 

Pluronic® PE8100) was studied. The difference between these two demulsifiers lies in their 

chemical structure. Brij®-93 is a low molecular weight (357 g/mol) molecule whereas 

Pluronic® PE8100 is a high molecular weight (2800 g/mol) polydisperse block co-polymer. 

Desorption of asphaltenes by demulsifiers, and vice versa, was determined.  

 

 

 

 

 

Figure 7.2.1. (left) adsorption isotherms and Langmuir fit for asphaltenes, Brij-93 and 

PE8100. (right) composition of a mixed interface and fit to a Langmuir-based model. 

First, the composition of a mixed interface (asphaltenes and demulsifiers) through the use of 

the Langmuir equation of state (EoS) was determined. Fig. 7.2.1 shows both results. It can be 

seen that the Langmuir isotherm correctly describes the adsorption IFT data for asphaltenes 

and the model molecular demulsifier Birj-93. Even though the assumptions behind the 

Langmuir EoS are not necessarily met, this approach has been shown to be useful when 

giving a semi-quantitative description of adsorption at equilibrium of complex systems such 

as polymers
186

. However, this is not the case for the model polymeric demulsifier PE8100. 

The sharp decrease of the interfacial tension in a narrow concentration range is indicative of 

high surface activity. This has been reported
187, 188

 for different diblock and triblock PEO-

PPO-(-PEO) copolymers and the behavior is attributed to the fast initial adsorption followed 
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by relaxation, reorganization and multiple phase transitions at the interface. The results in 

figure 7.2.1 seem to indicate similar behavior.    

 

In the case of competitive adsorption between asphaltenes and Brij®-93 (Fig. 7.2.1 right) it 

can be seen the interface at equilibrium is dominated by the model demulsifier Brij-93, even 

at low concentrations. This is consistent with the higher surface activity of the demulsifier 

compared to asphaltenes. The model based on the Langmuir EoS describes the data well. In 

fact this model has also been previously used to describe competitive adsorption of unfolding 

proteins
189

. The relevance of these results lies in the fact that when asphaltenes and a 

demulsifier are co-adsorbed, the formation of a mechanical strong film is hindered.  

 

 

 

 

 

Figure 7.2.2. Desorption of asphaltenes by Brij-93. Effect of increasing the concentration of 

demulsifier. 

Second, an experimental set-up that aims to understand chemical demulsification of water-in-

crude oil emulsions during the production stages was used (coaxial capillary). Desorption of 

already adsorbed asphaltenes at the liquid-liquid interface by the action of two demulsifiers 

(Brij®-93 and Pluronic® PE8100) was assessed. Fig. 7.2.2 shows the effect of desorption of 

asphaltenes by Brij-93 from a low (10ppm) to a high concentration (100ppm) and Fig. 7.2.3 

shows similar plots for desorption of asphaltenes by a second demulsifier, namely Pluronic 

PE8100. It was found that desorption is always initiated by interactions between demulsifiers 

and asphaltenes. It is followed by the plausible formation of complex-like structures to finally 

end in the replacement, by displacement from the interface, of asphaltenes by demulsifiers. It 

is clear from these plots that the polymeric demulsifier Pluronic® PE8100, given its higher 

surface activity, displays a more pronounced behavior. This means that the 

displacement/replacement mechanisms are faster and require lower concentration. The 

formation of complex-structures is still speculative. However given the chemical 

characteristics of both demulsifiers (especially the polymeric one) it seems plausible that 
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these are the kind of interactions involved. This would also be in agreement with Yen-

Mullins model in which the alkyl chains that stick out of the asphaltene nanoaggregates 

would interact with the polymeric chains of the demulsifier
20, 30

.   

 

 

 

 

 

 

 

Figure 7.2.3. Desorption of asphaltenes by Pluronic® PE8100. Effect of increasing the 

concentration of demulsifier. 

 

 

 

 

 

 

Figure 7.2.4. Changes in the elastic dilatational modulus after desorption of asphaltenes by 

Brij-93 (left) and Pluronic® PE8100 (right). 

Similarly, Fig. 7.2.4 shows the effect of the two demulsifiers on the elastic dilatational 

modulus. The modulus was measured after the desorption experiments to assess the 

composition of the interface. As it can be seen, Brij®-93 at intermediate concentrations of 

demulsifier (10-100 ppm) the interface exhibits a mixed composition and at high 

concentration (500 ppm) the interface seems to be fully replaced. A similar observation is 

made for the polymeric demulsifier Pluronic® PE8100 but in this case the replacement is 
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sharper. At an intermediate concentration of 100 ppm the interface is dominated by the 

demulsifier showing once more its high efficiency. These results show the progressive 

replacement and effect of two different demulsifiers in an asphaltene covered interface. These 

results, coupled with the results available in the literature that deal with Langmuir films
27, 140

 

give a broad picture of the mechanisms involved in sorption at the liquid-liquid interface.  

Finally, a set of similar experiments was performed to assess the ability of asphaltenes to 

desorb both demulsifiers. Fig. 7.2.5 shows the desorption experiments and it can be seen that 

in the case of Brij®-93 at low concentration (100 ppm), asphaltenes at 1 g/L can desorb the 

demulsifier. At high concentrations (2500 ppm) the effect of asphaltenes is the same as the 

effect observed in pure solvent (xylene) meaning that the same degree of desorption is 

achieved. Analogously, in the case of Pluronic® PE8100 it can be seen that at low 

concentrations (0.5 ppm) asphaltenes are able to fully replace the interface whereas at high 

concentrations (100 ppm) the interface remains dominated by the demulsifier. The 

mechanisms of replacement/displacement are speculated to be similar as in the previous 

cases. This means that asphaltene aggregates are able, in some cases, to entrap parts of the 

demulsifiers and occupy their adsorption sites. In the cases where this is not possible, it 

seems that the long-entangled polymeric chains do not allow the asphaltene aggregates to 

access the interface.  

 

 

 

 

 

Figure 7.2.5. Desorption of by Brij-93 (left) and Pluronic® PE8100 (right) by asphaltenes at 

1g/L. Effect of increasing the concentration of demulsifier. 

These results are rather unique in the sense that it is not typical to test the desorbing 

capabilities of asphaltenes. Re-emulsification and demulsifier overdosing are two minor 

issues that can occur and so understanding the mechanisms involved is relevant. Unlike 

competitive adsorption, it seems that under certain conditions asphaltenes are able to occupy 

sites at the interface even though they are less surface active than the demulsifiers. A 
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summary of the main results is presented in table 7.2.1 and the main features of desorption by 

demulsifiers and asphaltenes are shown.   

 

Table 7.2.1. Summary of the main results regarding the mechanisms of desorption of 

asphaltenes by two demulsifiers and vice-versa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

7.3 Paper 3 

Sorption and interfacial rheology study of model asphaltene compounds. 

Papers 1 and 2 shed light on the adsorption/desorption mechanisms that take place at the 

liquid-liquid interface. In this paper, the study is extended to include the determination of the 

sorption (adsorption/desorption) and rheological (shear and dilatational) properties of the 

acidic asphaltene model compound C5PeC11 at the liquid-liquid and liquid-air interface. 

Subsequent comparison to the properties of indigenous asphaltenes is provided to evaluate 

which features can be captured with a molecule of defined chemical structure. 

 

 

 

 

 

 

Figure 7.3.1. Evolution of the equilibrium interfacial tension as a function of the pH (left) 

and concentration (right). The evolution of the apparent elastic dilatational modulus as a 

function of the pH (left) is also shown. 

First, Fig. 7.3.1 shows the evolution of the equilibrium interfacial tension of the asphaltene 

model compound C5PeC11 as a function of the pH and the concentration respectively. These 

findings are similar to the pH-dependent surface activity observed in hexane-precipitated 

(C6-) asphaltenes. The equilibrium parameters are similar to those reported in paper 1 and 2 

and the results show that C5PeC11 is more surface active than asphaltenes.  

Second, interfacial dilatational rheology on C5PeC11 shown in Fig. 7.3.1 shows that the 

interfacial activity at the liquid-liquid interface is more pronounced when the –COOH groups 

are ionized (high pH), something observed in C6-asphaltenes. C5PeC11 does not seem to 

form a mechanically robust film at the liquid-liquid interface. However the interface can be 

said to be mostly elastic based on Fig. 7.3.2. This does not mean extra stresses are absent, but 

it indicates that the response to dilatational deformations is dominated by interfacial tension 

and its variations. Fig. 7.3.2 also shows the fits of the apparent elasticity using the Lucassen-

Van den Temple (LvdT) model for C5PeC11. The evolution of the moduli is well described 
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quantitatively, especially close to the maxima, which are well predicted, and the decrease of 

the moduli at higher bulk concentrations. A similar trend for E’ has been reported for 

C6-asphaltenes. However, the implementation of the LvdT model has been unsuccessful most 

likely due to the intermolecular interactions at the interface and the evident dominance of 

extra stresses in the asphaltene interface (skin)
190

. Unlike indigenous asphaltenes, adsorption 

of C5PeC11 seems to be reversible and no skin (or crumpling) was observed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.2. Fit of the apparent elastic and loss dilatational moduli using the LvdT model. 

Third, desorption of C5PeC11 from the oil/water interface was evaluated. Figure 7.3.3 shows 

the desorption curves induced by three different species: solvent (toluene), a mixture of 

heptane and toluene (HepTol) and the model compound BisAC11 (which only has aliphatic 

functionalities). Desorption by toluene, although reversible, is slower than for non-interacting 

molecules. In fact, the desorption experiments seem to indicate the presence of interactions 

(π-π stacking, H-bond) at the interface. Desorption by HepTol at a concentration near the 

precipitation onset did not present any change suggesting that the irreversibility of asphaltene 

adsorption is not related to solubility. Similarly, the model compound BisAC11 has no 

influence on desorption of C5PeC11 at the liquid-liquid interface.  
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Figure 7.3.3. Desorption of C5PeC11 as a function of the characteristic time induced by: 

pure solvent (left), HepTol and BisAC11 (right). 

Finally, extra stresses at the liquid-liquid and liquid-air interface were probed through 

interfacial shear rheology. Fig. 7.3.4 shows a series of compression-expansion curves the 

liquid-air interface that suggests molecular rearrangements at monolayer coverage, 

irreversible aggregate formation and the formation of multilayers. Fig. 7.3.5 shows the 

evolution of the elastic and loss moduli for C5PeC11 at the liquid-air interface as a function 

of the strain and frequency. The results are indicative of a material with elastic, fragile 

microstructure suggesting a strongly interacting insoluble system. These aspects are similar to 

what has been reported for indigenous asphaltenes using similar techniques.   

 

 

 

 

 

 

 

Figure 7.3.4. Compression-expansion curves for C5PeC11 at the liquid-air interface. (a) 

evidence of aggregation when large surface pressures are achieved, and (b) complete 

reversibility when surface pressure is kept below 30 mN/m. 

 

The case for the liquid-liquid interface is presented in Fig. 7.3.6 and Fig. 7.3.7. A similar 

non-thermodynamic local maximum was observed suggesting tilting of the molecules at the 

interface and the presence of fragile structures is also observed. The frequency dependence in 

Fig. 7.3.7 reveals a viscoelastic structure with a broad range of relaxation time. This 



57 

 

rheological behavior is characteristic of a soft-glassy material, where rearrangement under 

flow of a densely packed internal structure takes place with a broad range of characteristic 

times. A soft-glassy rheology (SGR) model was used to describe this behavior and it was 

observed that C5PeC11 required higher surface pressures to achieve similar values of the 

effective noise temperature reported for asphaltenes. This means that indigenous asphaltenes 

form a more crowded interface. The parallel case of indigenous asphaltenes has been 

reported
136

 and it was also concluded that: asphaltene films at the oil/water interface behave 

as soft-glassy materials and that the SGR models correlates well with the data. This is a very 

important remark because it means that asphaltene model compounds are able to capture 

these features.  The compression-expansion curves at the oil/water interface at different pH 

values presented in Fig. 7.3.8 show that the interfacial activity of C5PeC11 is also pH-

dependent and the arrangements at the interface vary. This behavior is also similar to that of 

asphaltenes in which changes in the conformations have been observed.  

 

 

 

 

 

 

Figure 7.3.5. Elastic and loss moduli for C5PeC11 at the liquid-air interface as a function of 

strain (left) and frequency (right). 

Important fundamental differences between shear and dilatational rheology were also stated. 

While through shear rheology true material functions can be established, dilatational rheology 

yields an apparent elasticity. This is because extra stresses that arise from interfaces not 

dominated entirely by surface tension are not detected in the latter. Asphaltenes form a 

mechanically robust film at the oil/water interface that consequently produces extra stresses 

that do not influence the interfacial tension but do influence the elasticity. The limitations of 

dilatational rheology and the apparent elasticity has also been previously acknowledged
191

 

and so with both results at hand it is possible to have a broad picture of how the system 

behaves under different conditions.   
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Figure 7.3.6. Compression-expansion curves from C5PeC11 at a decane/water interface. 

 

 

 

 

 

 

Figure 7.3.7. Dynamic moduli of C5PeC11 at an decane/water interface as a function of (a) 

strain, and as a function of (b) frequency. 

 

 

 

 

 

 

Figure 7.3.8. Compression curves for C5PeC11 at a decane/water interface showing the 

different arrangements depending on the pH. 
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7.4 Paper 4 

 

A microcalorimetry study on the adsorption of asphaltenes and model 

asphaltene compounds at the liquid-solid surface. 

Having studied asphaltene adsorption/desorption mechanisms at the liquid-liquid interface in 

paper 1 and paper 2 and film properties in paper 3, in this paper the adsorption study is 

extended to the liquid-solid surface. The adsorption isotherms of C5PeC11 and indigenous 

asphaltenes are determined onto three different surfaces. This is followed by the 

determination of the differential adsorption enthalpy ∆𝐻𝑎𝑑𝑠 through microcalorimetry 

experiments. This enthalpy of adsorption is characterized by the parameter ∆𝐻𝑧 (the enthalpy 

at zero coverage). Finally, the influence of H-bonds and polar interactions for adsorption is 

assessed via the comparison of adsorption of esterified and non-esterified by QCM-D 

experiments.  

First, Fig. 7.4.1 shows the adsorption isotherms of C5PeC11 and C6-asphaltenes onto three 

different surfaces: silica, calcite and stainless steel. These isotherms were determined via the 

depletion method (DM). Results show that adsorption between the two species presents some 

similarities. They both present a plateau and the adsorption affinity ranking is similar: 

stainless steel > calcite > silica. However, it is clear from these plots that C5PeC11 exhibits a 

higher total adsorbed amount in all cases. This is attributed to the single functionality of the 

model compound compared to the polydisperse response of indigenous asphaltenes. Overall, 

the values obtained for C6-asphaltenes are consistent with typical values found in the 

literature. Indeed the values obtained for silica vary between 1.81 mg/m
2
 and 3.78 mg/m

2
, the 

values for calcite are ca. 3.4 mg/m
2
 and the values for stainless steel which are generally 

higher are ca. 9 mg/m
2
.
91, 105

 

Second, Fig. 7.4.2 shows the differential adsorption enthalpy for C5PeC11 and C6-

asphaltenes for the same surfaces as a function of the concentration. The adsorption enthalpy 

for C5PeC11 tends to decrease slightly with concentration suggesting the presence of 

rearrangements and/or differences in the active sites of the surface (some sites might be more 

energetic than others) at the liquid-solid surface. On the other hand in the case of asphaltenes 

the adsorption enthalpy tends to increase with concentration, this is indicative of lateral 

interactions and aggregation at the interface. The parameter ∆𝐻𝑧 (the enthalpy at zero 

coverage) obtained from a linear regression model was used to establish the type and the 
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driving force of adsorption onto the liquid-solid surface. Adsorption of C5PeC11 onto silica 

is shown to be driven primarily by H-bonds (∆𝐻𝑧 = −34.9 𝑘𝐽/𝑚𝑜𝑙) unlike adsorption onto 

calcite where polar Van der Waals and acidic/basic interactions are thought to be 

predominant (∆𝐻𝑧 = −23.5 𝑘𝐽/𝑚𝑜𝑙). Interactions between C5PeC11 and stainless steel are 

found to be weak (∆𝐻𝑧 = −7.7 𝑘𝐽/𝑚𝑜𝑙) and definitely not a result of H-bonding. To the best 

of our knowledge this is the first time such approach (microcalorimetry) to determine the type 

of interactions in asphaltenes is used.    

 

    

 

 

 

Figure 7.4.1. Adsorption isotherms obtained via de depletion method for C5PeC11 (left) and 

C6-asphaltenes (right) onto three surfaces: silica, calcite and stainless steel. 

 

 

 

 

 

 

Figure 7.4.2. Differential adsorption enthalpy obtained via calorimetry experiments for 

C5PeC11 (left) and C6-asphaltenes (right) onto three surfaces: silica, calcite and stainless 

steel. 

Finally, the influence of –COOH groups on adsorption at the liquid-solid surface was 

assessed. An esterification protocol was implemented to methylate the acidic groups in 

indigenous asphaltenes and determine the adsorption isotherms via the depletion method and 

QCM-D experiments. Fig. 7.4.3 shows isotherms obtained via DM and QCM-D experiments 
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for both the esterified and non-esterified asphaltenes. This plot strongly suggests that 

adsorption of indigenous asphaltenes at the liquid-solid surface is not dominated by the 

influence of acidic functionalities contrary to C5PeC11 for silica and possibly calcite 

surfaces. 

 

 

 

 

 

 

 

Figure 7.4.3. Asphaltene (Asph) and esterified-asphaltene (E-Asph) isotherms conducted via 

the depletion method (DM) and quartz crystal microbalance (QCM) experiments onto two 

surfaces: stainless steel (open triangles) and silica (open circles). 
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8. Concluding remarks 

In this thesis, sorption aspects of different species of interest in the petroleum industry 

especially in flow assurance were systematically studied at various interfaces. The species 

selected for this work are directly related to the different stages involved in crude oil 

production. Asphaltenes are responsible for several problems; Asphaltene model compounds 

provide an alternative viable way of capturing the main features in terms of interfacial 

properties associated with asphaltenes; and chemical demulsifiers play an essential role in 

water separation to meet quality standards. Analogously, the interfaces studied in this work 

are also directly related to the different phenomena that occur. Liquid-liquid interfaces are 

encountered during flooding operations and crude oil emulsions; Solid-liquid interfaces not 

only occur naturally inside the reservoirs but are also present at all stages of production; and 

Liquid-air interfaces are typically used to postulate adsorption mechanisms and the 

arrangement of chemical species.  

The study of asphaltenes and demulsifiers was the main goal of paper 1 and paper 2. In 

paper 1, adsorption/desorption of single compounds was systematically studied using a 

coaxial capillary accessory to the ADSA device. In this paper, it was established that 

asphaltenes are almost irreversibly adsorbed at the xylene/water interface and that a low 

molecular weight demulsifier (Brij 93) is partly reversibly adsorbed at the same interface. 

These findings were extended in paper 2 to include a second type of demulsifier (PE8100, 

polymeric and high molecular weight). Additionally, convection-enhanced desorption was 

induced to establish the mechanisms by which demulsifiers typically found in the oil 

production industry act to replace/displace asphaltenes from the oil/water interface. These 

mechanisms were also corroborated by interfacial dilatational measurements that showed the 

same trend.  

In paper 3, sorption and rheological properties (shear and dilatational) of asphaltene model 

compounds at the liquid/liquid and liquid/air interface were studied. It was shown that the 

model compound C5PeC11 which has an acidic functionality is reversibly adsorbed at the 

toluene/water interface and that its desorption is slower than for non-interacting species 

suggesting the presence of interactions. It was also shown that C5PeC11 forms a viscoelastic 

film with fragile structures prone to rearrangements at the liquid-liquid and liquid-air 

interface. Similarities between indigenous asphaltenes and the model compound were 
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established by using a soft-glassy rheology (SGR). Finally, important fundamental 

differences between dilatational and shear rheology were assessed.  

In paper 4, results from paper 3 were extended to study adsorption of indigenous 

asphaltenes and model compounds (C5PeC11) at the solid-liquid surface. In this case, 

asphaltene model compounds as well as indigenous asphaltenes were used to establish the 

type of adsorption present on solid surfaces of different nature. Microcalorimetry experiments 

allowed determining the driving force for adsorption onto three different types of surfaces: 

silica, calcite and stainless steel. These surfaces are present in different stages of oil 

production and therefore treated as representative. It was shown that adsorption of C5PeC11 

onto silica is driven primarily by H-bonds and adsorption onto calcite seems to be driven by 

polar Van der Waals and acidic/basic interactions. Adsorption onto stainless steel is definitely 

not driven by polar interactions given that the adsorption enthalpy is very low. Additionally, 

it was shown the negligible influence of acidic asphaltenes in adsorption at the liquid-solid 

surface as shown by adsorption measurements of esterified asphaltenes.  

Thinking about future work there are several areas in which the results of this thesis can be 

extended. For instance, it would be relevant to continue the investigation of the relationship 

between chemical structure and properties of asphaltene model compounds. The main goal 

would be that the most relevant properties, depending on the application, could be captured 

by this family of molecules. In this sense, developing model compounds that form a 

mechanically robust film at the liquid-liquid interface would be interesting. A second aspect 

would be to transition between a model system (asphaltene solutions in toluene) to real 

systems (crude oil) in the desorption experiments with the coaxial capillary accessory. This 

would give a better understanding in a real situation. Finally, the DWR geometry could be 

further exploited by including mixed interfaces. In this way, a more complete picture of 

interactions between demulsifiers and asphaltenes / asphaltene model compounds would be 

possible and relevant to compare.   
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a  b  s  t  r  a  c  t

This  article  is the first  in  a series  of  two  aiming  to understand  the competitive  adsorption  and  desorption
dynamics  of  asphaltenes  and  a model  demulsifier  (Brij®-93)  at the  liquid–liquid  interface  to  broaden
the  knowledge  of  the  stability  of  crude-oil  emulsions.  In this  article,  the  properties  of  single components
are  studied.  First,  the  Langmuir  and Frumkin  isotherms  were  successfully  used  to describe  the  interfacial
tension  data  allowing  the determination  of  the  equilibrium  adsorption  parameters  of  asphaltenes  and
Brij®-93.  Second,  desorption  of single  compounds  (from  pure  xylene,  the  adsorption  medium)  was  fol-
lowed through  the  use  of a double  coaxial  capillary  system.  It  was  found  that  asphaltenes  are irreversibly
adsorbed  (∼2%  amount  desorbed)  at  the oil/water  interface  even  at  low surface  coverage  and  adsorption
times  which  confirm  the strong  interactions  present.  It  was  also  found  that  desorption  is  independent
of  the  pure  solvent  flow  condition  and  the  total  volume  exchanged.  Third,  results  show  that the  model
demulsifier  Brij®-93  is  partly  desorbed  (∼20%)  from  the oil/water  interface.  This  could  be  attributed
to  the  distribution  of ethyl  oxide  (EO)  groups  in the  polydisperse  sample  or  to the polydispersity  of
the  aggregates  adsorbed  which  have  different  adsorption  energies.  This  work  provides  the  fundamental
framework  for  the  second  part  of  the  series  in which  adsorption  and  desorption  dynamics  of a  mixed
interface  composed  of asphaltenes  and  Brij®-93  will be studied.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Petroleum extraction is undoubtedly linked to water co-
production. Water is present at several stages of the production
process and one of the main issues in terms of transportation from
the reservoirs to the cracking plants is the formation of emulsions.
That is, the stabilization of water-in-oil (W/O) emulsions by

∗ Corresponding author. Tel.: +47 942 41 988; fax: +47 735 94 080.
E-mail addresses: diego.c.p.ragua@ntnu.no, diegocp6@hotmail.com (D. Pradilla).

crude oil indigenous surfactants such as asphaltenes, resins and
naphthenates [1,2]. Asphaltenes are defined as the fraction of
petroleum insoluble in n-alkane but soluble in toluene (aromatic
solvents). Therefore they are not a single chemical compound, but
instead a solubility class composed of molecules with different
molecular weights and functionalities [3–5]. Asphaltenes are
largely responsible for the formation of organic deposits and due
to their surface active nature, also responsible for wettability
changes of mineral surfaces in the reservoirs [6,7]. It has also
been reported that Naphthenic acids [8] are surface active under
certain conditions related mainly to pH and that they can influence
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Fig. 1. Coaxial double capillary system showing the desorption process of a surface active molecule that exhibits partly reversible adsorption after the injection of a
predetermined volume of pure solvent.

in the stability of emulsions, even if the main mechanisms of
emulsion stabilization are attributed to the asphaltenes. The main
mechanism of asphaltene-stabilized emulsions is the formation
of a rigid and mechanically strong film around the water droplets
which prevents them from coalescing [9]. Evidently, stable W/O
emulsions are undesired in the oil industry due to high transporta-
tion costs, energy demands, corrosion of pipe lines flow assurance
issues due to the viscosity increase and subsequent problems in
the refining stages. Typical market demands are in the order of 0.5%
BSW by volume (bottom, solids, water), which means that efficient
and effective methods for removing the water are imperative [10].

Demulsification is the process of breaking emulsions to separate
the water from the rest of the crude oil. There are several methods
for the separation of water, among them gravitational, centrifugal
and electro-coalescence methods. Chemical demulsification refers
to the addition of certain chemicals, typically in the order of 1 up to
1000 ppm to promote phase separation by reducing the interfacial
tension, thus making it possible for the demulsifiers to mix  with the
indigenous surfactants (asphaltenes) at the interface [2]. The chem-
icals (i.e. Demulsifiers) should exhibit both high diffusion rates, so
they can quickly go to the interface and interact or compete with the
emulsifiers already present [11]; and they should be able to affect
the rigid skin that surrounds the water droplets. They can act on the
protecting film by changing the elasticity or interfacial viscosity,
they can form a film giving rise to an oil-in-water (O/W) emul-
sion, they can operate as a wetting agent and most of these results
being consequences of their interaction with the asphaltene net-
work [12]. The composition of commercially available demulsifiers
is broad [11]. Starting with simple organic solvents that dissolve the
indigenous surfactants such as benzene, acetone and short-chain
alcohols and going up to the category of nonionic surfactants that
are known to act as efficient demulsifiers. Members of the latter
group include fatty esters, fatty amides, alkyl phenol ethers and
polyoxopropylene glycol ethers (PEO-PPO block co-polymers), only
to mention some.

Adsorption and desorption kinetics of surface active chemi-
cals can be investigated through dynamic tensiometry, that is, the
measurement of the dynamic surface/interfacial tension. When
liquid–liquid systems are being studied, a drop of one of the liquids
is produced in the second immiscible liquid [13]. This drop can be
either pendant or emerging depending on the type of system that is
to be studied; it can be either an oil droplet or a water droplet. These
drops can nowadays be rapidly analyzed through the use of power-
ful software coupled with CCD cameras. The technique is commonly
known as axisymmetric drop shape analysis (ADSA), and it is widely
accepted as a robust and versatile method for measuring the inter-
facial tension (IFT) [14]. The equilibrium surface/interfacial tension
data can be described through adsorption isotherms and equations

of state. For instance, the well-known isotherms of Henry, Lang-
muir, Frumkin and Freundlich have been widely used to describe
the adsorption of several surface active compounds onto liquid–air,
liquid–liquid and liquid–solid interfaces [15,16].

Several experimental protocols based on the ADSA technique
have been proposed to study desorption kinetics or multilayer for-
mation [17–19]. They are of particular interest, mainly because of
the ability to follow the interfacial tension as a function of time
when the surface active molecules are being desorbed from the
interface (see Figs. 1 and 2). The novel coaxial capillary apparatus
reported by Ferri et al. [20] and further developed by Kotsmár et al.
[21] and Ferri et al. [14] allows the study of convection-enhanced
adsorption/desorption kinetics of a liquid–liquid interface. The
experimental design consists of a pendant (or emerging) drop
formed at the end of a capillary initially at equilibrium with a bulk
concentration of surface active molecules. The interface is then
driven away from equilibrium by injecting a surfactant free solution
(i.e. solvent), thus generating a change in the dynamic interfacial
tension [14]. Several factors such as reorganization, multilayer for-
mation, unfolding (proteins), conformations and more importantly
the reversibility of adsorption at the interface can also be addressed
through this novel method coupled with other studies available in
the literature.

This work will elucidate new insight on the coalescence process
by studying the interactions present in a mixed interface between
asphaltenes and a model demulsifier. This will enhance the under-
standing of emulsion stability at a molecular level. This is the first
part of a series of two  publications in which the adsorption and
desorption aspects of asphaltenes and Brij®-93 are investigated
using a system based on ASDA. First, an analysis on adsorption
of single compounds onto liquid–liquid interfaces is performed to
obtain equilibrium parameters. Second, using a coaxial capillary
system, desorption from a pure solvent is performed to follow the
kinetics of the same components (i.e. asphaltenes and a demul-
sifier). And finally, adsorption isotherms and equations of state
are used to describe the IFT versus time data, making it possible
to establish the composition at the interface, the percentage of
desorption and possible destabilization mechanisms.

2. Experimental

2.1. Asphaltenes

Asphaltenes were extracted by precipitation with n-hexane
from a chemical-free heavy crude oil of the Norwegian continental
shelf. Basic analysis of the crude oil is given in Table 1.To extract
the asphaltenes, the crude oil was  first heated at a temperature of
60 ◦C. It was subsequently shaken to ensure homogeneity of the
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Fig. 2. Evolution of the interfacial tension as a function of time during the adsorption/desorption experiments of asphaltene solutions in xylene. Stage 1 corresponds to the
adsorption and equilibration step of the surface active molecules. At a time t0 the injection of pure solvent starts, thus stage 2 represents the desorption step. Finally, during
stage  3 the pre-determined volume is fully exchanged and a plateau value for the IFT is reached. The experimental conditions for this experiment are: flow rate Q2 = 0.4 �L/s,
total  volume exchanged V2 = 1000 �L, adsorption time t3 = 1.5 h and initial bulk concentration C2 = 1 g/L.

Table 1
Characteristics of the heavy crude oil sample used in this work for asphaltene extraction. (*): Determined by Karl-Fisher titration. (**): The SARA composition determination
method by HPLC is described by Hannisdal et al. [48].

Density @ 15 ◦C TAN (mg  g−1) Water content (wt.%) (*) SARA analysis (**)

Saturates (wt.%) Aromatics (wt.%) Resins (wt.%) Asphaltenes, hexane
insoluble (wt.%)

0.939 2.15 0.11 37 44 16 2.5

sample. Second, the crude oil was mixed with the n-hexane at a
weight/volume ratio of 1:40 (w/v). Third, the mixture was stirred
for at least 24 h to ensure precipitation. Fourth, the asphaltene
fraction was recovered using a 0.45 �m HVLP (Millipore) mem-
brane filter washing with additional amounts of n-hexane. Finally,
the recovered asphaltenes were put into a nitrogen atmosphere
degasser and dried for 48 h. The asphaltenes were weighted every
12 h until the mass was constant to ensure complete evaporation of
n-hexane. The elemental composition of asphaltenes after extrac-
tion is given in Table 2. An average molecular weight of 750 g/mol
was used for all the calculations according to Buch et al. [22] and
Groenzin et al. [23] who established this value as an adequate aver-
age for n-heptane precipitated asphaltenes. n-hexane precipitated
asphaltenes are not expected to deviate from this range.

2.2. Demulsifier

The model demulsifier selected for this work was a polyethylene
glycol oleyl ether, commercially known and available as Brij® 93
provided by Sigma-Aldrich. It has an approximate average number
molecular weight of 357 g/mol and a hydrophilic–lipophilic balance
(HLB) of 4. The chemical was used as provided. Bottle tests con-
firmed that this chemical actively separates water from asphaltene
stabilized emulsions.

Table 2
Elemental composition of asphaltenes recovered from the heavy crude oil used in
this work.

wt.% C wt.% H wt.% N wt.% O wt.% S C/H atomic
ratio

Asphaltenes 86.1 8.28 1.29 1.97 2.10 0.867

2.3. Water phase

The water phase was a buffer solution of pH 7 prepared with
ultra-pure water (resistivity of 18.2 �)  and 0.1 M KH2PO4 adjusted
with 0.1 M NaOH solutions.

2.4. Solvents

Asphaltene and demulsifier solutions were prepared using
xylene AnalaR NORMAPUR® provided by VWR-Norway. The n-
hexane used for precipitation was  HiPerSolv CHROMANORM® for
HLPC quality also provided by VWR-Norway. Both solvents were
used as received.

2.5. Tensiometry

A commercially available pendant drop tensiometer (PAT 1 m,
SINTERFACE Technologies, Berlin, Germany) was used for all the
experiments. It calculates the surface/interfacial tension of a
surfactant-covered drop by recording the silhouette onto a CCD
camera. The digital images are then analyzed and fitted to the
Young-Laplace equation with an accuracy of ±0.1 mN/m.  This equa-
tion relates the curvature of a liquid drop and the surface/interfacial
tension. The built-in software produces a family of theoretical
curves by changing the values of the surface/interfacial tension.
The curve that yields the best fit to the experimental points repre-
sents the measured surface/interfacial tension. For this procedure
the densities of the oil and aqueous phase are needed. A custom-
made accessory for the apparatus consisting of two  concentric
capillary tubes (an inner capillary and an outer capillary) was used
for the desorption experiments. Specific details of the technique
are described elsewhere [14].
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Experiments were also performed using a KSV Sigma 70 (KSV
instruments-Finland) tensiometer equipped with a Du Nouy ring at
22 ◦C. The system was tested prior to each experiment by measur-
ing pure water obtaining an average value within 72.8 ± 1 mN/m.
Unless otherwise specified, all experiments were run by duplicates.
Good reproducibility was observed.

3. Theory

3.1. Adsorption

The main consideration when discussing IFT data is the applica-
tion of an appropriate isotherm. The ultimate goal of the adsorption
isotherm is to relate the bulk concentration and the composition
at the interface. The Gibbs equation provides a model based on
thermodynamics. The equation is as follows [16]:

� = − 1
nRT

· d�

d ln(c)
(1)

Here � is the equilibrium surface excess, n is a constant that is
equal to 1 for nonionic surfactants, R is the gas constant, T the tem-
perature, � the surface/interfacial tension and c the concentration
in the bulk. The � vs. c curve can be obtained by fitting an adequate
adsorption isotherm [16,24].

The most commonly and widely used non-linear adsorption
isotherm is that of Langmuir. It is a two parameter equation which
assumes that there are no interactions between the adsorbed
species and that the molecules are adsorbed as a monolayer. The
typical form of the Langmuir isotherm is,

� = �∞
(

KLc

1 + KLc

)
(2)

where � ∞ is the surface excess at saturation and KL is known as
the adsorption constant. These two parameters are adjustable. The
analogous equation of state is known as the Szyszkowski equation,
as reported by Chang and Franses [16],

� = nRT�∞ ln(1 + KLc) (3)

In which � is the surface pressure or the difference in IFT
between a clean interface, for instance that of a pure solvent and
the value when the surface active agents have been adsorbed.

The Frumkin isotherm accounts interactions between the solute
and the solvent and also interactions that can occur at a non-
ideal lattice. This is a three parameter equation, in which the third
parameter accounts for those interactions. The Frumkin adsorption
isotherm and the corresponding equation of state are,

c = 1
KF

· �

�∞ − �
exp

[
−A

�

�∞

]
(4)

� = nRT�∞ ln
(

1 − �

�∞

)
− nRTA

2
�∞

(
�

�∞

)2

(5)

Here, KF is the adsorption constant and A is the interaction
parameter. When the interactions are negligible (i.e. A = 0), the
Frumkin isotherm reduces to the Langmuir equation.

3.2. Desorption

When the equilibrium of an interface in a pendant drop experi-
ment is disturbed by the subphase exchange, that is the injection of
pure solvent, the adsorbed molecules tend to desorb. This is a con-
vection driven process that generates a change in the concentration
at the interface. Therefore, it is necessary to use an equation that
accurately describes this process [14]. Sivitova et al. [13] modeled
the concentration change using an analogy based on the internal-
age distribution of a solute inside a continuously stirred mixed

reactor (CSTR) [25]. In a perfectly mixed CSTR, the concentration
of molecules in a portion of fluid leaving the reactor is exactly the
same as the concentration at any point inside the reactor. Therefore,
if pure solvent is being injected, the concentration decays according
to [13]:

C = C0 exp
(

Qit

Vi

)
(6)

where Vi is the initial concentration in the bulk, �0 is the pre-
determined total volume to be exchanged and Qi is the solvent
flow rate. This means that Equation (6) coupled with equation (3)
describe the evolution of the interfacial tension as a function of
time while the surface active molecules are being desorbed from
the interface if the adsorption is of Langmuir type. Therefore, in
this work the term Qi will be used to describe the volumetric flow
rate of the exchange, that is, the rate at which the fluid is being
pumped from the inner capillary as explained later in section 4.2.
Furthermore, the term Qi, which is analogous to the residence time
distribution in a CSTR, also serves as a characteristic dimension-
less time used for normalization. This approach has been shown to
work [13,14] for several systems under the assumption that the sur-
face active molecules exhibit complete reversible adsorption and
when the desorption is faster than the evolution of the concentra-
tion inside the droplet. Evidently, deviations from this model could
be attributed to a non-Langmuir type of adsorption or irreversible
adsorption.

3.3. Adsorption kinetics

The well-known Ward-Tordai equation is widely used to model
adsorption kinetics limited only by diffusion of surfactants towards
an interface. It allows the calculation of diffusion coefficients
based on the interfacial tension data. As the IFT decays, this
model accounts for how the molecules are being diffused and
subsequently adsorbed onto the interface. There are two main
mechanisms included into this model. First, at short times and
with a fresh interface the monomers will adsorb directly, thus it
is assumed that every molecule arrives at an empty site. Second,
with the molecules present at the oil–water interface, back diffu-
sion takes place, this means that the molecules that arrive at an
already occupied site will return to the bulk [16].

The equation in its usual form cannot be solved, therefore
asymptotic solutions have been proposed [26]. When the short-
time approximation is used, the measured interfacial tension will
be close to that of the pure solvent; hence it can be assumed that
the solution is dilute. When this happens, the Henry isotherm can
be applied and the diffusion coefficient can be obtained from the
following equation [16],

�t→0 = �0 − 2nRTc0

√
Dt

�
(7.a)

In this equation, D is the diffusion coefficient of the adsorbing
molecule, �0 is the interfacial tension of pure solvent and c0 is the
concentration in the bulk.

When the long-time approximation is used, the subsurface con-
centration will approach that of the bulk. The asymptotic solution
is as follows:

�t→∞ = �eq + nRT� 2
eq

c

√
�

4Dt
(7.b)

In this equation, � eq is the equilibrium surface excess of surfac-
tant, �0 the equilibrium interfacial tension and c the concentration
of surfactant in the bulk.
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Table  3
Diffusion coefficient for asphaltene and Brij®-93 solutions in xylene using the short-
time approximation (ST) and the long-term approximation (LT) of the ward-Tordai
equation.

System Concentration (m-mol/L) D (m2/s)

Asphaltenes in Xylene (ST) 2.94 × 10−3 1.49 × 10−12

1.47 × 10−2 5.99 × 10−14

2.94 × 10−2 9.37 × 10−14

1.47 × 10−1 9.59 × 10−15

2.94 × 10−1 9.37 × 10−16

7.37 × 10−1 3.83 × 10−16

1.47 5.39 × 10−17

2.94 1.34 × 10−17

7.37 2.15 × 10−18

Brij®-93 in xylene (ST) 2.42 × 10−3 5.52 × 10−11

Brij®-93 in xylene (LT) 2.43 × 10−4 4.68 × 10−12

2.43 × 10−3 6.09 × 10−12

2.43 × 10−2 2.33 × 10−13

1.21 × 10−1 8.75 × 10−14

2.43 × 10−1 2.53 × 10−14

1.21 2.35 × 10−15

4. Results and discussion

4.1. Dynamic and static adsorption of single components

4.1.1. Kinetic aspects of single compounds
Table 3 summarizes the values of the diffusion coefficient calcu-

lated using equation (7.a) for asphaltenes and Brij®-93 solutions in
xylene. As expected, asphaltenes show a very low diffusion coeffi-
cient (D ∼ 10−12 to 10−18 m2/s) which suggests that the mechanism
of adsorption is not diffusion-controlled. In this case, the decrease
in the IFT is not explained through the diffusion of molecules to
the interface, but instead it is possible that an adsorption barrier is
present. Evidently the self-aggregation of asphaltenes in the bulk
[3] and stacking contribute to this finding. The method proposed
by Chaverot et al. [27] could have been used to analyze the data.
However, their method was developed to study a bitumen-water
system in which the concentration of the surface active species,
namely asphaltenes and naphthenic acids, was unknown. Addition-
ally, this method assumed a diffusion-controlled type of adsorption,
even at short times when the interface is nearly empty. In the sys-
tem used for this work, the concentration of asphaltenes is known
and from the calculated diffusion coefficients at short-times it can
be concluded that the adsorption is not diffusion-controlled. Fur-
thermore, this method is not applicable to the asphaltene system
studied.

Several authors [10,28,29] have proposed phenomenological
equations to fit the asphaltene IFT. Under the assumption that
asphaltenes are not adsorbed as single molecules but instead as
larger aggregates, Jerebi et al. [29], attempted a description of the
interfacial tension data of asphaltene solutions in toluene using a
model initially proposed to describe protein adsorption. With this
model, they conclude that asphaltenes diffuse very fast and that the
changes in IFT are due to reorganization at the interface. Asphaltene
adsorption onto liquid–liquid interfaces was studied by Fossen et al.
[28]. In their publication, a four-parameter bi-exponential model
was proposed to describe the IFT vs. time data. The parameters
account for rate at which the IFT decays in two parts: fast decrease
at short times and slow decay at longer times. This is due to dif-
ferences in the relaxation processes at the interface which could
be a consequence of slow/fast diffusion, adsorption barriers, reor-
ganization of the asphaltene network and partitioning. Similarly,
the competitive adsorption of demulsifiers at the crude oil/water
interface was studied by Fan et al. [10]. Using the same model,
the description of the different mechanisms that are present at the
interface depends on the functionality of the surface active agents.

Table 4
Langmuir and Frumkin equilibrium adsorption constants for asphaltene and Brij®93
solutions in xylene using two techniques: ASDA and Du Nouy ring.

Asphaltenes Technique KL , KF

(m3/mol)
� ∞ (mol/m2) A

Eq. (2) and (3) ADSA 228 9.54 × 10−7 0
Du  Nouy 106 9.32 × 10−7 0

Eq.  (4) and (5) ADSA 97 9.56 × 10−7 1
Du Nouy 161 7.85 × 10−7 1

Brij®  93
Eq. (2) and (3) ADSA 834 1.06 × 10−6 0

Du  Nouy 300 1.27 × 10−6 0
Eq.  (4) and (5) ADSA 620 1.19 × 10−6 −0.4

Du  Nouy 748 1.19 × 10−6 −0.2

More recently, Rane et al. [30] proposed a mechanism of asphaltene
adsorption at short times based on kinetics and later, Pauchard et al.
[31] extended this concept to long-term adsorption by considering
a transition between diffusion-controlled adsorption at short times
to a nondiffusion-controlled kinetics (adsorption barrier) at longer
times. At short times only the monomers and not the nanoaggre-
gates (the authors report a critical nanoaggregation concentration
– CNAC – of 200 ppm) are adsorbed creating a monolayer. Later,
steric hindrance effects slow down the adsorption. In all cases, the
Langmuir adsorption isotherm adequately describes the IFT data. As
the results presented in Table 3 suggest, asphaltenes do not follow
a diffusion-controlled adsorption.

The diffusion coefficient calculated for Brij®-93 (Table 3) using
equation (7.a) seems to be somewhat low to consider it as indicative
of a diffusion-controlled process. However, molecules with similar
molecular weight report [16] values for the diffusion coefficient
of ∼10−10 m2/s which could be comparable. It was not possible to
determine the diffusion coefficient for a broader Brij®-93 concen-
tration range due to the failure of the assumptions of the model. A
small increase in the concentration causes a rapid IFT drop, hence
the assumption of a dilute solution fails, and a small decrease in
the concentration did not provide a viable IFT drop. Table 3 also
shows the values for the diffusion coefficient calculated using the
long-time approximation, equation (7.b). The values are between
D ∼ 10−12 and 10−15 m2/s which leads to the conclusion that the
adsorption process of Brij®-93 is no longer diffusion-controlled at
long times.

4.1.2. Equilibrium aspects of single compounds
To start with, a set of adsorption experiments were performed to

determine the equilibrium parameters and the composition at the
interface using the Langmuir and Frumkin isotherms represented
by Equations (2-5) for asphaltene and demulsifier solutions in
xylene. The demulsifier was  carefully chosen based on unique crite-
ria developed in this study. While the effectiveness of breaking W/O
emulsions of the so-called pluronic demulsifiers, which are nor-
mally, block or triblock co-polymers of poly ethylene oxide (PEO),
poly propylene oxide (PPO) is unquestionable [32–34], their study
is somewhat troublesome given the multiple phase transitions,
polymer unfolding, reorganization and multilayer accommodation
at the interface. This leads to a type of adsorption that cannot
be described by the typical adsorption isotherms (i.e. Langmuir,
Frumkin, and Freundlich).

Fig. 3 shows a plot of the equilibrium IFT as a function of the bulk
concentration for asphaltene solutions in xylene and the demulsi-
fier Brij® 93 solutions in xylene, measured with two  techniques:
ASDA and Du Nouy ring. The equilibrium values were obtained
after letting the system adsorb for 8 h and 3 h, respectively. At this
point the change in the IFT values was  less than 0.5 mN/m.  Also
in this figure, the solid lines represent the best fit to equations
(2) and (3). Table 4 summarizes the equilibrium parameters using
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Fig. 3. Equilibrium interfacial tension (�eq) as a function of bulk concentration for asphaltene and Brij®-93 solutions in xylene. The IFT was measured using two available
techniques: ASDA and Du Nouy ring. The solid line represents the best fit to equations (2) and (3).

the Langmuir and the Frumkin Isotherm. Both techniques and both
models yield reasonable results. The equilibrium parameters are
similar, within the same order of magnitude and comparable. The
positive value in the parameter A of the Frumkin isotherm fit for
the asphaltene solutions is an indication of small attractive forces
acting on the interface. This agrees with the fact that asphaltenes
self-associate in solution [6,28]. On the other hand, for the demulsi-
fier solutions, it can be concluded that both techniques yield similar
results. The negative interaction parameter A obtained when using
the Frumkin isotherm could be an indication of repulsive forces act-
ing on the interface [24]. In general, the Langmuir isotherm gives
good results for the system studied and it is clear that a mixed
interface between these two compounds would yield strong inter-
actions.

4.2. Dynamics of desorption for single components

This section covers a set of desorption experiments using the
coaxial capillary system described in the experimental section. The
desorption dynamics of Asphaltene and Brij® 93 solutions in xylene
was followed by measuring the IFT as a function of time. It is impor-
tant to note that all the figures presented in this section correspond
to average results of at least two parallels.

Fig. 1 depicts a schematic of a system that exhibits partial
desorption and can be used as a reference. First, an oil droplet
(i.e. Asphaltene/demulsifier solutions in xylene) is formed using
the outer capillary and allowed to equilibrate for a certain period
of time inside a cuvette (25 mL)  that contains the water phase. At
this point, this is essentially an adsorption experiment and equilib-
rium parameters can be calculated. Second, at a time t0 the droplet
subphase is exchanged by injection of pure solvent (i.e. Xylene)
through the inner capillary at a volumetric flow rate Qi. The inter-
facial area (droplet volume = 20 �L) is kept constant via feedback
control, thus withdrawal of liquid is simultaneously performed
using the outer capillary. During this stage, desorption of surface
active molecules may  occur; hence an increase of the interfacial
tension is expected. Ideally, the IFT value will increase until that of
the pure solvent, if the surface active molecules exhibit reversible
desorption. Third, when the predetermined total volume Vi has
been exchanged, pumping from the inner capillary stops and the

IFT reaches a plateau value. All experiments were done at 22 ◦C.
Fig. 2 shows the evolution of the interfacial tension as a function
of time during the three steps just described for a given asphal-
tene solution in xylene. It is important to highlight the fact that
the IFT is being continuously monitored during all steps of the
experiment.

Experimental data from the desorption stage (see Fig. 2) were
treated differently in order to avoid handling a large number of
points. For this part, a smoothing procedure based on the running
average method was performed over a period of 2 s on the software
SigmaPlot v. 12.0. The method ensures that no vital information is
lost, thus the resulting curve is a true representation of the experi-
mental data points. Scattering of the data points is inherently linked
to volume control during the injection of the solvent.

The accessory was first tested with a known system that exhibits
complete reversible adsorption to ensure the validity of the results.
Following the experimental conditions reported by Svitova et al.
[13], Cetyltrimethylammonium bromide (CTAB) solutions in ultra-
pure water were prepared and the surface tension was measured as
a function of time on the liquid–air surface. The data was then fitted
using equations (3) and (6) using the equilibrium parameters taken
from the same reference. The results are shown in Fig. 4 (a) and as
it can be observed, the model adequately describes the desorption
process of this surfactant. The authors report an equilibrium surface
tension value of ∼36 mN/m after an equilibration time of ∼10 min
which is similar to the values shown in Fig. 4(a). Also, the com-
plete reversibility of CTAB is confirmed due to the fact that after
the exchange of the subphase, the surface tension recorded is that
of the pure solvent (∼72 mN/m). A similar test was done to evaluate
the reversibility of adsorption onto the oil/water interface. Fig. 4(b)
shows that Equations (3) and (6) adequately describe desorption
of CTAB from the xylene/ultra-pure water interface. Even though
the surface tension and the interfacial tension are not correlated,
in this case both systems showed complete reversible desorption,
thus corroborating that the coaxial system can be used as a method
to follow adsorption and desorption dynamics at both the air/water
and oil/water interface.

Both experiments in Fig. 4 also show that the droplet formed
is homogeneous in the sense that there is perfect mixing of the
surface active molecules throughout the desorption stage inside
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Fig. 4. Surface/interfacial tension of cetyltrimethylammonium bromide (CTAB) solutions in ultra-pure water as a function of time measured at the (a) air/water interface
and  (b) oil/water interface. The solid line represents the prediction of the desorption model (Equations 3 and 6).

the droplet. The same situation can be assumed for an emerging
drop.

4.2.1. Asphaltenes
This section is dedicated to the analysis of the dynamics of

desorption of asphaltenes. Fig. 5 shows a plot of the interfacial
tension as a function of the dimensionless characteristic time for
asphaltene solutions in xylene with an initial bulk concentration of
1 g/L. The time lapse covered by this plot starts with the injection of
pure solvent and finishes when the predetermined total volume (Vi)
has been exchanged at a given flow rate (Qi). The initial equilibra-
tion adsorption time (ti) was 1.5 h and the volume of the droplet
(VD) was kept constant throughout all the experiments at 20 �L.
Two conditions for the flow rate (Q1 = 0.2 �L/s, Q2 = 0.4 �L/s) and
the total volume exchanged (V1 = 480 �L, V2 = 1000 �L) were tested.
The same final interfacial tension value was reached at the end of
the experiment, suggesting that there is a similar final composition

at the interface. Thus, from Fig. 5 it can be concluded that these two
variables have no apparent effect on asphaltene desorption (same
master curve). It is important to highlight the fact that the value
Vi » 100 VD ensures that a plateau on the IFT is reached and thus no
further desorption is possible. When the equilibration adsorption
time is reduced to 0.5 h, a similar master curve is obtained. This is
shown in Fig. 6 for the same system under the same conditions.
These experiments ensure that the condition of perfect mixing,
while the subphase is being exchanged, remains valid. Hence the
measured values of the interfacial tension are a direct consequence
of a desorption process instead of a simple effect of dilution. The
results are in agreement with a previous analysis [14].

Fig. 5 and Fig. 6 also show that asphaltenes are irreversibly
adsorbed at the oil/water interface. The difference between the
value of the surface coverage calculated at the beginning and
the end of the subphase exchange is less than 2%. The values
were calculated by assuming that the equilibrium adsorption
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Fig. 5. Influence of the flow rate (Q1 = 0.2 �L/s, Q2 = 0.4 �L/s) and the total volume exchanged (V1 = 480 �L, V2 = 1000 �L) on the interfacial tension for asphaltene solutions in
xylene  at a fixed adsorption time (1.5 h) and initial bulk concentration (1 g/L).

parameters, namely the surface coverage and the adsorption con-
stant, remain valid throughout the desorption stage. A 2% of amount
desorbed corresponds to a ∼3 mN/m total change in the inter-
facial tension which is an indication of the mechanically strong
film that the asphaltene network forms. It has been suggested [29]
that the formation of the so-called skin around the water droplets
could be a consequence of the adsorption of bulk aggregates (fast
process) made of asphaltenic stacks that promote multilayer for-
mation (slow process). Furthermore, direct observations on the skin
and compression/expansion experiments show that the rigid film
remains unchanged which could be due to the irreversibility of the
asphaltene adsorption [35]. The results presented in Figs. 5 and 6
are a strong evidence of these different mechanisms involved in
asphaltene adsorption and desorption. The novelty of these results

lies in the fact that throughout IFT measurements, it is possible
to corroborate many of the hypotheses suggested to explain the
mechanisms of asphaltene-film formation.

The effect of the adsorption time was also studied.to deter-
mine if the irreversibility of the adsorption is a consequence of
any sub-process taking place at long time-scales. Fig. 7 shows a
plot of the variation of the IFT as the adsorption time (ti) is var-
ied from 10 min  to 3 h. The initial concentration of asphaltenes
in the bulk is 1 g/L and desorption was  followed at a flow rate of
Q2 = 0.4 �L/s, total volume exchanged V2 = 100 �L and a droplet vol-
ume VD = 20 �L. The experimental conditions were chosen so that
asphaltene desorption is independent of both the flow rate and
the total volume exchanged (Figs. 5 and 6). Also, the values are
chosen based on practical limitations to ensure drop stability. It

Fig. 6. Influence of the flow rate (Q1 = 0.2 �L/s, Q2 = 0.4 �L/s) and the total volume exchanged (V1 = 480 �L, V2 = 1000 �L) on the interfacial tension for asphaltene solutions in
xylene  at a fixed adsorption time (0.5 h) and initial bulk concentration (1 g/L).
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Fig. 7. Influence of the adsorption time (t1 = 10 min, t2 = 30 min, t3 = 1.5 h, t4 = 3 h) on the interfacial tension for asphaltene solutions in xylene at a fixed flow rate (Q2 = 0.4 �L/s),
fixed  total volume exchanged (V2 = 1000 �L) and fixed initial bulk concentration (1 g/L).

can be observed that asphaltene desorption is also independent of
the initial adsorption time under these conditions. The percentage
desorbed calculated for all adsorption times corresponds again to
∼2% indicating irreversibility. This suggests that the mechanically
strong film is formed even at low timescales. Further reduction of
the IFT could be attributed to multilayer formation, reorganization
and aggregate formation at the interface [36].

The effect of bulk concentration on desorption dynamics of
asphaltenes was also evaluated. Fig. 8 shows a plot of the varia-
tion in IFT during desorption of asphaltene solutions with different
initial bulk concentrations (Ci). The other experimental conditions
are similar, as shown before (Q2 = 0.4 �L/s, V2 = 100 �L, t3 = 1.5 h).
Once again, the total amount desorbed corresponds to ∼2% validat-
ing the previous results indicating that asphaltenes are irreversibly
adsorbed at the oil/water interface. In this case, this is also true
even for low concentrations (0.1 g/L) suggesting the fast formation
of the rigid skin at the interface and packing effects [37].

While asphaltene aggregation is still a current object of study
[38,39] it is clear that it influences the different mechanisms of
adsorption, hence desorption. As recently pointed out by Tchoukov
et al. [40], regardless of the fact that asphaltenes might not be the
most interfacially active fraction of crude oil, which means that
emulsion stability is not driven by the reduction in IFT solely, the
complex network formed, the aromatic �-� stacking, the hydrogen
bonding, etc. [41], definitely affect the dynamics of adsorption and
desorption. Furthermore, these interactions combined with multi-
layer formation create a mechanically strong film which must be
thinned in order to break up W/O  emulsions. The critical thick-
ness of this film (which has a Bingham plastic nature) is thus a
key parameter for emulsion stability [40]. Results from Langmuir
trough experiments coupled with atomic force microscopy (AFM)
images performed on asphaltenes at the toluene/water interface
show similar results [42]. First, a monolayer is formed at the inter-
face. This monolayer is strongly attached to the water phase and
cannot be removed even after several wash-outs with pure sol-
vent. Secondly, subsequent deposition of aggregates generates a
multilayer 3D conformation that is anchored to the first layer [42].
Recently, Molecular Dynamics Simulations (MD) made on asphal-
tene model compounds (perylene-based molecules) showed the
variations in nanoaggregation and structure of nanoaggregates in

bulk depending on the functionality of the end-groups [43,44]. This
is attributed to the importance of the �–� stacking and interactions
between the solvent and the molecules.

The results presented in Figs. 5–8 indicate that the negligible
amount of asphaltenes desorbed are weakly bounded to the asphal-
tene aggregates that are part of the 3D network, compared to the
portion of asphaltenes that remain irreversibly adsorbed at the
oil/water interface, possibly as a monolayer. Implications of these
results point out to the necessity of a different emulsion breaking
strategies that involve different types of surface active molecules
(i.e. demulsifiers) which can strongly interact with the portion of
asphaltenes that form the rigid skin at the interface. For exam-
ple, it has been shown [45] that under some circumstances some
of the so-called yellow chemicals can perform significantly better
when directly injected into the Dense-packed layer instead of the
crude-oil emulsion.

4.2.2. Demulsifier: Brij® 93
The final section of this article is dedicated to the desorption

dynamics of the model demulsifier chosen for this work, namely
Brij® 93. Fig. 9 shows a plot of the interfacial tension as a func-
tion of the characteristic time during desorption for demulsifier
solutions in xylene at different initial bulk concentrations (Ci) rep-
resentative of the concentrations used in chemical demulsification
in the petroleum industry. The experimental conditions are similar
to those reported in the previous section (Q2 = 0.4 �L/s, V2 = 100 �L,
t3 = 1.5 h). Once again, the values of the IFT reported correspond
to the stage of the experiment at which the subphase is being
exchanged.

First, there is an increase in the IFT with time. This result
was expected due to the nature of the model demulsifier. As the
concentration increases from 10 ppm to 500 ppm, the decrease
in the IFT becomes more relevant. As mentioned before, typical
chemical demulsification strategies consider the addition of chem-
icals in the order of 1–1000 ppm, which is sufficient to strongly
interact with the irreversibly adsorbed asphaltenes and other
indigenous surfactants that might be present. Secondly, it can
be observed that the IFT increase is significantly higher than the
asphaltenes. Calculation of the percentage of Brij®93  desorbed
after the subphase exchange yields approximately 20% (except for
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Fig. 8. Influence of the initial bulk concentration (C1 = 0.1 g/L, C2 = 1 g/L, C3 = 6 g/L) on the interfacial tension for asphaltene solutions in xylene at a fixed flow rate (Q2 = 0.4 �L/s),
fixed  total volume exchanged (V2 = 1000 �L) and fixed adsorption time (t3 = 1.5 h).

low concentrations-2.421 × 10−3 m-mol/L) which also indicates
that a portion of the demulsifier molecules stay at the interface.

One plausible explanation of this behavior is related to the
chemistry of the demulsifier. Brij®93 is a polydisperse Ethoxylated
fatty alcohol which suggests that depending on the length of the
ethyl oxide (EO) chain after polymerization, the adsorption process
will exhibit some differences. It is possible that the portion of the
demulsifier being desorbed corresponds to the part of the molec-
ular weight distribution with longer EO chains which are more
hydrophilic than the smaller more hydrophobic counterparts. This
also suggests that it is possible to have a multilayer arrangement
at the interface and reorganization effects.

A second plausible explanation of this phenomenon is related
to the adsorption energy. As pointed out by Bouriat et al. [46]
and Anton et al. [47] a two-dimensional network of polydisperse

aggregates that behaves as a gel near its gelation point exhibits dif-
ferent mechanisms for adsorption. The cluster connectivity changes
depending on which aggregates are being adsorbed/desorbed. This
means that larger aggregates could “freeze” once adsorbed, and
only the smaller aggregates are able to desorb, mainly due to the
lower adsorption energy needed. This also serves as an explanation
of the differences in the relaxation times. The authors also showed
that this could also be true for asphaltenes, although the analysis is
to be performed through dilatational rheological measurements.

Generally speaking, it is clear from the results presented in
the previous sections that the chemistry, adsorption and desorp-
tion aspects of the single compounds used in this work, namely
asphaltenes and a model available demulsifier, are to some extent
complex. This leads to two important topics. First, a study of a
mixed interface between the two compounds is necessary to give

Fig. 9. Influence of the initial bulk concentration: C1 = 10 ppm (2.428 × 10−2 m-mol/L), C2 = 100 ppm (2.428 × 10−1 m-mol/L), C3 = 500 ppm (1.214 m-mol/L), on the interfacial
tension for Brij®-93 solutions in xylene at a fixed flow rate (Q2 = 0.4 �L/s), fixed total volume exchanged (V2 = 1000 �L) and fixed adsorption time (t3 = 1.5 h).
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a broader insight on the possible interactions among them, thus
expanding the understanding of the mechanisms present in chem-
ical demulsification. Second, IFT studies on desorption dynamics
and desorption kinetics are presented as a novel methodology for
the measurement of adsorption reversibility. As acknowledged by
Ferri et al. [14], the broad applicability of this framework in dif-
ferent research fields is given by the possibility of having a vast
concentration range, which could not be accomplished by normal
techniques.

5. Conclusions

Study of static and dynamic adsorption/desorption of single
components is highly relevant to the understanding of mixed inter-
faces as a first step. Possible interactions, reorganization effects,
multilayer formation, reversibility of adsorption among other
issues can be elucidated. Throughout this work, the complete char-
acterization in terms of equilibrium and dynamic adsorption and
desorption has been presented for two single compounds, namely
asphaltenes and a model demulsifier Brij®-93. It was shown that
the kinetics of asphaltenes is low (D ∼ 10−12 to 10−18 m2/s) suggest-
ing that the process is not diffusion-controlled as expected. On the
other hand, kinetics of a model demulsifier show that the process
could possibly be diffusion-controlled (D ∼ 10−11 m2/s) at short-
times which is in agreement with surfactants of similar molecular
weight [16]. At longer times, it was shown that the model demul-
sifier does not adsorb via a diffusion-controlled mechanism given
the low values calculated (D ∼ 10−12 to 10−15 m2/s). It has also been
shown that the Langmuir and Frumkin isotherm are good models
to describe the adsorption process of these compounds.

A novel coaxial capillary pendant drop apparatus [14,18,20]
made it possible to follow desorption dynamics of the same sin-
gle compounds through interfacial tension measurements. It was
shown that after the injection of pure solvent, the total change
in the interfacial tension values for asphaltenes was approxi-
mately 3 mN/m which corresponds to a total desorption of ∼2%.
This suggests that asphaltenes are irreversibly adsorbed at the
oil/water interface which has also been reported previously [40,42].
One plausible mechanism that explains this behavior proposes an
asphaltene monolayer that quickly adsorbs onto the interface fol-
lowed by aggregate deposition. The entire complex is responsible
for the formation of the mechanically strong film. On the other
hand, a surfactant that acts as a model demulsifying agent shows
partly reversible adsorption onto the oil/water interface. Results
show a total desorption of ∼20%. Due to the polydisperse nature
of the ethoxylated surfactant, it is possible that the long EO chains,
which are more hydrophilic that the shorter counterpart, do not
remain at the interface while desorption takes place. Another pos-
sibility arises due to the polidispersity of the adsorbed aggregates
in the 2D network. Larger clusters get “stuck” to the interface due
to the higher energy requirements, while the smaller aggregates
are able to desorb more easily.

The results provide a new insight on the overall knowledge of
coalescence and break up of emulsions through interfacial ten-
sion measurements. It has been recognized [40] that lowering the
interfacial tension is not sufficient to promote flocculation and
coalescence, thus the study of desorption dynamics is presented
as an additional methodology to obtain valuable information vital
for chemical demulsification strategies relevant for the petroleum
industry.
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ABSTRACT: This article is the continuation of a preceding paper (Part I) in which the adsorption and desorption of
asphaltenes from the oil/water interface by pure solvent and model demulsifiers was studied. In this second part, the composition
of mixed interfaces of asphaltenes and two demulsifiers (Brij-93 and Pluronic PE8100) was studied. Desorption of asphaltenes by
demulsifiers, and vice versa, was determined. First, the composition of a mixed interface (asphaltenes and demulsifiers) through
the use of the Langmuir equation of state (EoS) was determined. Second, an experimental setup that mimics, to some extent, the
chemical demulsification of water-in-crude oil emulsions during the production stages was used. Desorption of already-adsorbed
asphaltenes at the liquid/liquid interface by the action of two demulsifiers was assessed. It was found that desorption is always
initiated by interactions between demulsifiers and asphaltenes. It is followed by the plausible formation of complex-like structures
to finally end in the replacement, by displacement from the interface, of asphaltenes by demulsifiers. Third, the assessment of
Brij-93 and PE8100 desorption from the oil/water interface by the action of asphaltenes was also carried out. It was found that
asphaltenes can desorb PE8100 at low surface coverage.

1. INTRODUCTION

The formation of stable water-in-oil (W/O) emulsions during
petroleum extraction is undoubtedly unavoidable.1,2 Transport,
refining, and production costs are deeply affected by the
formation of such systems.3 The action of indigenous
surfactants such as asphaltenes, resins, and naphthenates hinder
coalescence by forming a mechanically strong film, by retarding
film drainage or by producing steric repulsion.4,5 However, the
main mechanisms of emulsion stabilization are attributed
mainly to asphaltenes, because of their ability to form a gel-
like continuum at the oil/water interface.6 Asphaltenes are
typically defined as the solubility class of crude oil that is
insoluble in n-alkanes (n-pentane, n-hexane) but soluble in
aromatic compounds (xylene, toluene).7,8 Because of this very
broad definition, asphaltenes can exhibit different properties,
functionalities, and molecular weights that are dependent
primarily on the type of crude oil.9,10 However, many bulk
properties and interfacial behavior have been shown to have a
certain degree of uniformity.11

Chemical demulsification refers to the process of breaking up
emulsions to separate the water from the crude oil using a class
of surface active agents, known as demulsifiers that promote
coalescence and film drainage.12 It has been recognized as the
most efficient method for water separation.13 Because of their
high surface active nature, these chemicals are typically added in
a concentration range of 1−1000 ppm.14 Once the demulsifiers
have been incorporated into the naturally formed crude oil
emulsion, they quickly go to the oil/water interface and affect
the stability of water droplets. Different mechanisms for
emulsion stability can be stated: for instance, demulsifiers can
change the elasticity or the interfacial viscosity of the
surrounding skin resulting in a displacement/replacement of
the indigenous surfactants (i.e., asphaltene network).15,16 The

formation of asphaltene−demulsifier complexes, because of
chemical similarities and suppression of interfacial tension
gradients (Marangoni effects), are also plausible phenomena.17

A widely recognized, accepted, and versatile method for
measuring the dynamic interfacial tension (IFT) of various
interfaces is commonly known as axisymmetric drop shape
analysis (ADSA).18−20 In this technique, a liquid droplet or an
air bubble is formed at the end of a capillary. Then, a CCD
camera continuously records the shape generating a set of
images that are later analyzed to resolve the Young−Laplace
equation yielding the best fit for the IFT. This method allows
the accurate study of sorption kinetics (i.e., adsorption and
desorption) of surface active agents at the liquid/liquid or
liquid/air interface. The main advantages are first, the
possibility of obtaining IFT data at very short times. Second,
the constant feedback between the software and the CCD
camera allows the accurate control of the volume of the
droplet/bubble, hence making it possible to perform interfacial
rheology measurements. Third, it is possible to follow the IFT
while surface active species are being adsorbed/desorbed
maintaining the drop/bubble volume constant.21−23

A novel coaxial capillary apparatus developed by Ferri et al.22

allows monitoring the interfacial tension as a function of time
while surfactants are being desorbed from the liquid/liquid
interface. Furthermore, with this device, it is also possible to
study convection-enhanced sorption kinetics. For example,
adsorbed species at equilibrium are driven away from it by
injecting a surfactant-free solution (i.e., pure solvent). Hence,
changes in the IFT can be related to factors such as irreversible
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adsorption, reorganization, complex formation, and unfolding
(proteins) phenomena.24−27 Such device was successfully
validated and used to follow the desorption of a nonionic
surfactant (Triton X-100) and a series of n-alkyl dimethyl
phosphine oxide surfactants by Ferri et al.18 Similarly, Kotsmaŕ
et al.23 followed the desorption kinetics of a surfactant−protein
complex (C12-dimethyl phosphine oxide and β-casein)
concluding that displacement by the formation of complex-
like structures was the main cause of desorption.
Interfacial dilatational rheology is of high significance in

colloidal systems, because of the possibility of studying changes
in the interfacial tension as a consequence of surface relaxation
processes or diffusion.28,29 On the other hand, other studies30,31

showed that there is no reorganization or cross-linking at the
interface and that asphaltenes are adsorbed as monomers
instead of nanoaggregates. This was concluded after fitting
adsorption data to an equation of state (Langmuir EoS) which
yielded an adsorbed amount that would only be possible if a
flat-on adsorption of asphaltene monomers occurred. More-
over, it was shown that interfacial tension is only dependent on
surface coverage. Interfacial dilatational rheology has also been
used to link interfacial activity and the mechanical behavior of
different colloidal systems such as emulsions.32−34 This is
subsequently linked to the mechanisms of emulsion stability,
and, hence, to the demulsifier performance.5 The determination
of dilatational elastic and viscous moduli presents an effective
way for comparing the changes in the elasticity of the
surrounding film in an asphaltene-covered water droplet once
desorption has occurred.35,36

In the first part of this work,27 the competitive adsorption
and desorption of asphaltenes and a model molecular
demulsifier (Brij-93) was studied at the liquid/liquid interface.
Through the use of the coaxial capillary apparatus, it was
observed that asphaltenes are almost irreversibly adsorbed at
the oil/water interface after subphase exchange experiments
with pure solvent (the changes in the measured IFT were ∼2
mN/m). This is a known phenomenon that has been
previously reported in the literature.37−40 Desorption was
found to be independent of both the flow rate and the total
amount of solvent exchanged (for volumes more than 50 times
greater than the volume of the droplet) yielding ∼2% of
asphaltenes desorbed under the conditions studied. Similarly, it
was found that the model molecular demulsifier is partly
desorbed (∼20%) from the oil/water interface. It is important
to note that these values were obtained assuming that the
Langmuir EoS linking the adsorbed amount with the interfacial
tension are still valid after desorption. A similar approach on an
partly irreversible system was used by Svitova et al.21 to
establish the degree of desorption. However, it must be
mentioned that if asphaltenes adsorb as multilayers, the
asphaltene monomer and/or part of the aggregate that is not
in direct contact with the liquid−liquid interface or boundary
and therefore adsorbed as second, third or nth layer, would
have little to no influence on the interfacial tension values;
hence, their adsorption would not be detected.40,41

The main goal of this article is to study, through interfacial
tension measurements and dilatational interfacial rheology,
desorption of asphaltenes and demulsifiers from the liquid/
liquid interface. Desorption of species from the oil/water
interface is convection-induced through the use of a coaxial
capillary system based on ADSA. The experimental setup in
which the C6-asphaltenes (n-hexane precipitated) are allowed
to adsorb first followed by injection of the demulsifier (Brij-93

or Pluronic PE8100) mimics, to some extent, the operational
conditions in which chemical demulsification is employed in
some stages of crude oil production in which the crude oil
emulsions are already formed. At these stages, the added
demulsifiers must adsorb at the interface, which is already
populated with indigenous crude oil components such as
asphaltenes, and displace them to break the film and promote
coalescence. Finally, desorption of model demulsifiers by
asphaltenes is investigated to establish their desorbing
capabilities.

2. MATERIALS AND METHODS
2.1. Asphaltenes. C6-asphaltenes were extracted with n-hexane

from a solvent/chemical-free heavy crude oil of the Norwegian
continental shelf. The extraction proceeded as follows: first, the crude
oil was heated to 60 °C for 24 h. After this, the oil was shaken several
times before use, to ensure homogeneity of the samples. The crude oil
then was diluted in n-hexane at a 1:40 weight/volume ratio. Finally,
the mixture was stirred for 24 h and the asphaltene fraction was
recovered using a 0.45 μm HVLP (Millipore) membrane filter washing
with excess n-hexane. Finally, the recovered asphaltenes were put into
a nitrogen atmosphere degasser and dried for 48 h. This time was
enough to ensure that the solvent was fully evaporated; therefore, the
weight of the samples did not change. Buch et al.42 and Groenzin et
al.9,10 established an average molecular weight range for C5-asphaltenes
(n-pentane precipitated) of 500−1000 g/mol. Because of the high
degree of polydispersity in this solubility class,43−45 an average value of
750 g/mol was used for this study, given that the behavior and the
molecular weight of C6-asphaltenes is not expected to deviate
significantly from that of C5-asphaltenes.

32 Basic analysis of the
crude oil used in this study and the elemental composition of the
extracted asphaltenes is given in the first part of this study.27

2.2. Model Demulsifiers. Two demulsifiers were used in this
study. The first one is a low-molecular-weight polyethylene glycol oleyl
ether, commercially known as Brij 93 provided by Sigma−Aldrich, Mw

≈ 357 g/mol (HLB 4). The second one is a high-molecular-weight
polyoxyethylene−polyoxypropylene−polyoxyethylene (PEO−PPO−
PEO) block copolymer, commercially available as Pluronic PE8100
provided by BASF, Mw ≈ 2750 g/mol (HLB 2). Both demulsifiers
were used as received. Bottle tests were performed to ensure that the
chemicals are able to separate asphaltene-stabilized emulsions.

2.3. Water Phase. The water phase was a buffer solution of pH 7
prepared with ultrapure water (resistivity of 18.2 MΩ cm) and 0.1 M
KH2PO4 adjusted with 0.1 M NaOH solutions.

2.4. Solvents. Asphaltene and demulsifier solutions were prepared
using xylene AnalaR NORMAPUR, provided by VWR-Norway. The n-
hexane used for precipitation was HiPerSolv CHROMANORM for
HLPC quality, which was also provided by VWR−Norway. Both
solvents were used as received.

2.5. Interfacial Tension Measurements. A commercially
available pendant drop tensiometer (PAT 1m, SINTERFACE
Technologies, Berlin, Germany) was used for all the experiments. It
determines the surface/interfacial tension of a surfactant-covered
liquid droplet (or air bubble) by recording the silhouette onto a CCD
camera. The digital images are then analyzed and fitted to the Young−
Laplace equation with an accuracy of ±0.1 mN/m. This equation
relates the curvature of a liquid drop and the surface/interfacial
tension. The built-in software produces a family of theoretical curves
by changing the values of the surface/interfacial tension. The curve
that yields the best fit to the experimental points represents the
measured surface/interfacial tension. For this procedure, only the
densities of the oil and aqueous phase are needed. A custom-made
accessory for the apparatus consisting of two concentric capillary tubes
(an inner capillary and an outer capillary) was used for the desorption
experiments. Specific details of the technique are described else-
where;18,22,27 however, a simple schematic is presented in Figure A1 of
the Supporting Information.
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3. THEORETICAL CONSIDERATIONS
3.1. Adsorption: Equilibrium Aspects. The well-known

Gibbs equation provides a model based on thermodynamic
aspects of surfactant adsorption. It relates the composition at
the given interface to the change in interfacial/surface tension
caused by changes in bulk concentration. The interfacial
tension can be measured through different techniques. The
equation is46

γΓ = −
nRT c

1 d
d ln( ) (1)

Here, Γ is the equilibrium surface excess, n is a constant that is
equal to 1 for nonionic surfactants, R is the universal gas
constant, T the temperature at which the experiments are
carried out, γ the surface/interfacial tension, and c the bulk
concentration.
Another adsorption isotherm used is that of Langmuir eq

2.46,47 It is a nonlinear equation that can be used to relate the
concentration in the bulk to the composition of an interface
with adsorbed species. It is also useful to assess the surface
activity of a chemical compound, provided that two main
assumptions are met: first, the adsorption sites are energetically
equivalent; second, there are no interactions between adsorbed
molecules. Even though the assumptions are not usually
entirely valid, the use of this isotherm provides an adequate
notion of the behavior of surfactants. In the following equation,
Γ∞ is the surface excess at the saturation point and KL is known
as the adsorption equilibrium constant.

Γ = Γ
+∞

⎛
⎝⎜

⎞
⎠⎟

K c
K c1

L

L (2)

The analogous explicit equation of state used along eq 2 to
solve for the two equilibrium parameters is known as the
Szyszkowski equation, as reported by Chang and Franses:47

π = Γ +∞nRT K cln(1 )L (3)

Here, π is the difference in interfacial/surface tension between a
freshly formed interface/surface and the value at a given
concentration of surface active species.
Based on the Langmuir adsorption isotherm, Chang and

Franses47 presented a set of equations that involved binary
surfactant mixtures. Equations 4−6 carry the same assumptions
of the Langmuir isotherm itself. However, once again, this
simple description is sufficient to assess the behavior of a mixed
interface and detect possible signs of interactions.

Γ = Γ
+ +

K c

K c K c1mA
L,A A

L,A A L,B B (4)

Γ = Γ
+ +

K c

K c K c1mB
L,B B

L,A A L,B B (5)

π = − Γ −
Γ
Γ

−
Γ
Γ

⎛
⎝⎜

⎞
⎠⎟RT ln 1m

m m

A B

(6)

In eqs 4−6, ΓA and ΓB are the surface excess concentrations of
the two surfactants and Γm, the surface excess of the mixture.
With these equations, it is possible to solve the system with
three equilibrium parameters, namely, the individual surface
excess Γi and the two adsorption constants KL,i.

47

3.2. Interfacial Dilatational Rheology. Besides being a
method to accurately obtain IFT measurements, ADSA has also
been recognized as a reliable tool for measuring interfacial
rheology.28,48 When harmonic oscillations compress and
expand the interfacial layer, relaxation processes start to take
place; hence, the interfacial tension starts to vary accordingly.
Depending on the oscillation frequency applied (ω), the
droplet’s area (A) will change from an initial value, A0, to an
amplitude value, Aa, according to49,50

ωΔ = − =A A A A tsin( )a0 (7)

Hence, the complex dynamic dilatational modulus can be
defined as the change in the interfacial tension, relative to the
change in interfacial area:

ω ω ω γ* = ′ + ″ = *
*

E E E
t

A t
( ) ( ) ( )

d ( )
d ln ( ) (8)

In eq 8, the real part characterizes the elastic properties of the
interfacial layer and the imaginary part characterizes the viscous
properties. The parts are referred as to the elastic dilatational
modulus (E′) and the viscous dilatational modulus (E″).

4. RESULTS AND DISCUSSION
In this section, aspects concerning sorption of asphaltenes and
model demulsifiers at the oil/water interface are presented.
Competitive adsorption aspects of this system are presented
first. The second and third parts involve the desorption of
surfactants from the liquid/liquid interface followed by a coaxial
capillary system based on ASDA. Desorption of asphaltenes by
two model demulsifiers is first presented and, then, desorption
of the model demulsifiers by asphaltenes. With this framework,
it is possible to elucidate new aspects of asphaltene desorption
and the performance of typical demulsifiers used in the
petroleum industry.

4.1. Adsorption of Single Compounds. The interfacial
tension at equilibrium as a function of the bulk concentration
for C6-asphaltenes, the model molecular demulsifier Brij-93 and
the model polymeric demulsifier PE8100 solutions in xylene is
presented in Figure 1. The IFT was measured via ADSA and

Figure 1. Equilibrium interfacial tension (γeq) as a function of the bulk
concentration for three components in xylene: asphaltenes, Brij-93,
and Pluronic PE8100. Experimental points measured using ADSA.
Solid lines represent the best fits to eqs 2 and 3. Equilibrium
parameters are also shown.
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the system was allowed to equilibrate for 8 h in the case of
asphaltenes, and 3 h in the case of the model demulsifiers. At
this point, the changes in IFT were <0.5 mN/m. The solid lines
represent the fit to the Langmuir EoS (eq 2). It is noteworthy
to mention that some of the assumptions of these equations do
not apply to the studied system, especially since the
asphaltene−demulsifier system shows almost irreversible
behavior.27,37,38 However, it has been previously shown51 that
the Langmuir equation is valid even for complex systems such
as polymers. It can be seen that the Langmuir isotherm
correctly describes the adsorption IFT data for asphaltenes and
the model molecular demulsifier Birj-93 (equilibrium parame-
ters are also shown). However, this is not the case for the
model polymeric demulsifier PE8100. There is a sharp decrease
of the interfacial tension in a narrow concentration range,
showing the high surface active nature of the polymeric
surfactant. Surface pressure52,53 and interfacial tension measure-
ments54,55 on different diblock and triblock PEO−PPO-
(−PEO) copolymers have reported a similar behavior, which
is evidently not Langmuir-type. This has been attributed to the
fast initial adsorption, followed by reorganization and relaxation
processes at long times, as well as multiple phase transitions
and multilayer accommodation at the interface. Models and
equations of state that describe this behavior can be found
elsewhere.56,57

Based on the work of Pauchard et al.20,31 and that of Rane et
al.,19,30 one could argue that this is not the case. In their studies
with the pendant drop technique and the Langmuir isotherm
(EoS or eqs 2 and 3), the authors conclude that there is no
reorganization of asphaltenes at the oil/water interface.
Furthermore, they conclude that no relaxation occurs at the
interface, mainly because asphaltenes adsorb as monomers,
following a two-dimensional (2D) random close packing of
polydisperse disk-type adsorption (or flat-on adsorption). Care
should be taken when using the Langmuir isotherm, mainly
because of the assumptions behind it. For example, the
Langmuir isotherm is valid for systems that are reversibly
adsorbed and asphaltenes adsorption is not reversible. There-
fore, the arguments related to long-time relaxation and changes
in conformations at the interface stated before seem more
plausible. In addition, the Langmuir isotherm only allows
adsorption of a monolayer and rules out the possibility of
multilayer formation, which is also not the case in asphaltene
adsorption. Based on the same reasoning, the Langmuir
isotherm is not valid when fitting desorption data of irreversibly
adsorbed species. In summary, what can be stated from Figure
1 is that the surface activity of the chemical species can be
ranked as follows: Pluronic PE8100 > Brij-93 > C6-asphaltenes.
4.2. Competitive Adsorption. In this section, a small set

of experiments are presented to show the behavior of the
interfacial tension when both surface active species (asphaltenes
and demulsifier) are present at the same time, thus emulating
competitive adsorption, to some extent. Figure 2 shows a plot
of the equilibrium interfacial tension as a function of
demulsifier (Brij-93) concentration for asphaltene solutions in
xylene at 0.04 g/L. The solid line represents the prediction of
the IFT by the mixture model (eqs 4−6), and the dotted lines
are the dimensionless composition at the interface (Γi/Γm).
Figures A2-1 and A2-2 of the Supporting Information show
similar plots for higher concentrations of asphaltenes. From
Figure 2, it can be seen that the competitive adsorption model
based on the Langmuir EoS, correctly predicts the behavior of
the interfacial tension for the mixtures in a broad concentration

range for both components. This is partly due to the similar
values of Γi, which comply with the main assumption of the
model: Γi,A = Γi,B = Γm. Despite the fact that this model does
not allow to infer about how the surface active materials are
adsorbed (i.e., segregation or complete mixing), it is possible to
conclude that the interface, at equilibrium, is dominated by the
model demulsifier Brij-93, even at low concentration (0.1 mM
or 0.04 g/L of Brij-93, compared to 0.04 g/L of asphaltenes).
This is consistent with the higher surface activity of Brij-93.
This model has also been previously used on a system of
proteins, which are known to unfold and exhibit relaxation after
adsorption.58

Even though the formation of a mechanically strong
asphaltene film has been postulated as the main mechanism
for water-in-crude oil emulsion stability,7,13,15,59,60 in this case,
such a formation would be difficult. If both surface active
compounds (i.e., asphaltenes and demulsifiers) are present in
the oil phase at the moment of the formation of a fresh
interface, the one that has a higher surface activity will adsorb
first, ending up with an unrealistic situation. This is the main
reason why desorption experiments that mimic chemical
demulsification strategies are of significant importance. These
experiments will yield information about how different
molecules interact with the already-formed asphaltene network
to disrupt the film.

4.3. Desorption of Asphaltenes from the Oil/Water
Interface. This section covers the study of desorption of C6-
asphaltenes from the liquid/liquid interface by means of two
model demulsifiers. The word “model” is used here only to
emphasize that the chemical structure of the substance is
known. This is not the case for commercial demulsifiers in
which blends are normally used. Brij-93 is a low-molecular-
weight amphiphilic molecule, whereas PE8100 is a high-
molecular-weight polymeric demulsifier that resembles those
used in the petroleum industry.5,13 Both are oil-soluble (low
HLB). A set of desorption experiments were performed using
the double coaxial capillary accessory previously described.
Details on how the interfacial tension is followed, as a function
of time, and the subsequent volume exchange are described in
the first part of this work.27 Essentially, with this accessory to
the ADSA device, an oil droplet (i.e., asphaltene/xylene
droplet) is formed at the tip of an outer capillary with a
pump. The droplet is allowed to equilibrate for a fixed period of

Figure 2. Equilibrium interfacial tension for a mixed interface between
asphaltenes at 0.04 g/L and Brij-93. The solid line is the prediction of
eqs 4−6, and the dotted lines the dimensionless composition at the
interface.
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time (t0 = 30 min) inside a cuvette (25 mL) that contains the
aqueous solution (pH 7 buffer). The choice of this particular
value of the equilibration time is due to several reasons. It has
been shown37,61 that asphaltenes do not reach a true
equilibrium even after ∼10 h, because of rearrangements in
the interfacial asphaltene layer. Consequently, and strictly
speaking, measurements at equilibrium would not be possible.
In addition, it was shown in the first part of this article27 that
asphaltene adsorption is, for the most part, almost irreversible
after 30 min and the degree of desorption (based on the final
values of the IFT) is constant, even after 1.5 h.
After the fixed equilibration time, the convection-driven

subphase exchange inside the well-mixed droplet begins.
Demulsifier solution is injected through an inner capillary
using a second pump at a given volumetric flow rate (Q = 0.4
μL/s). During this stage, the droplet volume is kept constant at
20 μL through simultaneous withdrawal from the outer
capillary using the first pump. Once the total predetermined
volume (V = 1000 μL) has been exchanged, pumping/
withdrawal stops and the IFT reaches a plateau value. This
process takes exactly 2500 s:

= μ
μ

=V
Q

1000 L
0.4 L/s

2500 s

It is important to note that the interfacial tension is
continuously measured during all stages of the experiments
and that experiments were performed at 22 °C by duplicate. All
the plots of the upcoming sections correspond to the average of
the duplicates and only the IFT-time lapse that corresponds to
the desorption stage is shown (2500 s). That is, from t0 until
the time at which V has been exchanged. The dimensionless
term Qt/V is used in these plots as a characteristic time,
because, as noted by Ferri et al.,18,22 it gives a correct
description of how the well-mixed droplet is influenced by the
convection-enhanced subphase exchange. Figure A1 of the
Supporting Information shows an schematic of this process;
more details of the coaxial system can be found in the first part
of this study.27

Finally, to avoid handling large amounts of experimental
points, this part of the data was smoothened with SigmaPlot
Version 12.0 (Systat Software, Inc.) using a running average
method over a period of 2 s ensuring that no vital information
was lost. This means that the resulting curves presented are a
true representation of the experimental points.
4.3.1. Desorption Driven by Brij-93. Figures 3 and 4 show

plots of the interfacial tension as a function of the
dimensionless characteristic time (Qt/V) for desorption of
asphaltenes by Brij-93 (solutions in xylene). The concentration
range goes from 10 ppm to 100 ppm for Brij-93 and
asphaltenes concentration remains at 1 g/L. In these plots,
there are three curves, corresponding to a reference experiment
(light gray line), a blank experiment (black solid line), and the
exchange experiment (dashed line). The labels of the curves are
to be interpreted as follows: the first species in the name is the
one that was allowed to adsorb for 30 min at the given
concentration. The second species, present after the plus sign
(+), corresponds to the compound that was injected
(exchanged) via the secondary pump at the given concen-
tration. Plots of intermediate and higher concentrations are
shown in the Supporting Information (Figures A3−A6).
In Figure 3, which corresponds to low concentration of

demulsifier (10 ppm), it can be seen that, for the blank
experiments, Brij-93 adsorbs relatively slowly to the interface as

the exchange progresses until the equilibrium value is reached
(γ ≈ 31 mN/m). This part is in agreement to the equilibrium
single-compound analysis (Section 4.1).
Second, the desorption of asphaltenes by xylene (light gray

line), as reported in a previous work,27 is very low. The IFT
increases from ∼25 to ∼27 mN/m, which strongly suggests the
almost irreversible nature of adsorption of asphaltenes, which is
consistent with the literature.
Third, when asphaltenes at a fixed concentration start to be

desorbed (dashed line), it is possible to see that the interfacial
tension has a tendency to plateau. The final value, once the
pumping/withdrawal stops (Qt/V = 50), is ∼27 mN/m. The
value is lower than the reference experiment (∼30 mN/m) and
the single-compound adsorption of Brij-93 (∼31 mN/m). This
suggests the presence of a mixed interface and a certain degree
of interaction between the model molecular demulsifier and the
asphaltene network. This also suggests that this particular
demulsifier at this concentration is not enough to displace/
replace the asphaltenes from the liquid/liquid interface;

Figure 3. Interfacial tension as a function of the dimensionless
characteristic time for desorption (Qt/V) of asphaltenes at 1 g/L by
Brij-93 (solutions in xylene) at 10 ppm. The experimental conditions
for the experiments were as follows: exchange flow rate, Q = 0.4 μL/s;
total predetermined volume, V = 1000 μL.

Figure 4. Interfacial tension as a function of the dimensionless
characteristic time for desorption (Qt/V) of asphaltenes at 1 g/L by
Brij-93 (solutions in xylene) at 100 ppm. The experimental conditions
for the experiments were as follows: exchange flow rate, Q = 0.4 μL/s;
total predetermined volume, V = 1000 μL.
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therefore, a low degree of coalescence would be expected in real
systems (i.e., crude oil emulsions).
At this point, it is important to mention that the increase of

the IFT after desorption of all experiments must be treated
cautiously, because of the physical limits between the Gibbs
surface and the multilayers formed. As mentioned previously,
the reported values on IFT during desorption correspond to
the desorption of the first adsorbed layer, that is, to the species
directly adsorbed onto the interface. The subsequent layers, if
present, will most likely not influence the IFT in the same way,
thus their desorption might not cause a change in the measured
IFT. However, when discussing interfacial dilatational rheology,
multilayer formation seems to be largely responsible for film
stability and elasticity.
As the concentration of demulsifier increases (Figure 4),

interactions between adsorbed asphaltenes and Brij-93
molecules are clearly visible at short desorption times. This is
because the interfacial tension of the asphaltenes−Brij-93
system is lower than the asphaltenes−xylene and xylene−Brij-
93 systems. The behavior just described could be attributed to
the formation of complexes that are more surface active than
the compounds alone. These complex-like structures could be
the result of interactions between the alkyl chains that stick out
of the asphaltene nanoaggregates (in agreement with the Yen−
Mullins model62,63) and clusters with the active spots of the
demulsifier molecule. Interactions between functional groups
from both species could also enhance this behavior. At longer
times, the interfacial tension value corresponding to adsorption
of Brij-93 as a single compound reaches a similar value to that
of the asphaltenes−Brij-93 system. This indicates that the
interface is entirely composed of Brij-93 and all the asphaltenes
have been removed. It is important to mention that reaching
similar values of IFT could be purely coincidental and other
conclusions could be drawn. For instance, as previously shown
by Hunter et al.,58 each species might occupy a different
available site at the interface. This means that both adsorbing
compounds could contribute to the reduction (and final value)
of the interfacial tension. However, as it will be seen, interfacial
dilatational rheology results show unambiguously that this is
not the case.
In Figure 4, which corresponds to a demulsifier concen-

tration of 100 ppm, after ∼70% of the predetermined volume
has been exchanged or at Qt/V = 35, the interfacial tension of
the mixed interface is the same as that of single Brij-93. The
effect is even clearer when the concentration goes up to 500
ppm. Figure A6 shows that even when a low portion of the
predetermined volume has been exchanged (Qt/V ≈ 10), the
liquid/liquid interface is dominated by the model molecular
demulsifier. The curves corresponding to the blank experiments
and desorption of asphaltenes overlap, suggesting that the
composition at the interface is the same. Because of the fast
desorption of asphaltenes at high concentration of Brij-93, it is
troublesome to determine the presence of interactions at the
interface.
The evolution of the elasticity of the oil/water interface and

the mechanically strong film of asphaltenes was determined
through interfacial dilatational rheology measurements after the
predetermined volume (V = 1000 μL) was exchanged at the
fixed flow rate (0.4 μL/s) (that is, after 2500 s). Figure 5 shows
the values of the elastic dilatational modulus, E′ [mN/m], for
the desorption experiments just described. These experiments
were carried out automatically after the predetermined volume
was exchanged (that is, after 2500 s). In addition, a plateau in

the IFT was observed. A frequency sweep from 0.01 Hz to 0.1
Hz was performed with an amplitude of 15%. The values
reported correspond to the average at 0.02 Hz. This particular
value for the frequency was chosen based on the same trends
observed for the other frequencies. From this figure, one can
first note the presence of the strong film that was formed after
the equilibration time. The highest value of the plot (∼14.3
mN/m), which corresponds to the desorption of asphaltenes by
pure solvent (xylene), coupled with the fact that asphaltenes are
almost irreversibly adsorbed at the interface,27 corroborate the
high elasticity of such a film.
Second, comparing the blank experiments (solid black lines)

to the desorption of asphaltenes by the demulsifier (dashed
black lines), the formation of a mixed interface between
asphaltenes and Brij-93 can be seen. From 10 ppm to 100 ppm
of Brij-93, the elastic modulus exhibits a monotonic decrease
until similar values are reached. These values are intermediate
between those obtained by desorption of single components,
which suggests the presence of both components at the
interface.
From 100 ppm of demulsifier, the values of the blank

experiments compared to the mixed system are exactly the
same (∼8 mN/m); therefore, it can be concluded that the
interface is composed of Brij-93 only and the asphaltene film is
no longer present.
Figures 3−5 (and Figures A3−A6) show results that can

explain the removal of asphaltenes from the interface. Indeed, it
was seen in a previous study27 that asphaltenes are almost
irreversibly adsorbed at the liquid/liquid interface, which is in
agreement with the literature. The results of this study show
that the displacement of asphaltenes from the oil/water
interface starts with interactions between them and Brij-93
that, as a consequence, have the formation of structures that are
more surface active than the components by themselves. This
process is followed by desorption of asphaltenes and the
subsequent adsorption of Brij-93. Complete desorption of
asphaltenes is reached when a 100 ppm solution of Brij-93 is
injected. At lower concentrations, a mixed interface is
systematically obtained at the end of the exchange experiments.
This concentration corresponds to an interfacial tension value

Figure 5. Elastic dilational modulus taken at 0.02 Hz for asphaltenes at
1 g/L desorbed by Brij-93 (solutions in xylene) from 10 ppm to 500
ppm. The modulus was measured after the predetermined volume
(1000 μL) was exchanged (that is, automatically after 2500 s). Blank
experiments labeled as “Xylene + ...” are also shown.
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of ∼24 mN/m, which, compared to the interfacial tension value
of asphaltenes at 1 g/L (∼25 mN/m), is slightly lower.
Evidently, this means that, at these concentrations, Brij-93 is
more surface active than the asphaltenes.
The novelty of these results is 2-fold. First, a complete study

of the oil/water interface through a Gibbs film that, compared
to the studies performed on Langmuir films,5,35,36 results in a
more reliable description. Second, the approach of a
simultaneous analysis of convection-induced desorption and
interfacial rheology, which are the foundation for emulsion
stability and coalescence aspects. These aspects are all in
agreement to each other. Furthermore, based on Figures 3−5,
customized dosage of demulsifier based on the characteristic
desorption time (Qt/V) could be proposed for in-field
operations. Depending on the desorption capability and
performance of a given demulsifier, an adequate demulsification
strategy can be conceived.
4.3.2. Desorption Driven by Pluronic PE8100. In this

section, similar desorption and interfacial rheology experiments
were performed using a high-molecular-weight demulsifier
(namely, PE8100). These types of polymeric demulsifiers are
commonly used in the oil industry, because of their high surface
activity and high performance at low concentrations. Based on
the isotherm presented in Figure 1, the competitive sorption of
this type of molecule is expected to be different from that of
Brij-93. These polymers have different anchor points (three
blocks), besides having some degree of polydispersity, which
reflects onto the possible interactions with other molecules
(short or long chains with different functional groups).
Figure 6 shows a plot of the interfacial tension as a function

of the dimensionless characteristic time of desorption (Qt/V)

for asphaltene solutions in xylene at 1 g/L by the polymeric
demulsifier PE8100. Only desorption (after 30 min of
equilibration time) carried out by subphase volume exchange
is shown. In this case, two conditions for demulsifier
concentration were used (that is, 0.5 ppm and 100 ppm).
These concentrations were chosen based on bottle tests. As a
reference, desorption of asphaltenes by pure solvent (empty
symbols) is also shown.
The first aspect noteworthy of Figure 6 is the analysis at a

low concentration of demulsifier. The curve corresponding to
the blank experiment (solid black line) shows a slow adsorption
at low-to-intermediate times (Qt/V ≈ 30), followed by a

plateau value (γ ≈ 34 mN/m). When asphaltenes are desorbed
by PE8100 at 0.5 ppm, the final plateau value is γ ≈ 23 mN/m.
This value is significantly lower than the reference value (γ ≈
30 mN/m), which is an indication of the strong interactions
between the demulsifier and asphaltenes at the interface.
Furthermore, negligible desorption of asphaltenes is observed.
This could be explained through the formation of complex-like
asphaltenes−PE8100 structures, in which the large polymeric
molecules anchor to the asphaltene aggregates, with some of
the free PEO chains penetrating the asphaltene film.
The second important aspect of Figure 6 is related to the

high concentration of demulsifier. It is clear from this figure
that, at 100 ppm of PE8100, the oil/water interface is
dominated entirely by the polymeric demulsifier. This polymer
rapidly replaces the adsorbed asphaltenes and reaches a plateau
value at very short times (Qt/V < 10). The fact that the curves
at high concentration of PE8100 overlap so rapidly is a clear
indication of the effectiveness in penetrating the asphaltene film
and replacing the interface of this particular demulsifier. This
effect was not observed with the previous demulsifier even at
higher concentration. The interfacial tension at equilibrium (γ
≈ 15 mN/m) value is attained after very short times. The sharp
decrease of the IFT (low amount exchanged) is an indication of
the high surface activity of PE8100. This was also observed in
the single-component isotherm presented in Figure 1.
Interfacial dilatational rheology results for the pluronic

system show results similar to those of Brij-93. Figure 7 is a

plot of the elastic dilatational modulus at 0.02 Hz for the same
experiments presented in Figure 6, measured after the
predetermined volume exchange (that is, automatically after
2500 s). The small synergy observed with the IFT is also shown
here. At low concentrations of demulsifier, there is an increase
of ∼2 mN/m between the blank experiments and the
desorption of asphaltenes, which indicates that the mixed
interface exhibits a small increase in the elasticity. However, it is
clear that, at high concentrations of demulsifier, the elasticity of
the interface is significantly reduced (E′ ≈ 2.3 mN/m) and is
dominated by the demulsifier. Once again, through elasticity

Figure 6. Desorption of asphaltenes at 1 g/L by means of PE8100
(dashed lines). Blank experiments (solid lines), as well as the reference
experiments (empty symbols), are also shown.

Figure 7. Elastic dilational modulus at 0.02 Hz for the same
experiments presented in Figure 6. The modulus was measured after
the predetermined volume (1000 μL) was exchanged (that is,
automatically after 2500 s).
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measurements, it is possible to visualize the high efficiency of
this particular demulsifier to soften the interfacial film.
In this section, desorption and interfacial dilatational

rheology aspects of asphaltenes at the oil/water interface
were elucidated. Two chemically different demulsifiers were
used to assess their performance. This provides fundamental
knowledge for chemical demulsification strategies and
coalescence studies. These two demulsifiers showed different
behavior, mainly because of the differences in their surface
activity. In addition, the difference in molecular weight plays an
important role. In one hand, the low-molecular-weight
demulsifier, Brij-93, adsorbs slowly to the interface and the
possible complexation mechanisms seem to require longer
times. However, at the flow rate and total volume exchange
conditions tested, this demulsifier effectively desorbs asphal-
tenes from the liquid/liquid interface. On the other hand, the
high-molecular-weight demulsifier (PE8100) shows a similar
but sharper behavior. This means that less time and less
amount of this demulsifier are needed to achieve similar
degrees of desorption. The mechanisms of replacement seem to
be similar between the two model demulsifiers. It is clear that,
at short times, interactions between demulsifiers and
asphaltenes are visible for all the conditions tested, except at
100 ppm of Pluronic PE8100. However, this point represents
the fastest separation achieved in this article. The interactions
result in a surface activity that is higher, compared to single-
component analysis. These interactions and mechanisms are
perhaps the key to understanding the process of desorption and
replacement of almost-irreversibly adsorbed asphaltenes by
model demulsifiers. Weakening and softening of the interfacial
film was also made evident, which means that the two
demulsifiers are effective in desorbing the almost-irreversibly
adsorbed asphaltenes.
The next step is to assess the ability of the asphaltene

(asphaltene nanoaggregates and clusters) to desorb the model
demulsifiers. Generally speaking, surfactants do not have a
tendency to form mechanically strong films at the interface;
therefore, the stabilization mechanisms are related to interfacial
tension gradients and steric hindrance, and are partially related
to irreversible adsorption. Similarly, chemical demulsifiers
exhibit these properties as well; therefore, it is of significant
relevance to evaluate the performance of asphaltenes under
desorbing conditions. In the following section, these topics are
discussed.
4.4. Desorption of Model Demulsifiers from the Oil/

Water Interface. This section covers desorption experiments
performed on model demulsifier-covered droplets. The
experimental conditions are similar to those of the previous
sections, except that, in this case, asphaltene solutions are being
pumped via the inner capillary. The Brij-93/PE8100 droplet is
allowed to equilibrate for t0 = 30 min inside a cuvette (25 mL)
that contains the aqueous pH 7 buffer solution. After this time,
asphaltene solution is injected through an inner capillary using
a second pump at a given volumetric flow rate (Q = 0.4 μL/s).
During this stage, the droplet volume was kept constant at 20
μL through simultaneous withdrawal from the outer capillary
using the first pump. Once the total predetermined volume (V
= 1000 μL) has been exchanged, pumping/withdrawal stops
and the IFT reaches a plateau value.
4.4.1. Desorption of Brij-93 from the Oil/Water Interface.

Figure 8 shows a plot of the interfacial tension as a function of
the dimensionless desorption characteristic time for Brij-93
solutions at two different concentrations, namely, 100 and 2500

ppm. The latter concentration was chosen to accurately
compare two demulsifiers that generate similar values in
interfacial tension reduction (i.e., down to ∼15 mN/m).
Desorption is done by asphaltenes at 1 g/L. As a reference
(empty symbols), exchange of xylene and asphaltenes is also
shown.
First, it is important to note that, as observed in the first part

of this work,27 Brij-93 shows partial desorption from the liquid/
liquid interface (solid black line). Second, comparing the blank
curve (solid black line) and the desorption curve (dashed black
line), it is clear that asphaltenes can effectively desorb this
model demulsifier at low concentrations. Furthermore, the
asphaltenes are subsequently adsorbed at the interface. This can
be seen at the region where the reference (empty symbols)
overlaps and collapses at low times (Qt/V > 10). This also
means that, after the exchange, there is an asphaltene-
dominated interface. No signs of interaction or synergy are
observed between the adsorbed species.
At high concentrations of demulsifier, Brij-93 exhibits a

similar degree of desorption by pure solvent (solid light gray
curve). However, when asphaltenes are injected (dashed light
gray curve), it can be seen that they are not able to provide the
same level of desorption. Actually, there seems to be a small
synergy effect, given that the latter curve is always below the
former.
Interfacial dilatational rheology results, presented in Figure

A7 in the Supporting Information, show a similar trend. At low
concentrations of demulsifier, the elastic modulus reaches the
same value as that of the reference experiment. Similarly, the
small synergy effect is also present at high concentrations of
demulsifier, given that the elastic modulus reaches a lower
value, compared to the reference.
The desorbing performance of asphaltenes was tested in this

section. This issue is of significance to the oil industry during
chemical demulsification, mainly because of the possibility of
re-emulsification or inverse effects caused by demulsifier
overdosing.12

4.4.2. Desorption of Pluronic PE8100 from the Oil/Water
Interface. Finally, Figure 9, and Figure A8 in the Supporting
Information, show the interfacial tension and interfacial

Figure 8. Interfacial tension as a function of the dimensionless
characteristic time for desorption (Qt/V) of Brij-93 by asphaltenes
(solutions in xylene) at 1 g/L. The solid lines are the blank
experiments, the dashed lines are the desorption experiments, and the
empty symbols represent the reference experiment. Experimental
conditions for the experiments: exchange flow rate, Q = 0.4 μL/s; total
predetermined volume, V = 1000 μL.
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dilatational rheology after desorption of the model polymeric
demulsifier PE8100 by asphaltenes at 1 g/L. The trends in
desorption at low and high concentration are similar to those
presented in the previous section. However, it is important to
note the differences in the concentration range for the
demulsifiers. In this case, 0.5−100 ppm of PE8100 was enough
to obtain a similar behavior, whereas in the previous case, up to
2500 ppm was needed.
In this case, at low concentrations of demulsifier (black

lines), the oil/water interface exhibits complete replacement by
asphaltenes. Asphaltenes are not able to desorb the polymeric
demulsifier at high concentration (light gray lines), because, as
seen in Figure 9, these two curves overlap at all times. The
elastic modulus shows a similar trend, which is in agreement
with the IFT results.
Two different demulsifiers were tested under convection-

enhanced desorption by asphaltenes. These demulsifiers are
chemically and structurally different. Asphaltenes at 1 g/L have
the ability to desorb model demulsifiers from the liquid/liquid
interface at low concentration. This replacement occurs with no
visible interactions between the compounds. When the reverse
condition is considered, that is, desorption of asphaltenes by
model demulsifiers, the opposite is true. At high concentrations
of demulsifier, when the interfacial tension values after 30 min
of equilibration time reach ∼15 mN/m, significant differences
are observed between Brij-93 and PE8100. While Brij-93 is
partly desorbed by asphaltenes (Figure 8), in the case of the
polymeric demulsifier, it seems that the interface remains
unaffected by them. Although desorption is present, it is not
caused by the action of asphaltenes and no interactions
between these two compounds are observable. It is important
to highlight the fact that these effects are not only attributed to
the suppression of the interfacial tension gradient but also to
the large molecular weight difference. Table 1 summarizes the
main conclusions of this work comparing the interfacial tension
values before desorption experiments.

5. CONCLUSIONS
In this work, competitive adsorption and desorption aspects of
mixed interfaces were studied. A model systemnamely, C6-

asphaltenes and two chemically and structurally different
demulsifierswere chosen to emulate the behavior of the
oil/water interface when chemical demulsification processes
occur during crude oil production. At these stages, water-in-
crude oil emulsions are already formed. Furthermore, interfacial
dilatational rheology was used to couple these results with
features related to the elasticity of the film formed at the liquid/
liquid interface. Asphaltene desorption has been traditionally
studied at the solid/air or liquid/air interfaces through
Langmuir trough, Langmuir−Blodgett films (LB), Brewster
angle microscopy (BAM),4,13,15,64−66 and quartz crystal micro-
balance technique.4,67,68 In this work, a study at the liquid/
liquid interface is proposed. This approach provides a
framework that allows further understanding of the different
phenomena that occur when demulsifiers interact with
indigenous crude oil surfactants during water separation.
A first semiqualitative approach on the surface activity of the

two different demulsifiersnamely, Brij-93 and Pluronic
PE8100was observed in Figure 1. The affinity ranking was
as follows: Pluronic PE8100 > Brij-93 > C6-asphaltenes. Using a
noninteraction model based on the Langmuir EoS (eqs 4−6), it
was observed that the model demulsifier Brij-93 has a tendency
to dominate the oil/water interface. The effect of PE8100 is
more evident as lower concentrations are needed.
In the second part of this work, the desorption of asphaltenes

from the oil/water interface by means of two model

Figure 9. Interfacial tension, as a function of the dimensionless
characteristic time for desorption (Qt/V) of PE8100 by asphaltenes
(solutions in xylene) at 1 g/L. The solid lines are the blank
experiments, the dashed lines are the desorption experiments, and the
empty symbols represent the reference experiment. Experimental
conditions for the experiments: exchange flow rate, Q = 0.4 μL/s; total
predetermined volume, V = 1000 μL.

Table 1. Summary of the Main Results of This Work
Comparing Surface Activitya

Asphaltene Desorption

demulsifier/
concentration

γDemulsifier vs
γAsphaltenes
(30 min)b conclusions

Brij-93
10 ppm > interactions; partial desorption of

asphaltenes
100 ppm ≈ interactions; almost complete

replacement
2500 ppm < no interactions visible; complete

replacement by demulsifier
PE8100

0.5 ppm > strong interactions and synergy; no
desorption of asphaltenes

100 ppm < no interactions visible; complete
replacement by demulsifier

Demulsifier Desorption

demulsifier/
concentration

γAsphaltenes vs
γDemulsifier
(30 min)b conclusions

Brij-93
100 ppm ≈ asphaltenes desorb demulsifier; no

interactions visible
2500 ppm > desorption or interactions

PE8100
0.5 ppm < asphaltenes desorb demulsifier; no

interactions visible
100 ppm > asphaltenes do not desorb

demulsifier; no interactions visible
aThe upper part of the table corresponds to the desorption of
asphaltenes by two different demulsifiers from the oil/water interface.
The lower part of the table corresponds to the desorption of two
demulsifiers by asphaltenes. bComparison between the interfacial
tension of asphaltenes and the demulsifiers used in this work after 30
min of equilibration time. Desorption experiments were performed
after this time.
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demulsifiers was studied. Interfacial tension measurements,
coupled with interfacial dilatational rheology measurements,
showed that there is a degree of interaction between Brij-93
and the asphaltenes at the oil/water interface prior to
replacement, depending on the demulsifier concentration.
Similarly, when a polymeric demulsifier (namely, Pluronic
PE8100) was used, sharper behavior was observed. This means
that the replacement of asphaltenes takes place at lower
concentrations and it occurs more rapidly. However, the
mechanism seems to be similar to that observed when using the
molecular model demulsifier Brij-93. This behavior is attributed
not only to the high differences in surface activity of the
demulsifiers (Figure 1) but also to the differences in chemical
structure and molecular weight. In both cases, formation of
complex-like structures seems to be the most plausible
mechanism prior to desorption. . These complex-like structures
could be enhanced by the alkyl chains that stick out of the
asphaltene nanoaggregates and clusters, according to the Yen−
Mullins model.62,63 Interactions between functional groups
from both species could also promote this phenomenon.
Analogously, in the final part of this article, desorption of the

two model demulsifiers by means of asphaltenes was studied.
Results showed that asphaltenes can effectively desorb both
demulsifiers at low concentration (with some interactions
present) but not at high concentrations, especially in the case of
the polymeric demulsifier PE8100. This is not only attributed
to the interfacial tension gradient but also to the poor ability of
asphaltene aggregates to reach the liquid/liquid interface and
form complexes.
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(1) Sjöblom, J.; Øye, G.; Glomm, W.; Hannisdal, A.; Knag, M.;
Brandal, Ø.; Ese, M.; Hemmingsen, P.; Havre, T. E.; Oschmann, H.-J.;
Kallevik, H. Modern characterization techniques for crude oils, their
emulsions, and functionalized surfaces. In Emulsions and Emulsion
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Abstract 

In this article, the sorption and rheological properties of an acidic polyaromatic asphaltene 

model compound (C5PeC11) are determined. The results show that C5PeC11 exhibits the 

type of pH-dependent surface activity and interfacial shear rheology observed in 

C6-asphaltenes with a decrease in the interfacial tension concomitant to the elastic modulus 

when the pH increases. Surface pressure-area (Π-A) isotherms show evidence of aggregation 

behavior and π-π stacking at both the air/water and oil/water interfaces. Similarly, 

interactions between adsorbed C5PeC11 compounds are evidenced through desorption 

experiments at the water/oil interface. Indeed adsorption is reversible contrary to indigenous 

asphaltenes, but desorption is slower than for non-interacting species. Shear and dilatational 

rheology show that C5PeC11 forms a predominantly elastic film both at the liquid/air and the 

liquid/liquid interface. Furthermore, a soft glassy rheology model (SGR) fits the data 

obtained at the liquid/liquid interface. It is shown that the effective noise temperature 

determined from the SGR model for C5PeC11 is higher than for indigenous asphaltenes 

measured under similar conditions. Finally, from a colloidal and rheological standpoint, the 

results highlight the importance of adequately addressing the distinction between the material 

functions and true elasticity extracted from a shear measurement and the apparent elasticity 

measured in dilatational-pendant drop set-ups. 

1. Introduction 

Asphaltenes are commonly defined as the fraction of petroleum insoluble in n-alkanes (such 

as heptane or hexane) but soluble in aromatic compounds (such as toluene or xylene)
1
. These 

surface active polar compounds are largely responsible for problems during production, 

transport and refining of crude oil resulting in higher production costs
2
. For example, 

asphaltenes can precipitate and deposit in the reservoirs, wells, pipes and other equipment
3, 4, 

5
. They can also stabilize water-in-oil emulsions

6
 (W/O) by forming a solid-like interface , or 

“skin” 
7, 8

 , at the oil/water interface that hinders coalescence and retards film drainage
9, 10, 11

. 

This “skin” is due to  interfacial asphaltene-crowding
12

 enhanced by self-association at the 

liquid-liquid interface and even the build-up of multilayers
13

. The properties of this interfacial 

film need to be understood and characterized and interfacial rheology is an adequate tool to 

fulfill such goal.  

Shear, dilatational, and mix-field flow types can be obtained in interfacial rheological 

techniques. In simple shear experiments, flow is induced at a constant area, while in dilation 



the area of the interface is changed. Studies on interfacial shear rheology
14, 15

 using a 

biconical geometry showed that asphaltenes form films of high elasticity after several hours 

of aging. Furthermore, a concentration threshold range of 2-5 g/L was found for the 

formation of the mechanically strong film at the oil/water interface after aging. Samaniuk et 

al.
12

 recently studied asphaltenes at the hexadecane/water interface using a double wall-ring 

(DWR) geometry confirming the effects of concentration and aging. They also concluded 

that: (i) asphaltene films at the oil/water interface behave as soft-glassy materials, (ii) the 

crowding of the interface plays a crucial role and, (iii) the concentration/frequency-dependent 

data is in agreement with a soft-glassy rheology (SGR) model. Using a similar geometry, 

Harbottle et al.
16

 showed that the microstructure of the asphaltene network film at the 

oil/water interface can be liquid-like or solid-like depending on the initial bulk concentration, 

aging time of the interface and solvent aromaticity. The transition states could be related to 

the shear yield stress which might act as an energy barrier against drop coalescence. 

The literature regarding interfacial dilatational rheological studies of asphaltene films at the 

liquid-liquid interface is extensive
17, 18, 19, 20, 21, 22

. It is imperative to emphasize that in such 

experiments, depending on the dominating phenomena, the nature of the measured quantities 

will vary. For instance, at interfaces largely dominated by interfacial tension, the influence of 

the exchange with the bulk is dominant (adsorption/desorption dynamics), whereas extra 

mechanical stresses are essentially negligible; this is often the case for low molecular weight 

surfactants. At interfaces dominated by extra stresses, as in the case of particle monolayers or 

asphaltenes that clearly exhibit a skin, the nature of the elastic response is fundamentally 

different. Hence, when discussing the moduli extracted from dilatational experiments it 

should be noted that these may not always be true material functions.  

Literature studies report a behavior that is somewhat general to asphaltenes. First, the 

apparent elastic dilatational modulus (E’) increases with time and concentration. This is an 

indication of the kinetic build-up of the film, crowding and possible cross-linking of 

asphaltenes at the interface. Second, a maximum in E’ with concentration is observed, the 

location will depend on the conditions of the experiment and asphaltene origin
18, 20, 21, 22

. And 

third, if the aged interface is contracted, a phenomenon described as crumpling was 

observed
20

. 

The exchange of surfactant between the bulk and the interface and its effects on the apparent 

elastic dilatational modulus are typically described using the Lucassen van den Tempel 



(LvdT) approach
23

 which assumes that the adsorption at the interface is diffusion-controlled 

and reversible. The application of the LvdT model to asphaltenes has, however, been less 

successful. Two explanations have been so far put forward: first, asphaltenes adsorb 

irreversibly to oil/water interfaces and give rise to an extra mechanical stress at the 

interface
12

. Second, the diffusion coefficient tends to be low and to vary with concentration
18

. 

From the broad definition of asphaltenes as a solubility class, and therefore polydisperse, it 

follows that they are heterogeneous in chemical composition. The different functionalities, 

molecular weights, and molecular architectures make it challenging to obtain a complete 

understanding of their properties. Sjöblom et al
24

. indicated two main strategies that can be 

used to tackle this issue: fractionation of the complete asphaltene content into sub-fractions of 

reduced complexity (but still polydisperse
25, 26

 and different among reservoirs
27

) or synthesis 

of model molecules of defined chemical structure that mimic the average chemical structure 

of indigenous asphaltenes.. 

The latter strategy has received special attention during the last ten years as a fundamental 

approach to understand the physical behavior of indigenous asphaltenes in terms of 

aggregation, adsorption, desorption and other interfacial properties by establishing 

similarities and differences through various experiments and simulations. The “Archipelago” 

and “Continental” models for asphaltenes have been traditionally used to attempt a 

description of a general structure for asphaltenes. In the former, several aromatic sections are 

attached to each other via alkyl chains. In the latter, polycyclic aromatic hydrocarbons 

(PAHs) form a core to which aliphatic chains are attached
28, 29

. The work of Groenzin and 

Mullins
30, 31, 32

 shows strong evidence that points towards the validity of the continental over 

the archipelago model for asphaltenes. 

Numerous works on model compounds have been presented following primarily the 

continental model with little studies based on the Archipelago model. A recent review
24

 on 

the up-to-date literature highlighted a number of these studies. Akbarzadeh et al.
33

 studied the 

self-association properties (aggregation number and stability of aggregates in solution) of a 

series of derivatives of the four-ring component, pyrene. These properties were significantly 

different than those of the indigenous asphaltenes in similar solutions concluding that the 

pyrene-based compounds proposed lack core features that represent real systems. 

Rakotondradany et al.
34

 studied the self-association properties of a model compound based on  

alkyl hexabenzocoronenes. Their study showed that even at concentrations as high as 15 g/L 



the model compound tends to form dimers, uncharacteristic of indigenous asphaltenes. Tan et 

al studied the self-association, cracking and coking properties of archipelago pyrene-based 

model compounds
35, 36

. The authors found that the compounds self-associate due to π-π 

stacking interactions involving the pyrene rings and the bypiridine spacer and that the model 

compounds in the presence of heteroatoms exhibited coke yields comparable to hydrocarbon 

compounds. Molecular dynamic simulations (MDS) performed by S. Bhattacharjee and J. 

Masliyah
37, 38

 using different model compounds (archipelago, continental and anionic 

continental) showed that molecules with charged terminal groups are tethered to the toluene-

water interface whereas uncharged compounds do not. Additionally, they found that the 

stacked polyaromatic rings are perpendicularly inclined to the same interface.  

The research by Sjöblom and coworkers
39, 40

 on model compounds consisting of a 

polyaromatic core (perylene-based) with a fixed hydrophobic part in one side and branched 

alkyl chains of varying end-groups (acidic-end or aliphatic-end) in the other, showed that 

several features of indigenous asphaltenes can be mimicked. In particular, the model 

compound C5Pe exhibited similar solubility in heptane-toluene mixtures and similar IFT 

curve compared to indigenous asphaltenes. Studies at the water-air interface using Brewster 

Angle Microscopy (BAM) suggest that the polar groups adopt a head-on conformation with a 

face-to-face packing of the core. That is, the polar head (acidic group) prefers the aqueous 

phase and the polyaromatic cores stack normal to the surface.  

A better and thorough understanding of sorption and rheological aspects of asphaltenes is 

needed. Hence in this work, a study based on asphaltene model compounds at the 

liquid/liquid and liquid/air interface is proposed and their properties whether similar or 

different are compared to the behavior of indigenous asphaltenes described in the literature. A 

series of pendant drop and shear rheology experiments are performed not only to achieve this 

goal but also to serve as an example of the importance of distinguishing between processes 

driven by surface/interfacial tension (adsorption/ desorption) that give rise to an apparent 

elasticity and processes dominated by extra deviatoric stresses that provide true linear 

viscoelastic moduli, material functions and elasticity in the rigorous sense. Although the 

system chosen for this work is aimed to establish more realistic model systems that resemble 

indigenous asphaltenes, the results can be extended to other colloidal systems.  

2. Experimental section 

Solvents and chemicals. 



12-tricosanone (97%), used as the starter for model compound synthesis and n-heptane (for 

analysis Emsure Reag. PhEur) were purchased from VWR-Norway. Toluene (99.8%) 

anhydrous used to prepare all the model compound solutions and other chemicals necessary 

for synthesis were purchased from Sigma-Aldrich. All chemicals were used as received with 

no further purification.    

Asphaltene model compounds. 

Two asphaltene model compounds were used for this work. The first one, named C5PeC11, 

has an acidic functionality. The second one, named BisAC11 has little to no interfacial 

activity. C5PeC11 was synthetized by following the 4-step procedure described in Nordgård 

et al.
40

 and Holman et al.
41

 and by replacing 7-tridecanone with 12-tricosanone. 12-

tricosanone is first treated with ammonium acetate and sodium cyanoborohydride in 

isopropyl alcohol to convert it into its corresponding amine. The amine is then reacted with 

perylene-3,4,9,10-tetracarboxylicdianhydride in the presence of imidazole. This step yields 

BisAC11 as an intermediate product. BisAC11 is further treated with potassium hydroxide in 

tert-butanol to obtain a monosubstituted intermediate. This compound is then reacted with 6-

aminohexanoic acid in imidazole. Fig. S1 of the supporting information provides the 

chemical structure and the molar mass of the model compounds of this study.  

Intermediate and final products were characterized by 
1
H NMR spectroscopy in CDCl3. All 

the peaks are accounted for and yield a match with the expected chemical structure; hence the 

purity of these compounds is assumed to be very good. C5PeC11 was purified by flash 

chromatography on silica gel using a methanol-chloroform mixture (0-5% in CHCl3) as 

eluent. BisAC11 was purified by contact with silica particles (Aerosil 200) for 24h to remove 

any surface active impurities. 

Water phase. The water phase for adsorption/desorption measurements and for dilatational 

rheological measurements was a buffer solution of pH 8 prepared with Mili-Q water 

(resistivity of 18.2 MΩ·cm) and 0.1M KH2PO4 adjusted with 0.1M NaOH solution. The 

water phase for the compression-expansion curves and shear rheology experiments were 

buffer solutions of pH 5 (0.2M CH3COONa∙3H2O adjusted with 0.2M CH3COOH), pH 6 

(0.1M KH2PO4 adjusted with 0.1M NaOH) and pH 8 (0.1M KH2PO4 adjusted with 0.1M 

NaOH) prepared with Mili-Q water.    

Interfacial tension, dilatational rheology and desorption measurements. 



A commercially available sessile/pendant drop tensiometer (PAT 1m, SINTERFACE 

Technologies, Berlin, Germany) was used. This instrument determines the surface/interfacial 

tension of a surfactant-covered liquid droplet (or air bubble) by recording its silhouette onto a 

CCD camera. The digital images are then analyzed and fitted to the Young-Laplace equation 

with an accuracy of ±0.1mN/m. This equation relates the curvature of a liquid drop and the 

surface/interfacial tension. The built-in software produces a series of theoretical curves by 

changing the values of the surface/interfacial tension. The curve that yields the best fit to the 

experimental points is then used to report the measured surface/interfacial tension. For this 

procedure, only the densities of the oil and aqueous phase are needed. This technique is also 

known as axisymmetric drop shape analysis (ADSA). It is important to note that for systems 

dominated by surface/interfacial tension (adsorption/desorption) as, for instance, the present 

study, the contributions of extra mechanical stresses are negligible thus the Young-Laplace 

equation remains valid. However, for systems in which these deviatoric stresses are not 

negligible (for example asphaltenes that are known to form an elastic interfacial skin) the 

validity of the equation is questionable.  

Desorption experiments were performed with a previously used
42, 43

 accessory to the 

tensiometer that consists of two concentric capillary tubes (a schematic is shown in Fig. S2 of 

the supporting material). Material can be pumped or withdrawn independently by two 

automatic pumps. An oil droplet (i.e. C5PeC11 droplet in toluene) is formed at the tip of an 

outer capillary with one automatic pump and the droplet is allowed to equilibrate for a fixed 

period of time (𝑡0 = 30 𝑚𝑖𝑛) inside a cuvette (25 mL) that contains the aqueous solution (pH 

8 buffer). The volume of the droplet is 𝑉𝐷 = 18 µ𝐿. This particular equilibration time was 

chosen for practical reasons and because the equilibrium interfacial tension did not change 

even after 6h. After the fixed equilibration time, the convection-driven subphase exchange 

inside the well-mixed droplet begins. The subject solution (toluene, HepTol or BisAC11) is 

injected through an inner capillary the second pump at a given volumetric flow rate (𝑄 =

0.4 µ𝐿/𝑠). During this stage, the droplet volume is kept constant at 𝑉𝐷 = 18 µ𝐿 through 

simultaneous withdrawal from the outer capillary using the first pump and video feedback 

control. Once the total predetermined volume (𝑉𝐸 = 1000 µ𝐿) has been exchanged, 

pumping/withdrawal stops. The IFT then reaches a plateau value. This process takes exactly 

𝑉𝐸/𝑄 = (1000µ𝐿)/(0.4µ𝐿/𝑠) = 2500𝑠. The interfacial tension is continuously measured 

during all stages of the experiments. The plots regarding desorption experiments correspond 

to the average of two duplicates and only the IFT-time lapse of the desorption stage is shown 



(2500s, that is from 𝑡0 until 𝑉𝐸 has been exchanged) as a function of the characteristic time 

(𝑄(𝑡′ − 𝑡0)/𝑉𝐷 or simply 𝑄𝑡/𝑉𝐷) where 𝑡′ corresponds to the total time. . To avoid handling 

a large number of experimental points, a 2 s moving average was used. All experiments were 

performed by duplicate at 22°C and the experimental conditions were set up based on our 

previous studies
42, 43

. Additional details on the technique can be found elsewhere
44, 45

. 

Interfacial dilatational rheology measurements were automatically started after the fixed 

equilibration time of 30min. Once again, the volume during the oscillations is controlled by 

the software via constant feedback.  Five cycles at five different frequencies were performed 

using an amplitude of 7% (20 ± 1.4 µL). The five frequencies were 0.01, 0.013, 0.02, 0.04 

and 0.1 Hz.    

Langmuir trough experiments 

Compression-expansion curves performed at a liquid-air interface and a liquid-liquid 

interface were also completed in Langmuir troughs (KSV Instruments Ltd, Finland) with 

dimensions of 75 x 330 mm and 65 x 260 mm, respectively. Experiments were performed at 

22
o
C, and a platinum Wilhelmy plate with a perimeter of 39.44 mm attached to a Wilhelmy 

balance (KSV Instruments Ltd.) was used to measure surface tension. All compression-

expansion experiments were performed at a constant rate of barrier movement of 3 mm/min.  

Interfacial shear rheology.  

Shear rheological measurements were performed with a double wall ring (DWR) geometry
46

 

attached to a Discovery HR-3 rheometer (TA Instruments). The ring is 7 cm in diameter with 

a thickness of 1mm and was produced with additive manufacturing (Layerwise, Leuven) 

from titanium (Ti6Al4V Grade 5). The cross section of the ring is square and rotated 45 

degrees such that two corners sit in the interfacial plane and pin the interface to the geometry. 

There are 3 evenly spaced openings in the ring to facilitate a homogeneous distribution of 

interfacial material inside and outside the confines of the ring geometry
47

. The cup geometry 

is Teflon and can be placed within the Langmuir trough. The cup has two openings to allow 

the interfacial coverage to come to equilibrium inside and outside the cup perimeter, and it 

has a 0.5 mm deep step on the inside of the cup to pin a horizontal interface. The distance 

between the inner and outer walls at the point of pinning is 8 mm. Surface shear viscosities of 

approximately 10
-5

 Pa.s.m can be resolved with this setup and this geometry. Since these 

experiments are performed at constant area and with well-defined kinematics, extra stresses 



originate solely from the deformation of interfacial structure and can be related to proper 

material functions. 

3. Theory 

Theoretical considerations can be divided in three stages: (1) interfacial tension data (2) 

Apparent interfacial dilatational elasticity and apparent elastic modulus modeled using the 

approach proposed by Lucassen-van den Tempel
23

 and (3) extra stresses probed by interfacial 

shear rheology and the soft glassy rheology model (SGR)
48

.  

Langmuir Isotherm. 

Equation (1), is a two parameter equation which assumes that there are no interactions 

between the adsorbed species and that the molecules are reversibly adsorbed as a monolayer. 

The analogous equation of state (2) is known as the Szyszkowski equation, as reported by 

Chang and Franses
49

.  

𝛤 = 𝛤∞ (
𝐾𝐿𝑐

1 + 𝐾𝐿𝑐
) 

(1) 

 

𝜋 = 𝑛𝑅𝑇𝛤∞𝐿𝑛(1 + 𝐾𝐿𝑐) (2) 

 

In these equations, 𝛤 is the surface coverage, Γ∞ is the surface excess at the saturation point, 

KL is commonly known as the adsorption equilibrium constant, π is the difference in 

interfacial/surface tension between a freshly formed interface/surface and the value at a given 

concentration of surface active species, c is the bulk concentration and n is a parameter that 

accounts for the adsorption of counter-ions. In this case this parameter is equal to one
49

. 

A desorption model based on equations (1) and (2) was established by Svitova et al.
50

 for the 

convective-type of flow present in a coaxial capillary. They proposed equation (3) to be used 

in equation (2) and successfully described desorption of non-interacting and reversibly 

adsorbed species under convection flow. Pradilla et al.
42

 used this model to successfully 

describe desorption of simple surfactants at the liquid-liquid and liquid-air interface. 

𝐶 = 𝐶0𝑒𝑥𝑝(−𝑄𝑡/𝑉𝐷) (3) 

 



In this equation, 𝐶 is the evolution of the concentration inside the drop during desorption, 𝐶0 

is the initial bulk concentration, 𝑄 is the volumetric flow rate, 𝑡 is the time of the desorption 

stage and 𝑉𝐷 the volume of the droplet.     

Interfacial dilatational rheology.  

Axisymetrical drop shape analysis (ADSA) has been recognized as a reliable method for 

measuring adsorption/desorption dynamics and the compressibility of the interface
51, 52

, and 

provided that the contributions of extra mechanical stresses are negligible, it is an accurate 

method for interfacial tension experiments.  

The principle behind the oscillating drop is that the interfacial tension varies when the area 

(A) of a droplet is changed in an oscillatory manner at a given frequency (ω) from an initial 

(𝐴0) to a value (𝐴𝑎) following equation (4)
53

.  

∆𝐴 = 𝐴 − 𝐴0 = 𝐴𝑎 sin(𝜔𝑡) (4) 

 

The complex dynamic apparent dilatational modulus (𝐸∗) is then typically defined as the 

Fourier transform (ℱ) of the change in interfacial tension (γ) relative to the change in 

interfacial area via equation (5)
54

. The complex modulus can also be interpreted by a real and 

an imaginary part. The real part characterizes the elastic properties of the interfacial layer and 

the imaginary part characterizes the viscous properties. These parts are referred as to the 

apparent elastic dilatational modulus 𝐸′ and the apparent viscous dilatational modulus 𝐸′′. 

𝐸∗(𝜔) =
ℱ{∆𝛾(𝑡)}

ℱ{∆ln (𝐴(𝑡))}
= 𝐸′(𝜔) + 𝑖𝐸′′(𝜔) (5) 

 

Lucassen and van den Tempel
23

 proposed a model for the variation of the elastic and viscous 

dilatational moduli as a function of the concentration (c) which is only valid for flat surfaces. 

The main underlying assumption of this model is that the adsorption is diffusion-controlled. 

In this model, the elastic and viscous components of the complex modulus depend on the 

independent contributions of the so called Gibbs elasticity (𝐸0 = 𝛤(𝑑𝛾/𝑑𝛤)) which 

characterizes the compressibility and a parameter that accounts for diffusion defined as: 

𝛺 = √𝐷/2𝜔(𝑑𝑐/𝑑𝛤) in which (D) is the diffusion coefficient. The apparent elastic and 

viscous dilatational moduli are therefore calculated using equations (6) and (7).  



𝐸′(𝜔) = 𝐸0

1 + 𝛺

1 + 2𝛺 + 2𝛺2
 

 

(6) 

 

𝐸′′(𝜔) = 𝐸0

𝛺

1 + 2𝛺 + 2𝛺2
 (7) 

 

Equation (6) and Equation (7) provide apparent moduli and not true material functions. It has 

been recently shown
54

 how the curvature of the droplets will influence the measured apparent 

moduli. This is due to its impact on mass transport: unlike a planar surface in which the bulk 

concentration can be regarded as constant, in the case of a droplet surfactant depletion 

becomes relevant. Hence changes in the area will alter the lengthscale over which diffusion 

occurs. The authors also propose that this transition from a planar transport timescale to the 

faster spherical timescale can be used to establish the dominant transport mechanism for the 

measurement being made. Additionally, for systems in which extra stresses are significant, 

these effects are unaccounted for in the classical analysis for pendant drop experiments and 

dilatational rheology measurements
53

. 

Interfacial shear rheology.  

A model which describes the rheology of crowded systems in which rearrangement of 

internal structure is difficult is the soft glassy rheology (SGR) model
48

. This empirical model 

predicts rheological behavior of soft materials with meta-stability and structural disorder at 

high concentrations. A soft glassy material has time and frequency dependent viscoelastic 

properties, and the SGR describes this dependence in terms of an effective noise temperature. 

This effective noise temperature is indicative of the ability of a disordered, metastable 

microstructure to rearrange, and depends on internal microstructure and flow history. Thus, 

small values of effective noise temperature would indicate a highly arrested system, while 

large values indicate a system that will readily flow. For an effective noise temperature with a 

value between one and threethe SGR model predicts
48

: 

𝐺′ ∝  𝜔𝑥−1  for  1 < 𝑥 < 3   (8) 

 

𝐺′′ ∝  𝜔𝑥−1 for  1 < 𝑥 < 2 (9) 

 

where  𝑥 is the effective noise temperature, 𝜔  is the frequency, and  𝐺′ and  𝐺′′ are the storage 

and loss moduli respectively. For an effective noise temperature between one and two the 



model predicts a viscoelastic response with shear-thinning behavior and the same scaling of  

G ’ and G ’’ with 𝜔. An effective noise temperature less than one indicates a glassy system 

with arrested dynamics 
48

. The SGR model has been used to describe interfacial rheological 

properties in polymers at an air/water interface 
55

, rough carbon black particles at a water/n-

octane interface 
56

, and indigenous asphaltenes at a water/hexadecane interface 
12

. 

 

4. Results and discussion 

4.1 Adsorption and desorption dynamics.  

Adsorption isotherm. Before determining the adsorption isotherm of C5PeC11, the 

influence of the pH on the equilibrium (30 min) interfacial tension at a fixed concentration 

(0.05mM) was assessed. This was done not only to show the influence of the acidic 

functionality of the molecule, but also to choose a suitable pH for the rest of the experiments. 

Fig. 1 shows that lower pH values do not strongly influence the equilibrium IFT. There is a 

sharp transition at pH 6, and IFT values decrease rapidly with increasing pH. At pH values 

greater than 9 it was not possible to generate a stable droplet for measurement, which 

suggests very low IFT values (<1-2 mN/m). Based on these observations, pH 8 was chosen as 

the water phase for the rest of the experiments of this work. The interesting aspect of Fig. 1 is 

that this behavior is similar to C6-asphaltene solutions in xylene at 0.1 g/L reported by 

Nenningsland et al.
22

 when compared to the neutral and basic media.   

The interfacial tension after an equilibrium time (aging) of 30 min as a function of the bulk 

concentration of C5PeC11 solutions in toluene is presented in Fig. 2. After the aging time, the 

changes in IFT were less than 0.2 mN/m, thus equilibrium was attained. The solid line 

represents the fit to the Langmuir equation of state (EoS). The equilibrium parameters 

obtained via equations (1) and (2) are also shown. The surface excess for this molecule was 

found to be Γ∞ = 2.26𝑥10−6𝑚𝑜𝑙/𝑚2 which yields a mean molecular area at maximum 

coverage of 𝑀𝑚𝑎 = 73.46 Å2/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒. Nordgård et al. 
39, 57

 measured the mean molecular 

area after adsorption onto silica particles and the limiting area (𝐴0) on a surface-pressure 

isotherm at the liquid-air interface of a similar model compound, namely C5Pe. They 

reported the values 120 and 46 Å2/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 which are consistent with a head-on 

arrangement of the molecule at the interface. Taking these values into account, this means 

that the asphaltene model compound C5PeC11 adsorbs most likely perpendicular to the 

interface with the acidic group into the water phase and the rest of the molecule into the oil 



phase. The surface-pressure isotherms of the upcoming sections will go into further details 

about the conformations at the interface. 

All the assumptions behind the Langmuir EoS are not necessarily met, especially since the 

system C5PeC11/Toluene does not exhibit complete reversibility of adsorption as it will be 

shown in later sections. However, from a semi-quantitatively point of view, the equilibrium 

parameters are of the same order of magnitude  to those obtained by Pradilla et al.
43

 for C6-

asphaltene solutions in xylene (KL = 228 𝑚3/𝑚𝑜𝑙 and Γ∞ = 9.54𝑥10−7𝑚𝑜𝑙/𝑚2) and a 

demulsifier of similar molecular weight (KL = 834 𝑚3/𝑚𝑜𝑙 and Γ∞ = 1.06𝑥10−6𝑚𝑜𝑙/𝑚2). 

These values give a semi-quantitative notion of their surface activity and are only valid as 

long as the area is kept constant. When compression/expansion occurs, the equilibrium 

parameters evidently change.       

Interfacial dilatational rheology. The influence of pH on the apparent elastic dilatational 

modulus measured after an equilibration time of 30min is also presented in Fig. 1 for two 

different frequencies. The apparent elastic modulus increases when the pH increases and 

tends to reach a plateau at high pH values. Similar results were obtained when the 

equilibration time was changed to ~6h (results not shown). This behavior was expected 

because of the acidic nature of the molecule. The important aspect of this trend is that it is 

very similar to that reported for C6-asphaltene solutions in xylene under similar conditions
22

. 

They obtained an increase of the apparent elastic dilatational modulus from ~10 to ~25 mN/m 

when the pH changed from 6 to 12 under similar experimental conditions. The values 

however are always higher for asphaltenes due to the known phenomenon of the formation of 

a mechanically robust film at the interface (skin). This could indicate that the acidic 

functional groups present in asphaltenes are largely responsible for the interfacial behavior at 

liquid-liquid interfaces
58

. 

To test the system C5PeC11/Toluene for skin formation, a series of droplet 

contraction/expansion qualitative experiments similar to those performed by Jeribi et al.
7
 

were done on C5PeC11 droplets. First, a droplet of C5PeC11 in toluene is formed at the tip of 

a capillary. Second, the droplet is aged for a fixed amount of time; in this case, 30 min. And 

third, the droplet is contracted and expanded rapidly, changing the volume up to 60% of the 

original value. In the case of asphaltene solutions in toluene reported by Jeribi et al.
7
, the 

“skin” is clearly visible as well as droplet distortion after the given aging times (crumpling). 

Additionally, after the contraction/expansion cycles, the original shape of the droplet was 



never recovered. These remarks were explained through asphaltene multilayer formation and 

the irreversibly adsorbed nature of the asphaltene rigid layer. Fig. S3 of the supporting 

material shows the contraction/expansion experiments for C5PeC11 solutions in toluene and 

there is no indication of skin formation, even after 5 consecutive cycles the shape after 

compression remained the same and the Young Laplace equation fitted it well. This does not 

mean extra stresses are absent, but it indicates that the response to dilatational deformations is 

dominated by interfacial tension and its variations. 

Fig. 3a and 3b show the evolution of the apparent elastic and viscous dilatational moduli as a 

function of the concentration of C5PeC11 solutions in toluene after an equilibration time 

(aging) of 30 min. The apparent moduli were measured at five different frequencies ranging 

from 0.01 to 0.1 Hz. These frequencies were chosen to compare the results obtained with the 

model compound to those reported in the literature for asphaltenes of different sources
18, 19, 21, 

22
. The general trend of the curves to shift towards areas of lower apparent elastic (and 

viscous) modulus as the frequency decreases. This behavior is expected because at low 

frequencies (0.01 Hz), the expanding interface is exposed to the bulk for longer times 

allowing diffusion mechanisms to restore the surface tension to its equilibrium value. At high 

frequencies the timescale of the deformation is fast compared to the diffusive time scale and 

changes in area lead to variations in surface tension that are picked up in the measurement as 

an apparent elasticity
18

. An important feature of Fig. 3 is that the apparent moduli increase as 

a function of concentration, congruent with the increase in Gibbs elasticity (E0). At high 

concentrations (>0.05 mM), after a maximum, both contributions decrease and reach a 

plateau. This behavior is precisely what has been observed for asphaltenes
21

 and crude oil 

solutions
20

. Care should be taken here when interpreting the data. Although the trends in the 

apparent elastic and viscous moduli are similar between asphaltenes and C5PeC11, 

adsorption features are different. Whereas asphaltenes are known to irreversibly adsorb at the 

liquid-liquid interface with subsequent multilayer stacking and “skin” formation, which 

influences the Young Laplace equation fit, C5PeC11 does not form such a skin. The results in 

the next section strongly suggest that the relaxation of C5PeC11 is almost purely diffusional, 

and that the observed effects can be attributed to changes in surface tension. 

Fig. 3 shows the fits of the apparent elasticity using the LvdT model for C5PeC11 solutions 

in toluene at different frequencies and bulk concentrations. The fitting procedure is 

performed assuming that the Langmuir EoS remains valid which allows setting 𝐸0 =

𝛤∞𝐾𝐿𝑐𝑅𝑇 for each concentration taking the values from Fig. 2. In this way, the parameters 𝛺 



and 𝜔 present in equation (6) and equation (7) are fixed. This leaves the diffusion coefficient 

D as the only variable to be adjusted to the best match of the experimental data. Fig. 3a and 

3b show the best fit to the elastic and viscous dilatational moduli respectively, with a 

diffusion coefficient (which is the material property underlying the phenomena) of 4x10
-10 

m
2
/s. This value for the diffusion coefficient is comparable to those reported by Chang et al.

59
 

for molecules of similar molecular weight. Although the predictions of the model are not 

perfect, they describe the evolution qualitatively, especially in the vicinities of the maxima, 

which are well predicted, and the decrease of the moduli at higher bulk concentrations. This 

suggests that C5PeC11 adsorption governs the phenomena, and that this is reversible, a 

fundamental assumption underpinning the LvdT model. It was also shown that there is no 

skin (or crumpling) preset at the interface even at long aging times and that thermodynamic 

equilibrium between interface and bulk was attained. The adsorption of C5PeC11 is almost 

completely reversible, meaning that after desorption experiments the interfacial tension of 

pure toluene/water is almost achieved. The small portion of C5PeC11 that remains at the 

interface could explain the prediction differences of the LvdT model. 

Different attempts have been reported in the literature to improve the fit of the interfacial 

dilatational rheology data of indigenous asphaltenes
17, 18, 19, 20, 22

 using the LvdT approach and 

assuming different mathematical variations of the asphaltene diffusion coefficient with 

concentration. The assumed diffusion coefficients are generally low (1x10
-11

 m
2
/s - 1x10

-10
 

m
2
/s 

21
 or 1x10

-18
 m

2
/s - 2x10

-12
 m

2
/s 

42
). However, LvdT is not a general model describing 

the response to interface deformations, as it describes only the response to variations of the 

surface tension governed by the Gibbs elasticity and the time scale of transport to and from 

the interface. In the case of asphaltenes there are several other effects that may contribute. 

First, asphaltene adsorption is almost irreversible
43

. Secondly, extra stresses inherent to the 

interface are not accounted for in the LvdT model
54

. Also multilayer formation may occur 

which will influence the response to changes in area. In this sense, there is a fundamental 

difference between the behavior of indigenous asphaltenes and the asphaltene model 

compound C5PeC11. Even though several aspects of interfacial dilatational rheology, in 

particular those related to changes in surface tension, are similar and can be used to make 

predictions about the stability of the equivalent emulsions, some phenomena are not present 

in C5PeC11 adsorption, especially that of skin formation. 

Desorption from the liquid-liquid interface. This section deals with the study of desorption 

of the asphaltene model compound C5PeC11 from the liquid-liquid interface by means of 



three different substances: desorption of the model compound by pure solvent (in this case 

toluene) is first presented, followed by desorption by a mixture of heptane and toluene 

(HepTol) close to the precipitation onset, ending with desorption induced by the model 

compound BisAC11. This was achieved using a double-capillary system (Fig. S2 of the 

supporting material) accessory to the ADSA instrument. This system has been previously 

used to study desorption of asphaltenes and model demulsifiers, hence details on how it 

works can be found elsewhere
42, 43

. 

Fig. 4 shows a plot of the interfacial tension as a function of the dimensionless characteristic 

time (𝑄𝑡/𝑉𝐷) for desorption of C5PeC11 at three different concentrations induced by toluene. 

For comparison purposes, a desorption model based on the Langmuir isotherm is also 

included (equation (3)). This model has been shown to adequately describe desorption of 

non-interacting reversibly adsorbed species at the liquid/air
50

 and liquid-liquid
42

 interface. 

However, desorption of C5PeC11 is slower than the prediction which suggests the presence 

of interactions at the liquid/liquid interface among the model compound. These interactions, 

which are rather weak to be detected by dilatational experiments dominated by surface 

tension changes, are most likely due to intermolecular forces such as hydrogen bonding and 

π-π stacking of the core as it will be shown in later sections. From the desorption experiments 

it could be possible, in principle, to calculate a convective mass transfer coefficient. However 

this goes beyond the scope of this article.  

The data in Fig. 4 suggest that the adsorption is almost fully reversible. Comparing the final 

value of the interfacial tension after desorption, γ~33mN/m, and the value for 

toluene/aqueous solution, γ~36mN/m, it can be concluded that there is some material that 

remains irreversibly adsorbed at the interface (within the time scales of the experiment). Fig. 

5 shows similar data, but desorption is now induced by a mixture of heptane-toluene or, 

“HepTol” at 30/70 (%v/v) and the model compound BisAC11 has an aliphatic end group. 

The filled symbols in Fig. 4 show that when using a HepTol mixture that is close to the 

precipitation onset of the asphaltene model compound, the degree of desorption is the same 

as that of toluene (open symbols). It is important to highlight that C5PeC11 was dissolved in 

the same HepTol mixture for this curve (filled symbols). From this it follows that the 

reversible nature of adsorption of C5PeC11 onto the liquid-liquid interface is not related to its 

solubility. Even in a poor solvent (HepTol), desorption was the same as in a good solvent 

(pure toluene). Extrapolating this idea to asphaltenes, which also precipitate in HepTol 

solutions at volume fractions ~30/70% and ~40/60%
60

, it could be hypothesized that the 



irreversibility in their adsorption is not related to their poor solubility but instead to other 

mechanisms such as changes in conformations and π-π interactions at the interface. Strong 

interactions might be responsible for the observed delay in desorption when comparing with a 

non-interacting model (Fig. 4) which was also previously observed for asphaltenes
42

. 

Fig. 5 contains data on the desorption curves of C5PeC11 at a fixed concentration of 0.1mM 

induced by the asphaltene model compound BisAC11, which has an aliphatic end group. Two 

concentrations of BisAC11 were chosen: a lower concentration of 0.05mM and a higher 

concentration of 1.74 mM which is roughly 20 times greater than that of C5PeC11. The 

model compound BisAC11 has little to no influence on the desorption of C5PeC11 

suggesting that there are little to no interactions between these two model compounds. More 

importantly, the delay in C5PeC11 desorption that occurs between 𝑄𝑡/𝑉𝐷 ~ 0-15 and the final 

values of the interfacial tension γ~33 mN/m indicate that the portion of irreversibly adsorbed 

C5PeC11 does not interact with BisAC11 at the liquid-liquid interface. The small decrease in 

the interfacial tension that occurs at a high concentration of BisAC11 after  𝑄𝑡/𝑉𝐷~ 25 is 

attributed to surface active impurities that accumulate at the interface and the low surface 

active nature of BisAC11 that could potentially displace small portions of C5PeC11 or fill 

empty pockets created by desorption of large aggregates. To emphasize this point, the 

equilibrium interfacial tension of BisAC11 in toluene was measured at pH 8 and found it to 

be γ~ 34.5 mN/m suggesting, once again, low to no interfacial activity of this compound. 

This type of minor interactions between C5PeC11 and BisAC11 at the liquid/liquid interface 

could be comparable to that of acidic and non-acidic components of crude oil that exhibit a 

similar behavior in terms of interfacial tension
61

. 

4.2 Extra stresses as probed by shear rheology. 

At an air/water interface C5PeC11 behaves as an insoluble Langmuir film. Although the 

behavior of an interfacially active material at an air/water interface is expected to be 

significantly different than at an oil/water interface, one can learn a great deal about certain 

aspects of interfacial behavior, such as the tendency to aggregate. Model molecules at an 

air/water interface may display certain features characteristic of skin-forming asphaltenes. 

In Fig. 6a a series of compression-expansion curves for C5PeC11 at an air/water interface 

and a pH of 6 are shown. Cycles of compression-expansions were consecutive, the first of 

which began 30 minutes after spreading C5PeC11 from toluene. The first compression curve 

in Fig. 6a is different than all of the following compression curves, and has a local maximum 



at a molecular area of approximately 90 Å
2
/molecule. This bump in the curve is a non-

thermodynamic behavior that appears at a molecular area consistent with the molecules of 

C5PeC11 at monolayer coverage and with a strong tilt. The competing dynamics involved are 

the continuous compression of the interface and the slow dynamics associated with 

rearrangement of the molecules at the interface as they become increasingly confined. The 

local maximum in the curve is present only in the first compression, suggesting that the initial 

state of the interface is dependent on the initial solvent spreading and evaporation history. 

After the first compression-expansion, consecutive curves in Fig. 6a look similar but continue 

to shift to lower values of molecular area with each compression-expansion. In an insoluble 

system this behavior is indicative of irreversible aggregate formation at large surface 

pressures and the formation of multilayers. Evidence for the surface-pressure dependence of 

aggregate formation is seen in Fig. 6b, where consecutive compression-expansion curves are 

shown but the surface pressure never exceeds 30 mN/m (i.e. a surface pressure lower than the 

collapse value). At low surface pressures, after the first compression, consecutive 

compression-expansion curves are repeatable and indicate that aggregate formation is 

strongly surface-pressure dependent. Data in Fig. 6 suggest that C5PeC11 has a slow 

dynamic associated with molecular rearrangements at monolayer coverage, and at high 

surface coverage there is a driving force toward irreversible aggregation and the formation of 

multi-layer structures
62

. 

Rheological behavior is coupled to material microstructure, and the rheological data shown in 

Fig. 7 is indicative of a material with elastic, fragile microstructure. In Fig. 7a storage and 

loss moduli are plotted as a function of strain at 30 mN/m. The deviation from a linear 

viscoelastic regime begins at relatively small strain values of 0.2 to 0.5%. The structures 

which dominate the transfer of stress through the interface are easily ruptured. Frequency 

sweep data obtained at 0.1% strain is shown in Fig. 7b and reveals that a broad range of 

relaxation times are present in C5PeC11 at the air/water interface. The values of the storage 

moduli show that significant elasticity is present at the interface, as expected for a strongly 

interacting insoluble system. 

The behavior of C5PeC11 at the oil/water interface is more relevant for comparison to 

indigenous asphaltene behavior in crude oil emulsions and the data presented in the previous 

sections. Compression-expansion curves from C5PeC11 at a decane/water interface are 

shown in Fig. 8. Prominent in the compression curves is the non-thermodynamic local 

maximum that was also observed in the first compressions in Fig. 6. In Fig. 8 the molecular 



area at which this peak is found is 65-70 Å
2
/molecule. This is a smaller value than that found 

for the air/water interface in Fig. 6, and it can be explained in terms of the tilt of the 

molecules at the interface. With an oil phase, it would be expected that the hydrocarbon tails 

and aromatic groups of C5PeC11 would preferentially immerse in the oil phase, resulting in 

less tilt and a smaller molecular area at monolayer coverage. Unlike the air/water interface, 

the peak is observed on all consecutive compressions at the decane/water interface. The 

presence of oil makes the dynamics of molecular rearrangement reversible, and indicates the 

nature of the rearrangement; indigenous asphaltenes have the ability to undergo π-π stacking 

and one might expect to observe similar behavior in C5PeC11 because of the prominent 

aromatic groups at the core of the molecule. The local maximum observed may be the 

competition between compression of the interface and the dynamics associated with the 

formation of π-π stacks and rearrangement of the resulting domains. The reversibility of this 

behavior at an oil/water interface may be attributed to the ability of decane molecules to re-

insert between molecules at low surface pressure, reversibly destroying bonds associated with 

π-π stacking upon expansion of the interface. Although all compression-expansion 

measurements were made at a barrier movement rate of 3 mm/min, it is worth noting that the 

soluble nature of these molecules in the oil phase is expected to result in a dependence on 

compression rate that might affect both the hysteresis behavior and the non-thermodynamic 

local maximum observed during compression. The results are consistent with the data 

obtained in the pendant drop experiments. 

Shear flow at a constant area isolates the mechanical response of the interfacial structure in 

the absence of adsorption/desorption dynamics. In this way the material functions give rise to 

the extra stresses generated at the interface and can be measured. Results for C5PeC11 at the 

decane/water interface at 30 mN/m are shown in Fig. 9. The linear viscoelastic regime is 

small, similar to the behavior observed in Fig. 6a for the air/water interface and again 

indicative of fragile structures. Storage and loss moduli as a function of frequency were 

obtained at a strain of 0.1%, and are shown in Fig. 9b. The magnitudes of the moduli are 

smaller than those for the water-air interface, and rather small. The frequency dependence 

reveals a viscoelastic structure with a broad range of relaxation time. This rheological 

behavior is characteristic of a soft-glassy material, where rearrangement under flow of a 

densely packed internal structure takes place with a broad range of characteristic times. The 

straight lines plotted in Fig. 9 come from fitting the soft-glassy rheology (SGR) model to the 

linear viscoelastic data in Fig. 9b. An effective noise temperature of 1.34 was obtained from 



the fit, and the prediction of the SGR model of the scaling of G” in the non-linear regime is 

plotted in Fig. 9a. A value of the effective noise temperature between one and two is 

indicative of a soft-glassy rheological response with storage and loss moduli that both vary 

with respect to 𝜔𝑥−1. This behavior is characteristic of what is found in indigenous 

asphaltenes at surface concentrations sufficient to stabilize oil and water emulsions
12, 63

. A 

comparison of effective noise temperature measured here and values measured in indigenous 

asphaltenes by Samaniuk et al. 
12

 reveals that indigenous asphaltenes form a more arrested 

interface. Values of effective noise temperature between 1.3 and 1.4 were obtained in 

indigenous asphaltenes at surface pressures between 13 mN/m and 14 mN/m, and continued 

to decrease (indicating an increasingly arrested system) at higher surface pressures. The 1.34 

value found here in the model molecule system was obtained at a high surface pressure of 30 

mN/m, indicating that higher surface pressures are required in order to obtain the same 

effective noise temperature values observed in indigenous asphaltenes. This results in smaller 

extra stresses developing in the interface when deformed, which is in agreement with the 

absence of significant elastic effects contributing in the dilatational measurements. Although 

indigenous asphaltenes are a complex mixture of many molecules that form hierarchic 

structures, we have found here that it is nevertheless possible to capture important 

characteristics of their rheological behavior with model molecules of a single chemistry and 

architecture. 

The influence of pH on the stabilizing effect of indigenous asphaltenes is significant, and pH 

modification has been considered as a strategy for emulsion breaking
64

. Compression curves 

for C5PeC11 at a decane/water interface are shown in Fig. 10a for three different subphase 

pH values. With the subphase at a pH of 8 the carboxylate functional group of C5PeC11 is 

highly deprotonated and expected to be more surface active than at lower pH. In addition to 

increased surface activity, a decrease in the tilt of the molecule at the interface is expected. 

This is seen in Fig. 10a as a shift of the location of the local maximum in the compression 

curve to lower values of molecular area. The value of 66 Å
2
/molecule is at the low end of the 

range of values obtained from similar particles adsorbed onto silica
57

, and consistent with a 

very upright orientation of the molecule at the interface. An illustration of this arrangement is 

shown in Fig. 10b, where the tilt-state of the C5PeC11 is expected to depend on the state of 

the carboxylate functional group. As the pH is decreased the carboxylate group becomes 

more protonated, less charged, and less surface active. At a pH of 5 the surface activity 

decreased significantly and the local maximum in the compression curve shifted to a 



molecular area of 105 Å
2
/molecule, consistent with a highly tilted orientation of the 

molecules of C5PeC11. The strong dependence of the interfacial activity of C5PeC11 on pH 

is consistent with behavior observed in C6-asphaltenes
22

. The carboxylate functional group on 

C5PeC11 captures important aspects of this behavior. 

Conclusions 

Sorption dynamics of C5PeC11, an asphaltene model compound, showed that it is almost 

reversibly adsorbed at the toluene/water interface even under conditions near the precipitation 

onset (Fig. 4 and Fig. 5). Interactions between C5PeC11 and BisAC11 at the same interface 

are not relevant, suggesting that alkyl end groups have little to no influence in asphaltene 

adsorption whereas polar interactions (COOH groups) dominate this behavior. Unlike 

indigenous asphaltenes, C5PeC11 does not exhibit skin formation and significant extra 

stresses at the interface. However, equilibrium parameters based on the Langmuir EoS and 

interfacial dilatational rheological results are similar, suggesting that these model compounds 

can be systematically used to study separately the interfacial tension related effects of 

indigenous asphaltenes. Unlike for indigenous asphaltenes the responses observed in pendant 

drop experiments are dominated by surface/interfacial tension (diffusion). 

At the air/water interface C5PeC11 shows a strong hysteresis between the first compression-

expansion cycle and consecutive cycles that is indicative of an irreversible rearrangement of 

the molecules upon the first compression. Compression to large surface pressures results in a 

shift of the consecutive curves to smaller molecular areas, a sign of aggregation and the 

formation of multilayer structures. At a decane/water interface the rearrangement of 

molecules during compression is reversible upon expansion and is attributed to the ability of 

oil molecules to penetrate π-π stacking arrangements between C5PeC11 molecules. Soft-

glassy rheological behavior is observed in C5PeC11, consistent with behavior observed in 

indigenous asphaltenes at an oil/water interface, but the behavior is less pronounced, 

congruent with observations in the dilatational experiments. In addition to soft glassy 

rheology, C5PeC11 shows a strong pH dependence that is very similar to that observed in 

indigenous asphaltenes. Although indigenous asphaltenes are polydisperse structures that 

aggregate to form larger clusters, we have found that important characteristics of asphaltenes 

at an oil/water interface, such as rheological behavior and pH dependence, can be captured 

with a single model molecule of a defined chemistry and architecture. 
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Figure 1. Influence of pH on the equilibrium interfacial tension values and the apparent 

elastic dilatational modulus of C5PeC11 at 0.05mM in toluene after 30min of equilibration. 

The solid lines are visual aids.   

 

 

 

 

 

 

 

 

 

 

 



Figure 2. Equilibrium interfacial tension (γeq) as a function of the bulk concentration for 

C5PeC11 solutions in toluene after 30 min of equilibration time. Experimental points 

measured using ADSA. The solid line represents the best fit to equations (1) and (2). 

Equilibrium parameters are also shown.    

 

 

 

 

 

 

 

 

 

 



Figure 3. Measured (after 30 min of equilibration time) and modeled a) Apparent elastic 

modulus and b) Apparent viscous modulus of C5PeC11 solutions in toluene at different 

frequencies and bulk concentrations. The solid lines show the best fit with a diffusion 

coefficient of 4x10
-10

m
2
/s using the Lucassen van den Tempel model (equations (6) and (7)). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4. Interfacial tension as a function of the dimensionless characteristic time for 

desorption (𝑄𝑡/𝑉𝐷) of C5PeC11 at three different concentrations by toluene. The 

experimental conditions for the experiments were: Exchange flow rate 𝑄 = 0.4 µ𝐿/𝑠 ,total 

predetermined volume 𝑉𝐸 = 1000 µ𝐿 and volume of the droplet 𝑉𝐷 = 18 µ𝐿  The solid red line 

represents the desorption model, or equation (3).  

 

 

 

 

 

 

 

 

 

 



Figure 5. Interfacial tension as a function of the dimensionless characteristic time for 

desorption (𝑄𝑡/𝑉𝐷) of C5PeC11 (0.1mM in toluene) by toluene (open symbols) and BisAC11 

solutions in toluene at 0.05mM (solid line) and 1.74mM (dashed line). Filled symbols 

represent desorption of C5PeC11 (solutions in a mixture of heptane and toluene, HepTol at 

30/70 %v/v) desorbed by the same HepTol mixture. The experimental conditions for the 

experiments were: Exchange flow rate 𝑄 = 0.4 µ𝐿/𝑠,total predetermined volume 𝑉𝐸 =

1000 µ𝐿 and volume of the droplet 𝑉𝐷 = 18 µ𝐿  

 

 

 

 

 

 

 

 



Figure 6. Compression-expansion curves for C5PeC11 at an air water interface of pH 6. 

Consecutive cycles of compression-expansions show (a) evidence of aggregation when large 

surface pressures are achieved, and (b) complete reversibility when surface pressure is kept 

below 30 mN/m. 

 

  



Figure 7. Dynamic moduli of C5PeC11 at an air/water interface (pH 6) at 30 mN/m as a 

function of (a) strain, and as a function of (b) frequency. 

 

  



Figure 8. Compression-expansion curves from C5PeC11 at a decane/water interface. Two 

consecutive cycles are shown with a sub-phase pH of 6. 

 

  



Figure 9. Dynamic moduli of C5PeC11 at an decane/water interface (pH 6) as a function of 

(a) strain, and as a function of (b) frequency. The surface pressure was 30 mN/m. 

 

  



Figure 10. (a) Compression curves for C5PeC11 at a decane/water interface. The pH of the 

subphase was controlled with a buffer solution. Increasing pH deprotonates the carboxylate 

functional group of C5PeC11, increases surface activity and decreases molecular tilt at the 

interface. (b), (c) Conceptual drawing showing the effect of pH on molecular tilt. 
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Coupled analysis between sorption experiments (adsorption and desorption from the liquid-

liquid interface) and shear/dilatational rheology experiments (at the liquid-liquid and liquid-

air interface) for asphaltene model compounds. 
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A microcalorimetry study on the adsorption of asphaltenes and model 

asphaltene compounds at the liquid-solid surface. 

 



 
Is not included due to copyright 




	Introduction
	PP1
	Paper 1
	Mixed interfaces of asphaltenes and model demulsifiers part I: Adsorption and desorption of single components
	1 Introduction
	2 Experimental
	2.1 Asphaltenes
	2.2 Demulsifier
	2.3 Water phase
	2.4 Solvents
	2.5 Tensiometry

	3 Theory
	3.1 Adsorption
	3.2 Desorption
	3.3 Adsorption kinetics

	4 Results and discussion
	4.1 Dynamic and static adsorption of single components
	4.1.1 Kinetic aspects of single compounds
	4.1.2 Equilibrium aspects of single compounds

	4.2 Dynamics of desorption for single components
	4.2.1 Asphaltenes
	4.2.2 Demulsifier: Brij® 93


	5 Conclusions
	Acknowledgements
	References


	PP2
	Paper 2
	PP3
	Paper 3
	PP4
	Paper 4
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	132621 Diego Pradilla_Omslag.pdf
	Introduction
	PP1
	Paper 1
	Mixed interfaces of asphaltenes and model demulsifiers part I: Adsorption and desorption of single components
	1 Introduction
	2 Experimental
	2.1 Asphaltenes
	2.2 Demulsifier
	2.3 Water phase
	2.4 Solvents
	2.5 Tensiometry

	3 Theory
	3.1 Adsorption
	3.2 Desorption
	3.3 Adsorption kinetics

	4 Results and discussion
	4.1 Dynamic and static adsorption of single components
	4.1.1 Kinetic aspects of single compounds
	4.1.2 Equilibrium aspects of single compounds

	4.2 Dynamics of desorption for single components
	4.2.1 Asphaltenes
	4.2.2 Demulsifier: Brij® 93


	5 Conclusions
	Acknowledgements
	References


	PP2
	Paper 2
	PP3
	Paper 3
	PP4
	Paper 4




