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∣∣∣∣
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t > 0

Fe(t) = [M +m(∞)]u̇(t) + k(t) ∗ u(t) + Sbs(t) + F (s(t), u(t), t).

Fe(t) F (s(t), u(t), t)
s(t) u(t)

M m(∞) k(t)
Sb

m(∞)u̇(t) k(t)∗u(t)

k(t) =
2

π

∫ ∞

0
R(ω) (ωt) ω,

R(ω)

k(t) = − 2

π

∫ ∞

0
ω[m(ω)−m(∞)] (ωt) ω,

m(ω)

F (s(t), u(t), t)



Ru

Fe(t) = [M +m(∞)]u̇(t) + k(t) ∗ u(t) + (Sb + S)s(t)

+RC u(t) +Rqu(t)|u(t)|+Ruu(t),

S RC Rq

P (t) = Fu(t)u(t).

Ru

P (t) = Ruu
2(t).

Qe(t) = y(t) ∗ p(t) +Q (p(t), t).

Qe(t) Q (p(t), t)
p(t)

y(t)

y(t) =
2

π

∫ ∞

0
G(ω) (ωt) ω,

G(ω) = �{Y (ω)}

y(t) = − 2

π

∫ ∞

0
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S

∂ϕp

∂z
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ϕp
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k(t)∗u(t) m(∞) y(t)∗p(t)



m

m(∞)

m(∞) y(t) ∗ p(t)

Q (p(t), t)

Qe(t) = y(t) ∗ p(t) +Qv(t) +Qc(t) + (1/Re + 1/Ru) p(t),

Qv(t) Qc(t)
Re Ru

Qv(t) Qc(t)

P (t) = p(t)Qu(t).

Qu(t) = p(t)/Ru

P (t) =
p2(t)

Ru
.

Fe(t) = [M +m(∞)]u̇(t) + k(t) ∗ u(t)− C(∞)p(t)

− h(t) ∗ p(t) + Sbs(t) + F (s(t), u(t), t)−Aip(t)

Qe(t) = y(t) ∗ p(t) + C(∞)u(t) + h(t) ∗ u(t)
+Aiu(t) +Q (p(t), t).



C(∞) H(ω)
Ai h(t)

h(t) = − 2

π

∫ ∞

0
J(ω) (ωt) ω,

J(ω) = �{H(ω)}

h(t) =
2

π

∫ ∞

0
(C(ω)− C(∞)) (ωt) ω,

C(ω) = �{H(ω)} H(ω)

H(ω) = −
∫∫

S

∂ϕr

∂z
S,

ϕr

H(ω)
C(∞)

F (s(t), u(t), t)
Q (p(t), t)

Fe(t) = [M +m(∞)]u̇(t) + k(t) ∗ u(t)− C(∞)p(t)− h(t) ∗ p(t)
+ (Sb + S)s(t) +RC u(t) +Rqu(t)|u(t)| −Aip(t)

Qe(t) = y(t) ∗ p(t) + C(∞)u(t) + h(t) ∗ u(t) +Qv(t) +Qc(t)

+Aiu(t) + (1/Re + 1/Ru) p(t).
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SFe(ω) = |fe(ω)|2S(ω),
fe(ω)

S(ω)

Fe(t) =

N/2∑
n=0

(an φn + bn φn) ωnt+

N/2∑
n=0

(−an φn + bn φn) ωnt,



an bn SFe(ωn)Δω
N

tN Δt ωn = nΔω
Δω = 2π/tN φn fe(ωn)

ωn fe
fe

fe ω > 6

fe

S(ω) =
αg2

ω5

(
−1.25

ω4
p

ω4

)
γa(ω),



a(ω) =

(
−(ω − ωp)

2

2σ2ω2
p

)

σ =

{
0.07 ω ≤ ωp

0.09 ω > ωp

α = 5.058
H2

s

T 4
p

(1− 0.287 γ).

Hs Tp = 2π/ωp

γ



ωp

μ(t) = k(t) ∗ u(t) =
∫ t

0
k(t− τ)u(τ) τ

μ̂(t)

˙ (t) = ˆ (t) + ˆu(t)

μ̂(t) = ˆ (t),

(t)
ˆ ˆ ˆ

K̂(s) =
P (s)

Q(s)
=

prs
r + pr−1s

r−1 + . . .+ p0
sn + qn−1sn−1 + . . .+ q0

,

s = ω K(ω) Y (ω) L(ω)
K(ω) L(ω)

K(ω) = R(ω) + ω(m(ω)−m(∞))

L(ω) = C(ω)− C(∞) + J(ω).

pi qi pi qi
ˆ ˆ ˆ
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n
�x∗ = (x∗1, x∗2, . . . , x∗n) k gi(�x) ≥ 0
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a b s t r a c t

A system viewpoint is essential in the study of wave energy converters, since several different energy

domains are involved in such devices. In this regard, bond graph, a graphical, port-based approach to

modelling engineering systems, serves as a useful tool. This article presents a study of a wave energy

conversion system with hydraulic power take-off. With the aid of bond graph, two alternative hydraulic

system designs are modelled by assembling hydraulic subsystems/components in different manners. A

shallow-water pitching wave energy conversion system is considered as a case study, and selected

simulation results using the two alternative hydraulic system designs are presented. In addition, this

article suggests how to model by bond graph the dynamics of a multi-body wave energy conversion

system.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ocean wave is characterized by its high energy density, low-

frequency oscillatory motions, and randomness. Thus, a wave

energy conversion system (WECS) generally has to have some

means for converting the low-frequency oscillatory motions into

fast unidirectional motion, as well as some strategies to yield steady

power output despite the random input, in order to produce some

form of energy for practical use. A WECS typically consists of [1],

(1) a primary interface, where hydrodynamic interactions with

the surrounding waves take place, resulting in a relative motion,

(2) a power take-off (PTO) mechanism, which could be some

combination of mechanical, hydraulic, pneumatic, and electrical

subsystems, (3) a mechanism for securing the primary interface at

sea, such as mooring lines, (4) a control mechanism to maximize

power capture, and (5) cable connection to electricity grid. It is

natural for a WECS to have several conversion stages beginning in

the mechanical translational/rotational domain and ending in

electrical domain. Inside as well as outside the conversion chain,

different energy domains interact with one another. Such

complexities are apparent from recent reviews by Falnes [2], Drew

et al. [3], and Falcão [4], for example.

ResearchonWECSs to date has generally beendiverse, focusingon

different parts or aspects of the system rather than the totality of the

whole system. Granted, there is value in studying individual parts of

the system inorder tohave accurateunderstandingof the constitutive

behaviour of a single part. However, as the parts or subsystems in

a WECS are intimately related, one should carefully note that if

interactions between the different domains are taken into account,

modelling assumptions that appear justifiable on one engineering

domain may become a problem on the others. Having a good under-

standingof thewhole system is therefore important if the fruitfulness

of different wave energy conversion concepts is to be assessed, and

when improvementsare sought. Inotherwords, a systemviewpoint is

essential in the studyofWECSs. This hasbeen identified as one crucial

area to be addressed in wave energy research [3].

In this regard, bond graph, a graphical, port-based approach to

modelling engineering systems, may serve as a useful tool [for

a general introduction to bond graph, see, e.g., 5,6]. The first allu-

sion to the bond graph method for modelling WECSs was perhaps

in an article by Jefferys [7], although the term bond graph was not

mentioned. However, not until recently did works using bond

graph start to appear in wave energy literature [8e14]. Apart from

being a graphical, port-based modelling approach, one virtue of

bond graph lies in the fact that it is domain-independent; it uses

common notations for elements and variables across various

energy domains, hence capable of representing a complex system

involving diverse energy domains, such as a WECS, in a unified

manner. Also, due to the common notations, analogies between
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systems across energy domains are readily inferred, even if the

components involved are physically different. This helps in

providing insight into the behaviour of a WECS, and in assessing

various wave energy conversion concepts. The same feature could

also be useful in small-scale model testing of WECSs, where the

dynamics of the PTO mechanism, controller, moorings, and

connection to the electricity grid may not be realisable in small

scale. Based on the bond graph representation, a simulator could be

devised to mimic the expected dynamic behaviour in a laboratory

setup. Another important virtue of bond graph is that derivation of

model equations can be done in a systematic manner, allowing for

automated computer simulation.

This article looks into a class of WECSs which utilize oscillating

body (or bodies) as their working principle, and in particular, those

with hydraulic PTOmechanism. This choice is motivated by the fact

that a large number of WECSs belong into this class. Hydraulic PTO

is thought to be suited for wave energy conversion in that it can

capture power from slowly varying large forces which characterize

ocean waves [15] and that it is highly controllable [16]. A bond

graph model of the WECS is constructed by first considering the

separate subsystems/components before assembling them

together. This is illustrated in Section 2. Two alternative hydraulic

system designs are studied, which result from assembling the

subsystems/components differently. In passing, Section 2 also

suggests how one can use bond graph to model the dynamics of

a WECS consisting of a platform and several point absorbers.

Finally, in Section 3, a shallow-water pitching WECS is considered

where the primary interface resembles the Edinburgh duck [17].

Each of the two hydraulic PTO systems is connected to the primary

interface and selected simulation results under irregular wave

excitation are presented and discussed.

2. Bond graph model

In bond graph terms, a WECS essentially performs a power

transformation from one energy domain to another, usually from

mechanical translational/rotational domain to electrical domain. In

bond graph notation this is simply

Sf TF R

where Sf is the source of mechanical translation/rotation, R is the

load of the system, and TF the power transformation from

mechanical to electrical domains. The power bonds (represented by

half arrows) indicate the energy flow and signify flows in opposite

directions of the power co-variables, namely effort and flow. The

causal stroke (a vertical line at one end of the bond and perpen-

dicular to it) indicates the direction of the effort signal. As an

example, in the above, flow is the input to the R element while

effort is the output. In reality, the TF is made up of a number of

subsystems depending on the PTO mechanism and the conversion

stages employed, and these should be modelled in detail.

Typical conversion stages in a WECS is illustrated in Fig. 1 [cf.

3,18]. As seen from the figure, several alternatives are available to

convert energy frommechanical translational/rotational, hydraulic,

or pneumatic domain to electrical domain. For an oscillating water

column (OWC), energy is converted from pneumatic to electrical

domains via an air turbine [cf. 7, Fig. 2] while for an overtopping

WECS, energy is converted from hydraulic to electrical domains via

a water turbine. For an oscillating-body WECS, direct conversion

from mechanical translational/rotational to electrical domains can

be achieved by means of a direct-drive electrical generator. The

second alternative is to have a hydraulic piston convert energy from

mechanical translational/rotational to hydraulic domains before

converting it to mechanical rotational domain via a hydraulic

motor. This article concentrates on the latter alternative.

An initial bond graph model of such hydraulic PTO, showing

the primary conversion stages, is shown in Fig. 2. In the figure, the

two TF elements represent the hydraulic piston and hydraulic

motor, respectively, and the labels above and below the power

bonds represent the effort-flow pair or the power co-variables in

each energy domain. In mechanical translational domain, these

are force (F) and velocity (v), in hydraulic domain, pressure (p) and

volume flow rate (Q), while in mechanical rotational domain,

these are torque (s) and angular velocity (u). The resemblance of

the bond graph model to the chart in Fig. 1 is readily seen. Fig. 1

can in fact be conceived as a word bond graph for different

classes of WECS.

Clearly, in a realistic model, energy losses in between successive

conversion stages have to be accounted for. In a hydraulic system,

these losses are mainly due to pressure drops along the pipes,

leakages, and frictions. In bond graph, each of these is modelled by

an R element, which serves to dissipate energy. These have to be

added into the model. Apart from Sf, TF, and R, additional elements

are also required in order to develop a bond graph model with

sufficient details. In total, nine basic elements are generally suffi-

cient to model any physical system. Each of these represents an

elementary behaviour, viz. storage (C and I elements), reversible

transformation (TF and GYelements), irreversible transformation (R

element), supply and demand (Se and Sf elements), and distribution

(0- and 1-junctions). They are introduced in the following.

2.1. Subsystems and components

The hydraulic PTO system in this study consists of the following

subsystems and components [for a more detailed overview of

hydraulic components, see e.g. 19].

2.1.1. Hydraulic piston

Energy from translational/rotational motion of theWEC primary

interface is converted into hydraulic pressure by one or more

Mechanical translation/rotation

Hydraulic

Mechanical rotation

Electrical

Hydraulic piston

Water turbine

Electrical generator

Hydraulic motor Air turbine

PneumaticHydraulic

Fig. 1. Typical conversion stages in a wave energy conversion system. Shaded rect-

angles represent energy domains, while non-shaded rectangles represent primary

components/subsystems.

F

v

p

Q

Sf TF TF R

Fig. 2. An initial bond graph model of a hydraulic PTO, showing the major conversion

stages.
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hydraulic pistons. These pistons can be either single or double

acting. A bond graph model of the single-acting piston is shown in

Fig. 3. The model has two ports: the first port connects to a source,

which in the case of a WEC could be a flow source representing the

relative velocity of the primary interface, whereas the second port

transfers the pressurized fluid to the next conversion stage or to

pipes and valves.

It is seen that the model is built up using TF, R, I, C elements, as

well as 0- and 1-junctions. The primary function of a hydraulic

piston is to convert energy from mechanical translational domain

to hydraulic domain. This is represented by the TF element, with the

following constitutive relation:

Fp ¼ Appc (1)

Qc ¼ Apvp; (2)

where Fp is the force applied to the piston, Ap is the piston area, pc is

the chamber pressure relative to the initial chamber pressure, Qc is

the volume flow rate, and vp is the velocity of the piston.

The R elements are used to represent energy losses due to

damping and friction. The cylinder friction Ff can be modelled

according to the static plus Coulomb plus viscous plus Stribeck

model [20]:

Ff ¼ Fn

("
mcþ

�
mst

��tanh�svp����mc

�
exp �

v
2
p

v
2
st

!#
sgn

�
vp

�
þm

v
vp

)
;

(3)

where Fn is the normal force, mc is the Coulomb friction coefficient,

mst is the static friction coefficient, mv is the viscous friction coef-

ficient, vst is the characteristic Stribeck velocity, and s is the

steepness of Coulomb friction curve. Also, since the stroke length

of the piston is limited, a conditional damping model is used to

represent energy loss whenever the piston collides with the

cylinder heads. This is modelled as a linear damping with a large

damping coefficient which is applied whenever the piston

displacement exceeds the stroke limit. Similarly, the damping of

the piston rod is modelled as a linear damping with a large

damping coefficient.

Some of the force applied to the pistonwill accelerate the piston

mass. This is represented as an I element. The mass of the piston

relates its momentum and velocity.

The C elements are used to represent, firstly, the stiffness

applied whenever the piston displacement exceeds the stroke limit,

secondly, the stiffness of the piston rod, and thirdly, the

compressibility of the fluid in the chamber. The latter is modelled

by the following equation which relates the chamber pressure pc
and the change in chamber volume DVc [21]:

pc ¼ B
DVc

Vc0 � DVc
; (4)

where B is the bulk modulus of the fluid and Vc0 is the initial

chamber volume.

A double-acting piston, as opposed to the single acting, has two

flow outlets (represented by the two ports at the right hand side),

and as such, has two TF elements in the bond graph model (see

Fig. 4). Eqs. (1) and (2) are used for each TF, but it should be noted

that the area of one side of the piston is not necessarily equal to the

area of the other side, due to the presence of the piston rod. Also,

compared to the single-acting piston (Fig. 3), an additional C

element is needed to model fluid compressibility in the other

chamber. An additional R element is used to model internal leakage

across the cylinder chambers.

2.1.2. Pipes

Pipes transfer hydraulic fluid from one point to another. These

can be thought of as transmission lines in the case of electrical

systems. As the fluid flows along the pipes, energy is dissipated

resulting in pressure drops. Pressure drops Dpp along the pipes are

modelled according to the following equation [22]:

port1 port21 TF

R

cyl_friction

0

C

compliance_chamber

I

piston_mass

C

end_compliance

R

end_damping

0

C

rod_compliance

1

R

rod_damping

Fig. 3. Bond graph model of a single-acting hydraulic piston.

port1 port2

port3

1 TF

R

cyl_friction

0

C

compliance_chamber1

TF

C

compliance_chamber2

R

cyl_leakage

1q

I

piston_mass

C

end_compliance

R

end_damping

0

0

C

rod_compliance

1

R

rod_damping

Fig. 4. Bond graph model of a double-acting hydraulic piston.

port1 

port2 

port31 0 

0 

R motor_internal_leak 1 

T F 1

R 

motor_friction 

I 

motor_inertia_moment 

Fig. 5. Bond graph model of a hydraulic motor.
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Dpp ¼
128LrnQ

pD4
; (5)

where L is the pipe length, r is the fluid density, n is the kinematic

viscosity of the fluid, Q is the volume flow rate, and D is the pipe

diameter. This can be represented by an R element. Also, as the fluid

in the pipe is accelerated, inertial force arises. The fluid inertance,

which is modelled by an I element, is given as [22]

I ¼
4rL

pD2
: (6)

2.1.3. Check valves

A check valve or no-flow valve resembles a diode in electrical

systems. It allows flow in only one direction. Such behaviour can be

modelled in bond graph using an R element with conditional

equations which determine the flow Qv through the valve

depending on the pressure difference across it. One such model is

given as follows [c.f. 21]:

Qv ¼

8>>>>>>>><
>>>>>>>>:

Dpv
pcl

Qcl if Dpv < pcl

Qcl þ
Dpv � pcl
pop � pcl

�
Qop � Qcl

�
if pcl � Dpv � pop

CdAmax

ffiffiffiffiffiffiffiffiffiffiffiffi
2

r
Dpv

s
if Dpv>pop;

(7)

where

Qcl ¼ CdAmin

ffiffiffiffiffiffiffiffiffiffi
2

r
pcl

s
(8)

Qop ¼ CdAmax

ffiffiffiffiffiffiffiffiffiffiffi
2

r
pop

s
: (9)

In the above, Cd is the discharge coefficient, Amin is the leakage area,

while Amax is the fully open flow area. The pressures pcl and pop are

reference pressures for the closing and opening of the valve. The

valve is closed if the pressure difference across the valve Dpv is

lower than pcl, and is fully open if Dpv is higher than pop. The leakage

area Amin is introduced to model leakage when the valve is closed.

2.1.4. Accumulators

An accumulator, which behaves as a capacitor in electrical

systems, provides means for energy storage. It has the effect of

smoothing out pressure and flow fluctuations in the system. A

common type is the gas-charged accumulator, which uses a gas-

filled bladder in a chamber. The expansion and compression of

the gas follows the following relation [22]:

p0 þ Dp ¼ p0

�
V0

V0 � DV

�k

; (10)

where p0 is the initial gas pressure and V0 is the initial gas volume.

The volume of fluid entering the accumulator is denoted by ΔV and

the corresponding increase in pressure by Δp. The value of the

specific heat ratio k depends on whether the expansion and

compression occur rapidly or slowly. Such relation between pres-

sure and volume can be modelled by a C element.

2.1.5. Hydraulic motor

A hydraulic motor transforms energy from hydraulic into

mechanical rotational domains. A bond graph model of the

hydraulic motor is shown in Fig. 5. The model has three ports: the

first port represents the inflow into the motor, the second

represents the outflow, and the third represents the connection

to the next conversion stage, i.e. an electric generator. The

transformation from hydraulic into mechanical rotational

domains is carried out according to the following equation for the

TF element [21]:

T ¼ Vrptana (11)

Q ¼ Vrutana; (12)

where T is the motor torque, Vr the motor displacement per radian,

p the hydraulic pressure, a the inclination angle, Q the volume flow

rate, and u the motor rotational velocity. Internal leakage is

included in the model using an R element in the sameway as in the

double-acting piston (c.f. Fig. 4). In addition, the inertia of the

rotating part is modelled as an I element and friction is included

using an R element.

Fig. 6. Hydraulic system design with a single-acting hydraulic piston and two check

valves.

Secondary conversion:
Hydraulic motor

P

C

HP_accumulator

0

0

C

LP_accumulator

Primary conversion:
Hydraulic cylinderBody P 1

R

pipe_resistance

Check valvesSe

Exciting_force

I

fluid_inertance

R

R

TF

TF

Fig. 7. Bond graph model of a WECS with hydraulic PTO using a single-acting hydraulic piston and two check valves.
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2.2. Assembled subsystems and components

The various subsystems/components having been described,

one is now ready to assemble them together. One possible

hydraulic PTO design for use in a WECS is shown in Fig. 6. This

system has a single-acting hydraulic piston at one end, two check

valves, two accumulators, and a hydraulic motor. Relative motion of

the primary interface due to the waves drives the piston up and

down. Referring to the figure, as the piston moves down, hydraulic

fluid is forced to flow through the upper pipe into the high-pressure

accumulator and through the hydraulic motor. As the piston moves

up, the fluid flows through the lower pipe from the hydraulic motor

and the low-pressure accumulator back into the cylinder.

Throughout this cycle, the fluid always flows in one direction as it

drives the hydraulic motor. The motor in turn drives an electric

generator, which applies load into the system.

A bond graph model of such system is shown in Fig. 7. One can

see that the model resembles the schematic in Fig. 6 and that it is

build up from the subsystems/components described previously.

Here, the details of the hydraulic cylinder and the hydraulic motor

are just as shown in Figs. 3 and 5. The detail of the 2-check-valve

system is shown in Fig. 8. Due to the nature of the check valve, its

causality has to be fixed. As a consequence, one has to introduce a C

element connected to the 0-junction to avoid differential causality

in the model. The electric generator is modelled using a linear R

element.

As an illustration, an oscillating body has been included as

a primary interface, constrained to move in one degree of freedom

(DOF). A bond graph of the body consists of an I element repre-

senting its structural mass and added mass, a C element repre-

senting its hydrostatic restoring force, and an R element

representing its hydrodynamic damping. The motion of the body

drives the hydraulic piston. A TF element representing some

transformation relation, such as between mechanical rotational

and translational domain, connects the body and the hydraulic PTO.

Exciting force from the waves is represented by Se element.

It is possible to assemble the subsystems/components differ-

ently. An alternative hydraulic PTO design utilizing a double-acting

hydraulic piston and four check valves is described in Section 3.

2.3. Dynamics of a multi-body primary interface

In passing, we shall now suggest how to model the dynamics of

the primary interface of a multi-bodyWECS and how to implement

it in bond graph. Consider a particular WECS in the form of

a floating platform with multiple buoys hanging underneath, such

port1

port2

port3

0

1

R

checkvalve1

1

R

checkvalve2

C

compliance

Fig. 8. Bond graph model of a 2-check-valve system.
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Fig. 9. Bond graph model of a floating platform with multiple buoys.
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as the concept studied in [10] and [23]. Each buoy is constrained to

move only in vertical direction relative to the platform. This relative

motion is in turn converted by a hydraulic PTO into electricity. A

floating platform generally has 6 DOFs. Each buoy introduces one

extra DOF to the system. For n buoys, there will be a total of n extra

DOFs. Assuming that the motion of the platform is not affected by

themotion of the buoys, Marré [10] modelled the platform as a flow

source. In the following a more realistic bond graph model of the

interaction between the platform and the buoys shall be developed.

Consider a floating rectangular platform in head sea. A right-

handed coordinate system (x, y, z) lies on the mean water surface

with x -axis pointing in the incident wave propagation direction

and z -axis pointing upwards. For simplicity, the centre of gravity of

the platform at rest is assumed to coincide with the origin of the

coordinate system, and the incident wave is assumed to propagate

in the direction normal to the side of the platform. Let the platform

displacements along the x -, z -, and about the y -axes be h1ðtÞ; h3ðtÞ,

and h5ðtÞ, respectively, the displacements of buoy i along the x -, z -,

and about the y -axes be h1iðtÞ; h3iðtÞ, and h5iðtÞ, respectively, the x

-coordinate of buoy i be xi, and the vertical displacement of buoy i

relative to the platform be ri(t). Assuming small h5ðtÞ, the following

relations hold:

h1iðtÞ ¼ h1ðtÞ þ riðtÞh5ðtÞ (13)

h3iðtÞ ¼ h3ðtÞ � xih5ðtÞ þ riðtÞ (14)

h5iðtÞ ¼ h5ðtÞ: (15)

Taking time derivatives gives the following relations between

the velocities:

_h1iðtÞ ¼ _h1ðtÞ þ riðtÞ _h5ðtÞ þ _riðtÞh5ðtÞ (16)

_h3iðtÞ ¼ _h3ðtÞ � xi _h5ðtÞ þ _riðtÞ (17)

_h5iðtÞ ¼ _h5ðtÞ: (18)

Following [21], the equation of motions for the system can be

expressed as

d

dt

 
vT

v _qj

!
�

 
vT

vqj
�

vV

vqj

!
¼ Ej; (19)

where qj is the j -th generalized displacement, T and V are the

kinetic and potential energy expressions as functions of the

generalized displacements, and Ej the generalized forces for the j

-th coordinate including forces which can be derived from dissi-

pation terms. q ¼ ðh1; h3; h5; riji ¼ 1;.;nÞT is chosen as the

generalized displacement vector. An alternative choice of general-

ized displacements was considered by Taghipour and Moan [23].

Without contributions from added masses, the kinetic energy T

can be expressed in terms of the generalized displacements as

T ¼
1

2

"
m1 _h

2
1 þm3 _h

2
3 þm5 _h

2
5 þ

Xn
i¼1

m1i

�
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þ
1
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h
m3i

�
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�2
þm5i _h

2
5

i
;

(20)

where m1, m3, and m5 denote the platform inertias associated with

h1; h3, and h5, respectively, while m1i;m3i, and m5i denote the

inertias of buoy i associated with h1i; h3i, and h5i. Considering only

the hydrostatic restoring forces, the potential energy V can be

expressed as

V ¼
1

2

�
C33h

2
3 þ C55h

2
5

	
þ
1

2

Xn
i¼1

n
C33iðh3 � xih5 þ riÞ

2þC55ih
2
5

o
;

(21)

where C33;C55;C33i, and C55i are the hydrostatic restoring coeffi-

cients. Taking the required derivatives and substituting into Eq. (19)

yields a system of equations which can be implemented in bond

graph using an IC field, a special bond graph element.

A bond graph model of the platform-buoy dynamics, where

bonds for only one buoy have been drawn, is shown in Fig. 9. The IC

field is shown on the top. The three 1-junctions on the upper left

represent the platform velocities, while the three 1-junctions on

the lower right represent the buoy velocities, all in the inertial

coordinate system. The 1-junction on the upper right represents

the buoy velocity relative to the platform, _ri. External restoring

forces such as from moorings have been included in the model

Fig. 10. Hydraulic system design with a double-acting hydraulic piston and four check

valves.
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Fig. 11. Bond graph model of a WECS with hydraulic PTO using a double-acting hydraulic piston and four check valves.
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using C elements, while external damping forces such as from

viscous damping have been included using R elements. The wave

exciting forces are effort sources, and therefore are represented by

Se elements. The magnitudes of the wave radiation forces depend

on the body velocities, and therefore are represented by MSe

(modulated effort source) elements, which take the velocities of the

bodies as input signals. Alternatively, the radiation forces can be

decomposed into added mass and radiation damping forces, and

included using I and R fields connected to the 1-junctions,

respectively. Thewave exciting and radiation forces on the buoy are

given in the inertial coordinate system, and thus MTF and TF

elements are needed to relate the velocities and forces in this

coordinate system to those along ri. The rectangle labelled PTO

contains bond graph of the hydraulic system considered earlier.

Simulation of this multi-body dynamic model is not pursued in

this article. Instead, in the next sectionwe shall consider a shallow-

water pitching WECS.

3. Simulations of a shallow-water pitching WECS with

alternative hydraulic PTO systems

Alternative designs of hydraulic PTO can be conceived by

assembling the various subsystems and components described in

Section 2 in different manners. Two designs are considered here.

The first, with a single-acting hydraulic piston and two check

valves, is similar to that studied in [11,24], and has been described

above in Section 2.2. The second, with a double-acting hydraulic

piston and four check valves, is similar to that studied in [12,13,25].

This second design resembles a full-wave rectifier in electrical

systems (see Fig. 10). As the piston moves down, hydraulic fluid

from the lower cylinder chamber is forced to flow into the high-

pressure accumulator, through the hydraulic motor, into the low-

pressure accumulator, and into the upper chamber of the

cylinder. As the piston moves up, hydraulic fluid from the upper

cylinder chamber is again forced to flow into the high-pressure

accumulator, through the hydraulic motor, into the low-pressure

accumulator, and into the lower chamber of the cylinder.

Throughout the cycle, the fluid always flows in one direction as it

drives the hydraulic motor. The motor in turn drives an electric

generator, which applies load into the system. A bond graph

representation of the system is shown in Fig. 11. At a glance, the

system looks similar to the first design (see Fig. 7). The differences

are in the details of the hydraulic cylinder and the check valve

system, as well as the connection between the cylinder and the

check valve system. The detail of the hydraulic cylinder is shown in

Fig. 4 while the detail of the check valve system is shown in Fig. 12.

In the following, the design with a single-acting hydraulic piston

and two check valves is referred as the 2-valve system and the

design with a double-acting piston and four valves as the 4-valve

system.

Selected simulation results from the two alternative hydraulic

PTO designs connected to a primary interface shall now be pre-

sented. Consider a shallow-water pitching WECS as shown in

Fig. 13, where the primary interface resembles the Edinburgh Duck

[17]. The cross section of the primary interface is formed by an arc

of radius 5 m and two straight lines of equal length, each tangent to

the arc. The width of the primary interface is 10 m and its draft is

7.5 m. A supporting structure constrains the primary interface to

move only in pitch. The pitch motion under wave action activates

the hydraulic piston, which drives the fluid flow in the hydraulic

system. The device is set to operate in 10-m water depth. It can be

shown that the wave energy transport J, defined as the transported

wave power per unit width of the wave front, for plane progressive

irregular wave in finite water depth is

J ¼ rg

ZN
0

SðuÞvgdu; (22)

where r is the water density, g is the acceleration of gravity, SðuÞ is

the (one-sided) wave spectrum, and vg is the group velocity, which

is a function of wave frequency u and water depth h [c.f. 26,

Eq. (29), where a two-sided spectrumwas used instead of the more

common one-sided one. The expression differs by a factor of 2]. The

wave energy transport in 10-m water depth is plotted in Fig. 14,
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Fig. 13. Artist impression of the pitching WECS: isometric view (left) and side view (right).
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together with that in 300-m water depth. A JONSWAP spectrum

with peakedness parameter of 3 and significant wave height

Hs ¼ 2 m is used as the wave spectrum model. It can be seen that,

for the same Hs, the 10-m-water-depth wave transports more

energy than the 300-m-water-depth wave in the range of spectral

peak period Tpz3 to 11 s. This constitutes one motivation for

pursuing WECS development in shallow water.

Hydrodynamic parameters of the primary interface are

computed using a higher-order panel method [27]. Wave diffrac-

tion due to the support structure is neglected and the water depth

is assumed to be uniform. Referring to Fig. 13 (right), the incident

wave is assumed to propagate from left to right.

In addition to tuning the linear generator load R, the possibility

of tuning the inertia moment of the primary interface in order to

maximise the energy capture is considered. This may be achieved in

practice by transferring some mass in the primary interface along

the radial direction. In the mathematical model, the same effect is

obtained by allowing the radius of gyration r55 to be varied. Fig. 15

shows the pitch velocity amplitudes of the primary interface when

it is not connected to the hydraulic system, for 1-m incident

harmonic wave amplitude and for different realistic radii of gyra-

tion. The figure illustrates that depending on the frequency content

of the incident wave, there is an optimum radius of gyration which

maximises the energy capture.

A bond graph model of the primary interface is shown in Fig. 16.

This constitutes the detail of the body in Figs. 7 and 11. A state-

space model is used to approximate the radiation convolution

term. The state-space model is represented by the element ABCD in

Fig. 16. It takes the body velocity as input and outputs the corre-

sponding radiation force. Identification of the state-space model is

done in the frequency domain following the algorithm detailed in

[28]. It has been shown that the model is highly efficient and

accurate [see, e.g. 29]. The I element represents the sum of the

structural inertia and the infinite-frequency added mass. The C

element represents the hydrostatic restoring force.

Simulations are carried out using a modelling and simulation

package [20]. The implicit Backward Euler method, which is suited
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Fig. 14. Wave energy transport for irregular plane progressive waves according to
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Table 1

Parameters used in numerical simulations.

Parameter Symbol Value Unit

Primary interface

Displaced volume Vol 681.374 m3

Infinite-frequency added mass mðNÞ 9.8 � 105 kgm2

Hydrostatic restoring coefficient Sb 2.4 � 107 Nm

Hydraulic piston

Piston mass mp 8.0 kg

Piston diameter Dp 0.3 m

Rod diameter Dr 0.05 m

Coulomb friction coefficient mc 0.04 e

Static friction coefficient mst 0.04 e

Viscous friction coefficient mv 5.0 m�1s

Characteristic Stribeck velocity vst 0.002 ms�1

Steepness of Coulomb friction curve s 1000 m�1s

Normal force Fn 10 N

Bulk modulus of hydraulic fluid B 1.6 � 109 Nm�2

Initial length of chamber 1 Lc01 3.0 m

Initial length of chamber 2 Lc02 3.0 m

Initial chamber pressure pc0 2.0 � 107 Nm�2

Pipes

Pipe total length L 2.0 m

Pipe diameter D 0.03 m

Fluid density r 865.0 kgm�3

Kinematic viscosity n 5.0 � 10�5 m2s�1

Check valves

Discharge coefficient Cd 0.9 e

Leakage area Amin 1.0 � 10�8 m2

Fully open area Amax 2.0 � 10�3 m2

Reference closed pressure pcl 1.0 Nm�2

Reference fully open pressure pop 8.0 � 104 Nm�2

High-pressure accumulator

Initial gas pressure ph0 3.0 � 107 Nm�2

Initial gas volume Vh0 9.0 m3

Specific heat ratio k 1.4 e

Low-pressure accumulator

Initial gas pressure pl0 1.0 � 107 Nm�2

Initial gas volume Vl0 3.0 m3

Hydraulic motor

Displacement per radian Vr 0.3 m3

Inclination angle a 30.0 deg

Inertia mm 10.0 kgm2
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for stiff systems, is used as the numerical integration method, with

a relative tolerance of 1.0 � 10�7. Step sizes of 2 � 10�3 s and

1 � 10�3 s are used for the 2-valve and the 4-valve systems,

respectively. The parameters used in the numerical simulations are

listed in Table 1. The same set of parameters are used for the two

hydraulic PTO designs to show how the two systems behave under

similar circumstances. The excitation force time series are gener-

ated before the simulation and stored as data files to be read during

the simulation. The excitation force time series are generated

following the method described in [29].
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Selected results from 600-s simulation of the pitchingWECS are

presented in Fig. 17 for the 2-valve system and in Fig. 18 for the 4-

valve system. The wave parameters are Tp ¼ 11 s and Hs ¼ 2 m.

The same wave realisation is used for both systems. The results are

for optimised linear generator load R and radius of gyration of the

primary interface r55 which give the largest amount of converted

energy during the 600 s. These optimised values together with the

amount of convertedenergy for Tp ¼ 7, 9, and11 s andHs ¼ 2mare

listed in Table 2 for the 2-valve system and in Table 3 for the 4-valve

system. It should be noted that for a given case the amount of con-

verted energy obtained using different wave realisationsmay differ,

but they should converge for a sufficiently long simulation. The 600-

s duration is not sufficiently long to give reliable estimates of the

converted energy; it is selected for comparison purposes only.

From the close agreement between the optimum amount of

converted energy obtained from the two systems (see Tables 2 and

3), the following is deduced. Given that the two systems have equal

losses, the amount of optimum converted energy obtained by the

two systems will be equal when the same optimising strategy is

used even if the details of the two systems are different. In the

present case, the parameters of the two systems have been set to

give approximately the same amount of major losses. The lower

amount of converted energy obtained by the 4-valve system is likely

due to largerminor losses arising for instance fromvalve leakages. It

is also interesting to note that while the optimum values of r55 are

similar for the two systems, the optimum values of R are lower for

the 4-valve system than those for the 2-valve system.

Referring again to Figs. 17 and 18, the distinct feature of the 4-

valve system as opposed to the 2-valve system is noticeable from

the plots of the accumulator pressures. For the 4-valve system there

are two oscillations of the accumulator pressure for each oscillation

of the primary interface, whereas for the 2-valve system there is

one oscillation of the accumulator pressure for each oscillation of

the primary interface. It is also apparent that pressure fluctuations

are larger for the 2-valve system than those for the 4-valve system.

The 4-valve system is probably the better option if minimising

pressure fluctuations is one of the primary interests. Numerical

experimentations also reveal that further smoothing of the con-

verted power may be obtained by increasing the accumulator

volumes and/or the motor inertia.

4. Conclusions

This article demonstrates the virtue of bond graph modelling as

being graphical, modular, and domain-independent, by considering

two alternative hydraulic PTO system designs obtained by first

considering the subsystems/components separately and then

assembling them in different manners. The first design uses

a single-acting hydraulic piston and two check valves. The second

uses a double-acting hydraulic piston and four check valves. These

hydraulic system models can then be connected to bond graph

models of various primary interface designs (single-body or multi-

body in terms of configuration, or heaving, pitching, etc. in terms of

modes of motion) to form different models of wave energy

conversion systems with hydraulic PTO.

Illustrative numerical results of the two hydraulic PTO designs

have been presented for a shallow-water device where the primary

interface resembles the Edinburgh Duck, constrained to move in

pitch about a fixed axis. These results include the variations with

time of body displacements, accumulator pressures, and converted

power in irregular waves, for optimised generator load and radius

of gyration of the primary interface. In addition, we have suggested

how to model in terms of bond graph the dynamics of a platform

and multiple buoys, each connected to a hydraulic PTO system.

It is our belief that in view of themultidisciplinary nature of wave

energy research, bondgraphcould serve as avaluable tool inassessing

the system behaviour of various wave energy conversion concepts.

Furthermore, bond graph could behelpful indevising small-scale PTO

simulators for the purpose of small-scale model testing.
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Abstract—Time-domain models are necessary for the analysis
of wave energy conversion systems, due to the presence of
nonlinearities which may not be neglected for accurate prediction
of their performance and behaviour. Such nonlinearities are
contributed in varying degrees by drag, Coulomb friction, fluid
compressibility, and also control mechanism. In time-domain, the
equations of motion for the system will contain hydrodynamic
radiation terms expressed as convolution integrals due to the fre-
quency dependence of the radiation coefficients. The evaluation of
the convolution integral is time-consuming and is difficult to carry
out by standard adaptive solvers. Hence, various approximations
to the convolution integral have been proposed to avoid these
problems. The purpose of this study is to systematically assess
the quality of some selected time-domain models. Generic models
of wave energy conversion systems will be developed, with the
possibility of varying the relative importance of the nonlinear
terms. The time-domain models are categorised according to the
convolution approximation and the numerical integration method
used. Selected assessment criteria include computation time as
well as the statistics of device motions and converted power. A
model is always a trade-off between efficiency and accuracy. It is
hoped that this study will provide some guidelines in the choice
of time-domain models suitable for simulation of wave energy
conversion systems.

Index Terms—wave energy, time-domain simulation, bond
graph

I. INTRODUCTION

The need for time-domain models for the simulation of wave

energy conversion systems (WECSs) has been recognised as

early as late 1970s [1]. Time-domain approach is necessary

because WECSs contain substantial degree of nonlinearities,

arising mainly from the power take-off system and control

mechanism. The common way to formulate a time-domain

model is to use integro-differential equations of motion which

contain convolution integrals representing the wave radiation

force [2], [3]. The convolution integral account for the system

memory, signifying the fact that waves radiated by the body

in the past continue to affect the body force for all subsequent

times [4], [5]. The kernel of the integral is an impulse

response function (IRF) also known as the retardation function,

which is related to the frequency-dependent hydrodynamic

radiation coefficients by Fourier transforms. When the system

is nonlinear, this integral is necessary even when the incident

waves are monochromatic, as shown in [4].

In time-domain simulations, evaluation of the convolution

integral is known to be time-consuming and difficult to carry

out with standard adaptive time-stepping solvers. The reason is

that one usually has to store discrete values of the IRF sampled

at every simulation time step for the whole simulation time

length, and one has to re-evaluate the convolution integral at

every time step. It is obvious that for a multiple-degree-of-

freedom system, which contains a number of these integrals,

the computational effort can be tremendous. To avoid this

difficulty, a set of coupled linear ordinary differential equations

has been proposed as an approximate replacement for the

convolution integral, first probably by Jefferys [1] in wave en-

ergy context. This so-called state-space representation is more

efficient due to its Markovian property: at any instant, the value

of the state summarises all the past system information [6].

The need to store a large amount of data and re-evaluate the

integral at every time step is therefore eliminated.

Different approaches have been proposed in the literature to

identify this state-space radiation force model, and have been

summarized recently in [6]. Each of these approaches belongs

to either time-domain or frequency-domain identification. In

time-domain identification the state-space model is obtained

from the corresponding radiation IRF, whereas in frequency-

domain identification the state-space model is obtained from

the corresponding radiation data in frequency domain.

To assess the quality of these state-space models, one may

compare the steady-state responses of a linear system obtained

from such models against those from a frequency-domain

model. This was done by Jefferys [7], who compared the

velocity and power obtained from a state-space model by

frequency-domain identification with those from a frequency-

domain model, over a range of wave periods. Taghipour

et al. [8] compared the displacements from two state-space

models, one by time-domain identification and the other by

frequency-domain identification, with those from a frequency-

domain model. Perez and Fossen [6] later made similar

comparisons of the force-displacement frequency response

functions (FRFs) obtained from the three models. One may

also compare the transient responses obtained from the state-

space models with those from a direct convolution integra-

tion (without convolution replacement). Considering a linear

system, Taghipour et al. [8] compared the displacements in

calm water after an initial displacement obtained from the two

state-space models and from direct convolution integration.

Also, considering a nonlinear system, Jefferys [7] compared

the mean power and mean square velocity in a given sea

state obtained from a state-space model by frequency-domain



identification, with those obtained from direct convolution

integration. Common to all these studies was the considerable

saving of computation time resulting from the use of state-

space model as opposed to direct convolution integration.

The purpose of this study is to complement those previous

works by supplying a more systematic comparison of some

selected time-domain models of WECSs. To achieve this

purpose, generic models of WECSs are developed, with the

possibility of varying the relative importance of their nonlinear

terms. Hydrodynamic data are computed from some simple

geometries. The time-domain models to be compared are

categorised according to the convolution approximation and

the numerical integration method used. For the state-space

approximations, we will focus on state-space models obtained

by frequency-domain identification, with different orders of

approximation. Comparisons will be made of response in

monochromatic waves and response in polychromatic waves.

The assessment criteria include computation time, statistics of

device motions, and statistics of converted power. A similar

study with relevant discussions has been presented by Ricci et

al. [9]. The main difference between our study and theirs is

that we consider more generic models with variable nonlinear

terms, to allow for a more systematic study of the various

effects. Moreover, they considered time-domain identification

whereas we consider frequency-domain identification for the

state-space models.

II. GENERIC MODELS OF WAVE ENERGY CONVERSION

SYSTEMS

We first develop generic models of a selection of WECSs

in the bond graph framework [10]. These are thought to

represent most wave energy conversion concepts available to

date. For all these models, we assume a linear load resistance.

Each model contains nonlinear terms. The effects of varying

the degrees of nonlinearity of these nonlinear terms will be

examined for each model.

A. Floating oscillating water column

We consider firstly a floating oscillating water column

(OWC) wave energy device, restricted to move only in one

degree of freedom. A bond graph model of such system is

shown in Fig. 1, with the following main characteristics. The

force balance on the OWC body is represented by the bonds

connected to the 1-junction on the upper left. The volume

flow balance in the OWC chamber is represented by the

bonds connected to the 0-junction on the bottom left. The

coupling between the body velocity and the chamber pressure

is represented by the TF element connecting the 0-junction

to the 1-junction. The TF element to the right of the first 1-

junction carries out the transformation between force-velocity

and pressure-volume flow. The 0-junction on the right connects

1- and 0-junctions on the left, signifying that the volume

flow relative to the body is utilised for power absorption. The

circle labelled P connected to the load resistance is a power

sensor. The nonlinear terms in the model are the Coulomb

and quadratic damping forces on the body, the volume flow
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Fig. 1. Bond graph model of a floating oscillating water column wave energy
device restricted to move only in one degree of freedom.

due to air compressibility in the chamber, and the volume

flow through the relief valve. All other terms are assumed to

be linear. The coupled equations of motion for this device in

time domain can be written as

Fe(t) = [mm +m(∞)]u̇(t) + k(t) ∗ u(t)− C(∞)p(t)

− h(t) ∗ p(t) + (Sb + S)s(t) +RC sgnu(t)

+Rqu(t)|u(t)| − rp(t)

(1)

Qe(t) = y(t) ∗ p(t) + C(∞)u(t) + h(t) ∗ u(t)
+Qv(t) +Qc(t) + ru(t) + (Re + 1/Ru) p(t),

(2)

where Fe(t) is the wave excitation force, mm is the inertia

of the body, m(∞) is the infinite-frequency added mass,

u(t) is the body velocity, k(t) is the radiation IRF, C(∞)
is the real part of the radiation coupling coefficient H(ω) at

infinite frequency (see [11]), h(t) is the radiation coupling IRF,

p(t) is the chamber pressure, Sb is the hydrostatic stiffness,

S is the external stiffness, s(t) is the body displacement,

RC is the Coulomb damping coefficient, Rq is the quadratic

damping coefficient, r is some transformation factor, Qe(t) is

the excitation volume flow, y(t) is the radiation admittance

IRF, Qv(t) is the volume flow through the relief valve, Qc(t)
is the volume flow due to air compressibility, Re is the external

damping coefficient, and Ru is the load resistance.

The flow Qv(t) through the relief valve depends on the

pressure difference across the valve:

Qv(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(t)

pcl
Qcl if |p(t)| < pcl

sgn p(t)

[
Qcl +

|p(t)| − pcl
pop − pcl

(Qop −Qcl)

]
if pcl ≤ |p(t)| ≤ pop

CdAmax

√
2

ρa
|p(t)| sgn p(t) if |p(t)| > pop ,

(3)
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Fig. 2. Bond graph model of a fixed oscillating water column wave energy
device.

where

Qcl = CdAmin

√
2

ρa
pcl (4)

Qop = CdAmax

√
2

ρa
pop . (5)

In the above, Cd is the discharge coefficient, ρa is the air

density, Amin is the leakage area, while Amax is the fully open

flow area. The pressures pcl and pop are reference pressures

for the closing and opening of the valve. The valve is closed

if |p| < pcl, and is fully open if |p| > pop. To be realistic,

the leakage area Amin is introduced to allow possible leakage

when the valve is closed.

The air compressibility in the chamber can be modelled

according to this nonlinear relationship:

p0 + p = p0

(
V0

V0 −ΔV

)γ

, (6)

where p0 is the atmospheric pressure and V0 is the average air

volume in the chamber. The volume change due to compress-

ibility is denoted by ΔV =
∫ t

0
Qc(t)dt. The specific heat ratio

γ depends on whether the expansion and compression occur

rapidly or slowly. The value γ = 1.4 is usually adopted.

B. Fixed oscillating water column

The second device we consider is a fixed OWC. A bond

graph of this type of device is shown in Fig. 2. We have

intentionally maintained the layout of the bond graph for the

floating OWC in Fig. 1 to show that the bond graph for a fixed

OWC is a subset of the former. Since there is no coupling with

the body motions, the bond graph structure representing the

body dynamics is removed. The nonlinear terms in the model

are the volume flow due to air compressibility and the volume

flow through the relief valve. The equation of motion for this

device can be written as

Qe(t) = y(t)∗p(t)+Qv(t)+Qc(t)+(Re + 1/Ru) p(t), (7)

using the same notations as for the floating OWC (Sec-

tion II-A).
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Fig. 3. Bond graph model of an oscillating single-body wave energy device
restricted to move only in one degree of freedom.

C. Oscillating single body

Lastly, we consider an oscillating single-body wave energy

device, restricted to move only in one degree of freedom. A

bond graph of this type of device is shown in Fig. 3. Again,

we have shown that the bond graph for an oscillating single-

body wave energy device is a subset of that for the floating

OWC. The TF element in the model is some transformation

from one energy domain to another. The nonlinear terms in

the model are the Coulomb and quadratic damping forces. The

equation of motion for this device can be written as

Fe(t) = [mm +m(∞)]u̇(t) + k(t) ∗ u(t) + (Sb + S)s(t)

+RC sgnu(t) +Rqu(t)|u(t)|+ rRuu(t).
(8)

III. COMPUTATION OF HYDRODYNAMIC PARAMETERS

A. Body geometries

For the fixed and floating OWC device we consider a

vertical square cylinder with a square moonpool in the centre.

The cylinder is 10 m by 10 m, the moonpool is 5 m by 5 m,

and the draft is 5 m. For the floating OWC, the cylinder is

restricted to move only in heave. The incident wave is assumed

to propagate in the direction normal to any of the cylinder side

walls.

For the oscillating single-body device we consider a ge-

ometry similar to the Edinburgh duck [12]. It is a horizontal

cylindrical body with a cross section formed by a combination

of a semicircle and a right triangle meeting at 30 degree angle.

The body is free to move only in rotation about the axis

passing through the centre of the arc. The arc centre is located

1.5 m below the water line and the arc radius is 3 m, making

a draft of 4.5 m, while its length (measured along the rotation

axis) is 8 m. The incident wave is assumed to propagate in

the direction perpendicular to the rotation axis.

Three-dimensional views of the submerged body geometries

are shown in Fig. 4.

B. Computation in frequency domain

The computation of the frequency-domain hydrodynamic

parameters is carried out using a three-dimensional higher-

order panel method [13]. For all computations, infinite water



Fig. 4. Three-dimensional views of the submerged body geometries of the
oscillating single-body device (left) and the OWC device (right).

depth is assumed. Computations are performed for wave

frequencies from 0 to 6 rad/s, in interval of 0.05 rad/s, and

also for the infinite-frequency limit. As the wave frequency

increases, greater number of panels is required for conver-

gence, and the computational burden at the same time in-

creases. A panel subdivision is chosen which gives converged

results up to a certain cut-off frequency. Beyond the cut-off

frequency, the computed hydrodynamic parameters start to

fluctuate around the correct values. For accurate evaluation

of the radiation impulse response function (to be discussed in

the next section), there is a need to have hydrodynamic data

for high frequencies. For this purpose, the values for wave

frequencies above the cut-off frequency are approximated by

extrapolation using a fitting function fitted to the tail of the

data. Given the fact that fitting is done in the least-squares

sense, although values computed beyond the cut-off frequency

for the chosen panel subdivision are inaccurate, but since they

fluctuate around the correct values, they are useful for the

fitting. Several fitting functions are tested, and exponential

function in the form of a exp(bω)+c exp(dω) is found to yield

the best fit. Fig. 5 shows the added mass and radiation damping

of the oscillating body. Fig. 6 shows the added mass, radiation

damping, and the parameters G(ω) = �{Y (ω)}, B(ω) =
�{Y (ω)}, C(ω) = �{H(ω)}, and J(ω) = �{H(ω)} of

the OWC. Definitions of the parameters G, B, C, J and

the procedures to derive them are given in [14]. However,

instead of using relation (11) in [14], here we use the following

relation to derive B(ω):

B(ω) = −
∫ ∞

0

y(t) sin(ωt)dt, (9)

where

y(t) =
2

π

∫ ∞

0

G(ω) cos(ωt)dω. (10)

Also, C(ω) is obtained as follows:

C(ω) = C(∞) +

∫ ∞

0

h(t) cos(ωt)dt, (11)

where

h(t) = − 2

π

∫ ∞

0

J(ω) sin(ωt)dω. (12)
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Fig. 5. Added mass (top) and radiation damping (bottom) of the oscillating
body in pitch. The dashed lines are the extrapolated data. The horizontal line
in the added mass plot is the infinite-frequency added mass.

Here any integration over the interior free surface is approxi-

mated by a sum over 100 field points with uniform spacings

on the interior free surface. Any integration from β = 0
to 2π, where β is the incident wave propagation angle, is

approximated by a sum over a discrete set of incident wave

propagation angles with uniform interval of 5 degrees.

C. Impulse response functions

For direct convolution integration, which is described in

Section IV-A, it is essential to have an accurate IRF for

each mode of motion. The IRFs can be evaluated directly by

solving the time-domain boundary value problem or indirectly

from the frequency-domain data. Here we will discuss the

latter option since softwares which solve the boundary value

problem in time domain are less widely known than those

which solve the problem in frequency domain.

For an oscillating body, the radiation IRF for a given degree

of freedom can be obtained from the corresponding frequency-

domain data as follows (see, e.g. [15]):

k(t) =
2

π

∫ ∞

0

R(ω) cos(ωt)dω, (13)

where R(ω) is the radiation damping, or, alternatively,

k(t) = − 2

π

∫ ∞

0

ω[m(ω)−m(∞)] sin(ωt)dω, (14)

where m(ω) is the added mass. For an OWC, the radiation

admittance IRF y(t) and the radiation coupling IRF h(t) can

be obtained similarly (see (10) and (12)).

For most body geometries, the hydrodynamic data are not

available in analytical forms, and are normally evaluated by

a numerical panel method. The integration in (13) or (14)

then has to be evaluated numerically over a finite frequency

range. This presents a challenge for accurate evaluation of IRF
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Fig. 6. Top to bottom: added mass, radiation damping, and parameters G,
B, C, J of the OWC. Horizontal lines are infinite-frequency values.

from frequency-domain data. The necessity of a high enough

upper truncation limit of integration has been highlighted by

several authors [5]–[7], [16], [17]. Low truncation frequency

is known to result in inaccuracies in the evaluated IRF.

To obtain hydrodynamic data at high frequencies by panel

methods, however, would require very small panels, which is

not practical. High-frequency values should be obtained by

other means. One way to do this is by extrapolation using a

fitting function to fit the tail of the data. We use this approach

in our study, where an exponential function is used for the

fitting. Trapezoidal integration method is used to evaluate

the integral, where finer frequency resolution is obtained by

interpolation.

The radiation IRF of the oscillating body evaluated us-

ing (13), the radiation admittance IRF y(t) of the OWC, and

the radiation coupling IRF h(t) of the floating OWC are shown

in Fig. 7. In contrast to the radiation IRF of the oscillating

body, the radiation IRFs of the OWC decay very slowly due to

the narrow bandwidth of the corresponding frequency-domain

parameters. This behaviour has been reported, e.g. in [18].

Fig. 8 shows comparisons of the convolution terms k(t)∗u(t)
of the oscillating body, k(t)∗u(t), y(t)∗p(t), and h(t)∗u(t) of

the OWC with their respective frequency-domain equivalents

for given u(t) and p(t). The very good agreement verifies the

accuracy of our method. Improved agreement may be obtained

by using finer frequency resolution for the computation of the

hydrodynamic parameters.

IV. TIME-DOMAIN MODELS

We compare three categories of time-domain models,

namely the direct convolution integration model, the constant

hydrodynamic parameter model, and the state-space model.

A. Direct convolution integration

In the direct convolution integration model the convolution

terms in the equations of motion are not replaced by any

approximations and are integrated directly at each time step.

This requires, firstly, precomputation of the IRF values at

specified time intervals, where linear interpolation is used if

the simulation time step is shorter, and, secondly, storage of

past response (velocity and/or pressure). With accurate IRFs

and sufficiently small simulation time step, a direct convolu-

tion integration model should give accurate simulation results

despite the considerable computational burden involved.

B. Constant hydrodynamic coefficients

In the constant hydrodynamic coefficient model the

frequency-dependent coefficients are replaced by constant co-

efficients, whose values are taken to be those at the wave

spectral peak frequency ωp.

The equation of motion for the oscillating single body then

becomes

Fe(t) = [mm +m(ωp)]u̇(t) +R(ωp)u(t)

+ (Sb + S)s(t) +RC sgnu(t) +Rqu(t)|u(t)|
+ rRuu(t),

(15)
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Fig. 7. Top to bottom: radiation IRF of the oscillating body, and radiation
IRF, radiation admittance IRF, and radiation coupling IRF of the OWC.

the equation of motion for the fixed OWC becomes

Qe(t) = G(ωp)p(t) +B′(ωp)

∫ t

0

p(t)dt

+Qv(t) +Qc(t) + (Re + 1/Ru) p(t),

(16)

and the equations of motion for the floating OWC become

Fe(t) = [mm +m(ωp)]u̇(t) +R(ωp)u(t)

− C(ωp)p(t)− J ′(ωp)ṗ(t) + (Sb + S)s(t)

+RC sgnu(t) +Rqu(t)|u(t)| − rp(t)

(17)

Qe(t) = G(ωp)p(t) +B′(ωp)

∫ t

0

p(t)dt

+ C(ωp)u(t) + J ′(ωp)u̇(t) +Qv(t) +Qc(t)

+ ru(t) + (Re + 1/Ru) p(t).

(18)

In the above, J ′ = J/ω and B′ = −ωB.
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comparison of k(t) ∗ u(t) of the oscillating body, k(t) ∗ u(t), y(t) ∗ p(t),
and h(t) ∗ u(t) of the OWC. For the OWC, the early, transient, parts have
been removed for clarity.

C. State-space representation

In the state-space model the convolution term

μ(t) = k(t) ∗ u(t) =
∫ t

0

k(t− τ)u(τ)dτ (19)

is replaced by a set of coupled linear ordinary differential

equations, which may be expressed in matrix form (see,

e.g. [19]):

ẋ(t) = Âx(t) + B̂u(t) (20)

μ̂(t) = Ĉx(t) (21)

where x(t) is the state vector, the number of components

of which corresponds to the order of the state-space model,



and Â, B̂, Ĉ are constant matrices. We use the frequency-

domain identification approach following the algorithm de-

tailed in [19], [20]. As mentioned earlier, the method uses

frequency-domain hydrodynamic data for identification. The

approach is to fit a rational transfer function

K̂(s) =
P (s)

Q(s)
=

prs
r + pr−1s

r−1 + . . .+ p0
sn + qn−1sn−1 + . . .+ q0

, (22)

where s = iω, to the FRF K(ω), Y (ω), or H(ω) depending on

the problem considered. Further constraints on the model have

been derived in [6] based on the properties of the FRF and its

corresponding IRF. A least-squares fitting method is applied to

find the coefficients pi and qi, and once the coefficients pi and

qi are obtained, the matrices Â, B̂, and Ĉ can be constructed

using any of the standard canonical forms. We will examine

the use of different model orders, starting from a minimum

order of 2.

V. SIMULATION

A. Excitation force and excitation volume flow

Comparisons will be made of the different models under

both monochromatic wave and polychromatic wave excita-

tions. The excitation force and/or excitation volume flow time

series are generated before the simulation and stored as data

files to be read during the simulation. The generation of

excitation force and/or excitation volume flow time series in

monochromatic waves is straightforward. For polychromatic

waves, the method is described as follows.

First, we obtain the spectral density of the excitation force

(likewise for the excitation volume flow):

SFe(ω) = |fe(ω)|2S(ω), (23)

where fe(ω) is the computed complex excitation force for a

unit incident wave and S(ω) is the given wave spectrum. We

use a JONSWAP spectrum with peakedness parameter of 3 in

our simulations. The excitation force is then given as

Fe(t) =

N/2∑
n=0

(an cosφn + bn sinφn) cosωnt

+

N/2∑
n=0

(−an sinφn + bn cosφn) sinωnt,

(24)

where an and bn are generated from a Gaussian distribution

with variance SFe
(ωn)Δω [21]. Here, N is the number of

values in the time series, determined by the required length of

the series T and the time interval between values Δt. Also,

ωn = nΔω, where Δω = 2π/T . In addition, φn is the phase

(in radians) of fe(ωn). Values of ωn may be larger than the

largest frequency for which fe is computed. Modulus and

phase of fe for these frequencies may therefore be extrapolated

separately using fitting functions as in the extrapolation of

added mass and radiation damping data. For the modulus, an

exponential function in the form of a exp(bω) + c exp(dω) is

used, while for the phase, a power function in the form of aωb

is used. The necessity of having accurate fe values beyond 6

rad/s, however, is of lower importance in this case because

typical wave spectra have negligible values beyond 6 rad/s.

Thus, it may be practical to even assume zero values for fe
beyond 6 rad/s.

The sum in Eqn. (24) may be identically evaluated by an

inverse Fast Fourier Transform at a fraction of computer time.

This is implemented in our simulation. The initial part of the

resulting time series is filtered by a cosine taper window so

as to avoid exciting any lightly damped modes in the system.

B. Integration methods

For the direct convolution integration model, simulations

are carried out with fixed time step. We compare different

time integration methods and examine the effect of different

time steps on accuracy and efficiency. The methods compared

are the Euler’s method (ode1), the improved Euler’s (Heun’s)

method (ode2), Runge-Kutta 3 (ode3), and Runge-Kutta 4

(ode4) methods. Simulations for the direct convolution inte-

gration model are carried out using a computing package [22].

For the constant coefficient and the state-space models, an

adaptive Runge-Kutta-Fehlberg solver is used for the oscillat-

ing body device, while an adaptive Vode Adams solver is used

for the OWC device. Whenever the adaptive methods are not

successful, the fixed step solvers are used. Both the absolute

and relative integration error tolerances are set to 1 × 10−7.

Simulations for the constant coefficient and state-space models

are carried out using a modelling and simulation package [23].

All simulations are run in a 2.53 GHz, 2.96 GB RAM CPU.

C. Treatment of Coulomb damping

In the simulations, Coulomb damping force is modelled as

follows:

FC(ti) =

⎧⎨
⎩

RC

uC
u(ti) if − uC < u(ti) < uC

RC sgnu(ti) otherwise
, (25)

where uC is a small velocity threshold. We choose uC =
4 × 10−4 rad/s for the oscillating body and uC = 4 × 10−4

m/s for the floating OWC.

VI. RESULTS AND DISCUSSIONS

For each device, we compare responses obtained from

the different time-domain models under monochromatic and

polychromatic wave excitations. We compare both the case

where all nonlinear terms are set to zero and the case where

the nonlinear terms are varied. For the former, responses are

compared to those from the frequency-domain model, and we

measure the error (in %) which is defined as

eFD = 100
|û− uFD|
|uFD| , (26)

where û is the complex body velocity obtained from state-

space or direct convolution model and uFD is the complex

body velocity obtained from frequency-domain model.



For the latter, the assessed response is compared to the ‘true’

response, and we assess the error (in %) which is defined as

e =
100

N

N∑
i=1

|q̂(ti)− q(ti)|
|max q(ti)| , (27)

where q̂(ti) and q(ti) are the instantaneous assessed response

and the ‘true’ response, respectively, at time i. The response

q(t) can be the converted power, the body velocity for the

oscillating body device, or the chamber pressure for OWC

devices. The ‘true’ response is defined as the converged

response obtained from direct convolution integration using

sufficiently small simulation time step. When nonlinear terms

are zero, expression (27) is approximately equivalent to (26).

For comparisons in polychromatic waves, in addition to

comparing instantaneous values of power, velocity, and/or

pressure, we also compare the maximum and mean values

of converted power, as well as the root mean square velocity

and/or pressure.

A. Oscillating single body

Fig. 9 compares the body velocity obtained from state-space

and frequency-domain models of the oscillating single-body

device when the external stiffness S is set to 100 Nm, the

transformation factor r is set to 1, the load resistance Ru is set

to 6×105 kg m2 s−1, and the nonlinear terms are set to zero.

The wave amplitude is 1 m. Four different state-space model

orders are compared: 2, 3, 4, and 7. From the figures we see

that increasing model order improves the model accuracy for

the range of wave frequencies considered. For this particular

case, however, a model order even as low as 3 keeps the error

within 2% and increasing the model order up to 7 does not

improve the accuracy significantly. It should be noted that the

error for a given model order is dependent on the specified

tolerance in the adaptive solver. The purpose of the comparison

is to give an indication of how the different model orders

perform relative to one another.

Fig. 10 compares the performance of different time integra-

tion methods in the direct convolution integration model of the

oscillating single-body device for the same set of parameters.

The top figure compares the time step required for each time-

integration method to keep the error defined in (26) within

2%. Our assumption is that the error increases with time

step length. The bottom figure compares the computation time

(averaged from three runs) required for 200-second simulation

using the time steps of the top figure. In general, shorter

time steps are required for smaller wave periods to keep the

same degree of accuracy. The Euler’s (ode1) method requires

much longer computation time than that of the other methods

for smaller wave periods. The performance of the improved

Euler’s (Heun’s) method (ode2), Runge-Kutta 3 (ode3), and

Runge-Kutta 4 (ode4) methods are comparable, with ode4

being the best performing method for smaller wave periods

and ode3 for larger wave periods.

To give an idea of how a state-space model compares with

the direct convolution integration model in terms of efficiency,
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Fig. 9. Comparison of state-space (SS) models of different orders against
frequency domain (FD) model of the oscillating body for Ru = 6× 105 kg
m2 s−1: velocity amplitude (top), velocity phase (middle), and error (bottom).
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Fig. 11. Comparison of third order state-space model (SS3) and direct
convolution integration model using a Runge-Kutta 4 (ode4) solver for the
oscillating body for Ru = 6× 105 kg m2 s−1.

we perform simulations of both models—still with nonlinear

terms set to zero—using the same fixed step solver (Runge-

Kutta 4) with the same time step and implemented in the

same computing package [22]. An order of 3 is used for the

state-space model. The result is shown in Fig. 11. We see that

the computation time for the state-space model varies linearly

with the simulation length, while for the direct convolution

integration model it varies as a quadratic function of the

simulation length. A simple explanation to this is the fact

that for a direct convolution integration model the number of

computations to be performed at every time step corresponds

to the simulation length or the number of time steps up

to that time. This means that the number of computations

to be performed at every time step grows as an arithmetic

progression. The total computation time then is proportional

to the sum of this series. On the other hand, for a state-space

model the number of computations to be performed at every

time step is constant so that the total computation time is just

proportional to the number of time steps or the simulation

length.

Now we consider cases where nonlinearities are introduced.

We first present results from monochromatic wave excita-

tions, and then from polychromatic wave excitations. For the

monochromatic case, we consider a wave period T of 8 s. The

load resistance Ru is set to 5×104 kg m2 s−1. The simulation

length is 100 s. For the oscillating body, the nonlinear terms

we have included in the model are the Coulomb and quadratic

damping forces. Table I compares the error in velocity and

power (according to (27)) from the direct convolution inte-

gration model with different time integration methods (ode2,

ode3, and ode4), for different values of Coulomb damping,

while the quadratic damping Rq is set to zero. We see that

the larger the Coulomb damping, the larger is the error for a

given integration method and time step. This implies that the

introduction of Coulomb damping carries with it a requirement

for shorter time step to achieve the same degree of accuracy.

Also, all the three integration methods exhibit similar order

of accuracy, with ode4 generally being the most accurate,

followed by ode3 and ode2. It should be noted however that

for the same time step, ode4 requires a longer computation

time than the other two methods. For instance, for the same

time step of 0.01 s, we note that ode4 requires approximately

TABLE I
VELOCITY (POWER) ERROR IN % FOR THE DIRECT CONVOLUTION

INTEGRATION MODEL OF THE OSCILLATING SINGLE-BODY DEVICE. T = 8
S, Ru = 5× 104 KG M2 S−1 , Rq = 0

RC [kg m2 s−1]

time step [s] 2× 104 8× 104 15× 104

ode2 0.01 0.06 (0.07) 0.27 (0.09) 0.68 (0.16)

0.05 0.38 (0.35) 1.92 (0.99) 3.99 (1.32)

0.1 0.95 (0.87) 2.89 (0.67) 8.15 (3.15)

ode3 0.01 0.06 (0.08) 0.25 (0.18) 0.45 (0.19)

0.05 0.38 (0.40) 1.28 (0.65) 2.97 (1.23)

0.1 0.80 (0.77) 1.93 (0.87) 7.14 (3.86)

ode4 0.01 0.04 (0.06) 0.19 (0.09) 0.40 (0.12)

0.05 0.26 (0.28) 1.00 (0.35) 2.91 (1.17)

0.1 0.60 (0.53) 2.12 (0.96) 5.80 (2.39)

35 s to complete a 100-second simulation length, while ode3

requires approximately 25 s and ode2 requires only 17 s.

With state-space model, simulation using adaptive time step

solvers can be done with ease. The performance of state-

space and constant-coefficient models simulated with adaptive

time step solver (see Section V-B above) for the same set

of parameters is summarized in Table II. For the state-space

models, increasing the model order improves the accuracy of

the solutions although the lowest model order of 2 already

gives very good accuracy. The low percentage of errors also

confirms the excellent agreement between state-space and

direct convolution integration models when Coulomb damping

is introduced. Moreover, we note the following: (1) longer

computation time is required for larger Coulomb damping to

meet the same error tolerance, (2) increasing the model order

improves the accuracy and has little effect on the computation

time, and (3) overall, the required computation time is much

less than that required by the direct convolution models to

achieve similar degree of accuracy.

The constant-coefficient model, on the other hand, requires

the least computation time—although still comparable to that

of the state-space model—but has larger errors. And this is

so even for monochromatic wave excitation considered here,

as already pointed out in [4]. With larger Coulomb damping,

however, the error reduces. This may be surprising at first, but

it can be explained by the fact that as other forces begin to

dominate, the radiation force becomes relatively less important

so that a constant-coefficient model of the radiation force

provides an acceptable approximation [24].

The effect of quadratic damping, as it turns out, is not as

significant as that of Coulomb damping, as shown in Table III,

where now RC = 0. For the direct convolution integration

models we use a time step of 0.1 s as this is comparable with

the state-space and constant coefficient models in terms of

computation time. Compared to the previous case of increasing

Coulomb damping, increasing quadratic damping does not

introduce significantly larger errors. Also, the errors for the



TABLE II
VELOCITY (POWER) ERROR IN % FOR THE STATE-SPACE AND

CONSTANT-COEFFICIENT MODELS OF THE OSCILLATING SINGLE-BODY

DEVICE. T = 8 S, Ru = 5× 104 KG M2 S−1 , Rq = 0

RC [kg m2 s−1]

2× 104 8× 104 15× 104

SS2 0.48 (0.47) 0.34 (0.26) 0.22 (0.18)

SS3 0.10 (0.12) 0.20 (0.19) 0.14 (0.13)

SS4 0.08 (0.11) 0.19 (0.19) 0.14 (0.13)

SS7 0.03 (0.04) 0.03 (0.04) 0.03 (0.04)

constant coeffs. 19.04 (22.68) 10.72 (11.80) 6.52 (7.88)

TABLE III
VELOCITY (POWER) ERROR IN % FOR THE OSCILLATING SINGLE-BODY

DEVICE. T = 8 S, Ru = 5× 104 KG M2 S−1 , RC = 0

Rq [kg m2]

2× 104 15× 104 5× 105

ode2 Δt = 0.1 s 0.58 (0.57) 0.58 (0.57) 0.59 (0.58)

ode3 Δt = 0.1 s 0.11 (0.11) 0.11 (0.11) 0.11 (0.12)

ode4 Δt = 0.1 s 0.14 (0.17) 0.15 (0.18) 0.16 (0.20)

SS3 0.03 (0.03) 0.03 (0.03) 0.03 (0.03)

constant coeffs. 0.27 (0.29) 1.07 (1.34) 2.31 (3.04)

constant-coefficient model are shown to be small.

We shall now move on to polychromatic wave excitations.

We consider two spectral peak periods Tp = 5 and 8 s, and

significant wave height Hs = 2 m. The simulation length

is 100 s. The load resistance Ru is set to 5 × 104 kg m2

s−1. The result is shown in Table IV. Two combinations of

RC and Rq are considered. We compare the velocity and

power errors calculated according to (27), as well as the

errors in mean power, maximum power, and root mean square

velocity. These are listed in sequence in the table. For the

direct convolution integration model, a time step of 0.1 s is

used for all the fixed step solvers (ode 2 to 4). From the table

we see that among the fixed step solvers, ode4 is generally the

most accurate for the same time step, followed by ode2 and

ode3. It is worth noting that this is somewhat different from

the monochromatic case, with ode2 generally being the least

accurate. As in the monochromatic case, the state-space model

proves to be superior both in terms of accuracy and efficiency.

The performance of constant-coefficient model is significantly

poorer than the other models. For cases with higher load

resistance (not shown here), however, the constant-coefficient

model has smaller errors for the reason given previously.

B. Fixed oscillating water column

For the fixed OWC, the nonlinear terms we have included

are the terms associated with air compressibility and relief

valve charateristics. For brevity, we only present comparisons

for polychromatic case, with Tp = 5 and 8 s, and significant

wave height Hs = 2 m. We set Ru = 0.9 kg m−4 s−1 and

Re = 1 m4 s kg−1. The result is shown in Table V. Two

combinations of parameters pcl, pop, and V0 are considered,

as shown in the table. We compare the pressure and power

errors calculated from (27), and also the errors in mean power,

maximum power, and root mean square pressure.

The fixed OWC model exhibits stiff dynamics arising

mainly from the air compressibility relationship (6). Thus,

for the direct convolution integration model, very small time

step is necessary to achieve stability of the numerical solution.

Even smaller time step is required for the second combination

of pcl, pop, and V0 as the response exhibits Coulomb-type

nonlinearity due to the operation of the relief valve. For this

reason we do not investigate the effects of step size for the

direct convolution integration model. It may be possible to use

more sophisticated implicit fixed step solvers more suited for

stiff problems, but this is beyond the scope of this study.

From the table we see that the state-space models give very

good results. Nearly perfect accuracy is obtained by a model

order of 4, whereas a model order of 2 already gives excellent

accuracy. The constant-coefficient model is shown to have

relatively good performance, probably because the radiation

admittance has small values relative to 1/Ru and Re. We may

expect poorer accuracy for larger Ru and smaller Re.

C. Floating oscillating water column

When the floating OWC is considered, four convolution

terms are present (see (1) and (2)). Thus we expect the

computational burden to be multiplied. For the state-space

model, different orders are used for the various convolution

terms. We consider two set of model orders, one with model

orders of 4, 2, and 3 for the radiation, radiation admittance,

and radiation coupling terms, respectively, and the other with

model orders of 6, 4, and 5. We call the former SSlow and

the latter SShigh. In addition, all four nonlinear terms are

present, namely the Coulomb and quadratic damping terms,

as well as the terms related to air compressibility and relief

valve operation. As in the fixed OWC, we only consider the

polychromatic case, with Tp = 5 and 8 s, and significant wave

height Hs = 2 m. We set Ru = 0.9 kg m−4 s−1, Re = 1 m4 s

kg−1, pcl = 40 Pa, pop = 41 Pa, V0 = 500 m3, RC = 3×105

kg m2 s−1, and Rq = 8× 103 kg m2. Thus, we only vary the

spectral peak period Tp. We compare the velocity, pressure,

and power errors calculated from (27), and also the errors in

mean power, maximum power, root mean square velocity, and

root mean square pressure. Table VI summarizes the result.

As in the fixed OWC, the floating OWC model also exhibits

stiff dynamics. Therefore we do not investigate the effects

of step size for the direct convolution integration model.

Similar to the fixed OWC case, the state-space models give

very good results, with the higher-order model giving better

accuracy than the lower-order one. The constant-coefficient

model performs poorer than the state-space models, but the

errors are seen to be acceptable. This is again dependent on

the relative magnitude of the radiation terms compared to the

other terms.



TABLE IV
ERRORS (IN %) IN VELOCITY, POWER, MEAN POWER, MAXIMUM POWER, AND ROOT MEAN SQUARE VELOCITY FOR THE OSCILLATING SINGLE-BODY

DEVICE. Ru = 5× 104 KG M2 S−1 , Hs = 2 M

RC = 15× 104 kg m2 s−1, Rq = 0 RC = 0, Rq = 5× 105 kg m2

Tp = 5 s Tp = 8 s Tp = 5 s Tp = 8 s

ode2 2.16, 0.57, 0.98, 1.63, 0.45 4.09, 0.76, 1.28, 4.19, 0.60 0.95, 0.56, 1.31, 0.14, 0.70 0.91, 0.45, 1.53, 0.78, 0.81

ode3 1.92, 0.67, 5.90, 0.71, 2.95 3.56, 0.93, 7.73, 17.06, 3.90 0.92, 0.58, 2.62, 2.86, 1.27 0.88, 0.45, 2.45, 2.47, 1.18

ode4 1.53, 0.48, 3.65, 2.41, 1.80 3.03, 0.58, 2.28, 0.90, 1.10 0.61, 0.35, 0.45, 0.91, 0.18 0.60, 0.29, 0.36, 0.63, 0.13

SS3 0.12, 0.07, 0.05, 0.51, 0.00 0.06, 0.03, 0.26, 0.03, 0.11 0.20, 0.13, 0.05, 0.64, 0.01 0.18, 0.09, 0.28, 0.41, 0.12

SS7 0.03, 0.02, 0.05, 0.25, 0.00 0.02, 0.01, 0.01, 0.15, 0.03 0.04, 0.03, 0.09, 0.03, 0.03 0.04, 0.02, 0.07, 0.09, 0.02

cc 5.41, 2.89, 13.78, 3.90, 6.65 4.59, 2.24, 36.12, 9.5, 16.64 11.57, 7.58, 33.83, 25.81, 15.66 18.37, 11.60, 98.88, 42.03, 40.99

TABLE V
ERRORS (IN %) IN PRESSURE, POWER, MEAN POWER, MAXIMUM POWER, AND ROOT MEAN SQUARE PRESSURE FOR THE FIXED OWC DEVICE. Ru = 0.9

KG M−4 S−1 , Re = 1 M4 S KG−1 , Hs = 2 M

pcl = 40 Pa, pop = 41 Pa, V0 = 150 m3 pcl = 20 Pa, pop = 21 Pa, V0 = 500 m3

Tp = 5 s Tp = 8 s Tp = 5 s Tp = 8 s

SS2 0.08, 0.05, 0.24, 0.23, 0.12 0.04, 0.03, 0.02, 0.14, 0.01 0.06, 0.05, 0.04, 0.02, 0.02 0.03, 0.03, 0.08, 0.01, 0.04

SS4 0.01, 0.00, 0.00, 0.00, 0.00 0.01, 0.00, 0.00, 0.00, 0.00 0.01, 0.00, 0.00, 0.00, 0.00 0.01, 0.00, 0.00, 0.00, 0.00

cc 1.01, 0.68, 3.91, 3.89, 1.94 0.98, 1.01, 5.74, 3.36, 2.83 0.99, 0.86, 3.04, 0.38, 1.51 0.75, 0.79, 3.12, 0.31, 1.55

TABLE VI
ERRORS (IN %) IN VELOCITY, PRESSURE, POWER, MEAN POWER, MAXIMUM POWER, ROOT MEAN SQUARE VELOCITY, AND ROOT MEAN SQUARE

PRESSURE FOR THE FLOATING OWC DEVICE. Ru = 0.9 KG M−4 S−1 , Re = 1 M4 S KG−1 , pcl = 40 PA, pop = 41 PA, V0 = 500 M3 , RC = 3× 105 KG

M2 S−1 , Rq = 8× 103 KG M2 , Hs = 2 M

Tp = 5 s Tp = 8 s

SSlow 0.03, 0.03, 0.03, 0.18, 0.01, 0.01, 0.09 0.02, 0.09, 0.09, 0.40, 1.83, 0.30, 0.20

SShigh 0.00, 0.00, 0.00, 0.01, 0.00, 0.00, 0.01 0.01, 0.03, 0.03, 0.19, 0.68, 0.15, 0.10

cc 0.58, 0.64, 0.48, 1.42, 0.16, 0.96, 0.71 0.55, 1.11, 1.02, 3.20, 2.07, 6.82, 1.55

VII. CONCLUSIONS

Different time-domain models according to their convolu-

tion approximations have been compared. The direct convolu-

tion integration model numerically integrates the convolution

without any approximations. The simulation error is largely

controlled by the simulation time step used. The state-space

model approximates the convolution term by a set of coupled

linear ordinary differential equations. The state-space model

can be simulated using an adaptive solver with ease, and the

simulation error is largely controlled by the model order corre-

sponding to the number of extra state variables introduced. The

constant-coefficient model replaces the frequency-dependent

hydrodynamic parameters by constants assuming the values of

the parameters at the incident wave spectral peak frequency.

Three generic models of wave energy devices have been used

to represent major features of WECSs. The fixed OWC and the

oscillating single body have distinct features both in terms of

hydrodynamics and the nonlinearities involved. The floating

OWC can be seen as a combination of a fixed OWC and

an oscillating body, coupled through additional hydrodynamic

coupling parameters.

A direct convolution integration model is slow, but its accu-

racy is guaranteed for sufficiently small integration time step

provided that the IRFs are accurate. When evaluating the IRFs

from frequency-domain data, extrapolation to high frequencies

and interpolation for finer frequency resolution are practical

ways to ensure accuracy of the IRFs. Some fixed step solvers

have been compared. The improved Euler’s (Heun’s) method

may be a good choice for a balance between accuracy and

efficiency. A fixed time step of 0.1 s for the improved Euler’s

and Runge-Kutta 3 and 4 methods is acceptable for most cases

with oscillating body devices. Smaller time step is necessary

when Coulomb-type nonlinearities are present or when the

model exhibits stiff dynamics due to fluid compressibility.

A state-space model is shown to be highly accurate and

offer significant saving in computation time. Even a model

order as low as 2 has good performance for most cases.

A constant-coefficient model is useful to give a quick

approximation of the desired outputs for cases when the



radiation force is relatively smaller than the other forces in

the system.
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Abstract

A bottom-fixed flap-type pitching wave energy absorber which operates near-shore is studied. The design consists of

an arm hinged on the sea bed and supporting a flap. The flap has an elliptical cross section spanning vertically from

the free surface to about one third of the water depth. A mechanism is provided which allows the flap to be fixed

at a variable angle relative to the supporting arm. Such mechanism is here proposed as a means of broadening the

absorption bandwidth and avoiding large forces while still absorbing power. The variations of maximum absorbed

power and reaction force with wave frequency are obtained for different flap widths and angles and for different angular

displacement limits, on the basis of linear potential theory. Further analysis on the absorber with a selected flap width

is then presented and its performance is shown to be promising.

c© 2012 Published by Elsevier Ltd. Selection and peer-review under responsibility of Technoport and the Centre for

Renewable Energy

Keywords: wave energy, pitch, flap, near-shore

1. Introduction

An earlier optimization study by the authors [1] suggested that an elliptical section could be an optimal

section for a bottom-fixed flap-type pitching wave energy absorber, whose power take-off is located at the

bottom hinge. To maximize power to surface area ratio the section should be elongated vertically and span

from the free surface to no more than approximately one third of the water depth. Furthermore, it was found

that having the section elongated horizontally and submerged at a certain depth would reduce the reaction

force to power ratio.

Based on these findings, we propose a wave absorber design consisting of a bottom-hinged arm support-

ing a flap whose cross section is an ellipse (see Fig. 1). The design resembles the EB Frond [2] except that

another hinge is provided at the upper end of the arm which allows the flap to be aligned at variable angles

relative to the arm. We shall show that aligning the flap at different angles may quite significantly alter the

power absorption, reaction force, and resonant characteristics of the absorber. This, together with ballasting

the flap, can be used to good effect for maximizing power absorption and minimizing reaction forces. Such

strategy has recently been termed geometry control to distinguish it from power take-off control [3].

∗Corresponding author. E-mail address: adi.kurniawan@ntnu.no

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Centre for 
Renewable Energy.
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Fig. 1. Two-dimensional sketch of the wave absorber. The arm oscillates about

the bottom hinge O upon wave action. The upper hinge X enables the flap to

be aligned parallel or perpendicular to the arm.

Fig. 2. Panel model of the flap (shown in parallel

orientation).
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Fig. 3. Bond graph model of the absorber.

The wave absorber is designed to operate in water depth of 20 m. The flap height, that is the major axis

of the ellipse, is 7 m and the flap thickness, that is the minor axis of the ellipse, is 3 m. The upper hinge is

centred at the centroid of the flap. The arm length is thus 16.5 m, and when the flap is perpendicular to the

arm, there will be a clearance of 2 m from the flap to the free surface. The two ends of the flap are rounded

(in the form of half prolate spheroids) in order to minimize viscous losses (see Fig. 2). The incident waves

are assumed to propagate normal to the flap axis.

In the following the characteristics of this wave absorber are studied. The added inertia and radiation

damping for both the parallel and perpendicular flap orientations are first presented, followed by the ab-

sorbed power and the reaction force. The performance of the absorber is then assessed based on its absorbed

power and reaction force at a given near-shore site.

2. Methodology

2.1. Maximum absorbed power and reaction force
We assume that the angular displacement of the arm is limited to a maximum of α by an increased linear

load resistance. Let r be the ratio of the limited to the optimum angular velocity amplitudes of the absorber,

or

r = 2ωαR55/|Xe5|, (1)

where R55 is the pitch radiation damping and Xe5 is the pitch excitation moment. Then the maximum

absorbed power is given as [4]

Pmax =
|Xe5|2
8R55

[
1 − (1 − r)2H(1 − r)

]
, (2)

where H(x) is the Heaviside step function.

Neglecting centrifugal force, we may write the dynamic horizontal and vertical reaction forces as

XR1 = Xe1 − (iωm15 + R15) U (3)

XR3 = Xe3, (4)
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where Xe1 and Xe3 are the horizontal and vertical excitation forces, m15 and R15 are the added inertia and

radiation damping in the horizontal direction due to the absorber’s pitch oscillation, and U is the pitch

velocity:

U =
Xe5

2R55

[1 − (1 − r)H(1 − r)] . (5)

The maximum dynamic reaction force can be obtained as

FR max =

[
1

2

(
|X2

R1 + X2
R3| + |XR1|2 + |XR3|2

)] 1
2

. (6)

2.2. Tuned absorbed power and reaction force

To achieve the maximum absorbed power (2), the dynamic properties of the absorber must be varied

with frequency. When the dynamic properties of the absorber are fixed and tuned to a single frequency ωp

by adjusting the body inertia M, hydrostatic restoring coefficient S , and load resistance Ru such that

M − Sω−2
p = −m55(ωp) (7)

Ru = R55(ωp)

[
1 +

2(1 − r(ωp))

r(ωp)
H(1 − r(ωp))

]
, (8)

where m55 is the pitch added inertia, the mean absorbed power is given as

P(ω) =

1
2
Ru|Xe5(ω)|2

(R55(ω) + Ru)2 + |�{Z}|2 , (9)

where

�{Z} = ω
(
m55(ω) − m55(ωp) − Sω−2 + Sω−2

p

)
, (10)

or

�{Z} = ω
[
M + m55(ω) − ω2

pω
−2
(
M + m55(ωp)

)]
. (11)

It is clear that P(ωp) = Pmax(ωp) = |Xe5(ωp)|2[1 − (1 − r(ωp))2H(1 − r(ωp))]/8R55(ωp), and that P(ω) <
Pmax(ω) for ω � ωp.

The maximum reaction force in this case is given by (6), with (3) replaced by

XR1 = Xe1 − (iωm15 + R15)
Xe5

R55 + Ru + i�{Z} . (12)

2.3. Absorbed power and reaction force for a given sea state

If we assume that Ru, M, and S are fixed for a given sea state, the absorbed power for a given sea state

can be obtained from

P = Ru

∫ ∞
0

∣∣∣∣∣∣
fe5(ω)

R55(ω) + Ru + iω
(
M + m55(ω) − Sω−2

)
∣∣∣∣∣∣
2

S ζ(ω)dω, (13)

where fe5 is the pitch excitation force coefficient and S ζ(ω) is the wave spectrum. The choice of Ru, M,

and S may be obtained from (7) and (8) with ωp taken to be the spectral peak frequency, or from numerical

optimization. The reaction force, however, must be obtained from time-domain simulations.
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2.4. Time-domain model
The equation of motion for the absorber in time domain can be written as

Fe5(t) = [M + m55(∞)] u̇(t) + k(t) ∗ u(t) + S s(t) + Ruu(t), (14)

where m55(∞) is the infinite-frequency value of the pitch added inertia m55, s(t) is the angular displacement

of the arm, and k(t) is the radiation impulse response function, which is the inverse Fourier transform of the

frequency response function K(ω) ≡ R55(ω) + iω [m55(ω) − m55(∞)].

To accelerate simulation, we replace the convolution term μ(t) ≡ k(t)∗u(t) =
∫ t

0
k(t−τ)u(τ)dτ by a state-

space approximation. This amounts to replacing the term by a set of coupled linear ordinary differential

equations, which may be expressed in matrix form (see, e.g. [5]):

ẋ(t) = Âx(t) + B̂u(t) (15)

μ̂(t) = Ĉx(t) (16)

where x(t) is the state vector, the number of components of which corresponds to the order of the state-space

model, and Â, B̂, Ĉ are constant matrices. We use the frequency-domain identification approach following

the algorithm detailed in [5, 6]. The method uses frequency-domain hydrodynamic data for identification.

The approach is to fit a rational transfer function

K̂(s) =
P(s)

Q(s)
=

pr sr + pr−1sr−1 + . . . + p0

sn + qn−1sn−1 + . . . + q0

, (17)

where s = iω, to the frequency response function K(ω). Further constraints on the model have been derived

in [7] based on the properties of the frequency response function and its corresponding impulse response

function. A least-squares fitting method is applied to find the coefficients pi and qi, and once these are

obtained, the matrices Â, B̂, and Ĉ can be constructed using any of the standard canonical forms.

The time series of the excitation moment Fe5(t) are generated prior to the simulation and stored as data

files to be read during the simulation. First, we obtain the spectral density of Fe5(t):

S Fe5
(ω) = | fe5(ω)|2S ζ(ω). (18)

The excitation moment Fe5(t) is then given as

Fe5(t) =
N/2∑
n=0

[(an cos φn + bn sin φn) cosωnt − (an sin φn − bn cos φn) sinωnt], (19)

where an and bn are generated from a Gaussian distribution with variance S Fe5
(ωn)Δω [8]. Here, N is the

number of values in the time series, determined by the required length of the series T and the time interval

between values Δt. Also, ωn = nΔω, where Δω = 2π/T . In addition, φn is the phase (in radians) of fe5(ωn).

For ωn larger than the largest frequency for which fe5 is computed, fe5 is assumed to be zero as typical wave

spectra have negligible values at the high-frequency tail. The sum in (19) may be identically evaluated by

an inverse Fast Fourier Transform at a fraction of computer time. The initial part of the resulting time series

(the first 20 seconds) is filtered by a cosine taper window.

Having evaluated the angular velocity u(t), we may obtain the instantaneous absorbed power P(t) =
Ruu2(t). The instantaneous horizontal and vertical reaction forces are given as (c.f. (3) and (4))

FR1(t) = Fe1(t) − m15(∞)u̇(t) − k15(t) ∗ u(t) (20)

FR3(t) = Fe3(t), (21)

where m15(∞) is the infinite-frequency value of m15, and k15(t) is the radiation impulse response function

corresponding to K15(ω) ≡ R15(ω) + iω [m15(ω) − m15(∞)]. The instantaneous resultant reaction force can

then be obtained as

FR(t) =
[
F2

R1(t) + F2
R3(t)
] 1

2 . (22)

The time-domain model is implemented using bond graph as a tool. A bond graph representation of the

equation of motion (14) incorporating the state-space radiation force model is shown in Fig. 3.
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Fig. 4. Added inertia and radiation damping for θ = 0◦ (left) and θ = 90◦ (right).

2.5. Computation of hydrodynamic parameters
The hydrodynamic parameters are computed by a three-dimensional higher-order panel method [9] for

every 0.02 rad/s. The panel model is shown in Fig. 2. The supporting arm is assumed to be transparent

to the waves. Convergence studies are first carried out to decide on the panel size which gives the desired

accuracy and computing efficiency.

The geometric variables are the flap width d (2 to 30 m in intervals of 2 m, making a total of 15 discrete

widths), measured excluding the rounded ends, and the flap angle θ (0◦ and 90◦, which correspond to parallel

and perpendicular flap orientations, respectively). Different angular displacement limits (10◦ and 20◦) are

imposed.

3. Results and discussions

3.1. Added inertia and radiation damping
The added inertia and radiation damping for the two flap angles are plotted in Fig. 4. In general, the

added inertia and radiation damping values increase, while their peak frequencies decrease, with flap width.

The added inertia and radiation damping for the parallel flap orientation (θ = 0◦) are of larger magnitudes

compared to those for the perpendicular flap orientation (θ = 90◦). However, the radiation damping for

θ = 90◦ is more broad-banded. Compared to the parallel flap, the perpendicular flap is also less sensitive to

the variation of flap width.

For θ = 0◦, negative added inertia are observed for all the flap widths considered. Negative added inertia

occurs when the mean potential energy of the fluid exceeds the mean kinetic energy, which for a submerged

body happens when the depth of submergence is small and free-surface effects are important [10]. No

negative added inertia are observed for θ = 90◦.

3.2. Maximum absorbed power and reaction force
The maximum absorbed power and reaction force for different flap angles and angular displacement

limits are plotted in Fig. 5. The absorbed power and reaction force increase with flap width. Limiting the
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Fig. 5. Maximum absorbed power and maximum reaction force for 1-m amplitude waves for θ = 0◦ (left) and θ = 90◦ (right): α = π/18

rad/s (solid), α = π/9 rad/s (dotted).

angular displacements has the effect such that both the maximum absorbed power and reaction force curves

fall off in the low-frequency range. Increasing the angular displacement limit simply shifts the onset of this

fall to a lower frequency. It can be seen that although aligning the flap perpendicular to the arm reduces

the amount of absorbed power possible, the absorber is subjected to lower reaction forces compared to the

parallel flap orientation.

3.3. Tuned absorbed power and reaction force

We envisage that the body inertia M and hydrostatic restoring coefficient S can be adjusted by ballasting

the flap with sea water. If we assume that the ballast centroid is fixed and coincides with the centroid of the

flap, we may write (7) as

Mwl2arm +
g
ω2

p
Mwlarm = −m55(ωp) − Ms +

S s

ω2
p
, (23)

where Mw is the ballast mass, larm is the arm length, g is the acceleration due to gravity, while Ms and S s are

the body inertia and restoring coefficient without the effect of ballast. Let Mw max be the maximum ballast

mass that can be put into the flap. If the right-hand side of (23) is denoted as C(ωp), the condition that

0 ≤ Mw ≤ Mw max is then equivalent to

0 ≤ C(ωp) ≤ Mw max

⎛⎜⎜⎜⎜⎝l2arm +
g
ω2

p
larm

⎞⎟⎟⎟⎟⎠ . (24)

This sets the range of tunable frequencies ωp for which P(ωp) = Pmax(ωp). Fig. 6 shows the variations of

C(ω) for different flap widths and angles, for some chosen realistic values of Ms, S s, and Mw max. Ranges

of tunable frequencies ωp may be identified from the figure. For θ = 0◦ and d = 10 m, for example, perfect

tuning is possible for 1.32 ≤ ωp ≤ 1.34 and 1.65 ≤ ωp ≤ 1.79 rad/s.

We may gain understanding of the characteristics of the absorber from the function C(ω). The natural

frequencies of the unballasted system are the frequencies for which C(ω) = 0. For frequencies where



140   Adi Kurniawan and Torgeir Moan  /  Energy Procedia   20  ( 2012 )  134 – 147 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5
x 10

8

ω [rad/s]

C
[k
g
m

2
]

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3

4
x 10

8

ω [rad/s]

C
[k
g
m

2
]
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C(ω) > 0 the system is too stiff, while for frequencies where C(ω) < 0 the system is too soft. Since ballasting

the flap always has the effect of softening the system, perfect tuning is only possible for frequencies where

C(ω) > 0, subject to the limitations of the maximum ballast mass that can be put into the system. For

frequencies where C(ω) < 0 perfect tuning would require additional spring, while heavier ballast would be

needed to achieve perfect tuning for frequencies where C(ω) > Mw max

(
l2arm +

g
ω2

p
larm

)
.

Where perfect tuning is not possible, equation (23) is not satisfied. In this case, it is best to keep the

difference between the left- and right-hand sides of (23) as small as possible (c.f. [11], §3.5). It follows

that the absorber should be unballasted for frequencies where C(ω) < 0 and ballasted to the maximum

for frequencies where C(ω) > Mw max

(
l2arm +

g
ω2

p
larm

)
. It can be shown that a choice of Ru which would

maximize the absorbed power in this case is given as

Ru = [1 + xH(1 − rr)] |Zi(ωp)|, (25)

where

x =

[
1
r2

r

(
|Zi(ωp)| + R55(ωp)

)2
+ �2{Zi(ωp)}

(
1
r2

r
− 1
)] 1

2 − R55(ωp)

|Zi(ωp)| − 1 (26)

rr =
ωpα

|Ur opt(ωp)| (27)

Ur opt(ωp) =
Xe5(ωp)

|Zi(ωp)| + Zi(ωp)
(28)

Zi(ωp) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R55(ωp) − iωpC(ωp), for C(ωp) < 0

R55(ωp) + iωp

[
Mw max

(
l2arm +

g
ω2

p
larm

)
−C(ωp)

]
, for C(ωp) > Mw max

(
l2arm +

g
ω2

p
larm

)
.

(29)

Looking again at Fig. 6, we may observe different regions of tunable frequencies each for the different

flap orientations. For θ = 0◦, the tunable frequencies lie on the higher-frequency side of the considered

range, while for θ = 90◦, they lie on the lower-frequency side. This shows how varying the flap angle may

result in quite different resonant characteristics, and adjusting the flap angle may be used as a means to

broaden the absorption bandwidth, as illustrated in the following.

Fig. 7 shows the variations of the absorbed power and the corresponding maximum reaction force for

the two flap angles, for an absorber with d = 10 m. The incident wave amplitude A is 0.5 m and the

angular displacement amplitude is limited to 20◦. The first set of lines (dashed) represents the maximum

attainable absorbed power and the corresponding maximum reaction force required to attain this maximum



 Adi Kurniawan and Torgeir Moan  /  Energy Procedia   20  ( 2012 )  134 – 147 141

power. These are the same lines in Fig. 5 for d = 10 m. The maximum attainable power is relatively

large, especially for θ = 0◦, but much of this potential, say for ω = 0.4 to 1.3 rad/s, can be realised only

if additional restoring force is supplied. The maximum reaction force required to attain this potential is

also relatively large. The second set of lines (dotted) represents the maximum absorbed power that can

be attained using a fixed ballast (tuned to four different frequencies ωp = 0.6, 0.8, 1.0, and 1.2 rad/s), and

the corresponding maximum reaction force. These lines represent the more realistic upper bounds of the

absorbed power attainable if we use ballasting as a means of tuning. The third set of lines (solid) represents

the absorbed power and the corresponding maximum reaction force when both the ballast and the load

resistance are fixed and tuned to each ωp.

From Fig. 7 we see that depending on the incident wave frequency, changing the flap angle may improve

the power absorption. In this case, for 0.5 < ω < 1 rad/s more power will be absorbed by aligning the flap

to θ = 90◦, while for 1 < ω < 1.7 rad/s it is better to align the flap to θ = 0◦.
Now suppose that the design limit of the reaction force is 1000 kN. We expect the reaction force to

exceed this limit when the incident wave amplitudes get higher. As an example, consider an incident wave

amplitude of 1.6 m. Again we see that depending on the incident wave frequency, changing the flap angle

may improve the power absorption (see Fig. 8). In this case, it is clearly better to align the flap to θ = 90◦
for 0.6 < ω < 1 rad/s. But now the design limit of the reaction force must be taken into account. For

θ = 90◦, the maximum reaction force is just below this limit for all the different tuning frequencies. In

fact, the maximum reaction force changes only slightly with the change of tuning frequency. For θ = 0◦,
however, we see that this limit is exceeded when the absorber is tuned to ωp = 1 and 1.2 rad/s. To reduce

the reaction force, the system may be tuned to higher or lower frequencies (see Fig. 8, top, where reductions

of both the absorbed power and the maximum reaction force are clearly seen around ωp = 1 and 1.2 rad/s).

Alternatively, the reaction force can be reduced by changing the flap angle with the same consequence of

reducing the absorbed power (see Fig. 8, bottom).

Before we move on to the performance of the absorber in irregular waves, it may be noted that the tuned

absorbed power of the θ = 90◦ configuration (Fig. 8, bottom left, grey solid line) exceeds the maximum

attainable absorbed power for the given angular displacement limit (grey dashed line) at a small range

of frequencies around ω = 0.85 rad/s. The reason for this is that equation (25) ensures that the angular

displacement does not exceed the given limit only at ωp. If it is desired that the angular displacement be less

than the given limit at all frequencies, then a larger load resistance must be applied with the consequence of

reducing the absorbed power at around ω = 0.85 rad/s.

3.4. Performance in irregular waves

Using the same absorber (d = 10 m) as an example, we assess the performance of the absorber at a given

site characterized by a set of sea states and their probability of occurrence. The characteristic sea states are

based on wave measurements at a site on the German Continental Shelf reported in [12] and are reproduced

in Table 1. The average annual available wave power at this location is reported to be 11.6 kW/m, although

a deep-water approximation (see, e.g. [13]) based on the data given in Table 1 gives a smaller value of 8.0

kW/m.

We use the JONSWAP spectrum relevant for the North Sea environment as the wave spectrum S ζ(ω)

model for each sea state:

S ζ(ω) =
αg2

ω5
exp

⎛⎜⎜⎜⎜⎜⎝−1.25
ω4

p

ω4

⎞⎟⎟⎟⎟⎟⎠ γa(ω), (30)
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Table 1. Characteristic sea states (reproduced

from [12])

Sea state Hs [m] Te [s] Prob. [%]

1 0.25 4.15 9.14

2 0.75 4.67 27.31

3 1.25 5.53 22.62

4 1.75 5.95 18.55

5 2.25 6.21 10.25

6 2.75 6.59 5.08

7 3.25 7.55 3.35

8 3.75 8.16 1.63

Table 2. Load resistance Ru, maximum displacement smax, maximum reaction

force FR max, and mean absorbed power P for an absorber with d = 10 m and

θ = 0◦, for the sea states listed in Table 1. The ballast mass Mw = 0 for all sea

states. The values in parentheses are obtained from (13).

Sea state Ru [Nms] smax [rad] FR max [kN] P [kW]

1 5.9 × 108 0.004 175 1.0 (1.1)

2 4.8 × 108 0.013 473 13.5 (12.0)

3 2.6 × 108 0.038 708 31.2 (32.0)

4 2.0 × 108 0.059 753 63.7 (59.2)

5 1.8 × 108 0.087 918 90.3 (94.2)

6 1.6 × 108 0.115 1198 133.6 (134.4)

7 1.2 × 108 0.173 1058 142.8 (169.0)

8 9.4 × 107 0.255 1141 210.4 (213.4)

Pann [kW] 46.9 (47.2)

where

a(ω) = exp

⎛⎜⎜⎜⎜⎝− (ω − ωp)2

2σ2ω2
p

⎞⎟⎟⎟⎟⎠ (31)

σ =

⎧⎪⎪⎨⎪⎪⎩
0.07 for ω ≤ ωp

0.09 for ω > ωp
(32)

α = 5.058
H2

s

T 4
p

(1 − 0.287 ln γ). (33)

The peakedness parameter γ is chosen to be 3.3. The peak period Tp and the energy period Te is related

by Te = 0.857Tp [13]. For each sea state we generate two 1220-second length excitation moment time

series, one for θ = 0◦ and the other for θ = 90◦, according to the method outlined in § 2.4. The same wave

realization is used for both.

The simulations are carried out using a modelling and simulation software [14]. For simplicity the load

resistance Ru and ballast mass Mw used for each sea state are the optimum Ru and Mw assuming regular

incident wave with frequency 1/Tp and amplitude Hs/2. A typical simulation result is shown in Fig. 9,

where the first 20 seconds have been discarded.

A summary of the result if the parallel flap orientation (θ = 0◦) is used for all sea states (case A)

is tabulated in Table 2. The mean annual power Pann in this case is 46.9 kW. If the perpendicular flap

orientation (θ = 90◦) is used for all sea states (case B), a larger Pann is obtained, i.e. 55.6 kW (Table 3).

Using the best configuration for each sea state (case C), we have Pann = 57.2 kW (Table 4). Also presented

are the mean absorbed power values obtained using (13). The results are similar.

The fact that larger Pann is obtained for case B than case A is because the most resourceful sea states in

a year, i.e. sea states 4 to 7 (ωp = 0.9 to 0.7 rad/s), are more favourable to the θ = 90◦ configuration than

θ = 0◦, if no additional restoring force is supplied (see again Fig. 6, where it is shown that for θ = 0◦ perfect

tuning is not possible at these frequencies without additional restoring force). The θ = 0◦ configuration

will be capable of absorbing more power at these frequencies if additional restoring force is provided.

This, however, entails greater reaction force, as noted previously in the discussion of Fig. 7. The θ = 0◦
configuration gives higher absorbed power than θ = 90◦ for sea states 1 to 3 and 8. These sea states, however,

have relatively smaller resource. Sea state 2 (ωp = 1.2 rad/s), for example, has the highest probability of

occurrence but the amount of power available for this sea state is small. On the other hand, sea state 8 is

the most energetic but has the least probability of occurrence, and so it contributes little to the total mean

annual power. This explains why the improvement of case C over case B is not so significant.

If for θ = 0◦ we now supply an additional restoring force of 1.0 × 108 Nm (the value is not optimized,

but chosen just for the sake of comparison) for sea states 4 to 7 (case D), the mean annual power is increased
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Table 3. As in Table 2, for θ = 90◦. The ballast mass Mw for each

sea state is given in the table.

Sea Ru Mw smax FR max P
state [Nms] [103 kg] [rad] [kN] [kW]

1 2.9 × 107 0 0.016 121 0.6 (0.7)

2 2.2 × 107 0 0.052 337 8.8 (8.0)

3 1.0 × 107 0 0.197 620 30.9 (33.3)

4 5.9 × 106 0 0.459 750 90.6 (84.4)

5 9.5 × 106 0 0.429 952 125.9 (133.7)

6 1.2 × 107 5.5 0.512 1204 166.3 (173.4)

7 1.5 × 107 26 0.511 1007 144.4 (179.5)

8 1.7 × 107 39 0.570 1134 190.8 (191.0)

Pann [kW] 55.6 (57.1)

Table 4. As in Table 3, with θ = 90◦ for sea states 4 to 7, and

θ = 0◦ for the rest of the sea states.

Sea Ru Mw smax FR max P
state [Nms] [103 kg] [rad] [kN] [kW]

1 5.9 × 108 0 0.004 175 1.0 (1.1)

2 4.8 × 108 0 0.013 473 13.5 (12.0)

3 2.6 × 108 0 0.038 708 31.2 (33.3)

4 5.9 × 106 0 0.459 750 90.6 (84.4)

5 9.5 × 106 0 0.429 952 125.9 (133.7)

6 1.2 × 107 5.5 0.512 1204 166.3 (173.4)

7 1.5 × 107 26 0.511 1007 144.4 (179.5)

8 9.4 × 107 0 0.255 1141 210.4 (213.4)

Pann [kW] 57.2 (58.6)

to 62.2 kW. The maximum reaction forces for these sea states, however, are also higher, especially for sea

states 6 and 7. The benefit of changing the flap angle to θ = 90◦ for these sea states (case C) with the

accompanying reduction of the reaction forces is therefore obvious.

4. Conclusion

The characteristics of a pitching wave absorber with variable flap angle relative to the supporting arm

has been presented in this article. It has been shown that changing the flap angle may alter the resonant

characteristics of the absorber and can be used to good effect in broadening the absorption bandwidth.

Furthermore, having the flap aligned perpendicularly to the arm is characterised by a low reaction force, and

can be used as a means to avoid large forces associated with large waves.

There is a pressing need to lower the cost of ocean wave power. Such means of geometry control should

be explored further in order to meet this need.
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Fig. 7. Absorbed power and maximum reaction force of the absorber with d = 10 m for θ = 0◦ (black) and θ = 90◦ (grey). The
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corresponding maximum reaction force. Dashed lines represent the maximum achievable absorbed power and the corresponding max-
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1 Introduction

In terms of power performance, it is desirable for a

wave energy absorber to have not only high levels of

power absorption but also a broad absorption band-

width. However, it may be the case that superior

power performance is achieved at the expense of a high

structural cost. Therefore, apart from maximizing the

power absorption, we also need to minimize the cost of

the absorber. The two objectives are, in general, con-

flicting, and it is not obvious what constitutes the best

trade-off solution. In this study we pose this problem

as a multi-objective optimization problem. An opti-

mization algorithm is used to optimize the geometry

of a wave energy absorber, with the objectives of max-

imizing the maximum mean absorbed power and min-

imizing the surface area of the absorber. The latter is

supposed to be indicative of the structural cost.

2 Formulation of the problem

Consider a wave energy absorber which oscillates in

one degree of freedom in response to incident regular

plane waves of angular frequency ω . We assume that

the power take-off is effected by a linear damper with

coefficient Ru. Let M be the inertia of the absorber, m

the added inertia, R the radiation damping coefficient,

and S the restoring coefficient. The absorber velocity

U and the wave exciting force Xe are related through

the equation of motion of the absorber:

Xe = (Ru +Z)U, (1)

where Z = R + iω
(
M+m−Sω−2

)
. The maximum

mean power that can be absorbed by the linear damper

is given as

Pmax =
|Xe|

2

4(R+ |Z|)
, (2)

obtained when Ru = |Z|. On the other hand, the maxi-

mum theoretical limit of achievable mean power is

Plim =
|Xe|

2

8R
. (3)

Comparing (2) and (3), we see that Pmax = Plim when

M+m−Sω−2 = 0. (4)

In this case the velocity U is in phase with the exciting

force Xe, and the system is at resonance. When (4) is

not satisfied, Pmax < Plim. Multiple resonances (Evans

and Porter, 2012) are achieved if (4) is satisfied for

more than one frequency. If it is possible to have these

frequencies lie within the range of typical wave fre-

quencies occurring at sea, we have a good wave energy

absorber in terms of its power performance.

To have a cost-effective wave energy absorber, how-

ever, we also need to minimize its cost. A number of

cost indicators may be identified for a wave energy ab-

sorber (see, e.g. Babarit et al., 2012), but for simplic-

ity, in this study we consider only one cost indicator,

namely the surface area As. Thus Pmax is to be maxi-

mized for a given range of frequencies while As is to

be minimized. This is a multi-objective optimization

problem with two objectives. Since the objectives are,

in general, conflicting, instead of a single optimum,

there are multiple optimum solutions. The task is to

identify these optimum solutions.

The problem can be formulated as follows: for

Vmin ≤ V ≤ Vmax, where V is a set of geomet-

ric variables, find V which maximize f
obj
1 (V ) =∫ ωmax

ωmin
Pmax(ω)dω and minimize f

obj
2 (V ) = As. Here,

ωmin and ωmax are the specified minimum and maxi-

mum frequencies.

3 Methodology

A multi-objective optimization algorithm is used to

solve the above problem. The algorithm works by gen-

erating successive (random) populations through se-

lection and variation operations. A population is de-

fined as a collection of individuals, where an individ-

ual is a set of design variables. Selection consists of

retaining the ‘best’ individuals in the population and

ensuring the spread of these individuals. The ‘best’

set of individuals are identified from the population by

sorting their objective function values such that in this

set there is no individual which improves an objective

without worsening another one. The spread of indi-

viduals is ensured by grouping individuals with objec-

tive function values close to each other, retaining just

one individual in this group, and discarding the rest.

Variation consists of generating new individuals to be

added to the set of individuals which survive the selec-
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5 Conclusion

The increasing efficiency of today’s computers has

permitted intensive numerical optimizations to be car-

ried out within a reasonable time. We have illustrated

this by presenting an example of how a multi-objective

optimization algorithm may be used to optimize the

geometry of a wave energy absorber in the form of a

composite circular cylinder. While we have used sim-

ple expressions as the optimization objectives in this

example, the importance of considering other objec-

tives besides maximizing power absorption is evident.

The present formulation of the problem appears to

favour smaller geometries over larger ones. This, how-

ever, is likely to be dependent on the selected range

of wave frequencies. Further information such as the

wave climate, if available, should preferably be in-

cluded, and more than two objectives may be consid-

ered.

The method may be applied to optimize other geo-

metric configurations. It may be worthwhile to com-

pare the present results to those of a uniform circular

cylinder. Perhaps more interestingly, the method may

be applied to find optimum configurations of arrays of

wave energy absorbers, which are not quite practical

to study experimentally.
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Figure 4: Added inertia and Sω−2 −M (left), and maximum mean absorbed power and the theoretical limit

(right), corresponding to optimum geometries 1, 4, 5, 8, and 9.
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Abstract
This article summarizes recent works by the authors on

the modelling of wave energy converters (WECs) using the

bond graph method. Generic models for two categories of

WECs, viz. oscillating bodies and oscillating water columns

(OWCs), are presented. Oscillating-body WECs utilise rela-

tive motion between a moving body and a fixed reference,

such as the sea bed, or between several moving bodies. On the

other hand, oscillating-water-column WECs utilise the mo-

tion of a mass of water relative to a fixed reference, or rela-

tive to a moving body. A generic model of self-reacting multi-

body WECs, one subcategory of the former, is presented here

for the first time. Finally, as a case study, we model a par-

ticular type of floating OWCs known as the backward-bent

duct buoy, and present some simulation results. To acceler-

ate simulations, the wave radiation forces are modelled using

state-space approximations, instead of convolutions used in

an earlier work.

1. INTRODUCTION

Ocean waves constitute an abundant source of renewable

energy. Man has been seeking to exploit this potential for

many years, but it was the oil crisis in the early 1970s that

spurred modern wave energy research activities worldwide.

During this period, interesting concepts were proposed and

tested, and fundamental theories were laid out. Sadly, with

the decline of oil price, funding for wave energy research was

drastically reduced in the 1980s. Recently, however, there has

been a renewed global interest in wave energy [1]. A scientific

meeting was organised very recently which brought together

the world’s experts on wave energy. A special issue has been

published which contains the papers presented at the meet-

ing (see [2] and the accompanying papers in the same issue).

Together they serve as the latest summary available of the

state-of-the-art of wave energy research.

The use of bond graph for modelling wave energy convert-

ers (WECs) is relatively new. An allusion to the bond graph

method was made in an article from 1984 by Jefferys [3],

who presented a word bond graph of a fixed oscillating water

column (OWC) device, although he did not explicitly use the

term ‘bond graph.’ Otherwise it was only more recently that a

number of works using bond graph started to appear in wave

energy literature.

The first of these was a paper presented at a conference

dedicated to wave energy, which contained an application of

bond graph in the modelling of a power take-off (PTO) sys-

tem for a hinged-barge WEC used to generate electricity and

produce potable water [4]. The bond graph method was fur-

ther introduced to the wave energy community by Engja and

Hals [5], who described the modelling of a WEC consisting of

a floating buoy connected to a semi-submersible. Others have

then followed by considering diverse applications and objec-

tives [6–9]. An overview of bond graph modelling of WECs

was given by Hals [10], who also presented bond graph mod-

els for the mooring lines, power conditioning, and grid con-

nection.

The purpose of this article is to summarize our recent

works on bond graph modelling of WECs. Our emphasis is

on the modelling of the primary interface, where hydrody-

namic interactions of the device with the waves take place.

We will focus on the oscillating-body and the oscillating-

water-column WECs.

2. GENERIC WAVE ENERGY CONVERT-
ERS

In terms of device hydrodynamics, two large categories

of WECs may be identified, viz. the oscillating bodies and

the oscillating water columns. Oscillating-body WECs utilise

relative motion between a moving body and a fixed refer-

ence, such as the sea bed, or between several moving bod-

ies. Oscillating-water-column WECs utilise the motion of an

enclosed mass of water relative to a fixed reference, or rel-

ative to a moving body. For oscillating bodies, the absorbed

power is evaluated from the product of body force and veloc-

ity, while for oscillating water columns, it is evaluated from

the product of air pressure and volume flow.

Basic models of each category are presented in the follow-

ing. Time-domain formulation is assumed. For simplicity and

as is common in theory, a linear damper is used to represent

the PTO. Various nonlinearities which are typically present

are included. Also, incident plane waves are assumed.



2.1. Oscillating Bodies
The first subcategory we consider is a WEC comprising a

rigid body oscillating against a fixed reference. We assume

that the body is constrained to oscillate in only one degree of

freedom. The body could be sliding along a fixed guide, for

example, or oscillating about a fixed axis. The oscillation of

the body upon wave action drives the PTO.

The equation of motion for this device can be written as

Fe(t) = [mm +m(∞)]u̇(t)+ k(t)∗u(t)+(Sb +S)s(t)

+RC sgnu(t)+Rqu(t)|u(t)|+ rRuu(t),
(1)

where Fe(t) is the wave excitation force, mm is the inertia of

the body, m(∞) is the infinite-frequency added inertia, u(t)
is the body velocity, k(t) is the radiation impedance impulse

response function (IRF), Sb is the hydrostatic stiffness, S is

the external stiffness, if any, s(t) is the body displacement,

RC is the Coulomb damping coefficient, Rq is the quadratic

damping coefficient, r is some transformation factor, and Ru

is the load resistance (PTO damping). Linear hydrodynamics

is usually assumed and thus the hydrodynamic forces (wave

exciting force, added inertia, and radiation damping) may

be computed from programs employing linear panel method

such as WAMIT [11].

A bond graph model of this WEC is shown in Fig. 1. The

force balance on the body is represented by the bonds con-

nected to the left 1-junction. The wave exciting force is rep-

resented by an Se element, the sum of the structural inertia

and the infinite-frequency added inertia by an I element, the

hydrostatic restoring force by a C element, the wave radia-

tion force by an R element, the external restoring force by a C

element, and the nonlinear Coulomb and quadratic damping

forces each by an R element. The T F element, representing

some transformation relation such as between mechanical ro-

tational and translational domains, connects the body and the

PTO (represented by an R element). The circle labelled P is a

power sensor.

Figure 1. Bond graph model of an oscillating-body WEC

reacting against a fixed reference.

If the body moves in a degree of freedom other than the

conventional surge, sway, heave, roll, pitch, or yaw (for ex-

ample, the body slides along a slanted guide), the method of

Figure 2. Examples of WECs that may be represented by the

bond graph in Fig. 1. Arrows represent degrees of freedom.

Dots represent hinges. Attachment points of the guides may

alternatively be above the water surface.

generalised modes [12] may be employed to evaluate the gen-

eralised forces. One can in principle use the same bond graph

as in Fig. 1. If, for a body sliding along a vertical guide, the

guide along which the body slides is not fixed, but hinged at

one end, an additional degree of freedom (i.e. pitch about this

hinge) is introduced. If the body is symmetric in the incident

wave direction, however, there is no hydrodynamic coupling

between pitch and heave, and so one can still use the bond

graph in Fig. 1. Examples of WECs that may be represented

by the bond graph in Fig. 1 are shown in Fig. 2.

As a second subcategory, we consider a self-reacting WEC.

In self-reacting systems, instead of a fixed reference, the force

reaction is provided by a second body which is moving with

different phase and/or amplitude from the first body. Power is

converted through the relative motion between these bodies.

Figure 3. Bond graph model of a two-body self-reacting

WEC.

A bond graph model of a self-reacting WEC consisting of

two bodies is shown in Fig. 3. Each of the two 1-junctions on

the left represents the velocity of each body. Two bonds from



Figure 4. Examples of WECs that may be represented by the

bond graph in Fig. 3. Arrows represent degrees of freedom.

For the WEC on the right, the PTO is at the hinge (represented

by a dot).

these junctions are connected to a 0-junction which connects

to the PTO, signifying the fact that it is the relative motion be-

tween the two bodies that is used for power conversion. The

hydrodynamic interaction between the two bodies is taken

into account by a radiation impedance matrix, represented by

an R-field. Normally only one of the bodies is moored; this

external restoring force is represented by a C element. This

bond graph may represent a system of two bodies where one

body is sliding along a guide fixed to the other body, provided

the bodies are symmetric in the incident wave direction (for

then the vertical motions of the bodies are uncoupled from

the horizontal and rotational motions). It may also represent

a system of two hinged identical bodies (see Fig. 4).

Using the method of generalised modes, we may represent

the system in a more compact vector bond graph form, as

shown in Fig. 5, by appropriate selection of the modes, with

one mode being the relative motion between the bodies. The

same bond graph may represent multiple hinged bodies where

the PTO are located at the hinges.

Figure 5. Bond graph model of a self-reacting WEC.

2.2. Oscillating Water Columns
An OWC comprises an air chamber with a submerged

opening and an opening to the atmosphere fitted with an air

turbine. Upon wave action, the internal water surface rises

and falls, resulting in oscillating pressure in the chamber.

The difference between pressures inside and outside the air

Figure 6. Floating and fixed OWCs.

chamber results in an air flow through the turbine, which in

turn drives an electric generator. A self-rectifying air turbine,

which rotates in one direction regardless of the flow, is usu-

ally employed, eliminating the need for rectifying valves. An

OWC may be fixed or floating (see Fig. 6).

We first consider a fixed OWC. For a fixed OWC, the cham-

ber is fixed. The equation of motion can be written as

Qe(t) = y(t)∗ p(t)+Qv(t)+Qc(t)+(Re +1/Ru) p(t), (2)

where Qe(t) is the excitation volume flow, p(t) is the cham-

ber pressure, y(t) is the radiation admittance IRF, Qv(t) is the

volume flow through the relief valve, Qc(t) is the volume flow

due to air compressibility, Re is the external damping coeffi-

cient, and Ru is the load resistance.

The flow Qv(t) through the relief valve is governed by the

pressure difference across the valve:

Qv(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(t)

pcl

Qcl if |p(t)|< pcl

sgn p(t)

[
Qcl +

|p(t)|− pcl

pop − pcl

(Qop −Qcl)

]
if pcl ≤ |p(t)| ≤ pop

CdAmax

√
2

ρa

|p(t)|sgn p(t) if |p(t)|> pop ,

(3)

where

Qcl =CdAmin

√
2

ρa

pcl (4)

Qop =CdAmax

√
2

ρa

pop . (5)

The pressures pcl and pop are reference pressures for the clos-

ing and opening of the valve. The valve is closed if |p|< pcl ,

and is fully open if |p|> pop. To be realistic, the leakage area

Amin is introduced to allow possible leakage when the valve

is closed. The fully open flow area is denoted by Amax, while

ρa is the air density, and Cd is the discharge coefficient.

The air compressibility in the chamber follows this nonlin-

ear relationship:

p0 + p = p0

(
V0

V0 −ΔV

)γ

, (6)



Figure 7. Bond graph model of a fixed OWC.

where p0 is the atmospheric pressure and V0 is the average air

volume in the chamber. The volume change due to compress-

ibility is denoted by ΔV =
∫ t

0 Qc(t)dt. The specific heat ratio

γ depends on whether the expansion and compression occur

rapidly or slowly. The value γ = 1.4 is usually adopted.

A bond graph model of a fixed OWC is shown in Fig. 7.

A 0-junction is used since we are dealing with volume flow

balance instead of force balance (cf. Fig. 1). The excitation

volume flow is represented by an S f element, the wave radia-

tion volume flow by an R element, the air compressibility by

a C element, and the relief valve by an R element.

For a floating OWC, the chamber is free to move. The cou-

pled equations of motion for a floating OWC whose chamber

is free to move in one degree of freedom can be written as

Fe(t) = [mm +m(∞)]u̇(t)+ k(t)∗u(t)−C(∞)p(t)

−h(t)∗ p(t)+(Sb +S)s(t)+RC sgnu(t)

+Rqu(t)|u(t)|− rp(t)

(7)

Qe(t) = y(t)∗ p(t)+C(∞)u(t)+h(t)∗u(t)

+Qv(t)+Qc(t)+ ru(t)+(Re +1/Ru) p(t),
(8)

where C(∞) is the infinite-frequency value of the real part of

the radiation coupling coefficient (see [13]), and h(t) is the

radiation coupling IRF.

A bond graph model of this floating OWC is shown in

Fig. 8. One can see that it is a combination of an oscillating

body and a fixed OWC, connected by an additional T F ele-

ment (cf. Figs. 1 and 7). The force balance on the OWC body

is represented by the bonds connected to the 1-junction on

the upper left. The volume flow balance in the OWC cham-

ber is represented by the bonds connected to the 0-junction

on the bottom left. The coupling between the body velocity

and the chamber pressure is represented by the T F element

connecting the 0-junction to the 1-junction. The T F element

to the right of the first 1-junction carries out the transforma-

tion between force-velocity and pressure-volume flow. The 0-

junction on the right connects 1- and 0-junctions on the left,

signifying that the volume flow relative to the body is utilised

for power absorption. The nonlinear terms in the model are

Figure 8. Bond graph model of a floating OWC whose

chamber is free to move in one degree of freedom.

the Coulomb and quadratic damping forces on the body, the

volume flow due to air compressibility in the chamber, and

the volume flow through the relief valve.

3. RADIATION FORCE MODELS
The traditional representation of the wave radiation force is

in the form of a convolution [14]. An alternative is to approx-

imate it by a state-space model [15]. A comparative study

of these radiation force models has been presented in [16].

The state-space model, obtained according to the method

presented in [17], was shown to be more efficient for time-

domain simulation than directly integrating the convolution

at every time step, while maintaining the same degree of ac-

curacy.

In the state-space model the convolution term

μ(t) = k(t)∗u(t) =
∫ t

0
k(t − τ)u(τ)dτ (9)

is replaced by a set of coupled linear ordinary differential

equations, which may be expressed in matrix form (see,

e.g. [18]):

ẋ(t) = Âx(t)+ B̂u(t) (10)

μ̂(t) = Ĉx(t) (11)

where x(t) is the state vector, the number of components of

which corresponds to the order of the state-space model, and

Â, B̂, Ĉ are constant matrices.

We use the frequency-domain identification approach fol-

lowing the algorithm detailed in [17, 19]. The method uses

frequency-domain hydrodynamic data for identification. The

approach is to fit a rational transfer function

K̂(s) =
P(s)

Q(s)
=

prs
r + pr−1sr−1 + . . .+ p0

sn +qn−1sn−1 + . . .+q0
, (12)



where s = iω, to the frequency response functions (FRFs)

K(ω), Y (ω), or H(ω), depending on the problem considered.

Further constraints on the model have been derived in [20]

based on the properties of the FRF and its corresponding IRF.

A least-squares fitting method is applied to find the coeffi-

cients pi and qi in (12), and once the coefficients are obtained,

the matrices Â, B̂, and Ĉ can be constructed using any of the

standard canonical forms.

4. CASE STUDY: BACKWARD-BENT DUCT
BUOY

As a case study, we consider a particular type of floating

OWC known as the backward-bent duct buoy (BBDB) first

proposed by Masuda [21]. A two-dimensional sketch of the

device is shown in Fig. 6, centre. The device is interesting in

that it utilises coupled resonances of the water column and

the device motions in order to broaden the power absorption

bandwidth. These multiple resonances are achieved without

the introduction of additional bodies, thus making a BBDB a

compact device.

The geometry considered is the same as that in [8]. We

assume that the device is oriented with its submerged opening

in line with the incident wave direction. Thus, the relevant

degrees of freedom are surge, heave, and pitch.

A bond graph model has been presented in [8] and is re-

produced in Fig. 9. Since we deal with more than one de-

gree of freedom, vector bonds are now connected to the 1-

junction representing the body velocities. To the right of this

1-junction, a T F element carries out the transformation re-

quired to obtain the vertical velocity of the body at the centre

of the mean internal free surface, according to

ub = TTu, (13)

where ub is the vertical velocity of the body at the centre of

the mean internal free surface, and T is the transformation

vector given as

T = (0,0,1,0,−xb,0)
T, (14)

where xb is the x-coordinate of the centre of the mean internal

free surface. To the right of this T F element, another T F ele-

ment converts the force-velocity pair to pressure-volume flow

pair, with the internal mean free surface area as the transfor-

mation factor. The R elements labelled ‘Ext. Damping’ rep-

resent losses arising from viscous effects and mooring damp-

ing. These losses have the effect of reducing both the body

motions and the volume flow available to the turbine. Exter-

nal restoring forces are contributed by moorings, whose con-

tribution is assumed to be a small stiffness in surge.

With state-space models replacing the convolutions for

the radiation forces as explained in the previous section,

Figure 9. Bond graph model of a backward-bent duct buoy.

Figure 10. Bond graph model of the backward-bent duct

buoy with state-space representations of the radiation forces.

the model becomes as shown in Fig. 10. The rectangles la-

beled ‘SSRadImp,’ ‘SSRadCF,’ and ‘SSRadCQ’ are submod-

els each containing a number of state-space models. These
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take either the body velocities or the chamber pressure as

inputs, hence the signal bonds coming from the 1- and 0-

junctions into these rectangles. The submodel ‘SSRadImp’

takes the body velocities as inputs and outputs the wave forces

on the body due to its own motions. This submodel contains

9 state-space models, of which 6 are distinct from each other.

The submodel ‘SSRadCF’ takes the chamber pressure as in-

put and outputs the wave forces on the body due to the cham-

ber pressure. This submodel contains 3 distinct state-space

models. The submodel ‘SSRadCQ’ takes the body velocities

as inputs and outputs the volume flow through the internal

surface due to the body motions. This submodel contains 3

state-space models, which are the same as those in submodel

‘SSRadCF’. The square below the submodel ‘SSRadCQ’ is

another state-space model taking the chamber pressure as in-

put and outputs the volume flow through the internal surface

due to this pressure. In total, 16 state-space models, of which

10 are distinct from each other, are required for the whole

system.

Shown in Fig. 11 is a set of simulation results obtained

from irregular incident waves with spectral peak period Tp =
8 s and significant wave height Hs = 3 m. The simulation

is carried out using 20-sim [22]. The excitation force and

volume flow time series are generated before the simulation

and stored as data files to be read during the simulation (see

Fig. 10). A method to generate the time series has been de-

scribed in [16].

For comparison, results from an earlier work [8] which

were obtained by directly integrating the convolutions at ev-

ery time step are reproduced in the same figure. Fair agree-

ment between the two sets of results is observed. The discrep-

ancies could be due to the number of state-space representa-

tions involved. As noted previously, this model contains a to-

tal of 16 state-space representations, of which 10 are distinct.

An earlier study [16] has shown excellent agreement between

results obtained from state-space radiation force models and

convolution models for a floating OWC in the form of a sim-

ple square box with a square opening, and having only one

degree of freedom (heave). This system, however, has only 4

state-space representations, of which 3 are distinct. Further-

more, the present geometry (a BBDB), with only one plane

of symmetry, is more complicated than a square box, which

has three planes of symmetry. On the other hand, simulation

of the present model is significantly faster than that with con-

volutions, especially for a system with 16 convolutions.

5. CONCLUSION

We have modelled, using the bond graph method, two cat-

egories of wave energy converters (WECs), viz. oscillating

bodies and oscillating water columns (OWCs). A fixed OWC

and an oscillating body have distinct features both in terms

of hydrodynamics and the nonlinearities involved. A floating

OWC can be seen as a combination of a fixed OWC and an

oscillating body, coupled through additional hydrodynamic

coupling parameters. This is seen clearly in the bond graph

representation.

As a case study, we have modelled a particular type

of floating OWC known as the backward-bent duct buoy

(BBDB), where the wave radiation forces have been approxi-

mated using state-space representations. Some simulation re-

sults have been presented and compared to those reported in

an earlier work.

The WECs considered in this paper are by no means ex-

haustive, but the selected examples are intended to be repre-

sentative of the WEC concepts available to date. It would be

interesting to model other categories of WECs, such as those

which make use of flexible bodies (e.g. [23]) and overtopping

WECs (e.g. [24]). To our knowledge, no bond graph models

have been developed for these systems.

Our focus has been on the primary interface and not so

much on the power take-off (PTO) system. A comprehensive

WEC model would require a more realistic PTO model in-

stead of a linear damper. This PTO model can be built sepa-

rately and connected to the primary interface model, as illus-

trated in [9].

Harnessing wave energy in an economical manner is still a

dream. It is our hope that this paper would instill some interest

in the experienced bond graphers to help make this dream a

reality.

ACKNOWLEDGEMENTS

This study was carried out as part of the Statkraft Ocean

Energy Research Program, sponsored by Statkraft (www.

statkraft.no). This support is gratefully acknowledged.

REFERENCES
[1] J. Falnes, “A review of wave-energy extraction,” Marine

Structures, vol. 20, pp. 185–201, 2007.

[2] F. J. M. Farley, “Preface: The peaks and troughs of

wave energy, the dreams and the reality,” Philosophi-

cal Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, vol. 370, no. 1959,

pp. 201–202, 2012.

[3] E. R. Jefferys, “Simulation of wave power devices,” Ap-

plied Ocean Research, vol. 6, no. 1, pp. 31–39, 1984.
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MTA-96-
110 

Bratland, Anne K., MH Wave-Current Interaction Effects on Large-Volume 
Bodies in Water of Finite Depth. (Dr.Ing. Thesis) 
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Behaviour. (Dr.Ing. Thesis) 

MTA-98-
122 

Ulltang, Terje, MP A Communication Model for Product Information. 
(Dr.Ing. Thesis) 

MTA-98-
123 

Torbergsen, Erik, MM Impeller/Diffuser Interaction Forces in Centrifugal 
Pumps. (Dr.Ing. Thesis) 
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MTA-
2001-143 

Baarholm, Rolf Jarle, MH Theoretical and experimental studies of wave 
impact underneath decks of offshore platforms. 
(Dr.Ing. Thesis) 

MTA-
2001-144 

Wang, Lihua, MK Probabilistic Analysis of Nonlinear Wave-induced 
Loads on Ships. (Dr.Ing. Thesis) 
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IMT 
2010-60

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without 
Small Forward Speed, Ph.d.thesis,CeSOS.
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IMT 

IMT 
2010-64

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 
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with Particular Reference to Wear Damage 
Analysis, Ph.d. Thesis, CeSOS. 

IMT 
2011-70

Visscher, Jan Application of Particla Image Velocimetry on 
Turbulent Marine Flows, Ph.d.Thesis, IMT. 
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