@NTNU

Norwegian University of
Science and Technology

An investigation into Cellular Automata:
The Self-Modifying Instruction-Based
Approach

Tom Glover

Master of Science in Informatics
Submission date: December 2015
Supervisor: Gunnar Tufte, IDI
Co-supervisor: Stefano Nichele, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

NTNU - Trondheim
Norwegian University of

Science and Technology

An investigation into Cellular
Automata: The Self-Modifying
Instruction-Based Approach

Tom Glover

December 15, 2015

MASTER THESIS
Department of Computer and Information Science
Norwegian University of Science and Technology

Supervisor: Stefano Nichele

Abstract

Cellular automata is an idealized complex system, where a parallel grid of basic
cells communicates locally in order to provide computation. Cellular automata
was first proposed as a medium for replicating machines [1]. This thesis aims to
return to these root and tries to emerge Stem-cell like behaviour and abilities in
Cellular automata.

Stem-cells are a vital part of a complex development process in any multi-
cellular organism. They also serve in maintaining the organism once it is fully
developed. A cell is classified as a stem-cell if it has the ability to both replicate
and develop into a different cell. This is abstracted to mean, the replication and
the morphogenesis problem, as one.

Self-Modification(SM), from Simon L. Harding and Co [48] involves a method
very strong on morphogenesis. M. Bidlo's Instruction-based approach [10], is a
method very strong on replication. This thesis aims to combine the two and show
that they work well in combination, and that it can utilize both the strength of
IBA on the replication problem, and the strength of SM on the morphogenesis
problem. In addition, SM is closer to how genes behave, as SM forms a regulation
of how genes are expressed. Moreover, this thesis also aims to show that stem-
cells or hierarchical-like structures are possible, and often emerge naturally.

It was discovered that SM gave great advantage as an extension to IBA. It
gave IBA useful tools to solve a number of problems IBA alone could not. Also,
through this thesis it was shown that SM with IBA could delay its development
and use longer development paths when necessary.

i

preface

This is a master thesis conducted at the Norwegian University of Science and
Technology(NTNU), in the Department of Computer and Information Science
(IDI). It is the ten month final conclusion to my Master of Science degree in
Informatics, which ended December 2015.

iii

Acknowledgement

This thesis would not be possible without the help of my supervisor Stefano
Nichele, who has helped me in all manners, from the original idea to the finished
result.

| would like to thank Gunnar Tufte for stepping in for a brief time and Keith
Downing for advice and answers to questions.

Gratitude is extended to my friends and family who assisted me by proof
reading the language in this thesis. Erik Lothe, Luka Cetusic, Karsten Kjensmo,
Brian Glover and Morten Grannes.

v

Summary English

In this thesis we investigate a method for genotype representation in cellular
automata. This method is inspired from gene regulation process in biology and
is called self-modification. This is then combined with instruction-based approach
to form SMIBA.

In order to test this new method, SMIBA together with IBA and TT was
tested on a number of problems relevant in artificial life. This firstly, being the
problems of replication and of development, which are seen as vital for self-
replicating machines. Secondly, these two problems of replication and develop-
ment are then combined into a new novel problem, which is then subsequently
used to test the different methods.

SMIBA was seen to perform well, in comparison to the other methods, on
all problems tested. SMIBA and IBA were also shown to scale exceptionally well
when incrementing maximum possible states of the CA, often even performing
better. Further properties in SMIBA of delayed development and hierarchy were
also identified.

Sammendrag Norsk (Summary
Norwegian)

| denne oppgaven undersgkes en ny metode for representasjon av genotype i
cellular automata. Denne nye metoden er inspirert fra genuttrykk kjent fra bi-
ologi og blir kalt selvmodifisering(SM). Denne metoden er da kombinert med
instruksjonsbasert tilnzerming(IBA) og blir da til SMIBA.

Med hensyn til 3 teste den nye metoden, vil SMIBA, i tilegg til IBA og TT,
testes pa problemer relevante i kunstig liv. Med dette menes problemene rep-
likasjon og utvikling, som er sett pad som relevante for selvreplikerende maskiner.
Disse problemene er ogsa kombinert til et tredje nytt problem som ogsa blir brukt
til 3 teste SMIBA, IBA og TT.

Det viste seg at SMIBA fungerte meget bra pa alle problemene som ble testet,
sammenlignet med de andre metodene. SMIBA og IBA viste ogsa en sterk evne
til & Igse problemer hvis, maximum antall tilstander i CA ble gkt. P3 dette
problemet fikk SMIBA og IBA, til og med, ofte en gkt evne til & Igse problemer
nar dette skjedde. Videre ble SMIBA egenskapene av hierarki og 3 kunne utsette
utviklingen identifisert

vi

Contents

Abstract

Preface
Acknowledgement
Summary English
Sammendrag Norsk
List of Figures

List of Tables
Abbreviations

1 Introduction

2 Background

2.1 Biology
2.1.1 Evolution
2.1.2 Development and Genotype to Phenotype
213 Stem-cell

2.2 Open-ended evolution

2.3 Complexsystems
231 Thebrain.
2.3.2 Antcolonies
2.3.3 Central themes and Common properties

2.4 Cellular automata(CA)

vil

vi

xiii

XV

XVi

2.4.1 The allure of an alternative architecture 20

2.5 Evolutionary Algorithms(EA) oL 21
2.5.1 Genetic Algorithm(GA) 23
2.6 Instruction-based approach(IBA) 25
2.6.1 Genomegrowth 25
2.7 Cartesian Genetic Programming(CGP) 26
2.8 Modularity and Evolvability 27
Methodology 28
3.1 Cellular Automata 29
3.1.1 Testing 30
3.2 Genetic Algorithmo 30
3.2.1 Majority Problem(p. > 1/2 problem) 32
3.2.2 Pixel art Problem(development problem) 33
3.3 Instruction-Based Approach 45
3.4 Development Problem 45
3.4.1 Formal Development Problem 45
3.42 Creeperstructure L. 51
3.5 Self-Modification Instruction-Based Approach(SMIBA) 52
3.6 Replication problem 5D
3.6.1 Replication fitness function 55
3.6.2 Alternatives to the fitness function 55
3.6.3 Limitations outside the fitness function 57
3.6.4 The structures explored in this thesis 58
3.7 DevRepproblem 59
3.7.1 Structures 59
3.7.2 Fitness function 60
3.8 Pajek 60
Results and discussion 61
4.1 Development 62
411 IBAincomparisonto TT 63
412 SMIBA 64
413 Onlysolvedin TT 69
4.2 Developmental Length 70
4.3 Replication 73
43.1 Continued replication 75
4.4 A Final Observation 76

45 DevRep Problem oo 81

45.1 Solutions outside the intention 83

4.6 Re-Evolving the phenotype, and the notion of modularity 88
46.1 Evolving from3a —2b 89

4.6.2 Evolving from4b—2b. 91

4.7 Instruction Distributiono 95

5 Conclusion 102
5.1 SMIBA in comparison 102
5.2 Development Replication. 103
53 Stem-Cells 103
54 Scaling 104
55 Hierarchy 104
5.6 Similarities of SMIBA and biological systems 104
5.7 Overview 105
5.8 Future Work 105

6 Appendix A: Figure encoding 114

1X

List of Figures

2.1

2.2
2.3

2.4

2.5
2.6
2.7
2.8
2.9
2.10
3.1
3.2

3.3
3.4

Image example of the Model Human Processor, where the mind

is simplified into a machine. Source: [37] 11
A neuron with soma dendrite and axon marked. Source: [73] . . 12
Casting of an underground ant nest showing deep structures,

Source: [B7]. 13

How magnets work. Left side shows a magnetic field with random
spin. Right side shows a magnetic field where spins have aligned

themselves. Source: [35] 14
Examples of class 1-4. Acquired from [18]. Reformatted and
relabelled to fit page. 17
Rule 110 with transition table, which is proven to be computa-
tionally universal.(acquired from Wolfram Alpha) 18
lllustration of different neighbourhood schemes, the red cell is
changed depending on the values in the green and red cells. . . . 19
Class distribution over lambda values, Source:[60] which is adapted
from [27]. 20
Main loop of a genetic algorithm. Created using draw.io 23
llustration of how evaluation works on CA in a GA. Created using
draw.io L 24

Grid that illustrates the edge bounds of the implemented CA.
Source: [45] where it was used to illustrate different but similar. . 29
Rule 110 taken from the implemented GUI on the left and one
taken from Wolfram Alpha on the right. The picture on the left

also illustrates the loop mechanism of the lattice. 30
First 20 steps of a Glidergun implemented on this system. 31
Average of 100 GA runs, with Standard deviation on the p, > 1/2

problem 33

3.5

3.6

3.7

3.8

3.9

3.10
3.11

3.12

3.13
3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23
3.24

4 examples of GA runs of the majority problem, above two without
elitism and the below two with. All had a population of 20
Left to right; Luigi 4 colors 16*16 lattice, mushroom 3 colors
16*16 lattice, creeper 3 color 10*10 lattice and creeper-reduced
to 2 color and 6*6 lattice.
The best GA solutions found with 146/256 fitness.
Average of 100 GA runs, with Standard deviation on the Luigi
structure Lo
Fitness distribution of 100 GA runs, on the Luigi structure. (Graph
range compressed from 0-256 to 100-150)
One of the best GA solutions found with 152/256 fitness.
Average of 100 GA runs, with Standard deviation on the Mush-
room structureo 0oL Lo
Fitness distribution of 100 GA runs, on the Mushroom structure
(Graph range compressed from 0-256 to 130-160)
One of the best GA solutions found with 86/100 fitness.
Average of 100 GA runs, with Standard deviation on the Creeper
structure Lo
Fitness distribution of 100 GA runs, on the Creeper problem . . .
One of the best GA solutions found with 30/36 fitness.
Average of 100 GA runs, with Standard deviation on the Creeper
Reduced structureo
Fitness distribution of 100 GA runs, on the Creeper Reduced
structure L L
5 of the GA’s found a fitness of 34/36. From left to right the
image was taken at iteration 18,34,32,12and 37
Average of 100 GA runs, with Standard deviation on the Creeper
Reduced long run structure
Fitness distribution of 100 GA runs, on the Creeper Reduced long
run structureo
left to right; 2a: 3 state French flag, 3a: generic 4 state Flag,
4a/b: 3 state Norse Flag, 5a: 4 state larger Norse Flag, 6a/b: 3
state creeper L
Class 2 3a solution to the flag structure.
Class 1 3a solution to the flag structure, found in the long running

x1

34

3.25

3.26
3.27
3.28

3.29

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

One of the many TT solutions to the 3a structure where the flag
appears after a seemingly unexpected step. Take extra notice of
step 5 as the GA questions its own purpose before lamentation
in the understanding that it is to create a simple flag picture.
Another example where the flag appears unexpectedly when de-
veloped using TT.,
Only found creeper solution found using TT
left to right; la: simple Structure, 2a: 3 state French flag, 3a:
generic 4 state flag, 4a/b: 3 state Norse Flag, 5a: 4 state larger
Norse flag, 6a/b: 3 state creeper(unbordered)
left to right; Oa: Simple 2 state, xa/b: simple 3 state, 1a: simple
Structure, 2a: 3 state French flag, 3a: generic 4 state flag.

converting IBAintoa TT
TT solutions to the 5b structure. In both cases a flag appears
seemingly out of randomness and the CA quickly descend into
seemingly random behaviour afterwards. Blue is the fifth color
included in this CA.
25 steps of a solution to the replication problem for 3a, also
continues to replicate after
8 steps of a solution to the replication problem for 3a, but used
on 2a structure. Lo
8 steps of a solution to the replication problem for 3a, but used
on lastructure.
8 steps of a solution to the replication problem for 3a, but used
on 4a structure(4 state).
8 steps of a solution to the replication problem for 3a, but used
on 4a structure(3 state). It can no longer replicate the image,
but the structure is perfectly replicated
16 steps of a solution to the replication problem for 3a, but used
on the larger structure 5a. Note that the lattice had to be a
bit bigger to fit the solution and that it required an extra loop
to replicate it. Also note that this would not be a solution that
the fitness function would find particularly good, as the fitness
function was not designed to consider solutions found crossing
the lattice bounds. We as humans on the other hand can clearly
see the flags are replicated over the boundaries.

xii

4.9 2 examples of mass replications. Many of the replications are not
counted as they touch theedge.
4.10 TT solution to the EvoDevo problem Oa.
4.11 IBA only type of solution. All cases inspected gave this type of
solution, but many different programs.
4.12 Example SMIBA solutiontoOa.
4.13 SMIBA solution to 0a. The previous solution on a large 75*75
lattice. At state nr. 30 a total of 61 replicates despite the fitness
function only ever asking for 3 the program replicates and spreads
out as long as there is room to grow across the lattice.
4.14 A (lovely) solution in SMIBA to the Oa structure.
4.15 Using Pajek to draw a network for 3a — 2b. A highly intercon-
nected case. Solutions to both the first and second problem were
found several times, and are re-marked as a new state to highlight
this. . . .
4.16 Using Pajek to draw a network for 3a — 2b. A case that found
the second solution after 9 generations shows a similar develop-
mental structure. The first 5 states are identical, then they move
separately but similarly.o
4.17 Pajek network example for 40 — 2b. This example showing an
intertwined start.

xiii

List of Tables

3.1
3.2

3.3

3.4

3.5
3.6

3.7

4.1

4.2

4.3

Resulting solutions found
IBA instruction set. L,C,R,U,D is Left, Center, Right, Up, Down
in regard to the cell being updated. n is in this table the number
of number of statesinthe CA
IBA on the 3a structure comparison. Success rate is out of 100
tries. Average and StDev. is the average and standard deviation
of the number of generations the successful runs required to find
the solution
IBA and TT on the 2a structure comparison. Success rate is
out of 100 tries. Average and StDev. is the average and stan-
dard deviation of the number of generations the successfully runs
required to find the solution
IBA and TT comparison on the Creeper structure
Instructions added to the IBA instructions in order to exhibit Self
modification.
Comparison on the French flag and flag structure between IBA,
SMIBA and TT. Success rate is out of 100 tries. Average and
StDev. is the average and standard deviation of the number of
generations the successfully runs required to find the solution

General results of TT, IBA and SMIBA on the development prob-
lem. All results are taken out of 100.
A solution to development of the 4a structure. This solution used
2 move instructions to create a 7-step loop of the program. This
seems to slow down the development of the structure enough
for the flag to be formed. Instructions modified by the MOVE
instruction are made bold for the first loop, for better viability.
Average Fitness of ba/b and 6a between the methods.

X1v

o4

68

4.4

4.5
4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15

Comparison on the 2a and 3a structure between IBA, SMIBA and
TT. Average and standard deviation of the developmental time. . 72
Replication problem comparison 73
Replication problem average and best fitness found in scaled
structures for TT. A perfect solution would score 192 in fitness

Replication count in the extended solutions, best replications is
the case with the highest number of complete replications observed. 80

DevRep problem comparison 81
SMIBA and TT comparison, on the 3a—2b problem. 90
SMIBA and TT comparison. On the 4b—2b problem 91
Development IBA instruction distribution 95
Development SMIBA instruction distribution 98
Replication IBA instruction distribution 99
Replication SMIBA instruction distribution 100
Development Replication SMIBAand IBA. 101

XV

Abbreviations

CA
CGP
EA

GA
IBA
RISC
SM
SMCGP
SMI
SMIBA
TT

Cellular Automata

Cartesian Genetic Programming

Evolutionary Algorithms

Genetic Algorithm

Instruction-based approach

Reduced instruction set computing
Self-Modification

Self-Modifying Cartesian Genetic Programming
Self-Modification Instruction

Self-Modification Instruction-Based Approach

Transition table

XVl

Chapter 1

Introduction

"This is how you do it: you sit down at the keyboard and you put
one word after another until its done. It's that easy, and that hard.”

Neil Gaiman

In this thesis, five research questions and a research goal was formed to
highlight the intentions of this research. For every question, a short introduction
is presented to explain the motivation behind the question.

Through several billion years, evolution has managed to generate and develop
organisms of high complexity from a relatively simple and small genotype starting
from only a small zygote. By what is understood in developmental biology today,
stem-cells are identified as a defining feature in the development of a multicellular
organism. It therefore stands to reason that if this is true in nature, it should also
hold true in artificial development and should be beneficial to our understanding
of it.

In artificial development, two common problems are often explored; morpho-
genesis and replication. Firstly, the problem of replication, where the goal is to
make copies of an original structure. Secondly, the problem of morphogenesis,
where a structure is built from the most simple beginning. Normally, they are
explored as separate or isolated problems, yet in nature they are highly intercon-
nected. Replication is a vital part of the morphogenesis process, and cells and
creatures alike need to morph before they can replicate. A system that exhibits
both morphogenesis and replicating abilities in unison would therefore be closer
to the ideal of artificial life. In nature, cells that have both the ability to morph
into other cells and the ability to replicate themselves, are identified as stem-

cells. For these reasons we aim in this thesis to combine them into a single new
problem.

RQ1: Is it possible to evolve a single genotype in cellular automata
that can solve both the replication and the morphogenesis problem to-
gether?

In 2008, Bidlo and Skarvada devised a method of encoding Cellular Automata
(CA), called Instruction-Based Approach (IBA). This method replaces the tradi-
tional transition tables with a RISC programming architecture that runs as a small
program in each cell. It demonstrates to be especially able to solve the replication
problem and also performed well on the morphogenesis problem [10]. In 2007,
Harding et al. devised a method of development called Self-Modifying Cartesian
Genetic Programming (SMCGP) [48]. This method infuses CGP with additional
self-modifying instructions that change the program at every iteration. SMCGP
showed great ability to solve the morphogenesis problem. This thesis aims to
combine the two into a self-modifying Instruction-based approach(SMIBA), and
study its performance.

RQ2: How would a method combining both IBA and Self-modification
from SMCGP perform in comparison to regular IBA and explicit repre-
sentations (Transition Tables)?

It is useful to note that CA is seen as an idealised complex system, and is
commonly used for studying artificial life and development. Many researchers
have used it together with several developmental strategies to solve both the
replication problem, and the morphogenesis problem. Therefore, there exists a
good body of work to compare results with.

In 2000, Bedau et al. defined 14 unanswered open questions about artificial
life [28]. Over a decade later these 14 questions still serve as a guideline for
artificial life research [29].

In [28], one of the many interesting questions raised is " Determine what is
inevitable in the open-ended evolution of life.”. Underlying this question, they
ask what are the features common to all evolutionary processes, or to a broad
class of evolutionary processes. Development from embryo to organism is an
important process for all multicellular organisms, and underlying this process
is the aforementioned stem-cell, which serves the purpose of replication and a
development step, to many different cells. Stem-cells rely on a hierarchy between
stem-cells where they build other lower level stem-cells.

Another question is " Evaluate the influence of machines on the next major
evolutionary transition of life.”. In order to predict the the next evolutionary
transition, it is useful to look at the ones before it. One evolutionary transition

is the transition into a multicellular organism, and central to this organism is
the stem-cell. Therefore, understanding how stem-cells developed could become
relevant to the understanding of the next transition. This thesis aims to add to
the answer of these questions by looking into the following question.

RQ3: Is a stem-cell like feature necessary or at least useful to develop
multicellular organisms, and will it self emerge given incentive?

Gene regulation is present in nature, and without it is hard to imagine stem-
cells being possible. SMIBA can regulate itself through the use of modifying
instruction. Would stem-cell like behaviour be easier in SMIBA than the other
methods?

One problem inherent with Transition Table(TT) as a genotype representa-
tion, is that of scaling. The TT will grow exponentially in size, based on the
number of states in the CA, as well as the number of neighbours considered in
the TT. Nature has made many systems more scalable through the use of mod-
ularity, regularity, and/or hierarchy [66]. There is evidence that biological cells
are very modular [67], and cells are created through the stem-cell hierarchy. The
SMIBA and IBA algorithms will scale better than TT, since the genotype size is
fixed. Therefore, their runtime will scale better with CA with a high number of
states.

RQ4: Does SMIBA scale better in problem solving?

TT is an explicit genotype representation. The size of the TT will grow expo-
nentially with number of states. It is assumed that an alternative such as SMIBA
which is implicit, would scale more easily. If it does, is it the implicit nature that
does this or is it through some other mechanism or even a combination of many
properties?

One such expected property is that a hierarchy already exists or will emerge
in SMIBA where parameters of the instruction will cause small changes in the
phenotype, IBA instructions will cause larger, and SM instructions cause larger
still.

RQ5: Is a hierarchical genotype a good answer to the problem of
scaling?

Hierarchy is identified in biology together with modularity and regularity, as
a means to increase evolvability [66]. Therefore, a hierarchy in an evolutionary
system would seem advantageous in a changing fitness landscape. In a connected
but different notion, could a method due to a hierarchy in the genotype allow for
better movement even in a static fitness landscape?

These five research questions are formed to help answer the research goal of

RG: Create a novel algorithm SMIBA, test it against already existing

methods, and identify strengths, weaknesses and properties in SMIBA.
These research questions and goal were devised to answer the original re-
search assignment that was specified as to the following:

" This project aims to study the properties of Cellular Automata (CA) machines.
Cellular Automata have been studied by von Neumann in the 1940s, in order to
design self-replicating artificial systems inspired from biology. In 1970, Conway
proposed the "game of life”" based on CAs. Our main interest with CA lies in
the fact that they are a model of natural computation: massive parallelism, local
interactions, entangled memory and processing, they show self-organization and
self-regulation properties, and many other characteristics that resemble living
systems. CA can be considered as discrete dynamic systems and approached as
networks of sparsely connected units (cells). Such networks can be analyzed and
evaluated using the same methods for Boolean Networks and Random Boolean
Networks (RBN). This opens the possibility to generate and visualize attractor
basins and the trajectories from initial state to attractors, which may represent
the system behavior.

Investigation of properties of CA development using different developmental map-
pings, e.g. traditional transition tables vs. instruction-based development. In
particular, it may be possible to use artificial evolution (e.g. genetic algorithms)
to evolve a particular type of CA function with an instruction-based approach with
the introduction of self-modifying instructions (instructions that can self-modify
the program that is present in every cell). "

In order to answer this assignment and the research questions, a general
research plan was made as the following:

e Jan/Feb: Reading relevant literature and understanding the research prob-
lem.

e Mar/Apr: Short literature review of relevant research topics in the field.
e May: Initial coding of necessary artefacts for experiments.

e June/July: First report draft including introduction to the problem, back-
ground literature review, explanation of the experimental setup and results
comparable with other research papers to confirm the experimental setup.
A future work plan is also included in the draft.

Aug/Sep: Future coding of new artefacts. Some experiments should also
be proposed by the student.

Oct: Experimenting and analysis of results.

Nov: Dedicated to writing report.

Dec: Report submission

To ensure progress through the year, this plan was followed as a guideline.
The short literature review is in effect chapter 2 of this thesis. On June 13, a
half-way report was delivered to the supervisor.

This thesis has been organised into 5 main chapters.
1. Introduction: Speaks of the motivation behind this research.
2. Background: Overview of research topics relevant to this research

3. Methodology: Explanation of the system built and documentation of the
testing done to confirm it.

4. Results: Data and analyses of results from the experiments performed and
discussion of said results.

5. Conclusion: Summary of results and interpretation. Includes future work.

Chapter 2

Background

" Quotation is a serviceable substitute for wit.”

Oscar Wilde

In this chapter we review many of the topics needed to understand the field
of artificial life and complex systems. First, biological and natural systems are
reviewed. Secondly, artificial systems are reviewed and linked to their biological
and natural counterparts. Thirdly, some state-of-the-art solutions to the problem
area will be reviewed. In short, this chapter contains the body of research this
thesis builds upon. This chapter can be considered to be a short literature review.

2.1 Biology

This thesis crosses into artificial evolution and development and in this case the
art imitates life. In order to understand the art it is useful to examine life. The
use of such understanding, John Von Neumann phrased quite well in 1951 [3].

“Natural organisms are, as a rule, much more complicated and subtle, and
therefore much less well understood in detail, than are artificial automata. Never-
theless, some regularities, which we observe in the organization of the former may
be quite instructive in our thinking and planning of the latter; and conversely, a
good deal of our experiences and difficulties with our artificial automata can be
to some extend projected on our interpretations of natural organisms”

2.1.1 Evolution

Evolution simplified, is the change in the population over generations. It is
a wide field, therefore, focus will mainly be on what drives evolution. In 1868
when Darwin published the " variation of animals and plants under domestication”
[53], evolution was already an old idea. What Darwin did was, contributed to
it with a multitude of evidence. Darwin also came up with the first theory of
why evolution occurs, when he published in 1859 [52], his theory of evolution
by natural selection. Evolution by natural selection is the understanding that
through (phenotype) variations of individuals in a population, the variations of
the individual cause different rates of survival. Over generations, individuals that
have high survival rate proliferate at a higher rate then the ones who have lower
survival rate. Therefore, they will over many generations replace the variations
that have a low rate of survival.

When it comes to the process of how new variations appear, Darwin struggled
to answer. This was not surprising, since the explanation, which is mutation,
relies heavily on the understanding of genetics. Such understanding was not an
accepted nor a known theory at the time. It did originate at around 1860 [56]
first with Mendel, but it was built up over a long period of time into the modern
understanding we have today.

Mutation

Mutation[56] is random errors that cause permanent changes in ribonucleic
acid(RNA) or deoxyribonucleic acid(DNA). DNA is in short the information
molecule, which is the source code of a cell. RNA is a copy of DNA that is
involved in protein creation and also used in transmission of genetic information.
We will not go into details as to how mutation may change them, but suffice it
to say that if it does occur, DNA or RNA that is copied from changed DNA or
RNA also carries the same change. In many cases mutation will not necessarily
cause a variation, as mutations might change genes that are inactive, or might
happen very late in the developmental process.

Genetic drift

Another driving force in evolution is genetic drift, which was first introduced in
1929 by Wright [55]. Genetic drift works by the stochastic way new generations
are created. Random chances might cause variations to be forgotten because
they are not transferred to the next generation. Over time certain variations

7

might allow the population to drift away from fitness peaks and into new fitness
peaks. The theory also states that genetic drift is more likely to happen the
smaller the population [13]. This makes it highly relevant to artificial evolution,
because small populations are often used.

2.1.2 Development and Genotype to Phenotype

In both artificial and natural development there is a common terminology of
genotype and phenotype. They will be explained by using DNA and biology as
an example. Every cell in a organism’s body contains DNA, and it is built up
of many genes. The DNA as a whole defines the entire recipe of the organism
from the first second it is created to its very end. The DNA is the Genotype
because it is the recipe, or the instructions, of the creature. Phenotype on the
other hand, is the organism itself. Explained in more detail, the phenotype is
how the organism; looks, behaves, develops and so on, in other words its traits.
The genotype is the input, the phenotype is the output. Genotype is the recipe,
phenotype is the cake.

It is also important to note that the phenotype is not determined by the
Genotype alone. The environment also effects the phenotype. After all, insemi-
nating a cat embryo into a dog yields no cat and a cat raised by a dog is likely
to behave differently from one raised by a cat.

In nature, genotype to phenotype mapping is done implicitly and indirectly as
genes behave in relation to each other. Genes may even suppress other genes so
that they are not activated any more. This can be very useful for development
and is called methylation [36]. In this process enzymes attach to genes rendering
them redundant. This is possible because the change happens in the genes,
any descendant of the cell where methylation has happened will copy the genes
with the enzyme included. This differs from mutation because methylation is
intended. This is one of the processes that is utilized in gene regulations.

Development in nature is very implicit [51] in its manner. In artificial evolution
we are free to use methods that are not implicit or explicit. In this thesis both
methods that are implicit and explicit will be tested.

2.1.3 Stem-cell

The human body contains about 10*2 cells, which contains more then 200 distinct
types of cells [20], but at our earliest stage of creation, humans are created from
one cell called the zygote. The zygote splits, goes through several stages, and

after several days, it turns into the blastocyst. The blastocyst consists of an
outer cell layer and an inner cell layer. The inner layer cells are also called
embryonic stem-cells and are pluripotent, which means they can turn into any
other type of cell. Throughout the development of the body there are other
types of stem-cells, which have varying levels of potency. This means that the
different stem-cells have a different set of daughter cells they can turn into. What
is common between stem-cells is they all exhibit the two following properties.

e self-renewal: the cell has the ability to retain itself. This can be done
in two ways, by splitting into two cells where one is the same cell as the
original called the mother cell and the other is a differentiated cell called
the daughter cell. Alternatively, it can split into two differentiated cells and
another cell of the same type as the mother cell splits into two identical
cells.

e potency: The ability to turn into other types of cells. Different types of
stem-cells have different level of potency. Ranging from totipotent, which
have the ability to turn into the complete organism to unipotent, which
only have the ability to turn into one other type of cell.

Stem-cells are found also in the adult human body and serve to maintain and
repair damaged tissue. In other animals, stem-cells can be found in the adult
that has very high level of potency. One such example is the salamander that has
the ability to turn stem-cells into higher potency stem-cells in order to regenerate
limbs. Stem-cells were first proven in 1960 [40, 41] and this discovery moved
stem-cell research into the very active and controversial field it is today. This
was marked well when Science in 1999 named stem-cells as the breakthrough
of the year [42]. This was due to several breakthroughs, such as discovering
that adult stem-cells have potential to turn into more then one form of cell
(multipotent)[42]. Also a method for halting the development of embryonic
stem-cells[42] and more was discovered.

2.2 Open-ended evolution

Open-ended evolution is a bit of a hot topic within the science community, both
among biologists and artificial life researchers. In 2000 Artificial Life held an
open forum in order to draw up a list of open problems to help guide the research
community [28]. Many of the topics discussed related to open-ended evolution.

What is open-ended evolution?

There is a little bit of a disagreement about what is necessary for open-ended
evolution and also the definition of what is open-ended evolution [31]. Much of
the scientific community uses the term synonymously with complexity growth in
organisms. Some even argue that some complexity is necessary, but is not the
driving force [30]. What the community seems to agree on is that a system with
open-ended evolution has the ability to continuously produce novel organisms
and it is this definition that was chosen for this thesis.

2.3 Complex systems

This thesis falls under the theme of complex systems. Before one understands
what is a complex system, it is useful to examine what complex means. Complex
is defined by the Oxford online dictionary as:

1: Consisting of many different and connected parts:
'a complex network of water channels’

2: Not easy to analyse or understand; complicated or intricate:
a complex personality
the situation is more complex than it appears

Oxford online dictionary

What is meant by different but connected parts? In comparison, could not a
simple system also be built up by parts? [34] The keyword is therefore connected.
By connected, they mean that complexity arises from parts that interact with
one another in a manner that is not apparent from the parts. This is the notion
of emergence, which is in many ways the opposite of reductionism. Reductionism
is a scientific method that in order to understand a system tries to divide the
system into as small parts as possible and tries to understand the small parts on
their own. A system is merely the sum of its parts. Although reductionism has
helped science understand many systems, when a system is highly interconnected
it is no longer a useful tool[36]. Complexity is simply more than the sum of its
parts. As complexity is "not easy to analyse or understand” it becomes hard to
define it in simple and general terms, it might therefore be best to explain it by
examples.

10

2.3.1 The brain

One such example is the brain, which is an interesting topic of on its own, but
it is also a very good example of a complex and interconnected system. As a
computer scientist it becomes tempting to explain the brain in a simplified manner
similar to processors, with hertz, latency and memory. Such models are in fact
made and used, (see Figure: 2.1), where you can see the human mind abstracted
into something much like a computer. They can be useful in predicting human
behaviour but the abstraction makes it lose the very essence of what makes the
brain complex. In reality the brain is not so centralized and the model falls short
in explaining why and how the brain works.

LONG-TERM MEMORY

A= ™

pum = 3 [25~4.1] chunks
pwm® =7 [5~9] chunks
Sum = 7 |5~226] sec
By (1 chunk) = 73 |73~226 | sec
S (3 chunks) = 7 [5~34] sec

Hyw = Acoustic or Visual

1500 900 ~3500 | msec
inis = 5 [4.4~5.2] letters
is = Physical

pyis = 17 [T~17] letters
wcuig = Physical

S A 5

[Y 4

Cognitive

Processor
T 7))
ah Motor
Processor

Eye movement - 230 [70~700 | msec Ta= 70 [M~10

msec

)

Figure 2.1: Image example of the Model Human Processor, where the mind
is simplified into a machine. Source: [37]

In reality the brain is built up of two types of cells, neurons and glial cells
[38]. Glial derives from the Greek word for glue, and is a type of cell that seems
to perform support roles like providing structure, removing dead material and
much more. The more interesting cell type is the neurons, which can be split in
3 parts [36]

11

e The soma, which is the cell core and body.

e The dendrites, which stretch outwards and is the neurons source of incom-
ing signals.

e The axon, which also stretch outwards and is the neuron's way for trans-
mitting signals to other neurons.

Dendrite

Figure 2.2: A neuron with soma dendrite and axon marked. Source: [73]

A neuron can either be firing or not firing. When a neuron is firing it means
that it is sending signals through the axons to other cells, and in order to fire,
the neuron needs enough signal from its dendrites. One way to think of a neuron
is to think of it as a valve that releases only if there is enough pressure. A single
neuron in itself does not do much, but it is through its interactions with countless
of other neurons the brain can perform complex behaviour like recognizing this
pattern as writing and translating the words you are now reading into thoughts
and meaning.

2.3.2 Ant colonies

Ant colonies and other insect colonies are a fine example of a complex system.
They behave in many ways similar to the brain. The colony as a whole can be
seen as a hive mind, but before one can understand that, one needs to know
how ant colonies work. An ant itself is quite simple. It follows its simple genetic
imperative to march around in seemingly random patterns doing simple tasks like
gathering leaves, food, or other materials for the hive by scrounging along the
forest floor. Yet together, the entire hive can fend off intruders, gather resources

12

and build large hives consisting of many deep hallways as seen in Figure: 2.3. The
deep hive is often used as a breeding ground where the temperature is controlled
using heat from decaying nest materials [36].

Another example to consider is the fire ants, which
struggle if it is alone in water, but when together they
congregate and form rafts to increase their buoyancy
[58]. The ants are not smart enough to consciously
make these decisions on the basis of the hive, rather
they communicate locally and respond to local inter-
actions between other ants or their senses.

2.3.3 Central themes and Common
properties

Two short examples of complex systems have been Figure 2.3: Casting
given. Besides these two, there are many more that ©of an underground ant
could be mentioned, like the immune system, the econ- Nest showing deep struc-
omy and the internet. Common properties of these tures, Source: [57].
examples mentioned is emergence [34], but also prop-

erties like signalling and information processing and

adaptation. These topics will be reviewed later in this

subsection. [36].

Emergence

Emergent complexity is when simple parts work together to form on a larger
scale more complex behaviour. A formal definition of emergence can be found in
[19] and goes as following. “Emergence is a non-trivial relationship between the
properties of a system at microscopic and macroscopic scales. Macroscopic prop-
erties are called emergent when it is hard to explain them simply from microscopic
properties.” The brain and ant colonies are good examples of this. For example
how the fire ants generate buoyancy above their sum by forming rafts together.
The opposite is also something that can be seen to occur. When complex sys-
tems interact and through their properties self-organize, this is called emergent
simplicity or self-organisation. One good example can be found in magnetism.
Materials such as iron consist of many small magnets called spins. Normally
these small magnets point in random directions such that their magnetic fields
cancel each other out. The higher the temperature of the material, the more

13

random movement in the molecules, which effect the spin and causes them to
behave randomly. If the temperature is low enough, the spins line up such that
they all point in the same direction, which as a result emerge magnetism. This
happens because spins that point in opposite directions repel each other [35].
If enough pressure from other spins are in alignment, then spins that are not,
will be forced into alignment through this repelling force from the ones that are
aligned.

I ANC o IV
/1"\.,.//,/./;5/
7\‘/4\4 //'//'/'

Figure 2.4: How magnets work. Left side shows a magnetic field with random
spin. Right side shows a magnetic field where spins have aligned themselves.
Source: [35]

Many systems exhibit this emergent simplicity where the chaotic nature of the
smaller parts becomes unimportant in the whole. Another such example includes
how the stellar body Earth moves around the sun in a neatly formed orbit, while
ignoring the countless complex actions of its inhabitants [34].

Complexity

A property of a complex system is also its complexity. There are sadly no com-
monly accepted definition on how to quantify complexity. Bar-Yam proposed that
complexity is the amount of information necessary to describe a system [34], but
this was not entirely accepted by the community. How to define and quantify
complexity is still an ongoing discussion as claimed by Mitchell in [36]. Just this
year, the journal Artifical Life, included an article proposing a new combination
method [59]. The method combines Kolmogorov Complexity and Minimum mes-
sage length. Kolmogorov Complexity, states that the complexity of a string is
the shortest program that can be used to describe a given string [59]. In other
words, how hard it is to compress the information. This can abstract nicely
to mean Bar-Yams definitions of describing a system. The minimum message
length follows a similar notion, as it considers the increased information added
to the output compared to the given input [59]. The new method proposed

14

uses a combination of the two where Kolmogorovs method is used to define the
quantity of complexity of an output. The input is considered in relation to its
output using a minimum message length inspired method. If the community will
accept such a definition or not remains to be seen. Therefore, this thesis remain
at the description presented at the start of this section.

Processing

Complex systems have a tendency to contain some form of information signalling
and processing, but not in a traditional sense. In a complex system signalling is
very often highly distributed. The brain is a good example of this. It is considered
the central control mechanism for the body and is our processor, but the brain
itself is highly distributed. There is no single neuron that is the authority over a
given action, but rather a network of neurons. This becomes quite clear when we
consider that minor damage suffered from brain-surgery, accidents or tumours do
not normally remove functionality [35].

Adaptation

Adaptivity is often a property of complex systems, that they to some degree
react to input or environment. The brain clearly has some form of adaptive
reaction to damage as mentioned above. It is also designed to make us more
adaptive to our environment by learning from it. Much like humans, ants create
structures and a home to protect themselves from the environment, by shaping
the very environment they live in. The other complex systems mentioned, but not
explained, also include some level of adaptation. The immune system has many
adaptive methods to fend off an infection. One such example is how the first line
of defence, the white blood cells or the lymphocytes act [36]. Normally these cells
float around the blood not doing anything, but through special receptors on the
cell body, they will react when encountering invading bacteria. These receptors
vary from cell to cell such that each cell detects a set of invaders. If invaders are
detected, the white blood cell will release antibodies and also start to divide and
replicate at an increasing rate. One daughter of the white blood cell will also
remain and remember the detected invader in case it is encountered again. Suffice
it to say, the notion of adaptivity relates very nicely to the measure of complexity
between input and output. Also adaptation has to do with the resilience of the
system. This is very apparent in self-organising systems. If we were to randomly
flip the spin of a magnetic particle, the pressure from surrounding magnetic spins

15

will quickly bring the flipped spin back in line [35].

2.4 Cellular automata(CA)

Now that we have looked at some natural complex systems and their properties,
a designed complex system might provide some contrast. A great example of
such a system would be Cellular Automata. Here the rules are purposely simple,
but the interaction is greatly complex. Cellular automata is an architecture first
devised in 1940 by John Von Neumann and Stanislaw Ulam. Von Neumann used
it in order to examine if a machine is capable of replicating itself. The work was
published finally by Arthur W. Burks in 1966 [1].

CA is an idealized version of a complex system, and contains massive paral-
lelism and distributed computation [2]. CA is an architecture, which consists of
a grid of 1 or more dimensions(not counting time). Every cell in the grid can be
in 2 or more states. The cells change state discreetly by considering on its own
state and other neighbouring cells state. Normally all possible combinations of
neighbour and self states are mapped out and put into a table called a transition
table(TT), which serves as a look-up table for the cellular automata. There are
alternative ways to specify cell behaviour, which we will come back to in the later
sections.

The simplest form is named elementary cellular automata and is a 1 dimen-
sional two state cellular automata. Here a cell uses its two adjacent neighbours
and itself to make up its TT. It was extensively examined by Stephen Wolfram
[4]. Most notably in [5] he showed that elementary cellular automata fit into
one of 4 classes. Examples of behaviour in these 4 classes can be seen in Figure:
2.5.1t might be important to note that CA is classified based on its behaviour on
most initial condition. Therefore there exist in all classes initial conditions that
are exceptions to the nature of the class.

e The 1st class covers CA that settle quickly into a unique homogeneous
state, which is largely independent of the initial condition.

e The 2nd class covers CA that settle into stable or short cyclic states on a
local level. The states are built up of a set of simple structures.

e The 3rd class covers CA that behave in pseudo-random structures. CA
in this class have long loops of states that they go through and can be
called chaotic. This class is very sensitive to its initial condition such

16

Class 1 Class 2

Class 3 Class 4

Figure 2.5: Examples of class 1-4. Acquired from [18]. Reformatted and
relabelled to fit page.

17

il Sl Ealls ol N iy

I o

Figure 2.6: Rule 110 with transition table, which is proven to be computa-
tionally universal.(acquired from Wolfram Alpha)

that the same rules provide different results depending highly on the initial
condition [18]. Members of this class can be used as random number
generators [16, 44].

e The 4th and last class covers CA that are of a complex nature. Here
cells can over time have global interaction. This class seems to appear
most commonly between class 2 and 3 [18]. This class of CA is the truly
interesting class and will be elaborate further on it.

Wolfram speculated that some members of the 4th class have the capability
of universal computation. One rule was proven in 2004 when M. Cook presented
proof that rule 110 (Figure: 2.6, which is a member of the complex class), is
capable of universal computation [7]. The proof was devised by showing that
rule 110 can emulate a cyclic tag system, which has previously been shown to
be computationally universal [8, 9], and therefore it follows that rule 110 must
also be computationally universal.

The CA discussed so far is 1-dimensional CA. This thesis will mostly focus
on 2-dimensional CA and moving from one to two dimensions seems like a big

18

change, but when it comes to the behaviour of complexity and classes CA behaves
much in the same manner[18]. One thing that does change is the neighbourhood
scheme. In two dimensions there are two more common schemas, Von Neumann
neighbourhood and Moor's neighbourhood, which is shown in the Figure: 2.7.

Moore Von Neumann

Figure 2.7: Illustration of different neighbourhood schemes, the red cell is
changed depending on the values in the green and red cells.

Edge of chaos and \(Lambda)

The edge of chaos is a controversial theory that was proposed by Christopher
Langton in [26]. It states that CA with capability for universal computation is
most likely found at the phase transitions between class 2 and 3 behaviour. He
also proposes a function for identifying genotypes with ability for computation.
He does this by calculating a value called the A\. On a cellular automata with K
distinct states and a neighbourhood of N cells, the A is found by firstly picking
an arbitrary state from the set of unique states possible in the CA and call this
state the quiescent state. Count the number of transitions to the quiescent state
and call this value n. Calculate X\ by the following formula:

KN —n

A= N

In practice the values of KV and n can be a bit comprehensive to find. As
K"V scales quickly for larger numbers of K and N. Luckily, they can be quite
accurately estimated by testing uniformly and randomly over the possible K
states. Using this method A = 0 where K~ = n, then all transitions lead to the
same state and the CA is therefore homogeneous. While A values where n=0 and
A=1-— % are the most heterogeneous. Langton then showed that by traversing

19

Complexity

»
>

0.00 A 1.00

Figure 2.8: Class distribution over lambda values, Source:[60] which is
adapted from [27].

through X values one observes all 4 classes of CA described by Wolfram as shown
in Figure: 2.8.

2.4.1 The allure of an alternative architecture

Today the most common computer architecture is based on Von Neumann ar-
chitecture. It is quite a testament to Von Neumann's genius as he devised both
the common and the alternative. Regardless, the Von Neumann architecture
comes with certain limitations. One such vital limitation being the Von Neu-
mann bottleneck[17]. This bottleneck is the limitation put on the system through
the bus that memory, CPU and |/O share. This bottleneck is currently to some
degree mediated through the memory hierarchy also referred to as caching.

Moore's law is a well known computer science observation that states that
every two years the density of transistors double. As was predicted [21, 22, 23],
it can be argued that the law no longer applies, but is being artificially kept by
multi-core processors. Having two cores of 1 GHz does not guarantee the same
capabilities as one core of 2 GHz. Multi-core processes were implemented due to
the problem of heat leakage [24]. It seems, multi-core processors only make the
Von Neuman bottleneck worse [25], making the bottleneck problem even more
relevant.

On the other hand, memory and processing in CA are, entangled into one
system. Since it was shown that CA can be universal computational [7], it must
therefore be capable of anything a conventional computer is capable of. CA only
communicates locally and therefore takes a long time to do certain tasks, but
It is completely parallel and can be simulated effectively across both cores and
machines [6].

20

CA applications

Aside from attempting to replace the conventional computer, CA can be used
for several other tasks like, noise cancelling in image processing [43], or how rule
30 can be used as a random number generator [44].

Another application more related to this thesis is the study of biology. Local
interaction giving rise to global information processing that occurs in nature, such
as the examples of the brain and insect colonies. Many of the features found
here are also found in cellular automata such as massive parallelism, locality of
interaction and simple components [65].

2.5 Evolutionary Algorithms(EA)

A complex system like CA comes with a certain feature of scaling. In order to
achieve desired behaviour of the CA, in all but the most simplest versions, a very
large search space needs to be explored. This becomes apparent when considering
the scale of possible genotypes in cellular automata. The size of a TT or the
genotype size(gS) can be calculated by taking the number of states(n) to the
power of the number of neighbours(nH) n(#) = ¢S. Such a genotype can be
set up in a number of ways, we can calculate this be taking number of states(n)
to the power of the gS n(9%). The two formulas can be combined to be n™". An
elementary cellular automata which was discussed earlier contains a genotype size
of 23 = 8. This genotype can be set up 2° = 256 different ways . That is only the
simplest form of CA; if we were to scale it up to a simple 2-dimensional 2-state
uniform cellular automata with a Von Neumann neighbourhood, one cell needs to
consider 2° = 32 neighbourhoods. This means we now have 232 = 4 294 967 296
(4.29 billion) ways to set it up. The largest CA that was considered in this thesis
is a 4-state CA with Von Neumann neighbourhood, which has 4*° ~ 3.232106%6.
We therefore need some form of algorithm that can effectively navigate the very
large set of candidates. This brings us to the topic of this subsection; EA.
Evolutionary Algorithms(EA) are a set of algorithms inspired by evolution.
[39] EA is seen as a set of function optimisation algorithms. Much of the their
strength lies in that their ability to solve almost any problem without knowing
more about the problem than the difference between a good or bad solution. This
is done by the programmer designing a unique fitness function for the problem.
This is a function that is made to evaluate a candidate solution. EA need to be
able to generate new candidate solutions continuously. It does this be modifying

21

previous candidate solutions either by mutation, crossover or both.

Crossover

Crossover is the strategy for creating new novel candidate solutions. It uses two
or more parent solutions, splits them up and recombines their genotypes to make
a new child solution. There are several strategies for crossover [62], and most
strategies vary on how often to split between the different parent solutions. The
simplest form is called one point crossover. It simply creates a random point
and recombines the child by using one side of the genotype from one parent
and the other side from the other parent. Other common strategies are two
point crossover and multipoint crossover, which in effect simply formed the child
using smaller subsections of the parents. In addition there exists some adaptive
methods where the crossover rate change depending on other properties [63, 64].
Crossover alone does cause some genetic material to be irreversibly lost in the
process so it is very commonly used in combination with mutation. Some argue
that crossover is non-essential as it only provides evolutionary adaptability in
specific problem areas [12] and that the true source of novelty is mutation.

Mutation

Mutation is another strategy to create novel solutions. Sometimes it is used alone
such as in evolutionary strategies. There are also several strategies for mutation,
but most of them simply move, change or flip single bits of the genotype based
on some form of randomness [62]. In this thesis, mutation is combined with
crossover in a genetic algorithm.

Local Optima

One essential weakness to EA is that they have a tendency to get stuck in a local
optima that is not necessarily the global optima. A local optima (sometimes
called a local maxima/minima) is a fitness peak where the neighbouring solutions
all cause some decrease in fitness [54]. Most evolutionary algorithms are adept hill
climbers. If properly balanced, they exhibit some ability to avoid getting stuck in
a local optima. Much of this strength derives in the drift and pseudo-randomized
population. It is important to note that even if the EA is well balanced, getting
stuck in a local maxima is still a relevant problem. The ability to exit local
maxima is a very relevant ability when developing desired behaviour in CA. It is a

22

h 4

Evaluation Selection

N/

Breeding

Figure 2.9: Main loop of a genetic algorithm. Created using draw.io

likely problem that one will face when working with CA, as the fitness landscape
in CA is rarely a straight line.

2.5.1 Genetic Algorithm(GA)

Genetic Algorithm(GA) is a form of EA and was first investigated and introduced
by John Holland [32] in 1975. It is implemented by using a population pool of
random candidate solutions. lteratively the pool is valued solution by solution,
and solutions that have a higher fitness value have a higher chance of breeding
part of their solution into the next generation. This is why GA is considered
to mimic natural selection. Breeding is done by a combination of mutation
and crossover. First a new solution generated from part of two other solutions
using crossover, then the new child solution may mutate further altering it. The
new child solution is then passed to evaluation again as seen in Figure: 2.9. It
continuously runs through this loop until a satisfactory result is achieved or the
limit of maximum generations is reached.

Selection

There are several ways to select breeders for the next generation. The two most
common practices are tournament selection and fitness proportion selection.

Tournament selection picks random candidates from the population, which
competes in a tournament based on fitness. The winner of the tournament is
selected for breeding (crossover). New tournaments are held until the next
population has reached sufficient size.

23

Evaluation

Genotype

Deyelop

Phenotype

l

Fitness
Function

Figure 2.10: Tlustration of how evaluation works on CA in a GA. Created
using draw.io

Fitness proportion selection is done by normalising the fitness of the entire
previous generation so that the sum of fitness shared by the population totals
1. The population is then sorted by fitness and distributed over a range of 0-1
such that every candidate’s fitness is, every candidate before it in the distribution
summed with its own. Then the breeders are selected by finding a random number
between 0 and 1 and selecting the first candidate with a larger number. This
thesis uses the fitness proportion form of selection.

Evaluation

Evaluation with regard to cellular automata becomes a little more complicated
when it comes to the evaluation. Normally the fitness function can be applied
directly to the genotype. Due to the genotype to phenotype mapping in CA, the
phenotype needs to be developed before a candidate can be evaluated by the
fitness function as seen in Figure: 2.10.

Elitism

Between every generation all the old solutions are removed. It might be favourable
to ensure that the best solution carries on, so that quality of every generation
is not lost between generations. In order to do this, normally, the GA utilizes
something called elitism. Elitism simply ensures that the best solution(s) of the
old generation is retained into the new generation.

Some studies indicate that elitism can be quite vital for GA performance [33].

24

Stochastic

One problem with genetic algorithm is that it is stochastic, and therefore yields
unpredictable results. It is therefore hard to find critical problems that illustrate
the strength of GA. This is shown well in [14] where they actively tried to find a
problem where GA will outperform hill climbing algorithms. The results on the
other hand were not conclusive to a high degree. GA's stochastic nature is one
of the properties that makes it and other EA’s so interesting. This is because
it can come up with very creative, but hard to predict and maybe also hard to
understand solutions.

No free lunch

An important theorem in optimisation algorithms is the no free lunch theorem
presented in [72]. This theorem states that for any algorithm strength of solving
a specific problem, must be paid for in a weakness on a different set of problems.
This means that no algorithm is superior to other algorithms, but they can be
better only at specific problems.

2.6 Instruction-based approach(IBA)

Normally cellular automata use transition tables as a genotype, but there are other
proposed alternatives, and one of them is the instruction-based approach. This
approach was introduced by M. Bidlo and Z. Vasicek [10]. The method replaces
the TT with a small RISC (Reduced instruction set computing) program that is
run in every cell. It gives the advantage of a higher level of abstraction in the
encoding and should therefore make the genotype and phenotype mapping more
understandable, even if it uses a implicit genotype to phenotype matching. In
addition, the method seems to complement GAs very well and in the experiment
that was performed in [11]. Here it is compared to the standard transition tables,
and showed improved results in regards to chance of finding a complete solution.
Moreover, it showed that on some problems it proved to find the solution quicker.

The method of IBA will be both implemented and built upon in this thesis.

2.6.1 Genome growth

IBA was used later in [47], by Tufte and Nichele where they used it together
with a implicit version of TT. The implicit TT is done by using TT entries that

25

are generally stated and cover more then one case. Here they grew the program
both in IBA and TT by adding more and more rules/entries over the course of
evolution. One observation from this paper relevant to this thesis, is that for
replication, only one or two IBA instruction was needed to solve the problem.

2.7 Cartesian Genetic Programming(CGP)

Genetic programming is a form of EA where a program is evolved in the same loop
of evaluate, select and breed. Normally the genotype or program is represented
as a tree graph, where nodes interact with simple operations of values [15]. CGP
is much like genetic programming. It differs in that it allows for inactive genetic
material that is in the genotype, but does not directly alter the phenotype. It
does this by allowing any node to point to a lower node in the graph and as such
every node does not need to be connected to a output node. This method gives
greater freedom in terms of drift, and should increase the chance of leaving local
optima [15].

Self-Modifying Cartesian Genetic Programming(SMCGP)

SMCGP is a further extension to CGP, which allows for the genotype to iteratively
change itself. This is done by including in the program special rules that modify
the program itself. Within the development of the phenotype the genotype might
modify itself while it is developing by example, copying, moving or removing other
code in the program. This method was first suggested in 2009 in [48] and further
work and testing showed SMCGP's ability to solve a wide range of computational
problems [49, 50].

In this thesis the SM method will be combined with IBA. This will be done
by extending the rule list of IBA with a number of non-encoding instructions
that instead alter the rules of the program itself. This allows for the possibility
of creating a genotype that include both encoding genes and non-encoding(self-
modifying) genes. Self-modifying genes can be considered as a form of gene
regulation mechanism, where different parts of the genome may be active at
different stages of development.

26

2.8 Modularity and Evolvability

Marc Kirschner and John Gerhart defined evolvability as "an organism’s capacity
to generate heritable phenotypic variation” [68]. In order to have any improve-
ment in evolution, novelty must be produced, but most changes often have
negative effect. If there is a capacity to produce many new working solutions,
the organism is more likely to be able to adapt to a changing fitness landscape.
Nature has managed to increase evolvability with use of modularity, regularity
and hierarchy in its systems[66]. The modularity of a solution helps it create
working novel solutions and gives advantages in open-ended evolution where the
fitness change. Modularity also seems to exist in the gene network and this is
proven quite creepily, but also elegantly when Walter J. Gehring [69] caused eye
like structures to develop on fly wings that have a single gene activated by ge-
netic engineering. This is quite impressive as there are at least 2500 genes active
in the formation of an eye [70].

The notion of modularity and evolvability was put into practice by Ben Kovitz,
who experimented with a cascading design [71]. Kovitz revolved different and
simple mathematical problems where an input value was modified using simple
operations into several output values. The experiment showed increasing evolv-
ability over time.

Taking inspiration from modularity, this thesis aims to make CA more modular
with the help of self-modification. This could be done by the self-modification
genes creating a genome regulation mechanism.

27

Chapter 3

Methodology

" Real stupidity beats artificial intelligence every time”

Terry Pratchett - Hogfather

"If you try and take a cat apart to see how it works, the first thing
you have on your hands is a non-working cat.”

Douglas Adams

In this chapter we will go through the system that has been implemented at
a high level and how it was tested. The implemented artefacts or modules of this
thesis will be explained in a chronological order. This order is also a bottom up
order, which occurred naturally as many of the modules are necessary for other
subsequent artefacts or modules.

The system is implemented in Java. The language was chosen simply because
the developed system is not directly performance-dependant and Java is the
language the author has the most experience with.

CA was implemented with three different genotype representations, namely
TT, IBA and SMIBA. TT is the original method where every possible neigh-
bourhood value, the results are explicitly stated. IBA is a newer implicit method
where the cell runs a short RISC program. SMIBA is the new method presented
in this thesis, which is IBA infused with self-modifying instructions that modify
the program itself. Finally, a number of problems were implemented, which were
solved using the different representations.

28

3.1 Cellular Automata

In order to do anything that is intended, a CA framework or engine needed to
be implemented. The CA system that was developed supports both one and two
dimensional cellular automata with up to 9 different states for cells. The CA can
use both Von Neumann and Moore neighbourhoods in the case of 2-dimensional
CA. The two aforementioned neighbourhoods can be seen in Figure: 2.7. The
CA is uniform such that all cells operate from the same ruleset.

The cells in the CA are bound in a loop such that the edges of the lattice
are connected to the other side of the lattice as illustrated in Figure: 3.1. This
ensures that every cell has the sufficient number of neighbours. The CA started
with transition table as a base genotype representation and the IBA and SMIBA
was implemented later.

Figure 3.1: Grid that illustrates the edge bounds of the implemented CA.
Source: [45] where it was used to illustrate different but similar.

The CA can be set up to write to a .txt-file every iteration, in order to
permanently document results. The output file can then be executed through a
graphical user-interface to get a graphical overview of the results. This feature
was used for inspecting results and to draw many of the figures in this thesis.

29

3.1.1 Testing

In order to ensure that the CA was working as intended, some testing was per-
formed. First the elementary one-dimensional CA was tested. This was done by
applying several known rules and comparing them to output from Wolfram Alpha
[75] to see that they were identical. An example of this comparison can be seen
in Figure: 3.2.

Figure 3.2: Rule 110 taken from the implemented GUI on the left and one
taken from Wolfram Alpha on the right. The picture on the left also illus-
trates the loop mechanism of the lattice.

In order to test that the two-dimensional CA worked, "Game of Life" rules
were implemented and the starting board was initialized to the glider gun to see
if it operates as intended. First 20 steps of this can be seen in Figure: 3.3.
After the first 20 steps the glidergun made several more gliders, which ultimately
looped round and crashed into the glidergun, destroying it.

3.2 Genetic Algorithm

Now that there is confidence in the working of the CA, we will move on to the
next module, the GA. As mentioned in a earlier section, in CA, the search space
of possible rules can be very large. Therefore searching through the entire search
space by brute force would take a considerable amount of time. In order to
search through this space effectively, the Genetic Algorithm was selected. It is a

30

Figure 3.3: First 20 steps of a Glidergun implemented on this system.

robust and capable algorithm for searching through search spaces, but it was also
selected because of its inspiration from and similarity to evolution. The GA that
was implemented was conventional GA and goes through the following common
steps.:

e Evaluation: Testing the population using the fitness function.

e Sorting: Reorder the population into a prioritized list so that better candi-
dates in the population are placed before the worse candidates.

e Normalizing: Distributing the sorted population over a range between 0
and 1 so that the best solution takes up more space of the range than
worse solutions.

e Selection: Now that the population is sorted and normalized, breeders can
be selected by casting a random number between 0 and 1 and selecting
the first candidate in the population that has a larger value.

e Crossover: Creating a new candidate for the next generation of the popu-
lation by recombining subsections of two breeders’ genotype. In this imple-

31

mentation multi point crossover was used, which means that the parents
were split into many multiple subsections.

e Mutation: Every candidate in the next generation is mutated such that
every gene in the genotype has a low rate of probability to change. In this
implementation, random mutation was used.

3.2.1 Majority Problem(p. > 1/2 problem)

In order to test the GA, the majority problem [36], also known as the p. > 1/2
problem, was chosen. This is a problem where the goal is to find a ruleset for
the CA that can find out what state n initial condition contain the most of.
If the initial condition contains mostly white cells, then the entire CA should
turn completely white and if the majority is black cells then the CA should turn
completely black. Such a problem may be considered simple for a computer
with a centralised system, but in CA nothing has overview of the entire system,
therefore it becomes a very hard problem to solve. So hard that there seems to
be no ruleset that can solve all possible initial conditions for an 1-dimensional
2-state CA given that the board is of a sufficient length [46].

The fitness function for this problem counted every possible initial condition
for a given lattice length. Then, it counted the number of cells that had the
correct value/colour at the end of 20 iterations.

Results

Rule found Number of times Fitness

Rule 21 16 150,160
Rule 31 26 150,160
Rule 87 25 150,160
Rule 7 27 150,160
Rule 232 7 140/160

Table 3.1: Resulting solutions found

The GA was executed 100 times on the majority problem with lattice length 5.
The chosen population was set to 50, and it ran for 100 generations with elitism.
Mutation rate was set at 2% and crossover rate at 10%. With a lattice length of 5,

32

180

160
140
120 +

100 38 A varage (population

a0 avarage fitness)

M S ~+ =T

a0 avarage(best)

w

¥ 40
20

o
E = T e T T O N = T o ¥ T TR =
— N M o= s W W oo~ 00 00

[~
(=)}

Number of runs

Figure 3.4: Average of 100 GA runs, with Standard deviation on the p. > 1/2
problem

if a rule that solves the problem fully would get a fitness of (nrstates)!atticelength
(latticelength) which is 2° x 5 = 160 fitness in this case.

No rule were discovered that got a perfect score, but several were found
that got a 150/160 fitness, these were rule 21, 31, 87 and 7. 7/100 times the
GA got stuck at a local maximum with 140/160, which is rule 232. Table 3.1
shows the number of times a given rule was the best candidate solution found.
Figure: 3.5 shows 4 graphs of the average population fitness and best fitness in
the population. These are all cases of executions. two cases were ran without
elitism for comparison.

3.2.2 Pixel art Problem(development problem)

The second problem used to test the GA is a well-known development problem.
Here the goal is to evolve rules that could develop from a single black cell or the
zygote into a predefined cellular automata state, which can be seen as a pixel art
image. A few less conventional images were used to test the GA like Luigi and
the creeper, but later when comparing results between algorithms and between
other literature more conventional images were used. The fitness function for

33

160 160
140 - 120 v
120 120 %MW
100 100 7

80 = Best fitness 80 = Best fitness

- ——pvarage fitness - = Avarage fitness
40 40

20 20

0 T 0 T T T

1 4 7 10131619 22 25 2831 34 37 40 43 46 49 1 4 7 101316192225 283134374043 4649

160 160
120 =/ 120 | "ww
120 N\MJ\/\ 120 J M-JJ
100 /",\’\Vf 100 /r\/

80 Best fitness 20 = Best fitness
- — Avarage fitness - — Avarage fitness
40 40

20 20

0 T T T T O T T T T T T T

1 4 7 1013161922 25 28 31 34 37 40 43 46 49 1 4 7 1013161922 2528351 34 37 40 43 4649

Figure 3.5: 4 examples of GA runs of the majority problem, above two
without elitism and the below two with. All had a population of 20

this problem simply iterated the CA 20 steps and matched the resulting CA to
the desired CA state and counted the number of correct cells. 4 pictures of
different difficulty were identified and chosen, as can be seen in Figure: 3.6.
These are named the Luigi, mushroom, creeper and creeper-reduced structures.
Deeper results of this problem were explored in the result section, where other
target images were also used. These other images are not featured in this section
because they were not used to test or balance the GA. Using the same images
for testing might result in over-fitness to these structures. All the structures are
encoded with the same color corresponding to the same value in the CA. The
same encoding is used throughout the thesis, this encoding can be seen in Figure:
3.6.

Luigi structure results

The Luigi structure with a lattice width and height of 16 has a maximum fitness
of 16 x 16 = 256. It was executed 100 times with a population of 50 for 100
generations with elitism. Mutation rate was set at 2% and crossover rate at
10% with Von Neumann neighbourhood. The search space is 44" = 41024
3.23210%16, which is a very large space and, it may be difficult to find a perfect

34

(=0 MW=

{ TR

Figure 3.6: Left to right; Luigi 4 colors 16%16 lattice, mushroom 3 colors
16*16 lattice, creeper 3 color 10*10 lattice and creeper-reduced to 2 color
and 6%6 lattice. .

solution. The phenotype space depends on the lattice size and the number of
states and is at 4%°6 ~ 1.34210'%* .

None of the GA found an optimal solution. The best solution found had a
fitness score of 146/256, this solution you can see in action in Figure: 3.7.

-
A

L

_m

L
mmnn_m

Figure 3.7: The best GA solutions found with 146/256 fitness.

It is interesting how the GA found a candidate solution that utilizes the large
white area at the left and right edges of the lattice. Inspecting the other resulting
candidate solution show similar strategies.

Figure: 3.8 shows the average of the best fitnesses and also the average of
the population’s average fitness out of the 100 runs. Figure: 3.9 shows the
distribution solutions in form of their fitness value.

35

160

140

120 -+

100 -

A varage (population
avarage fitness)

—EyErage | best)

W oW MmO A+ =T
&

— T M~ mn ™M ~ O M~ W mMm
—

— o -
[I T S T TR =T S« O < s = .}

Number of runs

Figure 3.8: Average of 100 GA runs, with Standard deviation on the Luigi
structure

Best solution fitness distribution
9
8
-7
S 6
=
EE
=4
B 3
'S
Z 3
1
u rrrrrrrrrrrrrrrrorrrrrrorrrrrrrorr7r7rro7r7Tr17Trr7T17TTT1T T T TT TT TTT 1
100103106 109112 115118121 124127130133 136139142 145 148
Fitness value

Figure 3.9: Fitness distribution of 100 GA runs, on the Luigi structure.
(Graph range compressed from 0-256 to 100-150)

36

Mushroom structure results

The mushroom structure has a max fitness of 16 x 16 = 256. It was executed
100 times with a population of 50 for 100 generations with elitism. Mutation
rate was set at 2% and crossover rate at 10% and Von Neumann neighbourhood.
The search space is 3%° = 3243 &~ 8.72210''%, which is much smaller than the
Luigi structure, which is also true for the phenotype space 3%% ~ 1, 3921022,

None of the runs found an optimal solution, but slightly better solutions on
average were found compared to the Luigi structure. The target image has 142
white cells, and some of the candidate solutions utilize this very directly by only
changing very few cells as seen in Figure: 3.10.

o o o - A= ni EEEEE e

e

.
.

-

Figure 3.10: One of the best GA solutions found with 152/256 fitness.
Figure: 3.11 shows the average of the best fitnesses and also the average

of the population’s average fitness out of the 100 runs. Figure: 3.12 shows the
distribution solutions in the form of their fitness value.

37

A varage (population
avarage fitness)

—EyErage | best)

— T M~ mn ™M ~ O M~ W mMm
—

— o -
[I T S T TR =T S« O < s = .}

Number of runs

Figure 3.11: Average of 100 GA runs, with Standard deviation on the Mush-
room structure

Best solution fitness distribution

25
- 20
=
-
-E 15
4]
E
=10
[-]
'S
Z 5

u T T T T T T T T T T T T T T T T T T T 1

130 132 134 136 138 140 142 144 146 148 150 152 154 156 158
Fitness value

Figure 3.12: Fitness distribution of 100 GA runs, on the Mushroom structure
(Graph range compressed from 0-256 to 130-160)

38

Creeper structure results

The creeper structure is an image taken from a modern game called Minecraft.
It has a maximum fitness of 10 x 10 = 100. It was executed 100 times with a
population of 50 for 100 generations with elitism. Mutation rate was set at 2%
and crossover rate at 10% and Von Neumann neighbourhood. The search space
is 33" = 3243 &~ 8.7221015, which is the same as the mushroom structure, but it
has a much smaller phenotype space at 3'%° ~ 5.15210%". The lattice is smaller
and the image is simpler so it should be easier to find a solution.

No optimal solution was found, but it did get closer in comparison to the other
structures. 7 iterations found candidate solutions with 86/100 fitness. One such
example can be seen in Figure: 3.13.

Figure 3.13: One of the best GA solutions found with 86/100 fitness.

Figure: 3.14 shows the average of the best fitnesses and also the average
of the population’s average fitness out of the 100 runs. Figure: 3.15 shows the
distribution solutions in the form of their fitness value.

i
t e

A varage (population
avarage fitness)

avarage(hest)

W MM S e~ = T

Fa . T T T = T e O o T o e I IO T T =
— NN oS W W W~ ;o

Number of runs

Figure 3.14: Average of 100 GA runs, with Standard deviation on the Creeper
structure

Best solution fithess distribution

50
45
40
35
30
25
20
15
10

5

u TTTTTTTTITTI T I T I I I T I T I T I T I T I T I T I T I T I T I T I T I T T T I T T T I T I T I T T I T I T A T I T T T I T I T I T T T I T I T I T I I I T I T T T I T I I T o I Tl
[TR I TR v T o o O i (Y o O i O o e o I O T I o o O T o I == i B o |

o IO I o N o I . T s TR~ N~ N ¥ O o T ' N ¥ TN S o S € N ¢ N ;T 4 Y -

—

Mr of times found

Fitness value

Figure 3.15: Fitness distribution of 100 GA runs, on the Creeper problem

40

Creeper reduced structure results

The creeper reduced structure has maximum fitness of 6x6 = 36. It was executed
100 times with a population of 50 for 100 generations with elitism. Mutation
rate was set at 2% and crossover rate at 10% and Von Neumann neighbourhood
just like the other structures. It has a search space of 22" = 232 &~ 4.29210°,
which is much smaller in comparison to the other pixel art structures. This is
also true for the phenotype space, which is at 26 ~ 6.87210'°. Yet the results
show it finds solutions very comparable to the creeper structure (see Figure: 3.18
and Figure: 3.15). The rate at which it approach the solution, is much faster in
the reduced structure.

H|::

Figure 3.16: One of the best GA solutions found with 30/36 fitness.

Figure: 3.17 shows the average of the best fitnesses and also the average
of the population’s average fitness out of the 100 runs. Figure: 3.18 shows the
distribution solutions in the form of their fitness value.

35

30

25 g

20 .
A varage (population

15 avarage fitness)

—EyErage | best)

10

W MM S e~ = T

Fa . T T T = T e O o T o e I IO T T =
— NN oS W W W~ ;o

Number of runs

Figure 3.17: Average of 100 GA runs, with Standard deviation on the Creeper
Reduced structure

Best solution fithess distribution

45

35
30
25
20
15
10
5 z

Mrof times found

o 2 4 6 8 10 12 14 16 18 20 22 24 26 2B 30 32 34 36

Fitness value

Figure 3.18: Fitness distribution of 100 GA runs, on the Creeper Reduced
structure

42

Creeper reduced structure long run results

The earlier runs underestimate the difficulty of finding a solution to the structures.
The fitness function was therefore changed to use the best fitness of the rule
between the 5th iteration to the 40 iteration. lteration 0-4 was skipped because
it would require at lest 6 iterations before the CA could spread to the edges. The
previous tests were done using a very low population and generation limit. This
time the GA ran for 500 generations and had a population of 400, but the same
mutation and crossover rate was used.

As expected this test yielded better results than the shorter run. 5 of the
iterations found rules with fitness of 34/36 (see Figure: 3.19). None of these
five rules settled into a stable image, but instantly went over to a considerably
lower fitness state.

W

Figure 3.19: 5 of the GA’s found a fitness of 34/36. From left to right the
image was taken at iteration 18,34,32,12 and 37

Figure: 3.20 shows the average of the best fitnesses and also the average
of the populations average fitness out of the 100 runs. Figure: 3.21 shows the
distribution solutions in the form of their fitness value.

In general

As the earlier graphs in this section show satisfactory upward mobility, the GA
was deemed to be working. Note that the parameter optimisation is outside the
scope of this thesis. A little optimisation was nonetheless done. Other values
for population, mutation and crossover were tested on the same structures, but
with a higher limit on generations. These did not yield better results. Therefore
the earlier values of mutation chance at 2% and crossover chance at 10% and 50
population were used in all later experiments. These short tests were all done with
using TT as a genotype representation, which means the optimisation, however
small, would be in TT favor. This ensures that when comparing TT to the other
methods, the GA is not optimised in IBA or SMIBA's favor, which would make
the comparisons fairer as this thesis aims to show SMIBA's strength.

43

35
30 1!"!
. £
L 25
I F]
t 20
n Avarage(population
e 15 avarage fitness)
s — best
10 avarage(best)
[
5
4]
P T .5 T T i e D T T T o o N T = I 5 B
mw o m M-~ O M- O s M~ O s M~
Lo I B IO N ' Y e Y L N O 5 (R~ o~ L=
Mumber of runs

Figure 3.20: Average of 100 GA runs, with Standard deviation on the Creeper
Reduced long run structure

Best solution fithess distribution

70

50

30

20

Mrof times found

10

ﬂ T 1T 1T 1T 1T 17 17117 17 17T 17 17 17 T 1T T T T T 1T T T T 1T 1T T 17771 I.I T T T 171

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Fitness value

Figure 3.21: Fitness distribution of 100 GA runs, on the Creeper Reduced
long run structure

44

3.3 Instruction-Based Approach

The second genotype representation that, was in line to be implemented, was the
Instruction-Based Approach. IBA was implemented by using the same ruleset as
[11, 47] with a fixed number of instructions. This ruleset can be seen in Table:
3.2. The instruction set contains many different simple operations for either
moving or modifying information. In addition to this, it also contains a No
Operations(NoOp) instruction. This empty instruction allows the program to, in
effect, use fewer rules if it so wants. The NoOp instruction also provides genetic
material that does not alter the phenotype, allowing the values to drift while
the program is being evolved. Instructions that modified the information could
potentially modify the cell values into values that were outside the scope of the
CA. Therefore a modulo operation was applied after instructions to ensure that
the CA did not go out of its intended range.

When implemented, the IBA was represented such that every single instruc-
tion consisted of 3 values. The first value represented which instruction was to be
used. The second and third values represented which cell in the neighbourhood
the instruction were applied to, and these values can be seen as parameters to
the instruction. All instructions contained exactly 3 values regardless if they do
or do not need two parameters to be performed. This can be seen as a plus
because, much like the NoOp instruction, the unused genetic material allows the
values to drift.

All the instructions were tested individually and inspected to ensure they
worked as intended.

3.4 Development Problem

IBA and TT was further tested by the development problem, then the test results
were compared to [11, 47]. The same results will also be featured in the Results
and Discussion chapter of this thesis. They will also be used to test SMIBA later
in this chapter.

3.4.1 Formal Development Problem

The development problem was first used to test out the GA in this thesis. This
problem will also be used to test out the different genotype representations in

45

Instruction | Operation Description
AND N[i] = N[ia] A N[ia) Bitwise AND
OR Nliy] = NJiy] V Nio] Bitwise OR
XOR Nliy] = NJii| ® Nlis] Bitwise XOR
NOT Nliy] = =Nlii] Bitwise NOT
INV N[ii] =n — N[iy] Inverse

MIN NTi1] = min(NJiy], N[iz]) | Minimum
MAX Nli1] = mazx(NJi1], N[is]) | Maximum
SET NTiy| = Nlis) Replace

INC N[ii] = N[iy] +1 Increment
DEC N[iy) = N[iy] — 1 decrement
SWAP Nlii] & Nliso Swapping
ROR LCR = RLC Rotate right
ROL LCR = CRL Rotate left
ROU UCD = CDU Rotate up
ROD UCD = DUC Rotate down
NOOP No Operation

Table 3.2: IBA instruction set. L,C,R,U,D is Left, Center, Right, Up, Down
in regard to the cell being updated. n is in this table the number of number
of states in the CA

comparison to each other, as it is to be used as a benchmark for these represen-
tations it requires a more formal explanation in terms of its fitness function.

Fitness function

The fitness function for the development problem is the same as was used to
test the GA. It works in the following manner. Every iteration of the CA the
fitness function compares the current state of the CA lattice with a the target
structure. This comparison is done cell by cell in the lattice and for every cell
that matches the target structure, a point is awarded to the current state. The
best value between the states is retained and used as the final fitness value. This
means that the greatest fitness a candidate genotype can be awarded is the same
as the lattice area.

46

The structures examined

A number of structures were used and can be seen in Figure: 3.22. All of these
problems with the exception of 6a/b are explored in other literature [47, 11, 61].

o
2a; I 3a: I 4a/b: % ba: tﬁ 6a/b: ﬁ

Figure 3.22: left to right; 2a: 3 state French flag, 3a: generic 4 state Flag,
4a/b: 3 state Norse Flag, ba: 4 state larger Norse Flag, 6a/b: 3 state creeper

Flag structure(3a)

This problem was also used to test if IBA and TT were working by executing a few
choice experiments and directly comparing them to the results found in [47, 11].
The first development structure tested is the 4 state flag structure 3a as seen in
Figure: 3.22. This time the GA was given an upper limit of 100 000 generations
to try to find the solution. This makes it comparable to the results in [47]. In this
papir Nichele and Tufte solved the same structure by increasing the number of
instructions during evolution, while the test in this thesis's implementation was
fixed at 10 instructions. This test also checked every state from iteration 5 to 40,
which is 10 more steps then Tufte and Nichele checked. The extra development
steps were added in this experiment because the results from this test will be
used further in the next chapter. The comparison between results in this thesis
and [47] are found in Table: 3.3.

IBA found solutions to this structure by building up columns of diverse colors
that moved around the lattice until they hit the target image. Many different
ways to build up the columns were used, but nearly all solutions exhibit class 2
behaviour because it ends in a small fixed loop around the lattice. An example
of this is seen in Figure: 3.23. One exception was the class 1 CA, seen in Figure:
3.24, where the flag ends in a completely stable state.

TT in comparison often found solutions that build up the flag in a more
unexpected manner, as can be seen in Figure: 3.26 and 3.4.1.

The results as seen in Table: 3.3 were not as diverse as expected. |IBA barely
outperformed TT on this specific structure, but the methods did perform well in
relation to [47].

47

Results Our Nichele and Tufte
Instruction-Based Approach

Success rate % 45 46
Average 25163 6424
StDev. 28028 1922

Transition Table

Success rate % 34 19
Average 30676 5002
StDev. 25250 3157

Table 3.3: IBA on the 3a structure comparison. Success rate is out of 100
tries. Average and StDev. is the average and standard deviation of the
number of generations the successful runs required to find the solution

-

s

A
s«
gl e -
et e
B e e =
kL

Figure 3.23: Class 2 3a solution to the flag structure.

48

Figure 3.24: Class 1 3a solution to the flag structure, found in the long
running GA.

s

m_

™

Figure 3.25: One of the many T'T solutions to the 3a structure where the flag
appears after a seemingly unexpected step. Take extra notice of step 5 as
the GA questions its own purpose before lamentation in the understanding
that it is to create a simple flag picture.

1t

Figure 3.26: Another example where the flag appears unexpectedly when
developed using TT.

French Flag (2a)

A structure from [11] was also used. The structure that was selected is the french
flag structure as seen in Figure: 3.22. It was tested using the same parameters as
the previous flag structure. In both [11] and this thesis, 10 instruction programs
were used. In [11] the implementation only checked the first 30 steps while
this thesis checked the first 40, which gives the results from this thesis a slight
advantage. The purpose of this test was to check if this thesis implementation,
was a working implementation. This slight difference was therefore not seen as
a problem as long as the results were comparable.

Results Our Bidlo and Vasicek
Instruction-Based Approach

Success rate % 79 79
Average 15438 37925
StDev. 24508 27171

Transition Table

Success rate % 86 54
Average 13319 28896
StDev. 18835 26264

Table 3.4: IBA and TT on the 2a structure comparison. Success rate is out
of 100 tries. Average and StDev. is the average and standard deviation of
the number of generations the successfully runs required to find the solution

The results are compared in Table: 3.4. In this implementation IBA behaves
very similar to [11]. TT on the other hand outperforms IBA on this structure,
which was unexpected. It also greatly outperforms the TT in [11]. When it
comes to the purpose of testing if TT and IBA were working, the results are very
satisfactory.

50

3.4.2 Creeper structure

Figure 3.27: Only found creeper solution found using TT

Out of curiosity, another structure was also explored to test the results and
this was the creeper structure. The same parameters were used as on the 3a and
2a structure, but this time the results were much more in TT's favour, as only
TT managed to find a solution.

Creeper structure comparison

TT IBA
Success rate % 1 0
Average fitness 93.64 88.4
StDev. 2.013 0.9101

Table 3.5: IBA and TT comparison on the Creeper structure

Speculating on this, the hypothesis was due to that IBA has a much smaller
genotype diversity than TT, and IBA therefore had no possible solution to the
problem. The genotype variation can be calculated, and a single IBA instruction
can be set up in a number of different ways. There are 16 different instructions
and the two parameters can point to any of the 5 cells in the neighbourhood
scheme. Therefore a single instruction can be set up into 16 x5 x5 = 400
different variations. In this test 10 instructions were used, so this small program
can be set up into a total of 400'° ~ 1.05210%° ways. This value is independent
of the number of possible states in the CA. In comparison TT with 3 states
can have 3% = 32%3 &~ 8.72210'"® variations. Therefore IBA has a smaller
genotype diversity then TT for 3 states and beyond, given that it contains only
10 instructions. Therefore, it would be logical to assume, that some portion
of the possible genotype space is unreachable with this method when compared
to a TT. This can be further demonstrated when considering there are only
3100 ~ 5.15210%" possible phenotype states. This will be further discussed in the
Results and Discussion section.

o1

3.5 Self-Modification Instruction-Based Ap-
proach(SMIBA)

The third and final genotype representation method that was tested in this thesis
is the Self Modification Instruction-Based Approach. This is the new method
introduced in this thesis and, to the best of our knowledge, this method has
never been applied in this setting before, so it is hard to compare results directly.
Therefore testing SMIBA is done by comparing it to TT and IBA and this is
further done in the analyses and discussion section.

Instruction | Parameters Description
. . Skips the next N[i1] instructions.

SKIP N[n] = nrofskips Not a SM instruction.

MOVE N [23] = Start Moyes the instruction at line nr
Nliy| = Insert NTis] to before Niyl.

DUPE Nliz] = Start Copies the instruction at line nr
Nliy) = Insert NTis] to before Niyl.

DEL Nlis] = Start Del-etes the instruction at line nr

N[Zg].

CHF Nlis] = Start Changes the instruction at
Nlig) = Instruction | Nliz] to the instruction at N[iy].
Nlii] = parameter | Changes the N|[i;] parameter at

CHP Nlis| = start NTis] to the value in Niy] or
Nligjs] = value Nli4] depending on Niq] .

Table 3.6: Instructions added to the IBA instructions in order to exhibit Self
modification.

Self Modification was implemented using the IBA as a basic ruleset and
extended with a SM ruleset. The additional ruleset can be seen in Table: 3.6.
IBA was implemented with parameters that only ranged from [0 — 4], but this
would not allow SM instruction to reach the entire genotype, therefore it seemed
advantageous to have SM instruction with a higher range. This is why the IBA
system with, rule, opl, op2, was extended in SMIBA to rule, opl, op2, op3, op4
where op3/op4 had a range of [0, (maximum Instruction length)] Different rules
simply used different op values, and this allowed for easier logic when mutating
the genome and also made some instructions much easier to implement.

For example, a MOVE instruction in the genotype might look like {17,1,3,9,4}.

52

The values 1 and 3 would not be used for anything in this iteration. Even so, they
can be useful to retain in some programs, as this instruction might be changed
by a CHF instruction at some time. They might also be useful to encourage drift
in the GA. As the move instruction is in this example it would simply remove the
9th instruction (10th as Oth is an instruction) and place it before the 4th instruc-
tion. This then becomes the new 4th instruction and pushes back all subsequent
instructions.

In order to avoid cycles, the SM was first added to a temporary list so that
it may be performed in order at the end, after all IBA instructions have been
performed. If this was not the case, DUPE and DEL could cause a infinite
cycles. This also allowed for performance improvement since the SM need only
be performed every iteration and not for every cell. This is relevant since some
of the SM instructions are costly to perform in comparison to the regular IBA
instructions.

Skip

An additional non-SM rule was added called skip. This instruction was added, due
to inspiration from biology. As mentioned earlier, during development genes can
regulate which parts of a genome are active by secreting chemicals to suppress
specific genes during certain and sometimes all of the development steps. In [51]
Bently and Kumar showed strength in an implicit embryogeny system inspired by
gene suppression. It relied on rules that required preconditions to be performed.
Due to this, it seemed favourable to add a rule that allowed together with SM
instruction for code to be available only in a subset of the developmental steps.
This is why skip was added. It might be worth noteing that skip is useless in the
IBA setting, as it will simply lower the number of instructions used.

Originally it was intended to be a GOTO instruction, but when implementing
this instruction loop were detected. It was made so that it could only point to
an instruction after itself, this limitation made it into a skip and it was renamed
accordingly. It could be worth reimplementing it as a GOTO, but change the
instruction implementations to simply count instructions and stop after a certain
limit has been reached.

Testing

All the instructions were tested individually by running a SMIBA program and
inspecting the genotype from iteration to iteration, to see if the genotype was

53

changed as the instruction intended. The 3a and 2a structure was also tested
on this method using the same parameters as the other methods, and the results
were favourable. As can be seen in Table: 3.7, SMIBA greatly outperformed
both methods on these structures. These results will be featured again, in more
detailed, the next chapter.

Transition Table

Problem 2a 3a
Success rate % 86 34
Average 13139 30676
StDev. 18835 27660
Instruction-Based Approach
Problem 2a 3a
Success rate % 79 45
Average 15438 25163
StDev. 24508 28526
Self-Modifying Instruction-Based Approach
Problem 2a 3a
Success rate % 100 96
Average 1912 13309
StDev. 9416 22687

Table 3.7: Comparison on the French flag and flag structure between IBA,
SMIBA and TT. Success rate is out of 100 tries. Average and StDev. is the
average and standard deviation of the number of generations the successfully
runs required to find the solution

o4

3.6 Replication problem

As mentioned in earlier chapters, cellular automata is commonly tested on repli-
cation problems and developmental problems. The replication problem requires
a different fitness function that tests for successful replication. A larger lattice
will also be necessary. This makes it slower than the development problem to
perform. Therefore most of the experiments are only allowed to go for 10 000
generations as opposed to the 100 000 in the development problem. This is also
done in both [47, 11]. The fitness function implemented, was highly inspired by
the one used in [11].

3.6.1 Replication fitness function

After every iteration, the fitness function searches the entire lattice for patterns
that match the target image. The lattice is searched by comparing every subsec-
tion of size corresponding to the target image. Every cell that is the same as the
target image in this subsection awards a point. If n is the value for the desired
number of replications, then the n best values are summed for each iteration.
Then the iteration with the highest summed value is used as the genotypes fitness
value.

Initially, the fitness function retained the values for all possible subsections,
sorted them and selected the ones with the highest values as seen in Algorithm:
1. This was very inefficient and this part of the algorithm was improved to only
retain the values of the subsections with the highest values as seen in Algorithm:
2. This has no effect on what any given genotype is awarded in fitness, but
it makes the function run faster. Therefore the experiments, which used the
first fitness function, were not rerun. Note that the algorithm does not consider
targets that lie over the borders of the lattice. In addition, the target image has
an added white border to it, which ensures that perfect replicas do not overlap.

3.6.2 Alternatives to the fitness function

Much of the design of the fitness function was done to ensure it would not slow
down the runtime of the algorithm. This is because it is slow, compared to the
single pattern matching, that the development problem needs to do, because
replication needs to do a multitude of pattern matching. This makes the fitness
function for the replication problem in-practice the main bottleneck of the entire
experiment. This is why it does not consider patterns that cross borders, as

95

Algorithm 1 Old Replication fitness function

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:

13:
14:
15:
16:
17:

18:

function FITNESSOFRULE(rule, nrOfReplications)

for Each CA iteration do
partialList < new List
fitness < 0
for columnWidth - targetWidth do
for rowHeight - targetHeight do
partialFitness <— 0
for targetHeight do
for targetHeight do
if Cell match then
partialFitness+= 1

partialList add partialFitness

Sort partial List

for k = 0 to NrOfReplications do
fitness+= partielList.get (k)

if fitness > maxFitness then
mazFitness < fitness

Return: maxFitness

56

Algorithm 2 Improved replication fitness function

1: function FITNESSOFRULE(rule, nrOfReplications)

2 for Each CA iteration do

3 bestReplications <— new array[nrOfReplications]
4 fitness <+ 0

5: for columnWidth - targetWidth do

6 for rowHeight - targetHeight do

7 partial Fitness <— 0

8 for targetHeight do

9: for targetHeight do

10: if Cell match then

11: partialFitness+= 1

12: for all bestReplications do

13: if bestReplication < partielFitness then
14: bestReplications <— partielFitness
15: if fitness > maxFitness then

16: maxFitness < fitness

17: Return: maxFitness

this would require either hard coded logic or module operations in cell matching.
Nor does it consider the possibility that imperfect partials are overlapping. This
might generate a fitness landscape with many local optimas that are far from a
perfect answer. Originally, only partial fitness matches that did not overlap were
considered in the function, but this slowed down the algorithm a great deal and
was therefore removed.

3.6.3 Limitations outside the fitness function

One might also consider that the height of the lattice and the number of desired
replications puts limitations on what kind of solutions can be found. If the
lattice is not big enough to room all the replicas in one direction, the only
solutions possible are ones where the CA develops replications in more than one
directional dimension. Therefore, all experiments were run with a few cells over
the room required for 3 replications in hight and length.

o7

3.6.4 The structures explored in this thesis

la: E 2a: H 3a: ﬁ 4a/b: ﬁ ba: E 6a/b: .

Figure 3.28: left to right; la: simple Structure, 2a: 3 state French flag, 3a:
generic 4 state flag, 4a/b: 3 state Norse Flag, ba: 4 state larger Norse flag,
6a/b: 3 state creeper(unbordered)

The structures that were selected can be seen in Figure: 3.28. This is not the
first time the replication problem has been inspected, therefore the scientific net-
work provides a plenitude of structures that can be selected. All these structures
selected, with the exception of 6a/b, were used also in other articles [47, 11, 61].
The structures were selected so that there are was a range of structures that are
symmetrical and non-symmetrical, few to many states and large to small in size.
6a/b were added because of the unexpected results when used in the develop-
ment problem. a and b versions of the structures use the same target solution,
but b structures gives the algorithms one extra state to use, so 4b is the same
target solution as the 4a, but the CA is has 4 states instead of 3. This strategy
was used when some of the algorithms struggled to find a single solution.

58

3.7 DevRep problem

In order to try to solve both replication and development in unison, a problem was
formulated simply called development replication problem, which is abbreviated to
DevRep problem. The problem was defined to be one where the algorithm must
find a solution from a zygote to develop and create the target structure(image)
atleast once in the lattice. In a later iteration, the same target structure must
be present several places in the lattice. In short, first the structure needs to be
developed then replicated. No changes were made to the GA or the CA other
than the Fitness function. It was given 40 iterations to form the problem and
had a population of 50, same as for the other experiments.

One major hurdle that was foreseen, was that if, DevRep was to be at all
possible, then development needs to be performed on a lattice that is bigger
than the actual target image. During the development, the CA cannot use the
border conditions to form the image or to stop growing sections once the section
is fully formed. Some simple trials were run to test if TT, IBA and SMIBA could
develop with a lattice that is larger then the target. These trials proved that it
was possible.

3.7.1 Structures

Due to this problem being hard in comparison to the other two problems explored
in this thesis, two new structures were used, 0a and xa/b. These two new
structures together with the other structures explored with the DevRep problem
can be seen in Figure: 3.29.

Oa n xa/b: @ la: E 2a: I 3a: I

Figure 3.29: left to right; Oa: Simple 2 state, xa/b: simple 3 state, la: simple
Structure, 2a: 3 state French flag, 3a: generic 4 state flag.

Note that on this problem, as with all problems explored in this thesis, a
Von Neumann neighbourhood was used. The Game of Life implementation used
to test the CA was a exception to this and there a Moore neighbourhood is
necessary. The Oa and xa/b structures are small, and if a Moore neighbourhood
was used the central cell in these structures would have a centralised overview
of the image, and the problem would no longer be a distributed problem.

59

3.7.2 Fitness function

The fitness function for the DevRep problem is based on the fitness function
for replication. The first 20 iterations are checked for development fitness by
using Algorithm:2 and checking for one replication. The development step with
the best fitness is stored and the CA is reset and progressed to this stage. In
SMIBA the genotype program is also reset to its initial stage before moving to
the best development state. Once at the point of the best developmental fitness,
the fitness function looks for 3 replications of the target image for the next 20
iterations of the CA. The two scores are weighted so that the fitness of the
development counts the same as the fitness of the 3 replications.

3.8 Pajek

Pajek [74] is a tool for large network analyses and visualisation. It is a large
and complex program with many features, but in this thesis it was used for
visualisation of development pathways. This visualisation was done by executing
a specific solution in CA and tracing every unique CA state as a node. Transition
to the next state was then marked as a directed edge. These values were then
prepared so that Pajek could read it as an input file and draw a graph of the
network. This allowed for a visualisation of developmental pathways that could
be compared to other developmental pathways.

60

Chapter 4

Results and discussion

" Cyberspace. A consensual hallucination experienced daily by
billions of legitimate operators, in every nation, by children being
taught mathematical concepts... A graphic representation of data
abstracted from banks of every computer in the human system.
Unthinkable complexity. Lines of light ranged in the nonspace of the
mind, clusters and constellations of data. Like city lights,
receding...”

William Gibson - Neuromancer

In the previous chapter, we had a look into this thesis's experimental setup
and how it was tested. In this chapter we will be take an in-depth look into the
results of the experiments and discuss the findings. We will also look at some
interesting solutions or cases which appeared in the experiments.

Firstly, results from each of the three problems; Development, Replication
and DevRep will be presented, then after each of these problems, discussion of
findings, properties of the different methods and relevant cases are elaborated
on. Later, an additional extra experiment is presented and discussed. Here, once
a run finds a perfect solution the fitness function is changed, requiring that the
run is re-evolved into a new structure. Finally analysis of the instructions used
to solve the different problems is presented.

61

4.1 Development

The first experiment that was performed in this thesis was the development
problem. In this case the goal is to develop a target structure from a small zygote
meaning a single black cell in the center of the lattice. The results are summed
in Table: 4.1, here SMIBA clearly outperforms the other two methods. SMIBA
solves problems easily, that the other methods are struggling with. Structure 2a is
solved every run in SMIBA as well as in fewer generations compared to the other
methods. 3a was solved nearly every time, while the other methods did not even
manage half. Further, it also managed to find solutions to problems the other
methods are unable to find a single solution to. 4a and 4b was solved 5 times
while only IBA managed to solve 4a once. As a exception to this TT managed to
solve 6a once and 5b twice, while none of the other methods managed to solve
them.

Transition Table

Problem 2a 3a 4a 4b ba 5b 6a
Success rate % 86 34 0 0 0 2 1
Average(numGen) 13139 30676 X X x 64506 35528
StDev.(numGen) 18835 27660 x X x 833 X
Instruction-Based Approach
Problem 2a 3a 4a 4b ba 5b 6a
Success rate % 79 45 1 0 0 0 0
Average(numGen) 15438 25163 32839 X X X X
StDev.(numGen) 24508 28526 X X X X X
Self Modifying Instruction-Based Approach
Problem 2a 3a 4a 4b ba 5b 6a
Success rate % 100 96 5 5 0 0 0
Average(numGen) 1912 13309 57224 47042 x X X
StDev.(numGen) 9416 22687 42635 12950 x X X

Table 4.1: General results of TT, IBA and SMIBA on the development prob-
lem. All results are taken out of 100.

62

4.1.1 1IBA in comparison to TT

In this thesis we have among other things tested IBA and compared it to TT.
While running the tests and looking at the results, properties of their relation to
each other in the genotype space became clear. It seems IBA has a genotype
space that is always a subset of TT's. This conclusion can be reached by un-
derstanding, that for every IBA genotype there is a corresponding TT genotype,
but this is not necessarily true the other way.

One can know this because an IBA ruleset can be converted into a TT. Simply,
for every neighbourhood combination in the TT, run the IBA program on the
neighbourhood and store the result in the TT (see Figure: 4.1 for illustration).

IBA also has redundant space. There are many
IBA rulesets that do nothing, if the IBA ruleset never
places a value in the center of the neighbourhood no

change is ever made. There are also many IBA rule- Eﬁj @\?
= =
(o)

sets that do the same as other rulesets. One can

know this because there are many instructions that

have equivalent functionality that can be built up

from other instructions or the same instruction with + =
different parameters. For example an AND instruc-
tion on L and C is the same as AND on C and L.
This means IBA to TT has a one to one relation,
but TT to IBA has a 1 to (0,n) relation.

Also it would seem, there are TT that cannot
be represented in IBA with 10 instructions. This is
supported by the problem structures that TT man-
aged to solve, but IBA was unable to. On the creeper test TT consistently found
solutions better then the IBA to a very large degree, as was seen in Figure: 3.5.
This raises a new question, what portion of the genotype space is IBA not able
to reach?

When looking at the best candidate solutions found by the individual runs in
development, TT often produces different strategies than IBA. TT appears to
find solutions that build up the desired image then descend into chaos, while IBA
favours solutions that appear to be class 2 solutions. This would suggest that IBA
is either incapable of finding class 3 with its current instruction- set and length or
that solutions using these classes are hard to find or rare. In understanding of the
classes and their relations found in [26, 18], here it is given evidence that Class 4
is found at the phase transition between class 2 and 3 behaviour. If a method is

Figure 4.1: converting IBA
intoa TT

63

unable to reach class 3 then, it might also be unable to reach class 4. This is a
potential setback for IBA, so it would suggest IBA is weak on complex problems,
but strong on others. Rather than this, a different alternative hypothesis for
explaining the results is also possible. In this thesis TT is implemented as an
explicit table while IBA constantly used 10 instructions as a limit. This was done
with intention of showing scalability in IBA and SMIBA, which will be discussed
later. This comparison of TT, which used a genotype size relative to the number
of states, while IBA used a constant size, might be an unfair comparison for
problems that require complex solutions. The diversity of genotypes are allowed
to grow with the problem in TT, but not in IBA. This corresponds well with
the results from [47] where it was shown that some problems required a larger
number of instructions on average to be solved. Both methods also used the
same crossover and mutation rates, therefore TT with a larger genotype size
could potentially take benefit from this over IBA. This is hard to speculate on
without doing a optimisation of GA parameters, which is outside the scope of
this thesis. These observations of different strengths between the methods also
matches well with the No free lunch theorem [72]. This theorem states that for
any increase in performance over one class of problems, will be directly paid for
in performance over a different class. If this theorem is also true for encoding
methods, this would suggest that IBA's strength comes at a cost of solving,
problems that require chaotic CA or alternatively solution variations, which will
be discussed later.

4.1.2 SMIBA

As seen from the Table: 4.1, SMIBA showed the strongest results for the develop-
ment problem both in solving rate and of structure variation. To a lesser degree
SMIBA also found solutions in fewer numbers of generations on average. Yet
again, the 5b and 6a structures proves a exception as TT was the only method
able to find a solution.

| Iteration | Genotype Phenotype |

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MOVE, D, D, 4, 8),(MIN, L, D, 5, H
0 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8, :-:H:
5),(ROL, U, R, 5, 3),(MOVE, L, C, 2, 6), L1

64

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MIN, L, D, 5, 5),(INC, C, C, 5,
5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R,
5,3),(AND, L, C, 7, 6),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(INC, C, C, 5, 5),(ROR, C, C, 8,
5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L,
C,7,6),(OR, D, L, 8 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROR, C, C, 8, 5),(ROL, U, R, 5,
3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8,
5),(MOVE, D, D, 4, 8),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROL, U, R, 5, 3),(AND, L, C, 7,
6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D,
4,8),(MIN, L, D, 5, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(AND, L, C, 7, 6),(OR, D, L, 8,
5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L,
D, 5, 5),(INC, C, C, 5, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(OR, D, L, 8, 5),(MOVE, D, D, 4,
8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5,
5),(ROR, C, C, 8, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MOVE, D, D, 4, 8),(MIN, L, D, 5,
5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8,
5),(ROL, U, R, 5, 3),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MIN, L, D, 5, 5),(INC, C, C, 5,
5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R,
5, 3),(AND, L, C, 7, 6),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(INC, C, C, 5, 5),(ROR, C, C, 8,
5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C,
7,6),(OR, D, L, 8, 5),(MOVE, L, C, 2, 6),

10

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROR, C, C, 8, 5),(ROL, U, R, 5,
3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8,
5),(MOVE, D, D, 4, 8),(MOVE, L, C, 2, 6),

11

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROL, U, R, 5, 3),(AND, L, C, 7,
6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D,
4,8),(MIN, L, D, 5, 5),(MOVE, L, C, 2, 6),

R E

65

12

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(AND, L, C, 7, 6),(OR, D, L, 8,
5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D,
5,5),(INC, C, C, 5, 5),(MOVE, L, C, 2, 6),

b

13

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(OR, D, L, 8, 5),(MOVE, D, D, 4,
8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5,
5),(ROR, C, C, 8, 5),(MOVE, L, C, 2, 6),

14

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MOVE, D, D, 4, 8),(MIN, L, D, 5,
5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8,
5),(ROL, U, R, 5, 3),(MOVE, L, C, 2, 6),

15

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MIN, L, D, 5, 5),(INC, C, C, 5,
5),(0R, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R,
5, 3),(AND, L, C, 7, 6),(MOVE, L, C, 2, 6),

16

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(INC, C, C, 5, 5),(ROR, C, C, 8,
5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C,
7,6),(0R, D, L, 8, 5),(MOVE, L, C, 2, 6),

" EKE B

17

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROR, C, C, 8, 5),(ROL, U, R, 5,
3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8,
5),(MOVE, D, D, 4, 8),(MOVE, L, C, 2, 6),

18

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROL, U, R, 5, 3),(AND, L, C, 7,
6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D,
4, 8),(MIN, L, D, 5, 5),(MOVE, L, C, 2, 6),

19

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(AND, L, C, 7, 6),(OR, D, L, 8,
5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D,
5,5),(INC, C, C, 5, 5),(MOVE, L, C, 2, 6),

20

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(OR, D, L, 8, 5),(MOVE, D, D, 4,
8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5,
5),(ROR, C, C, 8, 5),(MOVE, L, C, 2, 6),

21

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MOVE, D, D, 4, 8),(MIN, L, D, 5,
5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8,
5),(ROL, U, R, 5, 3),(MOVE, L, C, 2, 6),

22

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MIN, L, D, 5, 5),(INC, C, C, 5,
5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R,
5,3),(AND, L, C, 7, 6),(MOVE, L, C, 2, 6),

- ALesb)]

66

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(INC, C, C, 5, 5),(ROR, C, C, 8,

23 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C, H

7,6),(OR, D, L, 8, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROR, C, C, 8, 5),(ROL, U, R, 5,
24 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8,

5),(MOVE, D, D, 4, 8),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROL, U, R, 5, 3),(AND, L, C, 7,
25 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D,

4, 8),(MIN, L, D, 5, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(AND, L, C, 7, 6),(OR, D, L, 8,
26 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D,

5,5),(INC, C, C, 5, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(OR, D, L, 8, 5),(MOVE, D, D, 4,
27 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5,

5),(ROR, C, C, 8, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MOVE, D, D, 4, 8),(MIN, L, D, 5,
28 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8,

5),(ROL, U, R, 5, 3),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MIN, L, D, 5, 5),(INC, C, C, 5,
29 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R,

5,3),(AND, L, C, 7, 6),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(INC, C, C, 5, 5),(ROR, C, C, 8,
30 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C,

7,6),(OR, D, L, 8, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROR, C, C, 8, 5),(ROL, U, R, 5,
31 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8,

5),(MOVE, D, D, 4, 8),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROL, U, R, 5, 3),(AND, L, C, 7,
32 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D,

4,8),(MIN, L, D, 5, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(AND, L, C, 7, 6),(OR, D, L, 8,
33 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D,

5,5),(INC, C, C, 5, 5),(MOVE, L, C, 2, 6),

67

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(OR, D, L, 8, 5),(MOVE, D,
34 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C,
5),(ROR, C, C, 8, 5),(MOVE, L, C, 2, 6),

[aNS
ISEES

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MOVE, D, D, 4, 8),(MIN, L,
35 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C,
5),(ROL, U, R, 5, 3),(MOVE, L, C, 2, 6),

no
o O

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(MIN, L, D, 5, 5),(INC, C, C, 5
36 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R,
5, 3),(AND, L, C, 7, 6),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(INC, C, C, 5, 5),(ROR, C, C, 8,
37 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L, D, 5, 5),(AND, L,
7,6),(OR, D, L, 8, 5),(MOVE, L, C, 2, 6),

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROR, C, C, 8, 5),(ROL, U, R, 5,
38 3),(MIN, L, D, 5, 5),(AND, L, C, 7, 6),(INC, C, C, 5, 5),(OR, D,
5),(MOVE, D, D, 4, 8),(MOVE, L, C, 2, 6),

-
o)

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(ROL, U, R, 5, 3),(AND, L, C,
39 6),(INC, C, C, 5, 5),(OR, D, L, 8, 5),(ROR, C, C, 8, 5),(MOVE, D,
4,8),(MIN, L, D, 5, 5),(MOVE, L, C, 2, 6),

O =~

(OR, R, D, 7, 0),(NOT, D, U, 0, 9),(AND, L, C, 7, 6),(OR, D, L,
40 5),(ROR, C, C, 8, 5),(MOVE, D, D, 4, 8),(ROL, U, R, 5, 3),(MIN, L,
5, 5),(INC, C, C, 5, 5),(MOVE, L, C, 2, 6),

O

O

Table 4.2: A solution to development of the 4a structure.
This solution used 2 move instructions to create a 7-step
loop of the program. This seems to slow down the devel-
opment of the structure enough for the flag to be formed.
Instructions modified by the MOVE instruction are made
bold for the first loop, for better viability.

The notion of scaling was also considered briefly in these results. Structure
4a and ba were executed with maximum number of states incremented in a
second attempt. This increased the phenotype variations but on the development
problem this did not show any increase in solving efficiency, but neither did it
show any decrease in SMIBA 4a to 4b structure. A closer look was taken at the
structures solved only by SMIBA. These solutions proved some interesting cases.

68

One property that SMIBA can utilize on these problems is delaying development,
slowing it down. This can be seen well in Table: 4.2. In this case the state of the
environment or the general state value loops constantly, while the zygote only
grows or develops at certain intervals. In this example the structure is formed
by creating a looping structure with two move actions. Together, they form a
7-step loop, which circulates the instructions. This allowed the flag to form in 40
steps, the maximum steps the fitness function will inspect. This property which,
was witnessed in many other cases, caused a deeper analyses of the development
length in solutions. This will be discussed in the following section.

RS
o R
3

Figure 4.2: TT solutions to the 5b structure. In both cases a flag appears
seemingly out of randomness and the CA quickly descend into seemingly
random behaviour afterwards. Blue is the fifth color included in this CA.

4.1.3 Only solved in TT

Bt
i
et
i

Slightly different than in [47, 11], a few problems in development were only
solved by TT. The 5b and 6a structure were solved in rare cases during the
execution of a 100 runs in the experiment. Looking into these solutions all of
these cases show a high degree of chaotic CA, as can be seen in Figure: 4.2. Such
a statement is hard to prove because identifying classes in CA is very exhaustive,
since TT is also very slow when scaled to the level of the 5b structure, and
would be very hard to even attempt. There are also very few cases to draw
from, the results would only show an indication. One could also argue that the
CA used in these cases are chaotic because the structure needs to be formed in
very few steps. Tracing a shape through many development steps is hard when

69

a behaviour is highly chaotic and random. Also note, that just running the GA
on the 5b took 90 hours, which is 10 times longer when compared to IBA and
SMIBA where it only took roughly 9 hours. Such runtime for the TT, IBA and
SMIBA were only achieved through the use of threading and code optimisation.

These results still indicate a fundamental difference with solutions found with
TT as opposed to, IBA or SMIBA. It could further give some evidence that, IBA
and transitively also in SMIBA, avoided class 3, also known as the chaotic class
of CA. When looking at the average fitness value in 5b and 6b structures a trend
emerge. Even if the TT lose in this regard on the 5b structure, as can be seen in
Table: 4.3. When looking at the standard deviation of the results, TT is shown
to have a much more varied values for fitness. This is probably why it solved
problems the other methods could not.

| TT IBA SMIBA
| 5a 5b 6a| 5a 5b 6a| 5a 5b 6a

Avg(fitness) 39.1 339 93.6 | 388 389 884|385 38.6 898
StDev(fitness) | 5.93 7.45 2.01|3.22 3.17 0.90 | 3.54 3.00 0.86
Best (fitness) 48 49 100 | 43 45 90| 48 48 94
Max pos. fit. 49 49 100 49 49 100 49 49 100

Table 4.3: Average Fitness of 5a/b and 6a between the methods.

4.2 Developmental Length

TT, IBA and SMIBA have different developmental strategies and one could ex-
pect there to be a discrepancy on the average developmental time of the algo-
rithms. further, a property of SMIBA of delaying development was identified in
some cases. Due to this, SMIBA would be expected to have a longer devel-
opment time than the other methods. Furthermore it is worth noting, that a
long developmental time is not a weakness of an algorithm, nor is it necessarily
a strength, unless the method is able to utilize it. If an algorithm only uses
developmental strategies with very short developmental time, could indicate that
it to some degree excludes class 3,4 CA [26, 18]. In order to investigate this,
a comparison of the three algorithms was performed, where development length
was in focus. This calculation was done by excluding incomplete solutions from

70

the data set. From the remaining complete solutions, the average developmental
steps required to form the structure was calculated. 2 different values of upper
limit for development of CA iterations were tested(40 and 80). The results are
summed up in Table: 4.4.

In this table the two development problems that were solved by all 3 methods
were inspected. TT showed a clear use of the extra development steps. This
method also showed more executions solved and a faster solving time.

IBA on the other hand was less clear. It did not show any improvement on
its ability to solve problems. Even if it did use the extra development steps in its
solutions as well as solve the problems in fewer generations. SMIBA did not show
any increase in number of solutions found. This was only expected to be the case
in 3a, as 2a was already solved every time and therefore, no improvement could
be made. Finally, SMIBA also showed solutions that used more development
steps, and fewer generations were required to find solutions.

These results are uncertain in telling what kind of solutions IBA excludes,
as it was expected to show a lower development time in comparison to the
other methods. On the other hand IBA did not show an improvement in its
ability to solve the problems when given the extended development steps. It also
showed a slightly lower standard deviation of development, which tells us that the
solutions found with this method is more uniform. SMIBA was expected to use a
longer development time then the other methods due to the property of delayed
development. The results might indicate that the property is only used as a
last resort by the method. A much larger discrepancy between the methods was
expected, it is possible that other structures would provide better comparisons.
The structures of 2a and 3a were chosen, because they were the only structures
solved by all methods, therefore these provided the only comparable results.

71

Transition Table
2a 3a
Max Iterations 40 80 40 80

Success rate % 86 96 34 46

Avg(Devo) 18.90 3659 18.94 33.85
StDev.(Devo) 9.58 2359 10.83 23.20
Avg(NumGen) 13139 7700 30676 26934
StDev(NumGen) 18835 11437 27660 25533

Instruction-Based Approach
2a 3a
Max Iterations 40 80 40 80

Success rate % 79 81 45 43

Avg(Devo) 23.85 36.03 2442 31.93
StDev(Devo) 8.10 16.39 8.53 19.87
Avg(NumGen) 15438 12128 25163 15943
StDev(NumGen) 24508 19974 28526 17868

Self-Modifying Instruction-Based Approach
2a 3a
Max Iterations 40 80 40 80

Success rate % 100 100 96 96
Avg(Devo) 22.80 3046 26.13 38.49
StDev(Devo) 803 18.14 9.82 2161
Avg(NumGen) 1912 1774 13309 6345
StDev(NumGen) 9416 4179 22687 12912

Table 4.4: Comparison on the 2a and 3a structure between IBA, SMIBA and
TT. Average and standard deviation of the developmental time.

72

4.3 Replication

The second experiment explored in this thesis is the replication problem. In this
case the goal is to create copies of an initial structure, such that the initial
structure replicates into multiple copies of itself. The results are summed up in
Table: 4.5.

Transition Table
Pattern la 2a 3a 4a 4b ba 6a 6b

Success rate % 62 5 0 o 0 0 0 0
Avg(NumGen) 2116 4909 x x X X
StDev(NumGen) 2533 2009 x x x X X X

~
"

Instruction-Based Approach
Pattern la 2a, 3a 4a 4b ba 6a 6b

Success rate % 100 100 100 O 100 100 4 100
Avg(NumGen) 32 167 37 x 32 71 5723 29
StDev(NumGen) 22 157 33 x 25 68 3364 25

Self-Modifying Instruction-Based Approach
Pattern la 2a 3a 4a 4b ba 6a 6b

Success rate % 100 100 100 O 100 100 22 100
Avg(NumGen) 38 279 54 x 37 94 4737 bH4
StDev(NumGen) 24 344 53 x 25 72 2745 42

Table 4.5: Replication problem comparison

These results correspond well to the results found in [11], where IBA was
shown to be especially effective in the replication problem. SMIBA seems to
be able to rely on its IBA base for solving the same problems that IBA solves.
SMIBA used a few more generations to get there, but this was to be expected
as IBA was already exceedingly good at this problem. None of the methods
managed to solve the 4a problem, which was surprising, but when transitioned
to a 4b structure both IBA and SMIBA solved it with ease. This could indicate
that 3 states are insufficient to easily solve a problem that is symmetrical over
two axis, because the addition of an extra state made it simple. The transition
in efficiency between 4a and 4b does state well in favour of IBA and SMIBA as

73

methods that handle the scaling well. When given additional states TT requires
an exponential increase in genotype size, which causes a longer runtime. Also,
given the results of 4a/b and 6a/b, showed no increase in ability to find solutions.
Furthermore both the average fitness value and the best fitness found in these
experiments were seen to go down. This is shown in Table: 4.6.

Transition Table
Pattern ‘ 4a 4b ‘ 6a 6b

Avg(fitness) | 163.03 143.13 | 155.12 144.43
Best(fitness) | 177 159 170 157

Table 4.6: Replication problem average and best fitness found in scaled struc-
tures for TT. A perfect solution would score 192 in fitness value.

In comparison to TT, in IBA and SMIBA the genotype size can remain con-
stant, or however large it is desired to be. An alternative hypothesis the per-
formance could also be caused by an intricate relation between phenotype and
genotype variation as there could be an optimal relation between genotype and
phenotype size. It might be possible to exploit this with IBA, SMIBA and other
implicit methods, as these methods allows for generation of genotypes of a spec-
ified size. Phenotype variation could be modified by incrementing the number
of states allowed, as was briefly tested on some problems for this thesis. The 6a
to 6b transition showed similar results, but differs from 4a to 4b because 6a was
solved in some cases. It was never expected that SMIBA would outperform IBA
on a structure to the degree it did on 6a. No other structure showed the same
result. Even so it still shows that SMIBA has made a contribution to IBA also
on replication problem. More advantages and strengths of the SMIBA solutions
will be presented later.

General replicator

When inspecting cases in the dataset, a solution to the replication program for
the 3a structure with IBA was tested on a 2a structure, and quite surprisingly it
solved it perfectly. Following this, more structures were tested by using programs
evolved on a specific structure to see if they could replicate other structures
as well. Quite interestingly the program could replicate almost any structure.

Inspecting even more solution cases showed similar properties, both in IBA and
SMIBA.

74

An example is this program that was randomly drafted from a 3a solution
(XOR, L, €), (ROD, L, C), (OR, C, C), (XOR, C, L), (ROL, D, C), (MIN, C,
D), (MAX, R, R), (ROU, U, L), (ROD, C, D), (SET, C, L). This program can be
seen performed on its intended structure in Figure: 4.3. This program has the
ability to solve other structures than its intended designed structure, see Figure:
44,45, 46 and 4.8. It was also interesting to note that on the 4a problem
the program could replicate the structure, but with the wrong colors as seen in
Figure: 4.7. In Figure: 4.4 and 4.6, it can be seen to use a support color not
present in the target solution to replicate the structure. In fact when Figure: 4.5
was replicated with the same program in 2-state CA, it was still able to solve the
structure. This is something that would be very difficult to do in TT, since the
explicit definition of the genotype in TT cannot simply be scaled down or up to
use on a CA with a different number of states.

4.3.1 Continued replication

From inspecting case solutions in IBA and SMIBA, a general observation was
made. Many of the cases were observed to continue replicating after they had
produced the minimum amount of replications required by the fitness function.
One example of this can be seen in Figure: 4.3, where additional replications
were produced. Therefore a deeper analyses of the solutions was considered and
a question arose. How good were these solutions at replicating continuously,
i.e. are the replications also replicators? The solutions found in the general
replication experiment were therefore placed on a lattice 3 times the normal size
and inspected for 3 times the normal CA iteration length. This means a lattice
size of 75x75 and the CA was evolved for 120 steps. Through every step of
the total 120 steps the CA was inspected and the number of replications were
counted. Only replications that had a border, and did not touch the edges were
counted. The results are summed up in Table: 4.7.

The results were much better then anticipated. In the problems inspected,
all methods showed a great ability to replicate beyond the scope of the fitness
function they were evolved with. This was especially true for the solutions found
in SMIBA, with many extreme cases where as many as 50 replications were pro-
duced, as can be seen in Figure: 4.9. Speculating on the cause for the discrepancy
in replication ability between the methods, common traits in phenotype solutions
were identified. While IBA and SMIBA often solved the problem by replicating
in two directions (in different dimensions). TT only solved by replication in 1 or
2 directions (the directions were the same dimension). TT exclusively replicated

75

Figure 4.3: 25 steps of a solution to the replication problem for 3a, also
continues to replicate after

either left and right or up and down. This caused TT to not be able to use the
full lattice. 2a was shown as an exception in the case of IBA and SMIBA, and
here TT caused on average the greatest number of replications. This was not
because TT was especially strong on the 2a problem, but rather that IBA and
SMIBA were especially weak on it.

4.4 A Final Observation

As a final observation, structures that IBA and SMIBA struggled with more
then others(2a, 4a and 6a) have a common theme. 2a took longer to evolve

76

i

Figure 4.4: 8 steps of a solution to the replication problem for 3a, but used
on 2a structure.

Figure 4.5: 8 steps of a solution to the replication problem for 3a, but used
on la structure.

in comparison to structures thought to be harder, i.e. 3a. The solutions found
with 2a, were also not as good as the other structures as continues replicators.
4a was never replicated and 6a was hard to replicate until they were given an
additional state. What the 2a, 4a and 6a structures have in common is that they
only have 3-states in the structure. When 4a and 6a were given a additional state
for evolution to exploit and turned into 4b and 6b, what caused the difference
in efficiency could perhaps not be the increase in phenotype variations. It could
in fact be much simpler. 4-states as a binary representation, is a more sensible
limit compared to 3-states. Since IBA and SMIBA utilize instructions that are
designed for bit operations, a 3-state upper limit could become detrimental. If
this is true, then IBA and SMIBA will be expected to show different distributions
of instructions used to solve 2a and 6a in comparison to the other structures.

7

e
n

Figure 4.6: 8 steps of a solution to the replication problem for 3a, but used
on 4a structure(4 state).

l
»

Figure 4.7: 8 steps of a solution to the replication problem for 3a, but used on
4a structure(3 state). It can no longer replicate the image, but the structure
is perfectly replicated

This will be inspected later in this chapter.

78

adigiEEs]
et
e
s

TS

Figure 4.8: 16 steps of a solution to the replication problem for 3a, but used
on the larger structure ba. Note that the lattice had to be a bit bigger to fit
the solution and that it required an extra loop to replicate it. Also note that
this would not be a solution that the fitness function would find particularly
good, as the fitness function was not designed to consider solutions found
crossing the lattice bounds. We as humans on the other hand can clearly see
the flags are replicated over the boundaries.

79

Transition Table

Pattern la 2a
Best replications % 9 9

Avg(replications) 8.81 5.8
StDev(replications) 1.06 1.6

Instruction-Based Approach

Pattern la

2a 3a 6a

Best replications 28

5 23 23

Avg(replications) 14.95 5 16.94 14

StDev(replications) 7.44

0 433 9

Self-Modifying Instruction-Based Approach

Pattern la

2a 3a 6a

Best replications o1

9 50 50

Avg(replications) 17.24 5.06 18.25 16.59
StDev(replications) 10.67 0.58 10.46 7.56

Table 4.7: Replication count in the extended solutions, best replications is
the case with the highest number of complete replications observed.

Figure 4.9: 2 examples of mass replications. Many of the replications are not
counted as they touch the edge.

80

4.5 DevRep Problem

The final of the 3 main experiments inspected in this thesis is the DevRep prob-
lem. This is a problem which was devised by this thesis. The DevRep is a
combination of the two previous problems, replication and development. The
goal of the problem is to create a genotype that is capable of developing into
a structure, then replicating the structure afterwards. It is a novel problem ex-
pected to be hard. It is not studied in the literature, but might be important
towards developing self-replicating machines. The general results of this problem
can be seen in Table: 4.8.

Transition Table

Pattern Oa Xa xb la 2a 3a

Success rate % 96 52 23 0 0 0
Avg(NumGen) 877 1756 2005 x x
StDev(NumGen) 1228 1910 1776 x x X

~

Instruction-Based Approach

Pattern Oa Xa xb la 2a 3a

Success rate % 71 0 0 0 0 0
Avg(NumGen) 3032 x X X X X
StDev(NumGen) 2737 x X X X X

Self-Modifying Instruction-Based Approach

Pattern Oa Xa xb la 2a 3a

Success rate % 94 0 1 0 2 8
Avg(NumGen) 1913 x 9565 x 7652 5818
StDev(NumGen) 1944 x X x 2047 2973

Table 4.8: DevRep problem comparison

This problem gave the most distributed results of the three problems explored
in this thesis. Oa was solved by all the methods but TT and SMIBA solved it with
greater success than IBA. After the successes on the Oa problem, solving the xa
problem was expected to be a simple problem that all methods could solve, yet
only TT was able to. This structure is the only case were TT out performed the
other two methods to a large degree. When scaled to xb, SMIBA managed to

81

solve it while TT saw a decrease in ability. When inspecting the resultset, SMIBA
showed an on average decrease in fitness value when scaled on this problem, but
showed a increase in standard deviation.

When it comes to the la structure none of the methods managed to solve
this problem. This in itself would not be strange had it not been for SMIBA’s
ability to solve the 2a and 3a problem, which was expected to be harder. The
only hypothesis made to explain this is that it again has to do with phenotype
and or genotype variation. What caused 3a to be easier then 2a, could have been
because 3a is a 4-state structure. The DevRep is a hard problem to solve and as
such it could be that 2 cell-states are not enough to both develop and replicate
the 1a structure, but with 3 cell-states enough variations can be made to create
the 2a. This can be further pointed when considering 3a was solved more than
2a. That 3a was easier could also be due to 3a being a 4-state, and therefore
better suited for binary operations in IBA, as discussed in earlier. Having one
or more additional state may be necessary in hard problems such as the DevRep
problem. This is unfortunately not studied in the literature due to the lack of
scalability of TT.

As mentioned Oa was the only problem solved by all methods, therefore an
inspection of the different strategies utilized by the methods was performed. At
least 10 solutions were inspected from all the methods. Firstly, in TT, all exhib-
ited strategies also observed in TT on the development problem. The solution
was build up successfully but afterwards the CA descended into a loss of structure
and chaotic behaviour, yet often symmetrical over one axis. This can be seen in
Figure: 4.10 where the structure is lost after 24 steps and never recovered. This
was also observed to happen in some of the SMIBA solutions. Secondly, IBA
showed zero phenotypical variations in its solutions. All inspected solutions in
IBA showed many different genotype programs, but all solutions gave the same
phenotype solution. This phenotype solution can be seen in Figure: 4.11. Fi-
naly, SMIBA showed greater variation in its solutions, it showed solutions similar
to TT, but it also showed solutions that exhibited behaviour that was desired.
Several solutions in SMIBA developed a single solution first, which then repli-
cated, sometimes seemingly indefinite or as long as there is space, as can be
seen in Figure: 4.12. In this figure the structure can be seen to reform in step
3,7,11,15,19,23,27 and 35. This SMIBA program was then moved to a larger
lattice and showed continued growth Figure: 4.13, here the program generated a
total of 61 replications at one point and showed no sign of stopping. It was not
possible to test on a larger lattice then 75, the CA implemented in this thesis
was never designed to handle lattices of such size. Note that the given solution

82

i

: & -Eﬁi-- i :
-

ii:- _EI_-_: o B e,

Figure 4.10: TT solution to the EvoDevo problem Oa.

creates replicas as long as there is space. Where space is not available it adopts
a strategy to move the structures, so that replication may continue.

4.5.1 Solutions outside the intention

There are times when things do not go according to plan, and it seems the fit-
ness function allowed for several alternative interpretations of the problem than

83

Figure 4.11: IBA only type of solution. All cases inspected gave this type of
solution, but many different programs.

was intended. On occasions TT and SMIBA solved the problem by developing
multiple structures the first time the target image is formed. This can be seen in
Figure: 4.14 where the target structure is formed 6 times while later it is merely
formed 4 times. Such solutions are hardly general replicators. This happened ex-
clusively in TT and SMIBA, but one would think IBA would also be capable of this
feat, possibly on different structures. They are able to develop artistic patterns
instead of randomized behaviour. In this case heart shaped structures emerge.
Outside the scope of this thesis such solutions may be used in picbreeders[76]
where complex structures could develop and replicate.

84

Figure 4.12: Example SMIBA solution to Oa.

85

Figure 4.13: SMIBA solution to 0a. The previous solution on a large 75*75
lattice. At state nr. 30 a total of 61 replicates despite the fitness function
only ever asking for 3 the program replicates and spreads out as long as there
is room to grow across the lattice.

86

Figure 4.14: A (lovely) solution in SMIBA to the Oa structure.

87

4.6 Re-Evolving the phenotype, and the no-
tion of modularity

Taking inspiration from [71] where Kovitz experimented with re-evolving a prob-
lem to inspect evolvability, a similar, yet different experiment was performed in
this thesis. In replication, solutions that could solve several structures at with
the same genotype have been identified. Therefore, re-evolving replication was
expected to be a trivial task. For this reason re-evolving was performed on
development instead. In addition, re-evolving development problems, allow for
tracking the developmental trajectories in solutions, since all solutions start from
the same zygote. A downside is, that development problems are shown as quite
hard. Re-evolving to different problems several times would require a lot of com-
putation, and therefore take a long time to perform. In this implementation
problems that were inspected are harder then the problems inspected in Kovitz
paper [71]. Therefore only a single re-evolve was performed. This does not allow
us to inspect if solutions are drawn to evolvability, but it does allow us to see if
the system intrinsically has some evolvability.

This experiment used the same parameters as the development problem, the
only change was that if an execution found a solution to the first problem, it
would by using the same population try to find a solution to a second and final
problem.

Explaining the graphs

From these experiments a few case solutions were inspected and plotted in Pajek.
These figures are plotted using the following rules. The first problem solution
is marked with black vertices and black edges. The second is marked with blue
vertices and blue edges. The dots are labelled with "a" for first problem solution
and "b" for second solution. The number in the label is the first time the state
occurred in the iterations of the CA. Vertices marked b22 for example are vertices
in the second solution and occurred at step number 22 in the CA. If a "b" state
points to an "a" state, this means that the same state was observed in both
solutions. Note that in SMIBA solutions cycles are very common. These cycles
do not behave as normal cycles, as they are in fact escapable. This illustrate well

the property of delayed development, identified in SMIBA earlier.

88

4.6.1 Evolving from 3a — 2b

The first problem explored is one where the GA first evolves a 3a structure then
the target of the fitness function is changed to a 2b. It was a 2b because
it has the same number of states as a 3a structure. Due to the similarity of
the two structures this re-evolving was expected to be easy compared to other
structures. This experiment was performed in both SMIBA and TT and the
results are summarised in Table: 4.8. In the aforementioned table a hemming
distance calculation is performed on TT and SMIBA. Hemming distance is a
measurement of how different two equal length strings are. It is measured by
comparing each character of the string to the same character position in the
other string. Simply put, it is how many changes need to be made to a string to
turn it into the other sting.

in (2 and everything marked (R), the SMIBA has much of its unused geno-
type material removed from the calculations. It was removed in this manner,
if the SMIBA program did not include a CHF or CHP instruction, then in each
instruction, every unused parameter was not considered in the hemming distance
calculation. Table: 4.9 also contains a deeper analyses of hemming distance with
regard to self-modifing instructions(SMI), regular IBA instructions and parame-
ters.

TT

After having executed this experiment 100 times in TT, only 27 of these runs
managed to solve the first problem, and 24 managed to solve both.

SMIBA

When this was attempted with SMIBA the first structure was formed in 89 of
the 100 attempts. Of these 89, only 84 managed to find a solution to the second
problem.

! Average Hemming Distance

2SMIBA, if no CHF or CHP instruction is present in the program parameters not used
by the instructions was not counted and if no Move or Dupe neither in the program,
the end of the programmed was trimmed of Instructions that did not do anything(never
changed the center). The second case was very rare

3 (average)

4Self-modifying Instruction

89

SMIBA vs TT

1st 2nd
TT 27 24
SMIBA 89 84
Genotype change
AHD.! Max %
TT 401 1024 39%
SMIBA 24.46 50 49%

SMIBA(R)? 14.73 (34.61)% 42.55%

Instructions(R) 3.54 (9.988) 35.40%
Param(R) 11.19 (24.62) 45.45%
IBA—SMI*(R) 0.46 (7.70) 5.97%
IBA—IBA(R) 2.40 (7.70) 31.17%
IBA(R) 2.86 (7.70) 37.14%
SMISIBA(R) 057 (229) 24.89%
SMISSMI(R) 011 (229) 4.80%
SMI(R) 0.68 (229) 29.67%

Table 4.9: SMIBA and TT comparison, on the 3a—2b problem.

4 of the solutions managed to solve both problems with the first solution.
These solutions would have too high degree of trajectory overlap to make them
interesting as a case. The solutions that quickly, but not instantly, solved the sec-
ond problem were more likely to contain a degree of overlap, without overlapping
completely(i.e. same solution). 9 of the executions found a solution to the sec-
ond problem within 100 generation,and these cases were inspected. As expected
these cases often contained overlapping trajectories, especially in the initial steps,
as can be seen in Figure: 4.15. Another example can be seen in Figure: 4.16
where initial steps are similar, before splitting ways. In the aforementioned case
note how the overall trajectory structure is a mirror of each other.

In Table: 4.9 an interesting property was observed. When splitting hem-
ming distance into subcategories of the SMIBA, a hierarchical pattern emerged.
When re-evolving more parameters were changed than instructions, and more
IBA instructions then SM instructions were also changed. This suggests that
SM instructions make large changes, IBA instructions medium changes and pa-
rameters small changes. This variation might be one of the properties that makes

90

SMIBA vs TT

AHD. Max %
SMIBA 24.2 20 48.40%
SMIBA(R) 166 (34.4) 48.26%
Instructions(R) 2.20 (10) 22.00%
Param(R) 144 (24.4) 59.02%
IBASMI(R) 0.60 (8.2) 7.32%
IBAIBA(R) 14 (82) 17.07%
IBA(R) 200 (8.2) 24.39%
SMIIBA(R) 020 (1.8) 11.11%
SMI—SMI(R) 0.00 (1.8) 0.00%
SMI(R) 020 (1.8) 11.11%

Table 4.10: SMIBA and TT comparison. On the 4b—2b problem

SMIBA strong across the board of problems inspected in this thesis. Through
the hierarchical structure the genotype might evolve where small changes to the
genotype might cause large or small changes in the phenotype, allowing SMIBA
to make large leaps in the fitness landscape, while also retaining the ability for
small detailed leaps.

4.6.2 Evolving from 40 — 2b

A second re-evolution experiment was also performed with the SMIBA on the 4b
to the 2b structure. Only 5 of the 100 were successful in finding the 4b structure.
All of them then successfully found the second 2b structure. In the previous 3a
to 2b experiment, the 3a and 2b has a similar column based structure, but 3a
is a 4-state structure while 2b is a 3 state structure represented in 4 state CA.
In this experiment 4b and 2b are both 3-state structures in 4-state CA, but 4b
is symmetrical over two axes while 2b over one. The results are summarised in
Table: 4.10, in the same manner as the previous 3a-2b experiment. Here the
hierarchical property in SMIBA is even more apparent. Also in these cases the
trajectories often showed a similar development path initially as seen in Figure:
4.17. These results are built from only 5 cases, and therefore some doubt exists
about the accuracy of these cases as representative of a general behaviour.
Between the two experiments many cases with a shared initial trajectory were

91

. /?‘Snl'uﬁ,sdll.ﬂlg.;.lhtinnﬁ

9/‘ 323 518 \3
* 3 7{ 21

1.32 al?
ace

315 ‘a3
2 az3

Ia'lfl

al3

-
ha3 a1 Start
b2

B34 b3
\h'l:u21 1

b 0117 ® g

L 3
b1g
Ve E'L”,}m

b7, e
S alution £20 B

Figure 4.15: Using Pajek to draw a network for 3a — 2b. A highly inter-
connected case. Solutions to both the first and second problem were found
several times, and are re-marked as a new state to highlight this.

identified. They were also found in TT cases of these experiments. These shared
states are not replicators so it would be a stretch to call them stem-cell states,
but they could rather be identified as "stem states”. Through the same manner
stem-cells may turn into different cells, these states could turn into different

92

“I:GD 14

4028 b15
38 b1E
27 k17
26 b3
- h

hE%ESEE.':;hED

Figure 4.16: Using Pajek to draw a network for 3a — 2b. A case that
found the second solution after 9 generations shows a similar developmental
structure. The first 5 states are identical, then they move separately but
similarly.

shapes, depending on the genotype.

93

TR T
13 a3l
alz 2

a1l adt
a10 W
ad a;‘ 7
. ;‘E ¥
& 9
13k
1330
4331
Start 532
33
al a3d
A 2 35
f=|
L a3k
b7
5h35 ‘:. S 237
h'h35 X 538
‘.'II:G# b4 P
ah
b33 a2
"'1?.31
1b-29
'h2a
2 bE
b7 -
T ALl
: SN%EE?B JH.JHEFS
L20 ot b1

b1, e - k11
b8 B P ETRAT5 b4 b13017

Figure 4.17: Pajek network example for 4b — 2b. This example showing an
intertwined start.

94

4.7 Instruction Distribution

Through the previous experiments analysed in this chapter, a good few case solu-
tions have been found. In IBA and SMIBA the solutions discovered through the
experiments give us an opportunity to take a deeper look at what instructions
or calculations are necessary or useful to solve the problems investigated in this
thesis. This was done by filtering the data of any unsolved runs. From the result-
ing filtered dataset some simple statistical data was calculated in the following
manner. For every case(program) in the dataset, if a specific instruction is in
said case, it is counted. If a program contains more than one instruction of the
same kind, only the first one is counted. The information is then summed up for
each structure and each problem. This information can be seen in Table: 4.11,

4.12, 4.13, 4.14, and 4.15.

IBA Development

Pattern 2a 3a 4a total %
AND 37 27 1 65 52%
OR 59 37 1 97 77.6%
XOR 52 28 1 81 64.8%
NOT 33 13 0 46 36.8%
INV 27 16 0 43 34.4%
MIN 50 38 1 89 71.2%
MAX 42 24 1 67 53.6%
SET 17 10 0 27 21.6%
INC 48 24 1 73 58.4%
DEC 45 26 0 71 56.8%
SWAP 25 4 0 29 23.2%
ROR 19 9 0 28 22.4%
ROL 33 14 0 47 37.6%
ROU 28 8 0 36 28.8%
ROD 21 14 0 35 28%
NOP 14 9 0 23 18.4%
Max 79 45 1 125

Table 4.11: Development IBA instruction distribution

The first two tables presented concern the development problem.

95

In this

thesis, development problems required a good number of evolutionary generations
to complete in comparison to the replication problems.

Taking this into consideration, one could expect the instruction distribution
in this problem to be highly specialised or uniform. The statistics in the tables
do not show this, since the instructions are in fact very evenly distributed, at
least in comparison to what was expected. This is also true when considering
the individual structures. Even so, some instructions are used more prominently
than others.

Looking at the instructions NOOP, SKIP and DEL, which are instructions that
in effect shorten the genotype, one notices that they are not very commonly used
in the development problem. A slight decrease in use of these instructions also
occurred in harder problems. This would indicate that the harder the problem,
the more instructions would be useful. There are also some slight discrepancies
in how instructions are used in comparison between IBA and SMIBA. considering
SMIBA has a larger instruction set, the rotating instruction ROR, ROL, ROU
and ROD are more often used in SMIBA. Also note that it seems that MOVE
instruction is a clear winner among the SM instructions.

Moving on to the replication problem, this problem was often very quickly
solved, many of the structures averaged less then 100 generations. The exception
to this quick evolving speed is the 6a structure. In [47] it was shown that the
many replication problems were easily solved, and could be solved with only 2
or 1 instructions, in some cases. Given that in all problems replicated included
a XOR instruction as seen in Table: 4.13 and 4.14, it seems likely, that it is
this instruction that causes IBA to be strong in replication. Note that the XOR
instruction can be replicated using other instructions. For example p & ¢ =
(pV q) A=(pAq), but such a relation would be much harder to create for the
GA used in this thesis.

Given that the replication problem seems too easy to solve and relies heavily
on the XOR instruction, a short experiment was performed on whether or not IBA
would be able to solve the replication problem without the use of XOR. This was
done by simply making any XOR instruction act exactly like a NOOP instruction
and evolving the replication problem as earlier using this small modification. This
short experiment used only 10 runs as opposed to the normal 100 performed in
all other experiments. This was performed on the 1la structure, and the results
were that none of the runs managed to solve the problem. In fact all of the runs
ended at 135/150 as fitness values. This shows quite strongly that XOR is very
useful in replication.

The 6a structure was solved using both a DEC and a XOR in all cases both in

96

IBA and SMIBA. MOVE and ROU also had a strong presence in SMIBA solutions
on this structure.

The replication problem could easily be solved without the use of SM instruc-
tion. This is also present in Table: 4.14, where it was found that some of the
solutions were solved without the presence of a single SM instruction.

It was theorised earlier that 2a and 6a would show a different distribution of
instructions used in replication due to them being 3-state as opposed to the other
problems. The data show only small trends in 2a IBA where the NOT instruction
is much less common, and the rotating instructions ROR, ROL, ROU and ROD
are slightly more common. In SMIBA 6a showed some strong trends discussed
earlier, but 2a showed a small trend of not relying on the MOVE instruction to
the same degree as other structures.

Finally we move to the DevRep problem as seen in Table: 4.15. In this table
the IBA and SMIBA are seen side by side on the Oa problem. In this statistic
some very large differences are apparent. Many of the same trends seen in the
other two problems are present here. The AND instruction is very commonly
used in IBA, but in SMIBA it is very uncommon. It is also interesting to note
that IBA solved the DevRep problem for the Oa structure without using XOR
in a handful of the cases, despite very heavily relying on that instruction in the
replication problem. Also note that in the DevRep problem SMIBA had a much
larger use of the rotating instructions ROR, ROL, ROU and ROD compared to
IBA.

97

SMIBA Development

Pattern 2a 3a 4a 4b total %
AND 12 22 5 4 43 20,87%
OR 69 61 3 2 135 65,53%
XOR 53 59 2 2 116 56,31%
NOT 29 23 0 1 53 25,73%
INV 56 28 0 4 88 42.72%
MIN 5 65 0 2 123 59,71%
MAX 20 31 0 0 51 24,76%
SET 41 19 1 2 63 30,58%
INC 32 60 4 2 98 47.57%
DEC 26 52 2 2 82 39,81%
SWAP 3 24 0 3 62 30,10%
ROR 41 37 4 2 84 40,78%
ROL 52 40 3 2 97 47,09%
ROU 41 31 3 O 75 36,41%
ROD 36 36 3 3 78 37,86%
NOP 22 5 1 2 30 14,56%
SKIP 20 13 1 0 34 16,50%
MOVE 64 66 4 4 138 66,99%
DUPE 51 40 2 1 94 45,63%
DEL 6 14 1 0 31 1505%
CHF 28 22 1 1 52 25,24%
CHP 27 29 0 1 57 27,67%
One or more SM 100 96 5 5 206 100,00%
Max 100 96 5 o5 206

Table 4.12: Development SMIBA instruction distribution

98

IBA Replication

Pattern la 2a 3a 4b 5a 6a 6b total %
AND 31 38 40 36 23 1 41 210 34.77%
OR 30 35 29 35 41 4 34 208 34.44%
XOR 100 100 100 100 100 4 100 604 100.00%
NOT 48 21 44 35 35 4 38 225 37.25%
INV 47 36 41 40 42 1 42 249 41.23%
MIN 34 36 36 41 30 3 37 217 35.93%
MAX 38 33 35 39 32 3 38 218 36.09%
SET 43 47 47 47 52 0 40 276 45.70%
INC 48 39 49 36 30 2 34 238 39.40%
DEC 39 39 36 45 38 4 47 248 41.06%
SWAP 58 49 47 47 49 1 49 300 49.67%
ROR 36 42 42 53 46 1 56 276 45.70%
ROL 43 54 44 49 47 3 49 289 47.85%
ROU 41 52 45 40 45 1 44 268 44.37%
ROD 42 50 39 43 46 0 48 268 44.37%
NOP 47 49 44 49 42 0 36 267 44.21%
Max 100 100 100 100 100 4 100 604

Table 4.13: Replication IBA instruction distribution

99

SMIBA Replication

Pattern la 2a 3a 4b 5a 6a 6b total %
AND 32 33 30 26 288 2 24 175 28,14%
OR 23 33 23 28 30 6 32 175 28,14%
XOR 100 100 100 100 100 22 100 622 100,00%
NOT 34 25 29 26 26 10 37 187 30,06%
INV 38 37 29 35 34 3 33 209 33,60%
MIN 32 24 25 20 20 7 32 160 25,72%
MAX 26 31 31 23 36 1 20 168 27,01%
SET 41 32 43 40 34 9 35 234 37,62%
INC 27 34 29 24 21 4 33 172 27,65%
DEC 23 25 29 33 21 22 39 192 30,87%
SWAP 39 37 38 44 43 5 37 243 39,07%
ROR 31 29 34 44 22 10 37 207 33,28%
ROL 42 31 41 32 30 7 29 212 34,08%
ROU 40 42 33 38 52 19 44 268 43,09%
ROD 40 41 40 43 36 13 29 242 38,91%
NOP 40 43 37 32 46 5 36 239 38,42%
SKIP 37 41 43 47 37 4 38 247 39,71%
MOVE 43 22 32 41 49 20 40 247 39,71%
DUPE 32 25 30 25 32 4 24 172 27,65%
DEL 6 21 32 17 22 1 16 125 20,10%
CHF 28 29 25 28 27 4 34 175 28,14%
CHP 36 39 36 36 34 3 37 221 35,53%
Oneormore SM 90 90 93 94 92 21 92 572 91,96%
Max 100 100 100 100 100 22 100 622

Table 4.14: Replication SMIBA instruction distribution

100

Development Replication(DevRep)

| Pattern | 0a IBA % | 0a SMIBA % |
AND 42 59.15% | 17 18.09%
OR 40 56.34% | 43 45.74%
XOR 61 85.92% | 94 100.00%
NOT 32 45.07% | 10 10.64%
INV 18 25.35% | 23 24.47%
MIN 32 45.07% | 43 45.74%
MAX 33 46.48% | 13 13.83%
SET 9 12.68% | 23 24.47%
INC 26 36.62% | 16 17.02%
DEC 28 39.44% | 13 13.83%
SWAP 21 20.58% | 31 32.98%
ROR 16 22.54% | 33 35.11%
ROL 24 33.80% | 39 41.49%
ROU 18 25.35% | 41 43.62%
ROD 19 26.76% | 43 45.74%
NOP 24 33.80% | 20 21.28%
SKIP 15 15.96%
MOVE 50 53.19%
DUPE 54 57.45%
DEL 36 38.30%
CHF 41 43.62%
CHP 37 39.36%

| One or more SM | | 94 100.00% |

| Max | 71 | 94

Table 4.15: Development Replication SMIBA and IBA

101

Chapter 5

Conclusion

"If you trust in yourself... and believe in your dreams... and follow
your star... you'll still get beaten by people who spent their time
working hard and learning things and weren’t so lazy.”

Terry Pratchett - The Wee Free Men

In this chapter, we will summarise the findings of the previous chapter, and
present them in relation to the research questions and goal introduced in the
introduction. Finally, a section where possible directions for future work is de-
scribed.

5.1 SMIBA in comparison

Through the build up of this thesis, the second research question is answered
first. The research question was formulated in the following sentence.

RQ2: How would a method combining both IBA and Self-modification
from SMCGP perform in comparison to regular IBA and explicit repre-
sentations (Transition Tables)?

This question was answered by the results from the development, replication,
and DevRep problems. In development, SMIBA showed itself to be stronger
than the other methods on a number of structures in solving effectiveness and
efficiency. Structures 5b and 6a were a small exception, as they were solved in
rare cases by the TT. In replication, SMIBA gave evidence of relying well on its
IBA base, but also improved on IBA by solving 6a more often. It also showed
itself to be better at producing replications that were also replicators. In the

102

DevRep problem, SMIBA struggled with the xa structure but managed to solve
it when scaled. It was the only method that was capable of finding a solution
with the 2a and 3a structures. When inspecting cases, SMIBA showed a much
more desirable behaviour on the Oa problem when considering CA behaviour of
class given in [26, 18]. Given these results, SMIBA has shown itself a strong
addition to IBA, as it outperforms IBA on a number of structures and problems.
In comparison to TT, SMIBA showed stronger results on most problems with xa
in DevRep, and 6a and 5b in development being the only exceptions.

5.2 Development Replication

The first question of this thesis was formulated in the following manner.

RQ1: Is it possible to evolve a single genotype in cellular automata
that can solve both the replication and the morphogenesis problem to-
gether?

The DevRep problem was devised to answer this question. All the methods
managed to solve this problem with the simplest structure. However, as soon
as the structure scaled in number of states or cell size, the problem became
very hard to solve for any of the methods. On this problem, SMIBA showed
the most advantageous behaviour when looking at it in detail, as it could regu-
late its genotype through the development phase and replicate very successfully
afterwards.

In general, the answer to this question would be yes, it is possible, but it is
very hard.

5.3 Stem-Cells

The third question raised in this thesis is formulated in the following manner.
RQ3: Is a stem-cell like feature necessary or at least useful to develop
multicellular organisms, and will it self emerge given incentive?
Through the use of Pajek, some stem-states were identified in the trajectories.
Therefore, some stem-cell like behaviour is already inherent in the methods,
as the cases which quickest solved the second problem often had overlapping
trajectories. SMIBA was devised to be strong on replication and development,
as is key in stem-cells. Further, SMIBA showed itself to be more effective than
the other methods when moved out of the original bounds of the environment it

103

was evolved in. Another property in stem-cells is a hierarchy, which we will look
into in a later section.

5.4 Scaling

The fourth question regards scaling and is formulated in the following sentence.

RQ4: Does SMIBA scale better in problem solving?

On this question, SMIBA showed great promise when faced with scaling
problems. This in the sense that it managed to solve a number of problems that
seemed too hard for the other two methods, it also often improved in efficiency
in problem solving ability when the number of states was increased. SMIBA
together with IBA has the ability to scale linearly in runtime. This is because
the program size may remain constant when the problem is scaled, but often a
harder problem would benefit from more instructions.

5.5 Hierarchy

The fifth and final question is about hierarchy in relation to the previous question.
RQ5: Is a hierarchical genotype a good answer to the problem of scaling?

In this regard, SMIBA is the most hierarchical genotype representation as
was discussed in the Re-Evolve section. The analyses of hemming distance in
this experiment showed, SMIBA to use this potential hierarchical structure and
through the previous question, SMIBA was shown to scale exceptionally well.
This is enough to claim that there is a correlation between hierarchy and scaling.
SMIBA, as a more hierarchical method, showed itself to scale better than IBA,
since it could solve a number of harder problems IBA could not. On the other
hand, the scaling could also be caused by some or one of SMIBAs other properties,
not found in IBA.

5.6 Similarities of SMIBA and biological sys-
tems
SMIBA splits the genotype into two parts of encoding and non-encoding genes.

The encoding genes, i.e. the IBA instructions, directly alter the phenotype, while
non-encoding, i.e. SM instructions, regulate the genotype. The non-encoding

104

genes modify the coding genes by activating, deactivating, changing, or removing
them. This allows for different parts of the genome to be active or inactive at
different stages during development. This is much like in biology, where the
genome regulated in the same way of encoding and non-encoding genes.

5.7 Overview

The five previous questions were all created to answer the research goal as was
formulated in the following manner.

RG: Create a novel algorithm SMIBA, test it against already existing
methods, and identify strengths, weaknesses and properties in SMIBA.

Through these questions and deeper analyses as presented in the results sec-
tion, it was shown that SMIBA had many unique strengths and properties. During
development it was shown that SMIBA could regulate its genotype in order to
slow down development, allowing the structure to form more slowly and deter-
mined. SMIBA also showed use of its hierarchical structure when re-evolved. It
was shown to be very strong on a number of problems the other methods strug-
gled or failed at. SMIBA seemed weak on problems that seemingly could only be
solved though chaotic CA, and this would conclude well in relation to the "No
Free Lunch” theorem [72]. Note that the same could be said for IBA. Overall
SMIBA was shown to be an excellent extension of IBA.

5.8 Future Work

Many of the results in thesis were unexpected and surprising in a number of ways.
This opens up a number of potential directions, which can be examined as they
were outside the scope of this thesis.

e The instruction distribution showed a very clear favour of XOR in the
replication problem, and once removed, the problem became too hard for
IBA to solve. Given this information, it could be possible that XOR-like
mathematical operations are being performed in biological replication and
they may even be necessary for it.

e Another direction that could be explored is through the IBA to TT con-
verter described in the previous chapter. It could be implemented and used
to trace IBA to TT relations. These relations could be used to figure out

105

what IBA lacks when compared to TT, and areas of the possible TT space
could be used to develop additional instructions which would be useful to
add to the IBA instruction set. As a transitive property these instructions
would also be useful in SMIBA. For example it could prove that IBA is bad
at accessing chaotic CA. It could then be used in combination with testing
different alternative instructions, to figure out what would be required for
IBA to be able to access it.

In scaling, IBA and SMIBA use implicit representation, and through this
definition they can scale in genotype size on demand, as was put into effect
in [47]. In this thesis it was shown that IBA and especially SMIBA could
scale when phenotype size was increased, i.e. increasing the number of
possible states in the CA. In fact many times when the number of states
was increased, SMIBA and IBA solved problems they previously were unable
to solve. That being said it could be possible to let evolution decide on a
phenotype size when solving problems. This could then be extended to let
evolution decide genotype size as well. It could be possible that through
such an experiment a relation between phenotype and genotype size could
be found that would be useful when designing complex systems.

When it came to the DevRep problem presented in this thesis, it was
shown to be very hard. Through the course of this thesis a few alternative
approaches to solve this problem have been discussed. One could solve the
development problem and replication problem separately. Due to IBA and
SMIBA having free control of genotype size, one could concatenate the
programs from the previous replication and development solutions to each
other. This could, in theory, create a good starting point for the GA to
evolve from. Alternatively, the set of programs from the separate several
replication and development runs could be placed in the same population
and provide case solutions for the GA to freely select from.

106

Bibliography

[1]

2l

8l

[4]

[5]

[6]

[7]

8]

9]

[10]

Von Neumann, John, and Arthur W. Burks. " Theory of self-reproducing
automata.” |EEE Transactions on Neural Networks 5.1 (1966): 3-14.

Mitchell, Melanie. " Life and evolution in computers.” History and philos-
ophy of the life sciences (2001): 361-383.

Von Neumann, John. " The general and logical theory of automata.” Cere-
bral mechanisms in behavior (1951): 1-41.

Wolfram, Stephen. " Statistical mechanics of cellular automata.” Reviews
of modern physics 55.3 (1983): 601.

Wolfram, Stephen. "Universality and complexity in cellular automata.”
Physica D: Nonlinear Phenomena 10.1 (1984): 1-35.

Toffoli, Tommaso, and Norman Margolus. Cellular automata machines: a
new environment for modeling. MIT press, 1987.

Cook, Matthew. "Universality in elementary cellular automata.” Complex
Systems 15.1 (2004): 1-40.

Minsky, Marvin L. " Recursive unsolvability of Post's problem of “tag” and
other topics in theory of Turing machines.” Annals of Mathematics (1961):
437-455.

Cocke, John, and Marvin Minsky. "Universality of tag systems with P=
2." Journal of the ACM (JACM) 11.1 (1964): 15-20.

Bidlo, Michal, and Jaroslav Skarvada. "Instruction-based development:
From evolution to generic structures of digital circuits.” KES Journal 12.3
(2008): 221-236.

107

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Bidlo, Michal, and Zdenek Vasicek. " Evolution of cellular automata using
instruction-based approach.” Evolutionary Computation (CEC), 2012 IEEE
Congress on. IEEE, 2012.

Fogel, David B., and J. Wirt Atmar. " Comparing genetic operators with
Gaussian mutations in simulated evolutionary processes using linear sys-
tems.” Biological Cybernetics 63.2 (1990): 111-114.

Lanfear, Robert, Hanna Kokko, and Adam Eyre-Walker. " Population size
and the rate of evolution.” Trends in ecology & evolution 29.1 (2014):
33-41.

Mitchell, Melanie, and John H. Holland. "When will a genetic algorithm
outperform hill-climbing?.” (1993).

Harding, Simon L., Julian F. Miller, and Wolfgang Banzhaf. Cartesian
Genetic Programming. Springer Berlin Heidelberg, 2011.

Hortensius, Peter D., Robert D. MclLeod, and Howard C. Card. " Parallel
random number generation for VLSI systems using cellular automata.”
Computers, IEEE Transactions on 38.10 (1989): 1466-1473.

Backus, John. "Can programming be liberated from the von Neumann
style?: a functional style and its algebra of programs.” Communications of
the ACM 21.8 (1978): 613-641.

Wolfram, Stephen. A new kind of science. Vol. 5. Champaign: Wolfram
media, 2002.

Sayama, Hiroki. "Introduction to the Modeling and Analysis of Complex
Systems.” Open SUNY textbooks, Milne Library, State University of New
York at Geneseo (2015).

Ho, Anthony D., Ronald Hoffman, and Esmail D. Zanjani. Stem Cell Trans-

plantation: Biology, Processing, and Therapy. Wiley-Blackwell; 1 edition,
2006.

Kish, Laszlo B. "End of Moore's law: thermal (noise) death of integration
in micro and nano electronics.” Physics Letters A 305.3 (2002): 144-149.

Powell, James R. " The quantum limit to Moore's law.” Proceedings of the
IEEE 96.8 (2008): 1247-1248.

108

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Mann, Charles C. "The end of Moores law.” Technology Review 103.3
(2000): 42-48.

Esmaeilzadeh, Hadi, et al. " Dark silicon and the end of multicore scaling.”
Computer Architecture (ISCA), 2011 38th Annual International Sympo-
sium on. IEEE, 2011.

Chen, Trista P., and Yen-Kuang Chen. " Challenges and opportunities of ob-
taining performance from multi-core CPUs and many-core GPUs.” Acous-
tics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International
Conference on. IEEE, 2009.

Langton, Chris G. "Computation at the edge of chaos: phase transi-
tions and emergent computation.” Physica D: Nonlinear Phenomena 42.1
(1990): 12-37.

Langton, Christopher G. " Self-reproduction in cellular automata.” Physica
D: Nonlinear Phenomena 10.1 (1984): 135-144.

Bedau, Mark A., et al. "Open problems in artificial life." Artificial life 6.4
(2000): 363-376.

Aguilar, Wendy, et al. "The Past, Present, and Future of Artificial Life."
Frontiers in Robotics and Al 1 (2014): 8.

Standish, Russell K. " Open-ended artificial evolution.” International Jour-
nal of Computational Intelligence and Applications 3.02 (2003): 167-175.

Maley, C. C. "Four steps toward open-ended evolution.” Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-1999).
Vol. 2. 1999.

Holland J.H., " Adaptive in Natural and Artificial Systems”, University of
Michigan, Ann Arbor, Michigan, USA, 1975

Zitzler, Eckart, Kalyanmoy Deb, and Lothar Thiele. " Comparison of mul-
tiobjective evolutionary algorithms: Empirical results.” Evolutionary com-
putation 8.2 (2000): 173-195.

Bar-Yam, Yaneer. Dynamics of complex systems. Vol. 213. Reading, MA:
Addison-Wesley, 1997.

109

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Heylighen, Francis. " The science of self-organization and adaptivity.” The
encyclopedia of life support systems 5.3 (2001): 253-280.

Mitchell, Melanie. Complexity: A guided tour. Oxford University Press,
2009.

Card, Stuart K., Thomas P. Moran, and Allen Newell. " The model human
processor: An engineering model of human performance.” Handbook of
Human Perception 2 (1986).

Kandel, Eric R., James H. Schwartz, and Thomas M. Jessell, eds. Principles
of neural science. Vol. 4. New York: McGraw-Hill, 2000.

Deb, Kalyanmoy. Multi-objective optimization using evolutionary algo-
rithms. Vol. 16. John Wiley & Sons, 2001.

Siminovitch, Louis, Ernest A. McCulloch, and James E. Till. " The distri-
bution of colony-forming cells among spleen colonies.” Journal of Cellular
and Comparative Physiology 62.3 (1963): 327-336.

Becker, Andrew J., Ernest A. McCulloch, and James E. Till. " Cytolog-
ical demonstration of the clonal nature of spleen colonies derived from
transplanted mouse marrow cells.” (1963).

Vogel, Gretchen. " Capturing the promise of youth.” Science 286.5448
(1999): 2238-2239.

Rosin, Paul L. " Training cellular automata for image processing.” Image
Processing, IEEE Transactions on 15.7 (2006): 2076-2087.

Wolfram, Stephen. "Random sequence generation by cellular automata.”
Advances in applied mathematics 7.2 (1986): 123-169.

Poli, Riccardo, et al. A field guide to genetic programming. Lulu. com,
2008.

Land, Mark, and Richard K. Belew. "No perfect two-state cellular au-

tomata for density classification exists.” Physical review letters 74.25
(1995): 5148.

110

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Nichele, Stefano, and Gunnar Tufte. " Evolutionary growth of genomes for
the development and replication of multicellular organisms with indirect
encoding.” Evolvable Systems (ICES), 2014 IEEE International Conference
on. |IEEE, 2014.

Harding, Simon, Julian Francis Miller, and Wolfgang Banzhaf. " Self mod-
ifying cartesian genetic programming: Parity.” Evolutionary Computation,
2009. CEC'09. IEEE Congress on. IEEE, 2009.

Harding, Simon L., Julian F. Miller, and Wolfgang Banzhaf. "Self-
modifying cartesian genetic programming.” Cartesian Genetic Program-
ming. Springer Berlin Heidelberg, 2011. 101-124.

Harding, Simon, Julian F. Miller, and Wolfgang Banzhaf. " Developments
in cartesian genetic programming: self-modifying CGP."” Genetic Program-
ming and Evolvable Machines 11.3-4 (2010): 397-439.

Bentley, Peter J., and Sanjeev Kumar. " Three Ways to Grow Designs:
A Comparison of Embryogenies for an Evolutionary Design Problem.”
GECCO. Vol. 99. 1999.

Darwin, Charles. " On the origins of species by means of natural selection.”
London: Murray (1859): 247.

Darwin, Charles. The variation of animals and plants under domestication.
Vol. 2. O. Judd, 1868.

Knowles, Joshua D., Richard A. Watson, and David W. Corne. " Reducing
local optima in single-objective problems by multi-objectivization.” Evolu-
tionary multi-criterion optimization. Springer Berlin Heidelberg, 2001.

Wright, Sewall. "The evolution of dominance.” American Naturalist
(1929): 556-561.

Suzuki, David T., et al. An introduction to genetic analysis. No. Ed. 3.
WH Freeman and Company, 1986.

Tschinkel, Walter R. " The nest architecture of the Florida harvester ant,
Pogonomyrmex badius.” Journal of Insect Science 4.1 (2004): 21.

111

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Mlot, Nathan J., Craig A. Tovey, and David L. Hu. "Fire ants self-
assemble into waterproof rafts to survive floods.” Proceedings of the Na-
tional Academy of Sciences 108.19 (2011): 7669-7673.

Lui, Leong Ting, et al. " Complexity Measurement Based on Information
Theory and Kolmogorov Complexity.” Artificial life (2015).

Nichele, Stefano. " Evolvability, Complexity and Scalability of Cellular Evo-
lutionary and Developmental Systems.” (2015).

Trefzer, Martin, et al. "On the Advantages of Variable Length GRNs for
the Evolution of Multicellular Developmental Systems.” Evolutionary Com-
putation, IEEE Transactions on 17.1 (2013): 100-121.

Sivanandam, S. N., and S. N. Deepa. Introduction to genetic algorithms.
Springer Science & Business Media, 2007.

Schaffer, J. David, and Amy Morishima. " An adaptive crossover distri-
bution mechanism for genetic algorithms.” Genetic Algorithms and their
Applications: Proceedings of the Second International Conference on Ge-
netic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc, 1987.

Srinivas, Mandavilli, and Lalit M. Patnaik. "Adaptive probabilities of
crossover and mutation in genetic algorithms.” Systems, Man and Cy-
bernetics, IEEE Transactions on 24.4 (1994): 656-667.

Sipper, Moshe. Evolution of parallel cellular machines. Heidelberg:
Springer, 1997.

Lipson, Hod. " Principles of modularity, regularity, and hierarchy for scalable
systems.” Journal of Biological Physics and Chemistry 7.4 (2007): 125.

Hartwell, Leland H., et al. " From molecular to modular cell biology.” Na-
ture 402 (1999): C47-C52.

Kirschner, Marc, and John Gerhart. " Evolvability.” Proceedings of the Na-
tional Academy of Sciences 95.15 (1998): 8420-8427.

Gehring, Walter J. " The master control gene for morphogenesis and evo-
lution of the eye.” Genes to Cells 1.1 (1996): 11-15.

112

[70]

[71]
[72]

[73]

[74]

[75]

[76]

Halder, Georg, Patrick Callaerts, and Walter J. Gehring. "Induction of
ectopic eyes by targeted expression of the eyeless gene in Drosophila.”
Science 267.5205 (1995): 1788-1792.

Kovitz, Ben. " Experiments with Cascading Design.”

Wolpert, David H., and William G. Macready. "No free lunch theorems
for optimization.” Evolutionary Computation, IEEE Transactions on 1.1
(1997): 67-82.

Neuron. Digital image. Wikipedia. N.p., n.d. Web. 01 Dec. 2015.
https://en.wikipedia.org/wiki/Neuron#/media/File:
Neuron_Hand-tuned. svg

Batagelj, Vladimir, and Andrej Mrvar. " Pajek.” Pajek - Program for Large
Network Analysis. Web. 14 Oct. 2015. http://mrvar.fdv.uni-17.
si/pajek/

Wolfram—Alpha. Wolfram Alpha LLC. Web. 04 May 2015. http://

www.wolframalpha.com/

Secretan, Jimmy, Nicholas Beato, David B. D'Ambrosio, Adelein
Rodriguez, Adam Campbell, and Kenneth O. Stanley. "Picbreeder.”
Picbreeder. Web. 1 Dec. 2015. http://www.picbreeder.org

113

Chapter 6

Appendix A: Figure encoding

This appendix chapter contains a list of genotype source encoding used in cases
presented in figures. Here TT are represented only by its output column, i.e.
last values of the table, as this is the minimum necessary information of the
TT. In the TT of this thesis the empty neighbourhood is the first entry, and the
neighbourhood increment from the end of the following list: left, center, right,
up and down.

e Figure: 3.23 — (INV, R, R),(SET, L, R),(ROU, U, R),(MIN, U, D),(DEC,
R, U),(MAX, U, R),(SWAP, U, R),(XOR, L, R),(NOT, C, D),(ROR, C, L)

e Figure: 3.24 — (XOR, R, L),(ROD, R, U),(INV, L, U),(MIN, D, U),(ROL,
L, C),(ROL, R, U),(OR, C, L),(INC, C, U),(XOR, C, D),(INC, L, C).

[] F‘gure: 3.25 —33333322330322020021012012210321212200023032221032203
211111020021113322020303012131232222212200322022023113013330002120311
100321011020012231310322212201202211013302202012223120201301212210013
213110302122321111223011213100131031203303332330112030213203331111313
230023131213102122030213321202313221013213220300022023330211332210031
002300233130101012210011100302332213202203320110300112031121302332230
230111320320212131001122020201201001213233312033020310320031102102222
213133113200321122322210220231023030021220333332031233000032130020311
230020313321202200113321103213111100120323331010011230321113333203323
232002200313320211212210231012211013210023202010100320222320111212222
021312312331033120312332312002030110033222031213322321221321330331323
210332102232031213133310123111233322200300211213033133102200033132220

131130223300221012102003203310102123111233221130202222302133212212002

114

200000021200202123230010320131101310131310020220121013102210030203002
032203232232203200112101221132132002010010023220030023302111133003211

33013

F]gure: 3.27 —10011110112212121110222021000102211202112120221222002
212221111022212221020011010001001111121002210200200221001001211212122
121220222120222220022220112002002121211020002212222012220021120020002

0122002221022021111211200011111211122011012201111111

Figure: 4.2 —

First:
010110433213023211000143111330130013004101312232104412040240321123130
311214201040132202342412130412031042021223044333340223441422031440434
412430210312113231201243321434232240333234020032342102111044124314303
414230442224234314421413044032142032234323411400033230303113330240110
041212231130431023134432120412200224142344321222010133034332001210143
124131114112034000012201013212101312100041042313033000432331232110110
213421100333213413442011233102432201402234324411402443232121414240233
332431200023321011230134120233033340403424230423030202230122130121432
301023400223233443341200040224212414430114310242334000343314340211220
220041411040302230030041402403434132300302002423140423104230022124234
032030322441004040313313340443013222000034442232314111030203004133201
033322043024012203103302300441332430302011333113320412210004413210221
232131100213144043140234132044100114314303340410043033422020103312342
214313233130444023324332412443031340221210033024430221220321320223201
111122240413012420021433123433110340434332430331101324024033232442333
303131434430133422220024213133141213310122200142132030002044341141410
33304133430032310233244320001