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Abstract

Online learning methods for sequentially arriving data are growing in pop-
ularity. Alternative batch learning methods scale poorly and have memory
constraints. The scope of this thesis is to study online learning meth-
ods that are based on stochastic gradient descent, or SGD, and are
implemented in Vowpal Wabbit, an increasingly popular online learning
software. The literature and experiments on these methods reveal that,
despite scaling well, they are only designed for data originating from sta-
tionary models. This is an important weakness, as the data for which
these models are necessary will often be nonstationary in nature. We
propose a new framework that builds on the SGD algorithm. For ev-
ery incoming example Parallellised SGD, or PSGD, runs alternative SGD-
learners with different learning rates in parallell to a chosen SGD learner.
The alternative learners help tune the chosen learning rate by sequentially
comparing the errors of the learners. This provides a scalable framework
as the gradient still only needs to be computed once per example, and
the added computational cost of the alternative learners can be dimin-
ished through efficient parallelisation. Experiments on a proof-of-concept
implementation demonstrate that PSGD is superior to Vowpal Wabbit's
SGD-based implementations in nonstationary settings. However, further
work is needed to improve the adaptiveness of the method to a wider range
of nonstationary behaviour. Sustained research on this framework shows
great promise to yield a class of adaptive learners that automatically han-
dle nonstationary data and can be subject to large scale implementations
in online learning softwares such as Vowpal Wabbit.
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Sammendrag

Online learning-metoder for kontinuerlige datastrgmmer gker i popular-
itet. Alternative batch learning-metoder skalerer dérlig og har minnebe-
grensninger. Formalet med denne masteroppgaven er & studere online
learning-metoder som er basert p& stochastic gradient descent, SGD, og
er implementert i Vowpal Wabbit, et populart online learning-program.
Litteraturstudiet og egne eksperimenter viser at metodene er tilpasset
stasjonaere datasett. Dette er en vesentlig svakhet siden skalerbarheten til
disse metodene ofte er ngdvendig for & analysere datasett preget av ikke-
stasjonaeritet. Vi foreslar et nytt rammeverk som bygger p& SGD-metoden.
For hvert nye datapunkt gjennomfgrer Parallellisert SGD, eller PSGD, al-
ternative SGD-steg med forskjellige steglengder parallellt til SGD-steget
med den valgte steglengden. Disse alternative stegene kan brukes til 3
adaptivt justere steglengden ved & sekvensielt sammenligne feilene. Dette
rammeverket er skalerbart siden man kun trenger & evaluere gradienten en
gang for hvert datapunkt og kostnaden ved & gjennomfgre flere SGD-steg
per datapunkt kan begrenses ved & parallellisere metoden. Eksperimenter
pa en prototypeimplementasjon viser at PSGD gir mer tilfredstillende re-
sultat enn Vowpal Wabbit sine SGD-baserte metoder for ikke-stasjonzere
datasett. Rammeverket krever imidlertid videreutvikling for & ytterligere
forbedre PSGDs adaptivitet for et videre spenn av ikke-stasjonzritet.
PSGD viser et stort potensial for & danne en klasse av sekvensielle adap-
tive metoder for ikke-stasjonaere datasett som kan bli implementert i online
learning-program som Vowpal Wabbit.
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1 Introduction 1

1 Introduction

In the past decades computational processing power, spurred on by Moore's
law [18], has seen rapid performance increases. At the same time, personal
computers, mobile phones and other devices are becoming more abundant
and connect ever more people to the internet. The result is an immense
growth in digital data traffic and storage [8]. Digital data sets, for example
from large internet sites, are often so large that common statistical data
analysis methods break down. One reason for this is that these models,
as products of their time, were developed with smaller data sets in mind.
The answer to the abundance of huge data sets has been a growing focus
on developing computationally efficient methods, algorithms and numer-
ical approximations to replace older computationally infeasible methods.
This emerging field is often termed Big Data, an intersection between the
fields of statistics and computer science [24].

This thesis will consider online settings where data sets are continu-
ously increasing and have millions of rows, thereby requiring the treatment
of statistical methods for online large-scale data analysis. Currently, there
is a strong research interest in two different approaches to analysing ever
growing data sets. One approach is to develop methods that parallelise
well over multiple processor cores [7]. Another is to increase the speed
and decrease the memory requirements of existing methods. This last
approach relies on approximations and therefore present a trade-off be-
tween computational efficiency and accuracy, but can be easier to apply
for analysing continuous data streams. This thesis will study some of
these fast approximative methods, that are implemented in the statistics
software, Vowpal Wabbit.

Vowpal Wabbit (vw) is an open-source software with extremely fast
implementations of multiple learning algorithms for several loss functions
using different optimisation algorithms. The work is sponsored by Mi-
crosoft Research and (previously) Yahoo! Research. The main reason why
the implementations are so fast is because they are based on Stochas-
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tic Gradient Descent, or SGD, which do not have the same memory and
performance constraints as traditional batch learning algorithmd'F|

This thesis can be divided into three parts. The first constitutes a
literature study that is relevant to understand SGD-based online learning
in vw. In order to motivate and contextualise online learning the thesis
starts by briefly introducing Batch Learning in section [2| before treating
online learning in vw in section [3] The second part of the thesis is experi-
mental and seeks to shed light on selected aspects of the discussed online
learning methods. The design of the experiments is treated in section
and the results are presented in section [J] The main conclusion from this
part is that the SGD-based online learning methods implemented in vw,
are not designed to fit models to nonstationary data in an online setting.
In section [6] the last part of this thesis, we propose a new online learning
method called Parallelised Stochastic Gradient Descent, or PSGD, to ad-
dress this problem. The section includes a motivation and explanation of
the method, experimental results demonstrating PSGD's strengths com-
pared to the SGD-based methods implemented in vw and a list of aspects
that require improvements and further work.

Further research on this framework has the potential to yield a class
of adaptive learners that can automatically handle nonstationary data and

be subject to large scale implementations in online learning software such
as Vowpal Wabbit.

1Batch learning algorithms are statistical methods that load all observational data
into memory. Online learning algorithms only load one or a few observations into
memory at any given time, and can be run on a continuous data stream.

2See https://github.com/JohnLangford/vowpal_wabbit/wiki for a more
thorough overview and introduction to the software.
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2 Batch learning

The focus in this thesis is on solving regression problems in realistic sce-
narios where the available data exceeds the RAMP| of a normal computer
and arrives continuously. Solving regression problems requires maximising
a likelihood function or minimising a risk function. Several optimisation
methods can do this. This section introduces some batch learning pro-
cedures for solving regression problems that put the online learning algo-
rithms implemented in Vowpal Wabbit, discussed in section 3] in perspec-
tive. The optimisation methods used for batch learning are key, because
they are modified to yield the online learning methods in Vowpal Wabbit.

2.1 Regression - An Optimisation Problem

One of the important problems in statistics is the study of the mathe-
matical relationship between different types of observations. Customarily
one distinguishes between observations from explanatory variables, also
called predictors, and response variables, where the latter are functions
of, or explained by, the former [2]. In this paradigm one can represent the
relationship between responses and predictors as

where 3 is the vector of regression coefficients, 7; is the i*" response,
x; is the i"" predictor vector, ¢; is the disturbance term or noise related
to the " observation and n is the total number of observations. The
signal of the model is here denoted by f and is separated from the noise
€. In this thesis only linear models will be used for model fitting, although
some time series models will also be used for simulating data. For linear
models the signal of the model, f, is termed the linear predictor, and can

3Random access memory.
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be written on the following form
Y=z + o+ By tea=x B+e i=1,...,n (2.2)
Generalising to n observations we have the compact relationship
y=x'B+e (2.3)

It is important to note that on the right-hand side of equation ({2.1)
the disturbances, ¢;, are stochastic terms. In Bayesian settings this also
includes 3. This implies that y; is stochastic.

The goal of a regression analysis is to estimate the regression coeffi-
cients [; that yield the optimal mathematical relationship between pre-
dictors @; and responses y;, for a given model. From these coefficient
estimates one obtains a model that can be used to estimate the signal
given observed predictors . These estimates, ¥, are computed as follows

g=x'3 (2.4)

How we estimate B\j naturally depends on what we mean by optimal.

2.1.1 Loss Function Optimality

Historically, the first approach used to solve this problem was to introduce
a loss function that quantifies how well the model fits the data.

L= L(y,y) (2.)

The loss function, L, in equation (2.5)) computes a measure of the dis-
crepancy of the responses, y and the estimates, y. Note that the loss
function is a linear combination of a pointwise loss function, Lpeint(Yy,Y)
and a regularization function, Leg(y,¥y),

L = Lpoint(y> @) + Lreg(y> @) (26)
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Common examples of pointwise loss functions are [5]

I(y #vy), 0-1loss
Looint(y,Y) =< |y — 9|, absolute error loss (2.7)

(y —9)?, squared error loss

Note that what is called Least Squares Regressionf’| has a squared error
loss function and that the indicator function I is defined as

Iy #7) - { N (28)
Some common regularization functions are
A8, L1-regularization
Lieg(y,9) = < 2|82, L2-regularization (2.9)

M|Bllk + A2||B|l2, Elastic Net [27]

where A1, A2 > 0 are real regularization constants. Combining squared
error loss with L1 and L2 regularization vyield, respectively, Lasso and
Ridge regression [13].

In order to solve the regression coefficient estimation problem and
perform the estimation in equation (2.4)), one needs a measure of the
overall loss of the regression model on a set of test observations, not just
a pointwise loss (and regularization). The remedy is what is termed the
risk function, R(6), a weighted average of the loss of the considered test
observationd’|

R(B) = EfLX.YI9)] = [ LX.YIBI(X.Y)dxdy (210

4The famous mathematicians Legendre and Gauss were the first to publish work
on Least Squares regression, which they used to fit planetary orbits [2].

5Two comments on the notation of equation ([2.10].
1. L(y,y) = L(y,y(z)) = L(z,y)
2. In order to calculate the expected value one needs to consider the observations x, y
as random stochastic variables X,Y".
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where f(X,Y) is the joint probability distribution of random variables
X and Y. The higher the value of a risk function, the greater the
mismatch between responses and estimates based on the model. Hence
the risk function represented by equation (2.10) represents how well the
regression coefficients in equation are estimated. One can therefore
approach the regression coefficient estimation problem by minimizing the
risk function with respect to the coefficients

B = argmin R(3). (2.11)
B

In practice, the joint distribution function, f(x,vy) is not known and needs

o~

to be approximated by an empirical distribution f(x,y) such as [19]
—~ 1 <&
fla,y)=—> 0o —ziy —v:) (212)
i=1

where §(x,y) is the two-dimensional Dirac measure defined by

_ )0, (z,y) #(0,0)
5(:v,y)—{17 (o.9) = (0.0) (2.13)

yielding the empirical risk function

~ -~

R(B) = Ef[L(X,Y|B)} = /L(X,Y|ﬁ)f(X,Y)dxdy (2.14)

which is more commonly estimated from
~ 1 —
B =3 3 bl (215)

and is subsequently minimised to obtain an empirical estimate of the

regression coefficients R R
B = arg min R(3). (2.16)
B
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2.1.2 Likelihood Optimality

Almost a century later, Fischer, presented a different solution to the pa-
rameter estimation problem [2]. Since the responses are stochastic, an
approach to estimating the coefficients is to determine which regression
coefficients are the most likely given the observed data.

The problem is typically framed as follows. Given n responses, vy,
observed from some distribution, f(y|3), with unknown parameters, 3,
what are the most likely parameters of the distribution? The key in an-
swering this question is to introduce the likelihood function]

L(Bly) = f(y|B). (2.17)

The likelihood function £ quantifies how likely it is that the observations,
y, originate from a distribution with parameters, 3. Thus it is clear that
the aforementioned question is answered by maximising the likelihood in
equation ([2.17)) with respect to the regression coefficients

o~

B = argmax L(By). (2.18)
B

Note that ﬁ is called the maximum likelihood estimator in likelihood the-
ory.

2.2 Numerical Batch Optimisation

As shown in section [2.1] regression reduces to optimisation problems ex-

emplified by equations (2.11]) and ([2.18). These minimisation and max-

imisation problems can sometimes be solved analytically. This consists
of finding the global extrema of the objective functions, R or L, over

61t is important to note that, though not immediately apparent due to challenges
with conventional notation, the likelihood function is, in a regression setting, condi-
tioned on the observed predictors, x.
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the parameter space or domain. The difficulty of this depends on the
properties of the objective functions, the number of observations and the
dimensionality of the parameter space. The applications considered in
this thesis are designed for high dimensional parameter spaces and for a
lot of data, therefore requiring numerical optimisation. In this section we
consider general numerical batch optimisation methods that are not de-
veloped specifically for risk minimisation or likelihood maximisation, but
which could be used for both. This section discusses unconstrained op-
timisation in particular, and introduces line search methods such as the
gradient descent algorithm. Gradient descent is discussed because it is
adapted to an online learning method that is central to section 3]
In unconstrained optimisation one considers problems of the form

min f(8) (2.19)

BeR™

where [ is the objective function with parameter vector 3. The minimiza-
tion can be carried out by similar or identical algorithms needed to solve
the regression optimisation problems in equations (2.11)) or (2.16)) and
depending on the domains, likelihood and risk functions at hand.

Line search methods. For every iterate k, these methods compute
a search direction, p, from a point, 3, on the objective functior[]. The
algorithm then computes the step length, «y, i.e. how far along the search
direction to move, hence computing the next point, 8,

Bri1 = B + apy (2.20)

The search direction is of the form

P = —B,;1Vf(,6k) (2.21)

"This thesis only considers convex objective functions, f, satisfying
flter+ (1 —t)ze) <tf(z1) + (1 —1)f(x2) V1,22 € X, t € [0,1], where X is the
domain of f.
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because then we have

pl—lc—vf(/gk) = _Vf(ﬁk)TBka(ﬁk) <0, (2-22)

where B, is the matrix of the objective function's second derivatives,
which is positive semi-definite for convex function f. The search direction
for each iterate is subsequently chosen by finding the local or, if possible,
the global minimum of

¢(a) = f(By +apy), a>0. (2.23)

In practice searching for a global minimum might be computationally in-
feasible and finding each local minimum might reduce the convergence
rate. To remedy this one can use inexact line-search methods to find step
lengths that satisfy the Wolfe or Goldstein conditions [20].

A problem with Newton methods, which have B; equalling an ex-
act or approximate matrix of second derivatives at a point is that these
computations can be expensive. A solution to this is to simplify the line
search algorithm by using B, = I, the identity matrix. This yields what
is known as the Steepest Descent or the Gradient Descent method, first
introduced by Cauchy (1847).

Line search on risk functions. The aforementioned methods can be
used to minimise the objective function we termed the risk and empirical
risk functions in equations (2.11)) and (2.16]), respectively. For instance,
applying gradient descent on the empirical risk function yield$|

Bri1 = By — axVR(B,)
8}

=By — — Y _ VaL(y, Gi(x:)|By) (2.24)
=1

n

The machine learning literature refers to the step size, a, as the learn-
ing rate and denotes learning algorithms of the form of equation ([2.24)

8Note that we are differentiating with respect to 3 in equation (2.24)).
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as batch learning algorithms. This is because for each iteration of the
parameter estimate, (3,, the computer needs to go through each of the
n observations at hand. For vast data sets this can pose a significant
constraint on the run-time of the algorithm.
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3 Online Learning in Vowpal Wabbit

Most of the literature on applying stochastic optimisation to regression
problems studies the problem of minimizing a risk function, and will also
be the focus of the rest of this thesis. It is important to bear in mind that
one can also use stochastic optimisation methods to maximise a likelihood
function.

This section presents a mathematical foundation of essential’] aspects
of the online learning methods implemented in Vowpal Wabbit, some of
which will be the subject of the experimental part of the thesis, in sections

[4] and Bl

3.1 Stochastic Gradient Descent

When faced with an unusually large data set, either because the data is
continuously arriving, or because its size is too large to be handled by the
random access memory of ordinary computers, a possibility is to approach
the regression coefficient optimisation problem by further simplifying the
gradient descent method in equation (2.24). A method that has sparked
interest in recent years is named Stochastic Gradient Descent, which only
uses the gradient at a randomly{T_G] chosen example, z; = (@, y;), from
the complete set of observations {(z1,¥,), ..., (Tn,y,)} for each £t ex-
ample,

Bri1 = B — akVﬁL(zia Zi|By). (3.1)
One can also use a stochastic version of a Newton method
Bri1 =B — akB;ZlV,eL(zm Zi|By.)- (3.2)

%For more information see https://github.com/JohnLangford/vowpal_
wabbit/wikil

UIn an online setting where data is continuously arriving, SGD needs to process each
incoming data point in its order of arrival. Therefore no randomisation is performed
in an online setting.


https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki
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though this version is seldom used in practice since the conditions that
warrant this extent of simplification make it difficult to justify an iterative
computation of the inverse of the hessian, B™'. AdaGrad, an extension
of SGD that resembles the Newton-like version in equation is imple-
mented in Vowpal Wabbit and will be discussed in more detail in section

B3

Note that the sequence of coefficient estimates, {3}, for positive in-
tegers, k, is (approximately) optimising the risk function without recalling
the visited observations, z;, for [ < k. Additionally, since SGD only pro-
cesses one example, z;, at a time, the method can handle a continuous
stream of data arriving. It is for this reason that these types of learning
algorithms are termed online learners. One can think of each iteration as
sampling random examples from the grand truth distribution!| in order to
minimise the risk function [4].

It is evident that the stochastic gradient descent method in equation
is a significant simplification of the gradient descent method of
equation ([2.24)), which takes all examples into account. In fact, the larger
the data set, the larger the simplification of the online learner. A possible
remedy [19] is to evaluate m < n observations, {(x},y%)}",, for each
iterate, k,

A ioNigo
Bri1 =B — _nk Bkl E VgL(yk, yk(mk)|5k)~ (3.3)
i=1

This method is a mini-batch version of SGD, where m is called the mini-
batch size. An overview of other variants of stochastic gradient algorithms
are given by Bottou (2010).

1The grand truth distribution is the unknown distribution of random variables
(X,Y) that the regression is trying to model.



3 Online Learning in Vowpal Wabbit 13

3.1.1 Justification of SGD

For time-independent, 3, one can justify the asymptotic convergence of
SGD described in equation (3.1]) by considering the expected value of the
parameter estimates of the more general stochastic Newton method in

equation (3.2)).
First let us consider the expected risk, F(-), with respect to random
observations Z = (X,Y)

Ez[R(Biy)] = Bz |[R(B, — axVpL(z: 218,)) ] (34)

In order to evaluate the expectation we use equation (A.7)*|in the proof
of Lemma 2 in Murata (1998). In the notation adopted by this paper, the
result is

Bz[£(8-aB 'VL(zI8))| = £(8) — aVf(8) BT VR(B) + O(a?).  (3.5)

where f(-) is some sufficiently smooth function. By setting f(-) = R(:)
and B = I one can insert equation (3.5 into equation (3.4) and obtain

Ey [R(ﬁk+1)} = R(B,) — aVR(B,) ' B,'VR(B,) + O(a?).  (3.6)

This can be rearranged to yield a result implying that the expected risk
of the (k + 1)th parameter estimate is smaller than the risk of the £
parameter estimate

Ez[R(By41)] —R(By) = —aVR(B,) ' B, 'VR(B,)+0(a?) <0 (3.7)

since B, is a positive definite matrix. The result justifies the stochastic
version of the Newton method, as well as the Stochastic Gradient Descent
method where B, = I. The assumptions required to obtain the result in
equation ([3.7)) are that By, is fixed and that «; satisfies the conditions of

equation (3.8)).

12The result is obtained by Taylor expansion about the true parameter 3.
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3.1.2 How Asymptotic Behaviour Depends on Step-Size

Murata (1998) builds on the convergence criteria for the step sizes in
Robbins’ and Monro's theory of stochastic approximations [21]

iai:oo, ia?:oo (3.8)
i=1 i=1

and proves several asymptotic convergence resultd™| for different step
sizes in both online and batch learning systems. Note that only time-
independent parameters, 3, are considered in the following.

For fixed step sizes in an online learning system, there is a bias of the
order O(«) caused by the ever fluctuating estimates

E [R(By)] = R(B) + O(a) + g(k) (3.9)

where g(k) is the decaying time—dependenﬂ component of the expected
risk. It is clear that fixed step sizes do not satisfy the convergence criteria
in equation ([3.8), justifying the bias in the expected risk.

Annealed, or time-decaying, step sizes can satisfy the convergence
criteria in equation (3.8). Step sizes of the form a; = O(1/k) satisfy
these criteria. Assuming that the covariance matrix of the estimates are
of a certain form[* and we thereby deal with optimally annealed learning
with a step size of O(1/k), we have the following asymptotic expected
value result

E [R(8)] = R(8) + O(1/h). (3.10)

Note that Murata (1998) shows that optimally annealed online learning,

BThough all the mentioned results are accurate, some of the terms are condensed
into big-O notation to make the section fit for purpose. The interested reader may
consult the references for more detailed results.

41n the sense that time-dependence means step-size dependence.

15See Corollary 3 section 2.2 in Murata (1998).
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in equation ([3.10)), is asymptotically as efficient as batch learning in terms
of the generalization errof™®]

3.2 Importance Weights

The notion of importance weights for the stochastic gradient descent
algorithm, represented by equation ([3.1)), has not yet been discussed. Im-
portance weights quantify the relative importance of one data point|
compared to another. l.e. if a data point has an importance weight of
h then this is equivalent to having the data point featuring h times in
the data set. Thus it is natural to desire that online learning algorithms
satisfy importance invariance.

Importance invariance property. For all importance weights, h,
the update of the learning algorithm is equivalent to n updates with im-
portance weight h/n.

The most intuitive implementation is to multiply the gradient in the
update rule by h

Bri1 = Br — hay Vg L(zi, Zi| By,).- (3.11)

If this is to satisfy the importance invariance property then we require that
updating the estimates n > 0 times, using step-size h/n, should yield the

16For more information about the generalization error, see section m
71n the machine learning literature one refers to data points as examples.
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same coefficient estimate. This n-step procedure can be represented by

h —~
Br1 =B+ ;OékVL(yk, Yr)

h
ﬁ = ﬁ + —a VL Y 7@\
k2 B T (Yr> Yr1) (3.12)

h ~
/Bk,n = ﬁk,n—l + EakvL(yka yk,n—l)

where the n-step update, 3, , corresponds to one update with a full
importance weight, 3, , and

gk,i = wTBk,i ) 1= 17 ey 1. (313)

However, for h # 1
,3k+1 = /Bk,n (3-14)
is only satisfied for linear loss functions, L. This is an infeasible restriction.
John Langford, Vowpal Wabbit's main developer, co-authored a paper

addressing this issue and implemented the method in the software [15].
The first step is rewriting the n-step as a recursive relation.

Lemma 3.1. Let h € N. Presenting data point (x,y) h times in a row
is equivalent to the update

Brs1 = By, + s(h)z (3.15)
where the scaling factor s(h) is defined by the recursive relation.

s(h+1) = s(h) + axVL|g—g, +s(h)e

+(0) = 0 (3.16)
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Note that Lemma can be proved by induction based on equations
(3.12). Its importance is due to the fact that solving the recursive re-
lation for s(h) is equivalent to finding an update rule that preserves the
invariance property. Karampatziakis and Langford (2011) demonstrate
that one can derive closed-form expressions for s(h) for certain loss func-
tions, such as the squared error loss. An arguably more important result is
their theorem[™| representing the scaling factor by an ordinary differential
equation, ODE.

Theorem 3.2. The limit of the stochastic gradient descent process of
the j'" component of the coefficient vector (3, as the step-size becomes
infinitesimal for a data point with a positive importance weight, h € R,
is equal to the update

/Bk-Jrl’j = ﬂkJ - S(h)l'j (317)
where the scaling factor s(h) satistfies the ordinary differential equation

, oL
s'(h) = aka—ﬁj\ﬁj:ﬁw,j’ s(0) =0 (3.18)

for all dimensions j = 1, ..., d of the coefficient vector.

This can also be used to find some closed-form expressions for s(h),
by plugging loss functions into equation and solving the ODE by
separation of variables.

Karampatziakis and Langford (2011) also prove that the ODE in equa-

tion (3.18) in Theorem preserves the importance invariance property
and can be adapted to annealed step sizes.

18The proof starts by expressing s(h + €) in terms of s(h) and scaling the step-size
by €. Subsequently s'(h) is found by rearranging the expression and taking the limit
as € — 00.
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3.3 AdaGrad: Treat Massive, Rare and Sparse Data

In section the effect of the step size on convergence is discussed.
For time-independent parameters, (3, equations and show
that fixed step sizes, «, induce a bias O(«) in the expected risk, while
SGD with optimally annealed step-sizes can have the same assymptotic
efficiency as batch gradient descent. For large data sets a new problem
with standard SGD arises; assigning the same step-size to each coefficient
of the parameter estimates can be suboptimal for large parameter spaces.

In some contexts rare data points can be more informative than com-
mon ones. In text analysis, for instance, several methodsEg]. build on
the observation that uncommon words in sentences tend to lend more
meaning to phrases, than common words. For instance, the phrase 'the
university is very big’ illustrates that the uncommon word 'university’ is
arguably more important for the message of the phrase than the common
words 'the’ and 'is’. The consequence of having the same step size for all
parameter estimates is that the method does not weight scarce data more
than common data. This can be a problem when training a model on
text data for instance, though the problem is general to high dimensional
parametric estimation.

Duchi et al. (2011) introduce Adaptive Gradient (AdaGrad) algorithms
to address this problem. For time-independent parameters, 3, the meth-
ods achieve constant regret per parameter dimension as opposed to SGD.
Their comprehensive paper construct a class of algorithms from a modifi-
cation of two online optimisation methods. The first is Nesterov's primal-
dual subgradient method with some extensions. The second is a method
of many names: proximal gradient, forward-backward splitting, and com-
posite mirror descent. The method that concerns us is a specialisation of
composite mirror descenf?], namely projected gradient descent, an itera-

9This includes the tfidf mapping of words in a text corpus to vector space [23]
20In order to keep the presentation simple the two algorithms modified by Duchi et
al. (2010) will not be treated. The interested reader is directed to their paper.
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tive method with updates defined as

A

B = H(/Bk —aA™lg,) (3.19)
B

= argengin 18 — (B, — vA™ g}l 4 (3.20)

where Hé(b) projects point b onto B by minimising the Mahalanobis
norm || - [|a = v/(-,A-), where A = 0, i.e. the matrix is positive semi-
definite, and where g are subgradients’}] Note that projected gradient
descent is a generalisation of SGD [26].

Consider the accumulated regre of this method, S°%_ L(3,). Nu-
merous upper accumulated regret bounds are presented by Duchi et al.

(2010) for generalisations of this method. The regret of this particular
method?¥ is

k k
1 n
D LB < 5 1B = Bla+5 > llgdlan. (321)
k=1 k=1
Minimising this upper bound yields the following minimisation problem?”|
k
' -1 > . :
min Z;<gm A g, )st. A= 0,tr(A) <c < o0 (3.22)

21Subgradients generalise the notion of gradients to non-differentiable functions.
Since non-differentiable objective functions are not considered in the thesis, this will
not be discussed further.

22Note that the general methods developed by Duchi et al. (2010) include regular-
isation terms, L,.q, meaning that sparsity inducing L1-regularisation can be carried
out, an important feature for large-scale learning methods. This has not been treated
here to avoid cluttering the presentation of the material.

2Explicitly stated in lecture notes for the Machine Learning for Big Data course at
the University of Washington [12].

24The trace condition ensures that the trace is not indefinitely increased to minimise
the objective function.
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Solving equation ([3.22)) yields
L 1/2
A=Gy=c (Z gﬁgZ) : (3.23)
r=1

Note that the outer product matrix, G, depends on the number of ex-
amples, k&, and is computed iteratively in equation ((3.20]).

Recall that this method is especially intended to address large para-
metric spaces where the issues with fixed step sizes are largest. In these
cases it is cumbersome to compute G. To circumvent this problem the
AdaGrad method sets

A = diag(GYy), (3.24)

which can be computed in linear time, implying that the iterative weight
update scheme becomes

Bri1 = ar% I{Blin 1B — (B — O‘diag(Gk)_lgk)Hdiag(Gk% (3.25)
S
and in Euclidean space, for B = R?, this reduces to
5k+1,z‘ = 5k,¢ = Mk,iGk,i (3.26)
n
=B — T, Ik (3.27)
ZHZ]. gn,i

this method is implemented in Vowpal Wabbit and enjoys the following
upper accumulated regret bound

k d
D L(B.) <2Rw > llgus;ll2 (3.28)
k=1 i=1

where g,., = [gy, .-, 9, is a matrix of the concatenated subgradient

sequence, and R is the largest distance the estimates 3, reach from the
true parameters 3

Row = mx 8 — Bl (3:29)
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3.4 Online Normalisation

A disadvantage of standard Stochastic Gradient Descent is that it is sensi-
tive to feature scaling, or the scaling of the observed dependent variables.
Unscaled dependent variables can impair the convergence properties of
the algorithm [22]. This also applies to the batch Gradient Descent al-
gorithm. A common remedy in the batch setting is to rescale the range
of the p-dimensional dependent variables, often to [0, 1]?. These meth-
ods are useful, though they become cumbersome for large data sets. In
an online learning setting the data arrives in a continuous stream, and it
is therefore not evident how one can carry out sequential pre-processing
steps that include rescaling.

Ross et. al (2013) modified the standard SGD and AdaGrad algorithms
such that the sequential updates were equivalent to updates on feature
scaled batch data. The Normalised AdaGrad (NAG) algorithm presented
in Algorithm (1] is scale invariant, in the sense that it adapts to arbitrarily
scaled data. The analysis of the method is done on similar, but not
identical algorithms.

The algorithm has several useful properties. It sequentially scales in-
coming data while reducing test-time and test-space complexity. Overall
this yields a more robust algorithm. Online normalisation is also imple-
mented in Vowpal Wabbit.

Note that though Ross et. al (2013) achieve good results on several
real data sets, the methods are not designed in general for data sets
from nonstationary generative models with time-dependent parameters,
B. This is because nonstationary data either break the assumptions in
the derivations of the upper regret bounds of the methods or could make
the bounds arbitrarily large.



22 3 Online Learning in Vowpal Wabbit

Algorithm 1 NAG - Normalised AdaGrad

B+ 0 s+<0 G+0, N<«+0 Initialisation
for each k do

observe (x,y)

for each i in length(x) do

if |z;| > s; then Rescale needed
Bi < Bitay Rescale
i < |z Update scale
end if
end for
Y Bixs Update estimates
N+ N+ . 27/s? Update V
for each i in length(x) do
SN2
G« G+ <%§Ly)) Squared gradient sum
Bi < Bi—n %s.\%ang‘,y) Update estimates
end for
end for

return 3
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3.5 Truncated Gradient: Online Sparsification

A A
To(x: B) Ti(x, &, B)
B B
B-¢
P B 4 s
B X o B X
B+
_B 'B
(a) Truncation function, Ty, used (b) Truncation function, T}, used
for simple coefficient rounding. for truncated gradient.

Figure 1: lllustrations of truncation functions T and 7T} defined in the text.

Though the variations of stochastic gradient descent discussed thus
far are considerably more computationally feasible for large data sets than
traditional batch learning techniques discussed in section2.2] they are not
exempt of computational challenges [17].

One important weakness is that the online learning algorithms dis-
cussed so far induce non-zero weights on practically all components of
the regression coefficient vector. This introduces at least two problems.
Firstly space constraints related to storing the coefficients into memory
can in the worst case cause the RAMP| to overflow thereby preventing
the algorithm to run efficiently. Secondly, the speed of the algorithm
slows down as the number of non-zero elements in the coefficient vector
increases. Both problems can be addressed by reducing the number of

25Random-access memory.
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non-zero components in the coefficient vector, [A‘} i.e. through sparsifica-
tion.

It is undesirable to sparsify with a black-box wrapper solution that
iteratively tests the regret induced by nullifying components in the coef-
ficient vector. For large data sets this can be especially computationally
infeasible.

Langford et al. (2009) propose using Truncated Gradient, an online
sparsification method akin to L1-regularization for a batch learner. The
method builds on the Simple Coefficient Rounding method.

Simple coefficient rounding. A naive, but informative method for
sparsifying the coefficient vector is to simply round the coefficients that
are below a threshold, 6§ > 0, to zero, after every K steps of an online
learning algorithm. So, for every kth example one updates the coefficient
vector using equation unless k/K € Z, in that case one uses the
following update rule

IBk+1 = TO [/819 - akvﬁ[’(’zba’/gk)a 9]7 (330)

where we define the function T as

Oa |ﬁ]’ < 0

3.31
Bj, otherwise. ( )

TO[ﬁJ'?e} = {

This truncation function in equation is illustrated in Figure [13]
There are two main problems using this truncation function. Firstly, the
method is sensitive to the choice of K, since many choices lead to adverse
performance effects. The second is the lack of a theoretical guarantee for
the method's performance in an online setting. To address these issues,
Langford et al. (2009) propose a less aggressive truncation that does not
directly round to zero below a threshold of the function argument. The
method is termed truncated gradient.
Truncated gradient. The proposed method performs standard Stochas-

tic Gradient Descent steps, as defined by equation , for iterate, k,
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where k/K ¢ 7 and otherwise

B = T1[By — xVpL(zr, 2kl By), g, 0] (3.32)

where g, > 0, is the gravity parameter controlling the shrinkage of the
truncation function, 77, which is defined as

maX(Oa ﬁj - ¢)> Bj € [07 8]7
Tl [ﬁjv ¢7 0] - min(ov 5]' + ¢)a /Bj € [_07 0]7 (333)
B;, otherwise.

Note that Figure[1b]illustrates the truncation function and how the shrink-
age depends on ¢ = a;.gx.

Langford et al. (2009) prove a theoremP)| that bounds the regret of
this approach such that the regret increases with sparsity and conversely.
Empirical results from an implementation in Vowpal Wabbit back the
validity and efficiency of the method.

26The theorem can be specialised to specific loss functions. As stated, it does not
apply to annealed step-sizes. The authors claim, however, that the result can be
pply p
extended to annealed step-sizes too.
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3.6 Model Assessment for Online Learning

Vowpal Wabbit has implemented progressive validation, a modern method
of assessing the performance of its sequential optimisation algorithms.
This section seeks to cover foundational concepts for assessing and se-
lecting statistical models, culminating in an exposition of progressive val-
idation.

3.6.1 Foundational Concepts for Batch Learning

Error. The purpose of building a statistical model based on observed
data is for its predictions to generalize to independent test data [13]. A
common approach for achieving this is to minimize what is termed the
generalization error or the test error of an independent test sample?’| This
is evaluated as the expected loss of the loss function on independent test
observations, i.e. the risk in equation (2.10). Estimating the expected loss
over the training data {y;}\**"yields what is termed the training error,

Rtrain

Ntrain
1 ~
Rtrain = N Z L(y'myz) (334)
train i=1

Note that the training error is not always a good estimate of the test
error. Increasing the model complexity can reduce the training error to
zero. A model with an extremely low training error can be overfit to the
data and generalize poorly.

Error Decomposition. When comparing different models it is often
useful to decompose the generalization error, R. For squared error loss

27l e. a sample with observations that are not used to choose the model type or to
estimate the parameters of the model.
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the decomposition yields

R=E[Y -Y)

~ ~ (3.35)

= Var(Y) + Var(Y) + Bias(Y)%.
and shows that the generalization error consists of three components:
the irreducible error Var(Y'), the model’s bias squared Bias(Y)? and the
model’s variance Var(?). The decomposition of the generalization error
can be made for different loss functions yielding different weights for the
components [10].

The error decomposition is informative as it highlights the bias-variance
trade off of a model. One may for instance reduce a model’s bias by in-
creasing the model’s complexity, often at the cost of increasing the model’s
variance. This would not reduce the test error in general.

Model selection and assessment. The construction of statistical
models can be divided into two important phases. The first is model selec-
tion among a number of different models. The last is model assessment of
the prediction or generalization error of the selected model. Hastie et. al
(2001) state that the best approach for completing these two phases in a
data-rich situation is to randomly partition the data into separate training,
validation and test sets. The candidate models are fit to the data in the
training data. Subsequently the prediction error of the candidate models
are estimated on the independent validation set. The best performing
candidate model in the validation is selected and its generalization error
is estimated on the data in the independent test set.

3.6.2 Cross Validation

Cross validation is a widespread model assessment method for estimating
how well a statistical model generalizes to independent test data in a batch
setting [13]. Most commonly it is used to assess a model's predictive
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capabilities. This is done by partitioning the data into separate training
and test setd®®]

K-fold cross validation. The data is randomly split into K ap-
proximately equal parts. The data in K — 1 of the sets is used to train
the model, and 1 set is used as a test set on which the generalization
error is estimated. In order to reduce the variance of the generalization
error estimate, this training and testing is repeated K times such that all
partitions are used as a test set once.

The generalization error estimated by the cross validation can be ex-
pressed as

N
1 .
_ k(i)
Rey = N ;L (?Jn% ) (3.36)

where k : {1,..., N} — {1, ..., K'} is an indexing function indicating which
partition an observation has been allocated to, and where g//jk is a response
fitted on the data with the k™ partition removed.

Note that the edge cases when K = N and K = 2 are referred to as
leave-one-out cross validation and the holdout method, respectively.

Exhaustive cross validation. The K-fold cross validation method
outlined above is a non-exhaustive cross validation method as the gener-
alization error is not based on all possible partitions of the data in K — 1
training sets and 1 test set. However, since the scope of this thesis is pri-
marily online learning, this model assessment method, which is primarily
used to assess learning algorithms in a batch setting, will not be discussed
further.

3.6.3 Progressive Cross Validation

Blum et al. (1999) propose a procedure termed progressive cross validation
that has similar error bounds as the holdout method of section [3.6.2] but
scales better in an online learning setting.

28The method can be extended to include the validation sets in a data-rich setting.
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Procedure. One starts by randomly dividing the data into a training
set and a test set. The model is then fit on the training data. For each
of the i = 1, ..., ns data points in the test set, the model is trained on
the training data and on the 7 — 1 previous data points in the test set,
before it is tested on the it" data point in the test set to yield®] an error
estimate ¢; of the generalization error €;. The model output is randomly
selected among the n.: models considered in the test set, with an error
estimate computed by averaging the error of the ny; tests, ep.

1 Ttest

ey (3.37)

1

ep =
Ttest i—

Note that €p is an estimate of the generalization error ep = nist Yot e
This error estimate can be used to continuously monitor the performance
of an online learner. The error is implemented for the experiments consid-
ered in this thesis, thereby shedding light on how well it can accomplish
the goal of tracking a learner's performance. Ideally it should be able to
detect model degeneration.

Hoeffding bound. Hoeffding (1963) introduced upper bounds for
the probability that the sum, S, of n independent random variables, exceed
some positive number ¢, P(S — E(S) > nt). Bounds on probabilities of
this form are now called Hoeffding bounds, and are useful in an array
of settings. For instance, the progressive validation error estimate of
equation is a sum of independent random variables.

Blum et al. (1999) show that the progressive validation error estimate
satisfy the same Hoeffding bounds as that of the holdout method with an
equivalent test set, namely

P(’é\p — ép‘ > CL) < 672a2nte5t. (338)

29The error estimate is obtained from the chosen loss function.
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4 Design of Experiments

The purpose of the following experiments is to examine some of the prop-
erties of the online learning algorithms implemented in vw. Note that in
an online learning paradigm data arrives continuously in a stream. There-
fore it is natural to assume that the generative distribution of the data
is nonstationary. The goal of the online model fitting will be to examine
how vw can adapt simple models in the face of a given nonstationary data
stream. This deliberate model misspecification in the dynamic setting is
motivated by the fact that in the face of a continuous data stream from
a live website or mobile application there will always be model misspecifi-
cation. The question this thesis seeks to answer is to which extent online
learners can thrive in a nonstationary environment riddled with noise and
unavoidable model misspecification. An overview of the workflow neces-
sary to implement the experiments is provided in Appendix [Al

4.1 Models

Some experiments have been devised to compare the strengths and weak-
nesses of the discussed methods in both a static setting®™| and a dynamic
setting®] A simple linear model with constant parameters is considered
for the static setting. For the dynamic setting we consider simple time
series models.

In the static experiments, particular interest will be paid to the per-
formance of batch versus stochastic gradient descent and some initial
experiments are devised to give an intuition for the effect of the number
of parameters in the model, p. In general the influence of the following
parameters are considered: step size, «, the number of data points, n and
the signal to noise ratio, R, of the generative models. It would have been

30] e. a generative model with constant parameters, 3.
31] e. a generative model with time-dependent parameters 3 = 3(t).
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interesting to examine the effect of the mini-batch size, m, but this option
has been unavailable in vw for some time®? It was deemed unnecessary
to code experiments from scratch for this scenario. We expect that in-
creasing the mini-batch size to reduce the variance of the training errors,
and see the performance of the online learner approach the performance
of the batch learner.

4.1.1 Simple Linear Model

The following experiments, based on the following stationary linear mod-
els, aim to illuminate the properties of the vw learner. However, it is
important to realise that these experiments are unrealistic for at least two
reasons. Firstly, one expects real world data to be non-stationary, and
secondly one expects there to be considerable misspecification between
the estimated model and the generative model of the data. In this sec-
tion we consider experiments despite these flaws, to build intuition about
Vowpal Wabbit before examining experiments with non-stationary data
and model misspecification in section [4.1.2]

Consider first a simple linear regression setting with true parameters

Bj ~ N(ug,03) V j € p, (4.1)
where the design matrix, X, and noise terms, € are sampled according to

Xij ~ Unif(min, Tmax), for finite zmin < Tmax € R

4.2
€ ~ N(OJ 062)7 ( )

wherei € {1,...,n} and j € {1, ..., p} such that the responses are sampled
from

y=XB+e (4.3)

32https://github.com/JohnLangford/vowpal _wabbit/issues/355
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while the linear predictor is

y=Xg. (4.4)
The model used to fit the stream of observed responses ;. in vw is the

same simple linear model described above. There is therefore no model
misspecification in this static setting.

4.1.2 Time Series Models

Consider the simple time series model from particle filter theory that con-
sists of a hidden signal process and an observable process

Yk = Bk + ek observable process (4.5)
Br = Br_1 + vp signal process (4.6
for k € {1,2,...}, where 3; = 0 and e, ~ N(0,02), v, ~ N(0,02).
The experiments are carried out by varying the signal to noise ratio,
R =o0./0,, and varying o,.
The model used to fit the stream of observed responses y;. in vw is a

simple linear model with only a intercept. There is therefore, as discussed,
deliberate model misspecification in this dynamic setting.

4.1.3 Implementation of Regression

For both experiments we consider a risk function with squared error loss
without a regularization term, see equation (2.7)). For the batch algorithm
implemented in R's 1m function this yields the following update rule for
each iterate k,

200 — ~
Bri1 = B, — o Z(yz — i) i (4.7)
i=1
which is modified to the online algorithm, implemented in vw, as follows
2c

Bii1 = Br — F(yk — Yr)xg for each example k. (4.8)
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4.2 Experiments
4.2.1 Static Setting

These experiments are based on the Simple Linear Model of section [4.1.1]
As previously mentioned, many real data streams facing a statistician
are unlikely to be stationary over large periods of time. However, an
examination of the performance of online learning in static settings, where
there is no model misspecification, is included as informative background
material before carrying out experiments in the dynamic settings.

The experiments seek to examine two aspects of online learning in
a static setting. The first is to assess the impact of the signal-to-noise
ratio[igl, R, on the model fitting performance,

R = Unoise/asignal- (49)

For the simple linear models, the relationship can be simplified by carefully
selecting the parameters of the uniform distribution generating X;; and
f3;. In Appendix [B| we derive that

R =o0./\/pos, for ug =0 and (Zwin, Tmax) = (—1,2). (4.10)

which is easy to interpret. Tuning R effectively increases or reduces the
amount of noise added to the linear predictor to yield the observed re-
sponses. This is exemplified by Figure 2l Three experiments are carried
out to assess the effect of R on the performance of the online learner.
These are summarised in Table [1

The second is to examine effect the number of parameters have on the
performance of online learning is examined in the experiments summarised
in Table[2] In Appendix[B]the expected value and variance of  are derived

33Strictly speaking R is defined as the noise-to-signal ratio, but for convenience we
avoid this terminology.
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for multiparameter scenarios to be
Elz] =0, for pug =0 (4.11)

- 1
Var[y;] = o2 (1 + ﬁ) , forug=0andv,+p2=1 (4.12)
All static experiments are run for n = 3-10° though sample sizes as large
as 2 - 105 were tried without changing the conclusions that follow.

Table 1: Parameter settings for the experiments on the signal to noise
ratio. R is the signal-to-noise ratio; o, is the standard deviation of the
noise; /i3 is the mean of the simulated B parameters; x i and Zyax are
the limits of the uniform distribution from which the independent variables
X,; are sampled; n is the sample size and p the number of parameters.

Experiment R o0, [ Zmin Tmax n p
S1 1 1 0 -1 2 3-10° 1
S2 100 1 0 -1 2 3-10° 1
S3 100 1 0 -1 2 3-10° 1

Table 2: Parameter settings for the experiments on the amount of param-
eters. R is the signal-to-noise ratio; o, is the standard deviation of the
noise; /i3 is the mean of the simulated B parameters; Zpi, and Ty are
the limits of the uniform distribution from which the independent variables
X, are sampled; n are the sample size and p the number of parameters.

Experiment R 0. [ Tmin Tmax n p
S2 10 1 0 -1 2 3.100 1
S4 10 1 0 -1 2 3-10° 20
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(a) Experiment S1: Observed responses alongside linear predictor for R = 1.
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(b) Exp. S2: Observed responses alongside linear predictor for R = 10.
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(C) Exp. S3: Observed responses alongside linear predictor for R = 100.

Figure 2: The above plots of observed responses and linear predictors demon-
strate the effect of increasing the signal to noise ratio R for a stationary gener-
ative model. Note that only a random interval of length 10 is displayed.
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(a) Exp. S2: Observed responses alongside linear predictor for p = 1.
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(b) Exp. S4: Observed responses alongside linear predictor for p = 20.

Figure 3: The above plots of observed responses and linear predictors demon-
strate the effect of increasing the number of parameters, p, in the generative
model. The absolute value of the observational noise in Experiment S4 is greater
than Experiment S2 due to p being larger. However the signal to noise ratio is
visibly similar, as expected. Note that only a random interval of length 102 is
displayed.
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4.2.2 Dynamic Setting

These experiments are based on the Time Series Model of section [4.1.2]
The dynamic setting experiments are designed to be more realistic, with-
out of course attempting to fully mimic real data sets. There will be model
misspecification between the trained model and the generative model.
And the generative models will be nonstationary. It turned out that it was
not necessary to have the generative model change over time in order to
draw useful conclusions from the experiments. Experiments on data sim-
ulated from generative models that change with time are instead included
in section [6] which treats an online learning method we have designed to
specifically handle nonstationary data from varying generative models.
In the experiments, particular attention is paid to the learning rate,
«, the most important factor in determining the success of the model
fitting. This is done by carrying out experiments on vw's AdaGrad, and
with different fixed learning rates. This is summarised in Tables (3 and
respectively. The impact of the signal to noise ratio of the time series
model, R, on the performance of vw is also considered. From equation
(4.6) it follows that
R=o0./0,. (4.13)

Table 3: Parameter settings for the three AdaGrad experiments with vary-
ing signal to noise ratio, R. The generative model is the time series of
eq. (4.6). The standard deviation of the signal process is o, and n are
the number of samples.

Experiment R o0, n

D1 0.1 1 10°
D2 1 1 10°
D3 10 1 10°
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(C) Exp. D3: Observed responses and linear predictors for R = 10,0, = 1.

Figure 4: The above plots of observed responses and linear predictors demon-
strate the effect of increasing the signal to noise ratio R for a dynamic generative
model.
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Table 4: Parameter settings for the three experiments with fixed learning
rates, «, and a given signal to noise ratio, R, where the generative model
is the time series of equation(4.6). Note that o, is the standard deviation
of the signal process and n are the number of samples. o = 0.5 is the
default learning rate in vw.

Experiment « R o, n
D4 0.005 0.01 1 10°
D5 0.05 001 1 10°
D6 05 001 1 10°
0
2407 TypeLinear Predictor
é —— Response
-30
0 25000 50000 75000 100000
Example

Figure 5: Experiments D4-D6: Observed responses and linear predictors for
R =10.01,0, = 1. A model is fit to the data using three different fixed learning
rates, a € {0.005,0.05,0.5}.
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4.3 Model Assessment

The performance of the online learning experiments detailed above will be
assessed using a number of key concepts. To avoid misunderstandings,
these will be discussed or defined here.

Partitioning of data set. The incoming observations are not placed
in either a training or test set. They are dynamically used in both following
the Progressive Validation procedure described in section [3.6.3] That
is, incoming observations are first used to test the existing model and
subsequently to train the model.

Implementation of Progressive Validation error. Due to limited
control of vw from the terminal, the size of the test set, 7, used to
compute vw's Progressive Validation errors, or PV errors, in these exper-
iments is one. For this case there is no need to sample randomly among
the first i — 1 estimates of the test set when facing the ith observation
in the test set. This random sampling of estimates would have been im-
possible to carry out from the terminal interface of vw. Instead the PV
errors with ness = 1 are computed sequentially for all n examples. This
is equivalent to sequentially computing the errors of one-step ahead pre-
dictions, a proxy of the test error or the generalization error. One can
argue that setting nis; = 1 is suboptimal, or that the first observations
should not be included in the computation of the PV error. In practise
the learners are initialised close to the intial observations, i.e. zero and the
results seem meaningful.

Training error. In the following online experiments, the pointwise
training error, €in;, is sequentially computed after the incoming obser-
vation, y;, has been used to train the model, i.e. update the estimate of
(3, and thereby estimate the linear predictor, y; for examples 1 < i < n.

€train,i — L(gla yz) (414)

where L is the chosen loss function, in our case, the squared error loss of
equation (2.7). Note in some cases L is chosen to be a simple difference
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operator for the purpose of improving result visualisations. This should be
obvious from the plots, as squared error loss yields only positive values,
while the difference operator does not.

Estimation error. The advantage of assessing the performance of a
learning method on simulated data is that one has access to the generative
model, or in our case, the linear predictors, y; —¢; for examples 1 < i < n.
This information can be used to sequentially compute the estimation error,
€est,i, @ More accurate estimate of the model’s generalization error.

€est,i — L(/y\u Yi — Ei) (415)

Weight error. Another advantage of simulating the data from known
model parameters, 3 is that one can sequentially compute the model
weight errors, €yeight,i, Using the parameter estimates, 3; for examples
l<i<n

o~

Eweight,i = ﬂz - /81 (416)

Note that for the linear models in equation (4.4) we have that 3, = 3.
Further note that a loss function L was not used to compute the weight
error in equation (4.16]) for no other reason than to improve visualisations.
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5 Results

5.1 Static Setting

The results presented in this section show that vw can perform very well
in a static setting. This should not be surprising as all the error bounds
mentioned in this thesis are formulated for this setting. The experiments in
this section are described in section [4.2.1] For details on the experiments
on the Effect of Signal to Noise Ratio and the Effect of More Parameters
see Table [1] and Table [2] respectively.

5.1.1 Effect of Signal to Noise Ratio

In a static setting vw manages to extract the signal from exceedingly
noisy environments as can be seen from Figures [7] and [11] AdaGrad has
been used for the experiments, implying that the step sizes adapt to the
incoming data points as explained in section[3.3] In practice, for this data
the step sizes reduced in a relatively stable fashion as demonstrated by
Figure [0l Note that for experiments with higher values of R, the learning
rates shrink faster.

Varying the signal to noise ratio, R, affects the variance of the training
error. Since the estimation errors are relatively small in this static scenario
without model misspecification, the training errors are clearly dominated
by the noise, as demonstrated by Figures [7] and [10] If one keeps the
number of observations, n, unchanged, then increasing R will cause the
training errors to be larger overall. Note that although increasing n would
cause estimation errors to decrease, this effect would be limited by the
learning rates decreasing faster for higher R. Put differently, for higher
R less data points are required for the model to converge within the
convergence radius due to the convergence radius being larger for high R
and the learning rates decreasing faster. The same can be said for the
weight estimation errors of Figure [11]



5 Results 43

Although the training errors of the two approaches were indistinguish-
able from each other, the estimation errors and weight estimation errors
of vw are clearly larger than those of 1m in Figures[7]and[11] In this sense
the speed and scalability of vw's approximative online learning method
comes at an accuracy cost.

The progressive validation errors explained in section [4.3 are computed
and plotted in Figure (8| using a squared error loss. These errors see a
slowing decrease, also suggesting model convergence, as expected.

Note that the plots of estimation errors and weight estimation errors
per example in Figures[7d and [11d for experiment S3 where R = 100 indi-
cate that increasing the signal to noise ratio results in increased estimation
volatility. In this sense, and in the sense that the convergence radius of the
estimation error is larger for high R, one can say that online learners can
struggle in static environments with high signal to noise ratios. Despite
this, the overall conclusion is that online learning provides a fast, scalable
and accurate method for model fitting in many static scenarios.
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(a) Stable decrease of adaptive learning rates

Figure 6: The adaptive learning rates, following the AdaGrad implementation,
see a stable decrease per example in this static model setting. Note that the
learning rates are decreased faster as the signal to noise ratio, R, increases. For
exp. S1-S3 R is 1,10 and 100, respectively.
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Estimation Error

(a) Exp. S1: Estimation errors from online (vw) and batch learning (1m) approaches. R = 1.
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(b) Exp. S2: Estimation errors from online (vw) and batch learning (1m) approaches. R = 10.
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(C) Exp. S3: Estimation errors from online (vw) and batch learning (1m) approaches. R = 100.

Figure 7: Online and batch estimation errors obtained from vw and R's 1m
function, respectively. The online estimation errors show a slowing decrease
indicating model convergence for the tested values of signal to noise ratio,
R. Higher R increases the volatility of the estimates. Note that the batch
estimation errors are minuscule compared to the online estimation errors, as
expected for this simple problem with no model misspecification.
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(a) Exp. S1: Pointwise and average progressive validation errors. R = 1.
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(b) Exp. S2: Pointwise and average progressive validation errors. R = 10.
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(C) Exp. S3: Pointwise and average progressive validation errors. R = 100.

Figure 8: Pointwise and average progressive validation errors for the tested
values of signal to noise ratio, R. The stabilising trends suggest model conver-
gence. The blue contour lines indicate the density of the pointwise progressive
validation errors.
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(a) Exp. S1: Estimation errors plotted against learning rates.
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(b) Exp. S2: Estimation errors plotted against learning rates.
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(C) Exp. S3: Estimation errors plotted against learning rates.

Figure 9: Plotting estimation errors against learning rates indicates that as the
learning rates decrease the mean of the errors decreases and stabilises. This
indicates model convergence. Experiment S3 indicates that a high signal to
noise ratio, R, requires more data for effective model fitting. The effect of
increasing the number of data points, n, is however limited by the fast decrease
of the learning rates. The blue contour lines indicate the point density of the
pointwise progressive validation errors.
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(a) Exp. S1: Training errors from online (vw) and batch learning (1m) approaches. R = 1.
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(b) Exp. S2: Training errors from online (vw) and batch learning (1m) approaches. R = 10.
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(C) Exp. S3: Training errors from online (vw) and batch learning (1m) approaches. R = 100.

Figure 10: Overlapping density plots of online and batch training errors ob-
tained from vw and R’s 1m function, respectively. For the tested values of the
signal to noise ratio, R, the online and batch training errors almost completely
overlap and follow the probability density function of the normally distributed
noise remarkably well. This indicates that most of the training error is caused
by observing the variance of the signal’s noise, o2, due to good model conver-
gence. Note that increasing R increases the variance of the training errors, as

R is proportional to o.
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(a) Exp. S1: Weight estimation errors from online (vw) and batch learning (1m) approaches. R = 1.
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(b) Exp. S2: Weight estimation errors from online (vw) and batch learning (1m) approaches. R = 10.
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(C) Exp. S3: Weight estimation errors from online (vw) and batch learning (1m) approaches R = 100.

Figure 11: Online and batch weight estimation errors obtained from vw and
R's 1m function, respectively. The online weight estimation errors show a slow-
ing decrease indicating model convergence for the tested values of signal to
noise ratio, R. Higher R increases the volatility of the weight estimates. Note
that the batch weight estimation errors are minuscule compared to the online
weight estimation errors, as expected for this simple problem with no model
misspecification.
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5.1.2 Effect of More Parameters

It is of interest to know how the performance of vw is affected by the num-
ber of parameters, p, in the generative and predictive models. AdaGrad
has been used for these experiments which, like the previous experiments
do not suffer from model misspecification. The step sizes adapt per pa-
rameter to the incoming data points in a stable fashion akin to the step
size reduction in the one parametric case. This can be seen in Figure [12

There is in fact little perceived effect from increasing p in the model.
Also in the multiparametric case the training errors match the noise of the
signal remarkably well, as demonstated by the plots in Figure [13| This
implies that one quickly ends up observing the noise of the signal. The
same Figure also demonstrates that there is no perceived difference in the
training errors obtained from using 1m and vw.

The progressive validation errors explained in section[4.3|are computed
and plotted in Figure using a squared error loss. These errors see
a slowing decrease, suggesting model convergence, as expected. The
same can be said of the estimation errors and weight estimation errors in
Figures [14] and [17] The estimation error plots in Figure [14] also compare
the performance of vw with 1m. Although the training errors of the two
approaches were indistinguishable from each other, the estimation errors
of vw are larger than those of 1m. In this sense the speed and scalability
of vw's approximative online learning method comes at an accuracy cost.

Note that the moderate increase in p has not introduced considerable
volatility or instability in the estimates. Overall the performance of vw is
very good, though considering that stationary problems tend to be simple
problems, this should not be impressive. The focus of this thesis has
been primarily on the impact of the learning rate, «, on online learning
performance. Otherwise, one could have extended the investigations of
this section to much higher values of p, in settings of varying degrees of
model misspecification, to assess to which extent SGD suffers from the
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curse of dimensionality¥]

Another natural extension of these experiments is to examine the per-
formance of vw against 1m when there is model misspecification between
the generative and predictive models. However, since this thesis is pri-
marily focused on realistic applications of online learning, this will only be
examined in a dynamic setting.

34The term curse of dimensionality was coined by RE Bellman (1957) and refers to
problems related to the effects of increasing the dimensionality of the parameter space.
Big increases to the parameter space cause available data to be sparse, potentially
implying that exponential increases to the available data is necessary for reliable results.
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(a) Exp. S2: Stable decrease of adaptive learning rates.
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(b) Exp. S4: Stable decrease of adaptive learning rates. Each color represents the learning rates of
one parameter.

Figure 12: The adaptive learning rates, following the AdaGrad implementa-
tion, see a stable decrease per example in this static model setting. Note that
increasing the number of parameters, p, for both the generative and predictive
model has an increases the speed of the learning rate reductions. The learning
rate reduction speed is comparable across the parameters, as one would ex-
pect when there are small differences between the sampling distributions in the
p-dimensions.
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(a) Exp. S2: Training errors from online (vw) and batch learning (1m) approaches. p = 1.
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(b) Exp. S4: Training errors from online (vw) and batch learning (1m) approaches. p = 20.

Figure 13: Overlapping density plots of online and batch training errors
obtained from vw and R's 1m function, respectively. For the tested values
of the number of parameters, p, the online and batch training errors
almost completely overlap and follow the probability density function of
the normally distributed noise remarkably well. This indicates that most of
the training error is caused by observing the variance of the signal's noise
due to good model convergence. Note that increasing p for a constant
R and signal variance, 0/23, increases the variance of the training errors.
This follows from the relationship of the variables in equation (4.10). The
signal to noise ratio is R = 10 for both experiments.
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(a) Exp. S2: Estimation errors from online (vw) and batch learning (1m) approaches. p = 1.
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(b) Exp. S4: Estimation errors from online (vw) and batch learning (1m) approaches. p = 20.

Figure 14: Online and batch estimation errors obtained from vw and R's 1m
function, respectively. The online estimation errors show a slowing decrease
indicating model convergence for the tested values of the number of parame-
ters, p. Note that the batch estimation errors are minuscule compared to the
online estimation errors, as expected for this simple problem with no model
misspecification.
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(a) Exp. S2: Pointwise and average progressive validation errors. p = 1.
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(b) Exp. S4: Pointwise and average progressive validation errors. p = 20.

Figure 15: Pointwise and average progressive validation errors for the tested
values of the number of parameters, p. The stabilising trends suggest model
convergence. The blue contour lines indicate the density of the pointwise pro-
gressive validation errors.
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(a) Exp. S2: Estimation errors plotted against learning rates.
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(b) Exp. S4: Estimation errors plotted against learning rates.

Figure 16: Plotting estimation errors against learning rates indicates that as
the learning rates decrease the mean of the errors decreases and stabilises. This
indicates model convergence. Experiment S4 indicates that a high number of
parameters, p, increases the minimum error threshold. This implies that it is
more important with larger number of data points, n, in these scenarios, though
after a certain point, only minuscule model improvements can be made due to
the decaying learning rates. The blue contour lines indicate the point density
of the pointwise progressive validation errors.
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(b) Exp. S4: Weight estimation errors per parameter.

Figure 17: The stability and slowing decrease of the weight errors indicate
model convergence. Note that the sizes of the per parameter weight errors are
similar for number of parameters, p = 1 and p = 20. Highly volatile model
weight estimates is not a problem for the signal to noise ratio, R = 10, in these
experiments.
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5.2 Dynamic Setting

The time series models considered for these experiments are described
in section [4.2.2] The performance of using AdaGrad and Fixed Learning
Rates for vw on nonstationary input data is assessed in the following. For
details about the experiments on the AdaGrad and Fixed Learning Rates
see Table 3] and Table [4] respectively.

The results presented in this section show that the performance of vw
can seriously deteriorate over time in an online setting with nonstationary
data. This should not be surprising as the two primary ways of using
vw on nonstationary data are in fact not specifically designed to handle
nonstationary data. Firstly one may naively use AdaGrad, thereby con-
tinuously reducing the learning rates and causing the adaptiveness of the
model weight estimates to gradually decrease. The second is to set a fixed
learning rate, which is suboptimal in an online setting as the parameters
of the generative models can change and because vw provides no simple
way to adaptively choose sensible learning rates for nonstationary data
on the fly. This calls for the development of a more flexible method for
performing online learning on nonstationary data, which will be discussed
in section [l

5.2.1 AdaGrad on Time Series Models

The results of these experiments are communicated primarily visually in
the plots from Figures [18] to [29]

The key property of the AdaGrad method is that it decreases the
learning rates depending on the nature of the incoming data, as explained
in section [3.3] This is visualised in Figure [18| for our experiments. Note
that for experiments with higher values of the signal to noise ratio, R,
the learning rates shrink faster. As expected, reducing the learning rates
correlates with increasing the estimation errors in Figure [24]

Increasing the signal to noise ratio, R, causes the training errors, es-
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timation errors and weight estimation errors to increasingly deteriorate in
Figures 22} 25 and 29} to the point that fitting the model is counterpro-
ductive. This is clearly visualised by plots of the first, middle and last 100
response estimates and weight estimates in Figures and that
show how slowly the estimates end up adapting.

Training errors and progressive validation errors in Figures and
respectively, are errors the statistician has access to without knowing
the generative model of the data or the signal process. The fact that
they both show increasing error trends implies that one can detect model
deterioration and attempt to approach the problem from a different angle.
If one insists on using the online learning methods implemented in vw the
next natural step would be to test the performance obtained from setting
the learning rate to a fixed value. The motivation behind this is that one
would then maintain the adaptiveness of the model estimates and prevent
model degeneration caused by continuously reducing the learning rates.
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(a) Stable decrease of adaptive learning rates

Figure 18: The adaptive learning rates, following the AdaGrad implementation,
see a relatively stable decrease per example in this dynamic model setting. Note
that the learning rates are decreased faster as the signal to noise ratio, R,
increases. For exp. D1-D3 R is 0.1, 1 and 10, respectively.
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(a) Response estimates, linear predictors, and observed responses for the first 100 examples.
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(b) Response estimates, linear predictors, and observed responses for the 100 examples in the middle.

-140.0

1425

Type
Linear Predictor
Response

Response

-145.0 Response Estimate

-147.5

99900 99925 99950 99975 100000
Example

(C) Response estimates, linear predictors, and observed responses for the last 100 examples.

Figure 19: Exp. D1: Plots of response estimates, linear predictors and observed
responses for the 100 examples at the start, middle and end of the data set,
where the number of data points is n = 10°. It is clear that the adaptability of
the estimates strongly decreases over the course of the examples. The estimates
slowly become increasingly inaccurate. The signal to noise ratio is R = 0.1
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(a) Response estimates, linear predictors, and observed responses for the first 100 examples.
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(b) Response estimates, linear predictors, and observed responses for the 100 examples in the middle.
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(C) Response estimates, linear predictors, and observed responses for the last 100 examples.

Figure 20: Exp. D2: Response estimates, linear predictors and observed re-
sponses for the 100 examples at the start, middle and end of the data set, where
the number of data points is n = 10°. It is clear that the adaptability of the
estimates strongly decreases over the course of the examples. The accuracy of
the estimates deteriorates faster than for Exp. D1 in Figure [19] The signal to
noise ratio is R = 1.
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(C) Response estimates, linear predictors, and observed responses for the last 100 examples.

Figure 21: Exp. D3: Response estimates, linear predictors and observed re-
sponses for the 100 examples at the start, middle and end of the data set, where
the number of data points is n = 10°. It is clear that the adaptability of the
estimates strongly decreases over the course of the examples. The accuracy of
the estimates deteriorates much faster than for Exp. D1 and D2 in Figures [19]
and Where the signal to noise ratio is R = 10.
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(a) Exp. D1: Estimation errors with rolling mean curves. R = 0.1.
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(b) Exp. D2: Estimation errors with rolling mean curves. R = 1.
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(C) Exp. D3: Estimation errors with rolling mean curves. R = 10.

Figure 22: Estimation errors for the tested values of the signal to noise ratio,
R. There is evidence of slight error increase and thereby model deterioration for
Exp. D1 in Figure[22a] as demonstrated by the slight amplification of the error
and rolling mean fluctuations. Exp. D2 and D3 have larger values of R and
clearly show increasing error trends, which implies that accuracy of the model
estimates deteriorate. This should not be surprising as the learning rates are
reduced at steady paces while the model weights continue to fluctuate with the

same variance, o2.
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(a) Exp. D1: Pointwise and average progressive validation errors. R = 0.1.
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(b) Exp. D2: Pointwise and average progressive validation errors. R = 1.
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(C) Exp. D3: Pointwise and average progressive validation errors. R = 10.

Figure 23: Pointwise and average progressive validation errors for the tested
values of signal to noise ratio, R. For Exp. D1 in Figure the progressive
validation error trend seems to be quite flat, while Exp. D2 and D3 see clear
error deterioration. The plots therefore illustrate on the one hand the model
deterioration as R is increased, and on the other that this can be detected by
the progressive validation error. The blue contour lines indicate the density of
the pointwise progressive validation errors.
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(a) Exp. D1: Estimation errors against learning rates. R = 0.1
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(b) Exp. D2: Estimation errors against learning rates. R =1
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(C) Exp. D3: Estimation errors against learning rates. R = 10

Figure 24: Cubic fits of estimation errors against learning rates indicate neg-
ative correlation for all tested values of the signal to noise ratio, R. This
suggests that using the AdaGrad implementation, which gradually decreases
learning rates, for online learning on nonstationary data, may yield deteriorating
model weight estimates. The blue contour lines indicate the point density of
the pointwise progressive validation errors.
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(a) Exp. D1: Training errors with a rolling mean curve.
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(b) Exp. D2: Training errors with a rolling mean curve.
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(C) Exp. D3: Training errors with a rolling mean curve.

Figure 25: Training errors for the tested values of the signal to noise ratio,
R. There is a slight error increase and thereby model deterioration for Exp.
D1 in Figure Exp. D2 and D3 have larger values of R and show clearer
error increases, implying that the accuracy of the model estimates deteriorate
more. These plots confirm that it is possible to detect model deterioration from
the training errors. Note that the training and estimation errors become more
similar for increasing R because the variance of the noise, o, then dominates
the variance of the signal, o,.
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(a) Exp. D1: Model weights and weight estimates for the first 100 examples.
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(b) Exp. D1: Model weights and weight estimates for the 100 examples in the middle.
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(C) Exp. D1: Model weights and weight estimates for the last 100 examples.

Figure 26: Exp. D.1: Model weights and weight estimates for the 100 examples
at the start, middle and end of the data set, where the number of data points
is n = 10°. It is clear that the adaptability of the weight estimates strongly
decreases over the course of the examples and become increasingly inaccurate.
The signal to noise ratio is R = 0.1.
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(a) Exp. D2: Model weights and weight estimates for the first 100 examples.
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(b) Exp. D2: Model weights and weight estimates for the 100 examples in the middle.
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(C) Exp. D2: Model weights and weight estimates for the last 100 examples.

Figure 27: Exp. D.2: Model weights and weight estimates for the 100 examples
at the start, middle and end of the data set, where the number of data points
is n = 10°. The adaptability of the weight estimates decreases strongly over
the course of the examples and become increasingly inaccurate. The signal to
noise ratio is R = 1. Increasing the signal to noise ratio ten-fold compared to
Exp. D1in Figure had a deteriorating effect on the model weight estimates.
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(b) Exp. D3: Model weights and weight estimates for the 100 examples in the middle.
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(C) Exp. D3: Model weights and weight estimates for the last 100 examples.

Figure 28: Exp. D.3: Model weights and weight estimates for the 100 examples
at the start, middle and end of the data set, where the number of data points
is n = 10°. The adaptability of the weight estimates strongly decreases over
the course of the examples and become increasingly inaccurate. The signal to
noise ratio is R = 10. Increasing the signal to noise ratio ten-fold compared to
Exp. D2 in Figure had a deteriorating effect on the model weight estimates.
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(a) Exp. D1: Weight estimation errors.
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(b) Exp. D2: Weight estimation errors.
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(C) Exp. D3: Weight estimation errors.

Figure 29: Weight estimation errors for the tested values of the signal to noise
ratio, R. There is evidence of slight error increase and thereby model deterio-
ration for Exp. D1 in Figure [29a] as demonstrated by the slight amplification
of the error and rolling mean fluctuations. Exp. D2 and D3 have larger values
of R and clearly show increasing error trends, which implies that accuracy of
the model estimates further deteriorate. This should not be surprising as the
learning rates are reduced at steady paces while the model weights continue to
fluctuate with the same variance, o;.

[\
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5.2.2 Fixed Learning Rates on Time Series Models

The results of these experiments, described in section [4.2.2] are commu-
nicated primarily visually in the plots from Figures [30] to [36] Error plots
are added in the appendix®™| for completion, but are omitted here as they
are not particularly helpful for interpreting the experimental results.

The primary problem with approaching nonstationary data in an online
setting with a fixed learning rate is that there is not necessarily any one
learning rate that will perform well on the whole data set. If the learning
rate is too low one ends up with underfitting the model to the data, which
manifests itself in response estimates and weight estimates that are very
slow to adapt to incoming data. This scenario describes the outcome of
Exp. D4, as can be seen from Figures[31] and [34]

o
o

7: Experiment
. —D4
-~ —D5
. —D6

Learning Rate

0.01+

1e+01 1e+03 16405
Example

Figure 30: Learning rates for experiments D4-D6 fixed at o = 0.005, 0.05 and
0.5 respectively.

35See Figures in Appendix
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On the other hand, setting a too high learning rate yields model over-
fitting. This results in estimates that follow the observed responses very
closely and miss the unobserved linear predictors. The estimated model
weights therefore end up missing the generative model weights. This sce-
nario describes the outcome of Exp. D6, as can be seen from Figures
and 36l

If one manages to select a suitable fixed learning rate then the perfor-
mance in a nonstationary setting can be very good on parts of the data.
For optimally chosen learning rates the estimates filter out the noise of
the responses such that they end up following the unobserved linear pre-
dictor. And by extension the weight estimates end up following the model
weights. The outcome of Exp. D5 is quite promising in this regard, as
can be seen from the plots in Figures[32] and [35]

There are two primary weaknesses with this method. The first is that
it is not necessarily evident how one selects a fixed step size in an online
setting. optimising for fixed step sizes on a nonstationary data set in an
offline (batch) setting is far easier where Cross Validation for example is
a simple way of selecting the step size while controlling for overfitting.
Secondly, if the nonstationary data is generated by a model that changes
important properties such as signal to noise ratios or between different
kinds of models, then a fixed step size will at best work on parts of the
data.

The described limitations of using AdaGrad or fixed learning rates for
performing online learning on nonstationary data calls for a more flexible
learning method. This method should be able to handle both stationary
and nonstationary data that changes character with time, as this is what
faces many statisticians working on unsimulated data sets. We propose
such a method in the next section and discuss the results of a proof of
concept implementation.
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(a) Response estimates, linear predictors, and observed responses for the first 100 examples.
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(b) Response estimates, linear predictors, and observed responses for the 100 examples in the middle.
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(C) Response estimates, linear predictors, and observed responses for the last 100 examples.

Figure 31: Exp. D4: Response estimates, linear predictors and observed re-
sponses for the 100 examples at the start, middle and end of the data set,
where the number of data points is n = 10°. The estimates adapt poorly to
fluctuating responses throughout the data set and miss the fluctuations in the
linear predictors. This is an example of model underfitting due to the learn-
ing rate being too low for the data set at hand. Increasing it should improve
performance. The learning rate is o = 0.005.



5 Results

75

Response

o

-2
0

Type
Linear Predictor
Response
Response Estimate

25 75 100

50
Example

(a) Response estimates, linear predictors, and observed responses for the first 100 examples.
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(b) Response estimates, linear predictors, and observed responses for the 100 examples in the middle.
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(C) Response estimates, linear predictors, and observed responses for the last 100 examples.

Figure 32: Exp. D5: Response estimates, linear predictors and observed re-
sponses for the 100 examples at the start, middle and end of the data set,
where the number of data points is n = 10°. The estimates follow the linear
predictors reasonably well and filter out the noise in the observed responses.
This suggests that this learning rate, & = 0.05, is close to the optimal.
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(a) Response estimates, linear predictors, and observed responses for the first 100 examples.
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(b) Response estimates, linear predictors, and observed responses for the 100 examples in the middle.
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(C) Response estimates, linear predictors, and observed responses for the last 100 examples.

Figure 33: Exp. D6: Response estimates, linear predictors and observed re-
sponses for the 100 examples at the start, middle and end of the data set,
where the number of data points is n = 10°. The estimates are too adaptive
to the fluctuations of the responses throughout the data set as they follow the
responses extremely closely, but miss the linear predictors. This constitutes
model overfitting and is caused by a too high learning rate. The learning rate
is a = 0.5.
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Figure 34: Exp. D4: Model weights and weight estimates for the 100 examples
at the start, middle and end of the data set, where the number of data points
is n = 10°. Throughout the data set the weight estimates adapt poorly to
the fluctuating responses and miss the generative model weights. This is an
example of model underfitting due to the learning rate being too low for the
data set at hand. Increasing it should improve performance. The learning rate

is o = 0.005.
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(b) Exp. D5: Model weights and weight estimates for the 100 examples in the middle.
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(C) Exp. D5: Model weights and weight estimates for the last 100 examples.

Figure 35: Exp. D.5: Model weights and weight estimates for the 100 examples
at the start, middle and end of the data set, where the number of data points
is n = 10°. The weight estimates adapt reasonably well to the fluctuating

responses throughout the data set.

The weight estimates follow the model

weights reasonably well and filter out the noise in the observed responses. This
suggests that this learning rate, a = 0.05, is close to the optimal.
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(a) Exp. D6: Model weights and weight estimates for the first 100 examples.
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(b) Exp. D6: Model weights and weight estimates for the 100 examples in the middle.
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(C) Exp. D6: Model weights and weight estimates for the last 100 examples.

Figure 36: Exp. D6: Model weights and weight estimates for the 100 examples
at the start, middle and end of the data set, where the number of data points
is n = 10°. Figure [33| revealed that the estimates are too adaptive to the
fluctuations of the responses for this learning rate, « = 0.5. This translates
to excessively fluctuating weight estimates that fail to estimate the generative
model weights and is an example of overfitting due to too high a.
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6 PSGD

6.1 Motivation

The results in section [5.2] show that the performance of vw can seriously
deteriorate over time in an online setting with nonstationary data. The
AdaGrad method causes learning rates to be strictly decreasing, making
it suitable for model fitting on many stationary data sets, but unsuitable
for performing online learning on extremely large nonstationary data sets.
This is due to a decreasing adaptiveness of the response estimates and
weight estimates as learning rates decrease. Alternatively, one may set a
fixed learning rate, but as the results in section indicate, this method
is prone to underfit or overfit the data if the generative model changes
with time.

There is a class of solutions to this problem that we will not consider.
This includes solutions customized to the generative models of the data
sets. These solutions minimize model misspecification between the gen-
erative model and the estimated model as much as possible. Though this
approach can yield good results, customized solutions are impractical in an
online setting where one knows very little about the generative model of
the incoming data and are required to deliver a high volume of predictions
on the fly.

Relatively little attention has been devoted to the study of online
learning in nonstationary settings in the machine learning literature. Due
to time constraints a thorough literature review of methods addressing this
problem has not been possible. However, recently proposed second-order
methods to solve the problem of online learning in nonstationary settings
are criticised for being too computationally intensive, as they either require
matrix inversion or eigenvalue decomposition [25].

We address this problem by propose framework in which several SGD
learners are run in parallel for each data point. The cost of this class
of methods is that it requires more processing power and memory than
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other SGD variants. However, these costs are relatively small, as SGD
is already very computationally efficient, and would therefore not impede
the scalability of the proposed method. The results in section are so
promising for this class of problems that successful further research on
the discussed weaknesses can motivate a larger scale implementation, for
example in vw.

6.2 Method

Consider a realistic online learning setting where data is continuously ar-
riving and the unknown models generating this data change with time.

For each data point, the proposed approach consists of running 3 SGD
learners with different step sizes, «, in parallelEGI. One learner is started at
the initial learning rate a,. = «;, and is termed the current learner. While
the other two have learning rates that are scaled up and down by a given
constant parameter S > 1, such that a,, = Sa, and oy = a,./S. We call
these the upper and lower learners.

Upon the arrival of each data point the gradient of the loss is com-
puted. The model weights are subsequently estimated for each example,
k, according to equation (6.1)f*’]

Bri1 = Br — arVgL(zi, 2| By,).- (6.1)

Note that for each data point the gradient only needs to be computed once
as it is the same for all three learners. This is because the loss is based
on the previous estimate of the current learner for each data point. The
only difference in the weight estimation from equation between the
three learners is therefore the value of ay.. This makes the parallellization
more efficient and scalable.

36Though 3 is the minimum number of learners necessary to follow the principles of
our proposed PSGD method, there is nothing preventing us from running more learners
in parallel. This is however not necessary to obtain good results.

Introduced as equation (3.1) in section
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The mean of the one-step ahead prediction error, €, a proxy of the
generalization error, and the standard deviation of the errors, s., can
be sequentially updated for each data point, for each of the processes,
according to

so=122g" |+ —(xnfi"’l)Q (6.2)
T, = w (6.3)

or by using other algorithms that are less prone to numerical instability,
but which may be less efficient, such as the method discussed by Knuth
(1998). The mean and standard deviations of the one-step ahead predici-
ton errors of the processes are monitored in order to assess whether or not
the upper or lower learners have mean errors that are statistically signifi-
cant smaller than the mean errors of the chosen learner. The learning rate
of the current learner is changed to that of the upper or lower learning
rate if one of the following inequalities are satisfied

€1 — € < —2y/ 82, /N + 52 /ne reduce o (6.4)

€y — €. < —z\/s%u/n6 + 82 /ne increase (6.5)

where z, typically 1.96, determines the size of the one-sided rejection
regions and n. is the number of examples used to update the estimates of
the mean and standard deviations. Note that after a switch is made the
estimates of the means and standard deviations are reset such that the
effect of errors from a potentially old regime do not influence the error
means and standard deviations going forward. Bear in mind that the mean
one-step ahead prediction error is in fact the progressive validation error,
or PV error, described in section [4.3]

The inequalities in equations and are motivated by the
assumption that if the one-step ahead prediction errors are independent,
then according to the Central Limit theorem [5] means are asymptotically
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normal, from which the rejection regions in the form of inequalities can
be derived. This assumption does not necessarily hold, motivating the
derivation of more precise results. However, a proof-of-concept imple-
mentation of the method with this approximative switching rule, in the
one parametric case, yields promising results.

This parallelised approach is designed specifically for nonstationary
settings and should, with appropriate tuning of S, and z, by definition be
able to yield results with smaller PV errors in nonstationary online settings
than the AdaGrad and fixed learning rate methods considered previously.
This is confirmed in section . However, this enhanced performance
comes at a cost. The first is that the method requires more processing
power and memory since it is in essence running SGD 3 times per data
point. However, due to the possibility of parallelising the method, this
should not significantly increase the running time. Note that only needing
to compute the gradient once per data point makes the implementation
even more computationally efficient, and that the increased memory re-
quirement is due to storing the PV error and its standard deviation for
the three processes. Given that the memory requirements of online SGD
is already very low, since only one data point is processed and stored in
memory at any given time, this should not affect the scalability of the
method. The sequential checks for whether the learning rates should be
scaled up or down are also computationally cheap and scalable.

The performance of the proposed implementation of PSGD, just as
SGD, is sensitive to the learning rate parameter, . Experience shows that
it is seldom warranted to initialise a learning rate at 1 or above, as this
can cause SGD to either yield extreme overfitting or estimate divergence,
and one might therefore also implement a safety mechanism preventing
PSGD of increasing o beyond ay,.c = 1. Experience also shows that it
is rarely necessary to have learning rates as low as 107® < a < 1076,
So implementing a minimum learning rate value, ay,,, might also be
considered. Note that in none of the following experiments have the
PSGD learning rates reached any predefined thresholds, so this has not
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influenced the results or conclusions in any way.

6.3 Design of Experiments

The purpose of the experiments in this section is twofold. Firstly, they
seek to compare the performance of PSGD with the AdaGrad and fixed
learning rate implementations of SGD in vw on some of the experiments
discussed in section 5.2l Secondly, and perhaps more importantly, they
seek to shed light on the properties of the proposed PSGD method. The
ultimate goal of the proposed learning method is to be more robust in
the face of realistic nonstationary data streams, than what the online
learning methods implemented in vw are today. However, the data sets
considered in this section are only meant as informative test scenarios,
and not attempts to accurately mimick realistic data streams.

Note that comparing our PSGD method with AdaGrad can be criti-
cised as unfair since we have shown and explained that AdaGrad is clearly
not designed for handling nonstationary data. The comparison is however
included by merits of being a benchmark and because a key developer of
vw has expressed the belief that AdaGrad can actually handle nonstation-
ary datd¥| - a misconception that therefore is unfortunately most likely
circulating among some data scientists.

Three different kinds of experiments will be shown.

The first experiment is described in Table [3] of section with the
name D1. This experiment is chosen as it is the most noisy of these time
series experiments, permitting us to assess the extent to which PSGD
overfits a model to the data while comparing its performance with that

38From the most upvoted answer on a Stack Overflow question: "On-
line learning is adaptive and can track changes in conditions over time,
so it can learn from non-stationary data, like learning against an adap-
tive adversary." http://stackoverflow.com/questions/24822288/
correctness-of-logistic-regression-in-vowpal-wabbit


http://stackoverflow.com/questions/24822288/correctness-of-logistic-regression-in-vowpal-wabbit
http://stackoverflow.com/questions/24822288/correctness-of-logistic-regression-in-vowpal-wabbit
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of vw. Note that the PSGD learning rate will be set to 1, which is close
to the initial learning rate of of AdaGrad in vif*)

The second experiment is described in Table[4]of section [4.2.2) with the
name D5. This experiment is chosen as it is the one with the seemingly
most suitable fixed learning rate for the given problem. Note that the
PSGD learning rate will be started from the same learning rate as the
fixed learning rate process.

In both the first and second experiment we set the scaling factor,
S = 1.5, and standard score, z = 1.96, in equations and

Lastly the performance of PSGD is assessed on data sets that are a
mixture of different stationary and nonstationary data in order to further
examine its adaptiveness. As the current proposed implementation of
PSGD does not ideally adapt the learning rates in all settings, the focus
will be on scaling up and down the signal to noise ratios, R, for different
segments of the incoming data in a controlled fashion. Three scenarios
are considered in section [6.4] and are summarized in Table Bl

Note that, as discussed in section [4} avoiding model misspecification
between the training model and the generative model should not be a
goal in an online setting. The model used to fit the stream of observed
responses 1; by the proof-of-concept implementation of PSGD is a simple
linear model with only a intercept. Despite the obvious model misspecifi-
cation the performance of PSGD is promising.

If time had allowed it, these experiments could have included compar-
isons to the second-order online methods proposed by Vaits et al. (2015),
but which are more computationally intensive than our proposed PSGD
approach.

39The reason the learning rates of AdaGrad were not accurately initialised to 1 is
that AdaGrad adapts the learning rates to the incoming data.
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Table 5: Parameter settings for three PSGD experiments examining the
learning rate adaptiveness as the signal to noise ratio, R, and thereby
the response variance, is varied. Note that n examples per value of R are
simulated and that the standard deviation of the signal process, o, is held
constant. The learning rate is initialised at a;. The upper and lower learn-
ers are subjected to scaling factor, S, and are sequentially tested against
the current learner to identify the learner with the statistically significant
smallest progressive validation error. For these tests the standard score,
z, is used.

Experiment R o, o S z n
M1 (0.1,1,10) 1 04 15 196 10°
M2 (10,1,0.1) 1 04 15 196 10°
M3 (0.1,10,0.1) 1 0.1 15 196 10°
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6.4 Results

This section contains the results of the experiments described in the previ-
ous section. Note that most learning rate initialisations for PSGD yield the
same conclusions as discussed below. However, for too high learning rate
initialisations, from « = 1 depending on the data, the errors can diverge.
This has never been seen to be accompanied by PSGD scaling up or down
the learning rates. The error divergence can therefore be attributed to
SGD causing diverging estimates at elevated learning rates, and not by
a weakness in the SGD extension in the proposed PSGD method. How-
ever, ideally PSGD would pick up on the excessively large learning rate
and reduce it. This can be done by increasing the scaling factor of the
upper and lower learners. This does however come at a cost, as it re-
duces the resolution of the learning rates PSGD considers. An adaptation
to this could be to either set the initial learning rate more carefully, at
most around 0.5, or to have two or more upper and lower learners with a
sufficient span in the scaling factors.

On the other hand, too low learning rate initialisations cause different
results if PSGD does not manage to increase the learning rates close
enough to the learning rate of the vw benchmark processes. In an online
setting, however, this should not be a problem as PSGD should achieve
appropriate learning rates with time.

6.4.1 AdaGrad Comparison

This section provides a comparison between the performance of PSGD
and AdaGrad on a simple experiment outlined in Table (3| of section [4.2.2
under the name D1. The learning rates of both PSGD and AdaGrad™|were
initialised at o &~ 1. It is worth rementioning that AdaGrad is clearly not
designed for handling nonstationary data as discussed in section [5.2, but

49The reason the learning rates of AdaGrad were not accurately initialised to 1 is
that AdaGrad adapts the learning rates to the incoming data.
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that the comparison is carried out to address the misconception among
some data scientists that AdaGrad can handle nonstationary data.

Both AdaGrad and PSGD adapt its learning rates to the incoming
data. In this case this is marked by decreases from the initial value, as
seen in Figure[37] PSGD, however, stabilises its learning rates at a point
where further changing the learning rates will not cause the PV errors,
or average one-step ahead prediction errors, to be statistically significant
smaller than the PV errors of the upper and lower learners. The value at
which PSGD stabilises the learning rate is considerably higher than that of
AdaGrad, and is the fundamental reason why PSGD clearly outperforms
AdaGrad in this experiment, in terms of significantly lower cumulative
training and estimation errors, as demonstrated by Figure 38|

1.0-

|
0.5- —

Type
— PSGD Learning Rate

| — VW Learning Rate

Learning Rate

25000 50000 75000 100000
Example

Figure 37: AdaGrad and PSGD learning rates after a run of PSGD on non-
stationary data specified by Experiment D1. Note that PSGD adapts to the
data gradually by decreasing the learning rates before they stabilise around 0.2.
AdaGrad on the other hand decreases the learning rate much faster, despite
also adapting to the data.
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(a) Cumulative training errors of the PSGD and AdaGrad method.
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(b) Cumulative estimation errors of the PSGD and AdaGrad method.

Figure 38: The cumulative estimation and training errors of the PSGD method
are, over time, clearly smaller than those of the AdaGrad method. This suggests
that the PSGD method is more suitable for the nonstationary data of this
experiment. Note, however that the estimation errors for the first examples are
higher for the PSGD method. This is because AdaGrad in vw decreases the
learning rates much faster than PSGD, which in this case is beneficial for the
first examples, but in general depends on the learning rate initialisation.
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A key issue when fitting models to data is to prevent overfitting. In
Figure 39| the observed responses, linear predictor and PSGD estimates
of the first and last 100 examples, show that the initial learning rate
was so high that it caused extreme overfitting, and that the learning
rate reduction considerably reduced the extent of overfitting. Another
way of examining overfitting is to see if the training error is reduced at
the expense of an increased estimation error. Figure[40|indicates that this
does not describe the performance of PSGD. For decreasing learning rates,
the estimation errors strictly decrease, while the training errors decrease
before they increase again.
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(a) Linear predictor, observed responses and PSGD estimates for the first 100 examples.
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(b) Linear predictor, observed responses and PSGD estimates for the last 100 examples.

Figure 39: Linear predictor, observed responses and PSGD estimates for the
first and last 100 examples. It is evident that the learning rate is initialised at a
too high value as the volatility of the estimates is a lot higher than the volatility
of the responses for the first 100 examples. After the learning rate has been
reduced and has stabilised the PSGD estimates match the linear predictor a lot
better by partly filtering out the signal from the noise, as can be seen from the
last 100 examples.



92 6 PSGD

1e+02

1e-02

€ 1e-08
i
:

.
: |
LE : Type
o 0 Cubic Fit
c '
c . —— Training Error
© ! .
° i i
= : i

g '

.

1e-10

Learning Rate

(a) Training errors plotted against learning rates.
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(b) Estimation errors plotted against learning rates.

Figure 40: Training errors and estimation errors are plotted against learning
rates from the PSGD method. Note that learning rates are decreased over
time as seen from Fig. [37] Estimation errors decrease as learning rates are
decreased, while the training errors reach a minimum before increasing again as
the learning rate is reduced to around 0.2. This suggests that the adaptiveness
of the learning rate reduces the generalization error without blindly overfitting
the model to the data.
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6.4.2 Fixed Learning Rate Comparison

This section provides a comparison between the performance of PSGD and
vw with a fixed learning rate on a simple experiment outlined in Table
of section [4.2.2) with the name D5. Figure[41] shows that PSGD relatively
quickly adapts its learning rate to the incoming data. It is reduced to
being around a fifth of its initial value - only twice the value of the fixed
learning rate - before it stabilised*]
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Figure 41: Plot of the fixed learning rate of 0.05, set in vw, for experiment D5
and the PSGD learning rates initialised at 0.5, the value from exp. D6. Note
that PSGD adapts to the data on the fly by decreasing its learning rate before it
stabilises around 0.1. This removes the necessity of performing Cross Validation
in an offline setting to select an appropriate fixed learning rate for SGD.

The first examples in Figure 42 during which the learning rate for
PSGD is very high and close to the initial value, are riddled with very
high errors compared to vw. The fast learning rate decrease can be seen
to reduce the rate of cumulative error increase for these first examples.

#Lncreasing the number of data points, n, might cause further changes to the
learning rate, but this is not important to this discussion.



94 6 PSGD

After the learning rates stabilize the cumulative errors of both PSGD and
vw show similar trends. So, despite an adverse learning rate initialization,
PSGD adapted to the data to perform well compared to a well-initialised
fixed learning rate. This suggests that PSGD reduces the necessity of
using Cross Validation or other techniques to identify appropriate initial
learning rates. This is a necessary feature of a useful online learner in a
nonstationary setting.

The observed responses, linear predictors and PSGD estimates for the
first and last 100 examples are plotted in Figure [43] They show that the
high learning rate initialisation causes considerable overfitting, but that
the extent of this is significantly reduced by the last 100 examples, due to
the learning rate reduction. Thus, again, the learning rate adaptiveness of
the PSGD method does not seem to cause overfitting, rather it is able to
prevent it. This is further confirmed by Figure [44] showing that estimation
errors decrease as the learning rates decrease, most likely reducing the
generalization error of the method.
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(a) Cumulative training errors of vw with fixed learning rates and PSGD.
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(b) Cumulative estimation errors of vw with fixed learning rates and PSGD.

Figure 42: The cumulative estimation and training errors of the PSGD method
approach those of vw with a fixed learning rate of 0.05, after the learning rate
adjustments. This suggests that the PSGD method manages to adapt to the
data on the fly, approaching the performance of vw with the well-chosen fixed
learning rate of 0.05.
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(a) Linear predictor, observed responses and PSGD estimates for the first 100 examples.
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(b) Linear predictor, observed responses and PSGD estimates for the last 100 examples.

Figure 43: Linear predictor, observed responses and PSGD estimates for the
first and last 100 examples. It is evident that the learning rate is initialised at a
too high value as the estimates are almost completely matching the responses
for the first 100 examples, an example of extreme overfitting. Despite this
situation producing very small training errors, the PSGD method decreases the
learning rates, thereby reducing model overfitting and the estimation errors.
This is clear from the last 100 examples of the processed data set.
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(b) Estimation errors of PSGD plotted against learning rates.
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Figure 44: Training errors and estimation errors are plotted against learning
rates from the PSGD method. Note that learning rates are decreased over time
as seen from Fig. Training errors increase as learning rates are reduced,
while the opposite is true for estimation errors, the proxy of the generalization
error. This suggests that the adaptiveness of the learning rate reduces the
generalization error and has not come at the cost of overfitting the model to

the data.
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6.4.3 Nonstationary Data from Multiple Models

Though the previous sections comparing PSGD against SGD with Ada-
Grad or with fixed learning rates yield positive results, all the simulations
used for those experiments originate from a given generative model that
does not change with time. The goal of PSGD, or online learning in a
nonstationary setting, should be to be able to adapt the model weight es-
timates to incoming data originating from different generative models over
time. This section discusses the performance of PSGD in such settings.

The experiments of this section are summarized in table [5 of section
6.3 In experiment M1 the signal to noise ratio, R, is scaled up after the
first and second third of the examples are simulated. In experiment M2
the signal to noise ratio is scaled down instead. And in experiment M3
the signal to noise ratio is scaled up once before it is scaled down to its
initial value.

The overall performance of PSGD is superior to vw with a fixed learning
rate initialised at the same value as PSGD[*?|for the described experiments.
This should however no longer be interesting as neither AdaGrad nor
fixed learning rates are feasible methods in online nonstationary settings.
AdaGrad has no way of increasing the learning rate, making it adapt poorly
to nonstationary data. And fixed learning rates can provide good results
in parts of data streams, but do not adapt to the incoming data, and
also require cross validation or other techniques to be initialised properly.
Therefore the identified strengths and weaknesses of PSGD will be the
focus of the following discussion along with possible improvements.

In Figures [A5}{47] the learning rates of experiments M1-M3 are plotted
separately. The signal to noise ratio, R, is also plotted for each example
as a reference. The learning rate plots for experiments M1 and M3 indi-
cate that the proposed PSGD implementation is more adaptive towards
increases in the variance of the observed responses, than for variance
decreases (exp. M2). This is an adverse consequence of the suggested

42See appendix for cumulative error plots confirming this.
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sequential test for the learner with the smallest PV error in equations
and (6.5). The tracked mean one-step ahead prediction error of the pro-
cesses only see relatively small changes if the variance of the observations
is reduced. This is essentially because the scaling of the observations
has been reduced, and therefore also the size of the errors. However,
when there are smaller fluctuations in the PV errors of the processes the
standard deviation of the processes is reduced, thereby reducing the ac-
ceptance region (keeping the current learner). Though this is truelz_gl, this
effect is lagged since many of the observations that are sequentially in-
cluded to evaluate the estimates of the PV error means and standard
deviations, came from a regime with higher variance. This reduces the
adaptability of the mean and standard deviation estimates, and therefore
also the ability of PSGD to quickly switch learner.

43This is the reason why the discussed implementation of PSGD eventualy switches
process.
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(b) PSGD learning rates for exp. M1.

Figure 45: PSGD learning rates, «, and signal to noise ratios, R, for exp. M1
initialised at R = 0.1 and o = 0.4. PSGD quickly detects that the learning rate
should be reduced in the first signal-to-noise-regime. As R is increased in the
second third of the examples, and thereby also the variance of the observations,
PSGD requires to process more examples than before to scale up the learning
rate. This is because there is a new optimal learner only after the regime
change point and the tracked mean of the progressive validation errors of the
upper learner needs to compensate for not being the smallest one before the
change in variance. This is illustrated in Fig. [48b] The same effect is present for
the last increase of R, but is less pronounced since there are fewer examples in
the middle regime since the last change, than was the case for the first regime.
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(a) Signal to noise ratio, R, for exp. M2.
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(b) PSGD learning rates initialised at @ = 0.4, for exp. M2.

Figure 46: PSGD learning rates, «, and signal to noise ratios, R, for exp.
M2 initialised at R = 10 and a = 0.4. From Figure [45] it transpires that
Exp. M1 also ends up with learning rates of @« = 0.4 for R = 10, but that
the lower values of R should in fact prompt reduced learning rates. Despite the
decreases in the variance of the observations, the learning rate remains constant
over the n = 3 - 10° examples. This performance is suboptimal as it leads to
overfitting. The reason for the behaviour is that the examples for the first
period with higher variance produces errors that are greater in magnitude than
the errors from the examples simulated with a smaller variance. As a result the
tracked mean is biased by these larger errors and less adaptive to the incoming
data with smaller variance. Of course, the fact that the incoming observations
have smaller variances gradually reduces the tracked standard deviation of the
processes, thereby reducing the acceptance region of the current learner and
prompting a switch of the learner. But this effect is also delayed by the larger
standard deviation estimates from the initial regimes.
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(b) PSGD learning rates for exp. M3.

Figure 47: PSGD learning rates, «, and signal to noise ratios, R, for exp. M3
initialised at R = 0.1 and o = 0.1. The learning rate initialisation is clearly
suitable for the first third of the data set, as there are no changes to the learning
rate. As the signal to noise ratio, R, is increased, and thereby also the variance
of the observations in the second third of the examples, the learning rate quickly
adapts to the new regime. This behaviour is very promising as this kind of
learning rate adaptiveness prevents underfitting the model to the incoming data.
The adaptiveness is due to the larger errors caused by the variance increase.
As the signal to noise ratio is reduced again there is a considerable lag before
the learning rates see gradual reductions. This is because a variance reduction
reduces the size and fluctuations of the ensuing errors, meaning they have a
smaller impact on the sequentially updated mean and standard deviation of the
errors. This phenomenon is also discussed in Figure .
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Another problem is that before and after a regime change different
learners might be optimal. If this is the case between two regimes, then
the mean PV error of the ideal learner in the first regime will shrink more
compared to the other learners, until the regime change. After this point, a
different learner is optimal, but needs to overtake the advantage gained by
the other candidate process(es) in the previous regime. This phenomenon
is illustrated in Figure [48] Bear in mind that this does not prevent PSGD
adaptability. It rather implies that the PSGD learning rates adapt slower
after a long streak of data coming from very similar generative models
that is followed by an abrupt change in the variance of the observations.

These adaptability problems are addressed in the next section.
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(a) Progressive validation errors of the three learners around the first change point for exp. M3.
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(b) Progressive validation errors of the three learners around the second change point for exp. M3.

Figure 48: The sequentially updated progressive validation errors for the exam-
ples around the two change points seeing the signal to noise ratio, R, respec-
tively increased and decreased. Before the second change point in Fig. [48b)
the current learner has the lowest mean error, a trend that is reinforced towards
the change point. After the change point, R is reduced, thereby reducing the
variance of the observations as well as the sizes of the errors. This is evidenced
by the slower rate of change in the sequentially updated mean errors. After the
second change point the lower learner reduces its mean error the fastest, but is
required to process a lot of examples before overtaking the current learner and
be switched to the current learner. This problem is less important when R is
scaled up at the first change point as then the increased variance of the obser-
vations conduce to higher errors which have a greater impact on the mean of
the learners after the change point. The current adaptation of PSGD therefore
see learning rates adapt more quickly when facing increases in R.
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6.5 Conclusion and Further Work

Conclusion. The experiments on the proof-of-concept implementation of
PSGD indicate that PSGD is clearly superior to AdaGrad and SGD with a
fixed learning rate as it can adapt to nonstationary data on the fly without
requiring cross validation for learning rate initialisation. Additionally the
adaptiveness to eventual changes in the generative model of the incoming
data prevents the model from degrading over time.

The increased memory constraints of PSGD are low as the estimates
of the upper and lower learners are only sequentially stored. In order to
perform the sequential tests deciding whether or not to switch learner,
one only needs to store the mean and standard deviation of the one step
ahead prediction error of the three learners. This is a small price to pay
for the increased adaptiveness as the RAM of most computers will be able
to handle this in most cases.

The method in the proposed framework is computationally feasible as
it only computes the gradient of the loss once per point, regardless of how
many learners it is running in parallel. The method is parallelisable and the
added computational steps are not notably time consuming. The slightly
increased run-time of PSGD, compared to SGD, should not outweigh the
benefits of its adaptiveness to nonstationary data.

The experiments of the PSGD implementation on the nonstationary
data that was sampled from different generative models over time in sec-
tion showed promising results of adaptive learning rates, but also
permitted the identification of weaknesses. It is shown and explained that
PSGD, as implemented here, can struggle when the variance of the ob-
served responses decrease. Additionally, it is shown and explained that
after a long streak with the same learning rate, PSGD can be slow to
adapt its learning rates to the new regime.

Due to time constraints these weaknesses were not addressed directly,
but potential solutions have been suggested. The overall conclusion is
therefore that conceptually the PSGD framework shows great promise
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for online learning on nonstationary data due to the good performance
indications of the proof-of-concept implementation, its relative simplicity
and computational scalability. Methods in this framework can therefore be
the focus of further research and potentially be included in online learning
softwares such as Vowpal Wabbit.

Further work. A sequential tesf®] for detecting variance change
points in the stream of observed responses could be designed and imple-
mented. It should subsequently be verified whether resetting the PV errors
of the learners at identified change points will increase the adaptiveness
of the method sufficiently to warrant an extension of the proof-of-concept
implementation. This suggestion seems to address the two main problems
identified. Firstly, it means that after a regime change, the difference
of the scales of PV errors between regimes no longer matters since the
tracked PV errors are reset. And secondly, since the tracking means are
reset, there is no longer a problem that one of the processes has an accu-
mulated error advantage from a previous regime with a different response
variance. Due to time constraints a specific sequential variance test for
the observed responses was not designed nor implemented. Initial investi-
gations suggest that the monograph by Csérgé and Horvath (1997) may
include relevant sequential tests for this application.

If it turns out that sequential detection of variance change points does
not provide the desired results, since it could fail to detect broad enough
nonstationarity behaviours, then other remedies can be considered. The
core problem identified in section [6.4.3] is that in cases where the current
learner is optimal for many data points, the adaptiveness decreases since
very many examples have been used to compute the mean and standard
deviation of the PV errors. In other words, the proposed algorithm lacks
an adaptive mechanism for forgetting past observations. Intuitively, one
could suggest exponential decay of the weighting of the contributions of

44As discussed previously, sequential tests are generally computationally efficient, a
key constraint in this problem setting.



6 PSGD 107

past PV errors, but this does not seem scalable due to memory constraints.
A more scalable approach could therefore be to store a window of the last
n., PV errors. This approach could be used to either compute exponential
decay on the oldest errors, or as an unaltered error vector from which the
means and standard deviations can be computed. The n, parameter
will clearly influence the performance of the method, motivating further
research on its effect.

The proposed PSGD framework is not restricted to running three learn-
ers in parallell. More work should be done to confirm whether three is
indeed the optimal number of learners, and how the scaling factors should
be chosen.

It should be verified that the promising results presented in this section
still hold for a large scale implementation of PSGD that handles more
parameters in the training model.

The switching rules presented in equations ((6.4)) and ((6.5)) are approx-
imative results that are shown to perform well. One should nevertheless

examine if a more precise result can be derived from realistic assumptions,
or if other switching rules with better performance can be developed.

Furthermore one should derive and implement sequential approximate
confidence intervals of the point estimates. These should be able to
inform a PSGD user of more uncertain estimates, possibly due to periods
of changes in the generative models.

One should also formalize properties of this method under realistic
assumptions. This especially includes deriving regret bounds and conver-
gence properties for reasonable nonstationary settings.

Additionally, a more precise comparison of the running time of PSGD
compared to that of the SGD variants implemented in vw could be in-
teresting. Note however that, as previously explained, the result of this
should not be a key factor in determining the preferability of PSGD over
existing SGD variants.
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7 Summary

This thesis has studied online learning using SGD-based methods imple-
mented in the statistical software Vowpal Wabbit. As such, selected meth-
ods and concepts that motivate, explain and build on the SGD algorithm
have been treated in sections[2and[3] These methods, and the theoretical
results that motivate them, are derived for stationary settings where the
generative models of incoming observations are not changing over time.

One of these methods, AdaGrad, an extension of SGD and selected by
default in vw, was the focus of experiments in static settings. These ex-
periments were detailed in section [l The results in section [5.1] confirmed
the excellent performance of AdaGrad in stationary settings, while indi-
cating that the high noise levels can weaken the performance. Comparing
the performance of AdaGrad to R's 1m function, a batch learning method,
shows that the price of AdaGrad’'s computational efficiency is less precise
estimates.

One of the main advantages of online learning methods is that they
scale very well in scenarios where extremely large amounts of data is
continuously arriving, e.g. user data for a popular website or mobile appli-
cation. The usefulness of online learning is therefore greatly limited if the
methods perform poorly on nonstationary data. AdaGrad is intended for
stationary settings by design as its learning rates are continuously reduced,
thus reducing its adaptability to nonstationarities in models generating
the incoming data. Currently one is therefore required to preselect a fixed
learning rate if one wishes to use vw on stationary data. This is subop-
timal since the performance of SGD with fixed learning rates depends on
the variance of the incoming data. As a result, even after hypothetically
selecting an optimal learning rate by cross validation, one may end up
overfitting or underfitting the model to the data, on parts of the data.
Furthermore, cross validation is a batch learning technique that is not de-
signed to be used sequentially implying that the solution would not scale
well.
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In section we clearly demonstrate these problems. Namely that
AdaGrad is unsuitable for model fitting in nonstationary settings, and that
SGD with fixed learning rates comes at the cost of lacking adaptibility in
nonstationary settings.

As a response to these problems, and given the constraints of requiring
a highly scalable method, we propose a new framework that builds on the
SGD algorithm in section [6] Our framework, Parallelised SGD, or PSGD,
consists of running two or more alternative SGD-learners in parallell to
a chosen SGD learner for every example. The alternative learners have
learning rates scaled from the value of the learning rate of the chosen
learner. This provides a scalable framework as the gradient still only needs
to be computed once per example, and the added cost of the alternative
learners can be diminished through efficient parallelisation.

The alternative learners can be used to tune the learning rates by
sequentially comparing their errors. To preserve the scalability of the
method we propose to sequentially update the mean and standard de-
viations of the one-step ahead prediction errors, and use this to switch
learner when an alternative learner has a statistically significant smaller
error than the current learner. Experiments on a proof-of-concept im-
plementation demonstrates that PSGD is superior to AdaGrad and SGD
with fixed learning rates in nonstationary settings. However, further work
is required to improve the adaptiveness of the method to a wider range of
nonstationarities. A discussion of the identified weaknesses of the proof-
of-concept implementation and possible solutions can be found in section
0.5l

Continued research on this framework shows great potential for yield-
ing a class of adaptive learners that can automatically handle nonstation-
ary data and be subject to large scale implementations in online learning
software such as Vowpal Wabbit.
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Appendices

A Implementation of Experiments

The workflow consists of calling Python files and R-functions from a mas-
ter project in R.

Simulate data and save R objects in csv files. Data is simulated
as explained in sections [4.1.1§4.1.2] The R objects are saved in csv text
files locally using the write.csv function in R.

Convert csv files to vw file format. In order to run vw on the data,
the data files must be in the Vowpal Wabbit file formatf*®] Reformatting
scripts were written in Python.

Run vw. Vowpal Wabbit can now be run by invoking terminal com-
mands with the system function in R.

Convert vw output to csv files. Python scripts were written to
carry out this task.

Read csv files into R. The read.csv function can now be used to
import the vw output into R objects.

Post-experimental data analysis. The experimental results stored
in R objects are subsequently used for data analysis, primarily by producing
the figures of this thesis.

45See https://github.com/JohnLangford/vowpal_wabbit/wiki/
Input-format


https://github.com/JohnLangford/vowpal_wabbit/wiki/Input-format
https://github.com/JohnLangford/vowpal_wabbit/wiki/Input-format
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B Derivations for Linear Model Experiments

We have that
y=XB+e€ (B.1)
where the following random variables are independent
€j ~ N(Oa U?) ﬁj ~ N(MB) O-é) Xij ~ U<xmin’ xmax)viuj
Let 11, and v, denote the mean and variance of a uniform random variable
respectively, as follows

Lmax + Lmin

pe = E(Xy5) = 5 52
B.2
(xmax - xmin)Q
v, = Var(Xj;) D
Moments and Signal to Noise Ratio
Expected values follow from the above
p
E[fi] = Y ElXy6] + Elel
j=1
= p(E[Xy] E[B]) +0
= PHaflp (B.3)
=0 forus=0 (B.4)

And the variance of the responses are computed as follows Vi € {1,...,n}

P
Var[y;| = ZVar[Xijﬁj] + Varle]
j=1
= p(v.0F + Vo + pi03) + o7
= p(05(13 + va) + vapi}) + 07

=pos+o. forpug=0and v, +pul =1 (B.5)
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By using the condition in equation (B.5)) one can derive a simple expression
for R, defined in equation (4.9)) as R = Onoise/Tsignal- Note that o2, = o2

and 03, = Var(3_"_, Xi;8;) = poj, for any i, as transpires from
equation (B.5)). The expression for R is now simply

R:

o
* forug=0and v, +pu’ =1 (B.6)
VPos ’
One can solve v, + 2 = 1 for the parameters of the Uniform distribution
(Zmin, Tmax) by for example setting 1, = 1/2 and v, = 3/4. This yields

(xminyﬁmaX) = (_172) (87)

Note that this implies that equation (B.5]) reduces to

- 1
Var[y;] = o2 (1 + ﬁ) for us =0 and v, + p2 =1 (B.8)
The Central Limit Theorem [5] can now be applied to derive confidence
intervals for the means of the errors, but as this is not essential for the
message of the thesis it is omitted.
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C Additional Figures
C.1  Error Plots for Exp. D4-D6

(a) Exp.

(b) Exp.

(C) Exp.
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50000
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D4: Estimation errors with rolling mean curves. a = 0.005.

Type
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[ 25000

o0
Example
D5: Estimation errors with rolling mean curves. a = 0.05.

~— Estimaton Eror
Roling Mean

o 25000 50000 75000 100000
Example

D6: Estimation errors with rolling mean curves. o = 0.5.

Figure 49: Estimation errors for the tested values of the learining rate, . There
are considerable fluctuations in the errors of model Exp. D4. This supports the

fact that the model

is underfitting the model to the data due to a too small

learning rate. On the other extreme there is Exp. D6 with seemingly stationary
errors. This indicates model overfitting and too elevated a. The errors of Exp.
D5 show more promising behaviour.
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(a) Exp. D4: Pointwise and mean progressive validation errors. a = 0.005.
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(b) Exp. D5: Pointwise and mean progressive validation errors. o = 0.05.
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Example

(C) Exp. D6: Pointwise and mean progressive validation errors. a = 0.5.

Figure 50: Pointwise and average progressive validation errors for the tested
values of the learining rate, . Due to poor axis scaling it is hard to tell whether
there are differences between the error trends of the experiments. However, as
expected, the PV errors of Exp. D2 seem to be smallest on the whole. This
indicates that it is the least affected by model overfitting or underfitting.
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(a) Exp. D4: Training errors with a rolling mean curve.

Type
— Rolling Mean

— Training Error

Training Error
°
S

0 25000 50000 75000 100000
Example

(b) Exp. D5: Training errors with a rolling mean curve.
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(C) Exp. D6: Training errors with a rolling mean curve.

Figure 51: Training errors for the tested values of the learining rate, . There
are considerable fluctuations in the errors of model Exp. D4. This supports the
fact that the model is underfitting the model to the data due to a too small
learning rate. On the other extreme there is Exp. D6 with seemingly stationary
errors. This indicates model overfitting and too elevated a. The errors of Exp.
D5 show more promising behaviour.
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(a) Exp. D4: Weight estimation errors.
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(b) Exp. D5: Weight estimation errors.
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(C) Exp. D6: Weight estimation errors.

Figure 52: Weight estimation errors for the tested values of the learining rate,
a. There are considerable fluctuations in the errors of model Exp. D4. This
supports the fact that the model is underfitting the model to the data due to a
too small learning rate. On the other extreme there is Exp. D6 with seemingly
stationary errors. This indicates model overfitting and too elevated «. The
errors of Exp. D5 show more promising behaviour.
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C.2 Error Plots for Exp. M1-M3
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(a) Cumulative training errors of PSGD and vw with fixed learning rates.
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(b) Cumulative estimation errors of PSGD and vw with fixed learning rates.

Figure 53: Exp. M1: Cumulative estimation and training errors of the PSGD
method are superior to those of vw with a fixed learning rate, due to the learn-
ing rate adjustments in nonstationary settings. This indicates that the PSGD
method manages to adapt to the data on the fly unlike SGD with fixed learning
rates. Note that vw and PSGD have the same initial learning rate, o; = 0.4.
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(a) Cumulative training errors of PSGD and vw with fixed learning rates.
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(b) Cumulative training errors of PSGD and vw with fixed learning rates.

Figure 54: Exp. M2: Cumulative estimation and training errors of the PSGD
method are superior to those of vw with a fixed learning rate, due to the learn-
ing rate adjustments in nonstationary settings. This indicates that the PSGD
method manages to adapt to the data on the fly unlike SGD with fixed learning
rates. Note that vw and PSGD have the same initial learning rate, o; = 0.4.
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(a) Cumulative training errors of the PSGD and AdaGrad method.
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(b) Cumulative estimation errors of the PSGD and AdaGrad method.

Figure 55: Exp. M3: Cumulative estimation and training errors of the PSGD
method are superior to those of vw with a fixed learning rate, due to the learn-
ing rate adjustments in nonstationary settings. This indicates that the PSGD
method manages to adapt to the data on the fly unlike SGD with fixed learning
rates. Note that vw and PSGD have the same initial learning rate, o; = 0.1.
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