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Summary
This thesis covers methods for optimization of oil production in three time-scales. In the
long-term perspective, years, it is desired to maximize the economic return of the field
operation, or alternatively, it is desired to maximize the oil recovery factor. In the middle-
term perspective, days, optimal scheduling and allocation of the production facilities are
desired. In the short-term perspective, minutes, it is desired to maintain the process
operating at a stable optimal set-point. The integration of the optimization solutions
that tackle each of the layers independently is a formidable challenge. This requires the
development of mathematical models and efficient optimization algorithms to deliver
solutions in real-time.

This research focuses on efficient optimization algorithms and suitable simulation
models for oil production optimization. The emphasis is on the integration of the deci-
sion process for different time-scales. To this end, this research studies each individual
time-scale and proposes tools that lead to the desired integration. The work is divided
into five parts.

Chapter 2 formulates and solves the reservoir control optimization problem applying
the direct multiple shooting (MS) method. This method divides the prediction horizon
into smaller intervals which can be evaluated in parallel. Further, output constraints
are easily established on each interval boundary and as such hardly affect computation
time. This opens new opportunities to include state constraints on a much broader scale
than what is common in reservoir optimization today. However, multiple shooting deals
with a large number of variables since it decides on the boundary state variables of each
interval. Therefore, we exploit the structure of the reservoir simulator to conceive a
variable reduction technique to solve the optimization problem with a reduced sequen-
tial quadratic programming algorithm. We discuss the optimization algorithm building
blocks and focus on structure exploitation and parallelization opportunities. To demon-
strate the method’s capabilities to handle output constraints, the optimization algorithm
is interfaced to an open-source reservoir simulator. Then, based on a widely used reser-
voir model, we evaluate performance, especially related to output constraints. The per-
formance of the proposed method is qualitatively compared to a conventional method.

Chapter 3 solves a black-oil reservoir optimal control problem with MS. The black-oil
fluid model, considering volatile oil or wet gas, requires a change of primary variables
for simulation. This is a consequence of the absence of a fluid phase due to dissolu-
tion or vaporization. Therefore, reservoir simulators parametrize the states with an aug-
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Summary

mented vector and select primary variables accordingly. However, the augmented state
vector and the corresponding change of primary variables are not suitable for the appli-
cation of MS because the optimization problem formulation must change according to
the change of variables. Thus, we propose a minimal state-space variable representation
that prevents this shortcoming. We show that there is a bijective mapping between the
proposed state-space representation and the augmented state-space. The minimal rep-
resentation is used for optimization and the augmented representation for simulation,
thereby keeping the simulator implementation unchanged. Therefore, the proposed so-
lution is not invasive. Finally, the application of the method is exemplified with bench-
mark cases involving live oil or wet gas. Both examples emphasize the requirement of
output constraints which are efficiently dealt by the MS method.

The production life of oil reservoirs starts under significant uncertainty regarding the
actual economical return of the recovery process due to the lack of oil field data. Con-
sequently, investors and operators make management decisions based on a limited and
uncertain description of the reservoir. Chapter 4 proposes a new formulation based on
MS for robust optimization of reservoir well controls. This formulation exploits coher-
ent risk measures, a concept traditionally used in finance, to deal with the uncertainty.
A variable elimination procedure allows to solve this problem in a reduced space and
an active-set method helps to handle a large set of inequality constraints. Finally, we
demonstrate the application of constraints to limit the risk of water production peaks on
a standard test case.

Chapter 5 addresses the middle-term perspective and develops a framework for in-
tegrated production optimization of complex oil fields such as Petrobras’ Urucu field,
which has a gathering system with complex routing degree of freedom, limited process-
ing capacity, pressure constraints, and wells with gas-coning behavior. The optimization
model integrates simplified well deliverability models, vertical lift performance relations,
and the flowing pressure behavior of the surface gathering system. The framework re-
lies on analytical models which are history matched to field data and simulators tuned
to reflect operating conditions. A Mixed-Integer Linear Programming (MILP) problem
is obtained by approximating these models with piecewise-linear functions. Procedures
are developed to obtain simplified piecewise-linear approximations that ensure a given
accuracy with respect to complex and precise models. Computational experiments show
that the integrated production optimization problem can be solved sufficiently fast for
real-time applications. Further, the operational conditions calculated with the simplified
models during the optimization process match the precise models.

Chapter 6 studies the short-term problem and presents control and optimization of
a network consisting of two gas-lifted oil wells, a common pipeline-riser system and a
separator. The gas-lifted oil wells may be open-loop unstable. The regulatory layer stabi-
lizes the system by cascade control of wellhead pressure measurements without needing
bottom hole sensing devices. An economic Nonlinear Model Predictive Control (NMPC)
based on MS is applied for optimization of the network operations. The optimization
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layer thus provides optimal settings for the regulatory controllers. The control struc-
ture has been validated by using the realistic OLGA simulator as the process, and using
simplified models for Kalman filtering and the NMPC design. The simplified models are
implemented in Modelica and fit to the OLGA model to represent the main dynamics
of the system. The proposed two-layer controller was able to stabilize the system and
increase the economical outcome.
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Chapter 1

Introduction

This opening chapter motivates the development of oil production optimization strate-
gies by discussing the importance of fossil-energy sources, and in particular oil, for Nor-
way and the world. Then, the most relevant decisions taken during the oil field life
cycle are presented in the context of Integrated Production Optimization. Finally, the
research scope, contributions, and optimization tools explored in the following chapters
are presented.

1.1 Background and Motivation

The world needs more energy to sustain its population and economic growth. The ad-
ditional requirement of energy is critical in underdeveloped countries and emerging
economies where the universal energy access is not guaranteed for all (The World Bank
2015). At the moment, it is estimated that 1.1 billion of the world population live with-
out access to electricity. Thus, for a better future, to relieve energy poverty and to reduce
the environmental impact of the population growth, we need clean and secure energy
sources.

According to IEA (2014), fossil-energy sources, and in particular oil, have been the
most important primary energy sources in the past, see Figure 1.1. However, the fossil-
energy sources are not renewable and lead to the emission of greenhouse-gases. These
facts spark the global conscience and led to initiatives to improve the efficiency and dis-
tribution of energy from renewable sources (The World Bank 2015). Figure 1.1 presents
energy consumption forecasts by source according to a realistic New Policies Scenario
(NPS) and a scenario which is consistent with the goal of limiting the global temperature
increase. The later scenario is referred to as the 450 Scenario (450S) because it con-
strains the concentration of carbon dioxide in the atmosphere to 450 parts per million.
Despite the initiatives to reduce fossil-energy consumption and the estimated increase of
renewable energy sources, IEA (2014) forecasts the dominance of fossil-energy sources
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1. Introduction

in the next decades. Thus, as long as there is no other reliable and cleaner energy source,
it is necessary to conscientiously use the available fossil-energy resources.

Figure 1.1: Total primary energy source outlook (in Mtoe) (IEA 2014).
NPS: New Policies Scenario. 450S: 450 Scenario.

This thesis investigates different alternatives for oil production optimization. The
proposed tools aim to improve the profitability and extend the life of existing resources.
Significant value can be added by applying technology to recover more oil from existing
resources. Figure 1.21 shows the estimated lifetime of Norwegian petroleum fields ac-
cording to different earlier forecasts. Although by 1992-1995 it was predicted that 6 out
of the 7 considered fields would be out of operation by today (March 2016), all of the
fields are still active. The life extension of the fields is partially supported by technologi-
cal improvements and by economic conditions. The global demand of energy maintains
high prices of hydrocarbons which allow the application of costly methods to recover
more. In addition, the development of technology promotes the effectiveness and the
efficiency of the recovery methods. Oil field life extension and improved recovery from
existing fields are environmentally friendly endeavors because these activities delay the
need to step into new discoveries.

Oil production starts under large uncertainty. The Ekofisk field is the most repre-
sentative case in Norway to demonstrate the impact of the uncertainty and technology
on an oil field operation. By 1965, oil exploration started in Norway, specifically in the
northern region of the North Sea, motivated by the optimism after oil discoveries in the
Netherlands in 1959. The first exploration well was drilled in 1966 and turned out to

1The content on the Norwegian Petroleum Directorate’s webpages may be used in accordance with
Norwegian License for Open Government Data (NLOD) http://data.norge.no/nlod/en/1.0.
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Figure 1.2: Lifetime of Norwegian petroleum fields (Tormodsgard 2014).

contain no profitable hydrocarbons. However, in 1969 the Ekofisk field was discovered
and its production started in 1971. Figure 1.3 shows the oil reserve2 increase when com-
paring recent production plans to the first plans for development and production (PDO).
Observe that the first plans for development are decided under significant uncertainty
due to lack of field data. Moreover, the initial plans can not rely on accurate predictions
of technology development and the evolution of relevant economic indicators. There-
fore, the average increase of oil reserves shown in Figure 1.3 is partially based by the
application of technology to improve recovery (Ministry of Petroleum and Energy Nor-
way 2011).

Ekofisk is the biggest and earliest discovery in Norway. In 1969, while drilling the
first exploration well in Ekofisk, Ed Seabourn, the rig responsible said: “I can cover the
North Sea from here to the North Pole with oil”. Figure 1.4 shows a comparison of the
base production scenario used for the field development plan and the actual production
of several fields. Despite the initial optimism when drilling the first well for Ekofisk,
the PDO expected a recovery factor of only 17% (Tormodsgard 2014). Large-scale water
injection for improved oil recovery started in 1987 and boosted the production, see
Figure 1.4. With these new technologies, the current expected recovery factor of Ekofisk
is around 50%, i.e., half of the resources will still be left after shut down.

So far around 44% of the Norwegian recoverable resources have been produced
(Alveberg et al. 2013). Moreover, significant value can be added by increasing the re-
covery factor of existing fields. Figure 1.5 shows the distribution of produced oil, the
reserves and the amount of resources estimated to be left over at abandonment. The
current operational plans estimate an average recovery rate of 46% of oil and 70% of gas

2The oil reserve is the volume of oil expected to be produced economically using today’s technology
(IEA 2013).
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Figure 1.3: Oil reserve increase related to the first plan for development and operation
(Ministry of Petroleum and Energy Norway 2011).

Figure 1.4: Production forecast used in PDO vs. Actual production. (Alveberg et al. 2013)

in the Norwegian Continental Shelf (Ministry of Petroleum and Energy Norway 2011).
These estimates contrast with the global oil recovery rate which is around 22%. The
ultimate recovery factor of a field depends on many variables accounting for the field
characteristics and the economics. Moreover, the application of technology plays an im-
portant role in improving the recovery factor. These are some of the numerous alterna-
tives that have been applied in the Norwegian Continental Shelf:

• Injection of water or gas for reservoir flooding and pressure maintenance. These
techniques are extensively used in Norway. Alveberg et al. (2013) provides an
overview of the application of these technologies by fields.

• Drilling of new wells. Around 50 billion NOK was spent in 2013 to drill 142 wells
(Norwegian Petroleum Directorate 2014). Observe that this alternative required
around 50% of the total field investments.
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• Reservoir mapping by timed seismic data inversion to infer more about the geo-
logic characteristics and the distribution of fluids. An accurate description of these
characteristics leads to better decision-making of all the recovery strategies. Seis-
mic interpretation was a key technology to locate Ekofisk in Norway (Ministry of
Petroleum and Energy Norway 2011).

• Subsea compression to boost the production of gas and condensates, as done re-
cently by Statoil in the Åsgard field (Tormodsgard 2014).

• Integrated operations which focus on the cross discipline cooperation and collab-
orative decision-making supported by information technology. Integrated opera-
tions lead to better operational practices supported by improved data accessibil-
ity and software functionality. (Ministry of Petroleum and Energy Norway 2011).
Jansen et al. (2006) provides an analysis of the potential value of Integrated Op-
erations in the Norwegian Continental Shelf.

Figure 1.5: Distribution of produced oil, remaining oil reserves and remaining resources
after close down (Tormodsgard 2014).

The application of the aforementioned technologies to improve oil recovery requires
significant investments. A good example in Norway is the Ula oil field (Tormodsgard
2014), see Figure 1.4. From the beginning of its production in 1986 to 1998, the oil was
produced initially by pressure depletion and followed by water injection. From 1998,
water alternating gas injection has been used to improve oil recovery. All the produced
gas is used with this aim, in addition to the gas from satellite fields. Moreover, oil pro-
duction is assisted with gas-lift. These technologies for improved oil recovery require in-
vestments to install and operate the gas processing facilities. However, observe in Figure
1.4 that all these measures can not keep the oil production rate as high as the beginning
of the operation. Thus, as the field ages the production profit decreases.

The trend observed in the Ula oil field is common and is reflected in the global supply
of liquid fossil-fuels, see Figure 1.6. New wells in existing matured fields bring limited
production compared to the operating costs, and the same trend is observed with other
improved recovery methods. Thus, the exploration of new regions is encouraged, to
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produce oil from fields yet to be found. For instance, Norway is analyzing the possibil-
ity to recover oil in the northern Barents Sea and in the area surrounding Jan Mayen
(Tormodsgard 2014). The exploration of these areas requires a significant advance in
technology for Marine Operations. Partly in response to this the Center for Autonomous
Marine Operations and Systems at NTNU is educating people and developing technol-
ogy. Thus, the current petroleum exploration activities and outlook yield value creation,
welfare, and employment also in other economic sectors.

Figure 1.6: World liquid fossil-fuel supplies under the New Policies Scenario (in millions
of barrels per day). (IEA 2013)

1.2 Integrated Production Optimization

Integrated production optimization refers to the optimization of decision-making pro-
cesses taking into account methods and models from different disciplines in the oil in-
dustry. A typical example consists of the combined analysis of detailed reservoir models
and detailed surface facility models for optimization of production processes (Litvak
et al. 2002; Davidson et al. 2003). Campos et al. (2010) present fundamental design
guidelines for integrated production models. These guidelines target a framework for
multidisciplinary teams to support short-term decision-making, enhance production pro-
cess perception and analyze the evolution of field life. Following an integrated modeling
philosophy, Rahmawati (2012) proposed the direct integration of detailed commercial
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simulation tools from upstream to downstream. Provided an economic model, Rah-
mawati (2012) showed the potential of derivative-free based optimization to increase
the economical return of the oil field. However, the number of decision variables in the
optimization problem were small, e.g., less than 10 (Rahmawati et al. 2012), and the
problems were unconstrained. Thus, there is a need of models and simulation tools that
allow for efficient optimization procedures.

The impact of optimization tools to support decision-making processes may be ana-
lyzed from the perspective of the oil field life cycle. It involves multidisciplinary processes
and decision-making activities in many domains. The oil field life cycle may be divided
into the following activities (Jahn et al. 2008):

1. Licensing.

The main decision during the licensing phase is related to the acquisition of the
rights for exploration. This process entails negotiations with the local government
to establish the area to be explored for a certain amount of time. Moreover, a
petroleum fiscal regime is defined in this phase.

2. Exploration & Appraisal.

The exploration phase executes geological and seismic surveys in the licensed
area. Even if the outcome of these surveys is promising, the presence of hydrocar-
bons can be confirmed only by an exploration well. After confirming the presence
of oil, further appraisal wells are drilled in the region aiming a better description
of the size and producibility of the resources. The appraisal process continues until
enough information is gathered to start the development of the field or to declare
the area not profitable.

3. Development.

The main goal of the development phase is to generate a PDO. The PDO defines
a feasible recovery strategy. To this end, it specifies the subsurface and surface fa-
cilities to be installed, in addition to the operational requirements and investments
cost. After the PDO is approved, the detailed design, fabrication and commission-
ing of the facilities follow.

4. Production.

The production phase starts progressively as the facilities are installed. When
the installation is complete, a production plateau is ideally reached and the field
is produced at maximum capacity. This production is ideally sustained as long as
possible, but the production declines as the field matures. This production trend
was for instance observed in the Oseberg field, see Figure 1.4. Finally, the field
remains in production during the decline phase as long as the cash-flow remains
favorable. During the production phase, exploration & appraisal of nearby areas
may be executed so as to re-utilize the installed infrastructure on minor fields.
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Moreover, the facilities may be upgraded, e.g., with gas-lifted wells, in order to
keep the field in production for more time.

5. Decommissioning.
In the decommissioning phase the facilities are disposed of in order to minimize

environmental damage. The most important decisions in this phase are when to
start decommissioning and what to do with the remaining facilities in the field.

Although every stage of the field life cycle may be thought to be independent of
each other, the decisions on each stage have a great impact in the subsequent phases.
Moreover, some of the steps may be repeated in a later stage, such as the re-development
of parts of field during production.

The application of the Integrated Operations (IO) philosophy may improve the ex-
ecution of the field life cycle activities (Ringstad et al. 2006; Ringstad et al. 2007).
IO promotes multidisciplinary teamwork (Skjerve et al. 2010), therefore the problems
are tackled from a broader perspective. IO is supported by an information technology
infrastructure which allows the work to be performed independently of the physical lo-
cation, thus it brings experts closer together. Moreover, the increased availability of real
time data enables the development of technology for the automation of decision support
tools. Thus, IO is an enabler for the development of optimization methodologies for the
field life cycle activities.

The impact of IO may be assessed with a valuation framework (Strasunskas et al.
2012) along four dimensions: process, people, technology, and organization. The value
of IO lies on an improved work process between the aforementioned dimensions. Stra-
sunskas et al. (2012) affirm that advances in technology such as integrated decision
support tools are a prerequisite for value creation due to IO. The aggregated value given
by this technology is often intangible because it is not possible to assess precisely how the
improved decisions impact the overall process. However, Teixeira et al. (2013) demon-
strated quantitatively the aggregated value in a specific industrial setting.

The decisions in the life cycle may be seen from a control hierarchy perspective (Sa-
putelli et al. 2006; Foss 2012), see Figure 1.7. This control hierarchy structure uses
time-scales to classify data, models, and decisions. Within this framework, most of the
decisions made for licensing, exploration & appraisal, development and decommission-
ing are classified as “Asset Management” decisions. These decisions aim to reduce the
investments and minimize the risks of the field operation. The Asset Management de-
cisions impact over years and the data required to make these decisions take months
to acquire. On the contrary, the production operation requires faster feedback control
operations and automation of decision processes:

• The reservoir management decisions aim to improve the field recovery factor.
These decisions include water and gas injection for pressure support and oil sweep,
production policies, and exact location of new wells to be drilled. These decisions
are revised periodically, with a period of few months, typically less than a year.
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Figure 1.7: Control hierarchy in the oil & gas recovery context. Adapted from (Foss
2012).

The data gathered by the History Matching process (Oliver et al. 2008) is crucial
for this phase. This procedure leads to plausible reservoir scenarios which must be
analyzed to determine the impact of the operation activities. The periodical appli-
cation of History Matching and Reservoir control Optimization is also known as
Closed Loop Reservoir Management (CLRM) (Jansen et al. 2009).

• The production optimization decisions aim at the optimized utilization of the facili-
ties, see (Bieker et al. 2007) for a comprehensive review and (Grimstad et al. 2016)
for a recent application. These decisions include well-separator routing configura-
tions, controller tunings and facilities operational set-points. The decision support
tools for real-time production optimization often ignore the dynamics of the pro-
cess. These tools rely on simple well models, typically disregarding the reservoir
dynamics, and consider capacity constraints of the surface facilities. Thus, new
well and processing facilities conditions require a review of these decisions. The
data gathered by well tests (Gringarten 2006) is fundamental for this decision
layer.

• The control & automation decisions aim to keep a stable operation, damp oscilla-
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tions and reject disturbances. These procedures require feedback of field pressures,
flow-rates and temperatures in a range from seconds to hours. These decisions in-
clude valve openings to keep pressure set-points in gas-lift systems (Camponog-
ara et al. 2009) and pump speeds to regulate the production of sucker-pumping
systems (Ordonez et al. 2009). The automation layer also contains emergency
shutdown mechanisms that prevent the facilities to operate under dangerous con-
ditions.

The time-scale separation as suggested in (Saputelli et al. 2006; Foss 2012) is a key
to overcome the overwhelming computational challenge faced in the joint-model opti-
mization approach (Rahmawati et al. 2012). The hierarchical control structure allows
to divide the optimization problem in different time-scales. Moreover, when solving the
problem on a given time-scale, the problems on the other scales are introduced with
simplifications. In this way, when solving a reservoir management problem, the decision
support tools may use a reservoir simulator and lump the models of the surface facilities
to a single constraint equation. Opposed to the joint-model approach in (Rahmawati et
al. 2012), the challenge is to generate representative simplified models for the surface
facilities. Moreover, an additional challenge is the coordination of the different layers
because the simplifications may lead to inconsistent models. Thus, data assimilation pro-
cedures are necessary to correct these simplifying assumptions and maintain the models
tuned. Such application of data assimilation is performed by Van Essen et al. (2012) to
maintain a two-layered control structure for reservoir water-flooding optimization and
disturbance rejection.

The aforementioned time-scales are usually associated to different physical parts
of the process, e.g., the reservoir and the gathering facilities, which have time-scales of
months and hours, respectively. However, the time-scales of these processes may overlap,
see (Nennie et al. 2007; da Silva et al. 2015). Coupled reservoir and well models are
required, for instance, to control and minimize the effects of gas coning (Leemhuis et
al. 2008; Nennie et al. 2009) and to minimize wax deposition (Nennie et al. 2008).
These are short-term effects which are typically disregarded when solving the long-term
reservoir management problem due to the prohibitive simulation effort and uncertainty.

The wide spectrum of open challenges for modeling, simulation, and optimization of
integrated oil production systems is the main motivation for the research in this thesis.

1.3 Research objective and scope

The seminal work of Saputelli et al. (2006) left many open challenges which must be
solved in order to establish real-time oil field production optimization. Saputelli et al.
(2006) suggested the following research activities:

• Develop algorithms for continuous feedback adjustments.

• Investigate useful models on each time-scale layer
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• Propose methods to adjust these models to the actual field.

• Develop fast optimization tools for every decision layer.
In light of the many research directions left by previous work, the global objective of this
thesis is:�� ��Contribute to the development of integrated production optimization strategies.

New criteria for optimization arise with coupled models. The objective function of the
joint problem can count on operational expenses taking into account the balance be-
tween short-term and long-term production goals. Examples of these operational ex-
penses are separation process cost, gas compression energy consumption, allocation of
facilities and maintenance. Furthermore, surface facilities constraints can be added to
the inclusive formulation. When including surface facilities constraints, infeasible reser-
voir drainage schedules are avoided. In this way, the calculated optimal control laws,
with respect to the coupled model, can be implemented without further conciliating it-
erations since it is feasible for all the modeling layers. However, these solutions require
models and algorithms capable to solve the coupled problem in real-time.

It is clear that a fully integrated production optimization method requires many years
of research of a multidisciplinary team. Thus, aiming at the global objective, this thesis
follows a bottom-up project approach. Here, each individual time-scale is studied inde-
pendently following guidelines from previous research activities. Moreover, we propose
extensions leading to the integration of the decision process:

1. This thesis proposes a new method for simulation and optimization for the reser-
voir control optimization problem. This method promotes simulation paralleliza-
tion and facilitates output constraints handling. These ingredients facilitate the
incorporation of more details from the surface facilities into the reservoir manage-
ment problem.

2. Aiming at the solution of the daily production optimization problem, this thesis
develops a method to integrate simulators of surface facilities to optimization soft-
ware. The use of adjusted surrogate models instead of the simulators is a key to
introduce specialized optimization algorithms. The reservoir models are incorpo-
rated to the optimization formulation through simple inflow performance relations
for the wells. Moreover, additional constraints are added to the problem formula-
tion to ensure stability in the control and automation layer.

3. This thesis proposes the structure of a two-layer controller coordinating the inter-
action between the control & automation layer and the daily production optimiza-
tion layer. To this end, a simple oil gathering network is equipped with regulatory
controllers which are commanded by a model predictive control algorithm. The
regulatory controllers keep the stability of the process and the predictive control
algorithm steer the system to improved operational points computed by the opti-
mization layer.
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A common axis in this research work is the validation of the proposed strategies on
process simulators that are actively used in the industry. These simulators include OLGA
(Schlumberger 2014) for dynamic multiphase flow, PIPESIM (Schlumberger 2009) for
steady-state multiphase gathering networks, and MRST (Lie et al. 2011; Krogstad et al.
2015) for two-phase and three-phase black-oil reservoir models. The use of industrial
simulators permits the analysis of the process at a realistic level of detail. Moreover, the
intention is to promote collaboration with the industrial partners in the IO Center.

Summarizing, this research focuses on efficient optimization algorithms and suitable
simulation models for oil production optimization. The emphasis is on the integration
of the decision process for different time-scales. To this end, this research studies each
individual time-scale and proposes tools that lead to the desired integration.

1.4 Optimization tools

This section aims to introduce Direct Single Shooting (SS) and Direct Multiple Shoot-
ing (MS) for the solution of nonlinear optimal control problems (OCP) on a fixed time
horizon. Instead of providing a deep theoretical insight, this section gives a practical
approach towards the integration of nonlinear programming (NLP) solvers and dynamic
simulators. The target is to explain the motivation to use the less intuitive MS formula-
tion instead of SS when dealing with numerical-intensive simulators. Special attention
will be given to reservoir simulators because this is the main application of this thesis.
For a more general overview of solution methods for OCPs, see (Binder et al. 2001;
Albersmeyer 2010; Biegler 2010).

1.4.1 Background

OCPs may be solved with Direct Methods (DMs) or Indirect Methods (IMs). The IMs
solve a set of equations consisting of boundary value problems resulting from the dy-
namical equations and the optimality conditions of the OCP. The optimization of these
equations leads to an optimal control function in time, which later must be discretized
to be applied to the process. Therefore, this approach is known as first optimize and then
discretize. Although IMs have been applied for optimization of Enhanced Oil Recovery
processes (Fathi et al. 1984; Fathi et al. 1986; Ramirez 1987), the DMs are currently
preferred for reservoir control optimization (Jansen 2011; Hou et al. 2015). The main
drawback of the IMs is the inability to deal with output inequality constraints (Biegler
2010). Thus, the IMs are out of the scope in this study.

Figure 1.8 illustrates a classification of the DMs. The key idea is the transformation
of the OCP to an NLP. To this end, the control input function is parametrized with a
finite set of control variables. Then, these control variables are the degrees of freedom
to be optimized with an NLP solver.
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Direct Methods for
Optimal Control

Simultaneous
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Single ShootingCollocation Multiple Shooting

Transform OCP to an NLP
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The NLP solver decomposes
the dynamic equations

in pieces

The dynamics are integrated 
by the NLP solver

The NLP solver calls the
simulator in steps

The NLP solver calls the
simulator for the whole

prediction horizon

Figure 1.8: Direct methods for optimal control problems.

The DMs can be divided into sequential methods or simultaneous methods. On the
one hand, the sequential methods embed a dedicated simulator which solves the dif-
ferential equations. On the other hand, the simultaneous methods solve the differential
equation with the NLP solver. The simulator function is instantiated either for the whole
control time horizon for SS, or in pieces for MS. When the simulator function is called
in pieces the convergence of the dynamical equations is controlled by the NLP, there-
fore, MS can be seen as a simultaneous approach. Simultaneous approaches solve the
dynamical equations and optimize the control parametrization at the same time. As op-
posed to MS, Collocation does not require a dedicated simulator, but it instantiates the
Runge-Kutta equations within the NLP solver to impose the dynamical equations directly.

This thesis does not investigate the use of Collocation for solving reservoir control
optimization problems (Heirung et al. 2011). The author prefers to exploit the available
simulators for this large-scale problem instead of studying how to equip the NLP solvers
with this capability. Nevertheless, the customization of optimization algorithms based
on the Collocation formulation is suggested for a future study after the application of
MS.

Second-order derivative information may accelerate the convergence of NLP algo-
rithms. Suwartadi et al. (2010) performed numerical studies using second-order deriva-
tives for reservoir control optimization problems. The optimization algorithms that used
second-order derivatives required less iterations to converge than the algorithms using
first-order derivatives only. However, the overall computational time consumed by the
algorithm using second-order information was higher. Moreover, the implementation ef-
fort for this type of algorithms is higher. Therefore, this thesis is limited to algorithms
using only first-order gradient information.
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1.4.2 Single Shooting and Multiple Shooting

Consider the following OCP which is already represented as an NLP:

min
D

ψ (x,v,u) (1.1a)

s.t. : xf
k − xk+1 = 0, k ∈ K, (1.1b)

vf
k − vk = 0, k ∈ K, (1.1c)

Rk

(
xk,x

f
k,v

f
k,uκ(k)

)
= 0, k ∈ K (1.1d)

bx
l ≤ x ≤ bx

u (1.1e)

bv
l ≤ v ≤ bv

u (1.1f)

bu
l ≤ u ≤ bu

u. (1.1g)

where:

• K = {1, . . . ,K} is the set of time steps in the prediction horizon.

• U = {1, . . . , U} is the set of control steps.

• κ : K → U is a function linking a simulation step to a control step.

• x1 is a constant parameter defining the initial state of the dynamic system.

• x = (x2, . . . ,xK+1) are the predicted states of the dynamical system.

• v = (v1, . . . ,vK) are the predicted algebraic states of the dynamical system.

• xf and vf represent the output of the simulator for the state variables and the
algebraic state variables, respectively.

• u = (u1, . . . ,uU ) are the control variables.

• ψ is the objective function which must be minimized.

• Rk represents the simulator. For simplicity, it is assumed that Rk has a unique
solution for xf

k and vf
k given xk and uk respecting their corresponding bounds.

Moreover, it is assumed that
[
∂Rk
∂xf

k

, ∂Rk
∂vf

k

]
is a full rank square matrix in an open ball

around the point
(
xf
k,v

f
k

)
satisfying (1.1d).

• D represents the decision variables of the NLP solver. D is u in the SS formulation
and (x,v,u) in the MS formulation.

• Lower and upper bounds are given by bl and bu, respectively, for the variables
specified in the superscript. The inequality constraints (1.1e)-(1.1f) are regarded
as output constraints because they constrain the simulator output and (1.1g) are
referred to as input constraints for the analogous reason.
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Problem (1.1) is a general formulation that appears in the next chapters of this the-
sis with some modifications according to the context. In this introductory chapter, it is
used to compare solution algorithms, and to compare SS and MS. Observe that these
formulations assume that the constraints (1.1d) are always satisfied. Therefore,

(
xf
k,v

f
k

)
are not independent variables but a function of D.

SS is particularly attractive when dealing with large-scale dynamical systems because
the underlying simulator is loosely coupled to the NLP solver. The NLP solver decides on
the control variables and the simulator provides with function evaluations and sensitiv-
ities of the objective and constraints. Therefore, the NLP formulation is small because
it is independent of the size of x and v. Thus, the general purpose NLP solvers can
not be further developed for SS because the problem has no visible structure to be ex-
ploited. When dealing with a SS formulation, Problem (1.1) is better represented with
the following formulation:

min
u

ψs (u) (1.2a)

s.t. : bx
l ≤ xs (u) ≤ bx

u (1.2b)

bv
l ≤ vs (u) ≤ bv

u (1.2c)

bu
l ≤ u ≤ bu

u. (1.2d)

where ψs, xs, and vs are equal to ψ, x, and v, respectively, when (1.1b)-(1.1d) are
satisfied. The sequential calculation of

(
xs
k+1,v

s
k

)
from k = 1 to k = K so that (1.1d)

and then (1.1b)-(1.1c) are satisfied is regarded as forward simulation. In SS algorithms
the forward simulation is typically run within the simulators without any interaction
with the optimizer during the process. Finally, ψs can be calculated after the simulator
returns xs and vs for all the time steps.

An important ingredient for NLP algorithms is a procedure to compute gradients.
Kraaijevanger et al. (2007) provide a simple but comprehensive overview of gradient
computation methods with applications to reservoir control optimization. The most effi-
cient SS algorithms rely on the adjoint method for gradient computation. This method is
attractive because the gradient computation of a real-valued function such as ψs requires

at most the solution ofK linear systems involving the transposed Jacobians
[
∂Rk
∂xf

k

, ∂Rk
∂vf

k

]>
.

The computational burden is considered independent of the number of control inputs
but increases linearly with the number of outputs. However, observe that it is possible to
avoid repeated calculations when computing gradients of several real-valued functions,
e.g., the preconditioners for the linear systems may be computed only once.

The ability to handle output constraints is an essential feature for OCPs. For in-
stance, xs

k(u) may not respect (1.2b) and therefore it may provoke simulation failures.
In particular, for reservoir control optimization problems, it is required to define output
constraints to prevent flow reversal in wells if these are controlled by pressure. However,
the inclusion of these constraints requires more adjoint gradient computations in many
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NLP solvers, e.g., SNOPT (Gill et al. 2005) and IPOPT (Wächter et al. 2005). Therefore,
specialized methods using a single adjoint based on the Augmented Lagrangian penalty
(Chen et al. 2010; Chen et al. 2012) and heuristic methods (Kourounis et al. 2014)
have been suggested to handle output constraints efficiently. In practice not all of xs

k(u)
and vs

k(u) require constraints, therefore, the corresponding bounds are relaxed and the
constraints are not interfaced to the NLP solver.

The application of decomposition techniques to oil production optimization (Foss
et al. 2015) and to more general optimization problems (Conejo et al. 2006) is a viable
way to tackle large but structured problems. According to Foss et al. (2015), structure ex-
ploitation through the application of decomposition techniques improves the efficiency
of the numerical solvers and increases the flexibility of the optimization problem. Prob-
lem (1.1) has no apparent structure besides the chained equations (1.1b) and (1.1d).
However, the decomposition of problem (1.1) is motivated by computationally intensive
simulators. If the constraints (1.1b) are relaxed, then all the simulation steps can be
run in parallel. Moreover, if such a technique is applied, the NLP algorithms must di-
rectly decide the variables x, so the satisfaction of the constraints (1.1e) is a trivial task.
However, the NLP algorithms must guarantee the convergence of (1.1b).

The Augmented Lagrangian method (Bertsekas 1996; Bertsekas 1999) has been sug-
gested to coordinate structured problems which are tackled with decomposition (Conejo
et al. 2006; Tosserams et al. 2006; Tosserams et al. 2009). Moreover, the Augmented
Lagrangian method has been applied successfully to the output-constrained reservoir
control optimization problems formulated with SS (Chen et al. 2010; Chen et al. 2012).
Therefore, a natural idea is to apply this method to decompose and solve (1.1). To this
end, the following subproblem is defined:

ψ?(λ, α) = min
x,v,u

ψ (x,v,u) +
∑
k∈K

(
λ>k

[
xf
k − xk+1

vf
k − vk

]
+

1

2
α

∥∥∥∥xf
k − xk+1

vf
k − vk

∥∥∥∥2
)

(1.3a)

s.t. : bx
l ≤ x ≤ bx

u (1.3b)

bv
l ≤ v ≤ bv

u (1.3c)

bu
l ≤ u ≤ bu

u. (1.3d)

where λ and α are regarded as the Lagrange multipliers and the quadratic penalty,
respectively. The algorithm iterates through the following steps:

1. Solution of the relaxed primal problem (1.3).

2. Update of λ and α.

3. Convergence checking.
The update of the multipliers λ is usually performed with the method of multipliers
(Bertsekas 1999) whereas the penalty parameter α is left equal or increased according
to heuristic rules.
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Although all the simulations in (1.1d) are independent and can be run in parallel,
solving problem (1.3) is still computationally expensive. Note that the number of vari-
ables is very high because x is a decision variable. Therefore, it is recommended to use
loose convergence conditions on the first iterations and to use the Alternating Direction
Method of Multipliers (Tosserams et al. 2006). However, the relaxation of the conver-
gence tolerances of (1.3) may deteriorate the convergence rate of the overall algorithm
if safeguard conditions are not appropriately tuned (Bertsekas 1999).

The Reduced Sequential Programming (rSQP) method (Biegler et al. 1997; Nocedal
et al. 2006) is an alternative approach to problem (1.1). Instead of including the con-
straints (1.1b)-(1.1c) as a penalty, the rSQP method exploits the structure of these con-
straints. Consider the following reformulation of problem (1.1):

min
D

ψ (D) (1.4a)

s.t. : 0 = c(D) (1.4b)

bl ≤ D ≤ bu (1.4c)

where D = (x,v,u) is a guess to the optimal solution and c represents all the equality
constraints, i.e., cx =

(
xf

1 − x2, . . . ,x
f
K − xK+1

)
, cv =

(
vf

1 − v1, . . . ,v
f
K − vK

)
and c =

(cx, cv).
The Sequential Quadratic Programming (SQP) method (Nocedal et al. 2006, p. 531)

finds an update to D with a Quadratic Programming (QP) problem. This QP is:

min
d

g>d+
1

2
d>Wd (1.5a)

s.t. : 0 = c+A>d (1.5b)

bl ≤ D + d ≤ bu (1.5c)

where d = (∆x,∆v,∆u), g> = (∂ψ∂x ,
∂ψ
∂v ,

∂ψ
∂u ), and W is an approximation to the Hessian

of the Lagrangian function ψ+λ>c. The linearization of c around D leads to a structured
matrix A:

A> =

[
dxf

dx − I 0 dxf

du
dvf

dx −I dvf

du

]
(1.6)

Observe that building the matrix A is not practical for reservoir applications due to
the high number of required gradient calculations and memory for storage. Instead of
building A, the rSQP method relies on a matrix Z spanning the nullspace of A> (A>Z =
0) and a matrix Y such that [Y, Z] is square and full rank. Thus, d can be represented
with two vectors py and pz which parametrize the range-space and the nullspace solution
of (1.5b), respectively:

d = Y py + Zpz (1.7)
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Observe that (1.7) and (1.5b) lead to a unique solution for py:

py = −
(
A>Y

)−1
c (1.8)

And to the reduced QP problem:

min
pz

(
g>Z + w

)
pz +

1

2
p>z Bpz (1.9a)

bl ≤ D + Y py + Zpz ≤ bu (1.9b)

where w = p>y Y
>WZ and B = Z>WZ. This thesis uses the most popular choice of Z

and Y (Biegler et al. 1997, p. 107):

Y =

Ix 0
0 Iv
0 0

 , Z =

[
−C−1N
Iu

]
, C =

[
∂c
∂x

∂c
∂v

]
, N =

∂c

∂u
(1.10)

With this choice, the independent variables of the reduced problem (1.9) are the step on
the control variables of the OCP, i.e., pz = ∆u. Observe that the invertibility of C follows
from the non-singularity of

[
∂Rk
∂xf

k

, ∂Rk
∂vf

k

]
. This is a required condition for the construction

of Z and the solution of py in (1.8).
The procedure to build and solve (1.9) has a great impact on the efficiency of the

solution process. This requires the following calculations:
• The simulations in (1.1d) for the current solution guess D. Observe that these

simulations can be performed in parallel. Moreover, (x,v) may be used as an initial
guess for (xf,vf) in the iterative solvers for the implicit systems.

• The range-space solution py given by (1.8). This procedure requires one forward
gradient propagation as explained in Section 2.A.

• A positive definite approximation for B. This may be instantiated using the actual
value of the reduced Hessian Z>WZ with a regularization if it is not positive
definite. However, a procedure for this calculation is computationally costly or not
available. Thus, Quasi-Newton approximations are typically used instead, which
require the evaluation of two Lagrangian gradients.

• The cross-term w may be approximated following the recommendations in (Biegler
et al. 1997). However, the algorithms in this thesis neglect w, i.e., w = 0.

• Evaluations involving the matrix Z.
The construction of the matrix Z is performed indirectly evaluating vector-matrix

multiplications (l>Z) or matrix-vector multiplications (Zr). Thus, Z can be constructed
by iterating over each column of the corresponding identity matrix. The construction of
the matrix Z requires a forward gradient propagation for each vector r or an adjoint

18
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(backward) gradient propagation for each vector l. Observe that the matrix Z has as
many columns as control variables and as many rows as state variables and algebraic
state variables. Thus, the construction of Z using the adjoint method is not practical due
to the high number of states in reservoir problems. However, if the dimension of the
parametrization of the control input is low, the forward method is recommended.

In some cases, the construction of the matrix Z may be impossible due to the lack
of memory for storage or may be inefficient due to the requirement of a large number
of gradient calculations. Then, problem (1.9) can be solved without building explicitly
Z. To this end, the violating constraints are incorporated on demand according to the
following steps:

1. Estimate a subset J of the constraints that would be violated by the unconstrained
solution of (1.9). This subset can be initialized with information from previous
rSQP iterations.

2. Compute the rows of Z corresponding to J with the adjoint method .

3. Find a solution pJz for problem (1.9) considering only the constraints in J .

4. Compute ZpJz , which requires an additional forward gradient propagation, and
check the feasibility of (1.9b).

5. If pJz is feasible, then pJz is a solution for (1.9). If pJz is infeasible, then include a
subset of the violated constraints to J and repeat the procedure from the step 2.

Observe that problem (1.9) may be infeasible to solve. However, this provisional
infeasibility may not imply that (1.4) is infeasible. Therefore, a reasonable step d may be
found with an adaptation to problem (1.9). To this end, a slack variable can be included
according to the algorithm developed in Chapter 2 or py may be damped according to
the algorithm used in Chapter 4.

The MS formulation equipped with the rSQP algorithm can tackle the same problems
as the SS formulation with a general SQP algorithm as described in (Nocedal et al.
2006). The main advantages of MS over SS as discussed here are:

• The opportunity to parallelize the execution of the simulation steps.

• The readily available initial guess for the simulation solvers.

• The different options to deal with Z and the constraints.
However, the rSQP method for MS deals with a more involved implementation than
SS, in particular to provide the range space solution py which requires the computa-
tion of gradients in forward mode. Observe that the procedures to propagate gradients
in forward mode are not usual in reservoir simulators. Moreover, it is not discussed if
the overall convergence rate of the MS algorithm is affected by the infeasibility of the
constraints (1.1b).

Albersmeyer (2010) and Albersmeyer et al. (2010) compare the lifted and nonlifted
Newton methods which are equivalent to MS and SS, respectively. Albersmeyer et al.
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(2010) indicate that MS is long known to outperform SS (Osborne 1969). Moreover,
Albersmeyer et al. (2010) point as advantages the freedom for initialization of x and
v in addition to the condition and block-sparsity structure of the linear systems in MS.
However, Albersmeyer et al. (2010) show simple example cases where either SS or MS
have better local convergence rate than each other.

1.5 Outline and contributions

The subsequent chapters of this thesis are articles that have been submitted or published
in international journals and conferences. Consequently, the chapters are independent
and the reader can choose the order to follow. However, they are sorted by topic and
relevance. The chapters 2 to 4 deal with the reservoir optimization problem. It is rec-
ommended to read Chapter 2 first because the chapters 3 and 4 use concepts discussed
in the former. Chapter 5 deals with daily production optimization and Chapter 6 with
regulatory control and optimization. Finally, Chapter 7 provides concluding remarks and
discusses future research directions.

The main contributions by chapter are:

2. The work in Chapter 2 was inspired by daily-production optimization problems
where the gathering facilities operate continuously at the constraint limits. The
initial research objective was to use decomposition techniques for tackling out-
put constraints at each predicted step of the waterflooding control optimization
problem. Therefore, Chapter 2 proposes a problem formulation which allows for
the parallelization of simulations and inequality constraints at each predicted time
step. However, this decomposition technique deals with the predicted time steps
independently at the expense of a provisional inconsistency of the predictions.
Thus, Chapter 2 proposes an optimization algorithm that ensures the consistency
of the prediction at convergence. Finally, Chapter 2 solves waterflooding problems
that are impossible to solve by applying a conventional SS framework. Although
the Multiple Shooting formulation and the rSQP algorithms were previously devel-
oped, these tools have not been combined earlier to tackle the waterflooding op-
timization problem. Therefore, to the knowledge of the author, this work pioneers
the application of a large-set of constraints and parallelization on this problem.
This chapter is based on the paper (Codas et al. 2015).

3. The initial application of the Multiple Shooting formulation was limited to two-
phase (oil-water) reservoirs. The direct extension to three-phase reservoirs con-
taining fluids described by the black-oil model was not possible due to a change of
primary variables for simulation. Therefore, Chapter 3 proposes a re-parametrization
of the state variables that is valid for the black-oil model and the extended black-
oil model. Moreover, it is shown that there is a bijective explicit transformation
that permits the execution of simulations on the original variables space and the
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optimization on the new parameters space. Therefore, the re-parametrization is
not intrusive. Finally, Chapter 3 demonstrates the application of the formulation
to benchmark cases dealing with volatile oil and wet gas. This chapter is based on
(Codas et al. 2016a).

4. Chapter 4 extends the algorithms developed in the previous chapters to deal with
uncertainty. Uncertainty plays a central role in the reservoir management problem
due to the difficulty to measure and estimate the reservoir conditions. Chapter 4
formulates the robust reservoir control optimization problem with Multiple Shoot-
ing. Moreover, it applies coherent risk measures to handle output constraints. Thus,
this framework allows for constraints on risk at all the predicted time steps. Be-
sides the typical parallelization applicable for simulation of different scenarios, the
simulation can be parallelized for the different predicted steps. In contrast to the
previous rSQP algorithms which relied only on the forward method for gradient
calculations, the algorithm presented in Chapter 4 relies on the adjoint method for
gradient computation. This improvement diminishes the requirement of memory
and is suitable for problems with a large number of control variables. The pro-
posed framework is applied to a benchmark case considering several constraint
scenarios. Finally, the capability of the algorithm to handle constraints on the risk
of total field water production was shown. This chapter is based on (Codas et al.
2016b).

5. Chapter 5 deals with the daily production optimization problem. Algorithms for
the daily production optimization problem have been extensively discussed in the
literature. This work deals with a real onshore field which has a rather complicated
gathering network structure. The overall goal was to develop a decision support
tool that improves the well scheduling proposed by experienced production engi-
neers. Therefore, an important task of the work was to identify all the available
routing degrees of freedom. This work introduces a new parametrization for piece-
wise linear models of pipeline pressure drops. This surrogate model is better suited
because it uses the same independent variables as the simulators used by the field
engineers. Moreover, this work proposes simple algorithms to reduce the size of
the surrogate models while respecting a threshold for accuracy. Finally, it is shown
the quality of the optimal solution and the capability to compute optimal solutions
in real-time. This chapter is based on (Codas et al. 2012b).

6. Chapter 6 deals with the regulatory control and the optimization of a simple oil
gathering network. The objective is to study the interaction between the regu-
latory controllers and the nonlinear model predictive controller which steers the
system to an optimal operational point. The gathering network is open loop un-
stable around the optimal operational point, thus a cascade Proportional-Integral
controller is proposed to keep stability. The predictive controller obtains feedback
of the current state from an Extended Kalman Filter and steers the system to the
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steady-state optimal. The predictive controller uses the Multiple Shooting formu-
lation which allows for the inclusion of output constraints. The contribution of this
chapter lies on the control structure and the application of simplified models for
closed-loop model predictive control. Numerical studies on the interaction of this
two control layers were not available in the literature. This chapter is based on
(Codas et al. 2016c).

In addition to the contributions listed above, the author contributed in the following
publications during the PhD studies:

• Codas, A. et al. (2013). ‘Differentiation Tool Efficiency Comparison for Nonlinear
Model Predictive Control Applied to Oil Gathering Systems’. In: 9th IFAC Sympo-
sium on Nonlinear Control Systems, 2013. Ed. by Tarbouriech, S., pp. 821–826. DOI:
10.3182/20130904-3-FR-2041.00069.

• Aguiar, M. A. et al. (2015). ‘Systemwide Optimal Control of Offshore Oil Produc-
tion Networks with Time Dependent Constraints’. In: 2nd IFAC Workshop on Auto-
matic Control in Offshore Oil and Gas Production. Vol. 48. 6. Elsevier Ltd., pp. 200–
207. DOI: 10.1016/j.ifacol.2015.08.032.

The author co-supervised the following theses:

• Nalum, K. (2013). ‘Modeling and Dynamic Optimization in Oil Production’. Master
thesis. Norwegian University of Science and Technology.

• Aguiar, M. A. (2013). ‘Optimal oil production network control using Modelica’.
Final project work. Federal University of Santa Catarina.

• Lund, T. (2014). ‘Non-linear model predictive control for an oil production net-
work based on gas-lift’. Master thesis. Norwegian University of Science and Tech-
nology.

• Krogstad, J. A. (2015). ‘Control-Switching Strategies for Reservoir Water-Flooding
Management’. Master thesis. Norwegian University of Science and Technology.

This is a list of presentations to companies and dissemination of the research results:

• Long-Term & Short-term Production Optimization. Meeting at Kongsberg Oil &
Gas. July 2012.

• Optimization Opportunities Using K-Spice. Meeting at Kongsberg Oil & Gas. Octo-
ber 2012.

• Dynamic Simulator Optimization. Meeting at Kongsberg Oil & Gas. October 2012.

• Dynamic Production Optimization. Technical Committee Meeting - IO Center. May
2013.

• Nonlinear Optimization Methods for Solving a Reservoir Multiple Shooting Control
Formulation. Meeting at Petrobras. August 2013.
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• Differentiation Tool Efficiency Comparison for Nonlinear Model Predictive Control
Applied to Oil Gathering Systems. At 9th IFAC Symposium on Nonlinear Control
Systems. September 2013.

• Dynamic Production Optimization. Technical Committee Meeting - IO Center. Sep-
tember 2013.

• Adjoint gradient calculation for a simple dynamical system simulated by Backward-
Euler. Meeting at Kongsberg Oil & Gas. October 2013.

• Constraint handling & parallelization via Multiple Shooting applied to oil reservoir
control optimization. Technical Committee Meeting - IO Center. May 2014.

• Simultaneous simulation & optimization for oil reservoir open-loop optimization.
Technical Committee Meeting - IO Center. May 2014.

• Constraint handling & parallelization via Multiple Shooting applied to oil reservoir
control optimization. At 3th Oil and Gas Production Optimization Conference -
Petrobras. May 2014.

• Output Constraint Handling & Parallelization for Oil Reservoir Control Optimiza-
tion via Multiple Shooting. Meeting at The Technical University of Denmark. Au-
gust 2014.

• Output Constraint Handling & Parallelization for Oil Reservoir Control Optimiza-
tion via Multiple Shooting. International Conference on Integrated Operations in
the Petroleum Industry. September 2014. Poster presentation.

• Constraint handling & parallelization applied to reservoir control optimization.
International Symposium on Advanced Petroleum Production (ISAPP). November
2015.
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Chapter 2

Output Constraint Handling and
Parallelization for Oil Reservoir
Control Optimization by Means of
Multiple Shooting

This chapter is based on (Codas et al. 2015):
Codas, A. et al. (2015). ‘Output-Constraint Handling and Parallelization for Oil-

Reservoir Control Optimization by Means of Multiple Shooting’. In: SPE Journal 20.04,
pp. 856–871. ISSN: 1086-055X. DOI: 10.2118/174094-pa.

Abstract

We propose to formulate and solve the reservoir control optimization problem
with the direct multiple shooting method. This method divides the optimal control
problem prediction horizon in smaller intervals which can be evaluated in parallel.
Further, output constraints are easily established on each interval boundary and as
such hardly affect computation time. This opens new opportunities to include state
constraints on a much broader scale than what is common in reservoir optimization
today. However, multiple shooting deals with a large number of variables since it
decides on the boundary state variables of each interval. Therefore, we exploit the
structure of the reservoir simulator to conceive a variable reduction technique to
solve the optimization problem with a reduced sequential quadratic programming
algorithm. We discuss the optimization algorithm building blocks and focus on struc-
ture exploitation and parallelization opportunities. To demonstrate the method’s ca-
pabilities to handle output constraints, the optimization algorithm is interfaced to
an open-source reservoir simulator. Then, based on a widely used reservoir model,
we evaluate performance, especially related to output constraints. The performance
of the proposed method is qualitatively compared to a conventional method.
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Chapter 3

Black-Oil Minimal Fluid State
Parametrization for Constrained
Reservoir Control Optimization

This chapter is based on (Codas et al. 2016a):
Codas, A. et al. (2016a). ‘Black-oil minimal fluid state parametrization for con-

strained reservoir control optimization’. In: Journal of Petroleum Science and Engineering
143, pp. 35–43. ISSN: 0920-4105. DOI: 10.1016/j.petrol.2016.01.034.

Abstract

We propose to solve a black-oil reservoir optimal control problem with the Direct
Multiple Shooting Method (MS). MS allows for parallelization of the simulation time
and the handling of output constraints. However, it requires continuity constraints
on state variables to couple simulation intervals. The black-oil fluid model, consider-
ing volatile oil or wet gas, requires a change of primary variables for simulation. This
is a consequence of the absence of a fluid phase due to dissolution or vaporization.
Therefore, reservoir simulators parametrize the states with an augmented vector
and select primary variables accordingly. However, the augmented state vector and
the corresponding change of primary variables are not suitable for the application
of MS because the optimization problem formulation must change according to the
change of variables. Thus, we propose a minimal state-space variable representation
that prevents this shortcoming. We show that there is a bijective mapping between
the proposed state-space representation and the augmented state-space. The mini-
mal representation is used for optimization and the augmented representation for
simulation, thereby keeping the simulator implementation unchanged. Therefore,
the proposed solution is not invasive. Finally, the application of the method is exem-
plified with benchmark cases involving live oil or wet gas. Both examples empha-
size the requirement of output constraints which are efficiently dealt with the MS
method.
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3.1 Introduction

The Direct Multiple Shooting Method (MS) is an effective technique to deal with output
constraints in control optimization of two-phase reservoirs (Codas et al. 2015). However,
the extension of this method to three-phase black-oil models is not trivial due to the
reservoir grid-block state-space representation of the fluid saturation condition. This
work extends the MS method in (Codas et al. 2015) to miscible black-oil fluid models
including live oil and wet gas. Compared to immiscible models, the miscible black-oil
model requires additional analysis of the fluid state during simulation to determine the
fluid flow conditions appropriately.

Black-oil models are convenient due to their computational simplicity and their ca-
pability to approximate compositional models (Fevang et al. 2000). Black-oil models can
be seen as a special case of compositional models with three components, water, oil, and
gas, associated to three reservoir phases, aqueous, liquid and vapor, respectively. A com-
ponent may be seen as an indivisible set of molecules which are transported within a
fluid phase. A phase is a mixture of components, a homogeneous part of the fluid which
is separated of other phases by a boundary surface. The oil and gas chemical compo-
nents are typically defined as the composition of the liquid phase and vapor phase at
standard conditions, respectively. Here, the water component is treated as an immisci-
ble component found exclusively in the aqueous phase. Moreover, oil and gas are the
main components of the liquid and vapor phases. However, oil and gas components may
exist in both the liquid and vapor phases in the reservoir pressure and temperature con-
ditions. Wet gas models consider a fraction of the oil components vaporized in the vapor
phase, whereas live oil models consider a fraction of gas components dissolved in the
liquid phase.

Depending on the components properties and reservoir conditions, a component may
exist in the fluid mixture while its associated phase may be absent (Mattax et al. 1990;
Chen et al. 2006). For instance, the gas and oil components may be completely dissolved
in the liquid phase and in this case no vapor phase exists. In live oil models, there is a
maximum amount of gas components that can be dissolved in the liquid phase at a
given pressure and temperature condition. If the gas components found in the fluid
do not reach this maximum amount then the fluid is regarded as under-saturated. In
under-saturated conditions, no vapor phase is present. The vapor phase appears if and
only if the liquid phase gets saturated of gas, for instance, as a consequence of a drop of
pressure below the bubble point pressure. Analogously, wet gas models have an under-
saturated and saturated state depending on the fluid conditions, and the existence of the
liquid phase depends on the saturation condition.

Compared to compositional simulators, black-oil simulators dispense with the equa-
tions of state needed to define component mass fractions. During simulation, the fluid
state is monitored and the set of equations describing the fluid flow is switched when a
phase appears or disappears (Chen et al. 2006). Thus, any optimization procedure han-
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dling this simulator must be capable to determine when the transition occurs and switch
the set of equations and primary variables accordingly. Therefore, the optimizer inherits
the simulator complexity. Further, since the state representation is discontinuous, MS
optimizers face an additional complexity to estimate predicted states.

The application of optimal control to improve the economical return of oil reservoirs
described by three-phase black-oil models is not new as Zakirov et al. (1996) applied
the Conjugate Gradient method to solve this problem. A real field example considering
a fluid model with gas soluble in the oil phase was optimized by Davidson et al. (2003)
using the Sequential Quadratic Programming method. Recently, Krogstad et al. (2014)
optimized a reservoir model including live oil with a line-search method and a heuristic
control-switching method to handle output constraints. However, in the previous works
the state variables are not explicitly available in the optimization method as in MS,
therefore the specific representation of the state variables does not impose any problem.
Key advantages that come with the explicit representation of the states are simulation
parallelization opportunities and easy output-constraint handling (Codas et al. 2015).

This work aims to develop a MS formulation for control optimization of oil reser-
voirs modeled with the black-oil model including gas. In Section 3.2.1 we describe the
reservoir model and Appendix 3.A presents a simplified procedure to solve it. Then, in
Section 3.3 we develop a minimal state parametrization to represent the fluid state that
is suitable for a MS optimal control problem formulation. In the following section we
demonstrate the applicability of this new formulation to simple test cases. Finally, this
work ends with a discussion of the results and a brief conclusion in sections 3.5 and 3.6,
respectively.

3.2 Reservoir model

This works aims to develop a MS formulation which adapts tightly to black-oil reservoir
simulators containing miscible hydrocarbons. This section briefly presents the equations
being solved in such reservoir models. The solution procedure described in Section 3.A is
taken from the Matlab Reservoir Simulation Toolbox (MRST) (Lie et al. 2011; Krogstad
et al. 2015) which is later used in our test cases.

3.2.1 The miscible black-oil flow in porous media

The mass conservation principle, the capillary pressure phenomenon, the Darcy law and
an empirical modeling of components miscibility given by the black-oil model lead to the
differential equations describing three-phase flow in porous media (Chen et al. 2006, p.
283):
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∂

∂t

(
φSa
Ba

)
= −∇ · (Ta∇Φa) +

qa
Ba

, (3.1a)

∂

∂t

[
φ

(
Sl
Bl

+
RvSv
Bv

)]
= −∇ · (Tl∇Φl +RvTv∇Φv) +

ql
Bl

+
qvRv
Bv

, (3.1b)

∂

∂t

[
φ

(
Sv
Bv

+
RlSl
Bl

)]
= −∇ · (Tv∇Φv +RlTl∇Φl) +

qv
Bv

+
qlRl
Bl

, (3.1c)

Sa + Sl + Sv = 1, (3.1d)

pcla = pl − pa, pcvl = pv − pl, (3.1e)

Φα = pα − ρα ‖g‖ z, Tα = λαk =
krα
µαBα

k, α ∈ {a, l, v} ; (3.1f)

The nomenclature for (3.1) is presented in Table 3.1.
The gas solubility and the oil volatility determine the fluid miscibility and its satu-

ration state. The gas solubility and oil volatility range from zero (for immiscible fluids)
to a maximum value given by a saturation function, i.e., Rv ≤ Rmax

v and Rl ≤ Rmax
l .

Furthermore, it is assumed that a phase can exist only if the reciprocal phase is satu-
rated, i.e., Sv > 0 → Rl = Rmax

l and Rl < Rmax
l → Sv = 0 (Sl > 0 → Rv = Rmax

v and
Rv < Rmax

v → Sl = 0).
The saturation functions Rmax

v and Rmax
l are typically modeled as a function of the

phase pressure.
The well flows qα are not distributed over the reservoir, but concentrated at the well

perforations, therefore well equations according to Peaceman (1983) are included with
the Dirac δ function centered around the well perforations:

qα =
∑
w∈W

∑
m∈Mw

W I
w,m

krα
µα

(pwbh − pα) δ (x− xw,m) , α ∈ {a, l, v} (3.2)

The nomenclature for (3.2) is presented in Table 3.1.
For simplicity, the well model described above does not include interactions between

perforations of the same well due to the flow in the tubing. Therefore, the pressure
difference due to the fluid gravity column is disregarded within the well. Moreover, the
equations are written for the phases at reservoir conditions, but these equations are
further manipulated to represent the flow at standard conditions.
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Table 3.1: Nomenclature
Variable Description
t Time.
{a, l, v} Set of phases (aqua, liquid and vapor).
{W,O,G} Set of components (water, oil and gas).
φ Rock porosity.
Sα Saturation of the phase α.
Bα Phase α’s formation volume factor.
qβs Standard volumetric flow of component β injected or produced through

the wells.
krα Phase α’s relative permeability.
µα Phase α’s viscosity.
k Rock absolute permeability.
pα Phase α’s absolute pressure.
ρα Phase α’s density.
‖g‖ Gravity absolute value.
z Height (increases in the same direction as the gravity).
pcla Liquid-aqueous capillary pressure.
pcvl Vapor-liquid capillary pressure.
Rv Oil volatility in the vapor phase.
Rl Gas solubility in the liquid phase.
x Space coordinates.
W Set of wells.
Mw Set of perforations of well w.
W I
w,m Well index related to the perforation m of well w located at xw,m.

pwbh Bottom hole pressure of well w.
NP Number of phases.
NC Number of components.
χ Five dimensional grid-block state variable (pl, Sa, Sv, Rl, Rv).
γ Three dimensional grid-block state variable (pl, Sa, rH).
Γ Transformation taking χ to γ.
(rO, rG, rH) See eq. (3.3).
S Saturation state, see Table 3.2.
ζ Simulation primary variable, see Table 3.2.
(wO, wG) Volume fraction of oil and gas at standard conditions.
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3.3 Multiple Shooting applied to the reservoir optimal
control problem

A MS formulation divides the control problem time horizon in several shooting intervals.
Each shooting interval has independent initial condition variables. These are coupled to
their neighboring shooting intervals through state equality constraints at the interval
boundaries. Therefore, an important issue concerning the MS formulation and black-oil
models is the parametrization of the states.

Fluid systems are fully characterized by their intensive variables which are pressure,
temperature and concentration of the fluid phases. Therefore, a three-phase (NP = 3)
system with three components (NC = 3) is characterized by twelve variables (12 =
(NC + 1)NP ), i.e., compositions, pressure and temperature for each phase. However,
in a reservoir simulator, the degrees of freedom are not twelve because it assumes flu-
ids in thermodynamic equilibrium. According to Gibbs phase rule1 (Danesh 1998), 10
constraints ((NC + 2) (NP − 1) = 10) are required to ensure consistent components po-
tential, pressure and temperatures among phases. Furthermore, since we restrict this
work to isothermal reservoirs, one further degree of freedom is lost since the tempera-
ture is fixed. Thus, only one variable (NC −NP + 1) = 1 is required to fully determined
the intensive properties of such fluid systems. However, if the fluid does not form three
phases, i.e., if NP < 3, more variables are needed.

Reservoir simulators also require extensive fluid properties, which are determined
by the total grid-block void space and the saturations of the formed phases (Acs et
al. 1985). The usual variable to describe the intensive properties is the liquid phase
pressure, which also describes the void space after the rock compressibility function.
In addition, (NP − 1) variables describe the saturations. Thus, NC = (NC −NP + 1) +
(NP − 1) describe all the desired properties.

The NC variables for simulation may be selected according to the current phases in
the fluid. For instance, for a three-phase black-oil fluid, the variables (pl, Sa, Sv) fully
characterize the grid-block state if Sa > 0 and Sv > 0, however these variables are not
descriptive when the vapor phase is missing due to under-saturation. MRST resolves this
issue by keeping more variables

(
χ ∈ R5

)
per grid-block during simulation and switching

the set of primary variables and equations according to the saturation state. Therefore,
MRST requires additional measures to keep consistency between the 5 variables and
their saturation states.

The natural extension of a simulator to a MS optimal-control problem formulation
uses the same state variables on the simulator and on the optimizer side. However, the
black-oil simulator in MRST is not suitable for such extension due to the requirement
of extra variables for simulation and the related extra consistency checks. Observe that

1The Gibb’s rule for fluid systems in equilibrium is usually stated as F = NC −NP + 2, where F is the
number of the degrees of freedom to fully describe the system.
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the number of required extra variables and algebraic equations grows proportionally
to the grid size times the simulated steps. Furthermore, an extension considering the
actual simulated variables (pl, Sa, ζ) is also not possible due to the discontinuity in ζ, see
Appendix 3.A.

In this section we propose a new state parametrization that overcomes the afore-
mentioned issues and enables the use of an efficient MS implementation. Furthermore,
we show that it is possible to preserve the simulator because the states are easily trans-
formed from the optimizer space to the simulator space.

3.3.1 State variables transformation

Consider the transformation Γ : R5 → R3 taking the variables χ = (pl, Sa, Sv, Rl, Rv) to
the variables γ = (pl, Sa, rH). The variable rH is defined as:

rO =
Sl
Bl

+Rv
Sv
Bv

(3.3a)

rG =
Sv
Bv

+Rl
Sl
Bl

(3.3b)

rH =
rG

rG + rO
(3.3c)

The dimensionless variables rO and rG are the standard volumes of the oil and gas
components in the grid-block void space divided by the pore volume. Therefore, rH is
the ratio between standard volumes of the gas components and the hydrocarbons.

Besides possible physical bounds to rH depending on the limits on pressures and
saturation on the grid block, we easily observe that 0 ≤ rH ≤ 1.

The variable rH is undefined when (rO + rG) = 0. However, this issue does not imply
in any difficulty to the state representation because Sa = 1 ↔ (rO + rG) = 0 ↔ rO =
0, rG = 0. This means that the grid block is filled up with water and no hydrocarbon
phase is present, thus rH is not required to represent the grid block state. Any convention
can be adopted to define a value for rH in this case, e.g., rH = 0.

In order to use γ to represent the state χ it must exist a function Γ−1 : R3 → R5 such
that Γ−1 (Γ (χ)) = χ, for all the valid values of χ describing a reservoir state. A state
representation χ is valid if, 0 < pl, 0 ≤ Sa ≤ 1, 0 ≤ Sv ≤ 1, Sv + Sa ≤ 1, Rl ≤ Rmax

l and
Rv ≤ Rmax

v . We will show that Γ−1 exists by construction.
It is trivial to calculate pl and Sa in χ from γ because these variables are equal,

therefore we focus on how to calculate Sv, Rl and Rv.
The function Γ−1 relies on the values of pl and rH to calculate the fluid saturation

state label. Given rH it is possible to calculate the corresponding under-saturated values
for Rl and Rv. These under-saturated values must be consistent with Rmax

l and Rmax
v

according to Table 3.2, otherwise the fluid is not under-saturated. Thus, the procedure
evaluates the following cases:
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3.3.1.1 Case S l (under-saturated liquid)

The remaining states can be obtained by:

Sv = 0 (3.4a)

Rl =
rH

1− rH
(3.4b)

Rv = Rmax
v (3.4c)

The transformation is valid if:

Rl ≤ Rmax
l (3.5)

3.3.1.2 Case Sv (under-saturated vapor)

The remaining states can be obtained by:

Sv = 1− Sa (3.6a)

Rv =
1− rH
rH

(3.6b)

Rl = Rmax
l (3.6c)

The transformation is valid if:

Rv ≤ Rmax
v (3.7)

3.3.1.3 Case Sa (water)

The remaining states can be obtained by:

Sv = 0 (3.8a)

Rv = Rmax
v (3.8b)

Rl = Rmax
l (3.8c)

The transformation is valid if:

Sa = 1 (3.9)
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3.3.1.4 Case Ss (saturated)

The remaining states can be obtained by:

Sv =
rH (1 +Rmax

l )−Rmax
l

Bl

(
rH(1+Rmax

l )−Rmax
l

Bl
+ 1−rH(1+Rmax

v )
Bv

) (1− Sa) (3.10a)

Rv = Rmax
v (3.10b)

Rl = Rmax
l (3.10c)

The transformation is valid if the fluid is not cast in any of the first three cases. An effi-
cient classification for transformation is achieved by first computing Rmax

l and Rmax
v ,

which are functions of pl only, and then testing the conditions (3.4b)-(3.5), (3.6b)-
(3.7) and (3.9). However, the transformation could fail if eq. (3.10a) provides Sv out of
bounds. Theorem 3.1 shows that this situation is impossible:

Theorem 3.1. Consider a valid state representation (pl, Sa, rH) such that Rmax
l < rH

1−rH ,
Rmax
v < 1−rH

rH
and Sa < 1. Then, the value of Sv given in (3.10a) satisfies 0 ≤ Sv ≤ 1.

Proof. Observe that 0 < rH (1 +Rmax
l )−Rmax

l :

0 <
rH

1− rH
−Rmax

l (3.11a)

0 < rH −Rmax
l +Rmax

l rH (3.11b)

0 < rH (1 +Rmax
l )−Rmax

l (3.11c)

Furthermore, 0 < 1− rH (1 +Rmax
v ):

0 <
1− rH
rH

−Rmax
v (3.12a)

0 < 1− rH −Rmax
v rH (3.12b)

0 < 1− rH (1 +Rmax
v ) (3.12c)

Thus, the numerator and the denominator of (3.10a) are positive, therefore Sv > 0. The
inequality Sv < 1 is easily confirmed after re-writing (3.10a):

Sv =

1 +

>0︷ ︸︸ ︷
1−rH(1+Rmax

v )
Bv

rH(1+Rmax
l )−Rmax

l

Bl


−1

︸ ︷︷ ︸
<1

(1− Sa)︸ ︷︷ ︸
<1

< 1 (3.13a)
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Lastly, the transformation can be undetermined if simultaneously:

0 =
rH

1− rH
−Rmax

l (3.14a)

0 =
1− rH
rH

−Rmax
v (3.14b)

However, eq. (3.14) implies in 1−Rmax
l Rmax

v = 0 which is inconsistent in black-oil mod-
els (Trangenstein et al. 1989). This is a property that the fluid must fulfill by construction
of the model.

3.3.2 State variables transformation based on volume fractions

Another transformation candidate for a minimal representation is Γ̂ : R5 → R3 taking
the variables χ = (pl, Sa, Sv, Rl, Rv) to the variables γ̂ = (pl, wO, wG). The variables wO
and wG are defined as:

wO =
rO

rW + rO + rG
(3.15a)

wG =
rG

rW + rO + rG
(3.15b)

where rW = Sa
Ba

. This candidate is attractive because wO and wG are the volume frac-
tions at standard conditions. Moreover, the construction of Γ̂−1 is possible following
a similar procedure as presented in Section 3.3.1. However, Γ̂−1 additionally requires
wO + wG ≤ 1. Consequently, the optimization problem formulation developed in Sec-
tion 3.3.3 requires more constraints to use Γ̂. Therefore, we prefer the transformation Γ
developed in Section 3.3.1.

3.3.3 Optimal control problem formulation

We extend the optimal control problem formulation in (Codas et al. 2015) aiming to
solve black-oil problems with a MS formulation. Thus the problem formulation is:

min
Θc

ψc (Θc) (3.16a)

s.t. : γf
k − γk+1 = 0, k ∈ K, (3.16b)

R
(

Γ−1 (γk) ,Γ
−1
(
γf
k

)
,vk,uκ(k)

)
= 0, k ∈ K (3.16c)

bγl,k ≤ γk ≤ bγu,k, k ∈ K (3.16d)

bv
l,k ≤ vk ≤ bv

u,k, k ∈ K (3.16e)

bu
l,i ≤ ui ≤ bu

u,i, i ∈ U (3.16f)
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The optimization variables Θc consist of
(
γ, γf,v,u

)
. The optimization time horizon is

divided into K time frames where K = {1, . . . ,K}. The state variables
(
γ, γf,v

)
are

indexed for each frame in K. However, the control variables are indexed on the set
U = {1, . . . , U} and the function κ : K → U maps a control index for every time frame
index. The continuity of the state variables across intervals is enforced by the constraints
(3.16b) on the space of γ = (pl, Sa, rH). The bijective transformation Γ enables to link
the simulator state variables defined on χ = (pl, Sa, Sv, Rl, Rv) to the state variables
for optimization given by γ, as described by the constraints (3.16c). Output constraints
can be imposed as bounds on the state variables γ and on the algebraic state variables
v, as described by the constraints (3.16d) and (3.16e), respectively. Furthermore, input
constraints are imposed by the constraints (3.16f). The objective function ψc is defined
on the space of Θc and may instantiate the Net Present Value (NPV) of the recovery
process.

The formulation (3.16) is not suitable for general purpose NLP solvers due to the size
of the Jacobian of (3.16c). However, this formulation is structured, decomposable and
suitable for parallelism (Codas et al. 2015). The application of the reduction techniques

requires the Jacobian
[
∂Rk
∂γf
k

∂Rk
∂vk

]
to be non-singular. Observe that ∂Rk

∂γf
k

= ∂Rk
∂xf

k

∂xf
k

∂γf
k

and ∂xf
k

∂γf
k

is full rank because Γ is bijective, therefore the rank of
[
∂Rk
∂γf
k

∂Rk
∂vk

]
depends on the correct

construction of the equations for simulation and is independent of the transformation Γ.
This property guarantees the existence of implicit functions Rγ and Rv and allows for
the reformulation of (3.16):

min
Θ

ψ (Θ) (3.17a)

s.t. : γk+1 = Rγk
(
γk,uκ(k)

)
, k ∈ K, (3.17b)

vk = Rv
k

(
xk,uκ(k)

)
, k ∈ K (3.17c)

bγl,k ≤ γk ≤ bγu,k, k ∈ K (3.17d)

bv
l,k ≤ vk ≤ bv

u,k, k ∈ K (3.17e)

bu
l,i ≤ ui ≤ bu

u,i, i ∈ U (3.17f)

The decision variables Θ are reduced to γ, v and u. Moreover, the objective ψ is de-
rived from ψc assuming that (3.16b) holds. Finally, observe that auxiliary functions and
variables may be instantiated within the equation structure Rv. The additional variables
may help to instantiate constraints in (3.17e).

3.4 Case and Results

In this section we perform a computational assessment of the MS method applied to
black-oil problems including gas. To this end, we propose the solution of 2 problems
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based on the benchmark cases SPE1 (Odeh 1981) and SPE3 (Kenyon et al. 1987).
The optimizer source code and the parametrization of the cases are available in (Co-
das 2014). An overview of this optimization method is provided in Section 1.4.

The SPE1 case is a three-dimensional reservoir with 300 grid-blocks (10× 10× 3)
which considers dissolved gas in live oil, i.e., gas components may be found in the liq-
uid phase at reservoir conditions. Initially, the liquid phase is under-saturated of gas
components, thus no vapor phase is found. The reservoir model has 2 wells, 1 injector
controlled by gas flow rate and 1 producer controlled by oil production rate.

Constraints on the operation of the wells are set as specified in (Odeh 1981). The
oil production rate is limited within [1000, 20000] STB/day, and the gas injection rate
within [1, 100] MMscf/day. The minimum flowing bottom hole pressure for the wells
is 1000 psi. Moreover, the liquid-pressure state bounds are set according to the mini-
mum flowing bottom hole pressure and the maximum value given in the PVT tables,
i.e., [1000, 9014.7] psi. The aqua-saturation is bounded in [5, 100] % and the states cor-
responding to rH are within [0, 1].

The reservoir is simulated for 1200 days with fixed steps of 5 days, i.e., K = 240.
Moreover, the control steps are divided in equal periods of 120 days, therefore U = 10.

The objective function models the Net Present Value (NPV) of the recovery. The NPV
function of one reservoir realization is given by:

NPV =

K∑
k=1

(
qo,kro + qgp,krgp − qwp,krwp − qgi,krgi

(1 + d)tk/tK

)
∆tk (3.18)

where qo,k, qgp,k, qwp,k and qgi,k represent the oil produced, the gas produced, the water
produced and the gas injected, respectively, and ro, rgp, rwp and rgi are their correspond-
ing prices. Moreover, d is the discount factor and tk is the time at the end of the step time
k. In our experiments (ro, rgp, rwp, rgi) = (300, 0.1, 0.1, 0.1) 10−8 USD/sm3 and d = 0.
Although the prices are not realistic, the ratio ro/rgp is realistic in the current market
and the prices are scaled for algorithmic purposes.

Scaling plays an important role in non-linear optimization algorithms. In our ap-
proach, the intention of the scaling factors is to make the range of the variables compa-
rable in modulus. Thus, the pressure is scaled by 100 psi, the water saturation by 1 %,
and rH by 0.1. Moreover, the rates of oil and water are scaled by 100 STB/day and the
gas rates by 1 Mscf .

Figures 3.1 and 3.2 display the optimal well schedules and the corresponding pre-
dictions for the injector and producer in the SPE1 case. The oil production rate is kept at
the maximum during the first 1080 days and consequently it is observed a pressure drop
at the bottom hole pressure of the well. The gas injection is kept around 4 MMscf/day
during the first 980 days with the aim to maintain the reservoir pressure and push fluids
towards the producer. Moreover, observe that the flowing bottom hole pressure con-
straint is active in the producer at several time instants while the oil production rate is
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kept at its maximum. Therefore, we conclude that the pressure constraint feasibility is
maintained by regulating the injector. Finally, during the last 120 days it is observed a
rapid increase of the gas-production rate and a substantial decrease of the oil produc-
tion which is a consequence of a gas breakthrough and a low reservoir pressure. At the
end of the production period all the reservoir grid-blocks are saturated, i.e., the vapor
phase is present. The vapor phase is formed due to the low reservoir pressure and the
gas injected during production, see Figure 3.3. This solution is feasible and provides a
NPV increase of 25 % compared to the initial schedule which applies 100 MMscf/day
and 20000 STB/day of constant gas rate injection and oil rate production, respectively.
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Figure 3.1: Optimal schedule for injector well of the SPE1 case.

The SPE3 case is a three-dimensional reservoir with 324 grid-blocks (9× 9× 4). The
rock properties of the reservoir, like porosity, permeabilities and thickness are constant
for each of the 4 vertical layers. Moreover, it has 2 vertical wells which are positioned
on the main diagonal. Thus, it is sufficient to model half of the reservoir due symmetry,
however, we work with the full grid. Part of the task in (Kenyon et al. 1987) consisted of
matching the PVT data from hydrocarbon laboratorial analysis, and therefore a unique
PVT table is not provided. Therefore, we instantiate the model as provided in the MRST
package to allow reproducibility of the results. This case considers the oil components
completely dissolved in the vapor phase at the beginning of the production.

Both wells, the injector and the producer, are controlled by gas flow rate. The gas
flow rate bounds are [0, 4.7] MMscf/day and [0, 6.2] MMscf/day for the well injector
and producer, respectively. Moreover, the maximum flowing bottom hole pressure at the
injector is 4000 psi and the minimum flowing bottom hole pressure in the producer is
set to 1050 psi. The bounds on the grid-block liquid pressure states are [1215, 3600] psi.
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Figure 3.2: Optimal schedule for the producer well of the SPE1 case.

Figure 3.3: Predicted vapor saturation profile after 500 days of production for the SPE1
case. The transparent grid-blocks contain no vapor phase.

Moreover, the water saturations and rH are bounded in [0, 1].
The production process is predicted for 20 years and each year is simulated with

a sequence of fixed time steps given by (1, 20, 70.25, 91.25, 91.25, 91.25) days, therefore,
K = 120. The shorter simulation time steps improve the simulation approximations after
a control change and prevent simulator convergence failures. The control is divided in
20 equal periods of 1 year. Thus, U = 20. Finally, the objective value and the scaling
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factors for optimization are identical as in the SPE1 case.
Optimal well schedules and well predictions for the SPE3 case are on display in the

figures 3.4 and 3.5. The gas injection rate is kept at maximum for almost 5000 days
and then the well is closed. Through the bottom hole pressure in both wells we observe
that the gas injector makes a good pressure maintenance during the first 4000 days.
The producer starts with a production of around 350 STB/day of oil which decays to
around 0 STB/day by the end of the production life. The gas flow rate in the producer
is regulated around 4.5 MMscf/day during the first 3000 days and then ramped to the
maximum in the last 10 years. Observe that the pressure constraints in the producer are
active at the end of the production life. After 4000 days of production the reservoir pres-
sure drops significantly around the producer, therefore, the oil components condense
and form the liquid phase, see Figure 3.6. This solution provided an NPV increase of
37% compared to the baseline schedule which required maximum injection and produc-
tion during the whole production life.
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Figure 3.4: Optimal schedule for the injector well of the SPE3 case.
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Figure 3.5: Optimal schedule for the producer well of the SPE3 case.

Figure 3.6: Predicted liquid saturation profile after 14 years of production for the SPE3
case. The transparent grid-blocks contain no liquid phase.

3.5 Discussion

Reservoir models with miscible black-oil fluids usually require a change of primary vari-
ables during simulation. For instance, this change of variables may be associated to the
bubble-point pressure of the fluid. When the pressure is above the bubble-point pres-
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sure, no gas phase is found and the gas solubility is used as a primary variable. However,
when the pressure is below the bubble-point pressure, then the saturation of the gas
phase is used as primary variable. This change of variables is not problematic for op-
timization methods considering only the control variables as decisions (Zakirov et al.
1996; Krogstad et al. 2015). However, the MS method requires additional equality con-
straints on the state variables, therefore, the change of variables is not suitable.

To resolve this problem, we propose an alternative representation that requires a
minimal number of parameters to fully define the fluid state. This representation is ca-
pable to model the intensive and extensive properties of the fluid. It includes the oil
pressure and a variable related to the mixture of hydrocarbons. These two variables
are enough to represent the saturation state of the liquid phase and the vapor phase.
Moreover, the water saturation provides the missing information to decode the exten-
sive properties. This representation is proven minimal according to the Gibbs phase rule
for fluids. Although, a semantically simpler representation based on standard volumes
is also minimal, it requires additional constraints for its application in practice.

Although not investigated in this paper, alternative solutions to this problem may use
more variables and equations. One possible alternative is provided in Section 3.3.2. This
alternative is not encouraged because the number of inequality constraints of the MS
method increases with the number of grid-blocks. Further, extensions of this algorithm to
general compositional models may require all these extra variables to allow the solution
of the equations of state. Here, only black-oil models are studied due to their simplicity,
popularity and capability to approximate more general fluids.

The proposed state transformation is computationally efficient. The transformation
is explicit, in the sense that it does not require to solve extra implicit equations. More-
over, two variables are directly obtained because they are common in both representa-
tions. The remaining variables are obtained from straightforward arithmetics. In addi-
tion, the reservoir simulator does not require modifications because the transformation
is bijective. Therefore, this method is not invasive because the reservoir simulator is
not changed for its application. However, this method inherits potential shortcomings
related to discontinuities in the fluid property functions. Thus, at the problem formu-
lation phase it is important to verify that the functions related to the fluid properties
are sufficiently smooth, including on state transitions. MRST models the fluid proper-
ties using continuous piecewise linear functions from tabulated data properties. Thus,
these functions are not continuously differentiable (C1) as needed to prove the first-
order optimality conditions(Nocedal et al. 2006, p. 321). Nevertheless, a piecewise C1

function can be approximated with a C1 function with arbitrary accuracy. Therefore, if
the optimization method experiences convergence issues due to evaluations of the fluid
properties on the function break-points, then a smooth approximation may be needed.

In contrast to traditional methods as in (Zakirov et al. 1996; Krogstad et al. 2015)
which only require an initial guess for u, MS also requires an initial guess for γ and
v. In (Codas 2014) these initial guesses are obtained by solving (3.17b) and (3.17c)
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sequentially for k = 1 to k = K. If this procedure provides an infeasible initial guess
regarding (3.17d) and (3.17d), then the violating variables are set to the corresponding
boundary values.

Finally, the case studies exemplify the application of the MS method to two bench-
mark cases. The SPE1 case has volatile oil and the SPE3 case has wet gas. We include
constraints according to the original problem specification and to extrapolations on the
PVT curves. The MS solution method in (Codas et al. 2015) allows the inclusion of con-
straints in a broader sense. Thus, the verification of these constraints on every simulated
step is not an issue in these problems.

3.6 Conclusion

In this paper we extend the MS optimization formulation developed in (Codas et al.
2015) to black-oil reservoirs including miscible gas. The original formulation considered
only water-flooding problems. The extension is not straightforward due to the require-
ment of extra variables to fully represent the miscibility of fluids. Therefore, we develop
a transformation that allows a minimal fluid state representation. Finally, we show the
potential of the MS algorithm with this state representation in two test cases where
output constraints are critical, the first involving live-oil and the second wet gas.

3.A Simulation

The discretization of the eq. (3.1) is provided in (Lie et al. 2011; Krogstad et al. 2015)
and implemented in MRST. In a nutshell, the equations are discretized in space with
the Two Point Flux Approximation method (TPFA) (Lie et al. 2011), and the equations
are discretized in time using the implicit backward Euler scheme, which are solved with
Newton updates (Krogstad et al. 2015). The residuals and Jacobians required to solve
the Newton updates are efficiently obtained with Automatic Differentiation (Griewank
et al. 2008). Finally, well equations are included to the discretized system with stan-
dard Peaceman models. Examples on how to instantiate and solve these equations are
available in (Lie 2014).

To solve the non-linear Newton updates resulting from the discretization of (3.1), a
set of primary variables are required. The functions φ,Bα, pcla, pcvl, ρα, krα, µα depend
on 8 variables, namely, the phase pressures, saturations for each phase, in addition the
gas solubility and the oil volatility. Nevertheless, only 6 equations are available which
are (3.1d), (3.1e) and the components conservations for each grid-block. Two more
equations are added according to the fluid saturation state as shown in Table 3.2.

The saturation state s ∈ S =
{
S l,Sv,Ss,Sa

}
can be uniquely determined by the

saturation variables, thus the fluid is called either under-saturated liquid (S l), under-
saturated vapor (Sv), saturated (Ss) or water (Sa). For simulation, the grid blocks are
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3.A. Simulation

Table 3.2: Fluid saturation state. The variable ζ is a primary variable for simulation and
adopts the value of either Rl, Rv or Sv depending on the saturation state.

Label Saturation state Condition Equations ζ

S l Sl > 0, Sv = 0 0 ≤ Rl ≤ Rmax
l Sv = 0, Rv = Rmax

v Rl
Sv Sl = 0, Sv > 0 0 ≤ Rv ≤ Rmax

v Sl = 0, Rl = Rmax
l Rv

Ss Sl > 0, Sv > 0 Sl > 0, Sv > 0 Rv = Rmax
v , Rl = Rmax

l Sv
Sa Sl = 0, Sv = 0 Sl = 0, Sv = 0 Rv = Rmax

v , Rl = Rmax
l Sv

labeled according to their saturation state at each iteration. The solver handles three pri-
mary variables for each grid block, pl, Sa and ζ, being the latter dependent on the satura-
tion state, see Table 3.2. The equations (3.1d), (3.1e) and the two additional equations
depending on the saturation state are solved by variable substitution, thus remaining the
mass balances to solve iteratively. The variables pa, pv and Sl are always eliminated due
to the equations (3.1d) and (3.1e), therefore the solver keeps χ = (pl, Sa, Sv, Rl, Rv) to
describe the grid block state completely.

Each well includes four additional primary variables to the Newton iterations, vw =
(qWs, qOs, qGs, pbh)w w ∈ W, which are the well flows of water, oil and gas at standard
conditions, and the bottom hole pressure. Accordingly, 4 equations are included to the
implicit system accounting for eq. (3.2). The fourth well equation is a closure equation,
or well control. Typically, it is imposed a constant flow rate or bottom pressure of the
well.

In summary, the solution to the simulation problem consists of finding the reservoir
state χk = (pl, Sa, Sv, Rl, Rv)k and the well variables vk = (qWs, qOs, qGs, pbh) given an
initial reservoir state χk−1 and the boundary conditions uk for each well and for all time
step k. To this end, at the iteration r, it is first determined a saturation label srk for each
grid-block given the current guess χrk for χk. Then, the variables xrk = (pl, Sa, ζ)rk are
determined and a Newton step is solved:

−Rr =

 ∂Rrc
∂xr

∂Rrc
∂vr

∂Qrw
∂xr

∂Qrw
∂vr

0 ∂Br

∂vr

[ ∆rx
∆rv

]
(3.19)

where Rc represents the residual of the mass balances related to eqs. (3.1a)-(3.1c) for
the grid-blocks, Qw is the residual of eq. (3.2), and B is the residual to the well closure
equations.

Finally, compatibility measures are applied after the application of the correction
steps (∆rx, ∆rv) to keep the consistency of the variables. The compatibility measures
make sure that the saturation variables are limited within 0 and 1, and the solubility vari-
ables must be bounded according to their saturation functions. Therefore, the Newton
steps are chopped if these hard constraints are not fulfilled. Thus, the next state iterate
χr+1
k is determined by a function xr+1

k = Ux(xrk,∆
rxk, s

r
k) and sr+1

k = U s(xrk,∆
rxk, s

r
k).
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The functions Ux and U s ensure the consistency of the pair x̄r = xr + ∆rx and srk with
respect to the conditions in Table 3.2. If the pair is consistent then x̄r induces xr+1

k and
χr+1
k , and sr+1

k = srk. Otherwise, if the saturation state conditions are violated, then the
saturation status changes, i.e., sr+1

k 6= srk and therefore, the set of equations to be solved
also changes according to Table 3.2.

Throughout the paper, the residual of the simulator equations is represented with
R (χk+1, χk,vk, u). This system of equations includes eq. (3.19) and the equations in
Table 3.2 according to the fluid saturation state.

This appendix gave a simplified overview of the black-oil reservoir simulator imple-
mented in MRST. The intention was to provide the reader with insights on how the
reservoir state is defined and simulated. Nevertheless, the solver embedded in the simu-
lator possess more sophisticated heuristics to deal with oscillations and to enforce con-
vergence which are beyond the scope of this document.

82



Chapter 4

Multiple Shooting applied to robust
reservoir control optimization
including output constraints on
coherent risk measures.

This chapter is based on (Codas et al. 2016b):
Codas, A. et al. (2016b). ‘Multiple Shooting applied to robust reservoir control opti-

mization including output constraints on coherent risk measures.’ To be submitted.

Abstract

The production life of oil reservoirs starts under significant uncertainty regard-
ing the actual economical return of the recovery process due to the lack of oil field
data. Consequently, investors and operators make management decisions based on
a limited and uncertain description of the reservoir. In this work we propose a new
formulation for robust optimization of reservoir well controls. This formulation ex-
ploits coherent risk measures, a concept traditionally used in finance, to deal with
the uncertainty. It is inspired by the Multiple Shooting (MS) method which permits
broad range of parallelization opportunities. A variable elimination procedure al-
lows to solve this problem in a reduced space and an active-set method helps to
handle a large set of inequality constraints. Finally, we demonstrate the application
of constraints to limit the risk of water production peaks on a standard test case.
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4. Multiple Shooting applied to robust reservoir control optimization including output
constraints on coherent risk measures.

4.1 Introduction

Almost every decision making problem includes variables which remain unknown at
the time to act. However, these variables are not completely unknown, and it is often
possible to estimate their range of variation with historical data or knowledge from
experts. Oil reservoirs are located far below the earth surface, therefore only indirect
observations of the recovery process can be carried out from wells and from the surface.
Thus, solving this decision problem deterministically is discouraged due to the inherent
uncertainty prevailing in the reservoir production process. Besides calculating an ini-
tial estimate of this uncertainty, it is also necessary to assimilate measured data during
production to periodically correct the estimates and review the production strategy. This
problem has been solved using the closed-loop reservoir management strategy (Brouwer
et al. 2004; Aitokhuehi et al. 2005; Jansen et al. 2005; Jansen et al. 2009). Figure 4.1
illustrates the principles of closed-loop reservoir management. This strategy consists of
the sequential application of data-assimilation and production optimization. A robust
approach to control optimization (Van Essen et al. 2009) for reservoir management sug-
gests to use the uncertainty description generated during the data assimilation phase to
instantiate a stochastic programming problem. Thus, the solution of this problem leads
to robust operation with respect to the probable reservoir parameters.

The production phase of an oil reservoir starts while most reservoir parameters are
very uncertain. In general, the available data is insufficient to generate an accurate reser-
voir description. For instance, the reservoir fluid flows through a porous medium with
complex geometrical structure. Typically, reservoir models describe this medium with
averaged quantities for porosity and permeability. These simplifications evade the need
to model the geometry of the pore space. In the most general sense, these quantities
may have different values at every single point of the reservoir domain, thus an infinite
dimensional space is required for their parametrization. In practice, these properties are
considered constant within a finite but usually high number of grid-blocks (Mattax et al.
1990). Therefore, the amount of measured data used for reservoir parameter estimation
is insufficient to find an unique parametrization solution, i.e., the data-assimilation prob-
lem is underdetermined. Thus, it is possible to find an infinite number of parametriza-
tions that match the production history exactly, however the forecast capability of such
solutions is not guaranteed and often inaccurate (Oliver et al. 2008). Nevertheless, the
consistent application of data-assimilation leads to a description of the uncertainty which
is critical for designing production strategies because it helps to identify how the out-
come of these decisions are affected by the uncertainty.

The goal of robust reservoir management methods (Van Essen et al. 2009) is to find
a control schedule that optimizes a performance indicator, such as the accumulated to-
tal field oil production, for any of the reservoir conceivable scenarios. Moreover, a safe
operation is always a requirement albeit the uncertainty (Chen et al. 2012). The con-
sidered scenarios are usually taken from the posterior distribution of data-assimilation
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Figure 4.1: Reservoir management feedback loop (Jansen et al. 2009). Data assimilation
algorithms generate scenarios that describe the reservoir uncertainty. Then, an optimiza-
tion algorithm uses this description to compute a production strategy.

algorithms such as the Ensemble Kalman Filter (EnKF) (Evensen 1994; Naevdal et al.
2005). Typical robust reservoir optimization approaches consider the maximization of
the expected Net Present Value (NPV) of the recovery process (Chen et al. 2009; Van
Essen et al. 2009; Chen et al. 2012). In addition, it has been suggested to extend the
expectancy functional with the standard deviation or the variance (Yeten et al. 2003;
Bailey et al. 2005; Alhuthali et al. 2010; Capolei et al. 2015b; Yasari et al. 2015) aiming
to reduce the variability and the risk due to uncertainty. However, it has been shown that
the inclusion of this deviation measures is not coherent (Artzner et al. 1999; Rockafellar
2007). Therefore, we propose and demonstrate the application of the Average Value at
Risk1 (Rockafellar et al. 2000) to handle risk of constraint violation.

To date, it is not possible to find a computationally tractable, closed-form mathemat-
ical expression that solves such stochastic optimal control problems. Therefore, it has
been suggested to parametrize the control schedule and to solve a stochastic optimal

1Also known as Conditional Value at Risk
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control problem with direct methods (Jansen 2011; Hou et al. 2015). Direct methods
for optimal control transform the optimal control problem into a nonlinear programming
problem (Binder et al. 2001). The uncertainty is introduced to the optimization problem
using the Sample Average Approximation (SAA) method (Shapiro et al. 2009a), where
the samples are obtained from the EnKF after the assimilation stage. According to the
SAA theory and the Law of Large Numbers, the solution of the optimization problem
considering a sampled set of scenarios converges to the solution of the stochastic opti-
mization problem as the sample size increases. Accordingly, a consistent approach for
the construction of scenarios plays a central role for the application of this methodology.

This work seeks an efficient strategy to solve constrained robust reservoir control
optimization problems. To this end, we propose the extension of the optimization al-
gorithm based on the Direct Multiple Shooting Method (MS) (Codas et al. 2015). This
method allows for an efficient evaluation of the reservoir simulation because the prob-
lem can be decomposed in the dimension of the uncertainty and in the dimension of
time. Moreover, constraints are easily included as bounds on the decision variables.

In the following, Section 4.2 describes the formulation of the optimization problem
based on MS and 4.3 describes the assumptions made by the reservoir simulator used in
our test cases. In Section 4.4 we describe the implementation of the MS algorithm for
robust optimization and Section 4.5 shows the risk measures considered in this work. A
numerical study is conducted in Section 4.6 and a discussion of our approach is provided
in Section 4.7. Finally, Section 4.8 provides a very brief summary of the contributions in
this paper.

4.2 Multiple Shooting applied to Robust Optimization

Direct methods for optimal control have been in the focus of research due to the increas-
ing availability of computational power and efficient numerical methods. The direct
methods discretize the dynamical equations and the control parameters, and transform
the Optimal Control Problem to a Nonlinear Programming Problem (NLP). Depending
on the discretization, direct methods can be classified into Single Shooting, Multiple
Shooting or Collocation. Single Shooting is the most popular method for reservoir con-
trol applications (Jansen 2011; Hou et al. 2015), whereas collocation has been suggested
in (Heirung et al. 2011). Multiple Shooting (MS) was suggested for dynamical optimiza-
tion of a deterministic reservoir water-flooding problem (Codas et al. 2015). Here, MS
will be introduced for robust optimization.

4.2.1 Mathematical formulation for the robust optimal control problem.

Consider the robust reservoir control optimization problem which consists of finding
well control schedules, which are parametrized by u, for the remaining reservoir pro-
duction life given the current uncertainty. The uncertainty is represented by a discrete
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set J = {1, . . . , J} of equally probable scenarios. Thus, the predicted reservoir state
variables x and the algebraic state variables v are defined for each scenario j ∈ J . In
contrast, u is unique and must be suitable for all scenarios because the controls are ap-
plied assuming that no further feedback is received, thus the control trajectory cannot
be changed at any later stage. The control schedules prescribe either the bottom hole
pressure or the flow-rate for the active wells for a given production period. From the MS
problem formulation perspective, this production period is known as a control interval,
because the control set points are fixed within this period. Thus, there is a set of con-
trol periods U = {1, . . . , U} and the control parameters for the ith period are denoted
by ui. For simulation and constraint evaluation purposes, the prediction horizon is also
discretized in a set K = {1, . . . ,K} of simulation time steps, and each control period is
divided in several simulation time steps. Therefore, the surjective function κ : K → U
maps a time step to a control period and indicate which control is to be applied during
each simulation step.

Observe that variables or functions such as x and v are indexed in the set J andK. To
keep the notation compact, when an index referring to one dimension is absent, we refer
to all the variables. Thus, v is vk,j , ∀k ∈ K, ∀j ∈ J and x is xk+1,j , ∀k ∈ K, ∀j ∈ J .
The initial state variables x1,j , ∀j ∈ J , which are obtained from a state estimation
algorithm, are fixed parameters for the optimization procedure, thus they are excluded
from the optimization variables.

Robust optimization is achieved with the help of a setM = {1, . . . ,M} of auxiliary
variables s. The variables sm, sm ∈ R, m ∈ M are obtained by the application of a risk
measure Sm, m ∈ M on the simulation outputs om,j , m ∈ M, j ∈ J , om,j ∈ R, thus
sm = Sm(om). Section 4.5 provides more details on this function.

The output variable om,j is obtained by the application of an output function Om,j on
all the variables related to the simulation of the realization j. For efficiency, an explicit
function Om,j (xj ,vj ,u) is advantageous. Depending on the objective function and the
constraints, these functions may instantiate the Net Present Value (NPV) or well flow-
rates for each realization.
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Summarizing, robust optimization of reservoir water-flooding can be stated as:

min
D

ψ(s,u) (4.1a)

s.t. : 0 = Rx
k,j

(
xk,j ,uκ(k)

)
− xk+1,j , k ∈ K, j ∈ J (4.1b)

0 = Rv
k,j

(
xk,j ,uκ(k)

)
− vk,j , k ∈ K, j ∈ J (4.1c)

om,j = Om,j (xj ,vj ,u) , ∈M, j ∈ J (4.1d)

sm = Sm (om) , m ∈M (4.1e)

bx
l ≤ x ≤ bx

u (4.1f)

bv
l ≤ v ≤ bv

u (4.1g)

bs
l ≤ s ≤ bs

u (4.1h)

bu
l ≤ u ≤ bu

u. (4.1i)

The set of decision variables is D = (x,v, s,u). The actual number of degrees of
freedom of problem (4.1) is equal to the number of variables in u since the variables x,
v, o and s can be obtained by solving the equations (4.1b), (4.1c), (4.1d) and (4.1e).
The choice of D is related to the variable reduction procedure for solving problem (4.1),
which is further developed in Section 4.4.

The reservoir simulator is represented by the functions Rx
k,j and Rv

k,j , which are the
state transition and the algebraic variables for each simulation time step k ∈ Kj and
each realization j ∈ J , respectively. Although the reservoir simulator is described as an
explicit function for simplicity, the simulator may solve implicit functions, see (Lie et al.
2011; Codas et al. 2015). Further details on the actual reservoir simulator used in our
numerical cases are presented in Section 4.3.

The objective function ψ depends on the risk measures s and the controls u. More-
over, the constraints (4.1h) allow to limit the risk of a given event. These constraints may
be thought of as soft constraints because a feasible solution may satisfy sm ≤ bs,m

u < om,j
for some particular pair (m, j). In contrast, worst-case output constraint bounds may be
imposed with (4.1f) and (4.1g). Observe that all the inequality constraints are simple
bounds in the Multiple Shooting formulation. Although the constraints on the states
may be inactive at a solution, they are required by the optimization procedure to pre-
vent evaluations of the simulator out of the physical bounds, for instance, on negative
grid-block water saturations. Finally, control input bounds may be specified in (4.1i).

The dependency structure of variables is represented in Figure 4.2. This structure
unveils parallelization opportunities during simulation and gradient computation. The
parallelization of the evaluation of (4.1b) for each realization in J is straightforward
provided a fixed u. However, the parallelization of (4.1b) for each time step K requires
an initial guess of x and a mechanism to reach feasibility which is further developed in
Section 4.4.
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4.3. Reservoir model

Figure 4.2: The variables dependency structure is represented.

4.3 Reservoir model

In the problem (4.1), a reservoir simulator is represented with the functions Rx and
Rv. These functions must conform to physical properties and assumptions made by the
simulation model. In this work, we tailor the formulation (4.1) to solve reservoir models
in the Matlab Reservoir Simulation Toolbox (MRST) (Lie et al. 2011; Krogstad et al.
2015). MRST can simulate isothermal two-phase oil-water reservoir models using either
a fully-implicit solver or a sequential scheme. We use the sequential solver in this work.
Although a more accurate solver could have been applied as in (Codas et al. 2015), the
simpler solver was chosen to lower the computational burden.

We assume that the reservoir state is fully described by the water saturation field.
Therefore, it is possible to predict the reservoir performance provided the initial satura-
tions and the boundary conditions of the reservoir are known. We consider the wells as
controllable boundary conditions and no flow across other geometrical reservoir bound-
aries. Due to the incompressible flow assumption, there is one additional constraint on
the set of well controls to guarantee that the fluid volume within the reservoir is pre-
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served. Therefore, it is not possible to prescribe independent flow-rate boundaries for
all the wells. Moreover, the absolute pressure at any point of the reservoir can be de-
termined only if at least one boundary condition is specified by pressure (Jansen 2013,
p. 33). Therefore, to avoid singularity conditions, we require that the bottom hole pres-
sure of one well is fixed to a prescribed value independently of the optimization proce-
dure.

Summarizing, the variables x in problem (4.1) correspond to the predicted water
saturation states. For the incompressible solver, no algebraic variables are required for
hot-starting the simulator. However, the flow-rate through the wells is included in the
algebraic variables v. The reason is that we will require that the flow directions through
all of the perforations of every well are always preserved. This condition is imposed as
a hard constraint in (4.1g). In other words, a feasible control schedule must prevent
cross-flow in any conceivable scenario. Moreover, the vector of algebraic variables may
be extended with other constraints that are specific to the problem being solved.

4.4 A rSQP algorithm for robust control optimization

The MS formulation for robust reservoir control optimization in (4.1) possesses many
more variables than other methods suggested in the literature. In particular, the state
variables at the simulation time steps and the stochastic measure variables are explicitly
available. Observe that the parametrization of the control variables is independent of the
number of realizations, thus the number of degrees of freedom is much lower than the
number of total variables. This fact motivates to devise an extension of the algorithm
proposed in (Codas et al. 2015), i.e., a Reduced Sequential Quadratic Programming
(rSQP) algorithm that handles multiple realizations efficiently.

The main ingredients of the optimization method in (Codas et al. 2015) are:

• A MS simulator evaluating time steps in parallel.

• A condensing algorithm to calculate a range space solution and a matrix spanning
the nullspace of the linearized equality constraints. The latter was referred as the
reservoir state predictor matrix.

• An iterative Quadratic Programming (QP) solver to deal with a large number in-
equality constraints.

• A linesearch algorithm on a l1-merit function.

We propose an extension of these features to deal more efficiently with robust opti-
mization and in particular with the set of independent constraints defined by different
realizations.

• The evaluation of the constraints (4.1b) and (4.1c) is parallelizable for the differ-
ent reservoir realizations and simulation time steps.
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• The condensing procedure is modified to allow vector products of the reservoir
state predictor matrix without explicitly building this matrix. In addition, the range
space solution of the constraints (4.1b) and (4.1c) is computed without explicitly
building the matrix spanning the range space. This procedure diminishes the mem-
ory size requirements to execute the algorithm. Thus, modern central processing
units, with several cores, can process in parallel more reservoir realizations before
the memory capacity limitation is reached.

• The QP solver is instantiated iteratively and at each iteration a working set of active
constraints is estimated. The adjoint gradient calculation method (Ramirez 1987;
Kraaijevanger et al. 2007) calculates the gradient of the current working set. The
adjoint method keeps a low computational burden when few active constraints are
expected. A new estimate of the working set is estimated checking the constraint
violations with the incumbent solution to the QP problem. This iterative method
to solve the QP problem may require more time to converge if many iterations are
necessary to find the correct active set. In this case, it is preferably to build the state
predictor matrix at once as in (Codas et al. 2015), to prevent extra computational
incurred by assembling the Jacobian of (4.1b) and (4.1c) several times.

Problem (4.1) may be represented by:

min
D

ψ (D) (4.2a)

s.t. : 0 = c(D) (4.2b)

bl ≤ D ≤ bu (4.2c)

where c = (cx, cv, cs◦co) represents, as a whole, the constraints (4.1b), (4.1c) and (4.1e)
composed with (4.1d), respectively.

The choice of the variables in D and the function c is related to the inequality con-
straints (4.2c). It is attractive to assemble variables in D for three reasons:

• It enables the application of decomposition techniques and the parallelization of
heavy computations.

• Implicit equations, such as the reservoir equations, can use D as an initial guess to
expedite iterative solvers for simulation.

• Inequality constraints are easily applied on these variables because they appear as
simple bounds in (4.2c).

The variables o were not included in D because it is not desired to impose inequal-
ity constraints on them, moreover the function O is assumed to be explicit (linear by
design), and therefore easy to calculate.

Sequential Quadratic Programming (SQP) algorithms solve problem (4.2) iteratively,
by improving the current iterate l of the decision variables D and the dual variables λ.
An update to this variables is calculated making a linear approximation of the constraints
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and a quadratic approximation of the gradient of the Lagrangian (Nocedal et al. 2006).
These approximations lead to a QP problem:

min
d

g>d+
1

2
d>Wd (4.3a)

s.t. : 0 = c+A>d (4.3b)

bl ≤ D + d ≤ bu (4.3c)

where g is the gradient of the objective function, W is the Hessian of the Lagrangian
function, and A> the Jacobian of eq. (4.2b). The decision variables d have same dimen-
sions as D. The next iterate l + 1 of the decision variables is given by Dl+1 = Dl + dl.
Likewise, the dual variables on the next SQP iterate are the optimal dual variables of the
QP (4.3). The iteration index l will be included only to avoid ambiguity.

Reduced SQP methods (Biegler et al. 1997; Nocedal et al. 2006) decompose the
decision variables d in a range space solution py and a nullspace solution pz with respect
to the equality constraints (4.3b):

d = Y py + Zpz (4.4)

where Z satisfies A>Z = 0. In this work, we suggest a particular choice for these matri-
ces:

Y =


Ix 0 0
0 Iv 0
0 0 Is
0 0 0

 , Z =

[
−C−1N
Iu

]
, C =

[
∂c
∂x

∂c
∂v

∂c
∂s

]
, N =

∂c

∂u
(4.5)

If the problem is deterministic, i.e., if M is 1 and only one realization is considered,
then −C−1N is essentially the reservoir state predictor matrix as in (Codas et al. 2015).
For problem (4.1), the matrices A> and Z are rich in structure:

A> =

(∂cx∂x − Ix) 0 0 ∂cx

∂u
∂cv

∂x −Iv 0 ∂cv

∂u
∂cs

∂x
∂cs

∂v −Is ∂cs

∂u

 , (4.6a)

Z =

−


(
∂cx

∂x − Ix
)−1

0 0
∂cv

∂x

(
∂cx

∂x − Ix
)−1 −Iv 0(

∂cs

∂v
∂cv

∂x + ∂cs

∂x

) (
∂cx

∂x − Ix
)−1 ∂cs

∂v −Is


∂cx∂u∂cv
∂u
∂cs

∂u


Iu

 (4.6b)

Moreover, the matrices
(
∂cx

∂x − Ix
)−1

and ∂cv

∂x can be arranged in J diagonal blocks due
to the independence of state variables for different realizations. Therefore, the Lift-Opt
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trick as presented in (Codas et al. 2015) is still applicable and it is a theoretically possi-
ble procedure to build Z. To this end, the condensing procedure can be applied indepen-
dently to each realization to assemble

(
∂cx

∂x − Ix
)−1

. Observe that given the particular
selection of Y and Z in (4.5), the range space solution for (4.3b) is determined by:

py = −
(
A>Y

)−1
c (4.7)

which is rich in structure. Similarly to the computation of the nullspace, the block struc-
ture of

(
∂cx

∂x − Ix
)−1

and ∂cv

∂x are suitable for the application of the condensing procedure
in (Codas et al. 2015) to obtain the range space of eq. (4.3b) independently, for each
realization of the reservoir, in parallel. This requires a forward gradient propagation on
each realization. Finally, the block lower triangular structure of A>Y makes it possible
to calculate the range space solution for the risk variables s after the others are obtained.

Building Z may be impractical due to its high storage requirements, in particular,
for robust optimization. This procedure is recommendable for dynamic optimization
problems with few controls and/or large number of possible active constraints. Hence,
we propose an algorithm which requires adjoint simulations to obtain the nullspace
with respect to a working set of active constraints only. Deriving the gradient equations,
either by forward sensitivity analysis or by the adjoint method, is a tedious process.
Fortunately, this subject is extensively discussed in the literature, see (Kraaijevanger et
al. 2007; Oliver et al. 2008; Kourounis et al. 2014; Codas et al. 2015). In (Codas et al.
2015), Z and py are obtained using the Lift-Opt Z trick. In addition to these procedures,
it is not difficult to show how to efficiently obtain products of Z by a nullspace solution
vector pz, and an estimate of the Lagrange multipliers.

The reduced-space parametrization in (4.4) applied to problem (4.3) leads to:

min
pz

g>Zpz +
1

2
p>z Z

>WZpz (4.8a)

s.t. : bl ≤ D + Y py + Zpz ≤ bu (4.8b)

The problems (4.3) and (4.8) are not equivalent due to approximations introduced
in the objective function. The objective function in problem (4.8) ignores the terms
1
2p
>
y Y
>WY py and the cross-product term p>y Y

>WZpz. The former is constant since py
is fixed by (4.7). However, the cross-product term is not constant and its omission is
motivated by the costly computation of p>y Y

>WZ. It is reasonable to neglect the cross-
product term because the range space steps py typically converge faster to zero than
the nullspace steps pz (Nocedal et al. 2006, p. 539). Detailed SQP algorithms including
the cross-product term are available in (Biegler et al. 1995; Biegler et al. 1997; Ternet
et al. 1998; Biegler et al. 2000). Further, the calculation of Z>WZ incurs a substantial
computational burden and can lead to a non-convex problem (4.8). Therefore, Z>WZ
is approximated with damped BFGS updates as in (Codas et al. 2015).
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Problem (4.4) might be infeasible to solve if D + Y py /∈ [bl,bu]. This motivates the
introduction of the minimum ξ ∈ [0, 1] so that if D ∈ [bl,bu], then there is a pz such that
D + (1− ξ)Y py + Zpz ∈ [bl,bu]. Thus, a non-zero value of ξ is required to deal with a
provisional infeasibility of problem (4.8).

Hence, problem (4.8) is approximated by:

min
pz

g>Zpz +
1

2
p>z Z

>WZpz (4.9a)

s.t. : bl ≤ D + (1− ξ)Y py + Zpz ≤ bu, (λl, λu) (4.9b)

where λl, λu ≥ 0 are the Lagrange multipliers for the constraint (4.9b) and:

ξ = min
ξ̂,pz

ξ̂ (4.10a)

bl ≤ D +
(

1− ξ̂
)
Y py + Zpz ≤ bu (4.10b)

0 ≤ ξ̂ ≤ 1 (4.10c)

Thus, to maintain D ∈ [bl,bu] , the SQP step is redefined as:

dξ = (1− ξ)Y py + Zpz (4.11)

The introduction of ξ is particularly important in reservoir applications because the eval-
uation of the simulator outside of variable bounds may not be defined, for instance,
physical volume values must be positive. Thus, following problem (4.9) and choosing
the initial guess D1 such that D1 ∈ [bl,bu], the inequality constraints (4.2c) are never
violated. However, if ξ = 1 and pz = 0 then the NLP solver fails due to convergence to a
point of local infeasibility. If problem (4.2) is infeasible this type of failure is inevitable.

The Linear Programming (LP) problem (4.10) and QP problem (4.9) are not solved
at once, but iteratively for a subset of constraints. Given a guess of the active constraints
of problem (4.9), problem (4.10) and problem (4.9) are solved. Then, the feasibility of
the incumbent solution of problem (4.9) is tested against all the constraints in (4.9b). If
the solution is feasible, then it is a solution for problem (4.9), if it is infeasible, a subset
of the infeasible constraints is appended to the working set of constraints. This process
is repeated until all the constraints are feasible. This procedure requires an adjoint gra-
dient computation for each constraint included in the active set and a forward gradient
propagation for each feasibility test.

The update dξ calculated by problem (4.9) is assessed by a globalization strategy.
This strategy enforces convergence to a local optimum regardless of the quality of the
initial solution guess. To this end, progress of the objective function and the equality
constraints after the application of dξ is required. Thus, a line-search over

[
D,D + dξ

]
is performed to find a new iterate which provides a sufficient decrease of the l1 merit
function:

φµ = ψ (D) + µ ‖c (D)‖1 (4.12)

94



4.5. Risk measures for robust dynamic optimization

where µ is chosen large enough to ensure that dξ is a descent direction for φµ. This is
achieved by selecting (Biegler et al. 1997, p. 115, eq. (2.65)):

µl =

µ
l−1, if µl−1

∥∥cl∥∥
1
≥
∣∣ḡ>Y py∣∣+ 2ρ

∥∥cl∥∥
1

|ḡY py |
‖cl‖

1

+ 3ρ, otherwise. (4.13)

where ρ is a fixed positive parameter and

ḡ = (g + λu − λl) (4.14)

Like in (Codas et al. 2015), line-search is implemented with a watchdog strategy to
promote acceptance of unitary steps and avoid the Marato’s effect (Chamberlain et al.
1982). If backtracking is required, a piecewise 3rd order polynomial is used to determine
the step length.

4.5 Risk measures for robust dynamic optimization

Optimization of uncertain processes involves random variables which can be described
by probability density distributions. The aim is to optimize the shape of the probability
distributions rather than particular outcomes of the process. Popular measures for the
probability distributions are the mean, variance, standard deviation, mode and median.
Previous work proposed the use of some of these measures for robust optimization of
water-flooding, for instance Alhuthali et al. (2010) and Capolei et al. (2015b) used a
combination of mean and standard deviation. Recently, Capolei et al. (2015a) provided
a review and discussion of profit and risk measures used in oil production optimization.
According to previous publications in the field, a reasonable way to optimize uncertain
processes is to maximize the expected profit and penalize its dispersion. Moreover, con-
straints were satisfied for every possible scenario (Chen et al. 2012). This approach to
constraint handling may lead to overly restrictive optimization problems. Furthermore,
the inclusion of a penalty to the dispersion of the objective is not a coherent measure
(Artzner et al. 1999).

The concept of coherent measures was first introduced by Artzner et al. (1999) in
the mathematical finance community. Their motivation was to develop coherent risk
measures to assess investment decisions under uncertainty. In addition, this can be ap-
plied for constraint handling in production optimization. To this end, consider a random
variable Zx representing water production which depends on the decision variables x.
Furthermore, consider the functional R (Zx) to be a measure of risk of water production.
This measure of risk is coherent according to Artzner et al. (1999) if it agrees with the
following axioms:

1. Translation invariance. R (Zx + c) = R (Zx) + c.
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If a constant water production c, i.e., water production independent of our de-
cisions, is added to the production operation, then the water production risk is
increased exactly by this constant. This axiom also indicates that Zx, c and R (Zx)
are all measured in the same units.

2. Sub-additivity. R
(
Z1
x + Z2

x

)
≤ R

(
Z1
x

)
+R

(
Z2
x

)
.

Let Z1
x and Z2

x be the water production from two different wells, further, assume
there is an uncertain channelized permeability structure and fixed water injection.
Observe that the risk of water production considering the two wells is at most
equal to the total water injection, while the sum of risks applied independently on
each well is twice the total water injection.

3. Positive Homogeneity. If λ > 0, then R (λZx) = λR (Zx).

If the water production value is multiplied by a positive constant so is the risk.
This scaling invariance property is very important for optimization because the risk
must be scalable to any unit.

4. Monotonicity. If Yx ≤ Zx ∀x, then R (Yx) ≤ R (Zx).

If for every fixed decision x, Yx ≤ Zx then Y is less risky than Z. This axiom
seems to state an obvious desired property, however, the mean-variance measure
fails to fulfill this requirement (Rockafellar 2007). Thus, despite the simplicity of
the mean-variance, it must be avoided in the formulation of optimization prob-
lems.

The careful reader may realize that some of the aforementioned axioms have changes
in signs, when compared to its presentation in (Artzner et al. 1999), however, its current
form was previously suggested by Rockafellar (2007). The intention of the adjustments is
to introduce risk measures for cost rather than profit, so that risk can be easily applied to
minimization problems. Furthermore, this formulation is more intuitive for constraints.

The mean value and the worst case functionals are examples of coherent risk mea-
sures. Assessing the outcome on a single scenario, or in other words, assessment of
performance on a nominal model, is also a coherent risk measure. However, this mea-
sure is subject to criticism since a single instance of the reservoir parameters does not
span the uncertainty.

As seen above, the risk may assess the uncertainty of an undesired event in a given
process. For constraint handling, the mean-variance measure has been proposed to in-
clude a large penalty on the variance term so as to mimic a safety margin (Rockafellar
2007) . However, mean-variance is not coherent in the sense of (Artzner et al. 1999).
Furthermore, there is no axiom indicating that higher dispersion or uncertainty is unde-
sired. Motivated by this shortcoming, Rockafellar et al. (2002) and Rockafellar (2007)
further request an averseness axiom:

5. Averseness. R (Zx) > E (Zx) for all non-constant Zx.
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4.5. Risk measures for robust dynamic optimization

With this extra requirement, it is clear that non-constant distributions are more
risky than constant distributions. Moreover, observe that an important risk mea-
sure, the mean, does not fulfill the averseness requirement.

Another way to deal with risk in constraints is to introduce chance constraints:

Pr{Zx ≤ τ} ≤ α (4.15)

where τ is a threshold and α a bound on probability, adopting a value like 95%. The
condition Zx > τ is undesired and (4.15) constrain the decision x to limit the probability
of this event.

The chance constraint (4.15) may be written by means of the Value-at-Risk func-
tional:

V@Rα[Zx] ≤ τ (4.16)

where
V@Rα[Z] = inf {t : Pr (Z ≤ t) ≥ α} (4.17)

In words, larger values than t in (4.17) occurs with probability not exceeding (1− α). Al-
though chance constraints are the conceptual feature desired in stochastic optimization,
chance constraints may have non-convex feasible regions and even if convex, they may
be difficult to compute (Shapiro et al. 2007; Shapiro et al. 2009a, p. 257). Therefore,
Rockafellar et al. (2000) proposes a convex over-estimate of V@Rα[Z]:

AV@Rα[Z] = inf
t∈R

{
t+ (1− α)−1 E [Z − t]+

}
=

1

1− α

∫ 1

α
V@Rs(Z)ds (4.18)

where [t]+ = max (0, t) and α ∈ (0, 1). From the second relation in (4.18) it is easy to
derive that V@Rα[Z] ≤ AV@Rα[Z]. Therefore,

AV@Rα[Zx] ≤ τ (4.19)

is a conservative approximation of (4.16). However, AV@R is a coherent risk averse
measure in contrast to V@R. Observe that AV@R is the center of mass of the tail of the
associated distribution. This tail starts at the value of V@R. Thus, (4.19) implies that
Zx is less than τ with α probability, furthermore it implies that the mean of the worst-
cases that happen with probability 1 − α is less than τ . Therefore, AV@R provides the
safety margin that was desired with the introduction of the penalty on the variance. In
addition, AV@R is sensitive to the shape of the tail of the distribution in contrast to V@R.
As a final remark, observe that lim

α→0+
AV@Rα [Z] = E [Z] and lim

α→1−
AV@Rα [Z] = max [Z]

(worst-case).
Due to the aforementioned reasons AV@R will be used hereafter as our risk indicator

in addition to the mean and the worst-case functionals. The use of AV@R for stochastic
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optimization of oil production was also proposed in (Capolei et al. 2015a; Hanssen et al.
2015).

The risk measures S in problem (4.1) are instantiated with AV@R with an appropri-
ate value of α for each constraint:

Sm(om) = inf

tm +
1

J (1− αm)

J∑
j=1

[oj,m − tm]+

 (4.20)

However, the introduction of this function is not straightforward due to the max function
and the inf operator appearing in (4.20). Fortunately, it is possible to reformulate a
problem including expressions with AV@R with the help of additional variables and
constraints as shown in (Rockafellar et al. 2000; Hanssen et al. 2015):

Sm(om) = min
tm,zj,m

tm +
1

J (1− αm)

J∑
j=1

zj,m (4.21a)

subject to: oj,m − tm ≤ zj,m, zj,m ≥ 0 (4.21b)

Although this reformulation is suitable for problem (4.1), it requires 2MJ additional in-
equality constraints. Moreover, ifM > 1, then additional artifacts are needed to calculate
the optimal value of s rather than a feasible one as in (Hanssen et al. 2015). Hence, in-
stead of including the additional variables and constraints from problem (4.21) in (4.1),
we propose to solve problem (4.21) as a subproblem when evaluating the constraints
and its Jacobian. This approach has the advantage of simplicity, however, Sm(om) is only
piecewise differentiable.

For fixed om, solving the LP problem (4.21) requires sorting the vector om in de-
scending order. Say ôm is the sorted vector, then:

Sm(om) =
1

J(1− αm)

bJ(1−αm)c∑
j=1

ôj,m +

(
1− bJ(1− αm)c

J(1− αm)

)
ôdJ(1−αm)e,m (4.22)

Some notes are in order:
• The solution of Sm(om) is the average of the highest J(1− αm) values of om.

• Although the value of Sm(om) always has a unique solution, the partial derivatives
∂Sm
∂om

can have several solutions if om can be sorted in several ways, i.e., if some
particular values in the vector om are the same.

• The discontinuity in the Jacobian occurs when there are several samples on the
tail boundary. Considering the optimization procedure developed in Section 4.4,
the discontinuity in the Jacobians may cause backtracking during line-search due
to a wrong prediction of the mean of the tail.
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Besides the eventual difficulties, this approach is attractive because it circumvents fur-
ther complications related to the resolution of LP problems in (4.21). The complexity of
this problem is reduced to sort a vector. Moreover, the possible difficulties related to the
multiplicity of ∂Sm

∂om
also appear with the reformulation in (4.21), as multiple solutions

of the dual variables and as changes in the constraints active sets.

4.6 Test case of robust reservoir control optimization.

This section demonstrates the application of the MS formulation and the risk measures
on the Egg-Model (Jansen et al. 2013). The Egg-Model is a channelized two-phase (oil-
water) synthetic reservoir model with 18553 active cells. It has 12 wells, 8 water in-
jectors and 4 producers. It considers uncertainty in the channel structure and provides
100 permeability fields representing plausible scenarios. It inspired and enabled the
exploration of robust optimization in several research activities (Van Essen et al. 2009;
Fonseca et al. 2014; Fonseca et al. 2015; Siraj et al. 2015). More details about this model
can be obtained either in its research note or in the actual data available in (Jansen et al.
2013).

We propose five test cases to assess output constraint handling capabilities. The five
cases are related to a Base case (B). The B case considers constraints on flow-rates on
each well perforation. These constraints ensure that all the perforations associated to a
well injector are actually injecting and that all the perforations related to a well producer
are producing. In technical terms, these constraints prevent flow reversion or cross-flow
between perforations of the same well. The Egg-Model has 7 perforations for each well,
one for each vertical layer of the discretized reservoir model. Thus, 84 constraints are
imposed for each predicted time step. Observe that these constraints are required even
if the well control is specified by flow-rate because this type of control prescribes the
flow-rate for the sum of all the perforations rather than for the individual perforations.
In addition to the cross-flow constraint, constraints are included on the saturation states
to honor the residual saturations and the initial conditions. Furthermore, the constraints
on the states must limit the saturations to remain in [0, 1] to avoid invalid inputs to the
reservoir simulator during optimization.

The B case considers the same well schedule for the 100 realizations (J = 100). The
well schedules span for 3600 days (∼ 10 years). The simulation time steps are fixed and
each year of production is divided in 3 steps equal to 30 days, 150 days and 180 days, re-
spectively. Thus, K = 30. We require shorter steps at the beginning of each year in order
to improve the simulator approximations after a well control change. The well controls
are discretized in 10 equal periods of 360 days (∼ 1 year), hence, U = 10. During these
periods, the well injectors inject at a fixed flow-rate and the well producers maintain a
fixed bottom hole pressure. Therefore, the control schedule is fully parametrized with
120 variables which are the degrees of freedom of the optimization algorithm. However,
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since the reservoir model is incompressible, all the solutions with the same bottom hole
pressure difference between the boundary conditions provide the same flow pattern.
Therefore, the bottom hole pressure of the producer labeled as “PROD1” is fixed during
all the control periods, and then the problem remains with 110 degrees of freedom.

The objective function models the Net Present Value (NPV) of the recovery. The NPV
function of one reservoir realization is given by:

NPV =
K∑
k=1

(
qo,kro − qwp,krwp − qwi,krwi

(1 + d)tk/tK

)
∆tk (4.23)

where qo,k, qwp,k and qwi,k represent the sum of oil produced, water produced and water
injected in all wells, respectively, and ro, rwp and rwi are their corresponding prices.
Moreover, d is the discount factor and tk is the time at the end of the step time k. In
our experiments (ro, rwq, rwi) = (100, 10, 10)STB/Sm3 and d = 0. The objective ψ of
problem (4.1) is the expected NPV value over all the realizations.

Constraints on the wells may be imposed as bounds on the well schedule parameters.
Thus, well injection flow-rates are limited between 0 and 500 Sm3/day and the well
producers bottom hole pressure are limited between 100 and 450 bar. Moreover, the
bottom hole pressure of PROD1 is fixed to 300 bar during the entire production horizon.

In the B case the vector of algebraic variables v contains the fluid flow-rate through
all the well perforations, for all realizations and all time steps. Moreover, variables rep-
resenting cash-flow accumulation (NPV) at each time step are appended to v. With this
choice of the algebraic state variables, the function O is linear on the decision variables,
i.e., the sum of the contributions to the NPV at every step. Furthermore, the function S
is the simple mean of the accumulated NPV values of each realization calculated in the
variables o.

Scaling plays an important role in non-linear optimization methods. In our experi-
ments the pressure variables are scaled by 5 bar, the saturations by 1%, the flow-rates
by 10 Sm3/day and the NPV by 107 USD. Moreover, the infinity norm tolerance for the
constraints c(D) is set to 0.01. This implies that the reduced SQP algorithm stops when
the solution is within an accuracy of 0.05 bar, 0.1 Sm3/day and 105 USD.

Figures 4.3, 4.4 and 4.5 provide optimized well schedules and production forecasts.
The flow-rates of oil and water are uncertain in the producers, and the bottom hole
pressure is uncertain in the injectors. Therefore, for these variables we plot the mean, the
maximum and minimum limits and the mean of the tail of the distribution on both sides.
In the optimized solution we observe that the oil production during the last years is close
to 0 Sm3/day, suggesting that the well is drained of oil disregarding the uncertainty.
However, there is a large uncertainty on the water being produced. Figure 4.6 illustrates
the NPV accumulation in time for the B case. Here we observe that the uncertainty
in the recovery starts to be significant from the third year on. The expected NPV is
2.255E8 USD being the worst case 7.3% lower and the best case 4.4% higher than the
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mean. Figure 4.7 shows the predictions for the total oil production (FOPT) and total
water production (FWPT) together with the total scheduled water injection (FWIT).
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Figure 4.3: Optimized solution for the B case. qo Oil Production. qw Water Production.
bhp Bottom hole pressure.
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Figure 4.4: Optimized solution for the B case. qo Oil Production. qw Water Production.
bhp Bottom hole pressure.

Two sets of cases are created by imposing additional constraints to the B case.
These cases are motivated by the high water injection and production observed dur-
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Figure 4.5: Optimized solution for the B case. qo Oil Production. qw Water Production.
bhp Bottom hole pressure.
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Figure 4.6: Optimized solution for the B case. The expected NPV is 2.255E8 USD, and
the worst case (best case) is 7.3% lower (4.4% higher) than the expected value.

ing the last years in Figure 4.7. The constrained cases consider different approaches
to limit the FWPT. To this end, variables representing the FWPT for all predicted time
steps are included in v. The case “H30” requires FWPT ≤ 30 Sm3/day for all scenar-
ios for all time steps and similarly, the case “H20” requires FWPT ≤ 20 Sm3/day. To
this end, the corresponding v variables are constrained in eq. (4.1g). Since the cases
“H30” and “H20” may be overly restrictive due to a particular scenario, their counter-
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Figure 4.7: B case. Total production and injection considering all wells.

part “C30” and “C20” require AV@R0.9 (FWPT) ≤ 30 Sm3/day and AV@R0.8 (FWPT) ≤
20 Sm3/day, respectively. Since there are a 100 scenarios, all of them with equal proba-
bility, AV@R0.9 (FWPT) ≤ 30 Sm3/day implies that the mean of the worst 10 water pro-
duction scenarios must be lower than 30 Sm3/day and AV@R0.8 (FWPT) ≤ 20 Sm3/day
requires the mean of the 20 worst FWPT scenarios to be lower than 20 Sm3/day.

Figure 4.8 shows the FOPT, FWPT and FWIT for the optimized constrained cases.
In comparison to the results of the B case, the constrained cases produce less oil and
the FWPT constraints are active at several time steps. However, the water injection is
seized better because there is less water recirculation and the difference between FOPT
and FWIT is smaller. Moreover, the dispersion of the uncertainty on FOPT and FWPT
is reduced, therefore a better planning of the capacity utilization may be achieved with
the constrained cases. Figure 4.9 show the predicted accumulation of NPV in time for
the constrained cases. In contrast to the B case that reaches 108 USD in around 500
days, the constrained cases require twice the time to reach this value. Therefore, the
B case is preferable for fast recovery of investments. However, observe that d = 0 and
short-term recovery is not set as an objective, thus, the optimization procedure is not
intended to maximize short-term recovery. Table 4.1 shows the predicted recovery for
all strategies. Although the best expected value is achieved with the B case, this case
also has the highest uncertainty span. Moreover, although the economical return of the
strategies using AV@R constraints (C) is better compared to the robust counterpart (H),
the strategies with AV@R constraints may violate constraints with a marginal probability.

The progress of the scaled objective function and the constraints for the cases B and
C30 are illustrated in Figure 4.10. The convergences of the omitted cases are similar to
the convergence of C30. All the cases were aborted before the predefined tolerance was
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B C30 H30 C20 H20
Best case 2.36 2.29 2.25 2.20 2.18

Expected value 2.26 2.19 2.17 2.12 2.08
Worst case 2.01 2.05 2.04 1.98 1.96

Table 4.1: Predicted NPV (108USD)

reached. The B case was halted after reaching 7 days of execution, and the constrained
cases were halted after reaching 1000 iterations. As in (Codas et al. 2015), the main
SQP iterations make significant progress in the first 200 steps, then the convergence
error remains at the same level and the objective progresses logarithmically, see Figure
4.11. The algorithm performed backtracking less than 100 times for the constrained
cases and never for the B case, i.e., it performed only unitary steps. We attribute the
convergence rate behavior to the typical ill-conditioning characteristic of reservoir water-
flooding control problems. Although by the last iteration there is a large error norm,
the control schedule of this iteration is simulated and the maximum error reported is
feasible within a tolerance of 0.01 in infinity norm. The reason for the larger error norm
in Figure 4.10 is related to the convergence error of the implicit functions within the
reservoir simulator. The simulation convergence error affects the convergence error of
the multiple shooting algorithm. Although, this convergence error may be reduced by
imposing tighter convergence conditions in the simulator and stricter acceptance of steps
in the line-search procedure, we preferred to relax these conditions to favor faster steps.
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Figure 4.8: Optimized field total flow-rates for the constrained cases.
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Figure 4.9: Optimized accumulated NPV for the constrained cases.
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4.7 Discussion

In this work, we propose an extension to the Multiple Shooting (MS) algorithm devel-
oped in Codas et al. (2015) for robust reservoir control optimization. Due to the uncer-
tainty in the process, there is a risk concerning the expected recovery and an operation
within constraint limits. Thus, an efficient procedure to deal with output constraints is
fundamental.

As mentioned earlier, MS allows for parallelization. Besides the parallelization of the
simulation computation for each ensemble member, MS allows for parallelization of the
simulation time steps. This may lead to a computational speed up for costly simulations.
For instance, the computational experiments in this work were carried out on the su-
percomputer at NTNU named “Vilje”. This computer has 1404 nodes, each node having
32GB of RAM and 16 cores. The 100 realizations of the Egg-Model were allocated to
10 computer nodes, 10 for each node, not more due to RAM memory limits. Thus, the
6 remaining cores could be used for running simulation time steps in parallel. Observe
that the allocation of computational power (and its related cost) on such supercomput-
ers is charged by indivisible node units, therefore it is always desired to consume all the
computational power within a node. As opposed to the traditional Single Shooting for-
mulation, MS has an extra flexibility to take advantage of this remaining computational
power.

The MS formulation and the proposed solution algorithm deal with all the state vari-
ables as independent decision variables. Therefore, it is easy to impose output inequality
constraints as bounds. However, the solver must take care of a large number of equality
constraints. A correction to these equality constraints mismatch is obtained with a sin-
gle forward gradient propagation. For the inequality constraints handling, we devise a
reduced space method which leads to a QP problem with the same number of decision
variables as the degrees of freedom of the optimization problem. The reduced space
approach exploits an active-set method to selectively compute adjoint simulation of the
active constraints.

The proposed formulation and algorithm deals with risk coherently (Artzner et al.
1999). For profitability reasons, the Average Value at Risk approach is more attractive
than imposing constraints on every single realization because the latter leads to the
worst case scenario optimization. However, it requires the inclusion of multiple new vari-
ables and inequality constraints as suggested by Rockafellar et al. (2000) and Hanssen
et al. (2015). To prevent this complication we tailor our optimization solver and suggest
alternative approach which computes the risk measure without additional variables and
constraints. A weakness of this approach appears in some particular cases because the
solution is only piecewise differentiable. However, on these particular points the original
approach possesses multiple Lagrange multiplier solutions which lead to the same algo-
rithm difficulty. Besides these potential difficulties, the line-search process performed
well in our experiments. Further, Rockafellar et al. (2010) and Basova et al. (2011)
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compare alternative approaches to deal with the constraints arising from the risk mea-
sures. Basova et al. (2011) show that the efficiency of optimization methods is deterio-
rated when considering all the additional constraints and variables. Thus, they suggest
smoothing approximations to the max operator in (4.20) or active-set methods for the
additional constrains in (4.21b). Our approach relies on the inclusion of a single addi-
tional variable and constraint as the approach is based on the smoothing approximation,
however, a smoothing function is not required.

The numerical examples are difficult to solve due to ill-conditioning. We arrive at
this conclusion because the BFGS updates are damped very frequently close to the so-
lution in the three explored cases. Therefore the expected super-linear convergence of
the Quasi-Newton algorithms is not achieved. This is a common behavior in reservoir
control optimization problems and in economical MPC problems since there is no regu-
larization in the objective function. The execution of our test cases was halted due to a
slow progress of the objective function.

Although the norm one of the convergence error is around 20E4 for the B case, the
forward simulations of the resulting controls yield a satisfactory solution which satis-
fies the bounds within the predefined tolerance of 0.01. Thus, we conclude that this
convergence error is associated with the underlying convergence error of the simulator.
Observe that the problems have 18553 state variables, 100 realizations and 30 steps.
Therefore, the average error is 20000/(18553 × 100 × 30) = 0.00036 which is consider-
ably low. Nevertheless a way to mitigate this undesired effect is tightening the simulator
convergence tolerances, however, this may increase the overall computational burden.

Despite the premature interruption of the algorithm and the possibility of multiple
local optima, a comparison of the achieved objective values deserves a discussion. The
calculated objective values, after a forward simulation of the last computed controls,
are shown in Table 4.1. The results are reasonable because the best profit is attained
in the B case. Moreover, the cases using AV@R provides better profit than the counter-
parts were satisfaction of the constraints in all cases is required. However, according to
the evolution of the incumbent solutions shown in Figure 4.11, the difference between
these solutions is not substantial and requires around 600 iterations to be reached. Nev-
ertheless, observe that this high number of iterations depends on the initial solution
guess and the fact that our test cases do not apply any particular procedure to provide a
good initial guess. Considering real-time close-loop applications, the algorithm may be
hot-started with the previous optimal solution according to a receding horizon scheme.

The proposed formulation and algorithm contributes to constraint handling for ro-
bust optimization compared to previous publications. Compared to the ensemble meth-
ods (Chen et al. 2009), our algorithm use exact gradients, therefore it is usually faster
but the implementation effort is higher. Recently, Leeuwenburgh et al. (2015) showed
the application of ensemble methods on robust optimization considering output con-
strained problems. It shows that the gradients approximated with an ensemble are suit-
able for constrained optimization, but they suggest lumping constraints to deal with high
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number of output constraints. In contrast, robust optimization using the Augmented La-
grangian method (Chen et al. 2012) requires a single adjoint simulation independently
of the number of output constraints. However, it requires a two-layered iterative process
to estimate Lagrange multipliers and optimize the problem. Therefore, compared to our
single-layered active-set algorithm, faster convergence is not guaranteed. Moreover, our
algorithm promotes further parallelization opportunities. Recently, Liu et al. (2015a)
and Liu et al. (2015b) proposed the Augmented Lagrangian algorithm to maximize NPV
and minimize return risk. Their formulation is a special case of the one in this paper
because they consider the risk as the worst-case and here the risk is modeled with the
tail of the probabilistic distribution of the nonlinear output functions. Moreover, here we
apply risk measures to multiple output variables, so constraints may be included to the
problem considering a trade-off between the risk of constraint violation and economical
return.

4.8 Conclusion

In this work develop a novel method for robust optimization in reservoir control. The
method exploits the Multiple Shooting formulation which allows broader parallelization
opportunities and an efficient handling of constraints. Further, the formulation incorpo-
rates coherent measures of risk to control the probability of constraint violation. Tests on
a medium-sized benchmark problem clearly demonstrated the ability to handle output
constraints of the proposed approach.
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Chapter 5

Integrated Production Optimization
of Oil Fields with Pressure and
Routing Constraints: The Urucu
Field

This chapter is based on (Codas et al. 2012b):
Codas, A. et al. (2012b). ‘Integrated Production Optimization of Oil Fields with Pres-

sure and Routing Constraints: The Urucu Field’. In: Computers & Chemical Engineering
46, pp. 178–189. ISSN: 00981354. DOI: 10.1016/j.compchemeng.2012.06.016.

Abstract

This paper develops a framework for integrated production optimization of com-
plex oil fields such as Urucu, which has a gathering system with complex routing
degree of freedom, limited processing capacity, pressure constraints, and wells with
gas-coning behavior. The optimization model integrates simplified well deliverabil-
ity models, vertical lift performance relations, and the flowing pressure behavior
of the surface gathering system. The framework relies on analytical models his-
tory matched to field data and simulators tuned to reflect operating conditions. A
mixed-integer linear programming (MILP) problem is obtained by approximating
these models with piecewise-linear functions. Procedures were developed to obtain
simplified piecewise-linear approximations that ensure a given accuracy with re-
spect to complex and precise models. Computational experiments showed that the
integrated production optimization problem can be solved sufficiently fast for real-
time applications. Further, the operational conditions calculated with the simplified
models during the optimization process match the precise models.
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5. Integrated Production Optimization of Oil Fields with Pressure and Routing
Constraints: The Urucu Field

5.1 Introduction

Fast development of new technologies is being witnessed in several disciplines related
to oil production, a result of the intensive work of experts from different research fields.
Although innovations lead to more accurate models and operating strategies, integra-
tion and optimization modeling is still a challenge. The industry response has been the
concept of integrated operations developed in the past decade, emphasizing the collab-
oration across disciplines. Such initiatives have led to improvements in operations, field
management, and production through mathematical optimization of integrated models.

Several works addressed oil field production optimization subject to rate capacity
constraints and lift-gas availability (Buitrago et al. 1996; Fang et al. 1996; Alarcón et
al. 2002; Camponogara et al. 2009; Misener et al. 2009; Codas et al. 2012a). These
works do not treat pressure constraints which increase problem complexity significantly
because nonconvex multivariable pressure-drop functions must be modeled across the
network. Pressure modeling is required when dealing with production networks that
contain wells sharing flowlines, in which case the variation in the operation of any well
affects the others (Dutta-Roy et al. 1997). Further, the representation of back-pressure
from separation facilities and flowline pressure drop is critical to define the operating
range for mature fields, which experience pressure depletion.

Grothey et al. (2000) present an optimization model which consists of several sub-
networks of compressor, wells, manifolds, and separators linked by a common gas vessel.
They focus on the analysis of decomposition methods to accelerate problem solving.
However, simplistic pressure-drop models are used without an analysis of their accuracy
and suitability.

Litvak et al. (1995), Litvak et al. (1997) and Litvak et al. (2002) describe procedures
for determining well production rates and surface pipeline interconnections honoring
network rate and pressure constraints. They use integrated reservoir and surface facil-
ity models, develop an automatic tuning procedure to validate simulation models, and
identify problems in simulations and field measurements. The procedures were success-
fully implemented in a commercial simulator-optimizer and applied to the Prudhoe Bay
oil field.

Wang et al. (2002a) and Wang et al. (2002b) solve an oil production optimization
problem with decision variables being well production rates, lift-gas rates, and routing
to separation facilities subject to rate and pressure constraints. Optimization procedures
are proposed based on linear programing, separable programming, sequential quadratic
programming, and genetic algorithms. The gradient based techniques utilize automatic
differentiation methods of coupled simulator functions. The effectiveness and business
value of the optimization approach was demonstrated with applications in the Gulf of
Mexico and the Prudhoe Bay oil field.

Kosmidis et al. (2004) and Kosmidis et al. (2005) formalize the previous works
and present a mixed-integer nonlinear programming (MINLP) model for the daily well
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scheduling problem of a production network with naturally producing and gas-lifted
wells. The surface facilities allow well-separator and well-manifold-separator connec-
tions. The solution process uses piecewise linearization to represent well-bore models
and nonlinear functions to represent pressure drops. The MINLP problem is solved by a
sequence of mixed-integer linear programming (MILP) problems following a sequential
linear programming (SLP) method.

Gunnerud et al. (2010a) and Gunnerud et al. (2010b) present a global optimization
procedure for oil fields with decentralized structure such as Troll West. This kind of field
is structured in clusters of independent wells, manifolds, and pipelines while the sepa-
ration facilities are centralized in a platform. Piecewise linearization techniques based
on special ordered sets of type 2 (SOS2) constraints are used to approximate nonlin-
ear curves. The production gathering system is suitable for decomposition strategies. A
comparison between strategies showed that the Dantzig-Wolfe technique outperforms
the others in this application.

Although Litvak et al. (1995), Litvak et al. (1997), Litvak et al. (2002), Wang et al.
(2002a) and Wang et al. (2002b) implemented and applied local optimization methods
in complex oil fields, the mathematical formulations and solution procedures were not
explicitly shown. On the other hand, Kosmidis et al. (2004), Kosmidis et al. (2005),
Gunnerud et al. (2010a) and Gunnerud et al. (2010b) explicitly show the problem for-
mulation and solution procedure, but the production gathering networks considered in
these works are more simplistic than the Urucu field. To this end, this work advanced
the state of the art by developing an integrated mathematical formulation for production
optimization reflecting the complexity of the Urucu field.

Section 5.2 discusses briefly how production optimization is being carried out in the
Urucu field. Section 5.3 presents an MINLP formulation for the production optimization
problem accounting for the well bore model, the production network structure consisting
of wells, manifolds, separators, and pipelines, complex interconnections such as mani-
fold to manifold, multiphase flow, and pressure representation in pipelines. Section 5.4
develops an MILP reformulation of the production optimization problem by piecewise
linearizing the nonlinear curves related to the well-inflow equations and pressure drops
in pipelines. Section 5.5 presents procedures for setting up the daily instance of the
production optimization problem based on data gathered from simulators tuned to the
field. Before optimization, the instances are preprocessed to reduce the complexity of
the piecewise-linear models while ensuring a given accuracy between the optimization
proxy model and the simulator. Section 5.6 reports the performance of the developed
models and procedures for production optimization. Section 5.7 gives a summary and
suggests directions for future research.

113



5. Integrated Production Optimization of Oil Fields with Pressure and Routing
Constraints: The Urucu Field

5.2 The Production Optimization Problem

The Urucu field is located in a remote region of primary rainforest, 650 km southwest
of Manaus in the heartland of the Brazilian Amazon (Campos et al. 2010). Petrobras
started the production activities in Urucu after the discovery of a significant reserve of
oil and natural gas in 1986. The field consists of three reservoirs called “River Urucu”
(RUC), “Eastern Urucu” (LUC), and “Southeastern Urucu” (SUC). The field has more
than 20 injection wells and more than 70 production wells flowing to several manifolds,
with gas expansion being the primary recovery mechanism. The crude oil produced in
Urucu has average oil gravity of 45 oAPI and gas-oil ratio (GOR) ranging from 500 to
5000 sm3/sm3 due to coning behavior. Typical field flow rates are 50,000 bpd and 10.5
million Nm3/d of natural gas, with re-injection of 8 million Nm3/day of processed gas
as secondary recovery mechanism. LUC field is the main oil producer and has a gas
rate constraint in the flowline to the liquefied petroleum gas (LPG) plant “Polo Arara”.
Therefore, high GOR is an issue in production operations.

Reservoir and production management is carried out in different timescales. In the
short-term timescale, regulatory and supervisory control are responsible to maintain pro-
cess stability and surveillance, honoring the set points defined by the upper layers. The
processes are monitored by operators in the control room and supervised by production
engineers. The daily production is planned by engineers at the headquarters in Manaus
city, 600 km away from the field. These engineers perform middle-term timescale anal-
ysis to decide well status such as open, closed, routed to production separators, or on
test procedure. To deal with gas coning effects, reservoir engineers perform analyses and
define flowrate limits for the wells in order to maximize the recovery factor.

The gathering system is composed of a pipeline network that distributes the produc-
tion to nine first-stage separators through twelve manifolds and twelve multivia valves.
Three separators are for well testing and six others for production with the same design
and capacity. Gas and oil pipelines, with total length of 35 km, work as a backbone col-
lecting production from the first-stage separators and delivering the fluids to subsequent
separation facilities and finally the LPG process plant.

The diverse routing possibilities in the LUC field are achieved by the following con-
figurations:

1. Well routing through the test header at manifolds.

2. Well routing through the production header at manifolds.

3. Well routing through the multivia valve.

4. Bidirectional flow between manifolds through the test pipelines interconnections.

5. Flow production routed to test separator.

6. Flow production routed to production separator.
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7. Equalization, which is the capability of sending production of a well to more than
one separator at the same time.

8. Multiple pipeline connections between manifolds.

The routing strategy should be developed to maximize production efficiency through
the correct allocation of the capacity available in the field. Currently, the operations
follow a routing strategy depending on the status of the wells. The strategy is com-
piled in a document called “Technical Instructions” describing how the wells should be
routed depending on the availability of test separators to run on production status. The
operational configurations defined by the Technical Instructions are constructed from
known past operational configurations and field simulations, however the current field
integrated model optimize production based on fix routing. This work proposes an opti-
mization strategy to support middle-term decisions including routing options to improve
the strategies suggested by the Technical Instructions.

5.3 Model Formulation

This section begins by presenting models for the inflow performance relation (IPR) and
the vertical lift performance (VLP). The IPR represents the oil, gas, and water production
as a function of bottom hole pressure. In Urucu, the IPR consists of an analytical well
model that was fit to data from a detailed 3D finite-difference numerical model. The
VLP relates the drawdown to the wellhead pressure by using production string models.
Network flow equations are used to relate the well flows to separation facilities assuming
a feasible routing for the gathering system. Then, pressure in manifolds and separators
are expressed in terms of the flow rates in the network. All of these models allow us
to express constraints on choke openings, flow rates, and pressures in field equipment.
Finally, we formalize the problem of optimizing production of oil fields with routing and
pressure drop constraints.

5.3.1 Well Bore Modeling

A well deliverability model or inflow performance relationship is essential in matching
and predicting the well inflow performance under varying drawdown conditions, liquid
and gas ratio, and reservoir depletion. With the IPR curves and the production string
models, it is possible to correlate wellhead pressure to drawdown, a correlation known
as vertical lift performance curve.

Gunnerud et al. (2010a) combine IPR and VLP curves to obtain the well production
curve (WPC) which relates the wellhead pressure to the multiphase flow rate. This model
does not consider the drawdown of the well.

Kosmidis et al. (2005) use the IPR equation with the oil flow rate as the independent
variable to determine the gas flow and water flow rates. Assuming a fully open choke
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and fixed manifold pressure, the maximum oil flow rate is determined through the VLP
equation. This model describes the feasible flows given the manifold pressure.

The model suggested by Gunnerud et al. (2010a) is not suitable for this work be-
cause different flow regimes can be achieved for the same wellhead pressure in some
wells. Here, the well flow and wellhead pressure are directly related to the bottom hole
pressure rather than the oil rate as suggested by Kosmidis et al. (2005), which provides
more integrability since the data given by reservoir engineers is used without any modi-
fication.

The integrated optimization framework in place at the Urucu field (Campos et al.
2010) considers detailed 3D finite-difference models, history matched to the entire pro-
duction data of each well. The detailed model is then used to forecast well production
for drawdown ranges under gas and/or water coning regime. Because the complexity
and computation time of this model are not suitable for short-term field optimization,
simplified proxy models were developed. Several analytical models were tested against
the detailed model until the adequate IPR was found. The chosen analytical proxy well
model is based on the fundamental flow theory by Fetkovich (1973).

In this work, the analytical IPR curves q(u) are expressed in terms of the normal-
ized bottom hole pressure u and subsequently piecewise-linearized for optimization pur-
poses.

Finally, VLP curves are generated to model the performance of the production tubing.
The existing integrated model for the Urucu field maintains VLP curves as look-up tables
that give wellhead pressure as a function of bottom-hole pressure, liquid rate, gas-oil
ratio, and water cut. VLP and IPR curves combined define the total well performance. For
the purpose of this work, the analytical curves representing the IPR curves and the VLP
lookup tables are combined to generate wellhead curves as a function of the drawdown
(pwh = V LP (u)).

Typical wells of the Urucu field exhibit dynamic gas and water coning behavior,
meaning that the oil-gas ratio varies in time. However, an empirical steady-state con-
ing model, which relates gas-oil ratio and water cut to oil flow, is representative for
short-term applications (Campos et al. 2010) and can be modeled with piecewise-linear
functions.

5.3.2 Network Flow Modeling

The oil field can be seen as a directed graph as illustrated in Figure 5.1. The node set
N is the union of a set of wells W = {1, . . . ,W}, a set of manifoldsM = {1, . . . ,M} ,
a set of separators S = {1, . . . , S}, a set of connections to gas pipelines C = {1, . . . , C},
and a set of gas-pipeline terminal points T = {1, . . . , T}. Ordered pairs of nodes define
pipelines P ⊆ N ×N . The set of pipelines P =WM ∪MM ∪MS ∪ SC ∪ CC ∪ CT where
AB ⊆ A× B for all node sets A and B.
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Figure 5.1: Sample production network.

The multiphase fluid flow rates through the network nodes and pipelines are mod-
eled by the following formulation:

qw = qw(uw), w ∈ W (5.1a)

qi =
∑

j:(i,j)∈P

qi,j , i ∈ (N \ (T ∪ S)) (5.1b)

Esqs =
∑

j:(s,j)∈P

qs,j , s ∈ S (5.1c)

∑
i:(i,j)∈P

qi,j = qj , j ∈ (N \W) (5.1d)

∑
j:(i,j)∈P

zi,j ≤ 1, i ∈ N (5.1e)

0 ≤ qi,j ≤ qmax
i,j zi,j , (i, j) ∈ P (5.1f)

where:
• uw ∈ R+, w ∈ W is the squared normalized bottom hole pressure pwwf of well w

with respect to the reservoir pressure pwr , i.e., uw =
(
pwwf/p

w
r
)2;

• qw ∈ R3
+, w ∈ W defines the flow input to the network from well w, with qw(uw)

being a nonlinear function relating uw to the production of each phase;

• qi ∈ R3
+, i ∈ N is the three-phase flow rate flowing through node i;

• qi,j ∈ R3
+, (i, j) ∈ P is the three-phase flow rate from node i to j;
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• zi,j ∈ {0, 1}, (i, j) ∈ P is a binary variable taking on value 1 if the fluid from node
i is directed to j, and 0 otherwise;

• qmax
i,j = (qg,max

i,j , qo,max
i,j , qw,max

i,j ) is the maximum flow capacity of the pipeline (i, j)
for the gas, oil, and water phases; this parameter is used to enforce the flow routing
and should be chosen large enough so as not to constrain any feasible flow;

• Es is a R3×3 matrix modeling the efficiency of separator s ∈ S; the efficiency
is associated to oil properties, system temperature, and the separator operating
pressure; zero oil flow is assumed in the gas pipeline, while the gas present in
the oil output is a consequence of the gas dissolved in the oil under the separator
condition (Standing 1952).

Equation (5.1a) models the fluid input to the network. Equations (5.1b)–(5.1d) en-
sure mass conservation across the network. Together, inequalities (5.1e) and (5.1f) es-
tablish that every node in the graph is allowed to have one output only.

Some remarks on the formulation are in order:
• All flow rates are expressed in stock tank conditions.

• For the sake of simplicity and compactness of the formulation, the separators are
modeled with at most one output and the flows are considered three-phased. In
the Urucu field, the water is re-injected at the separation facility site and does not
flow through the gathering system after separation. There is no flow or pressure
constraint in the oil pipeline. Therefore, the variables and constraints associated
with these two phases can be dispensed with. The active constraints downstream
separators are related to gas flow.

• The flow of fluids from one node to multiple nodes needs nonlinear models to
represent the split of rates, since the flow in pipelines depends on the downstream
pressure, fluid flow regime, and the equipment geometry. A fair assumption is to
consider that the fluid has the same composition in all the outputs, which allows
to represent this phenomenon with simple models. However, such models consist
of nonlinear relations which would require new piecewise linear approximations.
To avoid these nonlinear models, nodes are allowed to have one output only as
imposed by inequality (5.1e) which is a simplifying assumption also applied in
other works (Kosmidis et al. 2005; Gunnerud et al. 2010a; Codas et al. 2012a).

The gathering system constraints on fluid rates are:∑
w∈W

qw ≤ qmax (5.2a)

qi ≤ qi,max, i ∈ N (5.2b)

umin
w ≤ uw ≤ umax

w , w ∈ W (5.2c)

where:
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• qmax is the maximum production allowed for each phase taking into account all
the wells in the production network. If wells produce under gas (water) coning,
the maximum gas (water) production constraint is typically active.

• qi,max = (qi,max
g , qi,max

o , qi,max
w ) is the maximum handling capacity of node i for the

three-phase flow.

• The bottom hole pressure is related to the liquid rate being produced. umin
w is the

minimum bottom pressure recommended by the reservoir engineer. A minimum
bottom hole pressure is established to avoid erosional effects due to high fluid
velocity. By limiting the bottom hole pressure (umax

w ) below the reservoir pressure,
the well is not allowed to shut-in. Although producing by natural flow, some wells
need artificial lifting to start up, normally done with nitrogen injection. Therefore
such wells should neither be closed frequently, nor become a swing well (Campos
et al. 2010).

5.3.3 Network Pressure Modeling

Pressure drop through the pipelines should be modeled to guarantee the fluid flow di-
rection and to honor maximum pressure constraints in the facilities. Dutta-Roy et al.
(1997) studied the interaction of wells operated under a common gathering network.
They concluded that the impact of the wells sharing a common flowline is the increase
of back-pressure which reduces the production of the wells, thereby justifying the need
of modeling pressure drops through the system.

To model pressure constraints, absolute pressure variables are associated to each
node in the production network. Pressure drop variables through the pipelines are also
defined. Since the pressure in the terminal points of the gas pipelines are controlled,
they are assumed known parameters of the model.

Given a source node i and a sink node j, pi and pj are variables which represent
the absolute pressure in the nodes while pi,j is the variable representing the pressure
drop from i to j. In general, the pressure drop in a pipeline (i, j) is a nonlinear function
∆pi,j (qi,j , pj) of the pipeline geometry and properties of the flowing fluid, such as phase
flow rates qi,j , temperature and boundary pressure pj . It is assumed in this work that
the temperature in the pipelines remains constant independently of the fluid flow rate,
pressure and time. Regarding the boundary pressure pj , a fixed nominal pressure p̂j is
adopted as an approximation to simplify one more variable in the function description,
a simplification which is assessed in Section 5.5.2. For notation simplicity, pressure drop
functions will be written just in terms of the fluid rates ∆pi,j (qi,j) or more briefly ∆pi,j .
Let zi,j be a binary variable indicating whether or not the pipeline is active, then the
pressure drop and absolute pressure are linked by:

− Lp (1− zi,j) ≤ pi − pj −∆pi,j ≤ Up (1− zi,j) , i 6=W (5.3)
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where Lp and Up are sufficiently large parameters following big M formulation. Conform
this equation, pi − pj = ∆pi,j if zi,j = 1, otherwise the pressures pj and pi can assume
any value when zi,j = 0.

Equation (5.3) does not apply to well nodes because the pressure drop through the
well choke is not being considered. The choke has a decoupling role between surface
and wellbore elements. Regarding well w and manifold m, the pressure drop pcw,m in the
choke connecting them can be inferred by pcw,m = pw(uw)− pm −∆pi,j . Given any flow
rate qw,m ≥ 0 and pressure drop pcw,m ≥ 0, it is assumed that there exists a choke valve
opening satisfying the system.

Considering well i and manifold j, the inequality −Lp (1− zi,j) ≤ pi − pj − ∆pi,j
holds since the pressure drop in the choke must be always positive. On the other hand,
the right-hand side of equation (5.3) should not be enforced for the well nodes because
otherwise the pressure drop through the choke would not be taken into account.

Absolute pressures can be established for all but the well nodes of the network using
backward calculation, which consists of starting from the terminal nodes and calculating
backwards the absolute pressures of the neighbor nodes using the pressure drop func-
tions through the pipelines. On the other hand, the wellhead pressure is calculated as a
function of the bottom hole pressure. Given the variable uw, the bottom hole pressure
and multiphase flows of well w are calculated, making it possible to obtain the well-
head pressure pw by means of the pressure drop along the well production tube (VLP
equations). Finally, the choke pressure drop is obtained by the difference between the
wellhead pressure and the pressure downstream choke.

According to the discussion above, the absolute node pressures and pressure drops
of the network are modeled using the following formulation:

pi,j = ∆pi,j , (i, j) ∈ P (5.4a)

pw = pw(uw), w ∈ W (5.4b)

− Lp (1− zi,j) ≤ pi − pj − pi,j , (i, j) ∈ P (5.4c)

pi − pj − pi,j ≤ Up (1− zi,j) , (i, j) ∈ (P \WM) (5.4d)

The pressure constraints are then added to the system as follows:

pi ≤ pmax
i , i ∈ (S ∪M) (5.5a)

pmin
s ≤ ps, s ∈ S (5.5b)

pm + pw,m − Lp(1− zw,m) ≤ pmax
w , (w,m) ∈ WM (5.5c)

pm + pw,m − Lp(1− zw,m) ≤ pw, (w,m) ∈ WM (5.5d)

The new variables and parameters are:
• pi ∈ R+, i ∈ (N \ T ) is a variable representing the absolute pressure in node i;

• pi,j ∈ R, (i, j) ∈ P is a variable representing the pressure drop in the pipeline from
i to j;
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• pt ∈ R+, t ∈ T is a parameter defining the controlled absolute pressure in pipeline
terminal point t;

• pmax
i ∈ R+, i ∈ (S ∪M) is the maximum absolute pressure allowed for node i;

• pmin
s ∈ R+, s ∈ S is the minimum absolute pressure allowed for separator s;

• pmax
w ∈ R+, w ∈ W is the maximum absolute pressure allowed downstream the

choke of well w.
The constraints (5.5a), (5.5b) and (5.5c) state pressure limits in network elements,

while (5.5d) guarantees the flow direction through the chokes.

5.3.4 Problem Statement

The production optimization problem subject to facility constraints on fluid rates, pres-
sures, and routings is defined as follows:

P : max
∑
w∈W

qo
w (5.6a)

s.t. : q← FM(u, z) (5.6b)

FC(q,u) ≤ 0 (5.6c)

p← PM(q, z) (5.6d)

PC(p, z) ≤ 0 (5.6e)

where: u, z,q, and p are vectors grouping the normalized bottom hole pressures, routing
decisions, phase rates, and pressure variables; FM is a compact form representing the
flow model equations (5.1), with the subscript M indicating model; FC is a compact
form representing the flow constraints (5.2), with the subscript C indicating constraints;
PM represents the pressure modeling for the nodes as given by equations (5.4); and PC
represents the pressure constraints defined by equations (5.5).

Notice that a solution is completely defined by u and z.

5.3.5 Summary of Modeling Assumptions

The problem formulation (5.6) is valid under the following modeling assumptions:
• Steady state pressure drop functions can be satisfactorily modeled in terms of

phases flow rates through the network elements in stock tank conditions, assuming
fixed boundary pressure and temperature.

• The fluid flows in each node of the network are directed to at most one output
node, with the exception of separator nodes for which at most one gas output
node is allowed.

• Sufficiently slow reservoir dynamics allowing inflow performance relations as a
function of static bottom hole pressure.
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• There is a choke opening position matching any pressure drop and flow rates
across the choke.

• Fixed controlled pressure at the gas pipeline terminal points, which establish the
pressure boundary condition for the gathering system.

• The gas-oil-ratio (GOR) in the oil pipeline downstream separator is constant, a
consequence of the fluid composition and nominal operating pressure and temper-
ature of the separator.

The experimental results presented in this paper are obtained using nonlinear pressure
drop functions in terms of the black-oil model with the parameters shown in Table 5.2.
Piecewise-linear representations are generated after the nonlinear pressure-drop func-
tions using the sampling parameters in Table 5.3. A fixed nominal outlet pressure is
assumed during the pressure drop function sampling.

5.4 Piecewise Linearization

The functions qw(uw), pw(uw), and ∆pi,j (qi,j) modeling field flows and pressures are
only assumed to be continuous. This assumption and the presence of binary variables
zi,j render the production optimization problem a mixed integer nonlinear program
(MINLP). Owing to the hardness of solving MINLPs directly, for which global optimality
certificates may be impossible to obtain, an alternative is to solve mixed integer lin-
ear programs (MILP) obtained by piecewise linearizing the nonlinear functions, as it
was previously done in (Camponogara et al. 2006; Gunnerud et al. 2010a; Codas et al.
2012a). Another solution approach consists of sequentially solving several MILPs that
locally approximate the MINLP until a local optimum is achieved (Kosmidis et al. 2005).

Instead of solving a sequence of MILPs, this work tackles the problem by approximat-
ing the nonlinear functions with piecewise-linear forms of desired accuracy. The process
models have uncertainties associated to field measurements and curve fitting (Elgæter
et al. 2010). Thereby, piecewise-linear models with approximation error bounded by the
degree of uncertainty are suitable to represent the processes.

Several models to approximate non-linear curves with piecewise linear functions are
found in the literature. Vielma et al. (2010) compare these models with respect to their
theoretical properties and computational performance, including aggregated, disaggre-
gated, and special ordered sets type 2 (SOS2) models. The piecewise linearization model
using SOS2 constraints (Keha et al. 2004) has attractive properties for multidimensional
applications, since additional binary variables and constraints are not required to be
added to the initial formulation—the needed constraints are enforced on demand dur-
ing the branching process. According to Vielma et al. (2010), the model using SOS2
constraints generates the smallest initial formulation which is solved faster than the
formulations that use binary variables, however the former has a larger dual GAP and
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thereby generates a larger number of nodes in the branch-and-bound tree. For multidi-
mensional piecewise-linear approximation of non-convex functions, small formulations
are desirable because the linear programming (LP) relaxations are solved more expedi-
tiously. For unidimensional piecewise-linear approximation the gain between formula-
tions is not significant.

5.4.1 Piecewise Linearization Applied to Unidimensional Functions

The pressure drops ∆pi,j(q
g
i,j), (i, j) ∈ SC ∪ CC ∪ CT are unidimensional functions de-

pending only on the flow of gas through the pipelines. Given a set of points Pi,j ={(
p1
i,j , q

g,1
i,j

)
,
(
p2
i,j , q

g,2
i,j

)
, . . . ,

(
p
κ(i,j)
i,j , q

g,κ(i,j)
i,j

)}
, a straightforward piecewise linear ap-

proximation for ∆pi,j(q
g
i,j) is:

(qg
i,j , p̃i,j) =

κ(i,j)∑
k=1

(qg,k
i,j , p

k
i,j)λ

g,k
i,j , (5.7a)

κ(i,j)∑
k=1

λg,k
i,j = 1, (5.7b)

λg,k
i,j ≥ 0, k = 1, . . . , κ(i, j), (5.7c){
λg,k
i,j : k = 1, . . . , κ(i, j)

}
is SOS2 (5.7d)

Because the flows qw,m through a pipeline (w,m) from the set WM are given by
the IPR curves of the related well w, they are expressed as a function of the normalized
bottom hole pressure uw. In turn, the pressure drop ∆pw,m (qw,m) is also expressed as
a function ∆pw,m (uw) of uw, which can be approximated with simpler unidimensional
piecewise-linear functions.

The multiphase flow qw(uw), the wellhead pressure pw(uw), and the pressure drop
pw,m(uw) from wells to manifolds, (w,m) ∈ WM related to well w ∈ W are represented
with the following sets of samples, respectively:

• Qw =
{(

q1
w, u

1
w

)
,
(
q2
w, u

2
w

)
, . . . ,

(
q
κ(w)
w , u

κ(w)
w

)}
,

• Pw =
{(
p1
w, u

1
w

)
,
(
p2
w, u

2
w

)
, . . . ,

(
p
κ(w)
w , u

κ(w)
w

)}
, and

• Pw,m =
{(
p1
w,m, u

1
w

)
,
(
p2
w,m, u

2
w

)
, . . . ,

(
p
κ(w)
w,m , u

κ(w)
w

)}
;

Then, the piecewise-linear approximations are given by the following formulation:
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(uw, q̃w, p̃w) =

κ(w)∑
i=1

(uiw,q
i
w, p

i
w)λiw, w ∈ W (5.8a)

p̃w,m =

κ(w)∑
i=1

piw,mλ
i
w, (w,m) ∈ WM, (5.8b)

κ(w)∑
i=1

λiw = 1, (5.8c){
λiw : i ∈ 1, . . . , κ(w)

}
is SOS2 (5.8d)

Although the piecewise linear forms described above could have different indepen-
dent variables (λ), the functions are sampled at the same break points for the sake of
simplicity and model compactness.

5.4.2 Multidimensional Piecewise Linearization Applied to Pressure Drop
Functions

The pressure drop functions associated with the pipelines from manifolds to separators,
MM ∪ MS , cannot be generically expressed in terms of the variables uw related to
the upstream wells. The number of upstream wells varies depending on each pipeline,
multidimensional piecewise linearization can be practically intractable when several in-
dependent variables are considered. To unify the piecewise-linear models for pressure
drop functions, the gas, oil, and water rates are taken as independent variables and ex-
pressed in terms of the gas-oil ratio (GOR) qg/qo (G), water cut (WCUT) qw/(qo + qw)
(W), and liquid rate (QL) qo + qw (L). Let H = {G,W, L}. Given the breakpoint set

Bhi,j =

{
bh,1i,j , b

h,2
i,j , . . . , b

h,κhi,j
i,j

}
for each (i, j) ∈MM ∪MS and h ∈ H,
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qg
i,j =

κG
i,j∑

kg=1

κW
i,j∑

kw=1

κL
i,j∑

kl=1

b
G,kg
i,j

(
1− bW,kw

i,j

)
bL,kl
i,j λ

kg,kw,kl
i,j , (5.9a)

qo
i,j =

κG
i,j∑

kg=1

κW
i,j∑

kw=1

κL
i,j∑

kl=1

(
1− bW,kw

i,j

)
bL,kl
i,j λ

kg,kw,kl
i,j , (5.9b)

qw
i,j =

κG
i,j∑

kg=1

κW
i,j∑

kw=1

κL
i,j∑

kl=1

bW,kw
i,j bL,kl

i,j λ
kg,kw,kl
i,j , (5.9c)

p̃i,j =

κG
i,j∑

kg=1

κW
i,j∑

kw=1

κL
i,j∑

kl=1

∆pi,j

(
b

G,kg
i,j , bW,kw

i,j , bL,kl
i,j

)
λ
kg,kw,kl
i,j , (5.9d)

1 =

κG
i,j∑

kg=1

κW
i,j∑

kw=1

κL
i,j∑

kl=1

λ
kg,kw,kl
i,j , (5.9e)

γ
G,kg
i,j =

κW
i,j∑

kw=1

κL
i,j∑

kl=1

λ
kg,kw,kl
i,j , kg ∈

{
1, . . . , κG

i,j

}
, (5.9f)

γW,kw
i,j =

κG
i,j∑

kg=1

κL
i,j∑

kl=1

λ
kg,kw,kl
i,j , kw ∈

{
1, . . . , κW

i,j

}
, (5.9g)

γL,kl
i,j =

κG
i,j∑

kg=1

κW
i,j∑

kw=1

λ
kg,kw,kl
i,j , kl ∈

{
1, . . . , κL

i,j

}
, (5.9h)

λ
kg,kw,kl
i,j ≥ 0, kh ∈

{
1, . . . , κhi,j

}
, h ∈ H (5.9i){

γh,ki,j : k = 1, . . . , κhi,j

}
is SOS2, h ∈ H (5.9j)

Others works like (Gunnerud et al. 2010a) model the pressure drop functions using
piecewise linearization along the fluid rate dimensions, namely oil, gas, and water rates.
The piecewise-linear approximation using these dimensions is a straightforward appli-
cation of the existing models in the literature. However, such strategy for piecewise lin-
earization requires many non-realistic sample points, for instance points with extremely
low GOR, combining the maximum oil rate and minimum gas rate breakpoints. From
the process point of view, the well IPR curves and the pipeline pressure drop functions
are better specified in terms of GOR, WCUT, and QL values, making it easier to generate
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sample points that relate to actual operating points, establish tight bounds for break-
points, and thereby generate tighter formulations.

It is worth remarking that this formulation allows multiple pressure drop solutions
for a given multiphase rate, because a three dimensional point given by the flow rates
is obtained by convex combination of eight points which are vertices of a cube in the
H space. Misener et al. (2010) show an explicit formulation for three dimensional
piecewise-linear functions that yields a unique interpolation solution, which in our case
translates into a unique pressure drop solution for a given multiphase rate. While Mis-
ener et al. (2010) use SOSX constraints and binary variables, Vielma et al. (2011) pro-
pose a formulation with a logarithmic number of binary variables and constraints in the
number of breakpoints which also ensures a unique interpolation. A potential drawback
is the fact that extra constraints and variables are needed to enforce a unique interpo-
lation solution, which may imply in a larger formulation with slower solution time. It is
also worth remarking that the non-unique representation can be conveniently modeled
in optimization solvers using SOS2 constraints. Formulations allowing multiple solutions
as the one given in equation (5.9) were already proposed by Bieker et al. (2006) and
Gunnerud et al. (2010a). In this work, a methodology will be developed in Section 5.5
for generating piecewise-linear approximations of the nonlinear functions that ensure
sufficiently accurate approximations, regardless of the multiple interpolation solutions.

5.4.3 Piecewise-Linear Approximation of the Production Optimization
Problem

The production optimization problem P is approximated by problem P̃ obtained from
(5.6) after making the following modifications:

• Equations (5.1a), (5.4a), and (5.4b) modeling respectively flow rates, pressure
drops, and wellhead absolute pressures are removed;

• Equations (5.7), (5.8), and (5.9) with the piecewise-linear approximations are
included; and

• the variables qw, pw, and pi,j are replaced by their approximations q̃w, p̃w, and
p̃i,j , respectively.

5.5 Field Data Integration, Model Validation, and Problem
Synthesis

This section proposes a methodology for generating mathematical representations ad-
justed to existing gathering system models for re-routing purposes. A simplification pro-
cedure is developed to obtain representations suitable for real-time optimization by en-
suring process representation accuracy.
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5.5.1 Field Data Gathering for Real-Time Optimization

Simulators for reservoir and surface facilities are constantly being tuned by field en-
gineers to reflect the prevailing operating conditions. In spite of being independent,
these simulators must operate in an integrated manner to account for the dependencies
among the processes. For instance, the processing capacity of surface facilities constrains
the production from the reservoir imposing simulation ranges, while the fluid properties
from the reservoir establish certain operating parameters for surface facilities.

In this work, field simulators are used to generate piecewise-linear representations
for the involved processes. Since the simulator parameters are constantly being updated
to match field measurements, dependencies must be minimized to reduce model main-
tenance each time one simulator parameter changes.

When approximating non-linear phenomena by piecewise linear functions for opti-
mization purposes two aspects must be considered:

• Feasible operating ranges must be described. To rule out conditions not within
feasible ranges, a comprehensive model considering large operating ranges would
be excessively large and complex for real-time optimization. Thus, tight feasible
ranges are desirable to keep the search space as small as possible.

• The approximation error should be small enough to capture the process character-
istics. High approximation errors may cause convergence to a solution away from
the optimal point, whereas overly accurate piecewise-linear models may have too
many variables and constraints for real-time optimization purposes.

Figure 5.2 shows how to obtain piecewise-linear pressure-drop functions for pipelines
from manifolds to separators and gas pipelines downstream separators: the former are
multidimensional functions represented in the space of GOR, WCUT, and QL, whereas
the latter are unidimensional in the space of gas flow rate.

The nominal pressure at the pipeline outlet is a parameter estimated by field en-
gineers, which triggers the generation of new approximation functions whenever it
changes. A sensitivity analysis justifying this assumption is presented in Section 5.5.2.
Fixed an outlet pressure, a high-resolution piecewise-linear model is created considering
the following:

• The QL sample range is defined by network constraints, with the upper limit being
defined as the sum of the maximum liquid rates allowed for the upstream wells or
by the maximum liquid rate for separators.

• The minimum GOR is the well solution gas/oil ratio (Rs) and the minimum WCUT
is zero, while the maximums are defined by an operational constraint indicating
that no well can produce above shut-in GOR and WCUT.

• In a similar way, the maximum gas rate for gas pipelines is limited by the sum of
the maximum capacity of the upstream separators or by the total field capacity.

• The piecewise linear model is created with fixed sample steps.
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These sample ranges are sufficiently large to avoid frequent model maintenance. The
obtained piecewise-linear models are then fed to the reduction procedure along with an
accuracy parameter: breakpoints are eliminated to reduce model size while ensuring
that the model error is within the given accuracy. The reduction procedure is described
in Section 5.5.3.
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Figure 5.2: Pipeline pressure drop piecewise linear curves obtainment.

Figure 5.3 shows how to obtain piecewise-linear representations of models related to
wells, namely IPR, VLP, and pressure drops. To avoid multidimensional representations,
all curves are expressed in terms of the normalized bottom hole pressure. However,
this artifice entails model maintenance triggered by changes in reservoir parameters
identified after well tests. As illustrated in the figure, a high resolution IPR curve is
obtained for each well, coupled to the VLP curve and the pressure drop functions for
the pipelines connected to the well. The normalized bottom-hole pressure range is set
up according to the maximum liquid production allowed for the well. All of the curves
are sampled with the same set of normalized bottom-hole pressures. Next, as in the
previous case, an accuracy parameter is defined for performing modeling reduction on
each curve. However, such reduction is performed under a conciliation restriction that
all curves must be sampled on the same set.
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Figure 5.3: Well related piecewise linear curves obtainment.
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5.5.2 Pressure Drop Modeling

Pressure drop in pipelines depends on geometries, flow rates, and operating pressures,
among other variables (Litvak et al. 1995; Kosmidis et al. 2005; Gunnerud et al. 2010a).
For optimization purposes, this work approximates pressure drop curves in pipelines
considering the outlet pressure fixed at the nominal pressure, which corresponds to the
prevailing field pressure during a production reference day.

For the operating conditions calculated by the optimization algorithm, the actual
outlet pressure may not match the nominal pressure assumed during curve generation,
thus incurring approximation error.

To assess the validity of this assumption, two pressure drop curves were obtained
considering a maximum and minimum operating pressure under the average GOR (2000
sm3/sm3) and WCUT (50 %) of the field. The analysis considered a pipeline of 1100 m
and elevations varying between -10 m and 20 m, one of the longest in the field, which
constitutes a worst-case scenario.

Figure 5.4 shows the pressure drop percentage error for this pipeline assuming a
constant outlet pressure. Notice that the percentage error is negligible for low liquid
rate. The maximum 4% error reported for the maximum liquid rate is acceptable. The
maximum error between the pressure reported by the simulator and field measurements
is about 7%. If the fitting data were obtained directly from field measurements instead of
being sampled from simulators, then the optimization models would have a maximum
error of 4%.

Although the uncertainty is higher for nodes near the wellhead due to the backward
pressure calculation, the liquid rate through these nodes is low, typically under 200
m3/d, rendering the approximation error negligible. Higher rates are found close to the
separator nodes, where the absolute pressure estimation is more accurate. Taking into
account these remarks, the approximation errors are always much less than 4%.

5.5.3 Pressure Drop Simplification

The effectiveness of the proposed framework for production optimization depends on
the approximation quality of the non-linear functions. The accuracy of the approxima-
tions with piecewise-linear functions tends to increase as sample points are added to the
model description. However, increasing the number of sample points introduces new in-
terpolating variables that, in turn, make the optimization larger and consequently more
difficult to be practically solved. Besides this relation between precision and instance
size, the increase of sample points cannot improve accuracy beyond the uncertainty
inherited from the measurements and model fitting (Elgæter et al. 2010). Thereupon
arises the trade-off decision on selecting samples to describe the non-linear curves.

This work assumes that a tight piecewise-linear representation is given for each non-
linear function, meaning that each representation approximates the expected non-linear
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Figure 5.4: Pressure drop approximation for different operating pressures.

function with negligible error using a finite number of sample points. Because this rep-
resentation may be overly detailed, a greedy heuristic is proposed to reduce the number
of sample points, while ensuring a maximum error with respect to the tight piecewise-
linear representation. Three different cases are addressed:

• Unidimensional functions, ∆pi,j(q
g), (i, j) ∈ SC ∪ CC ∪ CT .

• Unidimensional functions with common sample points, pw(uw), qw(uw) and pw,m(uw),
w ∈ W, (w,m) ∈ WM.

• Multidimensional functions, ∆pi,j(g, w, l), (i, j) ∈MM ∪MS .

5.5.3.1 Unidimensional Functions

Let ∆p(q) be an unidimensional function described tightly by the set of sample points
PQ =

{(
p1, q1

)
, . . . , (pκ, qκ)

}
, where Q =

{
q1, . . . , qκ

}
. Algorithm 2 iteratively attempts

to remove each point in PQ from the piecewise-linear representation, with exception
of the end points. A trial point is removed if the approximation error of the resulting
piecewise-linear representation with respective to the tight representation is below a
given error bound (r), otherwise this point remains in the sample set. The maximum er-
ror between a candidate and the tight representation is computed by Algorithm 3, which
computes the distance of the missing points to the candidate representation and takes
the maximum. Algorithm 3 returns the maximum error introduced to the representation
given by Qr \ {q}, with q being the trial point and Qr being the current reduced rep-
resentation. If the approximation error is greater than the bound r for any point in the
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tight representation, the algorithm aborts the computation and reports the trial point
cannot be removed. Notice that Algorithm 2 runs in O(κ2) time.

Algorithm 2 Unidimensional representation reduction
input: PQ, Q, r
Qr := Q
for q ∈ Q \

{
q1, qκ

}
do

compute E(PQ,Qr, q, r), obtaining emax

if emax ≤ r then
Qr := Qr \ {q}

end if
end for
return Qr

Algorithm 3 E(PQ,Qr, q, r). Maximum error introduced when q is removed.
input: PQ, Qr, q, r
emax := 0
(pu, qu) := argmin

(ps,qs)∈PQ
{qs : qs ∈ Qr, qs > q}

(pl, ql) := argmax
(ps,qs)∈PQ

{qs : qs ∈ Qr, qs < q}

for (pt, qt) ∈
{

(ps, qs) ∈ PQ : ql < qs < qu
}

do

pc := pl + pu−pl
qu−ql (q

t − ql)
emax := max

(
|pc − pt|, emax

)
if emax > r then

return∞
end if

end for
return emax

5.5.3.2 Unidimensional Functions with Common Breakpoints

The heuristic for reducing the complexity of the piecewise-linear representation is es-
sentially identical to Algorithm 2, differing only on how the approximation error is com-
puted in Algorithm 3. A sample point is removed if the maximum error introduced after
the removal is less than the threshold for all of the involved functions. Notice that the
resulting heuristic runs in O(κ2l) time where l is the number of unidimensional func-
tions.

131



5. Integrated Production Optimization of Oil Fields with Pressure and Routing
Constraints: The Urucu Field

5.5.3.3 Multidimensional Functions

Let ∆p be a function tightly represented using the formulation given in (5.9) for the
set of sample points PH =

{
(p, g, w, l) ∈ R4 : g ∈ BG, w ∈ BW, l ∈ BL, p = ∆p(g, w, l)}

for a given pipeline (i, j), not indicated here to keep notation simple, where Bh ={
bh,1, bh,2, . . . , bh,κ

h
}

is the set of breakpoints in each dimension.
The heuristic for breakpoint removal appears in Algorithm 4, which works similarly

to the heuristics for the unidimensional cases. The difference is twofold. First, the heuris-
tic for multidimensional functions attempts to remove all sample points for a given
breakpoint in one of the dimensions—for instance, if a breakpoint bG is to be removed,
then entire set of sample points {(bG, bW, bL) : bW ∈ BW, bL ∈ BL} is removed. Second,
the error incurred by removing a breakpoint must consider all sample points influenced
by the removal.

The computation of the error Em(PH,BG
r ,BW

r ,BL
r , b, h, r) caused by the removal of a

breakpoint p is computationally intensive, mostly because the formulation (5.9) allows
more than one feasible pressure value for each point of the sample set

T =
{

(bG, bW, bL) ∈ BG × BW × BL : bh = b
}
.

For the flow rates defined by each point t ∈ T , the test solves two MILP problems
with constraints given by formulation (5.9), the solution of the first problem yields the
minimum pressure drop p̃min(t) whereas the second yields the maximum pressure drop
p̃max(t). This MILP problems can be reduced to LP programs since the interpolating
points for the test point p are easily identified, eliminating the need of SOS2 constraints.
The breakpoint bh cannot be removed if there exists at least one sample point t ∈ T such
that max(|p̃max(t)−∆p(t)|, |p̃min(t)−∆p(t)|) > r.

5.5.3.4 Linear Functions

In some pipelines, the fluid rate variation is small or their geometrical properties cause
small pressure drops. The pressure drop in such pipelines can be represented by a simple
linear function:

p = p0 + poqo + pgqg + pwqw (5.10)

provided that there exist parameters p0, po, pg, and pw for which the approximation error
is within the given accuracy for all the sample points. The existence and obtainment of
optimal parameters can be easily determined solving an LP problem.
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Algorithm 4 Multidimensional representation reduction
input: PH, BG, BW, BL, r
for h ∈ H do
Bhr := Bh
Bht := Bh \ {bh,1, bh,κh}

end for
for h ∈ H do

for b ∈ Bht do
solve Em(PH,BG

r ,BW
r ,BL

r , b, h, r), obtaining emax

if emax ≤ r then
Bhr := Bhr \ {b}

end if
end for

end for
return Qr

5.6 Computational Performance, Validation, and
Applications

This section aims to show that the framework for system production modeling, data
gathering, and instance generation is suitable for production optimization of complex
oil fields such as Urucu. The implementation of the framework may become an invalu-
able decision-support tool for field engineers. The following sections describe Urucu’s
production system, present the application of procedures for data simplification, show
results regarding production optimization and solution validation, and finally discuss
operational issues on the framework application.

5.6.1 Instance Characteristics

The instance is constructed to reflect LUC field wells and routing degree of freedom for
the reference case. In total, 28 wells were producing, among which 15 wells did not have
reliable IPR models. Therefore, bottom hole pressure was fixed leaving only the routing
for decision making. For the other 13 wells, the bottom hole pressure and routing are
the decision variables in the optimization process.

Every well has at least 2 manifold connections (production and test manifold), but in
some cases there is a direct connection to a separator passing through a bypass manifold
connection. The field has 9 independent separators and 1 gas terminal point. Table 5.1
shows the cardinality of parameter sets related to the problem.

The gathering system of the LUC field is modeled using a commercial network pro-
duction system analysis software. The black-oil model is used to characterize the field
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Table 5.1: Cardinality of sets.

W M S C T WM MM MS SC CC CT
28 32 9 8 1 61 58 9 9 7 1

fluid, some parameters of this model are depicted in Table 5.2. The simulator must be
tuned to represent as accurately as possible field conditions. To this end, a stable produc-
tion day (without any plant upset or shutdowns) was chosen to become the reference
production condition for model tuning and routing comparisons. The surface gathering
network model was prepared to reproduce this day. To perform the tuning process the
following information is gathered:

• Individual well production rates, which are calculated through a reconciliation
process based on the last well test information.

• Routing and status (open/closed, production/test) for each well, as stated by the
Technical Instructions.

• Pressure and temperature in equipments and pipeline key locations, obtained in
real-time through the Process Information Management System (PIMS).

Rates per well, pressures, temperatures, and routing are input variables for model
calibration. The real flow rate and well stream composition are sources of high uncer-
tainty for tuning. The wells with the oldest tests introduce higher errors, mainly the ones
whose GOR depend on liquid flow rate (gas coning).

The tuning procedure consists of changing the roughness of pipelines to match
the separator and manifold pressures. In this work, the tuned model is the source for
piecewise-linear representations.

To obtain tight representations of the curves (IPR, VLP, and pressure drops) related
to the wells, a fixed step of 0.01 of the normalized bottom hole pressure was adopted.
Similarly, tight representations of the multiphase pressure-drop functions were obtained
fixing sampling steps at 25 m3/day, 200 sm3/sm3, and 10% for QL, GOR, and WCUT,
respectively. For pressure-drop functions depending only on the gas rate, tight represen-
tations were sampled such that the pressure drop between consecutive points is 20kPa
apart. The accuracy parameter that guides pressure-drop function reduction is set at
20kPa. On the other hand, the accuracy for the rates is disconsidered because the func-
tions modeling these variables are almost linear, thus the sampling is guided by the error
induced by the wellhead pressure and pressure-drop function. The wells have a GOR
varying between 200 and 3 000 sm3/sm3. The upper GOR limit is related to the shut-in
of a swing well with subsequent opening of a well with lower GOR. The field WCUT
ranges between 0 and 72 %. Table 5.3 summarizes sampling parameters for pressure
drop functions.
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Table 5.2: Black Oil fluid characterization.

Property1 Assumption
Water cut (WCUT) Variable
Gas-oil ratio (GOR) Variable
Gas specific gravity 0.75
Water specific gravity 1.02
Oil density 45 oAPI
Reservoir gas solubility factor (Rs) 200 sm3/sm3

Bubble point pressure (Pb) correlation Kartoatmodjo
Gas solubility factor (Rs) correlation Kartoatmodjo
Dead oil viscosity correlation Beggs & Robinson
Live oil viscosity correlation Beggs & Robinson
Undersaturated oil viscosity correlation Vasquez & Beggs
Emulsion viscosity method Volume ratio of oil and water
Contaminants No contaminants
1 Further properties are confidential.

Table 5.3: Pressure drop function sampling.

Variable Minimum Maximum Sampling Step
Liquid rate (QL) sm3/d 0 1500 25
Gas-oil ratio (GOR) sm3/sm3 200 3000 200
Water cut (WCUT) % 0 90 10
Normalized bottom hole pressure 0 1 0.01

With this configuration an instance of the production optimization problem has 145
binary variables, 168 SOS2 constraints, 143 114 continuous variables, and 5 095 con-
straints.

5.6.2 Computational Analysis

The production optimization problem was modeled in AMPL and solved with CPLEX
12.3.0.0 on a workstation equipped with 16 GB memory and two processors, each with
a six-core AMD Opteron running at 2.4 GHz.

The solver was not able to find a feasible solution for the tight representation with
a deadline set to 1 hour. After applying the reduction procedures on the piecewise-
linear representations, the solver was able to find feasible solutions but could not prove

135



5. Integrated Production Optimization of Oil Fields with Pressure and Routing
Constraints: The Urucu Field

optimality within the given deadline. To improve solution quality, we imposed branching
priorities for the solver, pruned interpolating variables of the piecewise-linear forms, add
cuts on flow rates, and limited the flow rates in pipelines according to network relations,
all without cutting off feasible solutions in a preprocessing step.

The branching priority consists of branching first on the routing variables rather than
on the SOS2 constraints. The activations of the pipelines (i.e., zi,j variables) impose
structural changes in the flow network that have a major impact on the flow rates and,
thereby, the pressure drops which are then determined by the interpolating variables.
Put another way, the interpolating variables are greatly affected by the routing variables
which are hierarchically superior.

The pruning procedure rules out unused variables such as the interpolating variables
λiw, i ∈ 1, . . . , κ(w), which can be fixed at zero and thereby removed because of the
bounds on uw given by restriction (5.2c). Pruning is also applied on the flow rates of
the pipelines: the range of GOR (WCUT) for a pipeline (i, j) can be restricted to the
minimum and maximum GOR (WCUT) of the upstream wells whose production can be
sent to node i; the maximum value for QL can be set to the sum of the maximum liquid
rate allowed for all upstream wells or the QL capacity of the downstream facilities.

The pruning procedure also introduces valid inequalities on flow rates to prevent
manifolds from acting as separators, i.e. linear-relaxation solutions where the fluid phases
are separated downstream the node. One such constraint for a pipeline (i, j) is qo

i,j ≤
qg
i,jGORi with GORi being the maximum possible GOR for the pipeline. Similar con-

straints are introduced for the other phases.

The best solution reported using these techniques within the deadline are shown in
Table 5.4. The optimal oil production for the problem instance is 3 040.77m3/d, obtained
in 45 969 s (≈ 13 h), which is obtained using reduction, branching priorities, and prun-
ing. Using these acceleration techniques, a near-optimal solution with an oil production
rate of 3 035.67 m3/d was found within the deadline.

Table 5.4: Feasible solutions using reduction (R), branching priorities (BP), and pruning
(P).

Techniques Best Solution m3/d Absolute MIPGAP m3/d

R 2 971.46 186.02
R+P 2 997.23 160.25

R+BP 3 015.36 142.13
R+P+BP 3 035.67 121.81
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5.6.3 Optimal Solution Validation

The analysis in Section 5.5.2 regarding pressure drop modeling simplification and error
bounding was restricted to a single pipeline, thereby not sufficiently representative of
the entire network. Other sources of error should be considered such as the error intro-
duced by the reduction procedure and the propagation of pressure drop error across the
network.

To this end, the optimal solution pressures found by the optimization process were
contrasted against the pressures obtained with the simulator, using the same well rates
and routings. The multiphase rates for each well and the routing options are taken from
the optimization solution and input to the simulator, which incurs no error in the flow
estimation of the nodes because of the mass conservation laws. The approximation errors
appear in the absolute pressures and pressure drop estimations.

Table 5.5 shows statistics comparing absolute pressures. Column “Nominal Model
vs. Simulator” compares absolute pressures used as nominal points for piecewise-linear
representation generation and the absolute pressures given by the simulator under the
optimal flows from the wells. Column “Optimization vs. Simulator” compares the abso-
lute pressures given by the piecewise-linear models and the simulator, both considering
the optimal flows from the wells.

Table 5.5: Approximation error comparison.

Nominal Model vs. Simulator Optimization vs. Simulator
Absolute (kPa) Relative (%) Absolute (kPa) Relative (%)

Mean error 262.85 3.89 32.62 0.48
RMSE 288.89 4.26 40.47 0.60
Maximum error 734.48 10.70 68.66 1.02

The data in Table 5.5 elicited the following conclusions:
• High differences between nominal pressures and operational pressures given by

the simulator do not significantly affect the quality of the absolute pressures given
by the piecewise-linear representations. The pressure-drop functions generated un-
der the assumption of fixed nominal pressure are sufficiently accurate.

• The pressures represented by piecewise-linear models are within the expected pre-
cision, as controlled by the accuracy parameter r used during the reduction pro-
cedure. The maximum absolute error was 68.66 kPa for the whole network with
an accuracy parameter of 20 kPa, which is expected because of the propagation
of error for several pressure drop approximations. The accuracy parameter was
intentionally set low enough to keep all approximation errors under 100 kPa.

• If the pressure-drop correlations used by the simulator represent accurately the
pressure drops in the field, then the real pressure drops are also represented accu-
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rately by the piecewise-linear models.

5.6.4 Operational and Gain Analysis

The developed optimization model is intended to be used by field engineers as a decision
support tool. Besides calculating optimal operating points, field engineers would like to
reduce dynamic transients from the current to the next operating point (not necessarily
the global optimum), which is achieved by limiting the number operational switchings.
To this end, additional restrictions are enforced: maximum number of alterations of well
rates and routing switchings, which are stated as follows:

(umin
w − uw)cw ≤ uw − uw ≤ (umax

w − uw) cw, w ∈ W (5.11a)∑
w∈W

cw ≤ cmax (5.11b)∑
(i,j)∈P

(zi,j − 2zi,jzi,j + zi,j) ≤ zmax (5.11c)

where uw is the current normalized bottom hole pressure of well w, zi,j is the current
state of the pipeline (i, j), cmax and zmax are the maximum number of changes allowed
for the wells and pipelines, and cw is a binary variable taking value 1 if the bottom hole
pressure of well w is to be reset.

To test the model solving time with these restrictions, cmax and zmax are set to 3
and 5 respectively and a feasible solution representing the current production of the
field (3 001.76 m3/d) is input to the system. The current solution is obtained by solv-
ing the optimization problem with routing decisions fixed to the actual routings of the
field—thus, this is the optimal solution for the given routing configuration. The optimal
solution to the production optimization problem additionally subject to the operational
constraints (5.11) is reached in 1604 s (≈ 27 min) reporting an oil production rate of
3 033.18 m3/d. The fact that the current routing is nearly optimal explains why the so-
lution obtained after optimizing under operational constraints yields small production
gains. However, oil production was increased by allowing a few operational switchings,
a production gain that could not be achieved without the routing degree of freedom.

Despite being limited by constraints on the number of well and routing changes,
which avoid large operational changes in the field, the obtained solution yields an oil
production rate that is close to the global optimum that would be obtained without such
constraints.

5.7 Conclusion

This paper presented an MILP optimization formulation approximating mature oil fields
like Urucu. Such production systems have wells producing under gas conning, limited
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processing capacity, and complex pipeline network structures with manifold-manifold,
manifold-separator, and gas pipeline connections. Due to these degrees of freedom and
complex constraints, operational points should be calculated taking into account flow
pressures to ensure pressure limits. Therefore, optimization procedures should model
pressure constraints across the network.

This work innovates by approximating pressure drop relations with piecewise-linear
functions in the space of gas-oil-ratio, water cut, and liquid rate assuming the outlet
pipeline pressure constant. With this new representation, better integration with field
simulators is attained and tighter formulations are obtained because infeasible rates are
not represented. The computational analysis shows that the approximation errors are
within the desired accuracy for the application purpose, despite the nominal absolute
pressure being significantly away from the operational point determined for the field.

Procedures were developed to synthesize piecewise-linear functions approximating
process relations that are then integrated in an optimization tool. Such procedures can
be implemented and are sufficiently fast to adjust the models in response to process
variations, such as changes in inflow and vertical-lift performance relations. The IPR
relations are updated at every well test, triggering the procedures that generate uni-
dimensional piecewise-linear models with low computational cost. On the other hand,
the multidimensional pressure-drop functions are obtained considering the limitations
of the surface facilities, not the production of the wells, thereby avoiding frequent up-
dates which would consume considerable computational resources. After obtaining rep-
resentations of the process relations (IPR, VLP, and pressure drop functions) with high
resolution, which need a large number of sample points, a procedure is performed to
reduce the size of the piecewise-linear approximations without prejudicing significantly
the accuracy.

According to our computational analysis, the following strategies were shown to
expedite the solution of the production optimization problem:

• the reduction of size of the piecewise-linear approximation, without which feasible
solutions could not be found within the deadline;

• branching priorities attributing higher priority to routing variables than interpo-
lating variables used in the piecewise-linear forms (SOS2 constraints);

• valid inequalities ruling out infeasible flows according to network relations.

The optimization framework can be used as decision-support tool to perform daily
well scheduling when wells must undergo production test. Further, the optimization
framework can handle operating constraints that limit flows and absolute pressures in
all network nodes. The optimization algorithm produces solutions along with quality
certificates (absolute mixed-integer gap), which upper bounds the gain that is possible to
achieve with a better solution if it exists. Such certificates are valuable for field engineers
to estimate how much the current production might be improved.
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A direction for future research is the modeling of nodes with more than one output,
which would allow one well to send its production to more than one separator. The
difficulty arises from the fact that such nodes can act as separators, since the downstream
flow rates do not necessarily have the same compositions, meaning the same gas-oil
ratio and water cut. A simplifying approach implemented in some simulators considers
equal the fluid compositions in the pipelines downstream the node. However, the flow
modeling under this assumption would require additional nonlinear constraints which
may lead to large, multidimensional piecewise-linear approximations.

A second research direction is the dynamic modeling for optimization of daily well
scheduling, which would entail representing fluid flow and pressure transients that are
triggered by new operational settings.

A third research direction is the design of algorithms to reduce the number of points
needed in piecewise-linear functions, possibly based on the dynamic-programming strate-
gies to find the optimal representation complying with the given accuracy requirement,
rather than heuristics.
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Chapter 6

A two-layer structure for
stabilization and optimization of an
oil gathering network

This chapter is based on (Codas et al. 2016c):
Codas, A. et al. (2016c). ‘A two-layer structure for stabilization and optimization of

an oil gathering network’. In: 11th IFAC Symposium on Dynamics and Control of Process
Systems, including Biosystems.

Abstract

In this work, we present the control and optimization of a network consisting of
two gas-lifted oil wells, a common pipeline-riser system and a separator. The gas-
lifted oil wells may be open-loop unstable. The regulatory layer stabilizes the system
by cascade control of wellhead pressure measurements without needing bottom hole
sensing devices. An economic Nonlinear Model Predictive Control (NMPC) based on
the Multiple Shooting (MS) formulation is applied for optimization of the network
operations. The optimization layer thus provides optimal settings for the regulatory
controllers. The control structure has been validated by using the realistic OLGA
simulator as the process, and using simplified models for Kalman filtering and the
NMPC design. The simplified models are implemented in Modelica and fit to the
Olga model to represent the main dynamics of the system. The proposed two-layer
controller was able to stabilize the system and increase the economical outcome.
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6.1 Introduction

In an offshore platform, the flow control of the oil wells is a key to attain good overall
operational performance. The control of the producers assisted by gas-lift may be chal-
lenging due to oscillatory flow patterns known as casing heading and density wave (Bin
et al. 2003). Moreover, even under stable well operations, oscillations known as riser
slugging may originate in the pipeline-riser system that transport the production from
the wellhead to the platform (Taitel 1986).

The oscillatory flow behavior can be reduced or eliminated by increasing the pipeline
back-pressure, i.e., reducing the opening of the choke vale (Schmidt et al. 1980), or by
increasing the lift-gas injection rate (Golan et al. 1991). However, these solutions are not
necessarily optimal from an economical point of view, and automatic feedback control
has emerged as a viable alternative (Havre et al. 2002).

Dynamic multiphase flow models are required to develop, analyze and tune well
flow controllers. These models are typically built based on physical assumptions and
vary in complexity. Detailed models are implemented in commercial multiphase flow
simulators such as OLGA (Schlumberger 2014). However, simplified low-order models
are typically preferred for model based controllers (Eikrem et al. 2008; Jahanshahi et al.
2014). Moreover, when appropriately tuned, such models are sufficiently accurate for
use in such controllers.

Feedback control solutions for wells assisted by gas-lift and pipeline-riser systems
have been studied thoroughly during the last 30 years. Most of these works consider
decoupled or independent wells and risers, for instance stabilization of slug flow in wells
(Eikrem et al. 2008) or in pipelines/riser systems (Jahanshahi et al. 2014). Wells sharing
the same riser may affect a common manifold pressure; hence, it is then required to
analyze the dynamics of the sub-systems performing as a whole. Willersrud et al. (2013)
addresses control and optimization of an oil gathering network with several wells, risers,
a compressors and a separator with nonlinear model predictive control. However, the
regulation capability in closed-loop was not studied. Nonlinear predictive control applied
for regulatory control to such systems may be prohibitively computationally expensive.
Therefore, in this work we assess the applicability of the simplified gas-lifted well and
riser models described by Jahanshahi (2013) for dynamic optimization of a coupled
system of wells feeding a riser. To this end, Nonlinear Model Predictive Control (NMPC)
is applied to steer set-points of a regulatory layer implemented with PI controllers.

It is preferable to use a structured software platform for development and analysis
of NMPC. Modelica is a convenient non-proprietary modeling language that assists to
generate balanced-complexity models (Elgsæter et al. 2012). The models by Jahanshahi
(2013) are translated to independent Modelica sub-models. The boundary conditions
of these sub-models, which are given by pressures and flows, can be coupled to other
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sub-models or set to a constant. Moreover, Modelica compilers, such as OpenModelica1,
are able to check the consistency of the sub-models, and their interconnections. There-
fore, Modelica assists in a bottom-up model development. Modelica compilers generate
a functional mock-up unit (FMU), which is a standard model component that can be
shared with other applications. Subsequently, the resulting model may be imported to
CasADi (Andersson 2013) via the integration to the JModelica.org compiler. Casadi im-
plements efficient automatic differentiation techniques and is interfaced to other numer-
ical packages. This enables fast development of NMPC solutions, without needing deep
knowledge on the implementation of Nonlinear Programming solvers or Automatic Dif-
ferentiation tools.

In this work, the control structure is divided into two layers. A regulatory layer is
designed after controllability analysis of the unstable system. This consists of cascade
controllers for wells and SISO controllers for the pipeline-riser system. Then, the second
layer implements production optimization by providing set-points to the lower layer. To
this end, the simplified sub-models are parametrized and adjusted to a detailed model in
OLGA. An Extended Kalman Filter (EKF) is developed using the simplified models and
tuned to track the detailed model. Then, the NMPC is implemented using state feedback.
In order to assess the performance of the controller, the network system is steered from
an initial predetermined fixed set-point to an optimal point by the NMPC.

The paper is organized as follows. In Section 6.2, the network system is described,
and then the simplified models and the modeling fitting are presented in Section 6.3.
The control structure and its building blocks are described in Section 6.4. The numerical
results are presented in Section 6.5, and finally, the main conclusions and remarks are
summarized in Section 6.6.

6.2 System Description

The oil gathering system to be studied is modelled in the OLGA simulator and is repre-
sented in Figure 6.1. The network consists of two wells operated by gas-lift which feed
a common pipeline-riser to a separator. The network contains 7 control inputs:

• Gas injection controlled by mass flow rate at the annulus top of each well.

• Production choke valve opening of each well.

• Top-side valve opening.

• Two valves downstream to the separator.
The wells are considered to be geometrically identical. These are vertical with tubing

and annulus length of 2048 m. The tubing diameters are equal to 0.124 m., the annuli
are represented by a cylindrical not-annular pipeline of 0.2 m. diameter, and the rough-
ness coefficients are equal to 4.5E-5 m. The reservoir temperature is equal to 108 ◦C

1www.openmodelica.org
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Figure 6.1: OLGA-model: Oil gathering system with low level control structure.

while the well inflow relation is considered linear with a coefficients of 2.47E-6 kg/s/Pa.
The produced gas-oil-ratio (GOR) and water fraction (WCUT) are considered negligible.
However, the reservoir pressures are different, being 160 bar for well 1 and 170 bar for
well 2.

The pipeline length is 4300 m, where the last 2300 m has a negative inclination of
1◦ to mimic an undulated seabed. The riser has a height of 300 m. The pipeline and riser
have a diameter of 0.2 m and a roughness of 2.8E-5 m. The separator is controlled to
operate at a constant pressure of 5 bar.

In the OLGA simulator, the fluid properties can be specified by a black-oil model or
can be supplied as PVT Tables. We use the PVT option in this work. The PVT tables
are generated by PVTSim©. These tables store the fluid properties such as gas density
(ROG), oil density (API), and gas mass fraction (RS) as functions of the pressure and
temperature. The viscosity of the fluid model ranges from 0.2 to 1 cP, which is not
sufficient to classify the fluid as heavy oil. The produced fluid is saturated and does
not have free gas in a wide range of pressures. Due to this fluid conditions and the low
reservoir pressure, the wells considered in this work are not naturally flowing. Therefore,
gas-lift is required to assist the production.

6.3 Simplified Models and Fitting

The OLGA model described in Section 6.2 acts as the real system and is treated as a
black-box model. However, we assume that some commonly available parameters of the
system are given, such as the geometry and fluid properties at a given pressure and
temperature.
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Simplified models are built using representative parameters and first principles. We
choose the models developed by Jahanshahi (2013) since these were successfully fit to
the OLGA model. However, parameters of the simplified model had to be modified due
to changes in the boundary conditions and the fluid model. Hence, in this section we
present and discuss the simplified model parametrization and suitability to control the
OLGA model.

6.3.1 Generalized sub-model

We treat the gas-lift well and pipeline-riser as independent building components of the
gathering network system. From a general perspective, any of these subsystems can be
represented by the following ODE structure:

ẋs = fs (xs, us) (6.1a)

ys = hs (xs, us) (6.1b)

where the subscript s refers to any subsystem in S = {w1, w2, r1} which contains a
reference to the wells and pipeline-riser. The separator is assumed to be operating at a
constant pressure, which is the usual and reasonable assumption. The differential states
xs represent the mass of the phases liquid and gas contained in the subsystem s which
evolve according to fs. The function hs defines the variables ys which gather the input
pressures and output mass flow rate variables for each phase.

The physical assumptions on each sub-model are similar. The liquid phase is con-
sidered incompressible and the gas phase is modeled assuming the ideal gas law, with
constant temperature and gas molecular weight.

6.3.2 Gas-lift well sub-model

The annulus is modeled as a vertical cylindrical tank filled with gas at a constant tem-
perature. The state of the annulus is fully defined by the contained mass of gas,

(ṁG)a = (wG,in)a − (wG)inj , (6.2)

where (wG,in)a is the inlet gas flow rate to the annulus which is used as a control input
and (wG)inj is the injection rate from the annulus to the bottom of the tubing. The
pressure at the annulus top, where the measurement is taken, is calculated based on the
ideal gas law while the pressure at the injection point is considered to be the pressure at
the top plus the pressure due to gas gravity.

The well tubing is modeled by two states, the mass of the gas and liquid in the well,

(ṁG)w =

(
η

η + 1

)
wres + (wG)inj − (wG)wh (6.3a)
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(ṁL)w =

(
1

η + 1

)
wres − (wL)wh , (6.3b)

where η is the average mass ratio of gas and liquid produced from the reservoir which
is assumed to be a known constant parameter of the well. (wG)wh and (wL)wh are the
mass flow rates of gas and liquid at the well-head. The production mass rate wres [kg/s]
from the reservoir to the well is assumed to be described by a linear Inflow Performance
Relationship (IPR). Similar to the annulus the pressure at the top of the well is calculated
assuming the ideal gas law. Then, the gravity of the two-phase mixture and the friction
in the tuning are taken into account to get the bottom-hole pressure. See (Jahanshahi
2013) for the complete formulation.

6.3.3 Pipeline-riser sub-model

The pipeline-riser is modeled by four states which are the masses of the gas and liquid
phases inside the pipeline and the riser sections. The four state equations of this sub-
model are:

(ṁG)p = (wG,in)p − (wG)rb (6.4a)

(ṁL)p = (wL,in)p − (wL)rb (6.4b)

(ṁG)r = (wG)rb − (wG,out)r (6.4c)

(ṁL)r = (wL)rb − (wL,out)r (6.4d)

Here, the subscripts ‘in’, ‘rb’ and ‘out’ stand for ‘inlet’, ‘riser base’ and ‘outlet’ respectively.
The mass flow rates at the riser base are calculated by valve equations, and there are
four tuning parameters in the pipeline-riser model which are used to fit the model to
a real system or a detailed OLGA model. The model equations and the model-fitting
procedure are given by Jahanshahi et al. (2014).

6.3.4 Coupling sub-models

Submodel equations represented by eq. (6.1) are coupled with mass and pressure bal-
ances. Moreover, every sub-model has at the output boundary a valve equation:

|wo|1 = k
√
ρo max

(
po − pi

)
(6.5)

where wo = (wo
G, w

o
L ) are the mass flow of gas phase and liquid phase, respectively,

and ρo is the estimated mixture density at the output. The pressures upstream and down-
stream the valves are po and pi, respectively. The parameter k should be tuned following
a procedure described in (Jahanshahi 2013; Jahanshahi et al. 2014).
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6.3.5 Model fitting

The simplified models include tuning parameters which are fit to the process. The tuning
parameters must be chosen to match both the steady-state and dynamic behavior of
the system. A good matching of the steady-state behavior of pressures and flow rates
are necessary to find correct optimal settings. Moreover, the dynamic behavior (e.g.,
stability regions) is required to design the regulatory layer. We followed the model fitting
procedure described by Jahanshahi et al. (2014).

6.4 Closed-loop control

This work is focused on the control and automation layer of a multi-level offshore control
hierarchy (Foss 2012) and on the production optimization layer. Our suggested control
structure is represented in Figure 6.2.

Process

EKF
State Estimator

Low Level Controllers
+
-

Multiple Shooting
Optimizer

Figure 6.2: Control structure

The controller can be separated in three main building components:

• Low level controller: The wells are controlled by cascade controllers which inner-
loop measures the pressure at the top of the annulus and the outer-loop the pres-
sure at the wellhead. The pressure at the inlet of the pipeline is controlled by a PI
control loop which manipulates the valve at the top of the riser. Finally, for the sep-
arator, the liquid level is measured and controlled by a PI controller manipulating
a liquid output valve; in the same way, the pressure is measured and controlled by
a PI controller manipulating a gas output valve. The pressure and level set-points
are 5 bar and 20% of the separator height, respectively.

• State-estimator: The process measurements y are used to correct estimated dynam-
ical states x̂ of the system. This operation is performed on-line with an Extended
Kalman Filter (EKF). The EKF uses the simplified models of the wells and risers
coupled to the low level controllers. Thus, the states being estimated correspond
to the states of the simplified models and the state of the controllers

• Multiple Shooting (MS) optimizer: The MS optimizer takes as input the estimated
states x̂ of the EKF and computes an optimal trajectory yopt for the pressure set
points and an input flow rate for gas. The objective function considers the oil
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being produced and the gas being injected over a certain period, and penalizes the
control effort being applied.

6.4.1 Low level control

Optimal gas-lift operating points under high lift-gas injection price are located in an
unstable region where the casing-heading instability occurs. Therefore, low level con-
trollers are required for stabilization. The gas-lift well has two degrees of freedom for
control, the gas injection rate and the production choke valve. In this work we use the
production choke for stabilization, see e.g., (Jahanshahi 2013).

Downhole pressure measurements can be used for stabilizing flow. A simpler alter-
native are instruments placed on the wellhead and topside. In this work we combine
wellhead pressure measurements in a cascade structure. In an earlier controllability
analysis (Jahanshahi 2013), it has been shown that the pressure measurement at the
top of the tubing is not a suitable controlled variable in a SISO structure. The reason
is the RHP (Right Half-Plane) zero dynamics associated with the pressure at the top of
the tubing. With a SISO controller, this measurement reacts with an inverse response
to input changes (Skogestad et al. 2005), that imposes unavoidable large peaks in the
sensitivity transfer functions. However, when the tubing pressure is combined with other
measurements, such as the annulus pressure, it is possible to design a controller with a
low peak in its sensitivity transfer function (Jahanshahi 2013). In the cascade control
structure used in this work, the annulus pressure measurement is controlled by the valve
and its set-point comes from the master control loop controlling the tubing pressure at
a given set-point.

6.4.2 State estimation

The EKF is implemented in discrete time as in (Simon 2006, p. 409). The model used
within the filter consists of coupling the sub-models described in Section 6.3 and models
for the low level controllers in Section 6.4.1.

The low level controllers are implemented within the OLGA-model, and their state
variables are not available. Therefore, similar low level controllers are coupled with the
simplified models and their states are estimated in the EKF.

All models are written in continuous time and discretized using the CVODES (Hind-
marsh et al. 2005) integrators and CasADi (Andersson 2013) for Automatic differen-
tiation of the system equations. The EKF receives measurements every 10 sec., hence
CVODES integrates the system and find the required sensitivities for this period of time.

The measurements used for state estimation are the wellhead pressures and the
pipeline inlet pressure. Although more measurements are available, only measurements
which are control variables in the regulatory layer are considered. The reason is that the
regulatory layer forces these variables to track the same set-points in the model and in
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the plant. Thus, these measurements are unbiased in steady-state and therefore suitable
for the Kalman filter algorithm. Additional measurements which contain steady-state
bias deteriorate the estimation. Here, the estimation relies on a good model rather than
on aggressive corrections due to measurements.

6.4.3 Multiple Shooting optimizer

The MS optimizer solves the following problem:

min
Θ

∑
k∈K

(
−qo(xk,uk) + αgqinj(xk,uk)

)
+ (6.6a)∑

k∈K
(uk−1 − uk)

>Ru (uk−1 − uk) + (6.6b)

(uK − uopt)
>Rf

u (uK − uopt) + (6.6c)

s.t. : xk+1 = F (xk,uk) , k ∈ K, (6.6d)

yk = Y (xk+1,uk) , k ∈ K (6.6e)

bx
l ≤ x ≤ bx

u (6.6f)

by
l ≤ y ≤ by

u (6.6g)

bu
l ≤ u ≤ bu

u, (6.6h)

where the set of variables to be optimized Θ is composed of the state variables at the
end of the shooting periods (x2, . . . ,xK+1) and the control variables uk, k ∈ K. Hence,
the problem is divided in K shooting periods (K = {1, . . . ,K}), which are coupled by
the MS state constraints (6.6d). The function F represents a simulation of the simpli-
fied models over a discretization period, which is chosen equal to 1 hour. The states
xk+1, k ∈ K contains the state of the simplified models at the end of the corresponding
shooting period. The initial state x1 is not a decision variable and it is estimated by the
EKF. The objective function aims to maximize an economical value, given by the oil pro-
duction and the gas injection at a given price αg. Moreover, a penalty term that penalizes
control changes is included in (6.6b) which can be tuned with the positive semi-definite
matrix Ru. To this end, u0 is equal to the current set-points being applied to the process.
Finally, the objective implements a final stage cost (6.6c), which penalizes the mismatch
between the final inputs uK and the steady-state optimal input uopt. With this aim, opti-
mal input uopt is computed off-line and the positive semi-definite matrices Rf

u is tuned.
Output constraints are implemented as bounds on the states (6.6f) and with bounds on
the output variables y in the equations (6.6e) and (6.6g). Finally, input bounds are set
in (6.6h).

Output constraints are required to keep the optimizer inside the physical limits of
the system and away of unstable regions. Therefore, many constraints are implemented
to provide robustness to the optimization method. These include bounds on wellhead
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pressures, flow rates and mass fractions within the pipelines. The requirement of a large-
set of output constraints makes the MS formulation the preferable choice as opposed
to the most compact Single Shooting formulation. The cost of an iteration of the MS
formulation is dictated by the number of state variables, which is low in this example.
However, the cost of an iteration of the Single Shooting formulation depends on the
number of output constraints being considered.

Problem (6.6) is solved with IPOPT (Wächter et al. 2005). Observe that fulfilling
tight tolerances of the optimality conditions for problem (6.6) can be computationally
very expensive. Therefore the solver was limit to make 60 major iterations or to process
during 30 minutes.

6.5 Controller Performance

We apply the controller suggested in section 6.4 to control the OLGA model. We start
the NMPC after 1 hour when the regulatory layer has settled and the Kalman filter
has converged. The prediction horizon is set to forecast 16 hours and the discretization
period of each shooting interval is 1 hour. We optimize 16 shooting intervals (K = 16),
each containing 20 variables, corresponding to 5 controls and 15 states. However, the
MS algorithm returns only the optimal control inputs for the next 1 hour. The optimal
inputs consist of the gas injection rates of the two wells and the optimal set-points for
the regulatory controllers.

The performance of the pressure controller for well #1 is shown in Fig. 6.3. The
performance of the controller related to well #2 is similar. These are cascade controllers
where the set-points for the master loops (tubing pressure) are given by the optimiza-
tion layer and the slave loops manipulate the production choke valve openings. The pro-
duction valves are opening gradually to increase the oil production rates. Nevertheless,
they respect the constraints imposed for the controllability purpose. Since the wellhead
pressures are used for the state estimation and they follow the optimal set-points, the
measurements and estimates are very close. However, the modeling mismatch causes
estimation errors for the annulus pressures and the openings of the valves.

Fig. 6.4 and Fig. 6.5 show the gas injection rates and oil production rates for the
two wells. The optimal gas injection rates are calculated by the NMPC. As shown in
the figures, the optimizer injects more gas to the wells to reach the optimal operation
point which is dependent on the oil and gas prices. The estimation error is caused by
process/model mismatch. Here, the normalized price of oil is 1 and the normalized price
of gas equals 2.5, for each kg/s.

Fig. 6.6 shows the control of the pressure at the pipeline inlet. This controller ma-
nipulates the top-side valve and the optimal set-points are given by the NMPC. The esti-
mation error of the inlet pressure is negligible because its measurement is used for state
estimation and it is directly controlled by the regulatory layer. Nevertheless, the valve
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Figure 6.3: Well-head pressure of well #1

opening estimation suffers due to modeling error. Moreover, we observe a constraint
violation in the transient response because the optimization algorithm was halted (CPU-
time limit) before and optimal solution is reached. However, this constraint is satisfied in
steady-state. The proposed low level control structure and the EKF computational times
are negligible compared to the sampling time of the plant. Hence, these are suitable for
on-line applications. However, the NMPC solution is not solved to the default tolerances
in IPOPT and it is halted after 30 minutes of execution, therefore a sub-optimal solution
is used. Moreover, in order to keep the controller performance assessment independent
of this computational time, the process simulator is paused during this computation.
Nevertheless, observe that IPOPT is a general purpose solver and does not exploit struc-
ture of the MS formulation. Therefore, appropriate solvers may solve this problem in a
feasible time for a closed-loop application (Diehl et al. 2009).
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Figure 6.4: Oil production rate of well #1

0 5 10 15 20 25 30
12

14

16

18

time [hour]

O
il 

ra
te

 [
k
g

/s
]

Well #2 oil production rate [kg/s]

 

 

Olga

estimate

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

time [hour]

G
a

s
 r

a
te

 [
k
/s

]

Well #2 gas injection rate [kg/s]

Figure 6.5: Oil production rate of well #2
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Figure 6.6: Pressure at pipeline inlet

6.6 Conclusion

To our knowledge, this paper is the first publication considering regulatory control of
a multiple well system and riser steered by an NMPC optimization layer. The structure
work well by jointly calculating dynamic set-point trajectories and ensuring stable flow
conditions on a realistic simulator. Thus, it is a promising approach.

However, the optimization algorithm for NMPC is not fast enough to be used in
closed-loop, therefore, further research developments should be carried out to exploit
the structure of the Multiple Shooting formulation with specialized Nonlinear Program-
ming solvers.
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Chapter 7

Concluding Remarks

This chapter concludes the thesis and defines relevant topics for future work. Since
there is a specific conclusion included at the end of each chapter, the intention here is to
provide a global perspective on the work and to recap the most important findings.

7.1 Conclusion

This thesis covers different optimization methods for oil production. The common aim is
to maximize the economic return of the oil field operation. Moreover, all the presented
methods rely on mathematical models describing the production process and optimiza-
tion methods to find optimal operation policies. However, the considered models rely
on principles that make them suitable for different time-scales. In addition, the charac-
teristics of the models motivate the use of different optimization tools. Therefore, the
integration of these tools to meet the common objective is a formidable challenge.

The considered time-scales are the long-term, the middle-term, and the short-term,
which capture the main characteristics of the reservoir control optimization problem,
the daily-production optimization problem, and the low-level regulatory control prob-
lem, respectively. The models used in the long-term problem represent the fluids flow-
ing through the reservoir. These models are important to design schedules for recovery
strategies such as waterflooding. However, the long-term models disregard a detailed
gathering network. A detailed gathering network is taken into account in the daily-
production optimization problem. The main objective of the daily-production optimiza-
tion problem is to find the optimal allocation of the production facilities. In this middle-
term, the reservoir inflow performance is considered constant and all the gathering net-
work facilities at steady-state. Therefore, the middle-term models are not appropriated
for long-term production forecasting. Finally, the low-level control problem considers
the dynamics of the production facilities. The low-level controller aims to maintain the
stability of the process while it is steered and maintained at the optimal operational
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point dictated by the upper layers.
The goals of the long-term and the middle-term optimization layers are conflicting.

On the one hand, the middle-term optimization approach is greedy and seeks to opti-
mize the present cash-flow regardless of the future consequences. On the other hand,
the long-term optimization approach aims at the field Net Present Value (NPV) at the
expense of the present cash-flow. Therefore, Van Essen et al. (2011), Chen et al. (2012)
and Hasan et al. (2013) suggest alternative methods to prioritize the daily cash-flow ob-
jective in the long-term optimization problem. However, the previous methods disregard
the gathering network, hence, the feasibility of the strategy is not ensured. Rahmawati
et al. (2012) suggest a solution for the coupled model, however the optimization al-
gorithms are not able to deliver solutions in real-time. Thus, an optimization algorithm
that is capable to handle coupled problems efficiently is necessary. The Multiple Shooting
(MS) formulation together with tailored optimization solvers is a candidates to tackle
this problem.

The application of the MS to the long-term optimization problem is motivated by
computationally costly simulators and output constraints:

• MS uses computational parallelization to expedite the execution of simulators. MS
divides the prediction horizon in time frames which can be evaluated in parallel.
Moreover, the output constraints can be evaluated in parallel to the reservoir simu-
lator. In addition, Albersmeyer et al. (2010) show that even without parallelization
MS can have faster local convergence than Single Shooting (SS).

• MS handles output constraints as bounds in the optimizer. The MS formulation
defines additional variables associated to the output constraints. The feasibility
of these variables with respect to the bounds is maintained during the execution
of the optimizer. However, the equality constraints are relaxed and possibly vi-
olated during optimization. Therefore, the proposed algorithm computes a cor-
rection term using a single forward gradient propagation. The trade-off between
feasibility and optimality is handled by a line-search algorithm.

This thesis provides case examples to illustrate the flexibility of MS to handle a large
number of output constraints. This feature is a key to deal with coupled sub-surface and
surface models efficiently. A publication describing the application of MS to the coupled
model is in preparation.

The models for the process play a key role in optimization. Chapter 6 shows the
application of MS for control and optimization of an oil gathering network. Like in most
real applications, the plant model and the controller model are different, and therefore
there is modeling error. Although, there are techniques to compensate for this type of
errors, the presented method disregards such techniques. Hence, the model used for the
Nonlinear Model Predictive Control (NMPC) is unable to predict correctly the output
flow-rate of oil and gas in steady-state. Although this steady-state prediction is calculated
with the simplified models used for NMPC, it can also be computed by a more accurate
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daily-production optimization tool. Nevertheless, observe that the use of more advanced
models for steady-state calculations will not eliminate the modeling errors completely.
Thus, future work must address automatic model calibration with feedback.

The key to the efficiency of the MS formulation is the tailored Reduced Sequential
Quadratic (rSQP) algorithm. The solution of the MS formulation with a general purpose
sparse NLP solver such as IPOPT (Wächter et al. 2005) requires the construction of the
Jacobian for the equality constraints coordinating the predictions. This Jacobian requires
a prohibitive amount of memory and linear algebra operations to find a solution to the
corresponding linear systems. Nevertheless, MS and IPOPT are used together to tackle
the problem in Chapter 6 and the solver is not able to deliver solutions in real-time.
A similar approach applied to the reservoir problem is impossible with contemporary
desktop computers as shown in Chapter 2. However, the algorithms can be adapted for
real-time applications by performing heavy computations off-line and light computa-
tions right after new measurements are available. These algorithms are discussed in the
feedback control literature, see e.g., (Biegler et al. 2015).

Chapter 2 includes an experimental comparison between SS and MS. This compar-
ison is not conclusive because there are cases where either SS or MS have the best
performance, see e.g., (Albersmeyer et al. 2010) for simple examples. There are several
indicators for comparison including iteration speed, final solution quality, local conver-
gence, initialization flexibility, and execution robustness. These formulations are com-
pared with respect to these indicators in the following items:

• The iteration speed depends on the implementation of the optimization algorithm.
For MS using the rSQP method, the speed depends on how the computations re-
lated to the nullspace matrix are performed, see Chapter 1.4.2. For SS, the Aug-
mented Lagrangian algorithm requires one forward and one adjoint simulation
only, however, the dual variables and the quadratic penalty must be estimated too.
Alternatively, it is discussed in Chapter 2 that SNOPT (Gill et al. 2005) is unable to
tackle a large number of constraints due to memory limits. However, an active-set
strategy to prevent the computation of all the adjoint simulations in SS should be
investigated. Finally, it must be emphasized that the iteration speed can be im-
proved for MS with the use of parallelization.

• The final solution quality in terms of the attained objective value is the same for
both algorithms. Observe that any feasible solution for SS is also feasible for MS
and vice versa. Moreover, neither of the considered algorithms provides an upper
bound for the maximum possible objective value. Thus, if any of the algorithms
converge, then only local optimality can be ensured with additional second-order
derivative evaluations. Therefore, the comparison of optimal solutions computed
by the SS and MS algorithms depend on the given initial solution guess and the
path to convergence. Further, MS and SS deal with the constraints differently. MS
respects all the inequality constraints at every step but allows violations of the
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equality constraints, whereas SS has the opposite behavior. Thus, if the algorithms
are aborted before convergence, SS will provide accurate state predictions which
probably do not respect the output constraints, whereas MS will provide an ap-
proximation of the simulation which respects the output constraints.

• Albersmeyer et al. (2010) present a comparative study of the local convergence
and conclude that no formulation is superior. However, the simplified study indi-
cates that MS perform better if the simulator preserves curvature. Moreover, it is
obvious that there is no difference in local convergence if the involved functions
are linear.

• The MS formulation has more flexibility for initialization. MS receives a guess of
the optimal state variables and control variables, whereas SS receives a guess of
the control variables only. However, the numerical experiments dealing with MS
are always initialized with the states from a simulation. Thus, this thesis does not
investigate the potential benefits of this feature.

• MS is known to be numerically more robust than SS. Biegler (2010, Chapter 9.4)
recommends MS for unstable dynamic systems and to deal with problems that suf-
fer from ill-conditioning. Although it is not reported in Chapter 6, SS was explored
but replaced by MS due to repeated simulation failures during optimization. More-
over, observe that the bounds on the states that are readily available in MS can be
used to keep the simulation profile away from undefined regions.

The numerical robustness of MS motivates its application to reservoir problems deal-
ing with more complex physics. However, it is not evident how to extend MS to black-oil
problems including miscible fluids. The reason is that Chapter 2 suggests the oil pressure
and the water saturation as grid-block state variables, but these variables together with
the gas saturation are not sufficient for problems including miscible gas. Moreover, a
change of simulation primary variables to tackle the bubble point problem (Chen et al.
2006, Chapter 8.2.2) hinders the application of MS. Thus, Chapter 3 develops a trans-
formation of the state variables to tackle the aforementioned problems. The advantages
of this transformation are:

• The transformation and its inverse are explicit functions, therefore they are effi-
cient.

• It uses the minimal number of parameters to represent the fluid state.

• It only requires bounds on the primary variables to define the feasible state space.

• It does not require any modification to the reservoir simulator.

However, a disadvantage of this transformation is related to the state representation of
grid-blocks with only water. For this particular case the new representation must use a
convention. This issue may lead to discontinuities in the representation. Therefore, this
formulation is not recommended for reservoirs that can contain grid-blocks full of water.
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This thesis considers the extension of MS to robust reservoir control optimization
under constraints on coherent risk measures. Typically, a robust control input maximizes
the expected value of the field operation (Van Essen et al. 2009). Moreover, output con-
straints are enforced on all the plausible scenarios (Chen et al. 2012; Liu et al. 2015a).
Since these solutions can lead to overly conservative control inputs, constraints on co-
herent risk measures are imposed instead. Chapter 4 tailors the rSQP algorithm for this
problem:

• Parallelization can be applied for the simulation of different scenarios and different
prediction time steps.

• The algorithm requires adjoint gradient computations of the active constraints
only.

• The implementation of the functional AV@R instantiating the coherent risk mea-
sures does not need extra variables as in other algorithms (Rockafellar et al. 2000;
Hanssen et al. 2015)

Finally, Chapter 4 demonstrates how output constraints can be applied to diminish the
total water production on a waterflooding benchmark case.

Chapter 5 deals with the daily production optimization problem of a field example
with diverse routing possibilities. It is a challenge to optimize the gathering network sim-
ulator together with the integer variables introduced by the routing degrees of freedom.
In contrast to simulators, structured surrogate models are very efficient for optimization.
The reason is that the structure of the surrogate models is tailored for state-of-the-art
optimization algorithms. Chapter 5 proposes piecewise linear models to represent non-
linear pressures drops in pipelines. Although this concept has been previously explored,
this work innovates by approximating these functions in the space of gas-oil-ratio, water
cut, and liquid rate. Instead of the typical representation in standard flow rates of oil,
water, and gas, this new representation allows for a direct coupling of the simulator out-
put and prevents sampling on infeasible flow rates. The main criticism of the surrogate
models is the introduction of new approximations compared to the process simulator.
For that reason, this work proposes heuristic procedures to reduce the size of high reso-
lution pressure drop models while keeping the maximum approximation error within a
predefined tolerance. This tolerance is chosen tight enough so that the optimal solution
found with the surrogate models has modeling errors within acceptable bounds.

Finally, this project produced open-source code to motivate the application of MS to
reservoir control optimization problems. The implementation of the algorithms and the
problem instances related to chapters 2-4 are available in (Codas 2014).

7.2 Future Work

This thesis considered optimization tools to tackle the integrated control problem effi-
ciently. Future work should address the full integration of the control layers. To this end,
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it is suggested two strategies to integrate the control layers two-by-two:

1. The low-level controllers steered by the coupled reservoir and gathering system
optimization strategy.

2. The low-level controllers steered by a pure steady-state optimizer.

Observe that this thesis does not investigate how to calibrate the process models.
Besides the requirement of models matching the actual process, the models used for
optimization must match each other. In particular, the set-point given by the upper-layer
controller must be a stable steady-state solution for the models used within the low-
level controllers. Thus, it is required an additional calibration procedure to ensure this
condition.

Note that this thesis does not investigate mixed-integer methods for the long-term
reservoir control optimization problem. It is not known how to combine the efficient
daily-production optimization methods based on surrogate models with the reservoir
models. Thus, the first integration strategy considered above requires additional work
to include binary variables efficiently. However, the second strategy can handle binary
variables but the long-term objective is disregarded.

The Brugge case (Peters et al. 2010), the Norne case (Rwechungura et al. 2012), and
the Egg model (Jansen et al. 2013) are benchmark problems that motivate the devel-
opment of many solutions for the reservoir management problem. Unfortunately, these
benchmark cases do not consider the gathering network facilities. Thus, it is recom-
mended to extend these models so that the value of integrated control strategies can
be illustrated. Such experiment has the potential to demonstrate the value of Integrated
Operations (Stenhouse 2006; Ringstad et al. 2007; Campos et al. 2010), i.e., the value
aggregated by a multidisciplinary team operating a virtual field with the available tech-
nology.

7.2.1 Future work related to Chapter 2

Many aspects of the proposed rSQP algorithms can be further studied and improved.
Chapter 2 shows the application of MS to reservoir control optimization with a simple
NLP algorithm. Therefore, future work includes:

• Study of a better approximation of the reduced Hessian. To this end, evaluate
the inclusion of the cross-term (Biegler et al. 1997) and alternative Quasi-Newton
algorithms to deal with ill-conditioning.

• Study the advantage of alternative globalization strategies such as the filter meth-
ods or merit functions based on the Augmented Lagrangian.

• Evaluate the inclusion of trust-regions, see (Ternet et al. 1998).

• Investigate an alternative to the active-set method proposed for the solution of the
Quadratic Programming problems.
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• Tailor Interior Point and Augmented Lagrangian methods for MS.

• Derive theoretical results indicating whether MS or SS have better local conver-
gence in the context of reservoir control optimization.

Chapter 2 deals with fairly simple output constraints. Thus, to demonstrate the
power of MS, it is recommended to show applications on coupled surface and sub-
surface models.

7.2.2 Future work related to Chapter 3

MS may expedite the optimization of reservoir models with more complex physics.
Therefore, it is recommended to extend the MS formulation to general compositional
reservoir simulators, see (Kourounis et al. 2014).

Chapter 3 shows rather simple test cases, therefore, the convergence of the algorithm
in larger field cases should be investigated.

The proposed state transformation has limitations if grid-blocks contain only water.
Thus, it remains as future work to investigate how to deal with this case.

7.2.3 Future work related to Chapter 4

Chapter 4 deals only with one piece of the closed-loop reservoir management strategy.
It is important to analyze how the data-assimilation algorithms can work efficiently to-
gether with the MS control optimizer. In particular, there are many calculations that can
be performed off-line as proposed in the feedback control literature (Biegler et al. 2015).

The control parametrization for the robust control optimization problem are usually
predefined. Thus, it is suggested to verify other control structures that are possibly less
sensitive to disturbances or uncertainty. Therefore, the study of self-optimizing control
(Skogestad 2004) is a good start for this direction.

The typical formulations for robust control optimization disregard the fact that fu-
ture measurements will be available. This consideration leads to a multistage stochastic
optimization problem, see (Shapiro et al. 2009b; Pflug et al. 2014). Therefore, it is rec-
ommended to develop optimization algorithms to tackle the scenario trees generated by
such formulations.

7.2.4 Future work related to Chapter 5

The formulation developed in Chapter 5 did not consider flow splitting. However, flow
splitting is actively used in the Urucu field by the production engineers. Silva et al.
(2015) propose Mixed-Integer Linear models to deal with this problem.

The computational efficiency of the Mixed-Integer Linear Programming (MILP) solvers
can be improved by reducing the resolution of the piecewise-linear models. Therefore, it
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is recommended to develop algorithms to obtain optimal sampling grids for the pressure
drop functions.

The formulation in Chapter 5 considered only Special-Ordered-Sets to enforce branch-
ing conditions. Since then, other models and algorithms were already investigated in
(Silva et al. 2012; Silva et al. 2014).

Unfortunately, the application of this optimization algorithm to the Urucu field is
not reported. Therefore, the actual impact of the strategy in the field is not known.
However, Petrobras (Teixeira et al. 2013) has shown the economic gain of such strategies
in practice.

7.2.5 Future work related to Chapter 6

The low-level control structure in Chapter 6 considers the riser inlet pressure and the
pressure at the wellheads as controlled variables. However, output constraints are im-
posed on the valve opening to prevent oscillations. A future work considers alternative
low-level control structures that eliminate the need of these output constraints.

The NMPC method in Chapter 6 has steady-state model/plant prediction mismatch.
Thus, a future work must consider a correction of the model parameters through feed-
back.
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