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Abstract: 

Increasing activities on high north regions bring about a demand of safety ship navigation. Under severe 

weather condition considerable amounts of ice may accumulate on marine structures. Ice bridge 

simulator is of importance in terms of training for qualified maritime personal. The new ice module to fit 

for additional problem for the ship icing is introduced with low reality into bridge simulator. Regarding 

this our aim is to develop ice model that calculate ice load on the ship structure and stability change 

include parameters of air temperature, relative wind speed, wave height etc. As a result of literature 

survey theoretical and empirical method with its algorithm is studied. The ice thickness on cylinder and 

plate as a representative element of the structures are calculated as a function of liquid water content, 

relative wind speed and freezing fraction for simplified ship superstructures to include the effect of 

trapped water on deck. Since we have to deal with several thousand of element to be calculated every 

seconds including iteration process, computer should be used, hence new ice model is proposed by using 

computer language C++. In case study 300 tonnage size coast guard vessel is selected as a model ship. 

Under assumptions that those external parameters are stable in the duration of simulation, proposed 

model is validated. As a result proposed model could simulate total ice load and following stability 

change, with error of rolling period after 20 hours simulation being 0.14 sec compared to full scale 

measurement. 
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Nomenclature 
a  constant for spray flux [-] 

A  surface area of cylinder [m
2
] 

b  constant for spray flux [-] 

B  ship’s breadth [m] 

Bs  shape factor [-] 

c  specific heat of fluid [J/kg·°C] 

cp  specific heat of dry air [J/kg·°C] 

cw  specific heat of water [J/kg·°C] 

d  droplet diameter [mm] 

D  characteristic length [m]  

e  saturation vapour pressure [kPa] 

ea  saturation vapour pressure of air [kPa] 

es  saturation vapour pressure of equivalent surface temperature [kPa] 

Ec  collection efficiency [-] 

GM  the metacentric height [m] 

h  heat transfer coefficient [W/m
2
·°C] 

Hs  significant wave height [m] 

kf  thermal conductivity of the fluid [W/m·°C] 

K  radius of gyration [m],  

Ka  thermal conductivity of air [W/m·°C] 

Kc  coefficient for heat transfer coefficient [Wm
-2.6

s
0.8

°C
-1

] 

lf  latent heat of freezing [J/kg]  

lv  latent heat of vaporization [J/kg] 

m  body mass [kg] 

Mi  icing intensity [kg/m
2
s] 

Mw  total water flux [kg/m
2
s] 

n  freeing fraction [-] 

Nu  Nusselt number [-] 
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Ni  icing intensity per hour [mm/h] 

p  atmospheric air pressure [kPa] 

Pr  Prandtl number [-] 

qa  heat conducted to or from the icing surface through the underlying structure [W/m
2
] 

qc  heat transfer by convection to the surrounding air [W/m
2
] 

qe  heat transfer by evaporation to the surrounding air [W/m
2
] 

qf  latent heat of freezing a certain fraction of the impinging water [W/m
2
] 

qw  heating (or cooling) of impinging water to the equilibrium surface temperature[W/m
2
]  

Q  total heat [J] 

Re  Reynolds number [-] 

S  sea water salinity [ppt]  

Sc  Schumidt number 

U, U0  surface wind speed [m/s] 

U10  mean wind speed at 10 m elevation [m/s] 

V  ship speed [m/s] 

w  liquid water content [kg/m
3
] 

wi  weight of ice around pipe [kg/m] 

z  elevation from MWL [m] 

αr  relative angle of spray flux [degree] 

β  constant defined by wind force [-] 

ε  ratio of molecular weight of water vapour and dry air [-] 

ζ  parameter of collection efficiency [-] 

θ  temperature [°C] 

θa  air temperature [°C] 

θd  droplet temperature immediately prior to impingement [°C] 

θf  freezing temperature of water [°C] 

θs  equilibrium surface temperature [°C] 

ρice  density of ice [kg/m
3
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Abbreviation 
DNV  Det Norske Veritas 

JCG  Japan Coast Guard 

LPG  Liquefied Petroleum Gas 

LWC  Liquid Water Content 

MWL  Mean Water Level 

NSR  Northern Sea Route 

VLCC  Very Large Crude oil Carrier  
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Chapter 1 Introduction 

1.1 Background and Motivation 
There have been increasing maritime activities in the high north region. For instance new oil and gas 

fields were discovered or expect to be discovered in the Norwegian Sea and Barents Sea. The 

discovery of the Skrugard oil field has started productions in April 2011. Volumes are estimated to be 

around 250 million barrels of recoverable oil equivalents, with a considerable upside potential. There 

are several prospects in the near vicinity, which is not only oil and gas industries; Northern Sea Route 

(NSR) is watched by ship operational company whose ships navigate between Europe and Far East 

for the benefits of reducing fuel consumption. Japanese ship owner/operator Sanko Steamship 

Company have opened services to transport bulk through NSR, they had introduced two DNV Ice 

Class 1-A ships which was to be owned by Danish ship owner afterward. 

In the high north regions extreme weather conditions are assumed, historically Norwegian fisherman, 

seal and whale hunters have been struggling for this severe environment.  One problem which must be 

considered during winter operation is icing. Fisherman has known for a long time how serious icing 

on fishing vessels may be because it reduces stability of ship and capsize in the worst case, 

accompanied with stability reduction due to free surface effect.  

As the arctic operational demand increase, safety problems come up. Especially skilled maritime 

personal for ship navigation will be strong focus in order to maintain safety operation. When one 

operates on such a severe environmental condition special precautions should be provided including 

regulation and training prior to its commencement. Improved training programs of ship officers and 

pilots on a full-mission ice-breaker navigation simulator should be provided. Operational training 

would be done by using ice bridge navigation simulator. Kongsberg Maritime have introduced Ice 

Bridge Simulator POLARIS, whose additional ship icing module is not realistic and inaccurate. There 

are rooms of improvement regarding this ice module to which this thesis will contribute.  

“Ship Superstructure Icing” or ice accretion will be observed when the vessel operating in the extreme 

weather conditions, i.e. very low temperature and strong wind conditions; generally it is on the high 

north region including great lake in North America, Baltic Sea, and high south regions. It causes a lot 

of harmful result. Ship Icing is also referred to as topside icing; because icing on the ship structure 

reduces the metacentric height which ending up with capsize in the worst case. Approximately 10 

vessels are lost annually in northern latitude regions (Zakrzewski 1986). In Japan fishing boat that 

sank because of ship icing is reported as 23, moreover 360 persons missed (11 persons dead of cold 

found on the rubber boat) only two of them are rescued, report by the 1
st
 Regional Coast Guard 

Headquarter of Japan in 1960’ (Ono 1974). Icing on deck interferes with ship’s missions and the 

accumulation of ice on antennas makes radio communications difficult and has a detrimental effect on 

radar systems (Thomas 1991).  

Many researchers note that sea spray as the main reason of sea water flux rather than rain, drizzle, 

snow, and direct flooding on a ship deck or green water (Zakrzewski 1986, Tabata 1963, Thomas 

1991). This is also contribution toward the maritime operations at the high north. That is why the 

study relating to the vessel icing is crucial part on the maritime safety.  
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Figure 1.1 Overview of the ship superstructure icing including different disciplines.  

Free surface effect due to trapped water on the deck is additional threat. It is because of icing which 

compensates the opening between vertical hand rails and the bulwarks. Bulwark means a solid wall 

enclosing the perimeter of a weather or main deck for the protection of persons or objects on deck 

(Dictionary.com). 

Due to increasing operational demand at the high north regions followed by needs of increasing 

number of sea training, ice bridge navigation simulator of Kongsberg Maritime was launched at 

University in Tromsø on winter 2011. From operational view point, it is essential that simulator 

training has a high degree of reality. But the newly (2011) installed ice module is not realistic and 

inaccurate. Thus more realistic model of ship superstructure icing shall be developed. Although icing 

model was introduced by Horjen (1983), Tabata (1963), Stallabrass (1980) and Zakrzewski (1986), 

those models have not been investigated yet with full scale measurement.  Hence this thesis reviews 

the atmospheric icing on vessels aiming at incorporate an improved model to the ice bridge simulator 

for testing and evaluation purposes. 

1.2 Previous Work 
Ship icing has been recognized as a serious problem for a long time especially for small fishing boats 

cruising high north and has been discussed in the scientific literatures for more than one hundred 

years (Makkonen 1984). From 1960s theoretical sea spray models and computational methods to 
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calculate ice loads on a structure had been studied by several authors. In order to obtain computational 

parameters field test have been done by Tabata et al. (1963), Stallabrass (1967), Tabata (1969), and 

Stallabrass (1980).  On the other hand icing mechanism or we could say thermodynamics processes 

have been studied by Horjen (1981) and Makkonen (1984), also Zakrzewski (1984) had developed sea 

spray configuration without considering thermodynamics. An algorithm of the ice accretion on 

structures has been numerically researched by Horjen (1983) and Zakrzewski (1988). In more recent 

years the numerical solutions had been further developed by several authors, for example Chung et al. 

(1995) had analyzed the distribution of ice accretion on mesh divided ship structure, although he 

assumes that ice accrete the ship’s wall evenly which is not the case of real life, the paper shows us a 

blue print of numerical ice modelling. In recent years according to the increasing rigs used for oil 

exploration and drilling, sea spray icing on fixed offshore structures by the two dimensional analysis 

were studied (Jones et al. 2009).  

Until now there are no icing model constructed that is able to be applied on ship navigation simulator 

and also free surface effect by trapped water on deck due to built ice between hand rails.  Most 

recently Chung et al. (1995) has developed model for spraying of a stern trawler using data of 1:13.43 

scale model by wind tunnel test. Although spraying model is based on laboratory test, rest of them, for 

instance freezing rate is based on thermodynamics/theoretical process.  

Zakrzewski (1989) have studied two icing models, “the time-dependent Norwegian icing model” and 

“The University of Alberta ship spraying/icing model”. In his paper algorithm of two model cases is 

explained with its mathematical model of icing. Both icing model will be tested using field data 

collected by Zakrzewski and Blackmore on the M/T Zandberg in the North Atlantic Ocean. The 

conclusion is that two models could not predict ship icing rate on M/T Zandberg. 

Zakrzewski (1991) has studied ice growth rates and ice loads on the front parts of superstructure (i.e. 

bulkhead) for a medium-sized fishing trawler, based on software CONCICE that has been developed 

by University of Alberta. The model has been extended by superimposing a 7 x 13 numerical grid 

network on the bulkhead (grid cell size 0.5 x 0.5 m). The liquid water content (LWC) in the spray 

cloud is calculated by using the equation of Zakrzewski (1987). From computational result, the closer 

interval of bulkhead positioned at the ship’s bow, the larger ice load estimated. In his context he 

suggested that ice allowance permitted by the government organization is needed for ship safety (e.g. 

15 kg/m
2
). 

Distribution of spray droplet in the near-water layer shall be studied for developing computation of 

LWC. The vertical distributions of water content (LWC) [kg/m
3
] in the lower layer of the atmosphere 

above the sea under moderate and strong winds can be estimated by exponential functions 

(Preobrazhenskii 1973). 

Theory of ice accretion in Chapter 2 is mainly based on above literatures. 
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1.3 Present Work 

1.3.1 Scope of Work 

Scope of this thesis is to apply the developed computational method of ice loads to include free-

surface effect due to trapped water on deck for its installation to ice bridge simulators. Modeling new 

algorithm of ice accretion which shall be integrated into ice bridge simulators would be constructed. 

Sufficient amount of literature work is necessary to figure out empirical formulas on a first stage of 

this research. This thesis shall not include any experimental test like tank test, wind tunnel test, field 

test, etc. because of limited working period of one semester, but it is quite clear that we can obtain 

sufficient amount of field data from past work that is also why relating tests shall be excluded on this 

paper.  

1.3.2 Contribution 

Until now a lot of studies have been done which relate to ship icing, but none of them could integrate 

the suggested model into ship navigation simulators. At the same time no navigation simulator can 

simulate ship icing phenomena with high reality although ice bridge simulator POLARIS by 

Kongsberg Maritime had installed with low reality of ice module in winter of 2011. From safety 

operational view point high reality module should be developed on the system. Since we consider the 

durational period as to be short for training scenarios on navigation simulator, sudden capsizing 

induced by free-surface effect should be included on the developed algorithm.  

1.3.3 Organization of the Thesis 

In chapter 2 the mathematical model or theory of ship icing are discussed from empirical relation. 

Firstly the reason of ship icing is introduced, and how to calculate LWC and freezing fraction are 

discussed. This part is mostly based on literatures. Those findings are used for computer program of 

ship icing. 

In chapter 3 the theory of ship stability is discussed for the development of ice model in terms of 

stability change. Relation between centre of gravity and metacentre is discussed because it reveals 

stability criteria. This part is mainly by literature study from book “Ship Stability” Barrass and Derrett 

2006. 

In chapter 4 the concept of the ice model is discussed with its theologies. How to simplify ship 

structure, the way to obtain dynamic model, how to deal with free surface problem, are discussed. In 

this chapter specific equations are not stated, over view of the model algorithm is discussed. 

In chapter 5 flow chart of the source code is explained. In proposed model 300 tonnage size of coast 

guard vessel are analyzed and superstructures are simplified with body shape. Validation of the 

function that calculates ice load and GM had done by comparing the model with field research. 

In chapter 6 investigation of the model is discussed by analyzing two case studies. It is not easy to 

validate ship icing; some assumptions have been made for the comparison purpose. This chapter 

decides the degree of model reliability for installing into bridge simulators. 

Concluding remarks are given in Chapter 7 with recommendations. 
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Chapter 2 Ice Accretion on Geometrical 
Structures from Empirical Relation 

2.1 Introduction 
Under severe weather condition when water particles collies with ship’s superstructure considerable 

amounts of ice may accumulate. When the air temperature goes down below -3 °C ice accretes on the 

deck structures, and if lower that -6 °C the icing rate increases, moreover icing happens even if air 

temperature is not much lower than -3 °C if Beaufort scale is more than 3 (Tabata 1969). Figure 2.2 

shows icing severity with parameter as air temperature and relative wind speed, findings are: 

i) For ship’s size of 350 to 450 tonnes, icing occur from wind speed of 6 to 8 [m/s], but 

such wind speed is little bit higher for 450 tonnes ship.  

ii) Ice accretion start even at the air temperature minus 2 °C.  

iii) The stronger wind and colder temperature, severe icing will be observed. 

By the research of British Ship Building association, the icing intensity show most strong rate at 

minus 17 °C, after that icing rate decrease (Tabata 1963). 

As mentioned on the former chapter, there are several icing factors: 

 (a)  Super-cooled fog (referred to as arctic frost smoke or black frost) 

 (b)  Freezing rain or drizzle 

 (c)  Rainy snow 

 (d)  Freezing sea spray  

Above mentioned, rainy snow is easy to be blown away and also due to less density, not to be 

regarded as a main factor, and also not for supercooled fog (Tabata, et al. 1963). In these, freezing of 

sea spray is the major factor of icing. See Table 2.1, 80 % of ship icings are due to sea spray, in this 

table data of the Arctic Sea does not show that sea spray is the main reason, but this is because of less 

number of data which referred to “unknown”. Hence in our study sea spray is considered to as a main 

factor of ship structure icing. 
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Figure 2.1 Sea splashing made by collision between ship’s bow and encountered wave, those icing on rigging can be 

observed due to wave-generated sea spray. (From Canadian Coast Guard HP, http://www.ccg-gcc.gc.ca) 

 

Table 2.1 Statistical investigation of the icing causes of icing by different author. Mostly it is depend on sea spray. 

Data are collected from different author stated in “Reference” row. 

Region 

Total number 

of 

observations 

Cause of icing (%) 

Reference 
Sea Spray 

Spray and fog or 

rain or snow 

Other 

types 

All seas 400 89.0 7.0 4.0 Shehtman (1968) 

North Pacific 3000 89.8 7.5 2.7 Aksjutin (1979) 

Arctic Unknown 50.0 41.0 9.0 Aksjutin (1979) 

Gulf of St. 

Lawrence 
100 81.0 2.0 17.0 

Brown and Roebber 

(1985) 

Scotian Shelf 536 94.2 3.0 2.8 
Brown and Roebber 

(1985) 

Grand Banks 100 97.0 2.0 1.0 
Brown and Roebber 

(1985) 

NE 

Newfoundland 

Shelf 

233 95.9 1.4 2.8 
Brown and Roebber 

(1985) 

Labrador Sea and 

Davis Strait 
72 86.9 11.1 1.7 

Brown and Roebber 

(1985) 

 

 

 

http://www.ccg-gcc.gc.ca/
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Figure 2.2 Icing severities as related to air temperature and wind speed. Icing intensity is defined by; 0 = no icing 

observed, 1 = small amount of ice is observed, 2 = strong icing is observed. (From Tabata 1969). 
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Table 2.2 Beaufort scale (Data source: National Oceanic and Atmospheric Administration) 

 

Force 
Speed 

Description Specifications 
(mph) (knots) 

0 0-1 0-1 Calm Sea like a mirror. 

1 1-3 1-3 Light Air Ripples with the appearance of scales are formed, but without foam crests. 

2 4-7 4-6 Light Breeze  Small wavelets, still short, but more pronounced. Crests have a glassy appearance and do not break. 

3 8-12 7-10 Gentle Breeze Large wavelets. Crests ben  gin to break. Foam of glassy appearance. Perhaps scattered white horses. 

4 13-18 11-16 Moderate Breeze Small waves, becoming larger; fairly frequent white horses. 

5 19-24 17-21 Fresh Breeze Moderate waves, taking a more pronounced long form; many white horses are formed. 

6 25-31 22-27 Strong Breeze Large waves begin to form; the white foam crests are more extensive everywhere. 

7 32-38 28-33 Near Gale Sea heaps up and white foam from breaking waves begins to be blown in streaks along the direction of the wind. 

8 39-46 34-40 Gale 
Moderately high waves of greater length; edges of crests begin to break into spindrift. The foam is blown in well-marked streaks 

along the direction of the wind. 

9 47-54 41-47 Severe Gale 
High waves. Dense streaks of foam along the direction of the wind. Crests of waves begin to topple, tumble and roll over. Spray 

may affect visibility 

10 55-63 48-55 Storm 

Very high waves with long overhanging crests. The resulting foam, in great patches, is blown in dense white streaks along the 

direction of the wind. On the whole the surface of the sea takes on a white appearance. The tumbling of the sea becomes heavy and 

shock-like. Visibility affected. 

11 64-72 56-63 Violent Storm 

Exceptionally high waves (small and medium-size ships might be for a time lost to view behind the waves). The sea is completely 

covered with long white patches of foam lying along the direction of the wind. Everywhere the edges of the wave crests are blown 

into froth. Visibility affected. 

12 72-83 64-71 Hurricane The air is filled with foam and spray. Sea completely white with driving spray; visibility very seriously affected. 
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2.2 Icing Process 

2.2.1 Mechanism of the Ship Icing 

The ship icing is quite complicated as a nature to study thoroughly because we need to gather several 

discipline of research: the droplet dynamics, the fluid dynamics in terms of spray trajectory and 

thermal dynamics at the same time, but it may be expressed in simplified way by using water content 

in unit area, relative wind speed or the speed that the contents are conveyed relative to obstacle and 

icing rate which shows that how many percentage of the liquid water content will freeze; i.e. our 

approach is the way such that if we could get to know those values the ice weight per unit area per 

unit time will be defined. 

 

Figure 2.3 Mechanism of ice accretion process in simplified way. The mass of ice is expressed by LWC [kg/m3], 

relative wind speed U [m/s] and the freezing fraction n. 

The amount of water flux of a cylinder and a flat plate to which unit area and unit time are expressed 

by the formula (Horjen 1983): 

 w s cM B E Uw    [kg/m
2
s]    (2.1) 

where  Mw = the amount of water flux [kg/m
2
s] 

 Bs = the shape coefficient [-] (2/π for cylinder and 1 for plate) 

 Ec = the collection efficiency [-] 

 U = wind speed relative to object [m/s] 

 w = liquid water content [kg/m
3
]  

The mass of ice forming on the obstacle (i.e. the amount of ice accumulates on the objected surface) is 

also expressed by the formula (Horjen 1983): 



 

10 

 

 i w cM nM nBE Uw    [kg/m
2
s]     (2.2) 

where  n = the icing fraction [-] 

   

All the diameters of the droplet are assumed to be equal in this expression.  

In the next sub-chapter liquid water content are expressed. 

2.2.2 Liquid Water Content 

Liquid Water Content (LWC) is the measure of the mass of the water in a cloud in a specified amount 

of dry air. Here we divide the methods into two ways, (i) wind-generated and (ii) wave-generated 

spray, former one is the LWC made by wind and wave crest interaction and latter one is made by 

wave and ship interaction. 

(i) Liquid Water Content for wind-generated spray 

1. Kachurin et al. 1974: 

The LWC of spray cloud is equally difficult to quantify in any unique way; however, Kachurin et al. 

1974 suggests that wave height is the chief factor governing this parameter. As with droplet size, it 

may be assumed that the water content is also a function of the size, lines and speed of the vessel, and 

also a function of height above the sea surface. Kachurin et al. proposes that for the sailing speed of 6-

8 knots and heading of 0 ±40°, a proportional relationship be assumed: 

 
310 sw H [kg/m

3
]        (2.3) 

But in the icing model developed by Stallabrass 1980, it was found that LWC one sixth of that given 

by expression above result in a significant improvement in correlation with observed result. As a 

result, the expression for LWC 

 
41.7 10 sw H   [kg/m

3
]       (2.4) 

has been adopted by Stallabrass 1980. 

This expression is most simple but useful for modelling since this is not depend on object height, i.e. 

not like expression below. But disadvantage is that the ice formation will be same in terms of height 

which is not realistic, if the ship is tall this is not applicable. 

2. Preobrazhenskii 1973: 

The LWC is expressed as a formula; 

 0( ) exp
2

sH
w z w z

  
    

  
  [kg/m

3
]    (2.5) 

 where Hs = significant wave height [m] 

  z = object height above MWL [m] 

w0 and β is constant defined by the strength of wind, 
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i.e.  
7

0 10w  [kg/m
3
] and 0.35   for moderate winds (U10 = 7-12 m/s) and, 

 
5

0 10w  [kg/m
3
] and 1.0   for strong winds or near gale (U10 = 15-25  m/s). 

Actually the this expression is based on experiment that is shown in Figure 2.4 as a vertical 

distribution of spray water contents, that is why regression line is represented as to eq. (2.5). 

Alternatively Figure 2.5 shows LWC as a function of relative wind speed. 

 

Figure 2.4 Liquid water content in the wind-generated spray as a function of the height above MWL (From 

Preobrazhenskii 1973 after Makkonen 1984). In this Figure eq. (2.5) is expressed by two linear lines. 

 

Figure 2.5 LWC as a function of relative wind speed. Note y-axis is expressed by logarithmic scale. 

  3. Horjen 1983: 

In this expression LWC will decrease as z object height increase by second power of it, where mean 

wind speed at 10 meter height is used: 
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 5

10 2
( ) 6.3185 10 ( )

H
w z A U

z

     [kg/m
3
]    (2.6) 

where A(U10)is a polynomial of the third degree in U: 

  
3 2

10 10 10 10( ) 0.01864 0.7943 11.3119 53.5173A U U U U     [m
-2

]  (2.7) 

 4. Horjen and Vefsnmo 1984: 

Here ration between wind speed at MWL and 10 meter height is used, decreasing exponentially; 

 

3.8

10
0

0

( ) exp
2

U H
w z w z

U

   
    

  

  [kg/m
3
]    (2.8) 

(ii) Liquid Water Content for wave-generated spray 

Horjen1983 proposed a guess for the wave-generated LWC: 

 

2 3
4

0 2 2

1
' 2.5 10

4

H H
w M

z z

     [kg/m
3
]    (2.9) 

 0 'exp
2

H
w M z

  
    

  
   [kg/m

3
]    (2.10) 

 where M0 is defined by Kachurin et.al., 1974: 

 
3

0 ' 10 sM H      [kg/m
3
]    (2.11) 

Note that this formula is valid higher than the wave crest height, i.e. at z = H/2 (Horjen, 1983). And β 

is defined on the former section. 

 

Horjen and Carstens 1989 has suggested theoretical formula to obtain the mean horizontal impact-

generated spray flux, which means that mass flux per unit area: 

 
2

2
( ) cos 1

4

b

s
w s r

s

H K z
G z a g gH V

U H
 



   
     

    

 [kg/m
2
s]  (2.12) 

where   K = 12.077 [-] 

  V = Ship speed [m/s] 

  αr = relative angle of spray flux [degree] 

  a = 2.3489∙10
-6

 [-] 

  
b = -2.0907 [-] 

Those parameter “a” and “b” is empirically obtained by spray flux experiments on “Endre Dyrøy” 

reported by Horjen et al. 1986. Note that on his test four spray collectors were placed at the front mast 
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(14 m from the bow) at elevations 1.10 m, 2.00 m, 3.60 m and 5.35 m above the base of the mast. The 

highest wind speed was 18 m/s which means that the contribution from wind-generated spray may be 

neglected compared to the wave-generated spray. When we use this formula we may assume that 

relative angle of spray flux αr shall be equal to 0 for simplification, which means the relative wind 

always come from right ahead. (In proposed model wind direction/ship course is not considered, here 

is room to improved for more realistic computation, see future work) 

2.2.3 Heat Balance and Freezing Fraction  

From wind tunnel test (empirical solution) 

If the super-cooled water droplet impinges on the obstacles, it cooled down to freeze, the portion that 

does actually freeze on impact is called the freezing fraction n, and remaining fraction (1-n) as a 

watery contents are run off or blown off the surface. (See Figure 2.3) Freezing fraction can be 

obtained by both theoretical and empirical methods. Horjen 1983 has solved such relations by 

studying heat balance of the objective surfaces. On the other hand Stallabrass 1980 have been found 

out empirical relations by using wind tunnel test and demonstrated the effects of air temperature and 

cylinder size on the resulting ice formations. Firstly empirical approach is discussed in this sub 

chapter.  

The icing tests were conducted in a closed circuit, refrigerated icing wind tunnel (Figure 2.6), in 

which the air is continuously recirculated by an electric fan demonstrate the effect of air temperature 

and cylinder diameter on the percentage of spray that freezes on the cylinder. Those test have been 

executed at National Research Council of Canada, although this data is taken in more than 40 years 

ago, since the reliability is quite high we adopt the test result into our analysis. The icing condition is 

produced by an array of water spray nozzles. Five cylinders, 3.8 [cm], 7.6 [cm], 15.2 [cm], 30.5 [cm] 

and 45.7 [cm] in diameter were used for the tests. Tests were exercised on each cylinder in both a 

horizontal and vertical orientation. The 3.8 [cm] cylinder was made of steel tubing 1.60 [m] long, and 

was mounted through flanged bushings in the tunnel walls. Other cylinders is 0.91 [m] long supported 

by 3.8 [cm] tube.  

Wind speed was set at 43 kt (22.1 m/s) corresponding to a wind force of 9 on Beaufort Scale, air 

temperature is -14 °C and -7 °C. The water spray was set to give a water concentration in the air of 

3.2 g/m
3 
and droplet diameter is 0.2 mm. Representative drawing is shown in Figure 2.6, gravitational 

force act to deform the shape to as asymmetry, we can find that wind ward side (right side) has much 

ice apparently. Freezing fraction was calculated by weighing at the end of each 1-hour run, from 

formula from equation (2.2): 

 iM
n

AUw


          (2.13)
 

where  A = surface area of the cylinder [m
2
]. 

Note the shape coefficient Bs is not considered in this case. The ice deposits were weighed at the end 

of each one hour run and the one hour icing efficiency (icing rate) determined. In spite of the 

difference in the shape of the ice accretions on horizontal and vertical cylinders (as a result of gravity 

affecting the run-off), no significant difference in icing efficiency was apparent (Stallabrass 1980). 
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Figure 2.6 plane view of wind tunnel, (Stallabrass 1967) Capable of speeds up to 180 mph, and a temperature range 

of about -30 °C to room temperature. The air is continuously recirculated by a 1,000-hp electric fan. The icing 

condition is produced by an array of water spray nozzles. 
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Figure 2.6 Dimensions of ice accretion by wind tunnel test, wind speed is 43 kt (22.1 m/s), droplet diameter is 0.2 mm, 

and water concentration in the air is 3.2 g/m3. Gravity contributes shape of ice to make it asymmetrical shape. (From 

Stallabrass 1980) The dimension A will be our main target for modelling (right below). 
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Figure 2.7 Effect of temperature on freezing fraction. This data is based on 21 times run. The relation shows 

linear/curve linear with air temperature and freezing fraction. (Picture source: Stallabrass 1980) 

From typical findings from this test are: 

- The dependence of the freezing fraction on the cylinder diameter and on the air temperature 

was demonstrated in Figure 2.7; the freezing fraction being shown to increase according to 

decreasing diameter and decreasing temperature. 

- Freezing fraction does change with cylinder geometry (vertical or horizontal) if wind attack 

angle is normal to the object. 

- Freezing fraction shall be considered that it has linear/curve linear relation with surrounding 

air temperature for all cylinder diameters. 
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In this test we should note the fact that the sea temperature is not considered. Also this relation is 

useful only when relative wind speed is 43 kt, which means there are difficulty to apply this model for 

whole structure of the ship with complicated shapes, also this test does not show data for the icing 

even for plates. 

We could extract simple linear equation as a function of air temperature for computational purpose of 

ice accretion. 

Depending on cylinder diameter: 

 n1 = -11.1θ for diameter 3.8 [cm] 

 n2 = -7.5θ for diameter 7.6 [cm] 

 n3 = -5.0θ for diameter 15.2 [cm] 

 n4 = -3.8θ for diameter 30.2 [cm] 

 n5 = -2.8θ for diameter 45.7 [cm]  

Although above relation is valid under restricted environmental conditions, i.e. wind speed U = 43 

[kt], drop let diameter d = 0.2 [mm] and LWC w = 3.2 [g/m 
3
], these result help us to make blue print 

of ice accretion. 

In this section empirical expression is delivered and analyzed. In the next section theoretical method 

is discussed. 

From the thermo dynamics (Theoretical method) 

The icing rate can be found from the thermodynamic process. Taking only the primary heat transfer 

processes acting at the icing surface into consideration, and assuming that the ice formation is 

continuous steady-state process, an equilibrium heat balance at the icing surface may be formulated as 

(Stallabrass 1980): 

 0f w c e aq q q q q    
       (2.14)

 

 where qf : latent heat of freezing a certain fraction of the impinging water [W/m
2
] 

  qw : heating (or cooling) of impinging water to the equilibrium surface temperature 

           [W/m
2
] 

  qc : heat transfer by convection to the surrounding air [W/m
2
] 

  qe : heat transfer by evaporation to the surrounding air [W/m
2
] 

   qa : heat conducted to or from the icing surface through the underlying structure  

           [W/m
2
] 

Here we look into these heat coefficients respectively. 

The latent heat term: qf 

Horjen (1983) suggested that the icing intensity Mi is expressed by following form by using icing 

fraction “n”; 
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i w cM nM nBE Uw 
   

[kg/m
2
s]

    (2.15) 

63.6 10i c
i

ice ice

M nBE Uw
N

 
  

  

[mm/hour]
    (2.16) 

The collection efficiency E expresses the degree to which the water drops in the air impinges on an object 

in their path, and is not deflected by the air blow around the object. The collection efficiency increases 

with relative velocity and with drop size, and decreases with the size of the object on which the drop 

impinges. Because the size of the water droplets involved in ship icing due to sea spray is large (>1 mm), 

they will be deflected little and the collection efficiency will be assumed to be 100%. This is also in order 

to make the computation procedure simple.   

After all the heat released is: 

 f f iq l M
  

[W/m
2
] 

      (2.17) 

where lf is latent heat of freezing. (= 3.33∙10
5
 [J/kg]) 

Hence this term is expressed by wind speed, wave height and freezing fraction: 

 ( , , )f f sq q U H n   [W/m
2
]      (2.18) 

 

Heating of the impinging water to the equilibrium surface temperature: qw 

The heat given to the impinging water is expressed by  

 Q cm        
 [J]   (2.19) 

 where  Q = total heat [J] 

  m = body mass [kg] 

  c =  specific heat of fluid [J/kgK] 

  Δθ = temperature change [K] 

then we can write the heating of impinging water to equilibrium surface temperature as: 

 ( )w w w d sq M c   
     

 [W/m
2
]   (2.20) 

where  cw = specific heat of water (= 4000 [J/kg·°C])  

 θd = droplet temperature immediately prior to impingement [°C] 

 θs = equilibrium surface temperature [°C] 

   

Tabata1963 has shown that the chlorinity and freezing temperature of the brine run-off is a function of 

the freezing fraction: 
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  1s fn   ,  0 ≤ n < 1   [°C]   (2.21) 

Surface temperature can be said as equilibrium freezing temperature of water of the appropriate 

salinity. As ice forms at the surface, salt is rejected from ice crystal lattice so formed, and the water 

film on the surface of the ice manifests an enriched salt content. Since definite relationship exists 

between the salinity and the freezing temperature of the brine, which is expressed as: 

 
5 20.002 0.0524 6.00 10f S S     

  
[°C]   (2.22) 

where S is salinity in parts per thousand. 

The expression is for salinities between 0% and 40%. 

As a result by using eq. (2.4) and (2.19) we obtain: 

 
71.7 10 ( )w s w d sq H c U    

  
 [W/m

2
]    (2.23) 

Hence this term is expressed as a function of significant wave height, wind speed, droplet temperature 

and equilibrium surface temperature: 

 ( , , , )w w s d sq q H U       
[W/m

2
]
    

(2.24) 

Heat transfer by convection, (heat loss): qc 

Heat loss by convection with surrounding air is expressed in terms of a heat transfer coefficient, h, 

and the temperature difference between the surface and the surrounding air: 

 ( )c a sq h   
    

[W/m
2
]    (2.25) 

where  h = the hear transfer coefficient
 
[W/m

2
K]. 

The heat transfer coefficient is defined by body geometry, length and Reynolds number and Prandtl 

number. In determining an expression for the convective heat transfer coefficient, a certain amount of 

approximation is necessary since the shape and size of the icing surface is undefined. 

For a flat plate in turbulent flow parallel to its surface (e.g. the deck of a vessel) an average heat 

transfer coefficient over a length L is given (Rohsenow et al. 1961) by: 

 1/3 0.80.037 Pr Reak
h

L
    [W/m

2
·°C]   (2.26) 

Only forced convective heat transfer will be considered. If a mean temperature of -5°C in the 

boundary layer above icing surface is assumed it may be shown that the “mean” heat transfer 

coefficient is given by: 

 

0.8

0.2c

U
h K

D
      [W/m

2
·°C]   (2.27) 

where Kc = 5.17 [Wm
-2.6

s
0.8°C-1

] for a cylinder (Stallabrass 1980) and Kc = 6.3279 for a flat plat 

(Horjen 1983) placed normal to the air stream (if the Reynolds number is larger than 4∙10
4
).
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The convective heat term decrease as wind speed increase if the air temperature is lower than 

equilibrium surface temperature, in case of a cylinder, an example is shown in Figure 2.8. 

Hence this term is as a function of relative wind speed, characteristic length, air temperature and 

equilibrium surface temperature: 

 ( , , , )w w a sq q U D       [W/m
2
] 

 
  (2.28) 

 

 

Figure 2.8 Example of convective heat term, air and equilibrium surface temperature is set as θa = -10°C, θs = -5°C. 

Heat transfer by evaporation to the surrounding air: qe 

When the liquid evaporate to surrounding air the energy loses which is expressed as: 

 

0.63
Pr

( )v
e a s

p

l
q h e e

Sc pc

 
  

 
   

[W/m
2
]    (2.29) 

 where Pr = Prandtl number (= 0.711) 

  Sc = Schmidt number (= 0.595) 

  ε = the ratio of molecular weights of water vapour and dry air (= 0.622) 

  p = atmospheric air pressure 

  lv = latent heat of vaporization of water (= 2.5∙10
6
 [J/kg]) 

  cp = specific heat of dry air (1.005∙10
3
 [J/kgK]) 

  θa,θs = saturation vapour pressure of moist air at temperature . 

Using values above and rewrite equation: 

 1731 ( )e a s

h
q e e

p
 

    

[W/m
2
]  

  

(2.30) 

If we use h = 5.17V
0.8

 [W/m
2
K], and assuming p = 100 [kPa] then: 
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0.889.5( )e a sq e e U      [W/m

2
]    (2.31) 

where the saturation vapour pressure ea and es may be expressed in [kPa] as a function of temperature 

by forth polynomial as: 

 7 4 5 3 3 21.9226 10 2.4545 10 1.4224 10 0.044436 0.61094e                [kPa] 

           (2.32) 

 

Figure 2.9 Saturation vapour pressure as a function of temperature. It decrease as the temperature decrease. 

This means that qe is a function of air/equilibrium temperature ta ts and wind speed U. 

 ( , , ) ( , , )e e a s e a sq q e e U q U  
  

[W/m
2
]    (2.33) 

Total heat balance 

From the formulas gotten from above derivation, we summaries by using eq. (2.14), (2.17), (2.23), 

(2.27) and (2.31): 

      0.8 0.80.68 5.17 89.5 0f i s d s a s a sl M H U U e e U         
 

(2.34)
 

here we used specific heat of water cw = 4000 [J/kg∙K], in case of cylinder and neglect contribution 

from characteristic length D since influence much small to the result. The latent heat released during 

freezing is 3.33∙105 [J/kg]. So the above expression can be rewritten as: 

 
     6 5 0.8 4 0.82.042 10 1.553 10 2.688 10i s s d s a s aM H U U e e U             

 

          
[m/s]

 
(2.35)

 

by using ice density (ρice = 890 kg/m3) and express by [mm/hour] we get ice intensity, if as is more 

usual, using [mm/hour]: 

 
     3 0.8 0.88.260 10 0.0628 1.087i

i s s d s a s a

i

M
N H U U U e e   



       

 

           

[mm/hour]  (2.36)
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We should note that the saturation vapour pressure e is a function of temperature, equilibrium surface 

temperature θs is a function of salinity S and freezing fraction n. In order to get n and θd iteration 

procedure is needed.  

Finally icing fraction is expressed by the ratio between total water flux and the amount of icing 

intensity: 

 
i

w

M
n

M


         

(2.37)
 

Iterative procedure to obtain freezing fraction n 

In order to get freezing fraction n, simple iterative procedure is used. First n value is assumed to be 

zero, i.e. θf = θs . Subsequent iterations used the computed value of Mi to determine a new value of n, 

repeat this procedure until successive values of n differed by less than an arbitrary amount (e.g. 

0.0001) 

Iterative procedure to obtain droplet temperature θd 

In order to get droplet temperature, first droplet temperature θd is set as same as sea water temperature 

θw, getting Xt. 

 1 0.622 v a w
t

p a w

l e e
X

pc  


 


       

(2.38) 

Derive a new value of td by  

   2

6
exp a

d a w a t

w w

NuK
t t X

c d
  



 
    

    

[°C]

   

(2.39) 

where  Nu = Nusselt number (
f

hD

k
 ) 

 D = Characteristic length [m] 

 kf = Thermal conductivity of the fluid (water) [W/m·°C] ( = 0.58, by 

 www.engineeringtoolboc.com) 

 Ka = conductivity of air [W/m·°C] (= 0.0243, by www.engineeringtoolboc.com) 

This procedure is repeated until successive value of θd differed by less than an arbitrary amount (e.g. 

0.0001 °C), where the duration of single sprays τ has measured 2.9 s by personal communication 

between Zakrzewski and Horjen (Horjen 1989). 
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Chapter 3 Transverse Stability 

3.1 Stability Conditions 

3.1.1 Notation for Chapter 3 
The center of gravity G is the point through which the force of gravity is considered to act vertically 

downwards with a force equal to the weight of the body. The center of buoyancy B is that point 

through which the force of buoyancy is considered to act vertically upwards with a force equal to the 

mass of displaced water by submerged volume. The centre of buoyancy moves freely with regards to 

ship’s motion and K means the centre point of bottom plate or “keel”. See Figure 3.1(a). 

 

Figure 3.1 (a) Definition of the centre of buoyancy, gravity, keel and metacentre with its equilibrium condition.        

(b) The stable ship condition with small heel angle θ, linear relation between lever GZ and θ can be observed as 

shown in eq. 3.2. Note the centre of buoyancy B will move as the ship incline because of dependence of underwater 

ship’s form. 

3.1.2 The Metacentre including the Definition of Rest Stability Arm MS (θ) 
If the ship is affected by some external forces like wind and wave the ship is heeling in small angle 

with the centre of gravity does not change since the distribution of ship’s mass does not, the vertical 

through the new centre of buoyancy and initial center line intersect at a point called the metacentre, 

see Figure 3.1(b). The height of the initial metacentre above the keel depends upon a ship’s 

underwater form. 

Stable equilibrium 

The ship return to the initial position if ship is in the stable equilibrium, in order to be in this condition 

the centre of gravity must below the metacentre and it is called the ship has positive GM as shown in 

Figure 3.1(b). The centre of buoyancy moves out and centre of gravity of submerged volume of 

displaced water, which vertical through metacentre. If the moments are taken about G there is a 

moment to return the ship to the initial position, that is referred to as the “Moment of Statical Stability” 

and is equal to the product of the weight force W and the length of the lever GZ; i.e. 

 Moment of Statical Stability = W∙GZ      (3.1) 
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The lever GZ is referred to as the “righting lever” and is the perpendicular distance between the centre 

of gravity and the vertical through the new centre of buoyancy B1. GZ is if the angle of heel is small, 

or less that 5° the rest stability can be neglected. 

 GZ (θ) = GM sinθ + MS (θ)       (3.2) 

hence 

 Moment of Static Stability = W∙GZ (θ)      (3.3) 

Note since the metacentric height depends on ship’s underwater form, GM increase as the heel angle 

will. S is the point of the vertical axis through M at any angle of heel. If the heel angle exceeds the 

value at which maximum GZ is observed GM start decreasing, when the angle of heel at which the 

righting lever returns to zero (GM = GZ = 0), the stability will be unstable and no more uplifting force 

will be expected (the angle of vanishing stability). These characteristics are well expressed by using 

the “GZ curve” which is identical not only by ships type/size but also ship’s loading condition 

including accreted ice. 

Unstable equilibrium 

If the ship is unstable condition, the centre of gravity of the ship G positions above the metacentre, 

external force induced small angle of heel will make further inclination due to momentum with its 

negative GM, Figure 3.2(a), which stability is not secured in this case and so as to capsize. 

Neutral equilibrium 

If the centre of gravity is at the same point to the metacentre, the ship’s static condition is neutral 

equilibrium as shown in Figure 3.2(b). The ship is affected by external force to make heel angle θ but 

no stabilizing or capsizing motion will be observed since two vectors have equilibrium on the same 

vertical line (Barrass and Derrett 2006). 

 

 Figure 3.2 (a) Unstable condition and (b) neutral condition. Note the relative position between centre of gravity and 

metacentre.  

3.2 Free Surface Effect 
If tank with filled liquid it can be considered as a fixed weight on ship geometry. But in case of the 

tank being not filled, those liquid make change of centre of gravity for and ship’s centre of gravity. In 

our study when the hand rails on the brink of ship get icing making temporary ice wall, the water on 
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deck will make a same effect above deck initial centre of gravity is g. As shown in Figure 3.4, the ship 

heels and the liquid on deck flow to the low side such that its centre of gravity shifts from G to G1, 

parallel to gg1. 

Hence 

 Moment of Statical Stability = W∙G1Z1 

     = W∙GvZv 

     = W∙GvM sinθ     (3.4) 

Even small GG1 change, GGv could be large and GM shorten as well. If the ship has small GM, 

thanks to free water reduction of GM induce large stability loss following with negative metacentric 

height. 

 

  

Figure 3.4 Image of free surface water on deck moving a centre of gravity right ward parallel to gg’, resulting in 

reduced metacentric height as GM to GvM, even if position G change small distance GGv could be large. 

3.3 Calculation of the Centre of Gravity 
Centre of gravity changes due to ice load and expressed by using sum of momentum force, if we have 

ice load m the resultant KG height is expressed as, 

 '
KG M Kg m

KG
M m

  


        (3.5)
 

where  KG = Initial KG height [m] 

 KG’ = resultant KG [m] 

 M = ship’s displacement [kg] 

 Kg = distance between centre of gravity of the mass (ice) and keel [m] 

 m = mass (ice) weight [kg] 
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Chapter 4 Model Concept 

4.1 Introduction 
The model had been constructed aiming that to be installed to ice bridge simulators. Regarding the 

research direction overall picture of the blue print of the model is discussed, additionally new 

development unique to the model is also discussed. The general description has been done here, and a 

specific description will be done on chapter 5. 

4.2 Concept of the Ice Model 
An expected whole figure of the model shall be explained in this sub chapter. The blue print of the 

model, i.e. how the model is constructed, the final goal on the purpose of the model is further 

proposed with its functionality on the simulators. Needless to say, the low reality of the existing ice 

module of the simulators is our motivation.  

 

Figure 4.1 Ice bridge simulator, picture of bridge console. picture source; http://www.uniteammarine.com 
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Figure 4.2 Model concept of ice module. Picture source of ship and simulator (right hand): Kongsberg Maritime 

http://www.km.kongsberg.com 

First of all, the model shall essentially being able to be installed on all kind of bridge simulators 

regardless of the manufacturers. From this view point basic information of the simulator as a mother 

system should be studied including current development regarding the algorithm of icing module. 

Here we have asked for the information of ice module on the Kongsberg’s ice bridge simulator 

POLARIS as a representative model of simulator system though, we could not obtain it on the 

technical aspect especially regarding the ice module because of a reason “company secret” which is 

expected too simple to calculate such a complicated phenomena of icing. That is why such 

information has been collected throughout internet and library all over Norway as much as possible 

both for qualitatively and quantitatively.  

That is why a construction of a model with high reality has been a main target on our study. The input 

parameters should be detailed such as; both for air and sea temperature, wind speed, significant wave 

height, wind fetch, ship speed and cylinder diameter, etc. Additionally the simulation should be 

continuous during the duration of training which ranges of several hours. The calculation result is 

shown in a time domain that shall be done continuously or every second thought the training durations.  

A basic calculation theory behind is set to an integration process by short cylinders and small plates 

which represent the superstructures above the upper/superstructure deck. Here we assume that those 

structures can be represented by gathering of cylinders and plates. Ship superstructures are simplified 

with high degree of reliability. Inclination of the plate is not calculated in proposed model though it 

should be considered with change of relative wind speed; we assume that relative wind speed is from 

right ahead. 

Especially the reason of using cylinder as a representative element is that the opening between two 

parallel pipes can be a good object when simulating such sudden stability change due to trapped water 
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on deck, by the idea that ice building between two pipes (cylinders) make a temporary “wall” that 

blocks incoming water not to be able to escape out. There is another reason of using cylinders; 

sufficient empirical data could be collected from literatures of both full scale and cold temperature 

wind tunnel test (Stallabrass et al. 1967), from this view point we could say that cylindrical structure 

has a high reliability in order to represent super structures. 

 

Figure 4.3 Model simplification concept, superstructure that have a possibility of icing, i.e. hand rail is assumed of 

gathering of cylinder. Most of the ship superstructures are assumed to be represented by the plates and the cylinders. 

We have to say one more thing regarding this integration process. The subjected ship shape should be 

simplified for computational purpose, but not too simple on the point for the pursuit of realism. That 

is why the model shall not be simplified too much until that will be far from the reality. 

Stability shall be calculated and evaluated by means of GM height (or simply GM). GM shall be 

calculated by hydro static table that is unique to each ship’s hull shape respectively. GM can also be 

computed by rolling period, which is why navigator/trainee could notice its change of the rolling 

period that can be noticeable by the simulator display swinging the bridge view.  

Final goal is the model installation to ice bridge simulator. Calculation speed shall be reduced as short 

as the requirement of the simulator system. If the calculation takes long period (e.g. one second), it 

means the program code cannot suit for the system. 

In proposed model we assumed that winds are blown on to those cylinders and plates normal to it for 

simplification, but in real situation it changes with ship’s course, wind speed, and also depend on 

ship’s 6DOF and also depend on the geometry of the elements. In order to deal with this point, we 

should consider angle of those structure elements on the body fixed coordinate systems, assuming it 

moves with ship’s 6DOF. 

Finally after ice load and stability parameters are calculated those numbers should be notified to the 

ship navigators/simulator trainee. GM should be reflected to the system display in terms of scenery 

motion with ship rolling from which navigator can perceive the stability change.  
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4.3 Developed Features of the Ice Model 
Free surface effect 

As shown in “Chapter 1.2 Previous Work”, Chung et al. (1995) have studied the sea spray as a main 

parameter of ship icing by theoretical solutions; i.e. spray trajectory equation. But “Water on deck and 

sudden stability reduction” had not been taken into account on their work. Such sudden stability 

reduction will happen if each opening of the hand rail of ship shall be compensated by accreted ice on 

the surrounding slender structure (hand rail), then green water poured into ship’s deck cannot peep out 

and keep trapped on which behaves like a sudden emerging of an open top tank with its center of 

gravity being high, causing ship to capsize in worst occasion, this is also called “Free Surface Effect” 

that is of a problem in a liquid cargo ship whose cargo hold would not be fulfilled by liquid (i.e. crude 

oil, LPG etc.).  As a result in our study, this problem is developed. (see Chapter 6, case studies) 

Dynamic model 

As a nature of simulator navigation training it should be a continuously being output in the duration of 

it. Those modules to be added on it must have a continuous system. From empirical research it is 

obvious that how thick does ice accretes on a decided diameter of cylinder per hour, which is static 

status. By summing up those numbers every hour/minutes and get a result as a form that is continuous.  
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Chapter 5 Computer Program 

5.1 Introduction 
In the former chapter model concept is described. Alternatively more detail shall be described in this 

chapter including model algorithm, flow chart, test run, simplified ship shape. Computer program has 

been done by using “Microsoft Visual C++ 2010 Express”. 300 tonnage size coast guard vessels is 

picked up as an design object, with which the ship’s superstructures are simplified, i.e. not consider 

detail but does not mean unrealistic, regarding this validation of the degree of simplification is 

discussed in chapter 6.  

5.2 Flow Chart 

5.2.1 Overview 
The overview of the program structure is quite simple as shown in the Figure 5.1, we can find process 

of the icing module. A main function with two originally made function from empirical relation 

support the model. The computation process is; input environmental data such as wind speed, wave 

height, and air temperature etc. And read structure file of the object ship, i.e. x-, y- and z- coordinate 

of the subjected element, cylinder diameter, plate area, etc. Specific ice load calculation will be done 

on two function called “Ice_cylinder” and “Ice_plate”, which is constructed from empirical 

formulation discussed in chapter 2. As stated on the next subsection, superstructures are assumed that 

gather cylinder and plate on deck and function is selected according to geometry. Finally the ice load 

and following metacentric height from keel (KM) is calculated by summing up all the ice load for 

each structure elements based on eq. 3.5. Resultant file is written at final part. The resultant file is 

composed of those coordinate information and ice load both for each element and total ship ice load 

following to GM change. See also Appendix E. 
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START

READ FILE

WRITE FILE

END

cylinder 

or plate?

Plate

Cylinder

Function 

"Ice_cylinder"

Function 

"Ice_plate"

Environmental 

data

 

Figure 5.1 Flow chart for the whole computational process. First read file and compute based on given values and 

write the result out into new file. Each small cylinders and plates are calculated by different function. 

5.2.2 Tailor Made Function: “Ice_cylinder” and “Ice_plate” 
Icing speed/intensity is calculate in two empirical function aim to calculate icing rate, As stated in 

several research such as (Stallabrass 1980), (Horjen1983) iteration process is applied to estimate icing 

rate, i.e. ice thickness growing in an hour. See Figure 5.2. These calculation is based on empirical 

formulation explained in chapter 2. 
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Figure 5.2 Flow chart for the computation of ice intensity, used on tailor made function “Ice_cylinder” and 

“Ice_plate”. Iteration procedure is used twice, which is repeated until the difference of the successive value converges. 
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5.3 Simplified Ship’s Shape and Superstructures 

5.3.1 The Model Ship 
In our computation 500 tonnage size of coast guard vessel is selected for our case study. The reasons 

why we chose this type of ship as an object of the model is: 

1. Search and rescue on the severe weather conditions. 

2. Rate of ice growing on the elements. 

3. Relatively small size vessel; 500 [t] is vulnerable to the ice accretion. 

4. Quantity of the data existing for the analysis of case study (e.g. Tabata 1963) 

Regarding 1, disaster at harsh sea not only capsizing due to icing on extreme condition, there are 

potential dangers on the high north region that increase the necessity of a search and rescue operations 

by the coast guard vessels. That is why such vessels have to avoid getting ice build on the structure in 

order to implement safety operation in high competence at harsh condition. Those who engaged in the 

operations should have known such potential dangers. 

With respect to 2, due to high speed operation; up to approx. 25 kts, the faster the higher icing rate, 

(ref chapter 2). This kind of high speed operation ship should be carefully prepared for icing. 

With respect to 3, large vessels like VLCC are strong to icing, because even if ice accretes on the deck 

structures ice loads are much smaller than ship’s displacement. That is why smaller ship has a 

potential to be affected by ice load, and stability change drastically due to additional load. The ship 

size of 500 tonnages is selected since its size ship will be operated on the sea exercise. 

Regarding to 4, after the analysis is calculated for ice load and stability change it should be 

investigated by comparing with full scale tests.  

A photo below shows an example of such kind of vessels; M/V Yubali of Japan Coast Guard. 

 

Figure 5.3 M/V Yubari of Japan Coast Guard. Compare with Figure 5.4. (Photo source: 

http://www.panoramio.com/photo/42232495xz) 
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5.3.2 Simplification Method of the Ship Structures 
From a practical view point it is impossible to consider all the structures on deck to include the ship 

icing simulations, especially for the prototype study it is not convenient. That is why as a beginning 

point of modelling, simplified ship shape is considered as shown in Figure 5.4. 

Important thing that should be carefully considered is that degree of simplification should not being 

far away from original model otherwise the result will be useless whose values are far beyond from 

 

 

 

 

 

 

 

 

Figure 5.4 Model ship and simplified superstructure, hand rail and the front area of bridge  is calculated on the 

simulation of ice accretion, except for it is simplified. Compare with Figure 5.3. 

the result which they experience on the real situation and lead the model to be meaningless. This is a 

general rule of simplification.  

For the simplification purpose most of the complicated ship structures with low dependency to the 

icing like life boats, funnel, windlass, must, radio communication lines, etc. are not calculated due to 

computational simplification reason. But the hand rails surrounding along the ship’s brink will remain, 

in the Figure 5.4 it is shown by red lines, composed of vertical and horizontal bars. There are two 

ellipsoidal shape and 52 vertical bars length of 1 meter. Since LWC depends on height as shown in eq. 

(2.12), ice load on it is also height dependent, that is why in order to get more accurate result, those 

vertical bars should be calculated by cutting it into small pieces.  When deciding the length of short 

element, we compare variation of LWC are height dependent in Figure 5.5. For comparison purpose 5 

way to calculate LWC are shown referred in chapter 2. Although it is not easy to define appropriate 

length of element from this result, best thing is that integrate the vertical bars though not practical for 

the model which need fast computation time in terms of final goal is installing to ice bridge simulator. 

We shall judge that at least 10 cm element for the model will sufficiently compensate the difference 

and with its error of negligible level.  
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Figure 5.5 The vertical variation of LWC, wind speed 22 [m/s] and significant wave height 6.9 [m]. 

with the distance of approximately one meter separation. The diameter of these bars is 0.4m. From 

Figure 5.6 M/V Yubali we could clearly find that the icing on hand rail will lead to water trapped on 

deck due to the wall made by ice between horizontal hand rails. 

 

Table 5.1 Ship’s data table for the model ship on our simulation. We use same data of M/V Yubari. Data taken from 

Tabata et al. 1967. 

Lpp 45.00 [m] 

Breadth 7.30 [m] 

Depth 4.10 [m] 

Gross Tonnage 326.92 [t] 

Initial GM 0.81 [m] 
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Figure 5.6 The starboard side picture of M/V Yubari. The openings between vertical hand rail is completely 

compensated by accreted ice, this case is threatened of free water effect. (Photo by Tabata 1963) 

5.4 The Ice Formations between Horizontal Handrails 
On the calculation of the simulation ice formation is assumed to be evenly formed around the 

cylinders and on the plates but it is not true according to the field test by Stallabrass 1967. The 

external force acting on the ice deforms it; gravitational force deforms the ice down sagging make 

icicle in case as shown in Figure 5.8, additionally this phenomenon contribute strongly make a wall 

between horizontal hand rails and let green water on deck not being escaped. In order to quantify it, 

we analyze the wind tunnel executed by Stallabrass et al. 1967. Also above figure is a good picture 

that opening is compensated by accreted ice. Figure 5.8 shows accreted ice on 3.8 cm diameter 

cylinder placed horizontally. The ice formation is extending downward due to gravitational force. We 

could find linear relation between weight of ice and dimension A and not depending on the air 

temperature and cylinder diameter, see Figure 5.9. 
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Figure 5.7 A image of the cross section of the ice accreted on the ship’s hand rail. From Figure 5.8 we could fine that 

ice formation on the offshore field is like right hand image. The vertical length of the ice is expressed as a function of 

ice weight. The dimension A is refereed in Figure 2.6. 

 

 

Table 5.2 The result of the wind tunnel test. Reproduction from Stallabrass 1967 Table I. This data is based on that of  

horizontal cylinder. Figure 5.9 is produced from this data set. 

cylinder 
diameter 

[cm] 

Air temp. 

[°C] 

weight of 
ice [kg/m] 

Dimension of ice formation at mid-span [cm] 

A B C D 

3.8 -15 16.8 35.6 8.9 10.8 12.7 

3.8 -8 9.0 16.5 5.1 7.6 10.2 

7.6 -14 16.9 33 8.3 9.5 14 

7.6 -7 11.4 22.9 5.1 8.3 8.3 

15.2 -16 26.7 39.4 8.3 12.7 15.2 

15.2 -7.5 15.5 29.2 5.1 9.5 10.2 

30.5 -14 39.9 63.5 8.3 10.2 17.8 

30.5 -10 27.1 48.3 5.1 10.2 12.7 

45.7 -13 46.4 68.6 8.3 11.4 19.1 

45.7 -9 32.4 55.9 3.8 7.6 12.7 
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Figure 5.8 Ice accretions on 3.8 cm horizontal cylinder after 1 hour exposure (Stallabrass et al. 1967). Ice formation is 

completely made on windward side of the pole with icicles extending downward due to gravitational force. 
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Figure 5.9 Length of dimension A is expressed as a function of ice weight, linear regression line is added. Length A 

can be expressed as a function of ice weight regardless of other parameters such as temperature and cylinder 

diameter. 

As show in figure5.9, ice weight and vertical length A has linear relation; 

 A = 1.37 * wi +9   ; wi >10     (4.1) 

  where A = length at the dimension A [cm] 

  wi = ice weight around cylinder [kg/m] 

but we have to be careful that if weight of ice is zero, length A will be 9 [cm] according to eq. (4.1), 

and  that is not real case, so in the small ice weight the above expression cannot be applied as stated 

that  “wi >10”. 

5.5 Validation of the function “Ice_cylinder” and “Ice_plate” 

5.5.1 Selection of the Expression for the Mass Flux of Spray per Unit Area 
As expressed in subchapter 2.2.2 LWC is estimated by several procedures. Estimation of LWC is 

difficult; it should be considered such that external condition and ship motion; wave height, wind 

speed, object height, and also ship speed, course as well. Comparison of those expressions and the 

way how to select reliable one is stated in the following. 
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Figure 5.10 shows LWC values as a function of wind speed, object height is fixed on 3 m which is 

average height of cylinder in our study. 

Key findings are: 

a) In case of Horjen et al ’89 the LWC values suddenly grow up around the wind speed of 15 

[m/s]. 

b) In case of “Horjen ’83 wind” the numbers grow rapidly at the wind speed of 20 [m/s]. During 

the range of wind speed 0-5 [m/s] there is small undulations, this is because of third 

polynomial, see eq. (2.7). 

c) Except for the Preobrazhenski ’73 LWC value increase rapidly at a certain wind speed. It 

means the relation between wind speed and icing intensity is not a simple linear 

relation.(Neither exponential nor logarithmic relation) 

d) The line of Horjen ’83 wave 2 but around the wind speed 13 [m/s] and start again, this is 

because of the empirical constant change at that point. see chapter 2.2.2. 

 Note; Icing rate will be depending on other parameter like air/sea temperature and wind speed, it 

is difficult to judge the validity of those expression or reliability. Although this figure shows the 

behaviour of it as a function of wind speed it is not easy to judge which expression to be used on 

for icing the icing model. There is room to be developed further analysis. 

Additionally since LWC is a mass flux per unit volume, it is regardless in terms of if the object is 

plate or cylinder. That is why figure below does not contain parameter for plate or cylinder. 

 

Figure 5.10 Liquid water content as a function of wind speed, the object height is set to 3 m form sea level which is 

typical height of handrail in proposed model. 
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5.2.2 Comparison with the Mertins’ charts 
In order to evaluate given model, one have to compare it with the field test result. The Mertins’ charts 

(Figure 5.11) are shown as a field to be compared with. The figures are created by the Mertins’ 1968 

at Marine Weather Sectors in Hamburg from field observation of collected reports over 10 years 

period, distributed forms from recording ice observations from German and English fishing trawlers. 

(Mertins 1968)  What we have to be careful on this chart is that this picture is expressed by those 

parameters such as “wind force”, “air temperature”, and “Sea temperature”, not including “object 

height” and “characteristic length (e.g. cylinder diameter), which means this figure with ambiguous. 

But in terms of data reliability that those are made from more than 400 field data; it must be reliable 

enough for our investigation. 

In order to compare with the Mertins’ charts and proposed model shown in Figure 5.12 we have to 

make a same assumptions. Firstly we set use 0 °C for sea temperature, characteristic length as a 

cylinder diameter is set to 0.04 m, object height is 4m (For Beaufort scale 11-12, set wave height 6m), 

and significant wave height is derived from expressions on Appendix B (U.S. Naval Oceanographic 

Office 1966). The wind speed is taken by the middle value of the range, for instance in case of 

Beaufort scale 8; wind speed is 17-21 m/s so as 19 m/s shall be selected (Refer Table 2.2 Beaufort 

scale). 

Although it is not easy to compare proposed model and Mertins’ chart because of complexity of ship 

icing, we could write key findings: 

- In the Mertins’ charts the ice thicknesses are expressed much larger than proposed model. 

- In the Mertins’ charts values are not precisely fixed, have large range (e.g. 7-14 

[cm/24hour]), alternatively proposed model shall calculate exact number. 

- The quantitative difference is not the difference of order, means that we could conclude that 

proposed model is not far from this field data. 

 (More detail about quantitative analysis will be shown in appendix C) 
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Figure 5.11 Mertins chart (from Mertins 1968). Icing rate (degree of icing) is expressed by air and sea temperature, 

composed of 4 figures according to wind force. These numbers are based on field data taken by Marine Weather 

Sectors in Hamgurg at the sea area of Ice land, Greenland, Labrador and Barents sea where significant icing can be 

observed ordinary. 
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Figure 5.12 Icing rate [cm/24hr] as a function of air temperature to be compared to Figure 5.11. Sea temperature is 

fixed on 0 ˚C for simplification reason. The red shows the value of plate, blue square is for cylinder. Those two values 

make a difference if the air temperature decrease. Notice that right hand side is much lower temperature.  
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Chapter 6 Validation of the Ice Model 

6.1 Introduction 
In order to validate proposed model two case studies have been executed, one is compare with full 

scale test and the other is by setting external condition according to Beaufort scale. Because of 

complexity of ship icing it is not easy to validate model, so that proper amount of assumptions are 

necessary which we made for external conditions, also metacentric position not being affected by 

icing. Finally reliability of proposed model is discussed from operational view point. This section is of 

importance in terms of model reliability for the enhancement of training quality regards to the ship 

operations in the arctic regions.  

6.2 Case Study 

6.2.1 Case Study 1: Comparison with Full Scale Measurement 
First we compare simulation result with that of field test examined at the offshore sight at the coast of 

the Northern Territories, Hokkaido, Japan. The data of full scale measurement are taken from Tabata 

1963. 

For a comparison purpose we assume following condition according to Figure 6.1. Since proposed 

model cannot simulate continuous change in time domain for those weather parameters like wind 

speed, wave height, etc have been set constant. These values are dealt by taking average value from 

full scales test report.  

 [The weather conditions] 

- wind speed = 14 [m/s] 

- Significant wave height = 4.0 [m] 

- Air temperature = -7 [˚C] 

- Observed ice period = 20 [hour] 

On deciding above test condition, we have set assumption that: 

- Air temperature, wind speed, significant wave height is stable during the analysis on this case study, 

so as those values are constant and average value has been taken from Figure 6.1. (The doted area 

shows period that icing was observed, which summed up 20 hours. During three days examination, 

ship course, ship speed, wind speed and direction, sea state, weather, barometric pressure, air/sea 

temperatures are recorded with specific comment. Data were taken at January 1961, M/V Yubari.) 
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Figure 6.1 Field condition, wind, wave, ship speed, direction, etc. Those dotted area explain period when significant icing is happening. The comments in most below column are by 

navigational officers on board, notification is written in Japanese. From this figure we could find that icing is depends not only air temperature, but also ship speed, ship course; i.e. 

relative wind contribution is of importance. 
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The simulated ice load in time domain is shown in Figure 6.2. Ice load increase as time goes with the 

inclination become steep because of the ice diameter getting larger. The total ice load after twelve 

hours test/simulation is shown in table 6.1. Also the KG and GM values; both for before icing and 

after icing is on Table 6.2. The final ice load after 20 hours operation differ 2.2 [tonne], the GM 

change differ 0.03 [m]. The rolling period differ 0.14 [sec] that human cannot perceive it.   

Note that we assumes in our simulation that the metacentre position has not been affected by ice load, 

(difference of KG and GM for full scale test differ 0.01 m) so that GM is simply calculated by KG 

change if we know initial metacentric position (KM), i.e.: 

 GM = KM – KG        (6.1) 

where KM is found from data sheet in Tabata 1963. 

For further inspection of this model, rolling period is compared (Table 6.2). The rolling period is 

given by, 

 
2 K

T
gGM




         (6.2)

 

where K is radius of gyration which is depending on breadth and given by K=CB, C is approximately 

known as 0.4 in this type of ship, B is ship’s breadth, Table 6.2 can be obtained (Tabata 1963). 

 

Figure 6.2 Simulation result of the case study for comparison with Tabata’s full scale test. Ice load increases as time 

goes with the inclination also be steep, this is because of the fact that even if icing rate is same the diameter of the 

cylinder become large. 

 

Table 6.1 compare resultant ice load. The difference is around 2.2 tonnes. 

 
Ice load [t] 

Field test 13.388 

Simulation 11.217 
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Table 6.2 The change of the centre of gravity, field data and simulation result. Note that the difference of the rolling 

period is 0.14 [sec] that is over human perception to notice it. 

 
Before icing After icing difference 

 
Full scale test 

 
KG [m] 2.67 2.75 +0.08 

GM [m] 0.81 0.72 -0.09 

T [sec] 6.51 6.90 +0.39 

 
Simulation 

 
KG [m] 2.67 2.73 +0.06 

GM [m] 0.81 0.75 -0.06 

T [sec] 6.51 6.76 +0.25 

 

6.2.2 Case Study 2: Different Sea State in Accordance with Beaufort Scale 
In this analysis we define three conditions according to Beaufort scale (ref Table 2.1), followed by 

relative wind speed and significant wave height is derived from U.S. naval Oceanographic Office 

(U.S. NOO 1966, also see appendix B), for air temperature -5, -10 and -15 degree Celsius are selected 

respectively, case 3 is most severe and case 1 is most moderate sea state. Detail analysis results are 

shown below.  

Table 6.3 Test condition for case study 2. Significant wave height is estimated by the polynomial of U.S. navy. Air 

temperature is selected arbitrary to make the significance of the result. 

 
Condition 1 Condition  2 Condition  3 

Beaufort scale 3 6 9 

Relative wind speed [m/s] 4.6 13.0 23.0 

Significant wave height [m] 0.5 2.9 7.4 

Air temperature [°C] -5 -10 -15 

 

GM height is calculated and result is shown in Figure 6.3. Note that GM is calculated under 

assumption that metacentric height KM changes much small enough compared to ship dimension 

during icing as well as case 1, difference between KG and KM is 1 [cm]. KG is calculated by eq. (5.1).  

From Figure 6.3 case 1 and case 2 had difference of 4 [cm] regard to this point we could say that in 

these sea state there are no strong influence toward stability for this type of ship in 20 hours operation. 

Alternatively BF9 GM differ 25 [cm] and make significant stability reduction. 

A typical working value of GM is shown in table 6.4 in order to be compared with resultant GM. 
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Figure 6.3 GM height, simulation result, the more harsh condition the larger change of GM can be observed. Note in 

case of condition 3 GM has reduced to 80% from the initial values. There are small difference between cond. 1 and 

cond. 2. 

 

Figure 6.4 Rolling period according to assumed conditions. In case 1 and case 2 difference is approximately 0.1 sec, 

case 3 will make more than 0.5 [sec] difference on the duration of  20 hours. Point is if the ship navigator can notify 

the change of rolling period.  

0,5

0,6

0,7

0,8

0,9

0 5 10 15 20

G
M

 h
e

ig
h

t 
[m

] 

time [hour] 

Cond. 1

Cond. 2

Cond. 3

5

5,5

6

6,5

7

7,5

8

8,5

9

9,5

10

0 5 10 15 20

R
o

lli
n

g 
p

e
ri

o
d

 [
se

c]
 

time [hour] 

Cond. 1

Cond. 2

Cond. 3



 

49 

 

 

Figure 6.5 Simulation result of ice load of Case study 2. Ice load (below) and length A for Cond. 3(above) are shown. 

The black dotted line is the length between two vertical handrails, if this value exceeds this line sudden stability can 

be observed due to trapped water on deck. 

 

Table 6.4 Typical working values for GM for several ship-types all at fully-loaded drought. Reproduction from 

Barrass 2006. The subjected ship in proposed model is similar to “General cargo ship”. 

Ship type GM at fully-loaded condition 

General cargo ships 0.30-0.50 [m] 

Oil tankers 0.50-2.00 [m] 

Double-hull supertankers 2.00-5.00 [m] 

Container ships 1.50-2.50 [m] 

Ro-Ro vessels 1.50 [m] approximately 

Bulk ore carriers 2-3 [m] 
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Since in this model the opening between hand rails are 50 [cm], during operation under condition like 

case 3, 16 hours later from initial icing trapped water could not escape from ship’s deck and sudden 

stability change is observed. Hence when one install this model to the bridge simulators, the length A 

should be indicated on Bridge instrument or to be visualized in display so that navigator could find if 

the ship has potential of sudden stability change due to trapped water on deck.  

We have to note about mass flux per unit area “G(z)” in the code eq (2.12). Since this function has a 

limitation of object height; 
1

2
sz H   which is not suitable for icing calculation in terms of wall 

making because if there are no icing observed at this height in severe sea state, the wall cannot be 

constructed. Hence we use other expression for “G(z)” such that (Stallabrass 1980): 

 
4( ) 1.7 10 sG z H U          (6.1) 

This expression is based on his own calibration by comparing with observed field data, moreover 

original formulation was suggested by Kachurin (Stallabrass 1980). 

The trapped water problem and when it occurs 

If the ship operates in the severe sea condition, surrounded hand rail will make a temporary wall that 

traps green water on deck causing sudden stability change due to its free motion on deck (Chapter 3.2). 

In our simplified model those hand rail has opening of 50 cm spacing vertically. So we can say if 

those openings are completely filled with accreted ice walls are constructed. In our case study such 

conditions are observed after 16 hours continuous icing simulation.  
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6.3 Validation of the Ice Model 
Case studies have shown in previous sub chapter. Here the model is validated. 

For case study 1 assumption is taken by average value of field data though, final ice weight shows 

quite similar value. The difference is from Table 5.1, approximately 2.2 tonnes, this is if we compare 

with the ship’s displacement of 326.9, it is 0.67% and not large influence to those stability parameters. 

Similarly about GM change both for 20 hours operation and simulation as shown in Table 5.2 the 

difference -0.09 for full scale test and -0.06 and the difference is 3 [cm] and if we get output as rolling 

period will be calculate 0.1 [sec] by equation (3.1) which is negligible in terms of human perception 

ability. 

From case study 2 as expressed in Figure 6.3 for Cond. 1 and Cond. 2 there are not so large change of 

GM and also rolling period is within such that navigational officers cannot notice its periodical 

change. But for Cond.3 GM change 15 [cm] which makes change to rolling period (0.6 [sec]) 

compared to other condition this number is large though, doubt that if human can notice is still 

remaining. Moreover in our case ice washed away due to green water is not calculated. 

Also about radius of gyration K, we assume that is not change though it will change. But the change 

of /C K B will change from 0.402 to 0.393 in case of “M/V Yubari” for before and after icing 

respectively. By using equation (3.1) the resultant T differ -0.4 [sec], since if icing we have the rolling 

period increase and this difference -0.4 cancel it, which is negative effect for us, so if one need more 

precise calculation result this effect should be considered. 

6.4 Discussion 
Degree of simplification 

We have made an assumption of the model and ship superstructure as shown in chapter 5.4. We have 

to discuss about whether the assumption is under affordable limit or not. From Case study 1, the final 

ice load differ 2.2 tonnes which is 0.67% of total ship’s weight, and we can say this model has made 

an affordable degree of simplification. Note that for calibration purpose droplet diameter is set to 

0.001 [mm]. In terms of GM followed by rolling period it change 0.1 [sec], note that rolling period 

has small correlation with GM, so we could not say anything from this number.  

For Case study 2, since we don’t have full scale test result for this case study that we cannot compare 

with. 

Analysis method, condition setting 

For Case study 1 we analyse the model by using constant values as an input of external condition by 

taking average values from Figure 6.1, but in order to get more reliable and continuous result for 

changing weather parameter those algorithm have to be time dependent, in other word it should be 

dynamic model. In this point those computer code should be modified. Regarding to calculation 

method of GM, we assume that metacentric point is not affected by ice load, but it changes (Tabata 

1963). In order to obtain more precise one we can use hydrostatic table which is specific to ships that 

we could not obtain from literatures. 

For Case study 2 the weather condition is defined by Beaufort scale followed by wind speed and 

significant wave height, but the air temperature is decided according to severity of the sea state, the 
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more severe sea state the colder to magnify difference of result. Alternatively the sea temperature is 

fixed to 0 °C. 

For more investigation another full scale test should be compared with, unfortunately so far no full 

scale test has been done except for Tabata 1963 on Case study 1. The reason is the nature of 

complexity and quantification difficulty of ship icing. 

Free surface effect and stability reduction 

In our simulation the opening between vertical hand rails has been compensated during the operation 

on the condition 3. It means our simulation could make criteria on judging if subjected ship will 

experience sudden stability reduction in terms of “when”. That is why from proposed model can also 

be able to applied for safety criteria of those ships operating the area such that cold and harsh 

conditions can be predicted. During simulation training this ice compensation could be introduced as a 

safety criteria, for instance introduce a display to show ice length of dimension A (vertical length of 

the ice on handrail), so that navigation officers can check if own ship is threatened by free surface 

effect thanks to green water on deck. Additional criteria that show possibility of the green water such 

as function of wave height and free board should be prepared at the same time. 
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Chapter 7 Concluding Remarks 

6.1 Conclusion 
Because of increasing activities in the high north region the demand of developed ice model for 

bridge simulator is necessary in terms of training of qualified ship navigational officers. On the arctic 

navigations additional precautions such that ship-to-ice interaction and structure icing shall be taken. 

Regarding latter term is of importance since causing stability change and capsizing in the worst case. 

Our aim of this thesis has been to compose more realistic model and install it to ice bridge simulators 

for safer arctic maritime operations. 

Both quantitative and qualitative literatures have been surveyed in the initial stage of this work, from 

those empirical and theoretical models, developed ice model to include important parameters with 

empirically obtained coefficients for build-up ice have been designed by using the computer language 

C++. 

As a result of the development the ice model could include several external conditions for ice load 

calculations, and following GM is obtained for constant values of those parameters. The reality 

judgment of the model is not easy though from case study 1 the rolling period differ 0.14 sec 

compared to full scale result, from this number we could say that this model is not far from practice. 

Although installation of this model will be on the future work, the simulator training will be more 

reliable and proposed model contribute to increase training quality, following enhancement of arctic 

maritime operations. 

By using obtained icing rate [mm/h] and considering deformation of the ice due to gravitational force 

and wind, range of the opening between horizontal hand rails can be displayed, and time domain data 

could show us when ship experiences sudden stability reduction due to trapped water on deck. From 

this view point we could conclude that by using proposed model notification of the sudden stability 

reduction to simulation trainee will be possible on a given conditions. 

In this study prototype of ship icing model has been constructed by C++ based on both theoretical 

model and empirical data. As a result GM height and following rolling period in time domain can be 

calculated at the same time considering several external parameters which is not included in the 

current ice module. That is why we could say more realistic model has been proposed. 

6.2 Recommendations for Future Work 
Although prototype of developed ice model has been constructed it should be installed into existing 

ice bridge simulators. Strong collaboration with system engineers of the simulator manufacturer 

would be necessary to accomplish this work. One key task will be the visualization of the accreted ice 

for simulator training. The coordinate data of the ship mathematical model should link to ice module 

since the degree of ice differs depending on the structure geometry. 

As a starting point we simplified ship shape and structures as Figure 5.4. The bridge simulators have 

several mathematical model of ship and the simplified shape shall be developed toward complex/real 

shape. In order to obtain more specific result it should be developed to come close to the real model. 
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Our algorithm is based on static analysis in terms of external conditions. Since those parameters such 

that relative wind speed, air temperature etc. are continuously change, dynamic model should be 

developed. 

We have analyzed several methods to calculate LWC given by external parameters; in the case study 

we use simple estimation method that is not dependent on object height for the analysis purpose. 

Since LWC must be depending on not only wave height but also ship interaction with wave, these 

formulation have to be further studied to approach practical numbers. 
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Appendix A 
Collection Efficiency 

Collection efficiency is a number between 0 and 1 that is the portion of the mass of droplets that are 

swept out by the cylinder that actually hit the cylinder, thus non dimensional parameter. The 

simplified collection efficiency for cylinder is expressed as the formula (Stallabrass, 1980); 

 
3200

27000
cE









 if 3200       

(A.1) 

 0cE     if 3200       
(A.2) 

The collection efficiency of rectangular body is expressed as 

 
2800

11700
cE









 if 2800   

     (A.3) 

 0cE     if 2800       
(A.4) 

This is only if all the droplet are the same size, parameter  

where 

0.6 1.6U d

D
 

    
 

where  U = wind speed relative to the object [m/s] 

 d = droplet diameter [μm] 

 D = cylinder diameter or body width [m] 

The collection efficiency increases with relative velocity, and with drop size, and decreases with the 

size of the object on which the drop impinge. Because the size of the water drops involved in ship 

icing due to sea spray is large, they will be deflected little and the collection efficiency will be 

assumed to be 100%.  
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Appendix B 
Prediction of the significant wave height  

The  significant wave height is found as a function of wind speed and fetch (a distance over which the 

wind blow) as third- and fifth- polynomial which is valid for wind speed up to 32.4 m/s, which is 

taken from Handbook of Oceanographic Tables 1966. 

 2 3

0 1 2 3( )sH U B BU B U B U       [m]     (B.1) 

 2 3 4 5

0 1 2 3 4 5( )sH U B BU B U B U B U B U       [m]    (B.2) 

Table B.1 Constant for third degree of polynomial of the wind speed given by equation above. 

Fetch (n.m.) B0 B1 B2 B3 

100 6.05709∙10-
2 

2.89125∙10
-2 

2.54698∙10
-2 

-4.89792∙10
-4 

200 4.21968∙10
-1 

-7.75092∙10
-2 

3.46928∙10
-2 

-5.72020∙10
-4 

300 1.28311 -2.26480∙10
-2 

4.19756∙10
-2 

-6.05377∙10
-4 

400 6.09959∙10
-1 

-1.32694∙10
-1 

3.87922∙10
-2 

-5.44265∙10
-4 

500 5.59229∙10
-1 

-1.34134∙10
-1 

4.03976∙10
-2 

-5.73259∙10
-4 

 

Table B.2 Constant for fifth degree of polynomial of the wind speed given by equation above. 

Fetch (n.m.) B0 B1 B2 B3 B4 B5 

100 8.68869∙10
-1 

-4.41178∙10
-1 

1.16227∙10
-1 

-7.87593∙10
-3 

2.62150∙10
-4 

-3.34401∙10
-6 

200 -7.71688∙10
-1 

2.71899∙10
-1 

1.07151∙10
-2 

-8.30642∙10
-4 

5.99481∙10
-5 

-1.20460∙10
-6 

300 -2.31314 5.96961∙10
-1 

-1.71261∙10
-3 

-1.75507∙10
-3 

1.32954∙10
-4 

-2.40288∙10
-6 

400 4.86322∙10
-1 

-3.41913∙10
-1 

1.14635∙10
-1 

-8.51850∙10
-3 

3.24417∙10
-4 

-4.49695∙10
-6 

500 6.55261∙10
-1 

-3.78443∙10
-1 

1.11329∙10
-1 

-7.55389∙10
-3 

2.75507∙10
-4 

-3.75483∙10
-6 
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Appendix C  
Comparison between proposed model and Mertins’ Charts 

In order to investigate proposed model, it should be compared with real numbers. See chapter 4.4. 

Here detail comparison result is shown below. These numbers are based on Figure 5.11 and Figure 

5.12. See chapter 5.5. 

Beaufort scale 6-7 

    Mertins chart  Proposed model 

 Air temp = -5  4-6 [cm/24 hour] 0.5 [cm/24 hour] 

 Air temp = -10  7-14 [cm/24 hour] 1.5 [cm/24 hour] 

 Air temp = -15  7-14 [cm/24 hour] 2.5 [cm/24 hour] 

 

Beaufort scale 8 

    Mertins chart  Proposed model 

 Air temp = -5  7-14 [cm/24 hour] 1.0 [cm/24 hour] 

 Air temp = -10  7-14 [cm/24 hour] 3.0 [cm/24 hour] 

 Air temp = -15  >15 [cm/24 hour] 5.0 [cm/24 hour] 

 

Beaufort scale 9-10 

    Mertins chart  Proposed model 

 Air temp = -5  7-14 [cm/24 hour] 2.0 [cm/24 hour] 

 Air temp = -10  >15 [cm/24 hour] 4.5 [cm/24 hour] 

 Air temp = -15  >15 [cm/24 hour] 8.0 [cm/24 hour] 

 

Beaufort scale 11-12 

    Mertins chart  Proposed model 

 Air temp = -5  7-14 [cm/24 hour] 3.0 [cm/24 hour] 

 Air temp = -10  >15 [cm/24 hour] 8.0 [cm/24 hour] 

 Air temp = -15  >15 [cm/24 hour] 12.0 [cm/24 hour] 

 



 

60 

 

Appendix D  
An example of  simulation result  

As an example of the simulation result, data set of the result of Case study 1 is shown. Upper half 

with 3103 structures are the calculation result of cylinder, rest of below half is for plate, each column 

means values for small structure elements. x-, y- and z- ; coordinate system of the each structural 

element by  body fixed coordinate system of the ship. The right hand side row; 1-20 shows the ice 

load on the structure element on time domain along 20 hours operation. For cylinder those parameters 

are cylinder diameter and length, for plate it is area of the small element. KG and total ice load is 

calculated at the same time. For full data set see attached file.
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Table D example of computation result, wind speed 14 [m/s], significant wave height 4.0 [m], air temperature -7 [˚C] and computational duration is 20 hours. 

structure 
number X [m] 

Y 
[m] 

Z [m] 
Diameter 

[m] 
Length 

[m] 
ice intensity 
[mm/hour] 

Final ice 
Thickness  

[mm] 
1 2 3 4 ... 18 19 20 

0 0.04 3.72 3.38 0.04 0.1 4.658 93.157 0.058 0.128 0.211 0.305 
 

2.903 3.180 3.468 

1 0.12 3.72 3.38 0.04 0.1 4.658 93.157 0.058 0.128 0.211 0.305 
 

2.903 3.180 3.468 

2 0.21 3.72 3.38 0.04 0.1 4.658 93.157 0.058 0.128 0.211 0.305 
 

2.903 3.180 3.468 

3 0.29 3.72 3.38 0.04 0.1 4.658 93.157 0.058 0.128 0.211 0.305 
 

2.903 3.180 3.468 

...    
            

3100 -22.5 0.41 3.08 0.04 0.1 4.669 93.381 0.058 0.129 0.212 0.306 
 

2.915 3.193 3.483 

3101 -22.5 0.41 3.18 0.04 0.1 4.666 93.313 0.058 0.129 0.211 0.306 
 

2.911 3.189 3.478 

3102 -22.5 0.41 3.28 0.04 0.1 4.662 93.238 0.058 0.129 0.211 0.306 
 

2.907 3.184 3.473 

3103 -22.5 0.41 3.38 0.04 0.1 4.658 93.157 0.058 0.128 0.211 0.305 
 

2.903 3.180 3.468 

KG    
    

2.671 2.673 2.674 2.676 
 

2.727 2.733 2.738 

ice load   
    

180.97 399.76 656.38 950.82 
 

9044.62 9906.44 10806.07 

 
   Area[m

2
] 

           
0 0 0 2.38 0.5 

 
0.6359 12.718 0.283 0.566 0.849 1.132 

 
5.093 5.376 5.659 

1 0 0 2.48 0.5 
 

0.6357 12.713 0.283 0.566 0.849 1.131 
 

5.092 5.374 5.657 

2 0 0 2.58 0.5 
 

0.6354 12.707 0.283 0.565 0.848 1.131 
 

5.089 5.372 5.655 

3 0 0 2.68 0.5 
 

0.6350 12.701 0.283 0.565 0.848 1.130 
 

5.087 5.369 5.652 

...    
            

77 0 0 10.08 0.5 
 

0.4739 9.478 0.211 0.422 0.633 0.844 
 

3.796 4.007 4.218 

78 0 0 10.18 0.5 
 

0.4708 9.415 0.209 0.419 0.628 0.838 
 

3.771 3.980 4.190 

79 0 0 10.28 0.5 
 

0.4676 9.352 0.208 0.416 0.624 0.832 
 

3.745 3.953 4.161 

80 0 0 10.38 0.5 
 

0.4644 9.288 0.207 0.413 0.620 0.827 
 

3.720 3.927 4.133 

KG    
    

2.671 2.673 2.675 2.677 
 

2.732 2.738 2.814 

ice load [kg]   
    

20.567 41.134 61.701 82.267 
 

370.203 390.770 411.337 

Total ice loads 
[kg]       

201.53 440.89 718.08 1033.0 
 

9414.82 10297.21 11217.41 
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Appendix E 
C++ Source code 

The C++ programming source code is shown here for the computation of ice load and following 

stability change. The source code is made by using “Microsoft Visual C++ Express edition”. 

#include "stdafx.h" 

#include <stdio.h> 

#include <math.h> 

#include <string.h> 

#include <stdlib.h> 

#define PI 3.141592653589 

 

double ice_cylinder(double, double, double, double, double);  // define function "ice_cylinder" 

double ice_plate(double, double, double, double, double);  // define function "ice_plate" 

int red_superstructure(char [] , double **); 

 

void main(){ 

 int n , i ,t , number_of_parts; 

 double **superstruct, **superstruct_plate; 

 double KG_height, drought, tonnage, density_ice, ice_r; 

 double KG_resultant[20], KG_moment, mass_total, KG_moment_cylinder[20], mass_total_cylinder[20]; 

 double icing_rate, 

   wind_speed, 

   ship_speed, 

   wave_height, 

   meas_height, 

   air_temp, 

   cylynder_diam; 

 FILE *fp; 

 char input_ship[128]; 

 

//************************ calculation for cylinder icing ******************** 

 

 //**** Secure Memories ******************************** 

 superstruct = (double **)malloc(sizeof(double *)*10000); 

 for(n=0;n<10000;n++) 

  superstruct[n] = (double *)malloc(sizeof(double)*27); 

 //****************************************************** 

 icing_rate  = 0.0; 

 wind_speed  = 14; 

 ship_speed  = 0.0; 

 wave_height  = 4.0; 

 meas_height  = 2.0; 

 air_temp   = -7.0; 

 cylynder_diam  = 0.1; 

 

 KG_height = 2.67;   // meter, from keel, upward positive 

 drought = 2.33;   // ship's drought 

 tonnage = 420560.00;  // ship's tonnage 

 density_ice = 890.00; 

 

 //**** Read ship super structure data **************** 

 input_ship[0] = '\0'; 

 sprintf(input_ship,"ship_data_super.dat"); 

 fp = fopen(input_ship,"r"); 

 n=0; 

 while((fscanf(fp,"%lf",&superstruct[n][0])) != EOF){ 

  for(i=1;i<27;i++) 

   fscanf(fp,"%lf",&superstruct[n][i]); 

  n++; 

 } 

 fclose(fp); 

 number_of_parts = n; 
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 //****************************************************** 

 //==== superstruct profile ============================ 

 // superstruct[n][i]; 

 // n: number of structure 

 // i=0: x coordinate 

 // i=1: y coordinate 

 // i=2: z coordinate 

 // i=3: cylinder diameter 

 // i=4: cylinder length 

 // i=5: icing rate  (initially, =0) 

 // i=6: ice thickness (initially, =0) 

 // i=7 : weight of ice at t=0 (initially, =0) 

 // i=8 : weight of ice at t=1 

 // i=9 : weight of ice at t=2 

 // ... 

 // i=26: weight of ice at t=19 

 // （total 27 elements） 

 //====================================================== 

 

 fp = fopen("time_series.dat","w"); 

  for(n=0;n<number_of_parts;n++){ 

   //**** Calculate icing rate **************** 

   meas_height = superstruct[n][2]; 

   cylynder_diam = superstruct[n][3]; 

   icing_rate = ice_cylinder(wind_speed,ship_speed,wave_height,meas_height,air_temp); 

   superstruct[n][5] = icing_rate; 

   //**** Calculate ice thickness **************** 

   for(t=7; t<27; t++){ 

    superstruct[n][6] += icing_rate; 

    ice_r = cylynder_diam + superstruct[n][6]*0.001*2; 

    //**** Calculate ice weight **************** 

    superstruct[n][t] = PI*0.25*(ice_r*ice_r - 

cylynder_diam*cylynder_diam)*superstruct[n][4]*density_ice; 

   } 

   

  } 

  //**** Calculate KG height     **************** 

 

   for(t=7;t<27;t++){ 

    KG_moment = 0; 

    mass_total = 0; 

    for (n=0;n<number_of_parts;n++){ 

 

     KG_moment = KG_moment + 

(superstruct[n][2]+drought)*superstruct[n][t]; 

    } 

    KG_moment_cylinder[t] = KG_moment; 

    

    for (n=0;n<number_of_parts;n++){ 

    mass_total = mass_total + superstruct[n][t]; 

    } 

    mass_total_cylinder[t] = mass_total; 

   KG_resultant[t] = ((KG_height*tonnage) + KG_moment) / (tonnage + mass_total); 

   } 

  //****** output results   *************** 

  for (n=0;n<number_of_parts;n++){ 

  fprintf(fp,"%i ",n); 

  for(i=0;i<27;i++){ 

   fprintf(fp,"%2.8f ",superstruct[n][i]); 

  } 

   fprintf(fp,"\n"); 

  } 

  fprintf(fp,"resultant KG is "); 

   

  for(t=7;t<27;t++){ 

   fprintf(fp,"%f ", KG_resultant[t]);  
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  } 

   

  fprintf(fp,"\n\n"); 

  //************************************************** 

 fclose(fp); 

 

 //**** Free Memories ******************************** 

 for(n=0;n<10000;n++) 

  free(superstruct[n]); 

 free(superstruct); 

 

//********************** calculation for plate icing **************************** 

 

 //**** Secure Memories ************************************* 

 superstruct_plate = (double **)malloc(sizeof(double *)*1000); 

 for(n=0;n<1000;n++) 

  superstruct_plate[n] = (double *)malloc(sizeof(double)*26); 

 //*********************************************************** 

 

//**** Read ship super structure data for plate **************** 

 input_ship[0] = '\0'; 

 sprintf(input_ship,"ship_data_super_plate.dat"); 

 fp = fopen(input_ship,"r"); 

 n=0; 

 while((fscanf(fp,"%lf",&superstruct_plate[n][0])) != EOF){ 

  for(i=1;i<26;i++) 

   fscanf(fp,"%lf",&superstruct_plate[n][i]); 

  n++; 

 } 

 fclose(fp); 

 number_of_parts = n; 

 

 //****************************************************** 

 //==== superstruct_plate profile ============================ 

 // superstruct_plate[n][i]; 

 // n: number of structure 

 // i=0: x coordinate 

 // i=1: y coordinate 

 // i=2: z coordinate 

 // i=3: plate area[m2] 

 // i=4: icing rate  (initially, =0) 

 // i=5: ice thickness (initially, =0) 

 // i=6 : weight of ice at t=0 (initially, =0) 

 // i=7 : weight of ice at t=1 

 // i=8 : weight of ice at t=2 

 // ... 

 // i=25: weight of ice at t=19 

 // （total 26elements） 

 //====================================================== 

 

 fp = fopen("time_series.dat","a"); 

  for(n=0;n<number_of_parts;n++){ 

   //**** Calculate icing rate **************** 

   meas_height = superstruct_plate[n][2]; 

   icing_rate = ice_plate(wind_speed,ship_speed,wave_height,meas_height,air_temp); 

   superstruct_plate[n][4] = icing_rate; 

   //**** Calculate ice thickness **************** 

   for(t=6;t<26;t++){     

    superstruct_plate[n][5] += icing_rate; 

    //**** Calculate ice weight **************** 

    superstruct_plate[n][t] = 

superstruct_plate[n][5]*0.001*superstruct_plate[n][3]*density_ice; 

   } 

   

  } 

  //**** Calculate KG height     **************** 

  for(t=6;t<26;t++){ 
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   KG_moment = 0; 

   mass_total = 0; 

   for (n=0;n<number_of_parts;n++){ 

    KG_moment = KG_moment + 

(superstruct_plate[n][2]+drought)*superstruct_plate[n][t]; 

   } 

   KG_moment = KG_moment + KG_moment_cylinder[t+1]; 

   for (n=0;n<number_of_parts;n++){ 

    mass_total = mass_total + superstruct_plate[n][t]; 

   } 

    mass_total = mass_total + mass_total_cylinder[t+1]; 

   KG_resultant[t] = ((KG_height*tonnage) + KG_moment) / (tonnage + mass_total); 

 } 

  //****** output results   **************** 

  for (n=0;n<number_of_parts;n++){ 

  fprintf(fp,"%i ",n); 

  for(i=0;i<26;i++){ 

   fprintf(fp,"%2.8f ",superstruct_plate[n][i]); 

  } 

  fprintf(fp,"\n"); 

  } 

  fprintf(fp,"resultant KG is "); 

   

  for(t=6;t<26;t++){ 

   fprintf(fp,"%f ", KG_resultant[t]);  

  } 

  fclose(fp); 

 

 //**** Free Memories ******************************** 

 for(n=0;n<1000;n++) 

  free(superstruct_plate[n]); 

 free(superstruct_plate); 

 //****************************************************** 

} 

 

//********************************* Horjen Ice Cylinder *************************************** 

double ice_cylinder(double uu, double v, double hs, double z,double ta) 

{ 

  

 double rw,a,ak, pi, gz, ggg, rice,b;     

 

 pi= 3.1415926;        // π 

 rice = 890;        // ice dencity 

 ggg=9.81;        // g 

 rw=1025.0;        // water dencity 

 a=2.3489e-6;       

 b=-2.0907; 

 ak=12.077; 

  

 gz = 1.7e-4 * hs * uu; 

 

 //********* calculate droplet temperature *************** 

 float dd;         

 double tau, ddd, cw, tw, ea, w, xt, lv, p, cp, ew, td, h;     

  

   

 cw = 4000;   // specific heat of water [J/kg.K] 

 tau = 2.9;   // duration of spray [sec]      

 lv = 2.5e6;   // latent heat of vaporization [J/kg]  

 cp = 1005;   // specific heat of air [J/kg.K] 

 p = 100;    // varometric pressure [kPa] 

 h = 5.17 * exp(log(uu)*0.8); // convective heat transfer coefficient [W/m2.k] 

 rw = 1025;   // water dencity [kg/m3] 

 tw=0; 

 dd= 0.001;   //droplet diameter [mm] 

 ddd=0.4;    // characteristic length [m] 
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 ea = 1.9226e-7*ta*ta*ta*ta + 2.4545e-5*ta*ta*ta + 1.4224e-3*ta*ta + 0.044436*ta + 0.61094; 

 

 w = tw; 

 while(1){ 

  ew = 1.9226e-7*w*w*w*w + 2.4545e-5*w*w*w + 1.4224e-3*w*w + 0.044436*w + 0.61094; 

  xt = 1 + 0.622*lv/p/cp*(ea-ew)/(ta-w);    // X_theta  

 td = ta + (w-ta)*exp(-0.2514*h*ddd/(rw*cw*dd*dd) * xt * tau); 

  if (fabs(w-td)<0.00001) 

   break; 

  else 

   w = td; 

 } 

 

// computation of freezing fraction "n"  

 float tf, ss; 

 double ts, es, mi, n, nn; 

 

 ss = 35;     // salinity of sea water [ppt] 

 tf = -0.002 -0.0524 * ss -6e-5*ss;    

 

 n=0; 

 while(1){ 

  ts = (1 + n)*tf; 

  es = 1.9226e-7*ts*ts*ts*ts + 2.4545e-5*ts*ts*ts + 1.4224e-3*ts*ts + 0.044436*ts + 0.61094; 

  mi = hs*uu*(ts-td) + h*(ts-ta) + 89.5*exp(log(uu)*0.8)*(es-ea); 

  nn = mi/lv/gz; 

  if (fabs(nn-n)<0.00001) break; 

  n=nn; 

   

 } 

 

 double nnn; 

 

 nnn = nn*gz/rice*3.6e6; 

 

    return nnn; 

} 

 

 

//********************************* Horjen Ice plate *************************************** 

double ice_plate(double uu, double v, double hs, double z,double ta) 

{ 

  

 double rw,a,ak, pi, gz, ggg, rice, b, ddd;     

  

 pi= 3.1415926;    // π 

 rice = 890;    // ice density 

 ggg=9.81;    // g 

 rw=1025.0;    // water density 

 a=2.3489e-6;       

 b=-2.0907; 

 ak=12.077; 

 gz = 1.7e-4 * hs * uu; 

 

 //************ calculation for droplet temperature **************** 

 float dd;    // droplet diameter, characteristic length [m] 

 double tau, cw, tw, ea, w, xt, lv, p, cp, ew, td, h;  

 

 cw = 4000;     // specific heat of water [J/kg.K] 

 tau =2.9;     // duration of spray [sec] 

 lv = 2.5e6;     // latent heat of vaporization [J/kg]  

 cp = 1005;     // specific heat of air [J/kg.K] 

 p = 100;      // barometric pressure [kPa] 

 ddd = 0.4;     // characteristic length [m] 

 h = 6.3279 * exp(log(uu)*0.8) / exp(log(ddd)*0.2); // convective heat transfer coefficient [W/m2.k] 

 rw = 1025;     // water density [kg/m3] 

 tw = 0; 
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 dd = 0.001;     // droplet diameter [mm] 

  

 ea = 1.9226e-7*ta*ta*ta*ta + 2.4545e-5*ta*ta*ta + 1.4224e-3*ta*ta + 0.044436*ta + 0.61094; 

 

 w = tw; 

 while(1){ 

  ew = 1.9226e-7*w*w*w*w + 2.4545e-5*w*w*w + 1.4224e-3*w*w + 0.044436*w + 0.61094; 

  xt = 1 + 0.622*lv/p/cp*(ea-ew)/(ta-w);   // X_theta 

  td = ta + (w-ta)*exp(-0.2514*h*ddd/(rw*cw*dd*dd) * xt * tau); 

  if (fabs(w-td)<0.00010) 

   break; 

  else 

   w = td; 

 } 

 

// computation of freezing fraction "n"  

 float tf, ss; 

 double ts, es, mi, n, nn; 

 

 ss = 35;       // salinity of sea water [ppt] 

 tf = -0.002 -0.0524 * ss -6e-5*ss;    

 

 n=0; 

 while(1){ 

  ts = (1 + n)*tf; 

  es = 1.9226e-7*ts*ts*ts*ts + 2.4545e-5*ts*ts*ts + 1.4224e-3*ts*ts + 0.044436*ts + 0.61094; 

  mi = hs*uu*(ts-td) + h*(ts-ta) + 89.5*exp(log(uu)*0.8)*(es-ea); 

  nn = mi/lv/gz; 

  if (fabs(nn-n)<0.0001) break; 

  n=nn; 

 } 

  

// final computation result which is icing intencity 

 double nnn; 

 

 nnn = nn*gz/rice*3.6e6; 

 

    return nnn; 

} 
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